RU2561092C2 - Усовершенствованный полимеризационный реактор, предназначенный для производства бутилкаучука - Google Patents

Усовершенствованный полимеризационный реактор, предназначенный для производства бутилкаучука Download PDF

Info

Publication number
RU2561092C2
RU2561092C2 RU2013156836/05A RU2013156836A RU2561092C2 RU 2561092 C2 RU2561092 C2 RU 2561092C2 RU 2013156836/05 A RU2013156836/05 A RU 2013156836/05A RU 2013156836 A RU2013156836 A RU 2013156836A RU 2561092 C2 RU2561092 C2 RU 2561092C2
Authority
RU
Russia
Prior art keywords
reactor
pipes
flow
suspension
head
Prior art date
Application number
RU2013156836/05A
Other languages
English (en)
Other versions
RU2013156836A (ru
Inventor
Флавио СИМОЛА
Альдо АППЕТИТИ
Андреа АНДЖЕЛЕТТИ
Original Assignee
Консер Спа
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Консер Спа filed Critical Консер Спа
Publication of RU2013156836A publication Critical patent/RU2013156836A/ru
Application granted granted Critical
Publication of RU2561092C2 publication Critical patent/RU2561092C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1868Stationary reactors having moving elements inside resulting in a loop-type movement
    • B01J19/1875Stationary reactors having moving elements inside resulting in a loop-type movement internally, i.e. the mixture circulating inside the vessel such that the upwards stream is separated physically from the downwards stream(s)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • C08F210/10Isobutene
    • C08F210/12Isobutene with conjugated diolefins, e.g. butyl rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00081Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00254Formation of unwanted polymer, such as "pop-corn"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к реактору полимеризации, предназначенному для производства бутилкаучука путем каталитической полимеризации изобутилена. Реактор содержит: расширенную верхнюю головку с отклонителем текучей среды, прикрепленным к верхним трубным решеткам, причем форма головки и отклонителя оптимизированы, чтобы достичь очень однородной скорости суспензии в рядах труб, и чтобы минимизировать падение давления, которое связано с поворотом потока от восходящего потока к нисходящему потоку, а также связано с входом суспензии в трубы, полусферическую нижнюю головку с отклонителями текучей среды, помещенными между крыльчаткой и его нижней частью и предназначенными минимизировать падение давления, связанное с поворотом потока от нисходящего потока к восходящему потоку, и выпрямляющие разделители внутри отводящей трубы, форма и размеры которых оптимизированы для преобразования радиальных составляющих скорости, обусловленных вращением крыльчатки в осевые составляющие скорости. Изобретение обеспечивает улучшенную тепловую эффективность и улучшенную гидравлическую эффективность, более низкое потребление энергии и большую продолжительность цикла реактора. 7 з.п. ф-лы, 6 ил., 2 табл., 2 пр.

Description

Низкотемпературный полимеризационный реактор, предназначенный для производства бутилкаучука путем каталитической полимеризации изобутилена в присутствии небольшого количества конъюгированного диолефина, такого как изопрен.
Однопроходной трубчатый реактор отличается улучшенной тепловой эффективностью и улучшенной гидравлической эффективностью с целью обеспечения более высокой производительности, более низкого потребления энергии и большей продолжительности цикла реактора.
Область техники, к которой относится изобретение
Настоящее изобретение относится к усовершенствованному реактору для полимеризации с перемешиванием суспензии изоолефина в присутствии катализатора Фриделя-Крафта для формирования суспензии или суспензии мелких частиц каучука в реакционной среде.
Предпочтительной группой изоолефиновых полимеров являются полимеры типа бутилкаучука, которые получают путем сополимеризации изобутилена в количестве от 95 до 99,5 мол.% и конъюгированного диолефина, такого как изопрен, в количестве, приблизительно, от 5 до 0,5 мол.%, соответственно.
Реакция полимеризации может быть проведена при любой подходящей температуре полимеризации, например, в приблизительном диапазоне температур от -90 до -105°C.
Предпочтительным катализатором является хлористый алюминий.
Реакция полимеризации проводится при перемешивании суспензии в растворителе с низкой температурой замерзания, обычно в галоидном алкиле, например, в хлористом метиле. Каучуковая суспензия в реакции имеет весовое содержание каучука от 20% до 35%. Необходимые для удовлетворительной сополимеризации низкие температуры поддерживаются за счет теплообмена с подходящим охладителем, таким как испаряющийся жидкий этилен или жидкий метан.
Уровень техники
Сополимер изобутилена и изопрена, широко известный как бутилкаучук (isobutylene isoprene rubber, MR) и галобутиловый каучук (halogenated isobutylene isoprene rubber, HIIR), получаемый из бутилкаучука добавлением брома или хлора, широко используются в ряде областей, главным образом, в производстве шин. В уровне техники, при проектировании полимеризационного реактора для производства бутилкаучука, применяются несколько изобретений.
US №448,575, от 26 июня 1942, впоследствии оставленный без движения, и СА 463 453, автором которых является Джон Бэннон (John Н. Bannon). Оба документа, могут рассматриваться в числе первых приложений концепции трубчатого полимеризационного реактора. В этом реакторе отводящая труба обеспечена мешалкой, расположенной по центру реактора, и множеством возвратных труб, расположенных между головками (header) и вокруг центральной отводящей трубы. Имеются средства для циркуляции подходящего охладителя, желательно этилена, испаряющегося через пространство между головками (header) и вокруг центральной отводящей трубы, так же как и возвратных труб.
Используют реактор с обратным перемешиванием; обычно он представляет собой однотрубную проходную систему, как описано в библиографической ссылке к патенту США №2,474,592. Такой реактор состоит из вертикального резервуара, образованного окружающей боковой стенкой, в котором обеспечена аксиально установленная отводящая труба относительно большого диаметра, которая окружена большим количеством труб малого диаметра, проходящих в направлении вниз. Нагнетатель осевого потока (flow), который проходит вовнутрь отводящей трубы, находится в нижней части реактора с тем, чтобы нагнетать реакционную смесь вверх по отводящей трубе. Реакционная смесь включает растворители, катализатор и реагенты, которые вводят непосредственно в нижнюю часть реактора, а также долю реакционной смеси, которую после протекания через всасывающую трубу в направлении наверх, возвращают из верхней части реактора вниз через трубы, которые окружают отводящую трубу. Наружные стенки реакционного резервуара образуют рубашку реактора, через которую циркулирует жидкий углеводородный охладитель, чтобы обеспечить удаление экзотермического тепла реакции через теплообменный контакт с наружными стенками труб малого диаметра и стенкой центральной отводящей трубы.
Патенты US 2,577,856 и частично продолжающая их заявка US 2,636,026 представляют другой вариант вертикального трубчатого реактора с оболочкой, в котором обеспеченная крыльчаткой центральная отводящая труба окружена, не несколькими более мелкими трубами, а концентрическими кольцевыми поверхностями, непрерывно отводящими тепло из кольцевых стенок путем непрямой теплопередачи охлаждителю, который циркулирует в одной или нескольких кольцевых камерах. Во втором патенте описана серьезная проблема, которая возникает в каждом коммерческом трубчатом реакторе в связи с накоплением полимера на трубных решетках верхнего входа и закупориванием возвратных труб, особенно их входных концов. Это общая и постоянная неисправность, которая возникает в различных условиях эксплуатации.
Патент US 2,999,084 касается использования вертикального трубчатого реактора с центральной отводящей трубой, причем, усовершенствование состоит в инжекции исходного раствора, содержащего изобутилен/изопрен в хлористом метиле, в зону наиболее высокой скорости течения непосредственно после пропеллера (propeller). В указанном патенте отмечается, что при коммерческом применении, в отношении скорости производства бутилкаучукового полимера, массовое обрастание является лимитирующим фактором первостепенного значения. Обрастание препятствует надлежащему охлаждению и является причиной того, что длительность работы реактора в режиме эксплуатации находится в примерном диапазоне от 10 до 90 ч; при этом, очистка реактора перед возобновлением реакции полимеризации обычно требует от 10 до 20 ч.
В европейском патенте ЕР 0053585 предложен другой тип полимеризационного реактора, пригодного для производства бутилкаучука в диапазоне температур от -40 до -110°C. Указанный реактор содержит внутреннюю вращающуюся камеру охладителя, коаксиальную мешалку и внешнюю охлаждающую рубашку. Внешние и внутренние поверхности вращающейся камеры содержатся в чистоте, путем вращения скребков. Даже если этот тип реактора может держать теплообменные поверхности свободными от отложений каучука, имеется недостаток, связанный с ограниченностью поверхности теплообмена и, следовательно, с ограниченной производительностью.
В европейском патенте ЕР 0209253 описан полностью отличный полимеризационный реактор и способ, в котором смесь мономеров изобутилена и изопрена совместно с полимеризационной средой, состоящий из смеси галогенированных и негалогенированных углеводородов, полимеризуется в самоочищающемся шнековом экструдере при температуре от -50 до +15°C, что несколько выше, чем в ближайшем аналоге, в котором температура близка к -100°C. Теплоту полимеризации удаляют путем испарительного охлаждения реакционной среды. Представляющее академический интерес, <техническое решение> указанной заявки, из-за высокой температуры реакции, не годится для производства бутилкаучука подходящего для рынка, и не используется в промышленном масштабе.
В российских патентах RU 1615935 и RU 2097122 предложен применимый для бутилкаучука реактор, в котором полимеризационная суспензия и охлаждающая среда имеют расположение, обратное относительно расположения в обычном вертикальном трубчатом реакторе с центральной отводящей трубой. Реакция полимеризации происходит в оболочке резервуара, обеспеченного центральной мешалкой с множеством лопастей, при этом охлаждающий этилен проходит через пучки вертикальных труб (четыре, в патентных чертежах), периферийно расположенных и вводимых со стороны верхней головки реактора. Недостатком этого изобретения является существенная несимметричность расположения, связанная с положением пучков труб, и существенная неоднородность скорости каучуковой суспензии внутри реактора.
В пятом издании энциклопедии Ульмана по промышленной химии сообщается, что, несмотря на наличие альтернативных вариантов конструктивного расположения реактора, которые описаны в указанных выше патентах, а также в других патентах, наиболее часто используется промышленный реактор, соответствующий конструкции вертикального трубчатого реактора с отводящей трубой. Указанная конструкция предложена в документе US №448,575 и, более определенно, в документах US 2,474,592 и US 2,999,084.
В то время как этот реактор широко используется в промышленности в течение многих лет для осуществления указанных видов реакций, указанный реактор менее эффективен, чем хотелось бы.
Особое значение эффективного перемешивания состоит в том, что реакция полимеризации является экзотермической, и в том, что на молекулярную массу полимерного продукта оказывает отрицательное влияние увеличение температуры. Таким образом, если реакционная среда не имеет совершенно однородного состава, может произойти местный перегрев, что приводит к образованию нежелательных полимерных материалов, которые прочно прилипают к металлическим поверхностям внутри реакционного резервуара. Это явление, обычно называемое массовым обрастанием, представляет проблемы в сфере производства бутилкаучука.
Кроме того, в результате постепенного и равномерного накопления отложений полимера на теплопередающих поверхностях и обрастания теплопередающих поверхностей внутри реакционного резервуара, полимер прилипает к металлическим поверхностям в виде непрерывной пленки. Тем не менее, полимерные обрастания представляют собой проблему, они ограничивают эффективность указанного типа реактора. Об этом также сообщалось в упомянутом выше патенте США 2,999,084, в котором принято во внимание время простоя, которое необходимо, чтобы удалить загрязнения.
В патенте США №5,417,930, Exxon описывает новую конструкцию бутилкаучукового трубчатого реактора, не содержащего отводящую трубу и имеющего пониженную склонность к обрастанию, по сравнению с более старым реактором обычного типа с центральной отводящей трубой. Это описано в патенте США №2,999,084 и в других патентах.
Реактор содержит двухтрубную проходную систему, состоящую из внутреннего или центрального пучка труб, через который смесь или суспензию, содержащую полимеризуемые мономеры, разбавитель и катализатор, подают в одном направлении, и внешнего пучка труб, через который указанную смесь возвращают в противоположном направлении при, по существу, равномерном распределении потока.
Трубчатый пучок поддерживается в пределах секции, содержащей рубашку, в которой охладитель удаляет экзотермическое тепло реакции из полимеризационной смеси и поддерживает полимеризационную смесь при равномерно низкой температуре. Кроме того, циркуляция потока суспензии, которая способствует поддержанию равномерно низкой температуры, обеспечивается использованием диффузора и насосной системы со смешением потока.
Предложенная конструкция более сложна, чем у обычного реактора и, кроме того, подвержена воздействию ограничивающих факторов.
На самом деле, можно, в принципе, согласился с тем, что распределение потока во внутреннем пучке труб является равномерным, в то время как, такую равномерность, по-видимому, не получить в том, что касается распределения потока во внешнем пучке труб.
Кроме того, падение давления в двухтрубной проходной конструкции будет больше по сравнению с обычной однопроходной конструкцией. Эти и другие рассмотрения показывают, что существует потребность в улучшении конструкции однопроходного реактора, предназначеного для производства бутилкаучука.
Раскрытие изобретения
Настоящее изобретение относится к усовершенствованной конструкции показанного на Фиг. 1 однопроходного реактора для производства бутилкаучука, отличающегося улучшенной тепловой и гидравлической эффективностью по сравнению с реактором обычного типа (Фиг. 1а), который описан в патенте США №2,999,084 и который может быть рассмотрен в качестве ближайшего из уровня техники.
Улучшения дают следующие сочетания:
а - расширенная верхняя головка с отклонителем текучей среды, причем форма головки и отклонителя оптимизированы, чтобы достичь очень однородной скорости суспензии в рядах труб, и чтобы минимизировать падение давления, которое связано с поворотом потока от восходящего потока к нисходящему потоку, а также связано со входом суспензии в трубы; лучшая производительность достигается увеличением высоты верхней зоны и управлением траектории текучей среды путем установки отклонителя текучей среды, прикрепленным к верхним трубным решеткам;
b - полусферическая нижняя головка с отклонителями текучей среды, помещенными между крыльчаткой и его нижней частью и предназначенными минимизировать падение давления, связанное с поворотом потока от нисходящего потока к восходящему потоку;
с - выпрямляющие разделители внутри отводящей трубы, форма и размеры которых оптимизированы для преобразования радиальных составляющих скорости, обусловленных вращением крыльчатки в осевые составляющие скорости,
при этом такие нововведения, существенно улучшают однородность скорости и снижают общий перепад давления, делают возможной увеличенную циркуляцию в нижнем насосе и большую продолжительность цикла реактора.
В частности, в соответствии с признаком настоящего изобретения, выпрямляющие разделители выполнены в виде поверхностей с более низкой изогнутой частью и верхней прямой радиальной частью, причем, указанная изогнутая часть (которую пытаются ориентировать почти по касательной к полю скоростей после крыльчатки в нижней части, и по вертикали - в верхней части) выполнена в виде последовательности радиальных сегментов, начинающихся с нижнего, и далее, при отсчете снизу вверх, каждый из них имеет возрастающую угловую координату, наряду с возрастающей осевой координатой.
Как следствие описанной выше инновационной конструкции однопроходного реактора, достигаются следующие результаты:
А - Тепловая эффективность:
а1 - Более высокая теплопередача во внутритрубном пространстве (<область> каучуковой суспензии), благодаря более высокой и однородной скорости суспензии в трубах;
а2 - Более высокая теплопередача в межтрубном пространстве (<область> испарения этилена), благодаря применению внутренних разделителей;
а3 - Замедление увеличения фактора обрастания во внутритрубном пространстве во время разгона реактора.
В - Гидравлическая эффективность:
b1 - Новая форма верхней головки и дефлектора текучей среды с целью дополнительно создать возможность достижения очень однородной скорости суспензии в рядах труб, и с целью минимизировать падение давления, которое связано с поворотом потока от восходящего потока к нисходящему потоку, а также связано со входом суспензии в трубы; минимизируется также вихрь на входе труб, вместе с этим устраняется плохое распределение суспензии (близкая к нулю скорость во внешних частях труб), имеющее место в реакторах старой конструкции;
b2 - Наличие полусферической нижней головки с отклонителями текучей среды удовлетворяет требованию прямого поля течения в конце отводящей трубы, при этом зоны высокоинтенсивной турбулентности имеются только после зоны крыльчатки;
b3 - Выпрямляющие разделители внутри отводящей трубы, позволяют избежать возможного псевдовинтового движения внутри отводящей трубы, порожденного вращения крыльчатки, чем создается возможность увеличения гидравлической эффективности.
Краткое описание чертежей
Лучшее понимание изобретения будет получено из рассмотрения приведенного ниже подробного описания, со ссылкой на следующие чертежи, на которых:
На Фиг. 1 представлен вид в сечении реактора для производства бутилкаучука, в соответствии с настоящим изобретением.
На Фиг. 1а представлен вид в сечении обычного полимеризационного реактора для того же производства.
На Фиг. 2 подробно представлен формованный верхний отклонитель, изображенный на Фиг. 1.
На Фиг. 3 подробно представлен формованный нижний отклонитель, изображенный на Фиг. 1.
На Фиг. 4 подробно представлены выпрямляющие разделители внутри отводящей трубы, изображенной на Фиг. 1.
На Фиг. 5 подробно представлены выпрямляющие разделители в межтрубном пространстве на Фиг. 1.
Там обозначен полимеризационный реактор 1, в котором каучуковая суспензия циркулирует в соответствии с направлением 9 потока внутри четырех рядов вертикальных труб 6 (сверху вниз) и отводящей трубе 2 (снизу вверх), толкаемая вращающейся крыльчаткой 5 размещенной в нижней части отводящей трубы. Все эти детали заключены в цилиндрическом сосуде с двумя закругленными головками.
Реакционную текучую среду 10 вводят с нижней стороны рядом с валом крыльчатки, в то время, как выход 11 находится сверху.
Превышение рециркулярной объемной скорости потока над скоростью входного потока составляет от 500 до 600 раз.
В верхней области поток, поступающий из отводящей трубы и входящий в ряды труб, должен повернуть свое направление на противоположное. В обычном реакторе с отводящей трубой, этот поворот сопровождается значительным рассеянием, так как происходит на небольшом расстоянии и без управления потоком. Направление течения текучей среды во входных отверстиях труб имеет большую радиальную составляющую, не совмещенную с осью трубы. Это приводит к неравномерному распределению потока между трубами, при этом скорость во внешних трубах почти в два раза больше относительно скорости во внутренних трубах, и к соответствующим потерям давления во входных отверстиях труб (вместе с зоной поворота).
В целях повышения производительности реактора, введены модификации формы позволяющие уравновесить поток между рядами труб (путем достижения однородной средней скорости) и уменьшения перепада давления в верхней зоне.
Результаты оптимизации показывают, что более высокая производительность может быть достигнута увеличением высоты верхней зоны (так как текучая среда имеет больше пространства для изменения своего направления без строгих отклонений от границы и более вертикально входит во входные потоки труб) и управлением траекторией текучей среды (с целью уменьшения вихрей и турбулентного рассеивания) путем установки формованных конвейеров 15 потока, имеющих поперечное сечение в виде наклоненной перевернутой капли с частичным вырезом в его нижней части, прикрепленных к верхним трубным решеткам 14, как показано на Фиг. 2.
Можно отметить общий результат: для первой задачи - создания однородной средней скорости по трубам, максимальное отклонение от среднего значения составляет, примерно, от 40% до 5% или менее, что касается второй задачи - уменьшения перепада давления, то он был уменьшен весьма значительным образом, что показали оценки разницы полного давления от входа к выходу (то есть удельной энергии, которую крыльчатка должно передать жидкости, чтобы достичь проектной массовой скорости потока).
По поводу оптимизации нижней части реактора, с целью удовлетворить требование прямого поля течения в конце отводящей трубы, следует заметить, что после крыльчатки предусмотрен отклонитель. Крыльчатка не только сообщает тангенциальную составляющую скорости (увеличивая величину скорости и, тем самым, рассеивание), но и является мощным источником турбулентности, так что потери давления, безусловно, возрастают.
Основной критерий оптимизации в нижней части состоит в обеспечении большего пространства для изменения потоком своего направления от нисходящего к восходящему и в управлении траекторией для уменьшения хаотических течений и отрывов. Наилучшие результаты были достигнуты с помощью простой полусферический головки 4. Эта задача также решается за счет установки в нижней части формованных отклонителей 17 и 18, прикрепленных к нижним трубным решеткам 16 (см. Фиг. 3), а также установки выпрямляющих разделителей 7 внутри отводящей трубы 2, как показано на Фиг. 4. Отклонитель 17 имеет поперечное сечение в виде наклоненной перевернутой капли с частичным вырезом в его нижней части, в то время как отклонитель 18, с трапецеидальным сечением, расположен вокруг первого отклонителя 17.
Эти нововведения делают поле течения в нижней части гораздо более регулярным и не содержащим отрывов, а общее давление более равномерным, при этом зоны высокоинтенсивной турбулентности имеются только после зоны крыльчатки. Все эти особенности приводят не только к снижению потерь давления в нижней части, но также к значительному приросту давления, обусловленному крыльчаткой, которую лучше использовать на стороне всасывания из-за более равномерного распределения скорости.
Кроме того, повышение эффективности крыльчатки позволяет также уменьшить количество тепла, которое должно быть удалено реакторным охладителем. Это означает, таким образом, двукратную экономию в потреблении энергии.
Вращение крыльчатки индуцирует тангенциальную компоненту скорости потока, что в условиях отсутствия кондиционирования, создает псевдовинтовое движение внутри всасывающей трубы (при скорости потока масс, в основном, на внешней части по причине действия центробежной силы).
Как показано на Фиг. 4, для устранения этого эффекта в отводящей трубе вводятся выпрямляющие разделители 7, разработанные в виде трех поверхностей (с периодичностью 120°) с более низкой изогнутой частью и верхней прямой радиальной частью. Изогнутая часть сконструирована таким образом, чтобы быть почти касательной к полю скоростей после крыльчатки в нижней части, и к вертикали - в верхней части.
Другая новаторская особенность данного изобретения относится к устройству системы охлаждения в межтрубном пространстве 19 трубчатого реактора 1. Во всех промышленных применениях реакторов для производства бутилкаучука, теплоту полимеризации, а также тепло, вырабатываемое вращающейся крыльчаткой, удаляют с посредством циркуляции испаряющегося этилена через испарительный барабан, который обычно расположен в положении над оболочкой реактора, с целью обеспечить надлежащий перепад давлений, уравновешивающий потери давления (статические и на трение), а также сделать возможной термосифонную циркуляцию.
Как следствие давления этого столба жидкости, температура первичного испарения заметно отличается от температуры входного отверстия рубашки реактора; другими словами, жидкий этилен 12 поступает в оболочку реактора, как правило, в состоянии переохлаждения, при этом часть реакции, проходящая внизу, должна подогреть такую жидкость до реальной температуры кипения.
В обычном бутиловом реакторе это имеет очень вредные последствия и существенно снижает эффективность теплопередачи и емкость. При доступности для жидкости всей области рубашки, результирующая скорость жидкого этилена очень низка, и полученный коэффициент теплопередачи имеет значение существенно меньшее, чем ожидается в условиях испарения. Этот недостаток может быть преодолен применением поперечных разделителей 8 с целью принудительно направить поток по направлению 20 и сделать возможными повышенную скорость и повышенный коэффициент теплопередачи охладителя. С учетом разной степени испарения по высоте реактора, - отсутствие испарения у входного отверстия 12 и в нижней части реактора, и максимальное испарение у выходного отверстия 13, - расстояние между двумя последовательными разделителями не является фиксированным, но также меняется по высоте реактора.
Могут быть использованы сегментные, двойные сегментные или дисковые 21 и кольцевые 22 разделители. Разделители последнего типа, как показано на Фиг. 5, предпочтительны для указанного приложения.
Сравнительный пример 1.
Обычный трубчатый реактор с отводящей трубой для производства около 2,7 тонн/час бутилкаучука с вязкостью по Муни около 51 (ML 1+8 при 125°C) был проанализирован с применением технологий вычислительной гидродинамики (Computational Fluid Dynamics, CFD) с помощью коммерческого программного обеспечения, созданного Fluent Inc.
Реактор, при этом представленный на Фиг. 1а, представляет собой вертикальный теплообменник с оболочкой и трубой, в котором реакция идет во внутритрубном пространстве, а предназначенный для удаления экзотермического тепла испаряющийся этилен, в качестве охлаждающей среды, находится в межтрубном пространстве. Реактор включает в себя вращающуюся крыльчатку, установленную внизу, в нижней части центральной отводящей трубы. Отводящая труба окружена 120 вертикальными трубами длиной шесть метров, размещенными в четырех концентрических рядах. Реакционную смесь вводят с нижней стороны рядом с валом крыльчатки, в то время как произведенные суспензии сливаются у сопла в верхней головке. Как нижняя, так и верхняя головки - стандартного полуэллиптического типа.
Результаты различных симуляций показали различные недостатки этого типа реактора, а именно:
- очевидно неравномерное распределение потока между трубами, со скоростью во внешних трубах почти в два раза превышающей скорость во внутренних трубах
- распределение векторов скорости внутри реактора показывает, что в верхней головке, суспензия, выходящая из отводящей трубы, вследствие резкого поворота потока, ударяется о стенку полуэллиптической головки, и поток в радиальном движении от центра к внешней части реактора, по преимуществу, близок к соответствующей стенке. Поэтому суспензия поступает в верхние трубные решетки, в основном, из его внешней части. Данная проблема влечет за собой два негативных последствия, а именно:
a. как уже было сказано, скорость суспензии во внешних рядах намного выше, чем в центральных рядах;
b. каучуковая суспензия поступает в трубы в большей степени по касательной, чем в осевом направлении: это обстоятельство создает большой вихрь во входных отверстиях в трубы с очевидно неравномерной скоростью внутри каждой трубы; здесь суспензия протекает преимущественно в часть трубы, обращенной к центру реактора, в то время как часть трубы, обращенная к наружной стенке реактора, имеет скорость близкую к нулю, способствуя, таким образом, накоплению липкого каучука.
Этот результат гидродинамического анализа, приведенный в Таблице I, подтверждает экспериментальный феномен, описанный более 50 лет назад в упомянутом патенте США 2,636,026 (закупоривание реакторных труб, особенно на их входных концах).
Figure 00000001
Пример 2
В примере 2, в соответствии с настоящим изобретением, представлено применение усовершенствованного реактора, показанного на Фиг. 1. Такой же реактор со 120 трубами, что и описанный в примере 1, был улучшен за счет:
- расширенной верхней головки с отклонителем текучей среды;
- полусферической нижней головкой с отклонителем текучей среды;
- трех выпрямляющих разделителей в отводящей трубе.
Совместный эффект вышеописанных модификаций, даже при уменьшенном энергопотреблении крыльчатки, создает возможность получить более высокую среднюю скорость, более равномерное распределение скорости во всех частях реактора и уменьшенный перепад давления, что показано в Таблице II:
Figure 00000002

Claims (8)

1. Однопроходный полимеризационный реактор (1) оболочечного и трубчатого типа, используемый для производства бутилкаучука в суспензии посредством сополимеризации с, по меньшей мере, 95 вес. % изобутилена с не более чем 5 вес. % изопрена в концентрации от 35 до 45 об. % в растворителе, предпочтительно, - хлористом метиле, в присутствии от 0,015 до 0,15 вес. % катализатора, предпочтительно, хлористого алюминия, и в диапазоне температур от -104 до -90°C, при этом скорость в трубах находится в диапазоне от 2,4 до 4,5 м/с, причем реакционная смесь вводится с нижней стороны, рядом с валом крыльчатки (5), а выход (11) находится наверху, с реакцией во внутритрубном пространстве и охлаждающей средой в оболочке (19), предназначенным для удаления теплоты реакции, и циркуляционным насосом, установленным в нижней части (4), и предназначенный для обеспечения высокой скорости каучуковой суспензии в центральной отводящей трубе (2) и в меньших трубах (6) нисходящего потока, отличающийся тем, что содержит:
а - расширенную верхнюю головку (3), содержащую отклонитель (15) текучей среды, имеющий поперечное сечение в виде наклоненной перевернутой капли с частичным вырезом в его нижней части, причем форма головки и отклонителя выполнена в таком размере, чтобы достичь очень однородной скорости суспензии в рядах труб (6), и чтобы минимизировать падение давления, которое связано с поворотом потока от восходящего потока к нисходящему потоку, и которое связано с входом суспензии в трубы (6); причем вихрь на входе труб также минимизируется, вместе с этим устраняется любое плохое распределение суспензии, возникающее в обычной старой однопроходной конструкции;
b - полусферическая нижняя головка (4) с первым отклонителем (17) текучей среды с поперечным сечением в виде наклоненной перевернутой капли с частичным вырезом в его верхней части, и вторым отклонителем (18) текучей среды с трапецеидальным поперечным сечением, расположенным вокруг первого отклонителя (17), выполненная в таком размере, чтобы минимизировать падение давления, связанное с поворотом потока от нисходящего потока к восходящему потоку;
с - три выпрямляющих разделителя (7) в отводящей трубе (2), имеющие периодичность в 120° и выполненные в виде поверхностей с нижней изогнутой частью и верхней прямой радиальной частью, при этом изогнутая часть выполнена в виде последовательности радиальных сегментов, выполненных с целью преобразовать тангенциальные составляющие скорости, созданные вращением крыльчатки (5), в осевые составляющие скорости, обеспечивая возможность увеличить гидравлическую эффективность;
при этом, такое сочетание, существенно улучшая однородность скорости и снижая общий перепад давления, обеспечивает возможность увеличить циркуляцию в нижнем насосе и увеличить продолжительность циклов реактора.
2. Реактор по п. 1, в котором расширенная верхняя головка (3) получена увеличением высоты верхней зоны.
3. Реактор по п. 1, отличающийся тем, что указанный отклонитель (15) текучей среды прикреплен к верхним трубным решеткам (14), а нижние отклонители (17, 18) прикреплены к нижним трубным решеткам (16).
4. Реактор по п. 1, в котором в указанной нижней изогнутой части выпрямляющих разделителей (7), начиная снизу и идя вверх, в последовательности радиальных сегментов, каждый из сегментов имеет возрастающую угловую координату, а также возрастающую осевую координату.
5. Реактор по п. 1, дополнительно содержащий множество поперечных разделителей (8) в объеме (19) рубашки для циркуляции жидкого охладителя, который является либо этиленом, либо метаном, с одной форсункой или множеством форсунок для удаления охладителя, циркулирующего в диапазоне температур от -120 до -100°C.
6. Реактор по п. 5, в котором поперечные разделители (8) выполнены в виде диска (21) и кольца (22) и побуждают поток течь по направлению (20), и делают возможным повысить скорость и коэффициент теплопередачи охлаждающей текучей среды.
7. Реактор по п. 5, в котором с учетом различной степени испарения по высоте реактора, отсутствия испарения у входного отверстия (12) и в нижней части реактора, и максимального испарения у выходного отверстия (13), расстояние между двумя последовательными разделителями (8) не является фиксированным, и также меняется по высоте реактора.
8. Реактор по п. 1, в котором однопроходные трубы расположены в от 2 до 8 рядах, предпочтительно, в от 3 до 5 рядах.
RU2013156836/05A 2011-05-26 2011-05-26 Усовершенствованный полимеризационный реактор, предназначенный для производства бутилкаучука RU2561092C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IT2011/000177 WO2012160579A1 (en) 2011-05-26 2011-05-26 Improved polymerization reactor for butyl rubber production

Publications (2)

Publication Number Publication Date
RU2013156836A RU2013156836A (ru) 2015-07-10
RU2561092C2 true RU2561092C2 (ru) 2015-08-20

Family

ID=44629608

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013156836/05A RU2561092C2 (ru) 2011-05-26 2011-05-26 Усовершенствованный полимеризационный реактор, предназначенный для производства бутилкаучука

Country Status (8)

Country Link
US (1) US9428593B2 (ru)
EP (1) EP2714259B1 (ru)
CN (1) CN103608100B (ru)
BR (1) BR112013030063B1 (ru)
RU (1) RU2561092C2 (ru)
SA (1) SA112330535B1 (ru)
TW (1) TWI466724B (ru)
WO (1) WO2012160579A1 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103623761A (zh) * 2013-12-11 2014-03-12 南京斯迈柯特种金属装备股份有限公司 丁基橡胶聚合反应器
CN105732866B (zh) * 2014-12-11 2018-07-13 中国石油天然气股份有限公司 异戊橡胶制备方法及其聚合系统和催化剂进料装置
WO2016169771A1 (de) * 2015-04-23 2016-10-27 Uhde Inventa-Fischer Gmbh Reaktor sowie verfahren zur polymerisation von lactid
CN109806719A (zh) * 2019-03-25 2019-05-28 福建省新宏港纺织科技有限公司 一种坯布清洁系统的废气回收装置
WO2020221435A1 (de) * 2019-04-30 2020-11-05 Wacker Chemie Ag Verfahren zur herstellung von wässrigen polymerdispersionen in einem rohrreaktor
CN110523345B (zh) * 2019-10-10 2022-04-05 江苏永大化工机械有限公司 反应器排放罐
CN115046301A (zh) * 2022-06-07 2022-09-13 Tcl空调器(中山)有限公司 风管、风力模块、新风装置和空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2999084A (en) * 1959-03-25 1961-09-05 Exxon Research Engineering Co Polymerization method
US4472061A (en) * 1980-10-27 1984-09-18 Ashland Oil, Inc. Method of continuously forming polyester resins
RU1615935C (ru) * 1988-12-05 1994-10-15 Научно-производственное предприятие "Ярсинтез" Реактор для проведения процесса полимеризации
US5417930A (en) * 1991-07-29 1995-05-23 Exxon Chemical Patents Inc. Polymerization reactor
RU2097122C1 (ru) * 1996-05-14 1997-11-27 Акционерное общество Научно-производственное предприятие "Ярсинтез" Полимеризатор

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US448575A (en) 1891-03-17 Half to robert atherton
CA463453A (en) 1950-02-28 H. Bannon John Reactor for low temperature polymerization of olefins
US2474592A (en) 1944-05-05 1949-06-28 Standard Oil Dev Co Polymerization of isobutylene with a diolefin
US2577856A (en) 1944-07-15 1951-12-11 Standard Oil Dev Co Polymerization reaction vessel
US2507105A (en) * 1944-07-15 1950-05-09 Standard Oil Dev Co Process for the friedel-crafts catalyzed low-temperature polymerization of isoolefins
US2636026A (en) 1951-06-01 1953-04-21 Standard Oil Dev Co Polymerization of olefins in annular reactor
DE1135663B (de) * 1955-06-30 1962-08-30 Polymer Corp Verfahren zur katalytischen Tieftemperaturmischpolymerisation von Isoolefinen und Multiolefinen
US3737288A (en) 1971-06-18 1973-06-05 Exxon Co Antifouling deflector in olefin polymerization reactors
US3790141A (en) 1971-07-19 1974-02-05 Creusot Loire Apparatus for producing a flow in a liquid mixture
US3965975A (en) * 1974-08-21 1976-06-29 Stratford Engineering Corporation Baffling arrangements for contactors
US3991129A (en) * 1974-09-23 1976-11-09 Cosden Technology, Inc. Production of polybutene with static mixer
IT1134567B (it) 1980-12-03 1986-08-13 Ente Giprokautchuk L Reattore per la polimerizzazione di idrocarburi in soluzione od in sospensione
GB8515254D0 (en) 1985-06-17 1985-07-17 Enichem Elastomers Butyl rubber
AUPN034694A0 (en) * 1994-12-30 1995-01-27 Comalco Aluminium Limited Improved draft tube agitator
US5972661A (en) * 1998-09-28 1999-10-26 Penn State Research Foundation Mixing systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2999084A (en) * 1959-03-25 1961-09-05 Exxon Research Engineering Co Polymerization method
US4472061A (en) * 1980-10-27 1984-09-18 Ashland Oil, Inc. Method of continuously forming polyester resins
RU1615935C (ru) * 1988-12-05 1994-10-15 Научно-производственное предприятие "Ярсинтез" Реактор для проведения процесса полимеризации
US5417930A (en) * 1991-07-29 1995-05-23 Exxon Chemical Patents Inc. Polymerization reactor
RU2097122C1 (ru) * 1996-05-14 1997-11-27 Акционерное общество Научно-производственное предприятие "Ярсинтез" Полимеризатор

Also Published As

Publication number Publication date
EP2714259B1 (en) 2020-09-02
US20140086801A1 (en) 2014-03-27
CN103608100A (zh) 2014-02-26
BR112013030063A2 (pt) 2016-09-20
US9428593B2 (en) 2016-08-30
TWI466724B (zh) 2015-01-01
EP2714259A1 (en) 2014-04-09
CN103608100B (zh) 2016-07-06
RU2013156836A (ru) 2015-07-10
TW201300169A (zh) 2013-01-01
WO2012160579A1 (en) 2012-11-29
SA112330535B1 (ar) 2015-07-22
BR112013030063B1 (pt) 2019-04-09

Similar Documents

Publication Publication Date Title
RU2561092C2 (ru) Усовершенствованный полимеризационный реактор, предназначенный для производства бутилкаучука
JP2612538B2 (ja) 重合体反応器
CN103282114B (zh) 用于连续聚合反应的反应器和方法
AU2009255450B2 (en) Vertical combined feed/effluent heat exchanger with variable baffle angle
ZA200506453B (en) Segmented agitator reactor
KR101572126B1 (ko) 배플을 구비한 회분식 반응기
KR20240068614A (ko) 중합 반응기
CN1917943A (zh) 用于将反应物优化注射到反应器中的装置和方法
JP2024502692A (ja) 気泡塔反応器
JP2024502519A (ja) 気泡塔反応器
CN112654424A (zh) 具有挡板的间歇式反应器
Klinov et al. Analysis of the hydrodynamics in a polymerizing reactor for the synthesis of butyl rubber

Legal Events

Date Code Title Description
RH4A Copy of patent granted that was duplicated for the russian federation

Effective date: 20160404