US20100000726A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
US20100000726A1
US20100000726A1 US12/494,716 US49471609A US2010000726A1 US 20100000726 A1 US20100000726 A1 US 20100000726A1 US 49471609 A US49471609 A US 49471609A US 2010000726 A1 US2010000726 A1 US 2010000726A1
Authority
US
United States
Prior art keywords
line
fin
tube
heat exchanger
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/494,716
Other languages
English (en)
Inventor
Sang Yeul Lee
Han Choon Lee
Dong Hwi Kim
Ju Hyok Kim
Hong Seong Kim
Yong Cheol Sa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, DONG HWI, KIM, HONG SEONG, KIM, JU HYOK, LEE, HAN CHOON, LEE, SANG YEUL, SA, YONG CHEOL
Publication of US20100000726A1 publication Critical patent/US20100000726A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/08Assemblies of conduits having different features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/02Arrangements of fins common to different heat exchange sections, the fins being in contact with different heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Definitions

  • the present disclosure relates to a heat exchanger.
  • a heat exchanger is designed such that an internal refrigerant is heat-exchanged with external fluid.
  • the heat exchangers may be classified into fin-tube type heat exchangers and micro channel tube type heat exchangers.
  • the fin-tube type heat exchanger includes a plurality of fins and a plurality of refrigerant tubes penetrating the fins.
  • the external fluid e.g., air
  • the refrigerant tubes may include a plurality of front line tubes and a plurality of rear line tubes to enlarge a flow area of the external fluid.
  • the front and rear line tubes are arranged in a zigzag pattern.
  • the present disclosure provides a heat exchanger that can improve a heat exchange performance.
  • a heat exchanger includes: at least one fin provided with a plurality of slits; and a plurality of refrigerant tubes penetrating the fin; wherein, the refrigerant tubes include at least one front line tube and at least one rear line tube having a different diameter from the front line tube with reference to a fluid flow direction; and the slits include at least one front line slit and at least one rear line slit having a difference width with reference to the fluid flow direction.
  • a heat exchanger in another embodiment, includes: a plurality of refrigerant tubes along which refrigerant flows; and at least one fin through which the refrigerant tubes pass, wherein the refrigerant tubes include front and rear line tubes with reference to a fluid flow direction; a diameter of the front line tube is less than a diameter of the rear line tube; and the front and rear tubes penetrate one fin.
  • a heat exchanger in still another embodiment, includes: a plurality of refrigerant tubes along which refrigerant flows; and at least one fin through which the refrigerant tubes pass, wherein the refrigerant tubes include front and rear line tubes with reference to a fluid flow direction; the fins include at least one front line fin through which the front line tube passes and at least one rear line fin through which the rear tube passes, the rear line tube being separately formed with the front line tube; and a diameter of the front line tube is less than the rear line tube.
  • FIG. 1 is a perspective view of a heat exchanger according to a first embodiment.
  • FIG. 2 is a cross-sectional view of the heat exchanger of FIG. 1 .
  • FIG. 3 is a graph illustrating fin efficiencies of a related art heat exchanger and the heat exchanger of FIG. 1 .
  • FIGS. 4 and 5 are graphs illustrating a heat transfer performance and pressure loss in accordance with a width of a fin.
  • FIG. 6 is a perspective view of a heat exchanger according to a second embodiment.
  • FIG. 7 is a cross-sectional view of the heat exchanger of FIG. 7 .
  • FIG. 8 is a cross-sectional view of a heat exchanger according to a third embodiment.
  • FIG. 9 is a graph illustrating a pressure loss in accordance with a rear line slit in a last line and a rear end of a fin.
  • FIG. 10 is a graph illustrating a pressure loss in accordance with a distance between a center of a rear line tube and an adjacent rear line slit.
  • FIG. 1 is a perspective view of a heat exchanger according to a first embodiment and FIG. 2 is a cross-sectional view of the heat exchanger of FIG. 1 .
  • a heat exchanger of a first embodiment includes a plurality of refrigerant tubes 10 along which fluid flows and a plurality of fins 20 penetrating the refrigerant tubes 10 .
  • the refrigerant tubes 10 include a plurality of front line tubes 11 that are located at a front side with reference to a fluid flow direction and a plurality of rear line tubes 12 that are located at a rear side with reference to the fluid flow direction.
  • the front line tubes 11 are spaced apart from each other at predetermined intervals in a perpendicular direction to the fluid flow direction.
  • the rear line tubes 12 are also spaced apart from each other at predetermined intervals in the perpendicular direction (an up-down direction in FIG. 2 ) to the fluid flow direction.
  • the front line tubes 11 and the rear line tubes 12 are arranged in a zigzag pattern relative to each other. That is, each of the front line tubes 11 is located between two rear line tubes 120 .
  • the fins 20 are spaced apart from each other at predetermined intervals.
  • the front and rear line tubes 11 and 122 penetrate each of the fins 20 .
  • a diameter D 1 of the front tube 11 is less than a diameter D 2 of the rear line tube 12 so that the fluid can effectively pass through the heat exchanger 1 .
  • a part of the fluid introduced from the front side of the front line tubes 11 into spaces between the fins 20 passes around the front line tubes 11 and is then discharged to a rear side of the rear line tubes 12 .
  • a part of the fluid stays at a rear side adjacent to the front line tubes 11 .
  • the area where the fluid stays at the rear side of the front line tubes 11 is referred to as a wake area W.
  • the wake area W As an amount of the fluid staying at the wake area W increases or the wake area W increases, the fluid cannot effectively flow.
  • the front line tube 11 is designed such that a diameter thereof is less than a diameter of the rear line tube 12 so that the amount of the fluid staying at the wake area W or the wake area W can be reduced and thus the fluid can effectively flow.
  • the heat exchange between the fluid and the refrigerant can be effectively realized and thus the heat exchange performance of the heat exchanger can be improved.
  • a ratio between the diameter D 1 of the front line tube 11 and the diameter D 2 of the rear line tube 12 is set to satisfy the following:
  • the ratio between the diameter D 1 of the front line tube 11 and the diameter D 2 of the rear line tube 12 is less than 1.1 (i.e., when the diameter D 1 of the front line tube 11 is almost same as the diameter D 2 of the rear line tube 12 ), it is difficult to achieve the reduction of the amount of the fluid at the wake area W.
  • the ratio between the diameter D 1 of the front line tube 11 and the diameter D 2 of the rear line tube 12 is greater than 1.5, an amount of the refrigerant flowing along the front line tubes 11 is significantly less than the amount of the fluid flowing around the rear line tubes 12 less than 1.1 and thus the heat exchange performance is significantly reduced.
  • L 1 a distance from a from end 20 a of the fin 20 , which initially meets the fluid with reference to the fluid flow direction to a center of the front line tubes 11
  • L 2 a distance from a rear end 20 b of the fin 20 to a center of the rear line tube 12
  • R a horizontal distance from the center of the front line tubes 11 and the center of the rear line tubes 12
  • R and L 2 are set to satisfy the following:
  • the L 1 is set to be less than L 2 and the L 1 and L 2 are set to satisfy the following:
  • R, L 1 , and L 2 are set to satisfy the following:
  • the front fin may be 2L 1 and the rear fin may be 2L 2 .
  • the diameter D 1 of the front line tube 11 and the distance L 1 from the front end of the fin 20 to the center of the front line tube 11 are set to satisfy the following:
  • the diameter D 1 of the front line tube 11 may be set within a range of 4.5-5.5 mm.
  • the 2L 1 may be less than 9.5 mm.
  • the diameter D 2 of the rear line tube 12 and the distance L 2 from the rear end of the fin 20 to the center of the rear line tubes are set to satisfy the following:
  • the diameter D 2 of the rear line tube 12 may be formed within a range of 6.5-7.5 mm.
  • the 2L 2 may be set to be less than 11.5 mm.
  • the diameter D 1 of the front line tube 11 is set to be less than the diameter D 2 of the rear line tube 12 , the fluid flow resistance by the front line tube 11 is reduced and the wake area in rear of the front line tubes 11 is reduced. Further, as the fluid flow resistance is reduced, an amount of the fluid increases and the fluid flow noise can be reduced.
  • the distance from the front end of the fin 20 to the center of the front line tube 11 is less than the distance from the rear end of the fin 20 to the center of the rear line tube 12 , an overall width of the fin is reduced and thus the heat exchanger can be formed in a more compact design.
  • FIG. 3 is a graph illustrating fin efficiencies of a related art heat exchanger and the heat exchanger of FIG. 1 and FIGS. 4 and 5 are graphs illustrating a heat transfer performance and pressure loss in accordance with a width of a fin.
  • FIG. 4 is a graph illustrating a case when the diameter D 1 of the front line tube is, for example, 5 mm
  • FIG. 5 is a graph illustrating a case when the diameter D 1 of the front line tube is, for example, 7 mm.
  • the transverses axis represents a speed of fluid and the longitudinal axis represents fin efficiency.
  • the graph A illustrates a test result using a heat exchanger (a width of the overall fins is 200 mm) where the diameter of the front line tube is 5 mm, the diameter of the rear line tube 7 mm, the width 2L 1 of the front line fin 2L 1 is 9 mm, and the width 2L 2 of the rear line fin is 11 mm.
  • the graph B illustrates a test result using a heat exchanger (a width of the overall fins is 22 mm) where the diameter of the front line tube is 7 mm, the diameter of the rear line tube 7 mm, the width 2L 1 of the front line fin 2L 1 is 11 mm, and the width 2L 2 of the rear line fin is 11 mm.
  • the pressure loss and the heat transfer performance are 100% when the width W 1 of the front line fin 2L 1 , the heat transfer performance and the pressure loss are reduced as the width of the front line fin is gradually further reduced from 9 mm.
  • the variation of the heat transfer performance is very small and the pressure loss increases as the width of the front line fin is gradually further increased from 9 mm.
  • the diameter of the front line tube is 5 mm and the width of the front line fin is approximately 9 mm, the increase of the pressure loss can be prevented while keeping the heat transfer performance.
  • the pressure loss and the heat transfer performance are 10% when the width W 2 of the rear line fin 2L 2 is 11 mm
  • the heat transfer performance and the pressure loss are reduced as the width W 2 of the rear line fin is gradually further reduced from 11 mm and the variation of the heat transfer performance is very small but the pressure loss is increased as the width of the rear line fin is gradually further increased from 11 mm.
  • the increase of the pressure loss can be prevented while keeping the heat transfer performance.
  • the wake area in rear of the front line tube can be reduced.
  • the front line fin is designed to have a greater width than the rear line fin, the heat transfer performance can be kept. Therefore, the overall size of the heat exchanger can be reduced while the heat exchange performance of the heat exchanger is improved.
  • FIG. 6 is a perspective view of a heat exchanger according to a second embodiment and FIG. 7 is a cross-sectional view of the heat exchanger of FIG. 7 .
  • a heat exchanger of a second embodiment includes a plurality of front line tubes 11 , a plurality of rear line tubes 12 , a plurality of front line fins 30 through which the front line tubes 11 pass, and a plurality of rear line fins 40 through which the rear line tubes 12 pass.
  • front line fins 30 and the rear line fins 40 are spaced apart from each other. That is, the front line tubes 11 and the rear line tubes 12 penetrate different fins.
  • a diameter D 1 of the front line tube 11 is set to be less than a diameter D 2 of the rear line tube 12 .
  • a ratio between the diameter D 1 and the diameter D 2 are set to satisfy the following:
  • a width W 1 of the front line fin 30 in a direction in parallel with a fluid flow direction is set to be less than a width W 2 of the rear fin 40 .
  • a radio between the widths W 1 and W 2 is set to satisfy the following:
  • the heat exchanger can be more compact.
  • the diameter D 1 of the front line tube 11 and the width W 1 of the front line fin 30 are set to satisfy the following:
  • the diameter D 1 of the rear line tube 12 and the width W 2 of the rear line fin 40 are set to satisfy the following:
  • diameter D 1 of the front line tube 11 and the width W 1 of the front line fin 30 are set to satisfy the following:
  • the diameter D 1 of the front line tube 11 may be set within a range of 4.5-5.5 mm.
  • the diameter D 1 of the front line tube 11 is 5 mm, the width of the front line fin 30 will be 9.5 mm.
  • diameter D 2 of the rear line tube 12 and the width W 2 of the rear line fin 40 are set to satisfy the following:
  • the diameter D 2 of the rear line tube 12 may be set within a range of 6.5-7.5 mm.
  • the width of the rear line fin 40 will be less than 11.5 mm.
  • FIG. 8 is a cross-sectional view of a heat exchanger according to a third embodiment.
  • the third embodiment is identical to the first embodiment except that a plurality of slits are formed on the fins. Therefore, only the features of the third embodiment will be described hereinafter.
  • a heat exchanger of this embodiment includes a plurality of front line tubes 11 , a plurality of rear line tubes 12 , and a plurality of fins 50 through which the front and rear line tubes 11 and 12 pass.
  • the fin 50 includes a front line slit portion formed between the front line tubes 11 with reference to a length direction (a perpendicular direction to a fluid flow direction, hereinafter, an up-down direction in FIG. 8 ) of the fin 50 and a rear line slit portion formed between the rear line tubes 12 .
  • the front line slit portion includes a plurality of front line slits 51 that are arranged in series in a direction in parallel with the fluid flow direction.
  • the front line slits 51 may be formed in two or more lines.
  • the slits 51 are arranged in four lines in FIG. 8 .
  • the rear line slit portion includes a plurality of rear line slits 52 that are arranged in series in a direction in parallel with the fluid flow line.
  • the rear line slits 52 may be arrange in three or more lines. In FIG. 8 , the rear line slits 52 are arranged in, for example, four lines.
  • a width w 1 of the front slit 51 is set to be same as or less than a width w 2 of the rear line slit 52 . Further, the width w 1 of the front line slit 51 may be formed within a range of 0.8-1.1 mm.
  • width w 1 of the front line sit 51 and the width w 2 of the rear line slit 52 are set to satisfy the following:
  • a distance between the front line slits 51 is equal to or less than a distance d 2 between the rear line slits 52 .
  • the distance between the front line slits 51 is equal to or greater than the width w 1 of the front line slit 51 .
  • the distance d 2 between the rear line slits 52 is equal to or greater than the width w 2 of the rear line slit 52 .
  • width w 1 of the front line slit 51 and the distance d 1 between the front line slits 51 are set to satisfy the following:
  • the distance d 2 between the rear line slits 52 and the width w 2 of the rear line slit 52 are set to satisfy the following:
  • a distance A 1 from a front end of the fin 50 to the front line slit 51 a in the first line of the front line slit portion is set to satisfy the following:
  • the front line slits 51 a in the first line are formed to be adjacent to the front end of the fin 51 so as to increase a heat exchange area with a low temperature fluid.
  • the A 1 is less than 0.6 mm, it is difficult to process the front line slit in the first line and to achieve the boundary layer destruction effect that is a function of the slit.
  • the A 1 is greater than 1.2 mm, the boundary layer of the fluid (air) is not destructed and the fluid flow distance increases. Therefore, the heat exchanger performance is deteriorated as compared with the case where the A 1 is less than 1.2 mm.
  • a distance A 2 from a rear end of the fin 50 to the rear line slit 52 a in the last line of the rear line slit portion may be formed within a range of 0.8-1.4 mm.
  • a 1 and A 2 are set to satisfy the following:
  • a distance cw from an imaginary line connecting a center C 1 of the front line tubes 11 to a center C 2 of the rear line tubes 12 to a slit adjacent to the imaginary line is set to be greater than 0.5 mm.
  • a distance between the front line slit in the second line and the front line slit in the third line is formed to be equal to or greater than 1 mm and a distance between the rear line slit in the second line and the rear line slit in the third line is formed to be equal to or greater than 1 mm.
  • FIG. 9 is a graph illustrating a pressure loss in accordance with the rear line slit in the last line and the rear end of the fin.
  • the transverse axis indicates a distance A 1 (mm) between the last line of the rear slits and the rear end of the fin and the longitudinal line indicates the pressure loss.
  • other test conditions are same as the graph of FIG. 4 .
  • the condensed water discharge performance varies in accordance with the amount of the pressure loss. That is, when the condensed water is not effectively discharged, the pressure loss increases. When the condensed water is effectively discharged, the pressure loss is reduced.
  • the pressure loss when the pressure loss is 100% when the A 2 is 0.8 mm, the pressure loss increases when the distance L 2 is less than 0.8 mm. In addition, when the distance L 2 is greater than 0.8 mm, the pressure loss is reduced, in the course of which, when the distance L 2 is equal to or greater than 1.4 mm, the pressure loss is constantly maintained.
  • the A 2 may be formed within a range of 0.8-1.4 mm.
  • FIG. 10 is a graph illustrating a pressure loss in accordance with a distance between a center of the rear line tube and the adjacent rear line slit.
  • the transverse line indicates two times a distance 2CW (mm) between the center of the rear line tube and the adjacent rear line slit and the longitudinal line indicates the pressure loss.
  • Other test conditions are same as FIG. 9 .
  • the pressure loss when it is assumed that the pressure loss is 100% when the 2CW is 1.0 mm, the pressure loss increases when the 2CW is less than 1.0 mm. In addition, when the 2CW is greater than 1.0 mm, the pressure loss is reduced, in the course of which, when the 2CW is equal to and greater than 1.8 mm, the pressure loss is constantly maintained.
  • the 2CW may be formed within a range of 1.0-1.8 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
US12/494,716 2008-07-04 2009-06-30 Heat exchanger Abandoned US20100000726A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080065059A KR101520484B1 (ko) 2008-07-04 2008-07-04 열교환기
KR10-2008-0065059 2008-07-04

Publications (1)

Publication Number Publication Date
US20100000726A1 true US20100000726A1 (en) 2010-01-07

Family

ID=41136712

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/494,716 Abandoned US20100000726A1 (en) 2008-07-04 2009-06-30 Heat exchanger

Country Status (4)

Country Link
US (1) US20100000726A1 (ko)
EP (1) EP2141430A3 (ko)
KR (1) KR101520484B1 (ko)
CN (1) CN101619938B (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120175101A1 (en) * 2009-09-16 2012-07-12 Panasonic Corporation Fin tube heat exchanger
JP2013011369A (ja) * 2011-06-28 2013-01-17 Mitsubishi Electric Corp フィンチューブ型熱交換器及びこれを用いた冷凍サイクル装置
US11774187B2 (en) * 2018-04-19 2023-10-03 Kyungdong Navien Co., Ltd. Heat transfer fin of fin-tube type heat exchanger
US11859861B2 (en) * 2018-01-20 2024-01-02 Daikin Industries, Ltd. System and method for heating and cooling

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208567A1 (ja) * 2015-06-25 2016-12-29 東芝キヤリア株式会社 天井設置形空気調和機および熱交換器
CN106885481B (zh) * 2016-05-24 2019-03-19 无锡市金城环保炊具设备有限公司 一种烟道口带热烟气余热高效回收利用的技术方法
CN106247820A (zh) * 2016-06-21 2016-12-21 四川长虹电器股份有限公司 一种异径管换热器及空调机
CN108895861B (zh) * 2018-04-24 2020-08-25 青岛海尔空调器有限总公司 换热器及空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832117A (en) * 1987-01-23 1989-05-23 Matsushita Refrigeration Company Fin tube heat exchanger
US5170842A (en) * 1988-07-22 1992-12-15 Matsushita Refrigeration Company Fin-tube type heat exchanger
US6026893A (en) * 1997-08-30 2000-02-22 Samsung Electronics Co., Ltd. Fin-type heat exchanger having slits formed therein
US6227289B1 (en) * 1995-11-09 2001-05-08 Matsushita Electric Industrial Co., Ltd. Finned heat exchanger
US20020003035A1 (en) * 2000-07-06 2002-01-10 Oh Sai Kee Heat exchanger with small-diameter refrigerant tubes
US20030188854A1 (en) * 1999-12-15 2003-10-09 Lg Electronics Inc. Fin and tube type heat-exchanger
US20070151716A1 (en) * 2005-12-30 2007-07-05 Lg Electronics Inc. Heat exchanger and fin of the same
US20090084129A1 (en) * 2007-08-31 2009-04-02 Dong Hwi Kim Heat exchanger and refrigeration cycle apparatus having the same
US20090308585A1 (en) * 2008-06-13 2009-12-17 Goodman Global, Inc. Method for Manufacturing Tube and Fin Heat Exchanger with Reduced Tube Diameter and Optimized Fin Produced Thereby

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108394A (ja) * 1981-12-21 1983-06-28 Hitachi Ltd 熱交換器
JP3361405B2 (ja) * 1995-04-03 2003-01-07 東芝キヤリア株式会社 空気調和機の室外ユニット
CN1148546C (zh) * 2001-04-23 2004-05-05 广东美的集团股份有限公司 一种空调器用换热器
JP4073850B2 (ja) * 2003-09-11 2008-04-09 シャープ株式会社 熱交換器
KR100709421B1 (ko) * 2005-05-02 2007-04-18 엘지전자 주식회사 열교환기
US7464700B2 (en) * 2006-03-03 2008-12-16 Proliance International Inc. Method for cooling an internal combustion engine having exhaust gas recirculation and charge air cooling
JP2008111622A (ja) * 2006-10-31 2008-05-15 Toshiba Kyaria Kk 熱交換器、これを用いた空気調和機の室外機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832117A (en) * 1987-01-23 1989-05-23 Matsushita Refrigeration Company Fin tube heat exchanger
US5170842A (en) * 1988-07-22 1992-12-15 Matsushita Refrigeration Company Fin-tube type heat exchanger
US6227289B1 (en) * 1995-11-09 2001-05-08 Matsushita Electric Industrial Co., Ltd. Finned heat exchanger
US6026893A (en) * 1997-08-30 2000-02-22 Samsung Electronics Co., Ltd. Fin-type heat exchanger having slits formed therein
US20030188854A1 (en) * 1999-12-15 2003-10-09 Lg Electronics Inc. Fin and tube type heat-exchanger
US20020003035A1 (en) * 2000-07-06 2002-01-10 Oh Sai Kee Heat exchanger with small-diameter refrigerant tubes
US20070151716A1 (en) * 2005-12-30 2007-07-05 Lg Electronics Inc. Heat exchanger and fin of the same
US20090084129A1 (en) * 2007-08-31 2009-04-02 Dong Hwi Kim Heat exchanger and refrigeration cycle apparatus having the same
US20090308585A1 (en) * 2008-06-13 2009-12-17 Goodman Global, Inc. Method for Manufacturing Tube and Fin Heat Exchanger with Reduced Tube Diameter and Optimized Fin Produced Thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine Translation of JP 2008-111622, 1-6 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120175101A1 (en) * 2009-09-16 2012-07-12 Panasonic Corporation Fin tube heat exchanger
US8978743B2 (en) * 2009-09-16 2015-03-17 Panasonic Intellectual Property Management Co., Ltd. Fin tube heat exchanger
JP2013011369A (ja) * 2011-06-28 2013-01-17 Mitsubishi Electric Corp フィンチューブ型熱交換器及びこれを用いた冷凍サイクル装置
US11859861B2 (en) * 2018-01-20 2024-01-02 Daikin Industries, Ltd. System and method for heating and cooling
US11774187B2 (en) * 2018-04-19 2023-10-03 Kyungdong Navien Co., Ltd. Heat transfer fin of fin-tube type heat exchanger

Also Published As

Publication number Publication date
EP2141430A2 (en) 2010-01-06
CN101619938A (zh) 2010-01-06
CN101619938B (zh) 2012-11-07
KR101520484B1 (ko) 2015-05-14
EP2141430A3 (en) 2011-04-13
KR20100004724A (ko) 2010-01-13

Similar Documents

Publication Publication Date Title
US20100000726A1 (en) Heat exchanger
US7913750B2 (en) Louvered air center with vortex generating extensions for compact heat exchanger
US8162041B2 (en) Heat exchanger of plate fin and tube type
US10072898B2 (en) Fin tube heat exchanger
US20100263847A1 (en) Microchannel heat exchanger
JP4989979B2 (ja) 熱交換器
JP2009127937A (ja) 熱交換器
JP2020094791A5 (ko)
JP2005106328A (ja) 熱交換装置
US20090173479A1 (en) Louvered air center for compact heat exchanger
US6672376B2 (en) Twisted-louver high performance heat exchanger fin
JP2007505282A (ja) 熱交換器
KR20060012303A (ko) 열교환기용 핀, 열교환기, 응축기, 및 증발기
JP6415976B2 (ja) フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器
US20060266503A1 (en) Heat transfer fin, heat exchanger, evaporator and condenser for use in car air-conditioner
US10801784B2 (en) Heat exchanger with air flow passage for exchanging heat
JP2008121932A (ja) 熱交換器
KR100606332B1 (ko) 공조기기의 열교환기용 납작튜브
JP2003222486A (ja) ヒートポンプ型熱交換器コア
JP4184110B2 (ja) フィンチューブ型熱交換器
JP2005003350A (ja) 熱交換器用フィン、熱交換器、凝縮器及び蒸発器
KR100368664B1 (ko) 열교환기의 냉매튜브
WO2022180823A1 (ja) 熱交換器および冷凍サイクル装置
JP2003139479A (ja) ヒートポンプ型熱交換器コア
US20210003350A1 (en) Heat exchanger

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, SANG YEUL;LEE, HAN CHOON;KIM, DONG HWI;AND OTHERS;REEL/FRAME:022989/0217;SIGNING DATES FROM 20090630 TO 20090701

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION