US20090301699A1 - Vertical combined feed/effluent heat exchanger with variable baffle angle - Google Patents

Vertical combined feed/effluent heat exchanger with variable baffle angle Download PDF

Info

Publication number
US20090301699A1
US20090301699A1 US12/133,917 US13391708A US2009301699A1 US 20090301699 A1 US20090301699 A1 US 20090301699A1 US 13391708 A US13391708 A US 13391708A US 2009301699 A1 US2009301699 A1 US 2009301699A1
Authority
US
United States
Prior art keywords
helix angle
fluid
heat exchanger
shell
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/133,917
Other languages
English (en)
Inventor
Mark S. Karrs
Krishnan S. Chunangad
Bashir I. Master
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lummus Novolen Technology GmbH
Lummus Technology LLC
Original Assignee
Lummus Novolen Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lummus Novolen Technology GmbH filed Critical Lummus Novolen Technology GmbH
Priority to US12/133,917 priority Critical patent/US20090301699A1/en
Assigned to LUMMUS TECHNOLOGY INC. reassignment LUMMUS TECHNOLOGY INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHUNANGAD, K., KARRS, M. S., MASTER, B.
Priority to TW098116182A priority patent/TWI372232B/zh
Priority to SG2013043112A priority patent/SG191645A1/en
Priority to EP09758983.2A priority patent/EP2315994B1/en
Priority to CA2726121A priority patent/CA2726121C/en
Priority to CN2009801205044A priority patent/CN102047062A/zh
Priority to EA201071432A priority patent/EA017912B1/ru
Priority to JP2011512523A priority patent/JP5237444B2/ja
Priority to MX2010013229A priority patent/MX2010013229A/es
Priority to ES09758983.2T priority patent/ES2585566T3/es
Priority to BRPI0911382A priority patent/BRPI0911382B1/pt
Priority to KR1020107028913A priority patent/KR101256733B1/ko
Priority to PT97589832T priority patent/PT2315994T/pt
Priority to DK09758983.2T priority patent/DK2315994T3/en
Priority to MYPI2010005774A priority patent/MY159341A/en
Priority to PCT/US2009/044605 priority patent/WO2009148822A2/en
Priority to AU2009255450A priority patent/AU2009255450B2/en
Priority to NZ589501A priority patent/NZ589501A/en
Priority to UAA201014495A priority patent/UA101194C2/ru
Priority to PL09758983T priority patent/PL2315994T3/pl
Priority to PE2009000772A priority patent/PE20100437A1/es
Priority to CL2009001364A priority patent/CL2009001364A1/es
Priority to ARP090102048A priority patent/AR072067A1/es
Publication of US20090301699A1 publication Critical patent/US20090301699A1/en
Priority to IL209550A priority patent/IL209550A0/en
Priority to ZA2010/08783A priority patent/ZA201008783B/en
Priority to CO10154861A priority patent/CO6311036A2/es
Priority to EC2011010743A priority patent/ECSP11010743A/es
Priority to JP2013066371A priority patent/JP5671087B2/ja
Priority to PH12013501095A priority patent/PH12013501095B1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/228Oblique partitions

Definitions

  • Embodiments disclosed herein relate generally to a heat exchanger. More specifically, embodiments disclosed herein relate to a heat exchanger, such as a shell and tube heat exchanger, configured to efficiently process two-phase flow.
  • a heat exchanger such as a shell and tube heat exchanger
  • a shell and tube heat exchanger as illustrated in FIG. 1 , includes a cylindrical shell 10 housing a bundle of parallel pipes 12 , which extend between two end plates 14 so that a first fluid 16 can pass through the pipes 12 . Meanwhile, a second fluid 18 flows in and through the space between the two end plates so as to come into contact with the pipes.
  • the flow path of the second fluid 18 is defined by intermediate baffles 20 forming respective passages, which are arranged so that the second fluid flow changes its direction in passing from one passage to the next.
  • baffles 20 configured as either partial circular segments as shown (partial segmental baffles), or as annular rings and discs, are installed perpendicular to a longitudinal axis 22 of the shell 10 to provide a zigzag flow 24 of the second fluid 18 .
  • the second fluid has to sharply change the direction of its flow several times along the length of the shell.
  • This causes a reduction in the dynamic pressure of the second fluid and non-uniform flow velocity thereof, which, in combination, adversely affect the performance of the heat exchanger.
  • a perpendicular position of the baffles relative to the longitudinal axis of the shell results in a relatively inefficient heat transfer rate/pressure drop ratio.
  • such baffle arrangements produce flow bypass through baffle-to-shell and pipe-to-baffle clearances, resulting in flow maldistribution, eddies, back-flow, and higher rates of fouling, among other undesired consequences.
  • Example processes may include naphtha reforming, naphtha hydrotreating, diesel and kerosene hydrotreating, light hydrocarbon isomerization and metathesis, and many other industrially important processes.
  • Such processes will typically include feed/effluent heat exchange equipment, where the heat required to vaporize the reactor feed stream is recovered by condensation or partial condensation of the reactor effluent.
  • feed/effluent heat exchange equipment has historically been arranged as conventional horizontal shell and tube heat exchangers.
  • the vapor molecular weight can be much lower than the associated liquid, especially in hydrotreating services where the vapor is largely composed of hydrogen, the maldistribution of vapor with the liquid entering an exchanger can have a marked impact on the associated boiling curve and, consequently, the mean temperature difference (MTD) of the boiling operation.
  • MTD mean temperature difference
  • VCFE vertical combined feed/effluent heat exchanger
  • shellside boiling is favored to reduce the required surface, as the shellside boiling coefficient is enhanced by the relatively larger volume of the shellside due to mass transport effects.
  • fouling considerations must also be addressed, as the tubeside will normally be easier to clean.
  • a drawback of the shellside boiling arrangement is considered at partial load or turndown operation, where the shellside velocities may not be sufficient to prevent phase separation and backflow of the liquid fraction back down to the inlet. Such buildup of heavy liquid fraction at high residence time can result in fouling.
  • a heat exchanger including: a shell having a fluid inlet and a fluid outlet; a plurality of baffles mounted in the shell to guide the fluid into a helical flow pattern through the shell; wherein a helix angle ⁇ of a baffle proximate the inlet is different than a helix angle ⁇ of a baffle proximate the outlet.
  • a shell and tube heat exchanger including: a tubeside inlet manifold having a first fluid inlet therein; a tubeside outlet manifold having a first fluid outlet therein; a plurality of tubes extending between the manifolds and in fluid communication therewith; a shell extending between the manifolds and encompassing said tubes, the shell having a second fluid inlet and a second fluid outlet therein; a plurality of baffles mounted in the shell to guide the second fluid into a helical flow pattern through the shell; wherein a helix angle ⁇ of a baffle proximate the second fluid inlet is different than a helix angle ⁇ of a baffle proximate the second fluid outlet.
  • embodiments disclosed herein relate to a process for exchanging heat with a mixed phase fluid, the process including: feeding a mixed phase fluid comprising a vapor and at least one of an entrained liquid and an entrained solid to a heat exchanger, the heat exchanger including: a shell having a fluid inlet, and a fluid outlet; a plurality of baffles mounted in the shell to guide the fluid into a helical flow pattern through the shell; converting the mixed phase fluid to essentially all vapor; and indirectly exchanging heat between the mixed phase fluid and a heat exchange medium; wherein a helix angle ⁇ of a baffle proximate the inlet maintains a velocity of the mixed phase fluid greater than a terminal velocity of the entrained liquid or solid; and wherein a helix angle ⁇ of a baffle proximate the outlet is greater than helix angle ⁇ of the baffle proximate the inlet.
  • FIG. 1 is a diagrammatic view of flow distribution in a conventional shell and tube heat exchanger.
  • FIG. 2 is a schematic drawing of a vertical combined feed/effluent heat exchanger with variable heat baffle angle according to embodiments disclosed herein.
  • embodiments herein relate generally to a heat exchanger. More specifically, embodiments disclosed herein relate to a heat exchanger, such as a shell and tube heat exchanger, configured to efficiently process two-phase flow. Even more specifically, embodiments disclosed herein relate to a heat exchanger having baffles configured to direct a shell side fluid flow in a helical flow pattern, where a helix angle of a baffle proximate the inlet is different than a helix angle of a baffle proximate the outlet.
  • Heat exchangers having baffles with a varied helix angle have been found to be useful for shellside fluids undergoing a phase change, such as evaporation, condensation, combustion, and the like.
  • a phase change such as evaporation, condensation, combustion, and the like.
  • helix angles proximate to the inlet may be provided to maintain sufficient fluid velocity to avoid phase separation of the vapor and the liquid.
  • the helix angle of baffles proximate the shellside fluid inlet may be close to a position perpendicular to the tubes, thus causing the incoming dense fluid to swirl at a high velocity.
  • the helix angle of the baffles may be further from perpendicular, such as for baffles closer to the shellside outlet, providing for heat exchange at lower velocities for the less dense vapor and a relatively low pressure drop through the heat exchanger.
  • phase separation vapor-liquid, vapor-solid, etc.
  • heat exchangers having baffles with a varied helix angle according to embodiments disclosed herein are not subject to shellside phase separation at the same throughput as would occur for a heat exchanger having a constant baffle angle. Accordingly, heat exchangers having baffles with a varied helix angle according to embodiments disclosed herein may be used at significantly reduced throughput levels, thus avoiding the drawbacks typical associated with vertical heat exchangers operating at partial load or turndown operation.
  • the helix angle used for the baffles proximate the shellside inlet and outlet may depend on the type of operation. For example, for a fluid mixture including a vapor and a vaporizing liquid or combusting solid, the helix angle of baffles proximate the inlet may be greater than the helix angle of baffles proximate the outlet. In this manner, the velocity of the two-phase mixture may be maintained greater than a transport velocity of the entrained solid or liquid, thus avoiding phase separation. As the fluid vaporizes or the solid combusts, a lower helix angle may be used. In other embodiments, the helix angle may gradually decrease along the longitudinal length of the shell.
  • the helix angle of baffles proximate the shellside inlet may be less than the helix angle of baffles proximate the shellside outlet, thus increasing the velocity of the mixture during the condensing operation.
  • Heat exchanger 30 may include a tubeside inlet manifold 32 having a fluid inlet 34 therein. Tubeside inlet manifold 32 may also have a vent 36 disposed therein. Heat exchanger 30 may also include a tubeside outlet manifold 38 having a fluid outlet 40 therein. A plurality of tubes 42 may extend between the tubeside inlet manifold 32 and outlet manifold 38 , allowing for transport of a fluid from the inlet manifold 32 to outlet manifold 38 through tubes 42 .
  • FIG. 2 illustrates the use of four tubes, however it is to be understood that any number of tubes may be used.
  • Shell 44 extends between inlet and outlet manifolds 32 , 38 , encompassing tubes 42 , and includes a shellside fluid inlet 46 and a shellside fluid outlet 48 .
  • baffles 50 may include, for example, helical baffles as described in U.S. Pat. Nos. 5,832,991, 6,513,583, and 6,827,138, the entire contents of each which are incorporated herein by reference.
  • Baffles 50 may include tube orifices (not shown) to allow tubes 42 to pass through baffles 50 , and to allow baffles 50 to retain tubes 42 in an aligned and desired location.
  • Baffles 50 may act to guide the shellside fluid into a helical flow pattern through the shell.
  • Baffles 50 are arranged within heat exchanger 30 such that baffles 50 proximate the shellside inlet 46 have a different helix angle than baffles 50 proximate shellside outlet 48 .
  • the helix angle of the baffles may be determined, for example, by “unwinding” the helix, forming a two-dimensional representation of the helical pattern. As illustrated in FIG. 2 for baffle 50 a , the helix angle would then be determined as the arctangent of the shell circumference C divided by the pitch p (longitudinal distance traversed by a baffle arc extending 360°).
  • the pitch is equal to:
  • is the helix angle. Therefore, helix angle ⁇ is equal to arctan (p/C).
  • heat exchanger 30 is equipped with helical baffles 50 oriented vertically.
  • Baffles 50 proximate shellside inlet 46 may have a helix angle ⁇ .
  • Baffles 50 proximate shellside outlet 48 may have a helix angle ⁇ with respect to longitudinal axis A-A of shell 44 .
  • the baffles 50 proximate the inlet 46 are arranged at a low helix angle ⁇ ; i.e., closer to perpendicular with respect to axis A-A than baffles 50 proximate shellside outlet 48 , having a helix angle ⁇ where heat exchange is expected to be gas/gas at a higher shellside volumetric flow, such as due to evaporation, combustion, and/or heating of the shellside fluid.
  • a low helix angle ⁇ may thus cause the two-phase inlet flow to swirl in a helical path at a velocity sufficient to avoid phase separation.
  • the shellside fluid is gas/gas proximate outlet 48 , a helix angle ⁇ greater than helix angle ⁇ may be used, thus resulting in a lower pressure drop than where angle ⁇ is used along the entire length of shell 44 .
  • baffles intermediate shellside fluid inlet 46 and outlet 48 may have a helix angle ⁇ intermediate that of helix angles ⁇ , ⁇ .
  • the helix angles of baffles 50 may gradually increase or decrease from inlet 46 to outlet 48 , depending on the type of service (e.g., condensing, evaporating, etc.).
  • the helix angles for baffles 50 may undergo one or more step changes.
  • heat exchangers having baffles with a varied helix angle may be useful where two-phase fluid flow is expected.
  • Lower helix angles where two-phase flow is expected may provide for a higher vapor phase velocity, avoiding shellside phase separation.
  • the helix angles of baffles proximate the inlet and outlet may be a function of the relative densities of the two phases, particle or droplet size of the solids and/or liquids (related to the transport velocity of the particles or droplets), typical feed rates, partial load or turndown feed rates, temperature rise of the shellside fluid and other variables as known to those skilled in the art.
  • baffles having an approximate helix angle within the range from about 5° to 45°, inclusive. Any combination of baffle angles ⁇ , ⁇ and ⁇ (if present) which creates an appropriate helix angle may be used in accordance with embodiments disclosed herein.
  • helix angle ⁇ may be within the range from about 5° to about 45°; within the range from about 5° to about 35° in other embodiments; and from about 5° to about 25° in yet other embodiments.
  • baffle angle ⁇ may be within the range from 15° to about 45°; within the range from about 25° to about 45° in other embodiments; and from about 35° to about 45° in yet other embodiments.
  • Heat exchangers according to embodiments disclosed herein may advantageously be used with shellside fluids having two or more phases.
  • heat exchangers according to embodiments disclosed herein may provide for a shellside fluid flow velocity to minimize or avoid phase-separation of fluids passing through the shell, such as by having baffles with a small helix angle where two-phase flow is expected.
  • use of larger helix angles where single phase flow is expected may advantageously provide for a lower pressure drop than where a constant helix angle is used throughout the shell.
  • heat exchangers according to embodiments disclosed herein may maintain two-phase fluid flow even at significantly reduced throughput levels, thus advantageously allowing for a broader throughput range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Helmets And Other Head Coverings (AREA)
US12/133,917 2008-06-05 2008-06-05 Vertical combined feed/effluent heat exchanger with variable baffle angle Abandoned US20090301699A1 (en)

Priority Applications (29)

Application Number Priority Date Filing Date Title
US12/133,917 US20090301699A1 (en) 2008-06-05 2008-06-05 Vertical combined feed/effluent heat exchanger with variable baffle angle
TW098116182A TWI372232B (en) 2008-06-05 2009-05-15 Vertical combined feed/effluent heat exchanger with variable baffle angle
PL09758983T PL2315994T3 (pl) 2008-06-05 2009-05-20 Sposób wymiany ciepła z płynem wielofazowym
MYPI2010005774A MY159341A (en) 2008-06-05 2009-05-20 Vertical combined feed/effluent heat exchanger with variable baffle angle
NZ589501A NZ589501A (en) 2008-06-05 2009-05-20 Shell and tube heat exchanger with spiral baffles fixed at multiple helical angles
CA2726121A CA2726121C (en) 2008-06-05 2009-05-20 Vertical combined feed/effluent heat exchanger with variable baffle angle
CN2009801205044A CN102047062A (zh) 2008-06-05 2009-05-20 具有可变挡板角度的立式组合的进料/流出物热交换器
EA201071432A EA017912B1 (ru) 2008-06-05 2009-05-20 Вертикальный комбинированный теплообменник типа "сырье/продукт" с переменным углом перегородок
JP2011512523A JP5237444B2 (ja) 2008-06-05 2009-05-20 可変バッフル角度による垂直複合フィード/エフルエント熱交換器
MX2010013229A MX2010013229A (es) 2008-06-05 2009-05-20 Intercambiador de calor de alimentacion/efluente combinado vertical con angulo de deflector variable.
ES09758983.2T ES2585566T3 (es) 2008-06-05 2009-05-20 Procedimiento de intercambio de calor con un fluido de fase mixta
BRPI0911382A BRPI0911382B1 (pt) 2008-06-05 2009-05-20 processo para trocar calor com um fluido de fase mista
KR1020107028913A KR101256733B1 (ko) 2008-06-05 2009-05-20 다양한 배플 각도를 가진 수직 결합형 공급/배출 열 교환기
PT97589832T PT2315994T (pt) 2008-06-05 2009-05-20 Processo para permutar calor com um fluido de fase mista
DK09758983.2T DK2315994T3 (en) 2008-06-05 2009-05-20 METHOD OF HEAT EXCHANGE WITH A MIXED PHASE FLUID
SG2013043112A SG191645A1 (en) 2008-06-05 2009-05-20 Vertical combined feed/effluent heat exchanger with variable baffle angle
PCT/US2009/044605 WO2009148822A2 (en) 2008-06-05 2009-05-20 Vertical combined feed/effluent heat exchanger with variable baffle angle
AU2009255450A AU2009255450B2 (en) 2008-06-05 2009-05-20 Vertical combined feed/effluent heat exchanger with variable baffle angle
EP09758983.2A EP2315994B1 (en) 2008-06-05 2009-05-20 Process for exchanging heat with a mixed phase fluid
UAA201014495A UA101194C2 (ru) 2008-06-05 2009-05-20 Вертикальный комбинированный сырьевой/продуктовый теплообменник с изменяемым углом отражателя
PE2009000772A PE20100437A1 (es) 2008-06-05 2009-06-04 Intercambiador de calor vertical combinado alimentacion/efluente con deflector de angulo variable
CL2009001364A CL2009001364A1 (es) 2008-06-05 2009-06-05 Intercambiador de calor que comprende una carcasa con una admision de fluidos y una salida de fluidos, una pluralidad de deflectores montados en la carcasa para guiar al fluido en un patron de flujo helicoidal a traves de la carcasa; un procedimiento para intercambiar calor con un fluido en fases mixtas.
ARP090102048A AR072067A1 (es) 2008-06-05 2009-06-05 Intercambiador de calor vertical combinado alimentacion/efluente con deflector de angulo variable
IL209550A IL209550A0 (en) 2008-06-05 2010-11-24 Vertica combined feed/effluent heat exchanger with variable baffle angle
ZA2010/08783A ZA201008783B (en) 2008-06-05 2010-12-07 Vertical combined feed/effluent heat exchanger with variable baffle angle
CO10154861A CO6311036A2 (es) 2008-06-05 2010-12-09 Termopermutador vertical de carga/efluente combinado con angulo de deflector variable
EC2011010743A ECSP11010743A (es) 2008-06-05 2011-01-05 Intercambiador de calor vertical combinado de alimentacion / efluente con angulo de deflector variable
JP2013066371A JP5671087B2 (ja) 2008-06-05 2013-03-27 可変バッフル角度による垂直複合フィード/エフルエント熱交換器
PH12013501095A PH12013501095B1 (en) 2008-06-05 2013-05-29 Vertical combined feed/effluent heat exchanger with variable baffle angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/133,917 US20090301699A1 (en) 2008-06-05 2008-06-05 Vertical combined feed/effluent heat exchanger with variable baffle angle

Publications (1)

Publication Number Publication Date
US20090301699A1 true US20090301699A1 (en) 2009-12-10

Family

ID=41398773

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/133,917 Abandoned US20090301699A1 (en) 2008-06-05 2008-06-05 Vertical combined feed/effluent heat exchanger with variable baffle angle

Country Status (28)

Country Link
US (1) US20090301699A1 (zh)
EP (1) EP2315994B1 (zh)
JP (2) JP5237444B2 (zh)
KR (1) KR101256733B1 (zh)
CN (1) CN102047062A (zh)
AR (1) AR072067A1 (zh)
AU (1) AU2009255450B2 (zh)
BR (1) BRPI0911382B1 (zh)
CA (1) CA2726121C (zh)
CL (1) CL2009001364A1 (zh)
CO (1) CO6311036A2 (zh)
DK (1) DK2315994T3 (zh)
EA (1) EA017912B1 (zh)
EC (1) ECSP11010743A (zh)
ES (1) ES2585566T3 (zh)
IL (1) IL209550A0 (zh)
MX (1) MX2010013229A (zh)
MY (1) MY159341A (zh)
NZ (1) NZ589501A (zh)
PE (1) PE20100437A1 (zh)
PH (1) PH12013501095B1 (zh)
PL (1) PL2315994T3 (zh)
PT (1) PT2315994T (zh)
SG (1) SG191645A1 (zh)
TW (1) TWI372232B (zh)
UA (1) UA101194C2 (zh)
WO (1) WO2009148822A2 (zh)
ZA (1) ZA201008783B (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150083382A1 (en) * 2013-09-24 2015-03-26 Zoneflow Reactor Technologies, LLC Heat exchanger
US20160018168A1 (en) * 2014-07-21 2016-01-21 Nicholas F. Urbanski Angled Tube Fins to Support Shell Side Flow
US20160334175A1 (en) * 2014-02-03 2016-11-17 Duerr Cyplan Ltd. Flow devices and methods for guiding fluid flow
WO2018017773A1 (en) * 2016-07-19 2018-01-25 Lummus Technology Inc. Feed effluent heat exchanger
US20180029901A1 (en) * 2014-05-28 2018-02-01 Gary P. Katz Apparatus, Method and System to Remove Contaminates from Contaminated Fluids
US10046251B2 (en) 2014-11-17 2018-08-14 Exxonmobil Upstream Research Company Liquid collection system
CN110373315A (zh) * 2019-07-04 2019-10-25 乐山勤力农业开发有限公司 一种新型沼气发酵的进料加热方法
US10655921B2 (en) 2013-12-18 2020-05-19 Casale Sa Tube heat exchange unit for internals of heat exchangers reactors
CN111397405A (zh) * 2018-07-20 2020-07-10 山东大学 一种汽液两相流换热管
US10788273B2 (en) 2015-07-06 2020-09-29 Casale Sa Shell-and-tube equipment with antivibration baffles and related assembling method
US10823508B2 (en) * 2016-04-14 2020-11-03 Linde Aktiengesellschaft Helically coiled heat exchanger
US10962289B2 (en) 2015-11-19 2021-03-30 Lg Chem Ltd. High-vacuum serial condenser system
CN112710169A (zh) * 2020-12-07 2021-04-27 重庆环纽信息科技有限公司 一种废油再生精馏催化系统余热利用装置
WO2021220125A1 (en) * 2020-04-30 2021-11-04 Forbes Marshall Private Limited A device for separating moisture from wet steam
US11213779B2 (en) 2017-01-31 2022-01-04 Sierra Space Corporation Low-gravity water capture device
US20220008838A1 (en) * 2019-01-29 2022-01-13 Yara International Asa High pressure strippers for use in urea plants
WO2022034013A1 (en) 2020-08-10 2022-02-17 Technip France A shell-and-tube heat exchanger, method of exchanging heat and use of heat exchanger
US11287196B2 (en) * 2019-05-31 2022-03-29 Lummus Technology Llc Helically baffled heat exchanger
US20220236014A1 (en) * 2019-05-28 2022-07-28 Sulzer Management Ag Tube-bundle heat exchanger comprising assemblies/built-in elements formed of deflection surfaces and directing sections
US11660557B2 (en) 2018-08-27 2023-05-30 Sierra Space Corporation Low-gravity water capture device with water stabilization
US11992789B2 (en) * 2019-01-29 2024-05-28 Yara International Asa High pressure strippers for use in urea plants

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2006776C2 (en) * 2011-05-13 2012-11-14 Friesland Brands Bv Evaporator system.
EP2600092A1 (en) 2011-12-01 2013-06-05 Cockerill Maintenance & Ingenierie S.A. Vertical heat exchanger
DK177774B1 (en) 2013-04-11 2014-06-23 Spx Flow Technology Danmark As HYGIENIC HEAT EXCHANGE AND METHOD FOR PREPARING A HYGIENIC HEAT EXCHANGE
KR20210031769A (ko) * 2014-05-13 2021-03-22 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 합성 가스를 냉각시키기 위한 열 교환 디바이스 및 그의 조립 방법
CN104048530B (zh) * 2014-06-24 2016-04-20 中建材(合肥)粉体科技装备有限公司 弯道缓流式粉体冷却器
EP3159649B1 (en) * 2015-10-23 2020-03-04 Hamilton Sundstrand Corporation Heat exchangers
EP3851782A1 (en) 2016-10-07 2021-07-21 Hamilton Sundstrand Corporation Heat exchangers
US10371422B2 (en) 2017-02-13 2019-08-06 Daikin Applied Americas Inc. Condenser with tube support structure
ES2844382T3 (es) 2017-05-24 2021-07-22 Cockerill Maintenance & Ingenierie Sa Intercambiador de calor para generador de vapor de sal fundida en una planta de energía solar concentrada
CA3073808A1 (en) * 2017-08-28 2019-03-07 Watlow Electric Manufacturing Company Continuous helical baffle heat exchanger
WO2019115306A1 (en) 2017-12-11 2019-06-20 Cockerill Maintenance & Ingenierie S.A. Heat exchanger for a molten salt steam generator in a concentrated solar power plant (iii)
ES2885829T3 (es) 2017-12-22 2021-12-15 Cockerill Maintenance & Ingenierie Sa Intercambiador de calor para un generador de vapor de sal fundida en una planta de energía solar concentrada (III)
CN109595952A (zh) * 2018-12-20 2019-04-09 佛山市天地元净化设备有限公司 一种压缩空气冷冻式干燥机换热的结构
CN109776376A (zh) * 2019-03-15 2019-05-21 湘潭大学 连续合成4-溴-2-对氯-5-三氟甲基吡咯-3-腈的装置及合成方法
RU2734614C1 (ru) * 2019-09-18 2020-10-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Кожухотрубный теплообменник
KR102214267B1 (ko) * 2019-12-05 2021-02-10 (주)대주기계 흡착식 에어 드라이어 재생히터
CN114405413B (zh) * 2021-12-09 2023-04-28 西安航天华威化工生物工程有限公司 一种正丁烷法生产顺酐的反应装置
CN117266954A (zh) * 2023-09-18 2023-12-22 北京博睿鼎能动力科技有限公司 液态二氧化碳储能系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1525094A (en) * 1921-03-05 1925-02-03 Griscom Russell Co Multivane cooler
US3400758A (en) * 1966-05-16 1968-09-10 United Aircraft Prod Helical baffle means in a tubular heat exchanger
US3498370A (en) * 1968-05-06 1970-03-03 Joseph E Raggs Heat exchanger
JPS5912294A (ja) * 1982-07-12 1984-01-21 Kamui Sangyo Kk 多管式熱交換器の製造方法
US4454911A (en) * 1980-11-11 1984-06-19 Morteza Arbabian Waste water heat recovery apparatus
JPS59173695A (ja) * 1983-03-22 1984-10-01 Osamu Fukuya 熱交換器におけるらせんバツフル
US5454429A (en) * 1992-05-23 1995-10-03 Neurauter; Peter Rods and mandrel turbulators for heat exchanger
US5832991A (en) * 1995-12-29 1998-11-10 Cesaroni; Joseph Anthony Tube and shell heat exchanger with baffle
US6484795B1 (en) * 1999-09-10 2002-11-26 Martin R. Kasprzyk Insert for a radiant tube
US6513583B1 (en) * 1998-09-24 2003-02-04 Serck Aviation Limited Heat exchanger
US6793008B2 (en) * 2000-03-14 2004-09-21 Walzen Irle Gmbh Rotatable roller
US6827138B1 (en) * 2003-08-20 2004-12-07 Abb Lummus Global Inc. Heat exchanger
US20050150643A1 (en) * 2002-06-24 2005-07-14 Daniel Chartouni Heat exchanger
US7740057B2 (en) * 2007-02-09 2010-06-22 Xi'an Jiaotong University Single shell-pass or multiple shell-pass shell-and-tube heat exchanger with helical baffles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US948835A (en) * 1910-02-08 Bruce Walter Ammonia-condenser.
JPS5214858B2 (zh) * 1971-12-13 1977-04-25
JPS51119049U (zh) * 1975-03-24 1976-09-27
JPS6036854A (ja) * 1983-08-10 1985-02-26 株式会社荏原製作所 凝縮器
JP2573806Y2 (ja) * 1991-07-23 1998-06-04 三菱重工業株式会社 シェル・アンド・チューブ式吸収凝縮器
JPH08261686A (ja) * 1995-03-28 1996-10-11 Ishikawajima Harima Heavy Ind Co Ltd 熱交換器及び該熱交換器における邪魔板の製造方法
KR200206338Y1 (ko) * 2000-07-19 2000-12-01 아텍 엔지니어링주식회사 열교환기

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1525094A (en) * 1921-03-05 1925-02-03 Griscom Russell Co Multivane cooler
US3400758A (en) * 1966-05-16 1968-09-10 United Aircraft Prod Helical baffle means in a tubular heat exchanger
US3498370A (en) * 1968-05-06 1970-03-03 Joseph E Raggs Heat exchanger
US4454911A (en) * 1980-11-11 1984-06-19 Morteza Arbabian Waste water heat recovery apparatus
JPS5912294A (ja) * 1982-07-12 1984-01-21 Kamui Sangyo Kk 多管式熱交換器の製造方法
JPS59173695A (ja) * 1983-03-22 1984-10-01 Osamu Fukuya 熱交換器におけるらせんバツフル
US5454429A (en) * 1992-05-23 1995-10-03 Neurauter; Peter Rods and mandrel turbulators for heat exchanger
US5832991A (en) * 1995-12-29 1998-11-10 Cesaroni; Joseph Anthony Tube and shell heat exchanger with baffle
US6513583B1 (en) * 1998-09-24 2003-02-04 Serck Aviation Limited Heat exchanger
US6484795B1 (en) * 1999-09-10 2002-11-26 Martin R. Kasprzyk Insert for a radiant tube
US6793008B2 (en) * 2000-03-14 2004-09-21 Walzen Irle Gmbh Rotatable roller
US20050150643A1 (en) * 2002-06-24 2005-07-14 Daniel Chartouni Heat exchanger
US6827138B1 (en) * 2003-08-20 2004-12-07 Abb Lummus Global Inc. Heat exchanger
US7740057B2 (en) * 2007-02-09 2010-06-22 Xi'an Jiaotong University Single shell-pass or multiple shell-pass shell-and-tube heat exchanger with helical baffles

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150083382A1 (en) * 2013-09-24 2015-03-26 Zoneflow Reactor Technologies, LLC Heat exchanger
US10655921B2 (en) 2013-12-18 2020-05-19 Casale Sa Tube heat exchange unit for internals of heat exchangers reactors
US10386130B2 (en) * 2014-02-03 2019-08-20 Duerr Cyplan Ltd. Flow devices and methods for guiding fluid flow
US20160334175A1 (en) * 2014-02-03 2016-11-17 Duerr Cyplan Ltd. Flow devices and methods for guiding fluid flow
US10858267B2 (en) * 2014-05-28 2020-12-08 Katz Water Tech, Llc Apparatus, method and system to remove contaminates from contaminated fluids
US20180029901A1 (en) * 2014-05-28 2018-02-01 Gary P. Katz Apparatus, Method and System to Remove Contaminates from Contaminated Fluids
US20160018168A1 (en) * 2014-07-21 2016-01-21 Nicholas F. Urbanski Angled Tube Fins to Support Shell Side Flow
US10046251B2 (en) 2014-11-17 2018-08-14 Exxonmobil Upstream Research Company Liquid collection system
US10788273B2 (en) 2015-07-06 2020-09-29 Casale Sa Shell-and-tube equipment with antivibration baffles and related assembling method
US10962289B2 (en) 2015-11-19 2021-03-30 Lg Chem Ltd. High-vacuum serial condenser system
US10823508B2 (en) * 2016-04-14 2020-11-03 Linde Aktiengesellschaft Helically coiled heat exchanger
WO2018017773A1 (en) * 2016-07-19 2018-01-25 Lummus Technology Inc. Feed effluent heat exchanger
EA038419B1 (ru) * 2016-07-19 2021-08-26 Ламмус Текнолоджи Инк. Теплообменник "входящий/выходящий поток"
US11213779B2 (en) 2017-01-31 2022-01-04 Sierra Space Corporation Low-gravity water capture device
CN111397405A (zh) * 2018-07-20 2020-07-10 山东大学 一种汽液两相流换热管
US11660557B2 (en) 2018-08-27 2023-05-30 Sierra Space Corporation Low-gravity water capture device with water stabilization
US20220008838A1 (en) * 2019-01-29 2022-01-13 Yara International Asa High pressure strippers for use in urea plants
US11992789B2 (en) * 2019-01-29 2024-05-28 Yara International Asa High pressure strippers for use in urea plants
US20220236014A1 (en) * 2019-05-28 2022-07-28 Sulzer Management Ag Tube-bundle heat exchanger comprising assemblies/built-in elements formed of deflection surfaces and directing sections
US11287196B2 (en) * 2019-05-31 2022-03-29 Lummus Technology Llc Helically baffled heat exchanger
CN110373315A (zh) * 2019-07-04 2019-10-25 乐山勤力农业开发有限公司 一种新型沼气发酵的进料加热方法
WO2021220125A1 (en) * 2020-04-30 2021-11-04 Forbes Marshall Private Limited A device for separating moisture from wet steam
WO2022034013A1 (en) 2020-08-10 2022-02-17 Technip France A shell-and-tube heat exchanger, method of exchanging heat and use of heat exchanger
CN112710169A (zh) * 2020-12-07 2021-04-27 重庆环纽信息科技有限公司 一种废油再生精馏催化系统余热利用装置

Also Published As

Publication number Publication date
JP2013127362A (ja) 2013-06-27
MX2010013229A (es) 2011-02-23
KR20110017395A (ko) 2011-02-21
EA201071432A1 (ru) 2011-06-30
SG191645A1 (en) 2013-07-31
JP5237444B2 (ja) 2013-07-17
TW201007114A (en) 2010-02-16
AR072067A1 (es) 2010-08-04
AU2009255450B2 (en) 2013-09-05
WO2009148822A3 (en) 2010-03-11
KR101256733B1 (ko) 2013-05-02
PT2315994T (pt) 2016-08-02
ECSP11010743A (es) 2011-04-29
PE20100437A1 (es) 2010-07-14
JP2011523014A (ja) 2011-08-04
BRPI0911382A2 (pt) 2015-12-29
JP5671087B2 (ja) 2015-02-18
WO2009148822A2 (en) 2009-12-10
CA2726121A1 (en) 2009-12-10
CO6311036A2 (es) 2011-08-22
PH12013501095A1 (en) 2014-08-27
UA101194C2 (ru) 2013-03-11
PL2315994T3 (pl) 2017-03-31
IL209550A0 (en) 2011-01-31
TWI372232B (en) 2012-09-11
CN102047062A (zh) 2011-05-04
DK2315994T3 (en) 2016-08-15
CA2726121C (en) 2014-10-28
ES2585566T3 (es) 2016-10-06
EP2315994B1 (en) 2016-05-04
EP2315994A2 (en) 2011-05-04
NZ589501A (en) 2012-04-27
EP2315994A4 (en) 2014-03-12
PH12013501095B1 (en) 2014-08-27
AU2009255450A1 (en) 2009-12-10
CL2009001364A1 (es) 2009-11-13
MY159341A (en) 2016-12-30
EA017912B1 (ru) 2013-04-30
BRPI0911382B1 (pt) 2020-04-07
ZA201008783B (en) 2012-01-25

Similar Documents

Publication Publication Date Title
CA2726121C (en) Vertical combined feed/effluent heat exchanger with variable baffle angle
AU629744B2 (en) A shell-and-tube heat exchanger for use in an hf alkylation process system
US8196909B2 (en) Tubular condensers having tubes with external enhancements
US9757662B2 (en) Heat integrated distillation column using structured packing
RU2561092C2 (ru) Усовершенствованный полимеризационный реактор, предназначенный для производства бутилкаучука
US20230314086A1 (en) System and methods of a vertical rod baffle heat exchanger
AU2018329209B2 (en) A heat exchanger
JP6487048B2 (ja) 高真空直列凝縮器
RU2749474C1 (ru) Вертикальный кожухотрубчатый теплообменник
CN107469370A (zh) Mvr蒸发器以及mvr蒸发系统
OA20115A (en) A heat exchanger.

Legal Events

Date Code Title Description
AS Assignment

Owner name: LUMMUS TECHNOLOGY INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KARRS, M. S.;CHUNANGAD, K.;MASTER, B.;REEL/FRAME:022344/0815

Effective date: 20080721

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION