US20090209709A1 - Rubber composition for tire comprising an organosiloxane coupling agent - Google Patents

Rubber composition for tire comprising an organosiloxane coupling agent Download PDF

Info

Publication number
US20090209709A1
US20090209709A1 US11/920,626 US92062606A US2009209709A1 US 20090209709 A1 US20090209709 A1 US 20090209709A1 US 92062606 A US92062606 A US 92062606A US 2009209709 A1 US2009209709 A1 US 2009209709A1
Authority
US
United States
Prior art keywords
sio
group
organosiloxane
tire according
radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/920,626
Inventor
Jose Carlos Araujo Da Silva
Karine Longchambon
Sabastien Sterin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michelin Recherche et Technique SA Switzerland
Michelin Recherche et Technique SA France
Original Assignee
Michelin Recherche et Technique SA Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland filed Critical Michelin Recherche et Technique SA Switzerland
Assigned to MICHELIN RECHERCHE ET TECHNIQUE S.A. reassignment MICHELIN RECHERCHE ET TECHNIQUE S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STERIN, SABASTIEN, ARAUJO DA SILVA, JOSE CARLOS, LONGCHAMBON, KARINE
Publication of US20090209709A1 publication Critical patent/US20090209709A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0025Compositions of the sidewalls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5465Silicon-containing compounds containing nitrogen containing at least one C=N bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C2015/0614Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the chafer or clinch portion, i.e. the part of the bead contacting the rim
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating

Definitions

  • the present invention relates to diene elastomer compositions reinforced with an inorganic filler, such as silica, intended for the manufacture of tyres or tyre semi-finished products, in particular for the treads of these tyres.
  • an inorganic filler such as silica
  • Such a coupling agent which is at least bifunctional, has as simplified general formula “Y-W-X”, in which:
  • the coupling agents should in particular not be confused with simple covering agents for the inorganic filler which, in a known way, may comprise the Y functional group, active with regard to the inorganic filler, but are in all cases devoid of the X functional group, active with regard to the diene elastomer.
  • Coupling agents in particular (silica/diene elastomer) coupling agents
  • silane bifunctional sulphides in particular alkoxysilanes, regarded today as the products contributing, for vulcanisates comprising silica as filler, the best compromise in terms of scorch safety, of ease of processability and of reinforcing power.
  • TESPT bis(3-triethoxysilylpropyl)tetrasulphide
  • a first subject-matter of the invention is a rubber composition intended for the manufacture of tyres or of tyre semi-finished products, based on at least one isoprene elastomer, an inorganic filler as reinforcing filler and a polyfunctional organosiloxane coupling agent comprising per molecule, to provide the bonding between the reinforcing inorganic filler and the isoprene elastomer, grafted to its silicon atoms, on the one hand at least one hydroxyl or hydrolysable functional group allowing it to be grafted to the reinforcing inorganic filler and, on the other hand, at least one group bearing at least one functional group allowing it to be grafted to the isoprene elastomer, the said composition being characterized in that the said functional group is an azodicarbonyl group —CO—N ⁇ N—CO—.
  • Another subject-matter of the invention is a process for preparing a rubber composition intended for the manufacture of tyres or of tyre semi-finished products exhibiting an improved hysteresis, this composition being based on an isoprene elastomer, on a reinforcing inorganic filler and on a polyfunctional organosiloxane coupling agent, the said process comprising the following stages:
  • compositions according to the invention for the manufacture of tyres or of semi-finished products made of rubber intended for these tyres, these semi-finished products being chosen in particular from the group consisting of treads, crown reinforcement plies, side walls, carcass reinforcement plies, beads, protectors, underlayers, rubber blocks and other internal rubbers, in particular decoupling rubbers, intended to provide the bonding or the interface between the abovementioned regions of the tyres.
  • Another subject-matter of the invention is these tyres and these semi-finished products themselves when they comprise a rubber composition in accordance with the invention.
  • the invention relates in particular to tyre treads, it being possible for these treads to be used during the manufacture of new tyres or for the retreading of waste tyres; by virtue of the compositions of the invention, these treads exhibit both high wear resistance and reduced rolling resistance.
  • composition in accordance with the invention is particularly suitable for the manufacture of tyres or of tyre treads intended for equipping passenger vehicles, vans, for 4 ⁇ 4 (4-wheel drive) vehicles, two-wheel vehicles, heavy-duty vehicles, that is to say underground, bus, heavy road transport vehicles (lorries, tractors, trailers) or off-road vehicles, aircraft, earthmoving equipment, heavy agricultural vehicles or handling vehicles.
  • the rubber compositions are characterized, before and after curing, as indicated below.
  • the measurements are carried out at 150° C. with an oscillating disc rheometer, according to Standard DIN 53529-part 3 (June 1983).
  • the change in the rheometric torque as a function of time describes the change in the stiffening of the composition as a result of the vulcanization reaction.
  • the measurements are processed according to Standard DIN 53529-part 2 (March 1983): Ti is the induction time, that is to say the time necessary at the starting of the vulcanization reaction; T ⁇ (for example T 99 ) is the time necessary to achieve a conversion of ⁇ %, that is to say ⁇ % (for example 99%) of the difference between the minimum and maximum torques.
  • the conversion rate constant, recorded as K (expressed as min ⁇ 1 ), which is first order, calculated between 30% and 80% conversion, which makes it possible to assess the vulcanization kinetics, is also measured.
  • the dynamic properties ⁇ G* and tan( ⁇ ) max are measured on a viscosity analyser (Metravib VA4000) according to Standard ASTM D 5992-96.
  • the response of a sample of vulcanized composition (cylindrical test specimen with a thickness of 4 mm and with a cross section of 400 mm 2 ), subjected to a simple alternating sinusoidal shear stress, at a frequency of 10 Hz, at 60° C. is recorded.
  • a strain amplitude sweep is carried out from 0.1% to 50% (outward cycle) and then from 50% to 1% (return cycle).
  • the results made use of are the complex dynamic shear modulus (G*) and the loss factor tan ⁇ .
  • the maximum value of tan ⁇ observed (tan( ⁇ ) max ) and the difference in complex modulus ( ⁇ G*) between the values at 0.1% and at 50% strain (Payne effect) are shown for the return cycle.
  • the rubber compositions according to the invention are based on at least an (that is to say at least one) isoprene elastomer; an (at least one) inorganic filler as reinforcing filler; and an (at least one) organosiloxane coupling agent as described in detail below, which provide the bonding between the said inorganic filler and the isoprene elastomer.
  • composition “based on” is to be understood as meaning a composition comprising the mixture and/or the reaction product of the various constituents used, some of these base constituents (for example, the coupling agent and the reinforcing inorganic filler) being capable of reacting or intended to react together, at least in part, during the various phases of manufacture of the compositions, in particular during their vulcanization (curing).
  • diene elastomer or rubber, the two terms being regarded here as synonymous
  • elastomer should be understood as meaning by definition an elastomer resulting at least in part (i.e., a homopolymer or a copolymer) from diene monomers, that is to say from monomers bearing two carbon-carbon double bonds which may or may not be conjugated.
  • essentially unsaturated diene elastomer is understood here to mean a diene elastomer resulting at least in part from conjugated diene monomers having a level of units of diene origin (conjugated dienes) which is greater than 15% (mol %).
  • the term “highly unsaturated” diene elastomer is understood to mean in particular a diene elastomer having a level of units of diene origin (conjugated dienes) which is greater than 50%.
  • isoprene elastomer is understood to mean, in the present patent application, in a known way, an isoprene homopolymer or copolymer, in other words a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), the various copolymers of isoprene and the blends of these elastomers.
  • NR natural rubber
  • IR synthetic polyisoprenes
  • isoprene copolymers of isobutene/isoprene copolymers (butyl rubber-IIR), isoprene/styrene copolymers (SIR), isoprene/butadiene copolymers (BIR) or isoprene/butadiene/styrene copolymers (SBIR).
  • isoprene copolymers of isobutene/isoprene copolymers (butyl rubber-IIR), isoprene/styrene copolymers (SIR), isoprene/butadiene copolymers (BIR) or isoprene/butadiene/styrene copolymers (SBIR).
  • This isoprene elastomer is preferably natural rubber or a synthetic polyisoprene of the cis-1,4 type. Use is preferably made, among these synthetic polyisoprenes, of polyisoprenes having a level (mol %) of cis-1,4 bonds of greater than 90%, more preferably still of greater than 98%.
  • compositions of the invention may contain, as a blend with the above isoprene elastomer, diene elastomers other than isoprene elastomers, as the minor component (i.e., for less than 50% by weight) or as the major component (i.e., for more than 50% by weight), according to the applications targeted. They might also comprise nondiene elastomers, indeed even polymers other than elastomers, for example thermoplastic polymers.
  • nonisoprene diene elastomers of any highly unsaturated diene elastomer chosen in particular from the group consisting of polybutadienes (BR), butadiene copolymers, in particular styrene/butadiene copolymers (SBR), and the blends of these various elastomers.
  • BR polybutadienes
  • SBR styrene/butadiene copolymers
  • the improvement in the coupling contributed by the invention is particularly notable with regard to rubber compositions for which the elastomeric base is composed predominantly (i.e., to more than 50% by weight) of polyisoprene, i.e., natural rubber or synthetic polyisoprene.
  • composition in accordance with the invention is intended in particular for a tyre tread, whether a new tyre or a waste tyre (retreading), in particular for a tyre intended for commercial or utility vehicles, such as heavy-duty vehicles, i.e. underground, bus, heavy road transport vehicles (lorries, tractors, trailers) or off-road vehicles.
  • heavy-duty vehicles i.e. underground, bus, heavy road transport vehicles (lorries, tractors, trailers) or off-road vehicles.
  • the best embodiment known of the invention consists in using, as isoprene elastomer, solely polyisoprene, more preferably natural rubber. It is for such conditions that the best performance in terms of rolling resistance and wear resistance has been observed.
  • the composition in accordance with the invention may contain at least one essentially saturated diene elastomer, in particular at least one EPDM copolymer or one butyl rubber (optionally chlorinated or brominated), whether these copolymers are used alone or as a blend with highly unsaturated diene elastomers as mentioned above, in particular NR or IR, BR or SBR.
  • any inorganic or mineral filler whatever its colour and its origin (natural or synthetic), also known as “white” filler, “clear” filler or even “nonblack” filler, in contrast with carbon black, this inorganic filler being capable of reinforcing, by itself alone, without means other than an intermediate coupling agent, a rubber composition intended for the manufacture of a tyre tread, in other words capable of replacing, in its reinforcing role, a conventional tyre-grade carbon black for a tread.
  • Such a filler is generally characterized by the presence of functional groups, in particular hydroxyl (—OH) groups, at its surface, thus requiring the use of a coupling agent or system intended to provide a stable chemical bond between the isoprene elastomer and the said filler.
  • functional groups in particular hydroxyl (—OH) groups
  • the reinforcing inorganic filler is a filler of the siliceous or aluminous type or a mixture of these two types of fillers.
  • the silica (SiO 2 ) used can be any reinforcing silica known to a person skilled in the art, in particular any precipitated or pyrogenic silica exhibiting a BET specific surface and a CTAB specific surface which are both less than 450 m 2 /g, preferably from 30 to 400 m 2 /g.
  • HDSs Highly dispersible precipitated silicas
  • the Ultrasil 7000 silicas from Degussa the Zeosil 1165 MP, 1135 MP and 1115 MP silicas from Rhodia
  • the Hi-Sil EZ150G silica from PPG the Zeopol 8715, 8745 or 8755 silicas from Huber or the silicas as described in Application WO 03/016387.
  • the reinforcing alumina (Al 2 O 3 ) preferably used is a highly dispersible alumina having a BET specific surface ranging from 30 to 400 m 2 /g, more preferably between 60 and 250 m 2 /g, and a mean particle size at most equal to 500 nm, more preferably at most equal to 200 nm. Mention may in particular be made, as nonlimiting examples of such reinforcing aluminas, of the “Baikalox A125” or “CR125” (Ba ⁇ kowski), “APA-100RDX” (Condea), “Aluminoxide C” (Degussa) or “AKP-G015” (Sumitomo Chemicals) aluminas.
  • inorganic filler capable of being used in the rubber compositions of the invention, of aluminium (oxide) hydroxides, aluminosilicates, titanium oxides, silicon carbides or nitrides, all of the reinforcing type as described, for example, in Applications WO 99/28376, WO 00/73372, WO 02/053634, WO 2004/003067 and WO 2004/056915.
  • the reinforcing inorganic filler used in particular if it is silica, preferably has a BET specific surface of between 60 and 350 m 2 /g.
  • An advantageous embodiment of the invention consists in using a reinforcing inorganic filler, in particular a silica, having a high BET specific surface within a range from 130 to 300 m 2 /g, due to the high reinforcing power recognized for such fillers.
  • a reinforcing inorganic filler in particular a silica, exhibiting a BET specific surface of less than 130 m 2 /g, preferably in such a case of between 60 and 130 m 2 /g (see, for example, Applications WO03/002648 and WO03/002649).
  • reinforcing inorganic filler is not important, whether it is in the form of a powder, of microbeads, of granules, of balls or any other appropriate densified form.
  • reinforcing inorganic filler is also understood to mean mixtures of different reinforcing inorganic fillers, in particular of highly dispersible siliceous and/or aluminous fillers as described above.
  • this level of reinforcing inorganic filler will be chosen between 20 and 200 phr, more preferably between 30 and 150 phr, in particular greater than 40 phr (for example between 40 and 120 phr, in particular between 40 and 80 phr).
  • the BET specific surface is determined in a known way by gas adsorption using the Brunauer-Emmett-Teller method described in “ The Journal of the American Chemical Society ”, Vol. 60, page 309, February 1938, more specifically according to French Standard NF ISO 9277 of December 1996 (multipoint volumetric method (5 points)-gas: nitrogen-degassing: 1 hour at 160° C.-relative pressure range p/po: 0.05 to 0.17).
  • the CTAB specific surface is the external surface determined according to French Standard NF T 45-007 of November 1987 (method B).
  • a reinforcing filler of another nature in particular an organic filler
  • this reinforcing filler is covered with an inorganic layer, such as silica, or else comprises, at its surface, functional sites, in particular hydroxyl sites, requiring the use of a coupling agent in order to establish the bonding between the filler and the elastomer.
  • an (inorganic filler/diene elastomer) coupling agent carries, in a known way, at least two functional groups, recorded here as “Y” and “X”, which allow it to be able to be grafted, on the one hand, to the reinforcing inorganic filler by means of the “Y” functional group and, on the other hand, to the diene elastomer by means of the “X” functional group.
  • a covering agent for the inorganic filler comprises the “Y” functional group alone, for example a hydroxyl group or a hydrolysable group, active with regard to the functional sites (for example hydroxyl —OH sites) of the inorganic filler, but is in any case devoid of the second “X” functional group, active with regard to the diene elastomer.
  • the coupling agent used in the rubber compositions in accordance with the invention is a polyfunctional (that is to say, at least bifunctional) organosiloxane comprising per molecule, grafted to its silicon atoms, on the one hand at least one hydroxyl or hydrolysable functional group (“Y” radical or functional group above) allowing it to be grafted to the reinforcing inorganic filler and, on the other hand, which is the essential characteristic of this organosiloxane for the targeted application, at least one group bearing at least one azodicarbonyl functional group —CO—N ⁇ N—CO— (“X” radical or functional group) allowing it to be grafted to the isoprene elastomer.
  • Y hydroxyl or hydrolysable functional group
  • polyfunctional organosiloxane is thus understood to mean any siloxane compound bearing, as “Y” functional group, at least one siloxyl unit equipped with one, two or three OH group(s) or hydrolysable monovalent group(s) and, as “X” functional group, at least one siloxyl unit equipped with at least one azo double bond activated by the presence of a carbonyl group (>C ⁇ O) on each of the two nitrogen atoms, allowing the formation of a covalent bond with the isoprene elastomer.
  • the polyfunctional organosiloxane which can be used in the composition of the invention is an organosiloxane composed of identical or different siloxyl units of the following average formula (I):
  • G 2 and G 3 radicals can be carried by the same silicon atom or by two different silicon atoms.
  • G 3 has the specific formula (II):
  • the organosiloxane is composed of identical or different siloxyl units of average formula (III):
  • the preferred organosiloxane above is composed of identical or different siloxyl units of equivalent average formula (IV) or (V):
  • G 2 b G 1 a (A-CO—N ⁇ N—CO-Z)SiO (3-a-b)/2 (V)
  • organosiloxane of formula (IV) or (V) may also be represented, in accordance with another symbolic representation well known to a person skilled in the art for organosiloxane compounds, according to the equivalent formula (VI) or (VII) respectively:
  • the organosiloxane is preferably a siloxane oligomer comprising from 2 to 20, more preferably from 2 to 12 (for example from 2 to 6), silicon atoms (number corresponding to the sum m+n+o+p+q of the formula VII).
  • Such preferred siloxane oligomers are, for example, those in the formula (VII) of which:
  • the divalent group Z is preferably chosen from saturated or unsaturated aliphatic hydrocarbon groups, saturated, unsaturated and/or aromatic, monocyclic or polycyclic, carbocyclic groups and groups exhibiting a saturated or unsaturated aliphatic hydrocarbon part and a carbocyclic part as defined above.
  • This group Z preferably comprises from 1 to 18 carbon atoms; more preferably it represents an alkylene chain, a saturated cycloalkylene group, an arylene group or a divalent group composed of a combination of at least two of these groups.
  • the monovalent hydrocarbon group which may be represented by A may be linear or branched, aliphatic or carbocyclic, in particular aromatic; it can be saturated or unsaturated and substituted or unsubstituted.
  • the term aliphatic hydrocarbon group is understood to mean an optionally substituted linear or branched group preferably comprising from 1 to 18 carbon atoms.
  • the said aliphatic hydrocarbon group comprises from 1 to 12 carbon atoms, better still from 1 to 8 carbon atoms and more preferably still from 1 to 6 carbon atoms.
  • the unsaturated aliphatic hydrocarbon groups which may be used comprise one or more unsaturations, preferably one, two or three unsaturations of ethylenic (double bond) and/or acetylenic (triple bond) type. Examples thereof are the alkenyl or alkynyl groups deriving from the alkyl groups defined above by removal of two or more hydrogen atoms.
  • the unsaturated aliphatic hydrocarbon groups comprise a single unsaturation.
  • carbocyclic radical is understood to mean an optionally substituted, preferably C 3 -C 50 , monocyclic or polycyclic radical.
  • it is a C 3 -C 18 radical which is preferably mono-, bi- or tricyclic.
  • the carbocyclic radical comprises more than one cyclic nucleus (case of polycyclic carbocycles)
  • the cyclic nuclei are fused in pairs. Two fused nuclei can be ortho-fused or peri-fused.
  • the carbocyclic radical may comprise, unless otherwise indicated, a saturated part and/or an aromatic part and/or an unsaturated part.
  • saturated carbocyclic radicals are cycloalkyl groups.
  • the cycloalkyl groups are C 3 -C 18 , better still C 5 -C 10 , cycloalkyl groups.
  • the unsaturated carbocycle or any unsaturated part of carbocyclic type exhibits one or more ethylenic unsaturations, preferably one, two or three. It advantageously comprises from 6 to 50 carbon atoms, better still from 6 to 20 carbon atoms, for example from 6 to 18 carbon atoms.
  • Examples of unsaturated carbocycles are C 6 -C 10 cycloalkenyl groups.
  • Examples of aromatic carbocyclic radicals are C 6 -C 18 aryl groups and in particular phenyl, naphthyl, anthryl and phenanthryl.
  • a group exhibiting both an aliphatic hydrocarbon part as defined above and a carbocyclic part as defined above is, for example, an arylalkyl group, such as benzyl, or an alkylaryl group, such as tolyl.
  • the substituents of the aliphatic hydrocarbon groups or parts and of the carbocyclic groups or parts are, for example, alkoxyl groups in which the alkyl part is preferably as defined above.
  • Z′ can be identical to Z or different from the latter; it makes it possible to connect the azodicarbonyl functional group to an Si atom of the organosiloxane, it being possible for the latter to be identical to or different from the Si atom connected to Z.
  • Z′ has the same definition and the same preferred characteristics as those described above for Z.
  • At least one of the A, Z and, if applicable, Z′ groups comprises a (at least one) heteroatom preferably chosen from O, S and N. This heteroatom is preferably connected directly to the adjacent carbonyl bond.
  • the monovalent hydrocarbon radical A When such a heteroatom is carried by the monovalent hydrocarbon radical A, it is preferably carried in the form of a monovalent hydrocarbon residue chosen from —OR, —NR and —SR (R being any monovalent hydrocarbon radical preferably comprising from 1 to 18 carbon atoms), the free valency of which is more preferably directly connected to the adjacent carbonyl bond; the —OR residue is preferred, with R representing a C 1 -C 6 alkyl, preferably a C 1 -C 4 alkyl (methyl, ethyl, propyl, butyl), more preferably a C 1 alkyl (methyl) or a C 2 alkyl (ethyl).
  • R being any monovalent hydrocarbon radical preferably comprising from 1 to 18 carbon atoms
  • the —OR residue is preferred, with R representing a C 1 -C 6 alkyl, preferably a C 1 -C 4 alkyl (methyl, ethyl, propyl, butyl), more
  • Z′ When such a heteroatom is carried by Z and/or, if applicable, Z′ (i.e., by Z only, by Z′ only or by both), it is preferably carried in the form of a divalent hydrocarbon residue chosen from the —R′—NH—; —R′—O; and —R′—S— residues (R′ being any divalent hydrocarbon radical preferably comprising from 1 to 18 carbon atoms); the —R′—NH— residue is preferred, with R′ representing a C 1 -C 6 alkylene, preferably a C 1 -C 4 alkylene (methylene, ethylene, propylene, butylene), more preferably a C 3 alkylene (propylene).
  • At least one, more preferably all, of the following characteristics is/are confirmed in the formulae (I) to (VII) above:
  • At least one, more preferably all, of the following characteristics is/are confirmed in the formulae (I) to (VII) above:
  • G 1 and G 2 might also form, together and with the silicon atom which carries them, a monocyclic or polycyclic carbocyclic group having from 2 to 10 cyclic carbon atoms and being able to comprise one or more cyclic heteroatom(s) which is/are oxygen(s). Mention will be made, by way of example, of, for example, the rings:
  • Azosilanes of formula (V) in the structure of which the A symbol comprises an oxygen atom as heteroatom and which correspond to the preferred characteristics set out above are in particular those composed of identical or different siloxyl units of average formula (VIII) which follows:
  • Z (and, if applicable, Z′) is a divalent radical chosen from the group consisting of —(CH 2 ) y —, —NH—(CH 2 ) y — and —O—(CH 2 ) y —, y being an integer from 1 to 6, in particular from 1 to 4, especially equal to 3.
  • organosiloxane coupling agents described above can be prepared, for example, according to a synthetic process which consists in oxidizing the hydrazo group of a precursor reactant of formula (X):
  • an oxidizing system comprising at least one oxidizing agent (for example a halogen, such as bromine) and at least one base (for example an inorganic base, such as Na 2 CO 3 ), while involving an additional reactant chosen from mono- and polyalkoxysilanes (by way of example, trimethylethoxysilane) and while preferably operating in an organic liquid medium (for example while using a solvent, such as dichloromethane).
  • oxidizing agent for example a halogen, such as bromine
  • base for example an inorganic base, such as Na 2 CO 3
  • an additional reactant chosen from mono- and polyalkoxysilanes by way of example, trimethylethoxysilane
  • an organic liquid medium for example while using a solvent, such as dichloromethane
  • An advantageous procedure for bearing out this process consists in charging to the reactor, at ambient temperature (23° C.): the precursor reactant (X) above, the base (its amount depending on the oxidizing agent employed; for example, in the case of bromine, two molar equivalents of base are used with respect to the bromine), the organic solvent and the additional reactant (its amount corresponding, for example, to at least one molar equivalent with respect to the precursor), and in then gradually adding the oxidizing system to the reaction medium (the molar amount of oxidizing system being, for example, stoichiometric with respect to that of the precursor).
  • the overall content of coupling system is preferably between 2 and 15 phr, more preferably between 2 and 12 phr (for example between 4 and 8 phr). However, it is generally desirable to use as little as possible thereof.
  • the level of coupling system typically represents between 0.5 and 15% by weight, with respect to the amount of inorganic filler; preferably, it is less than 12% by weight, more preferably less than 10% by weight, with respect to this amount of filler.
  • All or a portion of the coupling system according to the invention might be pregrafted (via the “X” functional groups) to the isoprene elastomer of the composition of the invention, the elastomer thus functionalized or “precoupled” then comprising the free “Y” functional groups for the reinforcing inorganic filler. All or a portion of this coupling system might also be pregrafted (via the “Y” functional groups) to the reinforcing inorganic filler, it being possible for the filler thus “precoupled” subsequently to be bonded to the diene elastomer via the free “X” functional groups.
  • the rubber compositions in accordance with the invention also comprise all or a portion of the usual additives generally used in elastomer compositions intended for the manufacture of tyres or tyre semi-finished products, such as, for example, plasticizing agents or extending oils, whether the latter are aromatic or nonaromatic in nature, pigments, protection agents, such as antiozone waxes, chemical antiozonants, antioxidants, which it is preferable to keep present in the body, antifatigue agents, reinforcing or plasticizing resins, bismaleimides, methylene acceptors (for example, phenolic novolak resin) or methylene donors (for example, HMT or H3M), such as described, for example, in the abovementioned Application WO 02/10269, a crosslinking system based either on sulphur or on sulphur donors and/or on peroxides and/or on bismaleimides, vulcanization accelerators and/or activators, or antireversion agents, such as, for example, sodium
  • these compositions comprise, as preferred nonaromatic or very slightly aromatic plasticizing agent, at least one compound chosen from the group consisting of naphthenic oils, paraffinic oils, MES oils, TDAE oils, glycerol esters (in particular trioleates), plasticizing hydrocarbon resins exhibiting a high Tg preferably of greater than 30° C., and the mixtures of such compounds.
  • the overall level of such a preferred plasticizing agent is preferably between 15 and 45 phr, more preferably between 20 and 40 phr.
  • Inert fillers i.e., nonreinforcing fillers
  • nonreinforcing fillers such as particles of clay, bentonite, talc, chalk, kaolin, which can be used, for example, in side walls or treads of coloured tyres
  • inert fillers can also be added, depending on the targeted application, to the reinforcing filler described above, that is to say the nonblack reinforcing filler (in particular inorganic filler) plus carbon black, if applicable.
  • compositions can also comprise, in addition to the coupling agents, coupling activators, covering agents (comprising, for example, just the “Y” functional group) of the nonblack reinforcing filter and more generally processing aids capable, in a known way, by virtue of an improvement in the dispersion of the nonblack filler in the rubber matrix and of a lowering in the viscosity of the compositions, of improving their processing property in the raw state, these agents being, for example, hydroxylated or hydrolysable silanes, such as hydroxysilanes, or alkylalkoxysilanes (in particular alkyltriethoxysilanes), polyols, polyethers (for example polyethylene glycols), primary, secondary or tertiary amines (for example trialkanolamines), hydroxylated or hydrolysable polyorganosiloxanes, for example ⁇ , ⁇ -dihydroxypolyorganosiloxanes (in particular ⁇ , ⁇ -dihydroxypolydi
  • compositions are manufactured in appropriate mixers using two successive preparation phases well known to a person skilled in the art: a first phase of thermomechanical working or kneading (sometimes referred to as “nonproductive” phase) at high temperature, up to a maximum temperature (recorded as T max ) of between 110° C. and 190° C., preferably between 130° C. and 180° C., followed by a second phase of mechanical working (sometimes referred to as “productive” phase) at a lower temperature, typically of less than 120° C., for example between 60° C. and 100° C., finishing phase during which the crosslinking or vulcanization system is incorporated.
  • a first phase of thermomechanical working or kneading (sometimes referred to as “nonproductive” phase) at high temperature, up to a maximum temperature (recorded as T max ) of between 110° C. and 190° C., preferably between 130° C. and 180° C.
  • T max maximum temperature
  • the manufacturing process according to the invention is characterized in that at least the reinforcing inorganic filler and all or a portion of the coupling agent are incorporated by kneading with the diene elastomer, during the first “nonproductive” phase, that is to say that at least these various base constituents are introduced into the mixer and that kneading is carried out thermomechanically, in one or more stages, until a maximum temperature of between 1110° C. and 190° C., preferably between 130° C. and 180° C., is reached.
  • the first (nonproductive) phase is carried out in a single thermomechanical stage during which, in a first step, all the necessary base constituents (diene elastomer, reinforcing inorganic filler and all or a portion of the coupling agent) are introduced into an appropriate mixer, such as a normal internal mixer, followed, in a second step, for example after kneading for one to two minutes, by the optional additional covering agents or processing aids and various other additives, with the exception of the vulcanization system.
  • the total duration of the kneading, in this nonproductive phase is preferably between 2 and 10 min.
  • the second part of the coupling agent, if applicable, and then the vulcanization system are then incorporated at low temperature, generally in an external mixer such as an open mill; the entire mixture is then mixed (productive phase) for a few minutes, for example between 5 and 15 minutes.
  • all of the organosiloxane coupling agent can be introduced during the nonproductive phase, at the same time as the inorganic filler, or otherwise in a form divided up (for example in a proportion of 75/25, 50/50 or 25/75 respective parts by weight) over the two phases, respectively nonproductive (i.e., in the internal mixer) and then productive (for example, in the external mixer).
  • organosiloxane in a form supported (placing on the support being carried out beforehand) on a solid compatible with the chemical structures corresponding to this compound; such a support is in particular carbon black.
  • a support is in particular carbon black.
  • the final composition thus obtained is subsequently calendered, for example in the form of a sheet, or else extruded, for example to form a rubber profiled element used for the manufacture of semi-finished products, such as treads, crown reinforcement plies, side walls, carcass reinforcement plies, beads, protectors, air chambers or airtight internal rubbers for a tubeless tyre.
  • a rubber profiled element used for the manufacture of semi-finished products, such as treads, crown reinforcement plies, side walls, carcass reinforcement plies, beads, protectors, air chambers or airtight internal rubbers for a tubeless tyre.
  • the vulcanization (or curing) is carried out in a known way at a temperature generally of between 130° C. and 200° C., preferably under pressure, for a sufficient time which can vary, for example, between 5 and 90 min, depending in particular on the curing temperature, the vulcanization system adopted and the vulcanization kinetics of the composition under consideration.
  • the vulcanization system proper is preferably based on sulphur and on a primary vulcanization accelerator, in particular an accelerator of the sulphenamide type.
  • a primary vulcanization accelerator in particular an accelerator of the sulphenamide type.
  • Various known vulcanization activators or secondary accelerators such as zinc oxide, stearic acid, guanidine derivatives (in particular diphenylguanidine), optional antireversion agents, and the like, incorporated during the first nonproductive phase and/or during the productive phase, are additional to this crosslinking system.
  • Sulphur is used at a preferable level of between 0.5 and 10 phr, more preferably of between 0.5 and 5.0 phr, for example between 0.5 and 3.0 phr, when the invention is applied to a tyre tread.
  • the primary vulcanization accelerator is used at a preferable level of between 0.5 and 10 phr, more preferably of between 0.5 and 5.0 phr in particular when the
  • the invention relates to the rubber compositions described above both in the “raw” state (i.e., before curing) and in the “cured” or vulcanized state (i.e., after crosslinking or vulcanization).
  • the compositions in accordance with the invention can be used alone or as a blend (i.e., as a mixture) with any other rubber composition which can be used for the manufacture of tyres.
  • reaction mixture is subsequently filtered and then concentrated under vacuum. 9.77 g of a bright orange fluid liquid are obtained.
  • 1 H NMR analysis shows that the compound 1 has been completely consumed, that the azo group has been selectively formed and that the SiOEt loss is limited.
  • the final product obtained is a mixture of the two siloxane entities of formulae (XI-1) and (XII-1):
  • the tests which follow are carried out in the following way: the natural rubber, the reinforcing filler, a portion (approximately 1 ⁇ 3) of the coupling agent and then, after kneading for one to two minutes, the various other ingredients, with the exception of the vulcanization system, are introduced into an internal mixer, 70% filled and having an initial vessel temperature of approximately 80° C. Thermomechanical working (nonproductive phase) is then carried out in one stage (total duration of the kneading equal to approximately 4 min) until a maximum “dropping” temperature of approximately 160° C. is reached.
  • the mixture thus obtained is recovered and cooled and then the remainder of the coupling agent and then the vulcanization system (sulphur and sulphenamide accelerator) are added on an external mixer (homofinisher), the combined mixture being mixed (productive phase) for approximately 5-10 min.
  • compositions thus obtained are subsequently calendered, either in the form of sheets (thickness of 2 to 3 mm) or of fine sheets of rubber, for the measurement of their physical or mechanical properties, or in the form of profiled elements which can be used directly, after cutting and/or assembling to the desired dimensions, for example as tyre semi-finished products, in particular as tyre treads.
  • the aim of this test is to demonstrate the improved coupling performance contributed by the siloxane coupling agent synthesized above (paragraph III-1), compared with a conventional coupling agent of the alkoxysilane type (TESPT).
  • compositions based on natural rubber which are reinforced with an HDS silica are prepared, these two compositions differing only in the nature of the coupling agents used:
  • Tables 1 and 2 give the formulations of the various compositions (Table 1—levels of the various products, expressed in phr—parts by weight per one hundred parts of elastomer) and also their rheometric properties and properties after curing (at 150° C. for approximately 20 min); the vulcanization system is composed of sulphur and sulphenamide.
  • Table 2 shows first of all, for the composition in accordance with the invention C-2 compared with the control composition C-1, markedly faster vulcanization kinetics, illustrated by a conversion rate constant K which is markedly greater (multiplied by approximately 1.8) and by a markedly reduced curing time (T 99 -Ti) (divided by 1.8).
  • the composition in accordance with the invention exhibits substantially equivalent properties at break, but the highest values for modulus under strong strain (M100 and M300) and for M300/M100 ratio, a clear indicator to a person skilled in the art of better reinforcing contributed by the inorganic filler and the siloxane coupling agent.
  • composition of the invention reveals a markedly improved hysteresis, as is shown by substantially reduced values for tan( ⁇ ) max and ⁇ G*, which is the recognized indicator of a reduction in the rolling resistance of tyres and consequently in the energy consumption of the motor vehicles equipped with such tyres.
  • the invention has particularly advantageous applications in rubber compositions intended for the manufacture of tyre treads based on isoprene elastomer, in particular when these treads are intended for tyres for commercial vehicles of the heavy-duty type.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

A subject-matter of the present invention is a rubber composition intended for the manufacture of tyres or of tyre semi-finished products, based on at least one isoprene elastomer, an inorganic filler as reinforcing filler and a polyfunctional organosiloxane coupling agent capable of providing the bonding between the reinforcing inorganic filler and the isoprene elastomer, comprising per molecule, grafted to its silicon atoms, on the one hand at least one hydroxyl or hydrolysable functional group allowing it to be grafted to the reinforcing inorganic filler and, on the other hand, at least one group bearing at least one azodicarbonyl functional group —CO—N═N—CO— allowing it to be grafted to the isoprene elastomer.

Description

  • The present invention relates to diene elastomer compositions reinforced with an inorganic filler, such as silica, intended for the manufacture of tyres or tyre semi-finished products, in particular for the treads of these tyres.
  • It relates more particularly to the coupling agents intended to provide the bonding, in such compositions, between these diene elastomers and these reinforcing inorganic fillers.
  • Major efforts have been made by tyre designers, so as to reduce the consumption of fuel and the pollution emitted by motor vehicles, in order to obtain tyres exhibiting both a very low rolling resistance, an improved grip, both on a dry surface and on a wet or snowy surface, and a good wear resistance.
  • This has been made possible in particular by virtue of the development of novel elastomer compositions reinforced with specific inorganic fillers, described as “reinforcing”, which exhibit a high dispersibility, which are capable of competing with conventional carbon black from the reinforcing viewpoint and which additionally afford these compositions a reduced hysteresis synonymous with a lower rolling resistance for the tyres comprising them. Such rubber compositions, comprising reinforcing inorganic fillers, for example of the silica or alumina type, have been described, for example, in patents or patent applications EP 501 227 or U.S. Pat. No. 5,227,425, EP 735 088 or U.S. Pat. No. 5,852,099, EP 810 258 or U.S. Pat. No. 5,900,449, EP 881 252, WO99/02590, WO99/06480, WO00/05300, WO00/05301 and WO02/10269.
  • The processability of the rubber compositions comprising such fillers nevertheless remains more difficult than for the rubber compositions conventionally comprising carbon black as filler. In particular, it is necessary to use a coupling agent, also referred to as bonding agent, the role of which is to provide the connection between the surface of the particles of inorganic filler and the elastomer while facilitating the dispersion of this inorganic filler within the elastomeric matrix.
  • It should be remembered here that (inorganic filler/elastomer) “coupling” agent has to be understood, in a known way, as meaning an agent capable of establishing a satisfactory connection, of chemical and/or physical nature, between the inorganic filler and the diene elastomer.
  • Such a coupling agent, which is at least bifunctional, has as simplified general formula “Y-W-X”, in which:
      • Y represents a functional group (“Y” functional group) which is capable of being physically and/or chemically bonded to the inorganic filler, it being possible for such a bond to be established, for example, between a silicon atom of the coupling agent and the surface hydroxyl (OH) groups of the inorganic filler (for example, the surface silanols, when silica is concerned);
      • X represents a functional group (“X” functional group) capable of being physically and/or chemically bonded to the diene elastomer, for example via a sulphur atom;
      • W represents a divalent group which makes it possible to connect “Y” and “X”.
  • The coupling agents should in particular not be confused with simple covering agents for the inorganic filler which, in a known way, may comprise the Y functional group, active with regard to the inorganic filler, but are in all cases devoid of the X functional group, active with regard to the diene elastomer.
  • Coupling agents, in particular (silica/diene elastomer) coupling agents, have been described in a large number of patent documents, the most well known being silane bifunctional sulphides, in particular alkoxysilanes, regarded today as the products contributing, for vulcanisates comprising silica as filler, the best compromise in terms of scorch safety, of ease of processability and of reinforcing power. Mention should very particularly be made, among these silane sulphides, of bis(3-triethoxysilylpropyl)tetrasulphide (abbreviated to TESPT), the reference coupling agent in tyres with a low rolling resistance described as “Energy-saving Green Tyres”.
  • A search is still underway today to improve the performance of these coupling agents for inorganic fillers, such as silica.
  • The need is present in particular in the case of rubber matrices based on an isoprene elastomer, such as those used in the treads of tyres for heavy-duty vehicles, in which, in a known way, an effective bond which the elastomer is much more difficult to obtain, in comparison with the use of carbon black.
  • While pursuing their research, the Applicant Companies have discovered a novel coupling agent for inorganic filler which makes it possible to very significantly improve, in the presence of an isoprene elastomer, the hysteresis of the rubber compositions, consequently the rolling resistance of the tyres and thus the energy consumption of the motor vehicles equipped with such tyres.
  • Consequently, a first subject-matter of the invention is a rubber composition intended for the manufacture of tyres or of tyre semi-finished products, based on at least one isoprene elastomer, an inorganic filler as reinforcing filler and a polyfunctional organosiloxane coupling agent comprising per molecule, to provide the bonding between the reinforcing inorganic filler and the isoprene elastomer, grafted to its silicon atoms, on the one hand at least one hydroxyl or hydrolysable functional group allowing it to be grafted to the reinforcing inorganic filler and, on the other hand, at least one group bearing at least one functional group allowing it to be grafted to the isoprene elastomer, the said composition being characterized in that the said functional group is an azodicarbonyl group —CO—N═N—CO—.
  • Another subject-matter of the invention is a process for preparing a rubber composition intended for the manufacture of tyres or of tyre semi-finished products exhibiting an improved hysteresis, this composition being based on an isoprene elastomer, on a reinforcing inorganic filler and on a polyfunctional organosiloxane coupling agent, the said process comprising the following stages:
      • incorporating in an isoprene elastomer, during a first “nonproductive” stage, one or more times, at least one reinforcing inorganic filler and all or a first portion of the organosiloxane coupling agent which provides the bonding between the said reinforcing inorganic filler and the isoprene elastomer, the combined mixture being kneaded thermomechanically, in one or more stages, until a maximum temperature of between 110° C. and 190° C. is reached;
      • cooling the mixture to a temperature of less than 100° C.;
      • subsequently incorporating, during a second “productive” stage, if applicable the second portion of the coupling agent and then a crosslinking (or vulcanizing) system;
      • kneading the entire mixture until a maximum temperature of less than 120° C. is reached,
        and being characterized in that the said organosiloxane coupling agent corresponds to the definition given above.
  • Another subject-matter of the invention is the use of a composition according to the invention for the manufacture of tyres or of semi-finished products made of rubber intended for these tyres, these semi-finished products being chosen in particular from the group consisting of treads, crown reinforcement plies, side walls, carcass reinforcement plies, beads, protectors, underlayers, rubber blocks and other internal rubbers, in particular decoupling rubbers, intended to provide the bonding or the interface between the abovementioned regions of the tyres.
  • Another subject-matter of the invention is these tyres and these semi-finished products themselves when they comprise a rubber composition in accordance with the invention. The invention relates in particular to tyre treads, it being possible for these treads to be used during the manufacture of new tyres or for the retreading of waste tyres; by virtue of the compositions of the invention, these treads exhibit both high wear resistance and reduced rolling resistance.
  • The composition in accordance with the invention is particularly suitable for the manufacture of tyres or of tyre treads intended for equipping passenger vehicles, vans, for 4×4 (4-wheel drive) vehicles, two-wheel vehicles, heavy-duty vehicles, that is to say underground, bus, heavy road transport vehicles (lorries, tractors, trailers) or off-road vehicles, aircraft, earthmoving equipment, heavy agricultural vehicles or handling vehicles.
  • The invention and its advantages will be easily understood in the light of the description and of the exemplary embodiments which follow.
  • I. MEASUREMENTS AND TESTS USED
  • The rubber compositions are characterized, before and after curing, as indicated below.
  • I-1. Rheometry
  • The measurements are carried out at 150° C. with an oscillating disc rheometer, according to Standard DIN 53529-part 3 (June 1983). The change in the rheometric torque as a function of time describes the change in the stiffening of the composition as a result of the vulcanization reaction. The measurements are processed according to Standard DIN 53529-part 2 (March 1983): Ti is the induction time, that is to say the time necessary at the starting of the vulcanization reaction; Tα (for example T99) is the time necessary to achieve a conversion of α%, that is to say α% (for example 99%) of the difference between the minimum and maximum torques. The conversion rate constant, recorded as K (expressed as min−1), which is first order, calculated between 30% and 80% conversion, which makes it possible to assess the vulcanization kinetics, is also measured.
  • I-2. Tensile Tests
  • These tests make it possible to determine the elasticity stresses and the properties at break. Unless otherwise indicated, they are carried out in accordance with French Standard NF T 46-002 of September 1988. The nominal secant moduli (or apparent stresses, MPa) are measured in second elongation (i.e., after a cycle of accommodation) at 10% elongation (recorded as M10), 100% elongation (M100) and 300% elongation (M300). The breaking stresses (in MPa) and the elongations at break (in %) are also measured.
  • I-3. Dynamic Properties
  • The dynamic properties ΔG* and tan(δ)max are measured on a viscosity analyser (Metravib VA4000) according to Standard ASTM D 5992-96. The response of a sample of vulcanized composition (cylindrical test specimen with a thickness of 4 mm and with a cross section of 400 mm2), subjected to a simple alternating sinusoidal shear stress, at a frequency of 10 Hz, at 60° C. is recorded. A strain amplitude sweep is carried out from 0.1% to 50% (outward cycle) and then from 50% to 1% (return cycle). The results made use of are the complex dynamic shear modulus (G*) and the loss factor tan δ. The maximum value of tan δ observed (tan(δ)max) and the difference in complex modulus (ΔG*) between the values at 0.1% and at 50% strain (Payne effect) are shown for the return cycle.
  • II. DETAILED DESCRIPTION OF THE INVENTION
  • The rubber compositions according to the invention are based on at least an (that is to say at least one) isoprene elastomer; an (at least one) inorganic filler as reinforcing filler; and an (at least one) organosiloxane coupling agent as described in detail below, which provide the bonding between the said inorganic filler and the isoprene elastomer.
  • Of course, the expression composition “based on” is to be understood as meaning a composition comprising the mixture and/or the reaction product of the various constituents used, some of these base constituents (for example, the coupling agent and the reinforcing inorganic filler) being capable of reacting or intended to react together, at least in part, during the various phases of manufacture of the compositions, in particular during their vulcanization (curing).
  • In the present description, unless expressly indicated otherwise, all the percentages (%) indicated are % by weight.
  • II-1. Isoprene Elastomer
  • It should be remembered first of all that the term “diene” elastomer (or rubber, the two terms being regarded here as synonymous) should be understood as meaning by definition an elastomer resulting at least in part (i.e., a homopolymer or a copolymer) from diene monomers, that is to say from monomers bearing two carbon-carbon double bonds which may or may not be conjugated. The term “essentially unsaturated” diene elastomer is understood here to mean a diene elastomer resulting at least in part from conjugated diene monomers having a level of units of diene origin (conjugated dienes) which is greater than 15% (mol %). In the category of “essentially unsaturated” diene elastomers, the term “highly unsaturated” diene elastomer is understood to mean in particular a diene elastomer having a level of units of diene origin (conjugated dienes) which is greater than 50%.
  • Given these general definitions, the term “isoprene elastomer” is understood to mean, in the present patent application, in a known way, an isoprene homopolymer or copolymer, in other words a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), the various copolymers of isoprene and the blends of these elastomers. Mention will in particular be made, among isoprene copolymers, of isobutene/isoprene copolymers (butyl rubber-IIR), isoprene/styrene copolymers (SIR), isoprene/butadiene copolymers (BIR) or isoprene/butadiene/styrene copolymers (SBIR).
  • This isoprene elastomer is preferably natural rubber or a synthetic polyisoprene of the cis-1,4 type. Use is preferably made, among these synthetic polyisoprenes, of polyisoprenes having a level (mol %) of cis-1,4 bonds of greater than 90%, more preferably still of greater than 98%.
  • The compositions of the invention may contain, as a blend with the above isoprene elastomer, diene elastomers other than isoprene elastomers, as the minor component (i.e., for less than 50% by weight) or as the major component (i.e., for more than 50% by weight), according to the applications targeted. They might also comprise nondiene elastomers, indeed even polymers other than elastomers, for example thermoplastic polymers. Mention will in particular be made, as examples of such nonisoprene diene elastomers, of any highly unsaturated diene elastomer chosen in particular from the group consisting of polybutadienes (BR), butadiene copolymers, in particular styrene/butadiene copolymers (SBR), and the blends of these various elastomers.
  • The improvement in the coupling contributed by the invention is particularly notable with regard to rubber compositions for which the elastomeric base is composed predominantly (i.e., to more than 50% by weight) of polyisoprene, i.e., natural rubber or synthetic polyisoprene.
  • The composition in accordance with the invention is intended in particular for a tyre tread, whether a new tyre or a waste tyre (retreading), in particular for a tyre intended for commercial or utility vehicles, such as heavy-duty vehicles, i.e. underground, bus, heavy road transport vehicles (lorries, tractors, trailers) or off-road vehicles.
  • In such a case, the best embodiment known of the invention consists in using, as isoprene elastomer, solely polyisoprene, more preferably natural rubber. It is for such conditions that the best performance in terms of rolling resistance and wear resistance has been observed.
  • However, a person skilled in the art of tyres will understand that the various blends between isoprene elastomer, in particular natural rubber, and other diene elastomers, in particular SBR and/or BR, are also possible in rubber compositions in accordance with the invention which can be used, for example, for various parts of the tyre other than its tread, for example crown reinforcement plies (for example working plies, protection plies or hooping plies), carcass reinforcement plies, side walls, beads, protectors, underlayers, rubber blocks and other internal rubbers providing the interface between the abovementioned regions of the tyres.
  • According to another preferred embodiment of the invention, in particular when it is intended for a tyre side wall or for an airtight internal rubber of a tubeless tyre (or other air-impermeable component), the composition in accordance with the invention may contain at least one essentially saturated diene elastomer, in particular at least one EPDM copolymer or one butyl rubber (optionally chlorinated or brominated), whether these copolymers are used alone or as a blend with highly unsaturated diene elastomers as mentioned above, in particular NR or IR, BR or SBR.
  • II-2. Reinforcing Inorganic Filler
  • The term “reinforcing inorganic filler” is to be understood as meaning here, in a known way, any inorganic or mineral filler, whatever its colour and its origin (natural or synthetic), also known as “white” filler, “clear” filler or even “nonblack” filler, in contrast with carbon black, this inorganic filler being capable of reinforcing, by itself alone, without means other than an intermediate coupling agent, a rubber composition intended for the manufacture of a tyre tread, in other words capable of replacing, in its reinforcing role, a conventional tyre-grade carbon black for a tread. Such a filler is generally characterized by the presence of functional groups, in particular hydroxyl (—OH) groups, at its surface, thus requiring the use of a coupling agent or system intended to provide a stable chemical bond between the isoprene elastomer and the said filler.
  • Preferably, the reinforcing inorganic filler is a filler of the siliceous or aluminous type or a mixture of these two types of fillers.
  • The silica (SiO2) used can be any reinforcing silica known to a person skilled in the art, in particular any precipitated or pyrogenic silica exhibiting a BET specific surface and a CTAB specific surface which are both less than 450 m2/g, preferably from 30 to 400 m2/g. Highly dispersible precipitated silicas (“HDSs”) are preferred, in particular when the invention is employed for the manufacture of tyres exhibiting a low rolling resistance; mention may be made, as examples of such silicas, of the Ultrasil 7000 silicas from Degussa, the Zeosil 1165 MP, 1135 MP and 1115 MP silicas from Rhodia, the Hi-Sil EZ150G silica from PPG, the Zeopol 8715, 8745 or 8755 silicas from Huber or the silicas as described in Application WO 03/016387.
  • The reinforcing alumina (Al2O3) preferably used is a highly dispersible alumina having a BET specific surface ranging from 30 to 400 m2/g, more preferably between 60 and 250 m2/g, and a mean particle size at most equal to 500 nm, more preferably at most equal to 200 nm. Mention may in particular be made, as nonlimiting examples of such reinforcing aluminas, of the “Baikalox A125” or “CR125” (Baïkowski), “APA-100RDX” (Condea), “Aluminoxide C” (Degussa) or “AKP-G015” (Sumitomo Chemicals) aluminas.
  • Mention may also be made, as other examples of inorganic filler capable of being used in the rubber compositions of the invention, of aluminium (oxide) hydroxides, aluminosilicates, titanium oxides, silicon carbides or nitrides, all of the reinforcing type as described, for example, in Applications WO 99/28376, WO 00/73372, WO 02/053634, WO 2004/003067 and WO 2004/056915.
  • When the treads of the invention are intended for tyres with a low rolling resistance, the reinforcing inorganic filler used, in particular if it is silica, preferably has a BET specific surface of between 60 and 350 m2/g. An advantageous embodiment of the invention consists in using a reinforcing inorganic filler, in particular a silica, having a high BET specific surface within a range from 130 to 300 m2/g, due to the high reinforcing power recognized for such fillers. According to another preferred embodiment of the invention, use may be made of a reinforcing inorganic filler, in particular a silica, exhibiting a BET specific surface of less than 130 m2/g, preferably in such a case of between 60 and 130 m2/g (see, for example, Applications WO03/002648 and WO03/002649).
  • The physical state under which the reinforcing inorganic filler is provided is not important, whether it is in the form of a powder, of microbeads, of granules, of balls or any other appropriate densified form. Of course, the term reinforcing inorganic filler is also understood to mean mixtures of different reinforcing inorganic fillers, in particular of highly dispersible siliceous and/or aluminous fillers as described above.
  • A person skilled in the art will know how to adjust the level of reinforcing inorganic filler according to the nature of the inorganic filler used and according to the type of tyre concerned, for example a tyre for a motorcycle, for a passenger vehicle or for a utility vehicle, such as a van or a heavy-duty vehicle. Preferably, this level of reinforcing inorganic filler will be chosen between 20 and 200 phr, more preferably between 30 and 150 phr, in particular greater than 40 phr (for example between 40 and 120 phr, in particular between 40 and 80 phr).
  • In the present account, the BET specific surface is determined in a known way by gas adsorption using the Brunauer-Emmett-Teller method described in “The Journal of the American Chemical Society”, Vol. 60, page 309, February 1938, more specifically according to French Standard NF ISO 9277 of December 1996 (multipoint volumetric method (5 points)-gas: nitrogen-degassing: 1 hour at 160° C.-relative pressure range p/po: 0.05 to 0.17). The CTAB specific surface is the external surface determined according to French Standard NF T 45-007 of November 1987 (method B).
  • Finally, a person skilled in the art will understand that a reinforcing filler of another nature, in particular an organic filler, might be used as equivalent filler to the reinforcing inorganic filler described in the present section, provided that this reinforcing filler is covered with an inorganic layer, such as silica, or else comprises, at its surface, functional sites, in particular hydroxyl sites, requiring the use of a coupling agent in order to establish the bonding between the filler and the elastomer.
  • II-3. Organosiloxane Coupling Agent
  • It should first of all be remembered that, according to definitions well known to a person skilled in the art:
      • the term “organosilicon compound” must be understood as meaning an organic compound including at least one carbon-silicon bond;
      • the term “silyl group” must be understood as meaning a group bearing just one (it is then described as monosilyl) or several (it is then described as polysilyl) silicon atom(s);
      • the term “organosiloxane” must be understood as meaning any oligomeric or polymeric organic compound comprising at least one (i.e., one or more)≡Si—O—Si≡ group(s), and the mixtures of such compounds.
  • As explained above, an (inorganic filler/diene elastomer) coupling agent carries, in a known way, at least two functional groups, recorded here as “Y” and “X”, which allow it to be able to be grafted, on the one hand, to the reinforcing inorganic filler by means of the “Y” functional group and, on the other hand, to the diene elastomer by means of the “X” functional group.
  • A covering agent for the inorganic filler comprises the “Y” functional group alone, for example a hydroxyl group or a hydrolysable group, active with regard to the functional sites (for example hydroxyl —OH sites) of the inorganic filler, but is in any case devoid of the second “X” functional group, active with regard to the diene elastomer.
  • The coupling agent used in the rubber compositions in accordance with the invention is a polyfunctional (that is to say, at least bifunctional) organosiloxane comprising per molecule, grafted to its silicon atoms, on the one hand at least one hydroxyl or hydrolysable functional group (“Y” radical or functional group above) allowing it to be grafted to the reinforcing inorganic filler and, on the other hand, which is the essential characteristic of this organosiloxane for the targeted application, at least one group bearing at least one azodicarbonyl functional group —CO—N═N—CO— (“X” radical or functional group) allowing it to be grafted to the isoprene elastomer.
  • A person skilled in the art will easily understand that the expression “polyfunctional organosiloxane” above is thus understood to mean any siloxane compound bearing, as “Y” functional group, at least one siloxyl unit equipped with one, two or three OH group(s) or hydrolysable monovalent group(s) and, as “X” functional group, at least one siloxyl unit equipped with at least one azo double bond activated by the presence of a carbonyl group (>C═O) on each of the two nitrogen atoms, allowing the formation of a covalent bond with the isoprene elastomer.
  • In other words, the polyfunctional organosiloxane which can be used in the composition of the invention is an organosiloxane composed of identical or different siloxyl units of the following average formula (I):

  • G3 cG2 bG1 aSiO(4-a-b-c)/2  (I)
  • in which:
      • a, b and c are each whole or fractional numbers from 0 to 3;
      • the G1 radicals, which are identical or different if several are present, represent a monovalent hydrocarbon radical;
      • the G2 radicals, which are identical or different if several are present, represent a hydroxyl or hydrolysable group (“Y” functional group);
      • the G3 radicals, which are identical or different if several are present, represent a group (“X” functional group) bearing the azodicarbonyl functional group (—CO—N═N—CO—),
        with the proviso that:
      • 0<(a+b+c)≦3;
      • at least one G2 radical (i.e., b≧1) and at least one G3 radical (i.e., c≧1) are present in the siloxane molecule.
  • The simplified notation used in the formula (I) above is well known to a person skilled in the art in the field of organosiloxanes; it encompasses the various specific formulae possible for the siloxyl units, whatever in particular their degree of functionalization, their position on the siloxane molecule or chain (for example along the chain or at the chain end(s)) or the nature of the siloxane (for example, a linear, branched or cyclic polyorganosiloxane or a random, sequential or block copolymer).
  • It will in particular be understood that the G2 and G3 radicals can be carried by the same silicon atom or by two different silicon atoms.
  • According to a preferred embodiment, G3 has the specific formula (II):

  • A-CO—N═N—CO-Z-  (II)
  • in which:
      • Z is a divalent bonding group which makes it possible to connect the azodicarbonyl functional group to a silicon atom of the organosiloxane;
      • A represents a monovalent hydrocarbon radical or the group of formula Z′ in which Z′, which is identical to or different from Z, is a divalent bonding group which makes it possible to connect the azodicarbonyl functional group to a silicon atom (identical to or different from the Si atom connected to Z) of the organosiloxane;
      • A, Z and if applicable Z′, independently, may comprise one or more heteroatoms.
  • In other words, the organosiloxane is composed of identical or different siloxyl units of average formula (III):

  • (A-CO—N═N—CO-Z)CG2 bG1 aSiO(4-a-b-c)/2  (III)
  • in which A and Z have the definitions given above for the formula (II).
  • In this formula (III), it should be clearly understood that the G3 radical (A-CO—N═N—CO-Z) is connected to an Si atom via the -Z- divalent radical.
  • According to a particularly preferred embodiment, the organosiloxane carries a single G3 radical, that is to say that c=1.
  • In other words, the preferred organosiloxane above is composed of identical or different siloxyl units of equivalent average formula (IV) or (V):

  • G3G2 bG1 aSiO(3-a-b)/2  (IV)

  • G2 bG1 a(A-CO—N═N—CO-Z)SiO(3-a-b)/2  (V)
  • in which:
      • the G1, G2 and G3 radicals have the definitions given above;
      • a is a whole or fractional number from 0 to 2;
      • b is a whole or fractional number from 1 to 2;
      • with the proviso that (a+b)≦2.
  • This organosiloxane of formula (IV) or (V) may also be represented, in accordance with another symbolic representation well known to a person skilled in the art for organosiloxane compounds, according to the equivalent formula (VI) or (VII) respectively:

  • [(G0)3SiO1/2]m[(G0)2SiO2/2]n[G0SiO3/2]o[SiO4/2]p[G3(G2)b′(G1)a′SiO(3-a′-b′)/2]q  (VI)

  • [(G0)3SiO1/2]m[(G0SiO2/2]n[G0SiO3/2]o[SiO4/2]p[(G2)b′(G1)a′(A-CO—N═N—CO-Z)SiO(3-a′-b′)/2]q  (VII)
  • in which:
      • a′ represents an integer chosen from 0, 1 and 2;
      • b′ represents an integer chosen from 0, 1 and 2;
      • the sum a′+b′ lies within the range extending from 0 to 2, with the condition according to which, when b′=0, then at least one of the G0 symbols corresponds to the definition of G2;
        • either at least one of the symbols m, n, o or p is a whole or fractional number other than 0 (zero) and q represents a whole or fractional number equal to or greater than 1;
        • or q is greater than 1 and then each of the symbols m, n, o or p has any value;
      • the G0 symbols, which are identical or different, each represent one of the groups corresponding to G2 or G1;
      • A, Z, G1, G2 and G3 have the definitions given above for the general formula (I) or for the specific formulae (II) to (V).
  • The organosiloxane is preferably a siloxane oligomer comprising from 2 to 20, more preferably from 2 to 12 (for example from 2 to 6), silicon atoms (number corresponding to the sum m+n+o+p+q of the formula VII).
  • Such preferred siloxane oligomers are, for example, those in the formula (VII) of which:
      • a+b=1 or 2;
      • m lies within the range extending from 1 to 2;
      • n=p=o=0 (zero); and
      • q=1,
        it being possible for these siloxane oligomers optionally, depending on their specific conditions of synthesis, to be associated with one (or more) azo functionalized organosiloxane(s) (bearing a G3 radical) corresponding in fact to the formula (VII) above in which a+b=3; m=n=o=p=0 (zero); and q=1.
  • The divalent group Z is preferably chosen from saturated or unsaturated aliphatic hydrocarbon groups, saturated, unsaturated and/or aromatic, monocyclic or polycyclic, carbocyclic groups and groups exhibiting a saturated or unsaturated aliphatic hydrocarbon part and a carbocyclic part as defined above. This group Z preferably comprises from 1 to 18 carbon atoms; more preferably it represents an alkylene chain, a saturated cycloalkylene group, an arylene group or a divalent group composed of a combination of at least two of these groups.
  • The monovalent hydrocarbon group which may be represented by A may be linear or branched, aliphatic or carbocyclic, in particular aromatic; it can be saturated or unsaturated and substituted or unsubstituted.
  • In the present description, the term aliphatic hydrocarbon group is understood to mean an optionally substituted linear or branched group preferably comprising from 1 to 18 carbon atoms. Advantageously, the said aliphatic hydrocarbon group comprises from 1 to 12 carbon atoms, better still from 1 to 8 carbon atoms and more preferably still from 1 to 6 carbon atoms.
  • Mention may be made, as saturated aliphatic hydrocarbon group, of alkyl groups, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, 2-methylbutyl, 1-ethylpropyl, hexyl, isohexyl, neohexyl, 1-methylpentyl, 3-methylpentyl, 1,1-dimethylbutyl, 1,3-dimethylbutyl, 2-ethylbutyl, 1-methyl-1-ethylpropyl, heptyl, 1-methylhexyl, 1-propylbutyl, 4,4-dimethylpentyl, octyl, 1-methylheptyl, 2-ethylhexyl, 5,5-dimethylhexyl, nonyl, decyl, 1-methylnonyl, 3,7-dimethyloctyl, 7,7-dimethyloctyl and hexadecyl.
  • The unsaturated aliphatic hydrocarbon groups which may be used comprise one or more unsaturations, preferably one, two or three unsaturations of ethylenic (double bond) and/or acetylenic (triple bond) type. Examples thereof are the alkenyl or alkynyl groups deriving from the alkyl groups defined above by removal of two or more hydrogen atoms. Preferably, the unsaturated aliphatic hydrocarbon groups comprise a single unsaturation.
  • The term carbocyclic radical is understood to mean an optionally substituted, preferably C3-C50, monocyclic or polycyclic radical. Advantageously, it is a C3-C18 radical which is preferably mono-, bi- or tricyclic. When the carbocyclic radical comprises more than one cyclic nucleus (case of polycyclic carbocycles), the cyclic nuclei are fused in pairs. Two fused nuclei can be ortho-fused or peri-fused. The carbocyclic radical may comprise, unless otherwise indicated, a saturated part and/or an aromatic part and/or an unsaturated part.
  • Examples of saturated carbocyclic radicals are cycloalkyl groups. Preferably, the cycloalkyl groups are C3-C18, better still C5-C10, cycloalkyl groups. Mention may in particular be made of the cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, adamantyl or norbornyl radicals.
  • The unsaturated carbocycle or any unsaturated part of carbocyclic type exhibits one or more ethylenic unsaturations, preferably one, two or three. It advantageously comprises from 6 to 50 carbon atoms, better still from 6 to 20 carbon atoms, for example from 6 to 18 carbon atoms.
  • Examples of unsaturated carbocycles are C6-C10 cycloalkenyl groups. Examples of aromatic carbocyclic radicals are C6-C18 aryl groups and in particular phenyl, naphthyl, anthryl and phenanthryl.
  • A group exhibiting both an aliphatic hydrocarbon part as defined above and a carbocyclic part as defined above is, for example, an arylalkyl group, such as benzyl, or an alkylaryl group, such as tolyl.
  • The substituents of the aliphatic hydrocarbon groups or parts and of the carbocyclic groups or parts are, for example, alkoxyl groups in which the alkyl part is preferably as defined above.
  • Z′ can be identical to Z or different from the latter; it makes it possible to connect the azodicarbonyl functional group to an Si atom of the organosiloxane, it being possible for the latter to be identical to or different from the Si atom connected to Z. Z′ has the same definition and the same preferred characteristics as those described above for Z.
  • According to a particularly preferred embodiment, at least one of the A, Z and, if applicable, Z′ groups comprises a (at least one) heteroatom preferably chosen from O, S and N. This heteroatom is preferably connected directly to the adjacent carbonyl bond.
  • When such a heteroatom is carried by the monovalent hydrocarbon radical A, it is preferably carried in the form of a monovalent hydrocarbon residue chosen from —OR, —NR and —SR (R being any monovalent hydrocarbon radical preferably comprising from 1 to 18 carbon atoms), the free valency of which is more preferably directly connected to the adjacent carbonyl bond; the —OR residue is preferred, with R representing a C1-C6 alkyl, preferably a C1-C4 alkyl (methyl, ethyl, propyl, butyl), more preferably a C1 alkyl (methyl) or a C2 alkyl (ethyl).
  • When such a heteroatom is carried by Z and/or, if applicable, Z′ (i.e., by Z only, by Z′ only or by both), it is preferably carried in the form of a divalent hydrocarbon residue chosen from the —R′—NH—; —R′—O; and —R′—S— residues (R′ being any divalent hydrocarbon radical preferably comprising from 1 to 18 carbon atoms); the —R′—NH— residue is preferred, with R′ representing a C1-C6 alkylene, preferably a C1-C4 alkylene (methylene, ethylene, propylene, butylene), more preferably a C3 alkylene (propylene).
  • According to a particularly preferred embodiment, at least one, more preferably all, of the following characteristics is/are confirmed in the formulae (I) to (VII) above:
      • the G1 radicals, which are identical to or different from one another, are chosen from the group consisting of C1-C6 alkyl groups, the cyclohexyl group and the phenyl group;
      • the G2 radicals, which are identical to or different from one another, are chosen from the group consisting of the hydroxyl group, C1-C8 alkoxyl groups and C5-C8 cycloalkoxyl groups.
  • According to a more particularly preferred embodiment, at least one, more preferably all, of the following characteristics is/are confirmed in the formulae (I) to (VII) above:
      • the G1 radicals are chosen from C1-C4 alkyls, more particularly from methyl and ethyl;
      • the G2 radicals are chosen from hydroxyl and C1-C4 alkoxyls, more particularly from hydroxyl, methoxyl and ethoxyl.
  • G1 and G2 might also form, together and with the silicon atom which carries them, a monocyclic or polycyclic carbocyclic group having from 2 to 10 cyclic carbon atoms and being able to comprise one or more cyclic heteroatom(s) which is/are oxygen(s). Mention will be made, by way of example, of, for example, the rings:
  • Figure US20090209709A1-20090820-C00001
  • Azosilanes of formula (V) in the structure of which the A symbol comprises an oxygen atom as heteroatom and which correspond to the preferred characteristics set out above are in particular those composed of identical or different siloxyl units of average formula (VIII) which follows:

  • G2 bG1 a(R—O—CO—N═N—CO-Z)SiO(3-a-b)/2  (VIII)
  • in which:
      • a, b, Z, G1 and G2 have the definitions given above;
      • R represents a C1-C6, preferably C1-C4, alkyl (in particular methyl or ethyl).
  • Azosiloxanes of formula (V) in the structure of which A=Z′ and which correspond to the preferred characteristics set out above are in particular those composed of identical or different siloxyl units of average formula (IX):

  • G2 bG1 a(Z′-CO—N═N—CO-Z)SiO(3-a-b)/2  (IX)
  • in which:
      • a, b, Z, Z′, G1 and G2 have the definitions given above.
  • The following characteristics are preferably confirmed in the preceding formulae, in particular (VIII) and (IX):
      • G1 is the methyl or ethyl radical;
      • G2 is the hydroxyl, methoxyl or ethoxyl radical;
      • Z (and, if applicable, Z′) represents a divalent hydrocarbon radical comprising from 1 to 18 carbon atoms, preferably a C1-C10 alkylene.
  • The following characteristics are more preferably confirmed in these preceding formulae, in particular (VIII) and (IX):
      • G1 is the methyl radical;
      • G2 is the hydroxyl or ethoxyl radical;
      • Z (and, if applicable, Z′) is a C1-C10 alkylene comprising a heteroatom preferably chosen from O, S and N.
  • In these preceding formulae, more preferably still, Z (and, if applicable, Z′) is a divalent radical chosen from the group consisting of —(CH2)y—, —NH—(CH2)y— and —O—(CH2)y—, y being an integer from 1 to 6, in particular from 1 to 4, especially equal to 3.
  • The organosiloxane coupling agents described above can be prepared, for example, according to a synthetic process which consists in oxidizing the hydrazo group of a precursor reactant of formula (X):

  • (G2)b(G1)aSi-Z-CO—NH—NH—CO-A  (X)
  • using an oxidizing system comprising at least one oxidizing agent (for example a halogen, such as bromine) and at least one base (for example an inorganic base, such as Na2CO3), while involving an additional reactant chosen from mono- and polyalkoxysilanes (by way of example, trimethylethoxysilane) and while preferably operating in an organic liquid medium (for example while using a solvent, such as dichloromethane).
  • An advantageous procedure for bearing out this process consists in charging to the reactor, at ambient temperature (23° C.): the precursor reactant (X) above, the base (its amount depending on the oxidizing agent employed; for example, in the case of bromine, two molar equivalents of base are used with respect to the bromine), the organic solvent and the additional reactant (its amount corresponding, for example, to at least one molar equivalent with respect to the precursor), and in then gradually adding the oxidizing system to the reaction medium (the molar amount of oxidizing system being, for example, stoichiometric with respect to that of the precursor).
  • As regards the precursor reactant (X), it can be prepared by first of all reacting a precursor silane of formula (G2)b(G1)aSi—P1 with a precursor hydrazo derivative of formula P2—NH—NH—CO-A, in which formulae the G1, G2 and A symbols are as defined above, a+b=3 and P1 and P2 represent groups each having a structure and a functionality such that these groups are capable of reacting with one another to give rise to the central sequence -Z-CO— so as to result in the hydrazo compound of formula (X).
  • In the case, for example, of the preparation of this hydrazo compound of formula (X) in the structure of which the Z symbol then represents the divalent radical —NH—(CH2)y— (y being an integer from 1 to 6, preferably 1 to 4, more preferably equal to 3), the synthetic scheme applied is, for example, as follows:
      • a precursor silane of formula (G2)a(G1)3-aSi—(CH2)y—NCO is reacted;
      • with a precursor hydrazo derivative of formula H2N—NH—CO-A;
      • to produce the final hydrazo compound of formula (X).
  • As regards the practical manner of bearing out the process which has just been described in order to obtain the hydrazo compound (X), reference may be made, for example, to the patent document FR-A-2 340 323 (or U.S. Pat. No. 4,118,367).
  • Mention may be made, as example of an azosiloxane compound of generic formula (VII) in which:
      • a′=0 (zero);
      • b′=2;
      • q=1;
      • m=1;
      • n=p=o=0 (zero),
        of, for example, the compound of formula (XI) (Me=methyl, Et=ethyl):

  • [Me3SiO1/2][(EtO)2(A-CO—N═N—CO-Z)SiO1/2]  (XI)
  • in particular the compound of specific formula (XI-1) in the structure of which the A symbol represents the monovalent radical Et-O— and the Z symbol represents the divalent radical —NH—(CH2)3—:

  • [Me3SiO1/2][(EtO)2(Et-O—CO—N═N—CO—NH—(CH2)3)SiO1/2]  (XI-1)
  • It should be remembered that the representation of the formulae (XI) and (XI-1) above means, in a way well known to a person skilled in the art, that there thus exists a first Si atom bearing both the “X” (activated azo) functional group and two “Y” (ethoxy) functional groups, this Si atom sharing (on its 4th valency) an oxygen atom with a second Si atom bearing only three methyl groups.
  • Such a compound of formula (XI-1) can thus be represented in the following expanded form:
  • Figure US20090209709A1-20090820-C00002
  • Mention may be made, as another example of an azosiloxane compound of generic formula (VII) in which:
      • a′=1;
      • b′=1;
      • q=1;
      • m=2;
      • n=p=o=0 (zero),
        of, for example, the compound of formula (XII) (Me=methyl, Et=ethyl):

  • [Me3SiO1/2]2[(EtO)(A-CO—N═N—CO-Z)SiO2/2]  (XII)
  • in particular the compound of specific formula (XII-1) in the structure of which the A symbol represents the monovalent radical Et-O— and the Z symbol represents the divalent radical —NH—(CH2)3—:

  • [Me3SiO1/2]2[(EtO)(Et-O—CO—N═N—CO—NH—(CH2)3)SiO2/2]  (XII-1)
  • The above representation of the formulae (XII) and (XII-1) means, in a known way, that there exists a central Si atom bearing the “X” (activated azo) functional group and the “Y” (ethoxy) functional group on two of its valencies, sharing an oxygen atom with two adjacent Si atoms bearing only three methyl groups each.
  • Such a compound of formula (XII-1) can thus be represented in the following expanded form:
  • Figure US20090209709A1-20090820-C00003
  • In the rubber compositions in accordance with the invention, the overall content of coupling system is preferably between 2 and 15 phr, more preferably between 2 and 12 phr (for example between 4 and 8 phr). However, it is generally desirable to use as little as possible thereof. With respect to the weight of reinforcing nonblack inorganic filler, the level of coupling system typically represents between 0.5 and 15% by weight, with respect to the amount of inorganic filler; preferably, it is less than 12% by weight, more preferably less than 10% by weight, with respect to this amount of filler.
  • All or a portion of the coupling system according to the invention might be pregrafted (via the “X” functional groups) to the isoprene elastomer of the composition of the invention, the elastomer thus functionalized or “precoupled” then comprising the free “Y” functional groups for the reinforcing inorganic filler. All or a portion of this coupling system might also be pregrafted (via the “Y” functional groups) to the reinforcing inorganic filler, it being possible for the filler thus “precoupled” subsequently to be bonded to the diene elastomer via the free “X” functional groups. However, it is preferable, in particular for reasons of better use of the rubber compositions in the raw state, to use all or a portion of the coupling agent either grafted to the filler or in the free state (i.e., nongrafted).
  • II-4. Various Additives
  • The rubber compositions in accordance with the invention also comprise all or a portion of the usual additives generally used in elastomer compositions intended for the manufacture of tyres or tyre semi-finished products, such as, for example, plasticizing agents or extending oils, whether the latter are aromatic or nonaromatic in nature, pigments, protection agents, such as antiozone waxes, chemical antiozonants, antioxidants, which it is preferable to keep present in the body, antifatigue agents, reinforcing or plasticizing resins, bismaleimides, methylene acceptors (for example, phenolic novolak resin) or methylene donors (for example, HMT or H3M), such as described, for example, in the abovementioned Application WO 02/10269, a crosslinking system based either on sulphur or on sulphur donors and/or on peroxides and/or on bismaleimides, vulcanization accelerators and/or activators, or antireversion agents, such as, for example, sodium hexathiosulphonate or N,N′-m-phenylene biscitraconimide. A person skilled in the art will know how to adjust the formulation of the composition according to his specific requirements.
  • Preferably, these compositions comprise, as preferred nonaromatic or very slightly aromatic plasticizing agent, at least one compound chosen from the group consisting of naphthenic oils, paraffinic oils, MES oils, TDAE oils, glycerol esters (in particular trioleates), plasticizing hydrocarbon resins exhibiting a high Tg preferably of greater than 30° C., and the mixtures of such compounds. The overall level of such a preferred plasticizing agent is preferably between 15 and 45 phr, more preferably between 20 and 40 phr.
  • Inert fillers (i.e., nonreinforcing fillers), such as particles of clay, bentonite, talc, chalk, kaolin, which can be used, for example, in side walls or treads of coloured tyres, can also be added, depending on the targeted application, to the reinforcing filler described above, that is to say the nonblack reinforcing filler (in particular inorganic filler) plus carbon black, if applicable.
  • These compositions can also comprise, in addition to the coupling agents, coupling activators, covering agents (comprising, for example, just the “Y” functional group) of the nonblack reinforcing filter and more generally processing aids capable, in a known way, by virtue of an improvement in the dispersion of the nonblack filler in the rubber matrix and of a lowering in the viscosity of the compositions, of improving their processing property in the raw state, these agents being, for example, hydroxylated or hydrolysable silanes, such as hydroxysilanes, or alkylalkoxysilanes (in particular alkyltriethoxysilanes), polyols, polyethers (for example polyethylene glycols), primary, secondary or tertiary amines (for example trialkanolamines), hydroxylated or hydrolysable polyorganosiloxanes, for example α,ω-dihydroxypolyorganosiloxanes (in particular α,ω-dihydroxypolydimethylsiloxanes), and the mixtures of such compounds.
  • II-5. Preparation of the Rubber Compositions
  • The compositions are manufactured in appropriate mixers using two successive preparation phases well known to a person skilled in the art: a first phase of thermomechanical working or kneading (sometimes referred to as “nonproductive” phase) at high temperature, up to a maximum temperature (recorded as Tmax) of between 110° C. and 190° C., preferably between 130° C. and 180° C., followed by a second phase of mechanical working (sometimes referred to as “productive” phase) at a lower temperature, typically of less than 120° C., for example between 60° C. and 100° C., finishing phase during which the crosslinking or vulcanization system is incorporated.
  • The manufacturing process according to the invention is characterized in that at least the reinforcing inorganic filler and all or a portion of the coupling agent are incorporated by kneading with the diene elastomer, during the first “nonproductive” phase, that is to say that at least these various base constituents are introduced into the mixer and that kneading is carried out thermomechanically, in one or more stages, until a maximum temperature of between 1110° C. and 190° C., preferably between 130° C. and 180° C., is reached.
  • By way of example, the first (nonproductive) phase is carried out in a single thermomechanical stage during which, in a first step, all the necessary base constituents (diene elastomer, reinforcing inorganic filler and all or a portion of the coupling agent) are introduced into an appropriate mixer, such as a normal internal mixer, followed, in a second step, for example after kneading for one to two minutes, by the optional additional covering agents or processing aids and various other additives, with the exception of the vulcanization system. The total duration of the kneading, in this nonproductive phase, is preferably between 2 and 10 min. After cooling the mixture thus obtained, the second part of the coupling agent, if applicable, and then the vulcanization system are then incorporated at low temperature, generally in an external mixer such as an open mill; the entire mixture is then mixed (productive phase) for a few minutes, for example between 5 and 15 minutes.
  • According to various possible alternative embodiments, all of the organosiloxane coupling agent can be introduced during the nonproductive phase, at the same time as the inorganic filler, or otherwise in a form divided up (for example in a proportion of 75/25, 50/50 or 25/75 respective parts by weight) over the two phases, respectively nonproductive (i.e., in the internal mixer) and then productive (for example, in the external mixer).
  • It should be noted that it is possible to introduce all or a portion of the organosiloxane in a form supported (placing on the support being carried out beforehand) on a solid compatible with the chemical structures corresponding to this compound; such a support is in particular carbon black. For example, when dividing up between the two successive phases above, it may be advantageous to introduce the second portion of the organosiloxane, onto the external mixer, after placing on a support in order to faciliate the incorporation thereof and the dispersion thereof.
  • The final composition thus obtained is subsequently calendered, for example in the form of a sheet, or else extruded, for example to form a rubber profiled element used for the manufacture of semi-finished products, such as treads, crown reinforcement plies, side walls, carcass reinforcement plies, beads, protectors, air chambers or airtight internal rubbers for a tubeless tyre.
  • The vulcanization (or curing) is carried out in a known way at a temperature generally of between 130° C. and 200° C., preferably under pressure, for a sufficient time which can vary, for example, between 5 and 90 min, depending in particular on the curing temperature, the vulcanization system adopted and the vulcanization kinetics of the composition under consideration.
  • The vulcanization system proper is preferably based on sulphur and on a primary vulcanization accelerator, in particular an accelerator of the sulphenamide type. Various known vulcanization activators or secondary accelerators, such as zinc oxide, stearic acid, guanidine derivatives (in particular diphenylguanidine), optional antireversion agents, and the like, incorporated during the first nonproductive phase and/or during the productive phase, are additional to this crosslinking system. Sulphur is used at a preferable level of between 0.5 and 10 phr, more preferably of between 0.5 and 5.0 phr, for example between 0.5 and 3.0 phr, when the invention is applied to a tyre tread. The primary vulcanization accelerator is used at a preferable level of between 0.5 and 10 phr, more preferably of between 0.5 and 5.0 phr in particular when the invention applies to a tyre tread.
  • The invention relates to the rubber compositions described above both in the “raw” state (i.e., before curing) and in the “cured” or vulcanized state (i.e., after crosslinking or vulcanization). The compositions in accordance with the invention can be used alone or as a blend (i.e., as a mixture) with any other rubber composition which can be used for the manufacture of tyres.
  • III. EXAMPLES OF THE IMPLEMENTATION OF THE INVENTION III-1. Synthesis of the Azosiloxane Coupling Agent
  • This example illustrates the preparation of the organosiloxanes of formula (XI) and (XII) which are particularly well suited, in the structure of which the A symbol represents the monovalent radical Et-O— and the Z symbol represents a divalent radical —NH—(CH2)3—, the synthetic scheme applied being, for example, the following.
  • 10 g (28.4 mmol, 1 eq.) of the following compound 1 (Et=ethyl):
  • Figure US20090209709A1-20090820-C00004
  • are introduced into a 250 ml reactor, followed by 7.53 g (71 mmol, i.e. 2.5 eq.) of dry Na2CO3 and 50 ml of a 50/50 (vol/vol) mixture of trimethylethoxysilane and dichloromethane. A solution of 4.55 g of bromine (28.4 mmol, i.e. 1 eq.) in 15 ml of dichloromethane is added dropwise over 1 hour. The reaction mixture is stirred for an additional 30 min after the end of the addition of the bromine.
  • The reaction mixture is subsequently filtered and then concentrated under vacuum. 9.77 g of a bright orange fluid liquid are obtained. 1H NMR analysis shows that the compound 1 has been completely consumed, that the azo group has been selectively formed and that the SiOEt loss is limited.
  • The final product obtained is a mixture of the two siloxane entities of formulae (XI-1) and (XII-1):

  • [Me3SiO1/2][(EtO)2(Et-O—CO—N═N—CO—NH—(CH2)3)SiO1/2]  (XI-1)

  • [Me3SiO1/2]2[(EtO)(Et-O—CO—N═N—CO—NH—(CH2)3)SiO2/2]  (XII-1)
  • the expanded formulae of which have been given above, with the addition of a silane of formula C2H5—O—CO—N═N—CO—NH—(CH2)3—Si(OC2H5)3.
  • III-2. Preparation of the Rubber Compositions
  • The tests which follow are carried out in the following way: the natural rubber, the reinforcing filler, a portion (approximately ⅓) of the coupling agent and then, after kneading for one to two minutes, the various other ingredients, with the exception of the vulcanization system, are introduced into an internal mixer, 70% filled and having an initial vessel temperature of approximately 80° C. Thermomechanical working (nonproductive phase) is then carried out in one stage (total duration of the kneading equal to approximately 4 min) until a maximum “dropping” temperature of approximately 160° C. is reached. The mixture thus obtained is recovered and cooled and then the remainder of the coupling agent and then the vulcanization system (sulphur and sulphenamide accelerator) are added on an external mixer (homofinisher), the combined mixture being mixed (productive phase) for approximately 5-10 min.
  • The compositions thus obtained are subsequently calendered, either in the form of sheets (thickness of 2 to 3 mm) or of fine sheets of rubber, for the measurement of their physical or mechanical properties, or in the form of profiled elements which can be used directly, after cutting and/or assembling to the desired dimensions, for example as tyre semi-finished products, in particular as tyre treads.
  • III-3. Characterization of the Rubber Compositions
  • The aim of this test is to demonstrate the improved coupling performance contributed by the siloxane coupling agent synthesized above (paragraph III-1), compared with a conventional coupling agent of the alkoxysilane type (TESPT).
  • For this, two compositions based on natural rubber which are reinforced with an HDS silica are prepared, these two compositions differing only in the nature of the coupling agents used:
      • composition C-1: conventional silane coupling agent;
      • composition C-2: azosiloxane coupling agent.
  • The same number of moles of “Y” functional groups, that is to say silyl groups bearing at least one functional group —OEt reactive with respect to the silica and its surface hydroxyl groups, were used for these two compositions.
  • The conventional coupling agent of the control composition C-1 is TESPT. It should be remembered that TESPT is bis(3-triethoxysilylpropyl)tetrasulphide, sold in particular by Degussa under the name “Si69”, of formula (Et=ethyl):

  • (EtO)3Si—(CH2)3—S4—(CH2)3—Si—(OEt)3
  • or, in expanded form:
  • Figure US20090209709A1-20090820-C00005
  • Tables 1 and 2 give the formulations of the various compositions (Table 1—levels of the various products, expressed in phr—parts by weight per one hundred parts of elastomer) and also their rheometric properties and properties after curing (at 150° C. for approximately 20 min); the vulcanization system is composed of sulphur and sulphenamide.
  • The examination of the various results in Table 2 shows first of all, for the composition in accordance with the invention C-2 compared with the control composition C-1, markedly faster vulcanization kinetics, illustrated by a conversion rate constant K which is markedly greater (multiplied by approximately 1.8) and by a markedly reduced curing time (T99-Ti) (divided by 1.8).
  • After curing, the composition in accordance with the invention exhibits substantially equivalent properties at break, but the highest values for modulus under strong strain (M100 and M300) and for M300/M100 ratio, a clear indicator to a person skilled in the art of better reinforcing contributed by the inorganic filler and the siloxane coupling agent.
  • Finally and above all, the composition of the invention reveals a markedly improved hysteresis, as is shown by substantially reduced values for tan(δ)max and ΔG*, which is the recognized indicator of a reduction in the rolling resistance of tyres and consequently in the energy consumption of the motor vehicles equipped with such tyres.
  • The invention has particularly advantageous applications in rubber compositions intended for the manufacture of tyre treads based on isoprene elastomer, in particular when these treads are intended for tyres for commercial vehicles of the heavy-duty type.
  • TABLE 1
    Composition No.: C-1 C-2
    NR (1) 100 100
    silica (2) 50 50
    carbon black (3) 4 4
    coupling agent (4) 4
    coupling agent (5) 5.5
    ZnO 3 3
    antioxidant (6) 1.9 1.9
    stearic acid 2.5 2.5
    sulphur 1.5 1.5
    accelerator (7) 1.8 1.8
    (1) peptized natural rubber NR;
    (2) “Zeosil 1165 MP” silica from Rhodia in the form of microbeads (BET and CTAB: approximately 150-160 m2/g);
    (3) carbon black N330 (Degussa);
    (4) TESPT (“Si69”, Degussa);
    (5) azosilane (synthesis of section III-1);
    (6) N-1,3-dimethylbutyl-N-phenyl-para-phenylenediamine (“Santoflex 6-PPD” from Flexsys);
    (7) N-cyclohexyl-2-benzothiazolesulphenamide (“Santocure CBS” from Flexsys).
  • TABLE 2
    Composition No.: C-1 C-2
    Properties before curing:
    Ti (min) 7.9 10.6
    T99 − Ti (min) 17.6 9.9
    K (min−1) 0.261 0.467
    Properties after curing:
    M10 (MPa) 5.11 5.41
    M100 (MPa) 1.84 2.49
    M300 (MPa) 1.81 3.73
    M300/M100 0.99 1.50
    tan(δ)max 0.147 0.105
    ΔG* 1.97 1.29
    breaking stress (MPa) 20 19
    elongation at break (%) 720 530

Claims (19)

1. A tire comprising a rubber composition based on at least one isoprene elastomer, an inorganic filler as reinforcing filler and a polyfunctional organosiloxane coupling agent which provides the bonding between the said reinforcing inorganic filler and the isoprene elastomer, wherein the said organosiloxane comprises per molecule, grafted to its silicon atoms, on the one hand at least one hydroxyl or hydrolysable functional group allowing it to be grafted to the reinforcing inorganic filler and, on the other hand, at least one group bearing at least one azodicarbonyl functional group —CO—N═N—CO— allowing it to be grafted to the isoprene elastomer.
2. The tire according to claim 1, the organosiloxane being composed of identical or different siloxyl units of average formula:

G3 cG2 bG1 aSiO(4-a-b-c)/2  (I)
in which:
a, b and c are each whole or fractional numbers from 0 to 3;
the G1 radicals, which are identical or different if several are present, represent a monovalent hydrocarbon radical;
the G2 radicals, which are identical or different if several are present, represent a hydroxyl or hydrolysable group;
the G3 radicals, which are identical or different if several are present, represent a group bearing the azodicarbonyl functional group (—CO—N═N—CO—),
with the proviso that:
0<(a+b+c)≦3;
at least one G2 radical (i.e., b≧1) and at least one G3 radical (i.e., c≧1) are present in the siloxane molecule.
3. The tire according to claim 2, the organosiloxane being composed of identical or different siloxyl units of average formula (III):

(A-CO—N═N—CO-Z)CG2 bG1 aSiO(4-a-b-c)/2
in which:
Z is a divalent bonding group connecting the azodicarbonyl functional group to a silicon atom of the organosiloxane;
A represents a monovalent hydrocarbon radical or the group of formula Z′ in which Z′, which is identical to or different from Z, is a divalent bonding group which makes it possible to connect the azodicarbonyl functional group to a silicon atom (identical to or different from the Si atom connected to Z) of the organosiloxane;
A, Z and if applicable Z′, independently, may comprise one or more heteroatoms.
4. The tire according to claim 3, the organosiloxane being composed of identical or different siloxyl units of average formula (V):

G2 bG1 a(A-CO—N═N—CO-Z)SiO(3-a-b)/2
in which:
a is a whole or fractional number from 0 to 2;
b is a whole or fractional number from 1 to 2;
(a+b)≦2.
5. The tire according to claim 4, the organosiloxane corresponding to the formula (VII):

[(G0)3SiO1/2]m[(G0)2SiO2/2]n[G0SiO3/2]o[SiO4/2]p[(G2)b′(G1)a′(A-CO—N═N—CO-Z)SiO(3-a′-b′)/2]q
in which:
a′represents an integer chosen from 0, 1 and 2;
b′represents an integer chosen from 0, 1 and 2;
the sum a′+b′lies within the range extending from 0 to 2, with the condition according to which, when b′=0, then at least one of the G0 symbols corresponds to the definition of G2; and
either at least one of the symbols m, n, o or p is a whole or fractional number other than 0 (zero) and q represents a whole or fractional number equal to or greater than 1;
or q is greater than 1 and then each of the symbols m, n, o or p has any value;
the G0 symbols, which are identical or different, each represent one of the groups corresponding to G2 or G1.
6. The tire according to claim 5, in which the sum a′+b′ is equal to 1 or 2; m lies within the range from 1 to 2; n=o=p=0 (zero) and q=1.
7. The tire according to claim 6, the organosiloxane corresponding to at least one of the formulae (XI) and (XII) (Et=ethyl):

[Me3SiO1/2][(EtO)2(A-CO—N═N—CO-Z)SiO1/2]  (XI)

[Me3SiO1/2]2[(EtO)(A-CO—N═N—CO-Z)SiO2/2]  (XII).
8. The tire according to claim 7, the organosiloxane being a siloxane oligomer comprising from 2 to 12, silicon atoms.
9. The tire according to claim 7, the A symbol representing the monovalent radical Et-O— and the Z symbol representing the divalent radical —NH—(CH2)3—.
10. The tire according to claim 1, in which:
the G1 radicals, which are identical to or different from one another, are chosen from the group consisting of C1-C6 alkyl groups, the cyclohexyl group and the phenyl group;
the G2 radicals, which are identical to or different from one another, are chosen from the group consisting of the hydroxyl group, C1-C8 alkoxyl groups and C5-C8 cycloalkoxyl groups.
11. The tire according to claim 10, in which:
the radicals G1 are chosen from methyl and ethyl;
the radicals G2 are chosen from hydroxyl, methoxyl and ethoxyl.
12. The tire according to claim 1, the organosiloxane being composed of identical or different siloxyl units of average formula (VIII):

G2 bG1 a(R—O—CO—N═N—CO-Z)SiO(3-a-b)/2
in which:
a, b, Z, G1 and G2 have the definitions given above;
R represents a C1-C4 alkyl.
13. The tire according to claim 1, the organosiloxane being composed of identical or different siloxyl units of average formula (IX):

G2 bG1 a(Z′-CO—N═N—CO-Z)SiO(3-a-b)/2.
14. The tire according to claim 3, Z and, if applicable, Z′ representing a divalent hydrocarbon radical comprising from 1 to 18 carbon atoms.
15. The tire according to claim 2, in which:
G1 is the methyl or ethyl radical;
G2 is the hydroxyl, methoxyl or ethoxyl radical;
Z (and, if applicable, Z′) represents a divalent hydrocarbon radical comprising from 1 to 18 carbon atoms.
16. The tire according to claim 15, in which:
G1 is the methyl radical;
G2 is the hydroxyl or ethoxyl radical;
Z (and, if applicable, Z′) is a C1-C10 alkylene comprising a heteroatom chosen from O, S and N.
17. The tire according to claim 16, in which Z (and, if applicable, Z′) is a divalent radical chosen from the group consisting of —(CH2)y—, —NH—(CH2)y— and —O—(CH2)y—, y being an integer from 1 to 6.
18. The tire according to claim 1, wherein the rubber composition is present in the tread of the tire.
19-21. (canceled)
US11/920,626 2005-05-26 2006-05-11 Rubber composition for tire comprising an organosiloxane coupling agent Abandoned US20090209709A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0505518 2005-05-26
FR0505518A FR2886306B1 (en) 2005-05-26 2005-05-26 PNEUMATIC RUBBER COMPOSITION COMPRISING AN ORGANOSILOXANE COUPLING AGENT
PCT/EP2006/004435 WO2006125532A1 (en) 2005-05-26 2006-05-11 Rubber composition for tyre comprising an organosiloxane coupling agent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/004435 A-371-Of-International WO2006125532A1 (en) 2005-05-26 2006-05-11 Rubber composition for tyre comprising an organosiloxane coupling agent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/038,887 Continuation US8492475B2 (en) 2005-05-26 2011-03-02 Rubber composition for tire comprising an organosiloxane coupling agent

Publications (1)

Publication Number Publication Date
US20090209709A1 true US20090209709A1 (en) 2009-08-20

Family

ID=35533832

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/920,626 Abandoned US20090209709A1 (en) 2005-05-26 2006-05-11 Rubber composition for tire comprising an organosiloxane coupling agent
US13/038,887 Expired - Fee Related US8492475B2 (en) 2005-05-26 2011-03-02 Rubber composition for tire comprising an organosiloxane coupling agent

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/038,887 Expired - Fee Related US8492475B2 (en) 2005-05-26 2011-03-02 Rubber composition for tire comprising an organosiloxane coupling agent

Country Status (8)

Country Link
US (2) US20090209709A1 (en)
EP (1) EP1893682B1 (en)
JP (1) JP5172662B2 (en)
CN (1) CN101233181B (en)
AT (1) ATE412031T1 (en)
DE (1) DE602006003341D1 (en)
FR (1) FR2886306B1 (en)
WO (1) WO2006125532A1 (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100204358A1 (en) * 2007-05-15 2010-08-12 Societe De Technologie Michelin Plasticizing system and rubber tyre composition including said system
US8686086B2 (en) 2010-06-02 2014-04-01 Compagnie Generale Des Etablissements Michelin Method for obtaining a rubber composition including a thermoplastic filler
US8759438B2 (en) 2009-06-29 2014-06-24 Compagnie Generale Des Etablissements Michelin Tire, the tread of which comprises a saturated thermoplastic elastomer
US8978721B2 (en) 2009-10-27 2015-03-17 Compagnie Generale Des Etablissements Michelin Tyre, the inner wall of which is provided with a heat-expandable rubber layer
US9040618B2 (en) 2011-04-14 2015-05-26 Compagnie Generale Des Etablissements Michelin Rubber composition including a 1,2,4-triazine derivative
US9080041B2 (en) 2010-01-14 2015-07-14 Compagnie Generale Des Etablissements Michelin Rubber composition including a polar thermoplastic elastomer including an alkylacrylate unit
US9109109B2 (en) 2010-11-23 2015-08-18 Compagnie Generale Des Establissements Michelin Functional diene block elastomer with a low PI and improved cold flow, and rubber composition containing same
US9260588B2 (en) 2011-12-21 2016-02-16 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially devoid of guanidine derivative and comprising an amino ether alcohol
US9267014B2 (en) 2011-12-21 2016-02-23 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially free of guanidine derivative and comprising an alkali metal hydroxide or alkaline-earth metal hydroxide
US9340626B2 (en) 2010-03-18 2016-05-17 Compagnie Generale Des Etablissements Michelin Tire and rubber composition containing a grafted polymer
US9399829B2 (en) 2011-05-18 2016-07-26 Compagnie Generale Des Etablissements Michelin Rubber composite cord for a tread of a pneumatic tire
US9487892B2 (en) 2011-05-18 2016-11-08 Compagnie Generale Des Etablissements Michelin Tire having a composite cord in the tread
US9505897B2 (en) 2011-06-01 2016-11-29 Compagnie Generale Des Etablissements Michelin Tyre, the tread of which comprises a heat-expandable rubber composition reducing noise during travel
US9522571B2 (en) 2011-12-21 2016-12-20 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially free of guanidine derivative and comprising a hydroxyalkylpiperazine
US9550890B2 (en) 2010-06-23 2017-01-24 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a thermoplastic filler and compatibilizer
US9550891B2 (en) 2011-04-14 2017-01-24 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a thiazoline derivative
US9611380B2 (en) 2010-12-17 2017-04-04 Michelin Recherche Et Technique S.A. Elastomeric composition exhibiting good dispersion of the filler in the elastomeric matrix
US9624359B2 (en) 2010-11-23 2017-04-18 Compagnie Generale Des Etablissements Michelin Functional diene elastomer with a low pi and improved cold flow, and rubber composition containing same
US9670332B2 (en) 2010-12-17 2017-06-06 Compagnie Generale Des Etablissements Michelin Elastomeric composition exhibiting very good dispersion of the filler in the elastomeric matrix
US9688852B2 (en) 2011-04-14 2017-06-27 Compagnie Generale Des Etablissements Michelin Rubber composition including a thiazole derivative
DE102016201195A1 (en) 2016-01-27 2017-07-27 Continental Reifen Deutschland Gmbh Rubber compound and vehicle tires
US9751992B2 (en) 2011-12-12 2017-09-05 Compagnie Generale Des Etablissements Michelin Elastomeric composition having a very good dispersion of the filler in the elastomeric matrix
US9962996B2 (en) 2011-12-16 2018-05-08 Compagnie Generale Des Etablissements Michelin Tread comprising tread pattern elements covered with an impregnated fibre assembly
US10030116B2 (en) 2013-10-25 2018-07-24 Compagnie General Des Etablissements Michelin Rubber composition comprising a diene elastomer bearing imidazole functional groups randomly distributed along the chain
US10059833B2 (en) 2011-10-28 2018-08-28 Compagnie Generale Des Etablissements Michelin Elastomer composition having a very good dispersion of the charge in the elastomer matrix
US10081723B2 (en) 2013-12-20 2018-09-25 Compagnie Generale Des Etablissements Michelin Tire tread comprising a thermoplastic elastomer
US10137734B2 (en) 2013-10-25 2018-11-27 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a 1,3-dipolar compound additive bearing an imidazole functional group
US10160847B2 (en) 2010-11-26 2018-12-25 Compagnie Generale Des Etablissments Michelin Tyre tread
US10202471B2 (en) 2013-10-25 2019-02-12 Compagnie Generale Des Etablissments Michelin 1,3-dipolar compound bearing an imidazole functional group
US10227475B2 (en) 2011-12-21 2019-03-12 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially free of guanidine derivative and comprising a primary amine
US10421858B2 (en) 2014-06-18 2019-09-24 Compagnie Generale Des Etablissements Michelin Rubber composition comprising an epoxide elastomer cross-linked by a polycarboxylic acid
CN110713632A (en) * 2019-11-26 2020-01-21 三角轮胎股份有限公司 All-steel radial tire tread rubber composition
US10654992B2 (en) 2014-08-29 2020-05-19 Compagnie Generale Des Establissements Michelin Rubber composition comprising silicone oil
US10654317B2 (en) 2014-11-25 2020-05-19 Compagnie Generale Des Etablissements Michelin Tire including an outer sidewall that comprises an incompatible polymer
US10689507B2 (en) 2015-06-18 2020-06-23 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a styrene-butadiene copolymer having a low glass transition temperature, and a high content of filler and of plasticizer
US10723814B2 (en) 2015-12-22 2020-07-28 Compagnie Generale Des Etablissements Michelin Tire comprising a rubber composition including a substituted diene elastomer
US10773552B2 (en) 2015-12-22 2020-09-15 Compagnie Generale Des Etablissements Michelin Tire tread comprising at least one metal chelate and/or a pigment
US10808105B2 (en) 2015-07-31 2020-10-20 Compagnie Generale Des Etablissements Michelin Rubber composition including a hydrocarbon resin with a low glass transition temperature
US10836886B2 (en) 2015-07-02 2020-11-17 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a very high specific surface area silica and a low glass transition temperature hydrocarbon resin
US11111360B2 (en) 2017-05-05 2021-09-07 Compagnie Generale Des Etablissements Michelin Rubber composition comprising at least one silica as inorganic reinforcing filler
US11161962B2 (en) 2016-10-31 2021-11-02 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a specific reinforcing filler
US11203680B2 (en) 2016-12-22 2021-12-21 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a specific hydrocarbon resin
US11220591B2 (en) 2016-12-22 2022-01-11 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a specific hydrocarbon resin
US11241912B2 (en) 2017-03-21 2022-02-08 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
US11254804B2 (en) 2017-03-08 2022-02-22 Compagnie Generale Des Etablissements Michelin Tire having a composition comprising an ethylene-rich elastomer, a peroxide and a zinc acrylate
US11254164B2 (en) 2016-10-31 2022-02-22 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
US11286369B2 (en) 2017-03-08 2022-03-29 Compagnie Generale Des Etablissements Michelin Tire having a composition comprising an ethylene-rich elastomer, a peroxide and a polyfunctional acrylate derivative
US11352459B2 (en) 2016-12-02 2022-06-07 Compagnie Generale Des Etablissements Michelin Tire provided with an outer sidewall comprising a thermoplastic elastomer comprising at least one saturated elastomer block
US11359077B2 (en) 2016-12-02 2022-06-14 Compagnie Generale Des Etablissements Michelin Tire provided with an outer sidewall comprising one or more thermoplastic elastomers and one or more synthetic diene elastomers
US11365308B2 (en) 2015-10-16 2022-06-21 Compagnie Generale Des Etablissements Michelin Rubber composition including a specific hydrocarbon resin
US11390117B2 (en) 2017-01-31 2022-07-19 Compagnie Generale Des Etablissements Michelin Tire comprising a rubber composition
US11492465B2 (en) 2017-04-14 2022-11-08 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a specific hydrocarbon resin
US11492458B2 (en) 2017-12-21 2022-11-08 Compagnie Generale Des Etablissements Michelin Sulfur-free crosslinked composition comprising a phenolic compound
US11499036B2 (en) 2016-06-30 2022-11-15 Compagnie Generale Des Etablissements Michelin Rubber composition comprising an epoxide resin and a specific amine hardener
US11554609B2 (en) 2016-11-18 2023-01-17 Compagnie Generale Des Etablissements Michelin Tire with an outer sidewall composed of at least a diene elastomer and wax mixture
US11572458B2 (en) 2017-12-21 2023-02-07 Compagnie Generale Des Etablissements Michelin Diacid-crosslinked rubber composition comprising a phenolic compound
US11674019B2 (en) 2017-11-17 2023-06-13 Compagnie Generale Des Etablissements Michelin Tire provided with an outer sidewall comprising a liquid plasticizer having a low glass transition temperature
US11685821B2 (en) 2018-06-15 2023-06-27 Compagnie Generale Des Etablissements Michelin Rubber composition for a tire tread
US11724545B2 (en) 2017-05-31 2023-08-15 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
US11724542B2 (en) 2017-09-28 2023-08-15 Compagnie Generale Des Etablissements Michelin Tire comprising a rubber composition
US11767417B2 (en) 2018-03-30 2023-09-26 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
US11865866B2 (en) 2018-12-04 2024-01-09 Compagnie Generale Des Etablissements Michelin Tread for an aircraft tire
US11999854B2 (en) 2019-04-25 2024-06-04 Compagnie Generale Des Etablissements Michelin Rubber composition
US12017481B2 (en) 2017-06-30 2024-06-25 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
US12060489B2 (en) 2017-10-30 2024-08-13 Compagnie Generale Des Etablissements Michelin Tire provided with an inner layer made from at least an isoprene elastomer, a reinforcing resin and a metal salt
US12071545B2 (en) 2017-11-30 2024-08-27 Compagnie Generale Des Etablissements Michelin High-modulus rubber composition comprising a vulcanization ultra-accelerator

Families Citing this family (281)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916202B1 (en) 2007-05-15 2009-07-17 Michelin Soc Tech RUBBER COMPOSITION FOR PNEUMATIC COMPRISING A DIESTER PLASTICIZER
FR2918064B1 (en) 2007-06-28 2010-11-05 Michelin Soc Tech PROCESS FOR THE PREPARATION OF POLYETHER BLOCK DIENE COPOLYMER, REINFORCED RUBBER COMPOSITION AND PNEUMATIC WRAPPING.
FR2918065B1 (en) 2007-06-28 2011-04-15 Michelin Soc Tech PROCESS FOR THE PREPARATION OF POLYETHER BLOCK DIENE COPOLYMER, REINFORCED RUBBER COMPOSITION AND PNEUMATIC WRAPPING.
ATE513760T1 (en) * 2007-10-19 2011-07-15 Sika Technology Ag CLOSURE
FR2930554B1 (en) 2008-04-29 2012-08-17 Michelin Soc Tech ELASTOMERIC MIXTURE COMPRISING MAJORITARILY AN AMINO-ALCOXYSILANE GROUP-COUPLED DIENE ELASTOMER, RUBBER COMPOSITION COMPRISING SAME AND METHODS OF OBTAINING SAME
GB0812185D0 (en) 2008-07-03 2008-08-13 Dow Corning Polymers modified by silanes
GB0812186D0 (en) 2008-07-03 2008-08-13 Dow Corning Modified polyolefins
GB0812187D0 (en) * 2008-07-03 2008-08-13 Dow Corning Modified polyethylene
FR2933417B1 (en) 2008-07-04 2011-12-30 Michelin Soc Tech TIRE TREAD TIRE
FR2940303B1 (en) 2008-12-19 2011-02-25 Michelin Soc Tech RUBBER COMPOSITION
FR2940298B1 (en) 2008-12-23 2012-07-13 Michelin Soc Tech COMPOSITION BASED ON NATURAL RUBBER AND INORGANIC REINFORCING LOAD COMPRISING DIHYDRAZIDE.
US8936056B2 (en) * 2008-12-29 2015-01-20 Compagnie Generale Des Etablissements Michelin Heavy vehicle treads/undertread
FR2943065B1 (en) 2009-03-16 2011-04-22 Michelin Soc Tech RUBBER COMPOSITION
FR2943680B1 (en) 2009-03-31 2012-12-28 Michelin Soc Tech RUBBER AND PNEUMATIC COMPOSITION USING THE SAME.
KR20120100704A (en) 2009-04-30 2012-09-12 다우 코닝 코포레이션 Elastomer compositions modified by silanes
FR2947274B1 (en) 2009-06-24 2013-02-08 Michelin Soc Tech PNEUMATIC RUBBER COMPOSITION COMPRISING AN ACETYLACETONATE COMPOUND
FR2947829B1 (en) 2009-07-10 2012-02-24 Michelin Soc Tech COMPOSITION BASED ON NATURAL RUBBER AND A POLYAMINO COMPOUND
FR2947827B1 (en) 2009-07-10 2012-01-06 Michelin Soc Tech COMPOSITION BASED ON NATURAL RUBBER AND A POLY-IMINE COMPOUND
FR2947828B1 (en) 2009-07-10 2012-01-06 Michelin Soc Tech COMPOSITION BASED ON NATURAL RUBBER AND A POLY-IMINE COMPOUND
FR2950064B1 (en) 2009-09-14 2011-10-14 Michelin Soc Tech RUBBER COMPOSITION COMPRISING A PHENOLIC RESIN
FR2951180B1 (en) 2009-10-08 2011-10-28 Michelin Soc Tech RUBBER COMPOSITION COMPRISING A THIAZOLE
FR2951184B1 (en) 2009-10-08 2011-10-28 Michelin Soc Tech RUBBER COMPOSITION COMPRISING THIAZOLINE
FR2951183B1 (en) 2009-10-08 2012-04-27 Michelin Soc Tech RUBBER COMPOSITION COMPRISING 1,2,4-TRIAZINE
FR2951181B1 (en) 2009-10-08 2011-10-28 Michelin Soc Tech RUBBER COMPOSITION COMPRISING A THIADIAZOLE
FR2951178B1 (en) 2009-10-08 2012-08-17 Michelin Soc Tech FUNCTIONALIZED DIENIC ELASTOMER AND RUBBER COMPOSITION CONTAINING SAME.
FR2951186B1 (en) 2009-10-12 2012-01-06 Michelin Soc Tech RUBBER COMPOSITION BASED ON GLYCEROL AND A FUNCTIONALIZED ELASTOMER AND TIRE TREAD FOR PNEUMATIC
FR2951185B1 (en) 2009-10-14 2012-02-03 Michelin Soc Tech RUBBER COMPOSITION BASED ON EPOXY SYNTHETIC RUBBER, PNEUMATIC ROLLING BAND CONTAINING SAME
FR2951182B1 (en) 2009-10-14 2012-09-21 Michelin Soc Tech RUBBER COMPOSITION COMPRISING AN EPOXY RESIN
FR2952644B1 (en) 2009-11-17 2011-12-30 Michelin Soc Tech TIRE HAVING TREAD BAND HAVING A THERMOPLASTIC ELASTOMER
FR2956118B1 (en) 2009-12-18 2013-03-08 Michelin Soc Tech RUBBER COMPOSITION FOR WINTER TIRE TREAD.
FR2955584B1 (en) 2009-12-18 2014-08-22 Michelin Soc Tech RUBBER COMPOSITION FOR WINTER TIRE TREAD.
FR2954332B1 (en) 2009-12-22 2012-01-13 Michelin Soc Tech PARTICULARLY PNEUMATIC ARTICLE WITH EXTERNAL RUBBER MIXTURE COMPRISING A SALT OF LANTHANIDE
FR2954333B1 (en) 2009-12-23 2012-03-02 Michelin Soc Tech PNEUMATIC HAVING THE TOP ZONE PROVIDED WITH A SUB-LAYER COMPRISING A THERMOPLASTIC ELASTOMER
FR2956119B1 (en) 2009-12-23 2012-12-28 Michelin Soc Tech PNEUMATIC HAVING THE TOP ZONE PROVIDED WITH A SUB-LAYER COMPRISING A THERMOPLASTIC ELASTOMER
GB201000121D0 (en) 2010-01-06 2010-02-17 Dow Corning Modified polyolefins
GB201000120D0 (en) 2010-01-06 2010-02-17 Dow Corning Process for forming crosslinked and branched polymers
GB201000117D0 (en) 2010-01-06 2010-02-17 Dow Corning Organopolysiloxanes containing an unsaturated group
FR2955328B1 (en) 2010-01-18 2013-03-08 Michelin Soc Tech RUBBER COMPOSITION FOR WINTER PNEUMATIC BEARING BAND
FR2957082B1 (en) 2010-03-05 2012-03-02 Michelin Soc Tech PNEUMATIC TIRE HAVING A THERMOPLASTIC ELASTOMER.
FR2957602B1 (en) 2010-03-19 2012-04-13 Michelin Soc Tech RUBBER COMPOSITION FOR WINTER PNEUMATIC BEARING BAND
FR2958295B1 (en) 2010-03-31 2012-05-04 Michelin Soc Tech PNEUMATIC TIRE COMPRISING A RUBBER COMPOSITION COMPRISING A POLY (VINYL ESTER) RESIN.
FR2959744B1 (en) 2010-05-04 2012-08-03 Michelin Soc Tech RUBBER COMPOSITION, USEFUL FOR THE MANUFACTURE OF A PNEUMATIC HAVING A STARCH AND AQUEOUS OR WATER SOLUBLE PLASTICIZER COMPOSITION
FR2959745B1 (en) 2010-05-10 2012-06-01 Michelin Soc Tech PNEUMATIC TIRE TREAD COMPRISING THERMOPLASTIC VULCANISAT ELASTOMER (TPV).
FR2960567B1 (en) 2010-05-27 2012-06-22 Michelin Soc Tech PNEUMATIC COMPOSITE WIRE REINFORCEMENT, COATED WITH AN ENHANCED BARRIER RUBBER WITH IMPROVED WATER
FR2961819B1 (en) 2010-05-27 2013-04-26 Soc Tech Michelin PNEUMATIC BANDAGE WITH BELT PROVIDED WITH A COATING GUM REDUCING ROLLING NOISE
FR2960544B1 (en) 2010-05-27 2012-08-17 Michelin Soc Tech PNEUMATIC BANDAGE WHERE THE TOP ZONE HAS AN INTERNAL LAYER REDUCING THE ROLL NOISE
FR2960543B1 (en) 2010-05-27 2012-06-22 Michelin Soc Tech PNEUMATIC BANDAGE WHERE THE TOP ZONE HAS AN INTERNAL LAYER REDUCING THE ROLL NOISE
FR2961516B1 (en) 2010-06-17 2015-06-26 Michelin Soc Tech PNEUMATIC BANDAGE WITH BELT PROVIDED WITH A COATING GUM REDUCING ROLLING NOISE
FR2962368B1 (en) 2010-07-09 2012-08-31 Michelin Soc Tech PNEUMATIC OBJECT COMPRISING A GAS-SEALED LAYER BASED ON A MIXTURE OF A BUTYL RUBBER AND A THERMOPLASTIC ELASTOMER
FR2962730B1 (en) * 2010-07-13 2012-09-21 Arkema France CARRIER MOLECULES OF ASSOCIATIVE GROUPS
FR2963014B1 (en) 2010-07-21 2012-08-31 Michelin Soc Tech RUBBER COMPOSITION COMPRISING GLASS SCALES ESPECIALLY FOR THE MANUFACTURE OF PNEUMATIC TIRES
FR2966157B1 (en) 2010-10-18 2012-12-14 Michelin Soc Tech RUBBER COMPOSITION FOR PNEUMATIC ROLLER BAND
CN103534101A (en) 2010-11-03 2014-01-22 道康宁公司 Epoxidised elastomer compositions modified by silanes
FR2967682B1 (en) 2010-11-23 2012-12-21 Michelin Soc Tech COMPOSITION CONTAINING A PARTICULAR DIENE ELASTOMER AND A SPECIFICALLY SPECIFIC SURFACE CARBON BLACK
FR2967680B1 (en) 2010-11-23 2012-11-30 Soc Tech Michelin BLOCKED DIENIC ELASTOMER FOR RUBBER COMPOSITIONS FOR PNEUMATIC TIRES
FR2968005B1 (en) 2010-11-26 2012-12-21 Michelin Soc Tech PNEUMATIC TIRE BEARING TIRE
FR2968307B1 (en) 2010-11-26 2018-04-06 Societe De Technologie Michelin TIRE TREAD TIRE
FR2970256B1 (en) * 2010-11-30 2013-01-11 Michelin Soc Tech PNEUMATIC COMPRISING A ROLLING BAND UNDERCOAT BASED ON NITRILE RUBBER.
FR2969632B1 (en) 2010-12-22 2014-04-11 Michelin Soc Tech INFLATABLE GAS LAYER COMPRISING A METAL OXIDE AS CROSS-LINKING AGENT
FR2969631B1 (en) 2010-12-23 2012-12-28 Michelin Soc Tech TIRE HAVING TREAD BAND COMPRISING COPOLYMER THERMOPLASTIC POLYURETHANE BLOCK
FR2969630B1 (en) 2010-12-23 2012-12-28 Michelin Soc Tech PNEUMATIC TIRE HAVING A POLY (ALKYLENE-ESTER) RESIN
FR2969629B1 (en) 2010-12-23 2014-10-10 Michelin Soc Tech RUBBER COMPOSITION FOR PNEUMATIC ROLLER BAND
FR2974098B1 (en) 2011-04-14 2013-04-19 Michelin Soc Tech RUBBER COMPOSITION COMPRISING A THIADIAZOLE DERIVATIVE
FR2974100B1 (en) 2011-04-14 2014-08-22 Michelin Soc Tech RUBBER COMPOSITION COMPRISING A THIOPHENE DERIVATIVE
FR2974538B1 (en) 2011-04-28 2013-06-14 Michelin Soc Tech PNEUMATIC IMPROVED ICE ADHESION
FR2974808B1 (en) 2011-05-06 2013-05-03 Michelin Soc Tech PNEUMATIC TIRE COMPRISING SBR EMULSION AT HIGH TRANS RATE.
FR2974809B1 (en) 2011-05-06 2013-05-03 Michelin Soc Tech PNEUMATIC TIRE COMPRISING SBR EMULSION AT HIGH TRANS RATE.
FR2975997B1 (en) 2011-06-01 2013-06-14 Michelin Soc Tech TIRE FOR VEHICLE WITH TREAD BAND COMPRISING THERMO-EXPANDABLE RUBBER COMPOSITION
FR2975998B1 (en) 2011-06-01 2013-06-14 Michelin Soc Tech TIRE FOR VEHICLE WITH TREAD BAND COMPRISING THERMO-EXPANDABLE RUBBER COMPOSITION
FR2979076B1 (en) 2011-07-28 2013-08-16 Michelin Soc Tech TIRE FOR VEHICLE WITH TREAD BAND COMPRISING THERMO-EXPANDABLE RUBBER COMPOSITION
FR2980480B1 (en) 2011-09-26 2013-10-11 Michelin Soc Tech PNEUMATIC WITH IMPROVED ADHERENCE TO WET SOIL
FR2980481B1 (en) 2011-09-26 2013-10-11 Michelin Soc Tech PNEUMATIC WITH IMPROVED ADHERENCE TO WET SOIL
FR2981938A1 (en) 2011-10-28 2013-05-03 Michelin Soc Tech INTERNAL TIRE GUM
FR2982613B1 (en) 2011-11-10 2014-05-02 Michelin Soc Tech HIGH NON-ISOPRENIC DIENE SYNTHETIC ELASTOMERIC RUBBER COMPOSITION
FR2982614B1 (en) 2011-11-10 2014-01-03 Michelin Soc Tech HIGH ELASTOMER RATE RUBBER COMPOSITION WITH LOW POLYDISPERSITY INDEX
FR2984229B1 (en) 2011-12-16 2013-12-27 Michelin Soc Tech PNEUMATIC BANDAGE COMPRISING A COMPOSITE CORD OF REPEAT
FR2984340B1 (en) 2011-12-16 2018-01-12 Soc Tech Michelin TIRE HAVING AN EXTERNAL FLAN BASED ON A MIXTURE OF DIENE ELASTOMER AND THERMOPLASTIC ELASTOMER
FR2984339B1 (en) 2011-12-16 2018-01-12 Soc Tech Michelin PNEUMATIC HAVING A TREAD LINE BASED ON A MIXTURE OF DIENE ELASTOMER AND THERMOPLASTIC ELASTOMER
FR2984335B1 (en) 2011-12-16 2018-01-12 Societe De Technologie Michelin TIRE COMPRISING INTERNAL LAYER BASED ON A MIXTURE OF DIENE ELASTOMER AND THERMOPLASTIC ELASTOMER
FR2984899B1 (en) 2011-12-21 2014-08-15 Michelin Soc Tech PNEUMATIC COMPRISING A COMPOSITION ESSENTIALLY FREE OF GUANIDIC DERIVATIVE AND COMPRISING A HYDROXYLATED DIAMINE
FR2984897B1 (en) 2011-12-21 2014-08-15 Michelin Soc Tech PNEUMATIC COMPRISING A COMPOSITION ESSENTIALLY FREE OF GUANIDIC DERIVATIVE AND COMPRISING A PRIMARY ETHERAMINE
FR2984903B1 (en) 2011-12-22 2014-05-09 Michelin Soc Tech TIRE HAVING TREAD BAND COMPRISING THERMO-EXPANDABLE RUBBER COMPOSITION REDUCING ROLLING NOISE
FR2984904B1 (en) 2011-12-22 2014-01-03 Michelin Soc Tech RUBBER COMPOSITION
FR2984902B1 (en) 2011-12-22 2014-01-17 Michelin Soc Tech PNEUMATIC IMPROVED ICE ADHESION
FR2984692B1 (en) 2011-12-23 2014-01-17 Michelin Soc Tech FOOTWEAR COMPRISING A RUBBER COMPOSITION BASED ON NITRILE-BUTADIENE RUBBER, OIL AND RESIN
FR2985514B1 (en) 2012-01-10 2014-02-28 Michelin & Cie RUBBER COMPOSITION
FR2986531B1 (en) 2012-02-07 2014-02-28 Michelin & Cie COMPOSITION BASED ON NATURAL RUBBER AND A POLYALDIMINE COMPOUND
FR2989090B1 (en) 2012-04-10 2014-05-09 Michelin & Cie RUBBER COMPOSITION FOR TIRE TREAD WITH POTASSIUM SULFATE MICROPARTICLES
FR2990211B1 (en) 2012-05-04 2014-05-02 Michelin & Cie TIRE TREAD TIRE
FR2990949B1 (en) 2012-05-22 2015-08-21 Michelin & Cie RUBBER COMPOSITION
FR2994187B1 (en) 2012-06-12 2014-07-25 Michelin & Cie ELASTOMERIC COMPOSITION HAVING ENHANCED THERMAL CONDUCTIVITY
FR2991916B1 (en) 2012-06-18 2014-07-11 Michelin & Cie TIRE FOR HIGH-LOAD VEHICLE
FR2992322B1 (en) 2012-06-22 2015-06-19 Michelin & Cie TIRE FOR VEHICLE WITH TREAD BAND COMPRISING THERMO-EXPANDABLE RUBBER COMPOSITION
FR2993895B1 (en) 2012-07-25 2014-08-08 Michelin & Cie RUBBER COMPOSITION COMPRISING A LIGNIN-BASED RESIN
FR2993892B1 (en) 2012-07-25 2014-08-08 Michelin & Cie RUBBER COMPOSITION COMPRISING AN EPOXY RESIN AND A POLY-IMINE HARDENER
FR2993889B1 (en) 2012-07-27 2014-08-22 Michelin & Cie THERMO-EXPANSIBLE RUBBER COMPOSITION FOR PNEUMATIC
FR2997409B1 (en) 2012-10-30 2015-01-23 Michelin & Cie PNEUMATIC IMPROVED ICE ADHESION
FR2997408B1 (en) 2012-10-30 2015-01-23 Michelin & Cie PNEUMATIC IMPROVED ICE ADHESION
FR2997407B1 (en) 2012-10-30 2015-01-23 Michelin & Cie BANDAGE FOR A VEHICLE WITH A TREAD BAND COMPRISING A THERMO-EXPANSIBLE RUBBER COMPOSITION
FR2997897B1 (en) 2012-11-15 2014-12-26 Michelin & Cie PNEUMATIC BANDAGE WITH A TREAD COMPRISING A DEGRADABLE MATERIAL BASED ON POLYVINYL ALCOHOL
FR2998509A1 (en) 2012-11-29 2014-05-30 Michelin & Cie BANDAGE FOR A VEHICLE WITH A TREAD BAND COMPRISING A THERMO-EXPANSIBLE RUBBER COMPOSITION
FR2998510A1 (en) 2012-11-29 2014-05-30 Michelin & Cie TIRE FOR VEHICLE WITH TREAD BAND COMPRISING THERMO-EXPANDABLE RUBBER COMPOSITION
US8741994B1 (en) * 2012-12-13 2014-06-03 Toyo Tire & Rubber Co., Ltd. Alkoxysilyl group-containing azo compound and rubber composition using the same
FR2999589B1 (en) 2012-12-17 2014-12-26 Michelin & Cie PNEUMATIC COMPRISING A RUBBER COMPOSITION COMPRISING AN EPOXY ELASTOMER RETICULATED BY A CARBOXYLIC POLY-ACID
FR2999587B1 (en) 2012-12-17 2014-12-26 Michelin & Cie PNEUMATIC COMPRISING A RUBBER COMPOSITION COMPRISING AN EPOXY ELASTOMER RETICULATED BY A CARBOXYLIC POLY-ACID
FR2999588B1 (en) 2012-12-17 2015-02-13 Michelin & Cie PNEUMATIC COMPRISING A RUBBER COMPOSITION COMPRISING AN EPOXY ELASTOMER RETICULATED BY A CARBOXYLIC POLY-ACID
FR2999586B1 (en) 2012-12-17 2014-12-26 Michelin & Cie PNEUMATIC COMPRISING A RUBBER COMPOSITION COMPRISING AN EPOXY POLYMER RETICULATED BY A CARBOXYLIC ACIDIC ACID
FR3005468B1 (en) 2013-05-07 2015-05-01 Michelin & Cie PNEUMATIC COMPRISING A COMPOSITION ESSENTIALLY FREE OF GUANIDIC DERIVATIVE AND COMPRISING A TRIAZINE COMPOUND AND A PRIMARY AMINE
FR3005470B1 (en) 2013-05-07 2015-05-01 Michelin & Cie PNEUMATIC COMPRISING A COMPOSITION ESSENTIALLY FREE OF GUANIDIC DERIVATIVE AND COMPRISING A TRIAZINE COMPOUND AND AN ALKALI OR ALKALINE EARTH METAL HYDROXIDE
FR3008416B1 (en) 2013-07-15 2016-10-28 Michelin & Cie TIRE TREAD TIRE
FR3008414B1 (en) 2013-07-15 2016-06-10 Michelin & Cie TIRE TREAD TIRE
FR3008415B1 (en) 2013-07-15 2015-07-03 Michelin & Cie TIRE TREAD TIRE
FR3009306B1 (en) 2013-07-30 2015-07-31 Michelin & Cie TIRE WHERE THE TOP ZONE HAS AN INTERNAL LAYER REDUCING ROLL NOISE
FR3009305A1 (en) 2013-07-30 2015-02-06 Michelin & Cie THERMO-EXPANDABLE AND PNEUMATIC RUBBER COMPOSITION COMPRISING SUCH A COMPOSITION
FR3012147B1 (en) 2013-10-22 2016-07-15 Michelin & Cie PNEUMATIC COMPRISING A COMPOSITION COMPRISING A ZINC DIACRYLATE DERIVATIVE AND A PEROXIDE
FR3015502B1 (en) 2013-12-19 2016-02-05 Michelin & Cie TIRE HAVING TREAD BAND COMPRISING SCULPTURE ELEMENTS WITH RIGID SIDEWALLS CONTAINING WATER SOLUBLE MICROPARTICLES.
FR3015503B1 (en) 2013-12-19 2016-02-05 Michelin & Cie TIRE HAVING TREAD BAND COMPRISING SCULPTURE ELEMENTS WITH RIGID SIDEWALLS COMPRISING MICROPARTICLES OF OXIDE OR METAL CARBIDE.
FR3015501B1 (en) 2013-12-19 2017-05-26 Michelin & Cie TIRE HAVING TREAD BAND COMPRISING SCULPTURE ELEMENTS WITH RIGID SIDEWALLS HAVING HEAT-EXPANDABLE RUBBER RUBBER IN THE RAW STATE, OR FOAM RUBBER IN THE COOKED STATE.
FR3015505B1 (en) 2013-12-20 2016-01-01 Michelin & Cie RUBBER COMPOSITION COMPRISING A POLYPHENYLENE ETHER RESIN AS A PLASTICIZER
FR3015504B1 (en) 2013-12-20 2016-01-01 Michelin & Cie RUBBER COMPOSITION COMPRISING A POLYPHENYLENE ETHER RESIN AS A PLASTICIZER
FR3015498B1 (en) 2013-12-20 2016-12-30 Michelin & Cie ELASTOMERIC COMPOSITION HAVING AN IMPROVED LOAD DISPERSON
FR3015499B1 (en) 2013-12-20 2017-04-28 Michelin & Cie PNEUMATIC FOR VEHICLES INTENDED TO WEAR HEAVY LOADS
JP6300951B2 (en) 2014-03-31 2018-03-28 エクソンモービル ケミカル パテンツ インコーポレイテッド Spacer group for functionalized resin of tire
US10059825B2 (en) 2014-03-31 2018-08-28 Exxonmobil Chemical Patents Inc. Silica treating of functionalized resins in tires
KR101871616B1 (en) 2014-03-31 2018-06-26 엑손모빌 케미칼 패턴츠 인코포레이티드 Free radical grafting of functionalized resins for tires
FR3021315B1 (en) 2014-05-23 2017-11-03 Michelin & Cie 1,3-DIPOLAR COMPOUND HAVING AN ESTER FUNCTION OF CARBOXYLIC ACID AND RUBBER COMPOSITION CONTAINING THE SAME
FR3021971B1 (en) 2014-06-05 2016-06-03 Michelin & Cie TIRE WITH LOW ROLLING RESISTANCE
FR3021972B1 (en) 2014-06-05 2016-06-03 Michelin & Cie TIRE WITH LOW ROLLING RESISTANCE
SG11201702536WA (en) 2014-10-24 2017-05-30 Exxonmobil Chemical Patents Inc Chain end functionalized polyolefins for improving wet traction and rolling resistance of tire treads
WO2016084984A1 (en) 2014-11-28 2016-06-02 Compagnie Generale Des Etablissements Michelin A rubber composition
FR3029138B1 (en) 2014-12-02 2017-01-13 Michelin & Cie ELASTOMER LAMINATE COMPRISING 3 LAYERS
FR3029929B1 (en) 2014-12-15 2018-02-02 Michelin & Cie REINFORCED RUBBER COMPOSITION FOR PNEUMATIC
WO2016099512A1 (en) 2014-12-18 2016-06-23 Compagnie Generale Des Etablissements Michelin Microstructured composites for improved tire characteristics
WO2016099510A1 (en) 2014-12-18 2016-06-23 Compagnie Generale Des Etablissements Michelin Microstructured composites for improved tire characteristics
FR3030544B1 (en) 2014-12-22 2017-01-13 Michelin & Cie PNEUMATIC COMPRISING A COMPOSITION COMPRISING A POLYFUNCTIONAL ACRYLATE DERIVATIVE AND A PEROXIDE
FR3030545B1 (en) 2014-12-22 2018-05-25 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION COMPRISING A SPECIFIC HYDROCARBON RESIN
FR3030543B1 (en) 2014-12-22 2017-01-13 Michelin & Cie PNEUMATIC COMPRISING A COMPOSITION COMPRISING A POLYFUNCTIONAL ACRYLATE DERIVATIVE AND A PEROXIDE
WO2016104815A1 (en) 2014-12-26 2016-06-30 Compagnie Generale Des Etablissements Michelin A tire having a tread comprising rubber composition comprising short fibers
FR3032710B1 (en) 2015-02-17 2018-06-22 Compagnie Generale Des Etablissements Michelin TIRE WITH BEARING BAND COMPRISING A PHENOLIC COMPOUND
FR3033329A1 (en) 2015-03-05 2016-09-09 Michelin & Cie PNEUMATIC COMPRISING A COMPOSITION COMPRISING A ZINC DIACRYLATE DERIVATIVE AND A PEROXIDE
FR3034424B1 (en) 2015-04-03 2017-04-28 Michelin & Cie PROCESS FOR PRODUCING RUBBER COMPOSITION FROM PURIFIED NATURAL RUBBER
EP3289011B1 (en) 2015-04-30 2019-03-20 Compagnie Générale des Etablissements Michelin A heat-expandable rubber composition
FR3036115B1 (en) 2015-05-11 2017-05-19 Michelin & Cie RUBBER COMPOSITION
WO2016194213A1 (en) 2015-05-29 2016-12-08 Compagnie Generale Des Etablissements Michelin A rubber composition
WO2016194214A1 (en) 2015-05-29 2016-12-08 Compagnie Generale Des Etablissements Michelin A rubber composition
WO2016194215A1 (en) 2015-05-29 2016-12-08 Compagnie Generale Des Etablissements Michelin A rubber composition
FR3037593A1 (en) 2015-06-18 2016-12-23 Michelin & Cie PNEUMATIC FOR VEHICLES INTENDED TO WEAR HEAVY LOADS
FR3039558B1 (en) 2015-07-31 2017-07-21 Michelin & Cie RUBBER COMPOSITION COMPRISING A HYDROCARBONATED RESIN WITH LOW GLASS TRANSITION TEMPERATURE
EP3368601B1 (en) 2015-09-30 2021-11-24 Compagnie Générale des Etablissements Michelin A tire comprising a rubber composition
WO2017104781A1 (en) 2015-12-17 2017-06-22 Compagnie Generale Des Etablissements Michelin A tire comprising a tread
CN105418993A (en) * 2015-12-17 2016-03-23 山东永泰集团有限公司 Tread rubber of radial tire
CN105418995A (en) * 2015-12-17 2016-03-23 山东永泰集团有限公司 Tread rubber and preparation method thereof
FR3046603B1 (en) 2016-01-11 2017-12-29 Michelin & Cie METHOD FOR MODIFYING NATURAL RUBBER AND MODIFIED NATURAL RUBBER
FR3047735A1 (en) 2016-02-12 2017-08-18 Michelin & Cie RUBBER COMPOSITION COMPRISING AN ESSENTIALLY SPHERICAL, LITTLE STRUCTURED SILICA
FR3049282B1 (en) 2016-03-24 2018-03-23 Compagnie Generale Des Etablissements Michelin REINFORCED PRODUCT COMPRISING A SELF-ADHESIVE COMPOSITE REINFORCEMENT COMPRISING A BLOCK COPOLYMER
FR3049283B1 (en) 2016-03-24 2018-03-23 Compagnie Generale Des Etablissements Michelin REINFORCED PRODUCT COMPRISING A SELF-ADHESIVE COMPOSITE REINFORCEMENT COMPRISING A BLOCK COPOLYMER
FR3049607B1 (en) 2016-03-31 2018-03-16 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION COMPRISING A SPECIFIC HYDROCARBON RESIN
EP3436286B1 (en) 2016-03-31 2020-09-23 Compagnie Générale des Etablissements Michelin A tire having a tread comprising a rubber composition
EP3436287B1 (en) 2016-03-31 2019-12-25 Compagnie Générale des Etablissements Michelin A tire having a tread comprising a rubber composition
EP3448899B1 (en) 2016-04-29 2020-04-15 ExxonMobil Chemical Patents Inc. Functionalized resin for tire applications
EP3469022B1 (en) 2016-06-09 2020-09-23 Compagnie Générale des Etablissements Michelin A tire comprising a tread
FR3052782B1 (en) 2016-06-15 2018-06-01 Compagnie Generale Des Etablissements Michelin REINFORCED RUBBER COMPOSITION FOR PNEUMATIC
FR3052783B1 (en) 2016-06-15 2018-05-25 Compagnie Generale Des Etablissements Michelin REINFORCED RUBBER COMPOSITION FOR PNEUMATIC
FR3053347A1 (en) 2016-06-30 2018-01-05 Compagnie Generale Des Etablissements Michelin PNEUMATIC COMPRISING A COMPOSITION COMPRISING A SPECIFIC SYSTEM OF ELASTOMERS
FR3053346B1 (en) 2016-06-30 2018-07-06 Compagnie Generale Des Etablissements Michelin PNEUMATIC COMPRISING A COMPOSITION COMPRISING A SPECIFIC SYSTEM OF ELASTOMERS
FR3053692B1 (en) 2016-07-07 2018-06-22 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION COMPRISING NATURAL RUBBER CUTTING HAVING MOLECULAR MASS DISTRIBUTION, SECAMED VIEW, RESPECTIVELY UNIMODAL OR BIMODAL, PROCESS FOR PREPARATION AND PNEUMATIC COMPONENT
FR3056595A1 (en) 2016-09-29 2018-03-30 Compagnie Generale Des Etablissements Michelin TIRE TREAD COMPRISING A THERMOPLASTIC ELASTOMER
CN109952208A (en) 2016-10-31 2019-06-28 米其林集团总公司 Tire including tyre surface
EP3532310B1 (en) 2016-10-31 2020-10-14 Compagnie Générale des Etablissements Michelin A tire comprising a tread
EP3532309B1 (en) 2016-10-31 2020-07-29 Compagnie Générale des Etablissements Michelin A tire comprising a tread
FR3058147A1 (en) 2016-10-31 2018-05-04 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION COMPRISING A SPECIFIC REINFORCING LOAD
WO2018079800A1 (en) 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin A tire comprising a tread
FR3058149A1 (en) 2016-10-31 2018-05-04 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION COMPRISING A SPECIFIC REINFORCING LOAD
FR3059003A1 (en) 2016-11-18 2018-05-25 Compagnie Generale Des Etablissements Michelin TIRE COMPRISING AN EXTERNAL FLAN BASED ON AT LEAST ONE MIXTURE OF DIENE ELASTOMER AND AMIDE
FR3059331A1 (en) 2016-11-28 2018-06-01 Compagnie Generale Des Etablissements Michelin TIRE TREAD FOR TIRES
FR3059669A1 (en) 2016-12-07 2018-06-08 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION COMPRISING DIENIC ELASTOMER, POLYACRYLATE DERIVATIVE AND SPECIFIC THERMOPLASTIC ELASTOMER
FR3060013A1 (en) 2016-12-08 2018-06-15 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION BASED ON POLYISOPRENE EPOXIDE
FR3060012A1 (en) 2016-12-14 2018-06-15 Compagnie Generale Des Etablissements Michelin PNEUMATIC HAVING A COMPOSITION COMPRISING A DIENE ELASTOMER, A ZINC ACRYLATE, A PEROXIDE AND A SPECIFIC ANTIOXIDANT
FR3060592A1 (en) 2016-12-15 2018-06-22 Compagnie Generale Des Etablissements Michelin PNEUMATIC COMPRISING A RUBBER COMPOSITION COMPRISING A POLYMER CARRYING A JOINT DIENE GROUP CONNECTED WITH A DIENOPHILE
EP3555201B1 (en) 2016-12-15 2020-09-16 Compagnie Générale des Etablissements Michelin A tire comprising a tread
FR3060585A1 (en) 2016-12-19 2018-06-22 Compagnie Generale Des Etablissements Michelin TIRE TREAD COMPRISING A MODIFIED ELASTOMER
FR3060453A1 (en) 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin TIRE FOR VEHICLE CARRYING HEAVY LOADS COMPRISING A NEW BEARING BAND
FR3060452A1 (en) 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin TIRE FOR VEHICLE CARRYING HEAVY LOADS COMPRISING A NEW BEARING BAND
FR3061186B1 (en) 2016-12-22 2019-05-24 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION COMPRISING A SPECIFIC HYDROCARBON RESIN
EP3583164B1 (en) 2017-02-20 2020-12-16 Compagnie Générale des Etablissements Michelin A tire comprising a tread
FR3064640A1 (en) 2017-04-04 2018-10-05 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION BASED ON REINFORCING RESIN AND AN AMINOBENZOATE DERIVATIVE
FR3065959A1 (en) 2017-05-04 2018-11-09 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION BASED ON A ZINC ACRYLATE DERIVATIVE INCORPORATED FROM A MASTER MIXTURE
FR3067355A1 (en) 2017-06-08 2018-12-14 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION
FR3068041B1 (en) 2017-06-22 2019-07-19 Compagnie Generale Des Etablissements Michelin TIRE FOR VEHICLE CARRYING HEAVY LOADS COMPRISING A NEW BEARING BAND
FR3067973A1 (en) 2017-06-22 2018-12-28 Compagnie Generale Des Etablissements Michelin PNEUMATIC VEHICLE FOR CIVIL ENGINEERING
FR3067974A1 (en) 2017-06-22 2018-12-28 Compagnie Generale Des Etablissements Michelin TIRE FOR VEHICLE HEAVY WEIGHT
WO2019073145A1 (en) 2017-10-09 2019-04-18 Compagnie Generale Des Etablissements Michelin Tyre provided with a tread including at least one butyl rubber and a butadiene and styrene copolymer
EP3697840B1 (en) 2017-10-20 2021-12-01 Compagnie Générale des Etablissements Michelin Rubber composition comprising a polyphenylene ether resin as plastizicer
CN111278904A (en) 2017-10-30 2020-06-12 米其林集团总公司 Rubber composition comprising a specific amine and a crosslinking system based on a peroxide and an acrylate derivative
WO2019092377A2 (en) 2017-11-13 2019-05-16 Compagnie Generale Des Etablissements Michelin Rubber composition on the basis of a polyamide having a low melting point
CN111328338A (en) 2017-11-29 2020-06-23 米其林集团总公司 Rubber composition with crosslinking system comprising peroxide blend and acrylate derivative
FR3074183B1 (en) 2017-11-30 2020-07-24 Michelin & Cie HIGH MODULUS RUBBER COMPOSITION INCLUDING AN EFFICIENT SULFUR CURLING SYSTEM
RU2747313C1 (en) 2017-12-08 2021-05-04 Компани Женераль Дэз Этаблиссман Мишлен Pneumatic tyre equipped with inner layer
WO2019122602A1 (en) 2017-12-19 2019-06-27 Compagnie Generale Des Etablissements Michelin Tyre tread, the crosslinking system of which is based on organic peroxide
WO2019122604A1 (en) 2017-12-19 2019-06-27 Compagnie Generale Des Etablissements Michelin Tyre tread, the crosslinking system of which is based on organic peroxide
WO2019122600A1 (en) 2017-12-19 2019-06-27 Compagnie Generale Des Etablissements Michelin Tyre tread, the crosslinking system of which is based on organic peroxide
US20210087370A1 (en) 2017-12-19 2021-03-25 Compagnie Generale Des Etablissements Michelin Tire tread, the crosslinking system of which is based on organic peroxide
CN111511579B (en) 2017-12-21 2022-05-24 米其林集团总公司 Rubber composition crosslinked with diacid and comprising phenolic compound
FR3079843B1 (en) 2018-04-09 2020-10-23 Michelin & Cie PNEUMATIC WITH CUSHIONS INCLUDING A SPECIFIC RUBBER COMPOSITION
FR3079838B1 (en) 2018-04-09 2020-12-18 Michelin & Cie RUBBER COMPOSITION INCLUDING A REINFORCING LOAD WITH A LOW SPECIFIC SURFACE
FR3081161B1 (en) 2018-05-17 2020-07-10 Compagnie Generale Des Etablissements Michelin TIRE TREAD OF WHICH THE CROSSLINKING SYSTEM IS BASED ON ORGANIC PEROXIDE
FR3081162B1 (en) 2018-05-17 2020-04-24 Compagnie Generale Des Etablissements Michelin TIRE TREAD OF WHICH THE CROSSLINKING SYSTEM IS BASED ON ORGANIC PEROXIDE
FR3081877B1 (en) 2018-05-31 2020-05-22 Compagnie Generale Des Etablissements Michelin TIRE PROVIDED WITH AN EXTERNAL SIDING COMPRISING ONE OR MORE THERMOPLASTIC ELASTOMERS AND ONE OR MORE SYNTHETIC DIENE ELASTOMERS
FR3081873B1 (en) 2018-05-31 2020-05-22 Compagnie Generale Des Etablissements Michelin TIRE PROVIDED WITH AN EXTERNAL SIDING COMPRISING ONE OR MORE THERMOPLASTIC ELASTOMERS AND ONE OR MORE SYNTHETIC DIENE ELASTOMERS
FR3081876B1 (en) 2018-05-31 2020-05-22 Compagnie Generale Des Etablissements Michelin TIRE PROVIDED WITH AN EXTERNAL SIDING COMPRISING ONE OR MORE THERMOPLASTIC ELASTOMERS AND ONE OR MORE SYNTHETIC DIENE ELASTOMERS
FR3081875B1 (en) 2018-05-31 2020-05-22 Compagnie Generale Des Etablissements Michelin TIRE PROVIDED WITH AN EXTERNAL SIDING COMPRISING ONE OR MORE THERMOPLASTIC ELASTOMERS AND ONE OR MORE SYNTHETIC DIENE ELASTOMERS
FR3081874B1 (en) 2018-05-31 2020-07-10 Compagnie Generale Des Etablissements Michelin TIRE PROVIDED WITH AN EXTERNAL SIDING COMPRISING ONE OR MORE THERMOPLASTIC ELASTOMERS AND ONE OR MORE SYNTHETIC DIENE ELASTOMERS
EP3808808B1 (en) * 2018-06-12 2023-04-05 The Yokohama Rubber Co., Ltd. Rubber composition
FR3083242B1 (en) 2018-07-02 2020-06-12 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION BASED ON EPOXIDE RESIN AND AN AMINOBENZOATE DERIVATIVE
WO2020039536A1 (en) 2018-08-23 2020-02-27 Compagnie Generale Des Etablissements Michelin A rubber composition
WO2020039535A1 (en) 2018-08-23 2020-02-27 Compagnie Generale Des Etablissements Michelin A rubber composition
FR3085954B1 (en) 2018-09-17 2020-09-11 Michelin & Cie PNEUMATIC WITH CUSHIONS INCLUDING A SPECIFIC RUBBER COMPOSITION
WO2020096026A1 (en) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin An article, in particular a tire
WO2020096027A1 (en) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin An article, in particular a tire
FR3088646A3 (en) 2018-11-15 2020-05-22 Michelin & Cie TIRE PROVIDED WITH A TREAD
FR3088644A3 (en) 2018-11-15 2020-05-22 Michelin & Cie TIRE TRUCK RUBBER COMPOSITION
WO2020122256A1 (en) 2018-12-14 2020-06-18 Compagnie Generale Des Etablissements Michelin An article, in particular a tire
WO2020122255A1 (en) 2018-12-14 2020-06-18 Compagnie Generale Des Etablissements Michelin An article, in particular a tire
WO2020158695A1 (en) 2019-01-28 2020-08-06 Compagnie Generale Des Etablissements Michelin A laminate
WO2020158694A1 (en) 2019-01-28 2020-08-06 Compagnie Generale Des Etablissements Michelin An article
US20220220288A1 (en) 2019-04-25 2022-07-14 Compagnie Generale Des Etablissements Michelin A rubber composition
FR3096052B1 (en) 2019-05-14 2021-04-23 Michelin & Cie PNEUMATIC WITH EXTERNAL SIDES
WO2021005720A1 (en) 2019-07-09 2021-01-14 Compagnie Generale Des Etablissements Michelin A rubber composition
EP3996918B1 (en) 2019-07-09 2023-03-15 Compagnie Generale Des Etablissements Michelin A laminate
FR3099169B1 (en) 2019-07-26 2021-07-02 Michelin & Cie TIRE INCORPORATING A RUBBER COMPOSITION INCLUDING A SPECIFIC HYDROCARBON RESIN
FR3099166B1 (en) 2019-07-26 2022-02-11 Michelin & Cie TIRE INCORPORATING A RUBBER COMPOSITION COMPRISING A SPECIFIC HYDROCARBON RESIN
FR3099167B1 (en) 2019-07-26 2021-07-02 Michelin & Cie TIRE INCORPORATING A RUBBER COMPOSITION INCLUDING A SPECIFIC HYDROCARBON RESIN
JP7345048B2 (en) 2019-07-26 2023-09-14 エクソンモービル ケミカル パテンツ インコーポレイテッド Hydrocarbon polymer modifier with low aromaticity and use thereof
WO2021021417A1 (en) 2019-07-26 2021-02-04 Exxonmobil Chemical Patents Inc. Hydrocarbon polymer modifiers having high aromaticity and uses thereof
FR3099168B1 (en) 2019-07-26 2021-07-02 Michelin & Cie TIRE INCORPORATING A RUBBER COMPOSITION INCLUDING A SPECIFIC HYDROCARBON RESIN
WO2021019709A1 (en) 2019-07-31 2021-02-04 Compagnie Generale Des Etablissements Michelin A laminate
WO2021019708A1 (en) 2019-07-31 2021-02-04 Compagnie Generale Des Etablissements Michelin A laminate
FR3100811B1 (en) 2019-09-18 2021-09-03 Michelin & Cie Functional ethylene and 1,3-diene copolymers
FR3100812B1 (en) 2019-09-18 2021-09-03 Michelin & Cie Functional ethylene and 1,3-diene copolymers
FR3101878B1 (en) 2019-10-10 2021-10-01 Michelin & Cie Rubber compositions comprising an epoxidized diene elastomer and a crosslinking system
FR3103819B1 (en) 2019-11-28 2023-07-21 Michelin & Cie OFF-ROAD TREAD INCLUDING POLYVINYL ALCOHOL FIBERS
FR3103775B1 (en) 2019-11-28 2021-11-05 Michelin & Cie RUBBER TRACK INCLUDING POLYVINYL ALCOHOL FIBERS
BR112022014395A2 (en) 2020-01-28 2023-02-23 Michelin & Cie RUBBER COMPOSITION
WO2021166166A1 (en) 2020-02-20 2021-08-26 Compagnie Generale Des Etablissements Michelin A rubber composition
WO2021166165A1 (en) 2020-02-20 2021-08-26 Compagnie Generale Des Etablissements Michelin A rubber composition
WO2021193901A1 (en) 2020-03-27 2021-09-30 Compagnie Generale Des Etablissements Michelin An article intended to come into contact with the ground, in particular a tire
FR3108910B1 (en) 2020-04-07 2023-06-02 Michelin & Cie RUBBER COMPOSITION COMPRISING POLYETHYLENE WITH A LOW MELTING TEMPERATURE
FR3109156B1 (en) 2020-04-09 2023-10-06 Michelin & Cie RUBBER COMPOSITION COMPRISING POLYAMIDE AT LOW MELTING TEMPERATURE
FR3111352B1 (en) 2020-06-11 2023-02-10 Michelin & Cie RUBBER COMPOSITION WITH IMPROVED RESISTANCE TO AGGRESSION
FR3111636B1 (en) 2020-06-18 2022-08-26 Michelin & Cie Elastomeric composition comprising a phenolic compound and a compound from the ose family
FR3113906B1 (en) 2020-09-04 2022-08-05 Michelin & Cie RUBBER COMPOSITION BASED ON HIGHLY SATURATED DIENIQUE ELASTOMER
FR3113905B1 (en) 2020-09-04 2022-08-05 Michelin & Cie RUBBER COMPOSITION BASED ON HIGHLY SATURATED DIENIQUE ELASTOMER
FR3115542B1 (en) 2020-10-23 2023-12-15 Michelin & Cie Radio frequency communication module comprising an electronic device coated in an elastomeric material
FR3117122B1 (en) 2020-12-09 2023-12-15 Michelin & Cie TIRE FOR OFF-ROAD VEHICLES
FR3117123B1 (en) 2020-12-09 2023-12-15 Michelin & Cie RUBBER COMPOSITION WITH IMPROVED RESISTANCE TO MECHANICAL ASSEMBLY
FR3119168B1 (en) 2021-01-26 2023-01-13 Michelin & Cie TIRE INCORPORATING A RUBBER COMPOSITION COMPRISING A SPECIFIC HYDROCARBON RESIN
FR3119169B1 (en) 2021-01-26 2022-12-30 Michelin & Cie TIRE INCORPORATING A RUBBER COMPOSITION COMPRISING A SPECIFIC HYDROCARBON RESIN
JP2024505880A (en) 2021-01-26 2024-02-08 エクソンモービル ケミカル パテンツ インコーポレイテッド Hydrocarbon polymer polymerization modifier with high aromaticity and low molecular weight and its uses
EP4284658A1 (en) 2021-01-28 2023-12-06 Compagnie Generale Des Etablissements Michelin An article, in particular a tire
FR3121143B1 (en) 2021-03-29 2023-03-03 Michelin & Cie Composite comprising a metallic reinforcing element and an elastomeric composition comprising an adhesion-promoting resin
FR3121145B1 (en) 2021-03-29 2024-06-21 Michelin & Cie Composite comprising an elastomeric composition and a metallic reinforcing element
FR3121144B1 (en) 2021-03-29 2023-03-31 Michelin & Cie Composite comprising a metallic reinforcing element and an elastomeric composition comprising an adhesion promoter resin
FR3124798B1 (en) 2021-06-30 2024-09-06 Michelin & Cie RUBBER COMPOSITION
FR3127495B1 (en) 2021-09-30 2023-08-25 Michelin & Cie RUBBER ARTICLE RESISTANT TO MECHANICAL ASSEMBLY
FR3133857B1 (en) 2022-03-23 2024-03-08 Michelin & Cie Elastomeric composition with improved properties
FR3136768B1 (en) 2022-06-20 2024-05-31 Michelin & Cie Diene rubber composition comprising a microsilica.
FR3138350A1 (en) 2022-07-29 2024-02-02 Compagnie Generale Des Etablissements Michelin Pneumatic with radial carcass reinforcement
FR3138351A1 (en) 2022-07-29 2024-02-02 Compagnie Generale Des Etablissements Michelin Pneumatic with radial carcass reinforcement
FR3138352A1 (en) 2022-07-29 2024-02-02 Compagnie Generale Des Etablissements Michelin Pneumatic with radial carcass reinforcement
FR3140373A1 (en) 2022-10-04 2024-04-05 Compagnie Generale Des Etablissements Michelin TIRE PROVIDED WITH AN EXTERNAL SIDEWALL BASED ON A COMPOSITION COMPRISING pyrolysis carbon black
FR3140374A1 (en) 2022-10-04 2024-04-05 Compagnie Generale Des Etablissements Michelin PNEUMATIC
FR3141178A1 (en) 2022-10-25 2024-04-26 Compagnie Generale Des Etablissements Michelin Rubber composition
FR3141179A1 (en) 2022-10-25 2024-04-26 Compagnie Generale Des Etablissements Michelin Rubber composition
FR3143032A1 (en) 2022-12-08 2024-06-14 Compagnie Generale Des Etablissements Michelin COMPOSITE FOR RUBBER ARTICLE
FR3143616A1 (en) 2022-12-15 2024-06-21 Compagnie Generale Des Etablissements Michelin Rubber composition
FR3144147A1 (en) 2022-12-21 2024-06-28 Compagnie Generale Des Etablissements Michelin ELASTOMERIC COMPOSITIONS COMPRISING SILICON-TREATED CARBON BLACK
FR3144143A1 (en) 2022-12-21 2024-06-28 Compagnie Generale Des Etablissements Michelin ELASTOMERIC COMPOSITIONS COMPRISING SILICON-TREATED CARBON BLACK
FR3144142A1 (en) 2022-12-21 2024-06-28 Compagnie Generale Des Etablissements Michelin ELASTOMERIC COMPOSITIONS COMPRISING PYROLYSIS CARBON BLACK
FR3144148A1 (en) 2022-12-21 2024-06-28 Compagnie Generale Des Etablissements Michelin ELASTOMERIC COMPOSITIONS COMPRISING PYROLYSIS CARBON BLACK
FR3144145A1 (en) 2022-12-21 2024-06-28 Compagnie Generale Des Etablissements Michelin ELASTOMERIC COMPOSITIONS COMPRISING PYROLYSIS CARBON BLACK
FR3146476A1 (en) 2023-03-09 2024-09-13 Compagnie Generale Des Etablissements Michelin A RUBBER COMPOSITION

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118367A (en) * 1976-02-06 1978-10-03 The Malaysian Rubber Producers Research Association Reinforced rubber
US5185418A (en) * 1988-10-20 1993-02-09 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Hydrolyzable silyl group-containing azo compound, process for producing the same and silyl group-containing vinyl polymer produced by using the same
US5929149A (en) * 1996-12-17 1999-07-27 Sumitomo Rubber Industries, Ltd. Rubber composition for tire tread
US6372843B1 (en) * 1997-07-11 2002-04-16 Rhodia Chimie Method for preparing polyorganosiloxanes (POS) with thiol functions, POS obtainable by this method and their use particularly in rubber materials
US20040220307A1 (en) * 2003-05-02 2004-11-04 Degussa Ag Organosilane masterbatch
US20060217473A1 (en) * 2005-03-24 2006-09-28 Hergenrother William L Compounding silica-reinforced rubber with low volatile organic compound (VOC) emission

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2673187B1 (en) 1991-02-25 1994-07-01 Michelin & Cie RUBBER COMPOSITION AND TIRE COVERS BASED ON SAID COMPOSITION.
JPH0693134A (en) 1992-07-31 1994-04-05 Sumitomo Chem Co Ltd Rubber composition excellent in grip and rolling resistance and its production
FR2732351B1 (en) 1995-03-29 1998-08-21 Michelin & Cie RUBBER COMPOSITION FOR A TIRE ENCLOSURE CONTAINING ALUMINUM DOPED SILICA AS A REINFORCING FILLER
FR2749313A1 (en) 1996-05-28 1997-12-05 Michelin & Cie DIENE RUBBER COMPOSITION BASED ON ALUMINA AS A REINFORCING FILLER AND ITS USE FOR THE MANUFACTURE OF TIRE COVERS
FR2763593B1 (en) 1997-05-26 1999-07-09 Michelin & Cie SILICA-BASED RUBBER COMPOSITION FOR THE MANUFACTURE OF ENCLOSURES OF ROAD TIRES HAVING IMPROVED RUNNING RESISTANCE
BR9810559A (en) 1997-07-07 2000-08-15 Michelin & Cie Composition of pneumatic rubber, white, clear or colored, without carbon black, colored tire or rubber article of such tire, process to protect a rubber composition against photo-oxidant aging, and use of a system photo-oxidant
EP1000117A1 (en) 1997-08-01 2000-05-17 Compagnie Générale des Etablissements MICHELIN-MICHELIN & CIE Rubber composition for colour tyre
KR100632720B1 (en) 1997-11-28 2006-10-16 꽁빠니 제네랄 드 에따블리세망 미쉘린-미쉘린 에 씨 Reinforcing aluminous filler, a process for manufacturing said filler, a rubber composition comprising said filler, and a tyre and a tread for a tyre, reinforced with said filler
EP1115785B1 (en) 1998-07-22 2002-10-09 Société de Technologie Michelin Coupling system (white filler/diene elastomer) based on polysulphide alkoxysilane, enamine and guanidine derivative
BR9912343A (en) 1998-07-22 2001-04-17 Michelin Soc Tech Rubber composition, process for preparing a rubber composition, using a rubber composition, coupling system and in combination with a zinc dithiophosphate and a guanidic, pneumatic derivative, semi-finished rubber product for pneumatics , tread and coupling system.
JP4991063B2 (en) 1999-05-28 2012-08-01 ソシエテ ド テクノロジー ミシュラン Tire rubber composition based on diene elastomer and reinforced titanium oxide
FR2803300B1 (en) 1999-12-30 2002-03-15 Rhodia Chimie Sa NOVEL COMPOUNDS BASED ON FUNCTIONALIZED SILANES, THEIR PREPARATION METHODS AND THEIR USE IN THE FIELD OF RUBBER MATERIALS
FR2803301B1 (en) 1999-12-30 2002-03-15 Rhodia Chimie Sa NOVEL COMPOUNDS BASED ON FUNCTIONALIZED SILANES, THEIR PREPARATION METHODS AND THEIR USE IN THE FIELD OF RUBBER MATERIALS
MXPA03000659A (en) 2000-07-31 2003-09-10 Michelin Rech Tech Running tread for tyre.
EP1360227B1 (en) 2001-01-02 2007-05-23 Société de Technologie Michelin Rubber composition made with diene elastomer and a reinforcing silicon carbide
FR2823215B1 (en) 2001-04-10 2005-04-08 Michelin Soc Tech TIRE AND TIRE TREAD COMPRISING AS COUPLING AGENT A BIS-ALKOXYSILANE TETRASULFURE
CN1325549C (en) 2001-06-28 2007-07-11 米其林技术公司 Tyre tread reinforced with silica having a very low specific surface area
EP1419195B1 (en) 2001-06-28 2010-04-21 Société de Technologie Michelin Tyre tread reinforced with silica having a low specific surface area
KR20040030095A (en) 2001-08-13 2004-04-08 소시에떼 드 테크놀로지 미쉐린 Diene rubber composition for tyres comprising a specific silicon as a reinforcing filler
US20030114601A1 (en) 2001-09-19 2003-06-19 Cruse Richard W. Blends of polysulfide silanes with tetraethoxysilane as coupling agents for mineral-filled elastomer compositions
FR2841560B1 (en) 2002-07-01 2006-02-03 Michelin Soc Tech RUBBER COMPOSITION BASED ON DIENE ELASTOMER AND REINFORCING SILICON NITRIDE
WO2004056918A1 (en) 2002-12-19 2004-07-08 Societe De Technologie Michelin Rubber composition for tyres, comprising a polyorganosiloxane oligomer as coupling agent
JP4633471B2 (en) 2002-12-19 2011-02-16 ソシエテ ド テクノロジー ミシュラン Tire rubber composition based on reinforced aluminosilicate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118367A (en) * 1976-02-06 1978-10-03 The Malaysian Rubber Producers Research Association Reinforced rubber
US5185418A (en) * 1988-10-20 1993-02-09 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Hydrolyzable silyl group-containing azo compound, process for producing the same and silyl group-containing vinyl polymer produced by using the same
US5929149A (en) * 1996-12-17 1999-07-27 Sumitomo Rubber Industries, Ltd. Rubber composition for tire tread
US6372843B1 (en) * 1997-07-11 2002-04-16 Rhodia Chimie Method for preparing polyorganosiloxanes (POS) with thiol functions, POS obtainable by this method and their use particularly in rubber materials
US20040220307A1 (en) * 2003-05-02 2004-11-04 Degussa Ag Organosilane masterbatch
US20060217473A1 (en) * 2005-03-24 2006-09-28 Hergenrother William L Compounding silica-reinforced rubber with low volatile organic compound (VOC) emission

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100204358A1 (en) * 2007-05-15 2010-08-12 Societe De Technologie Michelin Plasticizing system and rubber tyre composition including said system
US8759438B2 (en) 2009-06-29 2014-06-24 Compagnie Generale Des Etablissements Michelin Tire, the tread of which comprises a saturated thermoplastic elastomer
US8978721B2 (en) 2009-10-27 2015-03-17 Compagnie Generale Des Etablissements Michelin Tyre, the inner wall of which is provided with a heat-expandable rubber layer
US9080041B2 (en) 2010-01-14 2015-07-14 Compagnie Generale Des Etablissements Michelin Rubber composition including a polar thermoplastic elastomer including an alkylacrylate unit
US9340626B2 (en) 2010-03-18 2016-05-17 Compagnie Generale Des Etablissements Michelin Tire and rubber composition containing a grafted polymer
US8686086B2 (en) 2010-06-02 2014-04-01 Compagnie Generale Des Etablissements Michelin Method for obtaining a rubber composition including a thermoplastic filler
US9550890B2 (en) 2010-06-23 2017-01-24 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a thermoplastic filler and compatibilizer
US9109109B2 (en) 2010-11-23 2015-08-18 Compagnie Generale Des Establissements Michelin Functional diene block elastomer with a low PI and improved cold flow, and rubber composition containing same
US9624359B2 (en) 2010-11-23 2017-04-18 Compagnie Generale Des Etablissements Michelin Functional diene elastomer with a low pi and improved cold flow, and rubber composition containing same
US10160847B2 (en) 2010-11-26 2018-12-25 Compagnie Generale Des Etablissments Michelin Tyre tread
US9670332B2 (en) 2010-12-17 2017-06-06 Compagnie Generale Des Etablissements Michelin Elastomeric composition exhibiting very good dispersion of the filler in the elastomeric matrix
US9611380B2 (en) 2010-12-17 2017-04-04 Michelin Recherche Et Technique S.A. Elastomeric composition exhibiting good dispersion of the filler in the elastomeric matrix
US9040618B2 (en) 2011-04-14 2015-05-26 Compagnie Generale Des Etablissements Michelin Rubber composition including a 1,2,4-triazine derivative
US9688852B2 (en) 2011-04-14 2017-06-27 Compagnie Generale Des Etablissements Michelin Rubber composition including a thiazole derivative
US9550891B2 (en) 2011-04-14 2017-01-24 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a thiazoline derivative
US9487892B2 (en) 2011-05-18 2016-11-08 Compagnie Generale Des Etablissements Michelin Tire having a composite cord in the tread
US9399829B2 (en) 2011-05-18 2016-07-26 Compagnie Generale Des Etablissements Michelin Rubber composite cord for a tread of a pneumatic tire
US9505897B2 (en) 2011-06-01 2016-11-29 Compagnie Generale Des Etablissements Michelin Tyre, the tread of which comprises a heat-expandable rubber composition reducing noise during travel
US10059833B2 (en) 2011-10-28 2018-08-28 Compagnie Generale Des Etablissements Michelin Elastomer composition having a very good dispersion of the charge in the elastomer matrix
US9751992B2 (en) 2011-12-12 2017-09-05 Compagnie Generale Des Etablissements Michelin Elastomeric composition having a very good dispersion of the filler in the elastomeric matrix
US9962996B2 (en) 2011-12-16 2018-05-08 Compagnie Generale Des Etablissements Michelin Tread comprising tread pattern elements covered with an impregnated fibre assembly
US9267014B2 (en) 2011-12-21 2016-02-23 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially free of guanidine derivative and comprising an alkali metal hydroxide or alkaline-earth metal hydroxide
US9260588B2 (en) 2011-12-21 2016-02-16 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially devoid of guanidine derivative and comprising an amino ether alcohol
US10227475B2 (en) 2011-12-21 2019-03-12 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially free of guanidine derivative and comprising a primary amine
US9522571B2 (en) 2011-12-21 2016-12-20 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially free of guanidine derivative and comprising a hydroxyalkylpiperazine
US10202471B2 (en) 2013-10-25 2019-02-12 Compagnie Generale Des Etablissments Michelin 1,3-dipolar compound bearing an imidazole functional group
US10137734B2 (en) 2013-10-25 2018-11-27 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a 1,3-dipolar compound additive bearing an imidazole functional group
US10030116B2 (en) 2013-10-25 2018-07-24 Compagnie General Des Etablissements Michelin Rubber composition comprising a diene elastomer bearing imidazole functional groups randomly distributed along the chain
US11034780B2 (en) 2013-10-25 2021-06-15 Compagnie Generale Des Etablissements Michelin 1,3-dipolar compound bearing an imidazole functional group
US10081723B2 (en) 2013-12-20 2018-09-25 Compagnie Generale Des Etablissements Michelin Tire tread comprising a thermoplastic elastomer
US10421858B2 (en) 2014-06-18 2019-09-24 Compagnie Generale Des Etablissements Michelin Rubber composition comprising an epoxide elastomer cross-linked by a polycarboxylic acid
US10654992B2 (en) 2014-08-29 2020-05-19 Compagnie Generale Des Establissements Michelin Rubber composition comprising silicone oil
US10654317B2 (en) 2014-11-25 2020-05-19 Compagnie Generale Des Etablissements Michelin Tire including an outer sidewall that comprises an incompatible polymer
US10689507B2 (en) 2015-06-18 2020-06-23 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a styrene-butadiene copolymer having a low glass transition temperature, and a high content of filler and of plasticizer
US10836886B2 (en) 2015-07-02 2020-11-17 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a very high specific surface area silica and a low glass transition temperature hydrocarbon resin
US10808105B2 (en) 2015-07-31 2020-10-20 Compagnie Generale Des Etablissements Michelin Rubber composition including a hydrocarbon resin with a low glass transition temperature
US11802194B2 (en) 2015-10-16 2023-10-31 Compagnie Generale Des Etablissements Michelin Rubber composition including a specific hydrocarbon resin
US11365308B2 (en) 2015-10-16 2022-06-21 Compagnie Generale Des Etablissements Michelin Rubber composition including a specific hydrocarbon resin
US10773552B2 (en) 2015-12-22 2020-09-15 Compagnie Generale Des Etablissements Michelin Tire tread comprising at least one metal chelate and/or a pigment
US10723814B2 (en) 2015-12-22 2020-07-28 Compagnie Generale Des Etablissements Michelin Tire comprising a rubber composition including a substituted diene elastomer
DE102016201195A1 (en) 2016-01-27 2017-07-27 Continental Reifen Deutschland Gmbh Rubber compound and vehicle tires
US11499036B2 (en) 2016-06-30 2022-11-15 Compagnie Generale Des Etablissements Michelin Rubber composition comprising an epoxide resin and a specific amine hardener
US11161962B2 (en) 2016-10-31 2021-11-02 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a specific reinforcing filler
US11254164B2 (en) 2016-10-31 2022-02-22 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
US11554609B2 (en) 2016-11-18 2023-01-17 Compagnie Generale Des Etablissements Michelin Tire with an outer sidewall composed of at least a diene elastomer and wax mixture
US11352459B2 (en) 2016-12-02 2022-06-07 Compagnie Generale Des Etablissements Michelin Tire provided with an outer sidewall comprising a thermoplastic elastomer comprising at least one saturated elastomer block
US11359077B2 (en) 2016-12-02 2022-06-14 Compagnie Generale Des Etablissements Michelin Tire provided with an outer sidewall comprising one or more thermoplastic elastomers and one or more synthetic diene elastomers
US11203680B2 (en) 2016-12-22 2021-12-21 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a specific hydrocarbon resin
US11220591B2 (en) 2016-12-22 2022-01-11 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a specific hydrocarbon resin
US11390117B2 (en) 2017-01-31 2022-07-19 Compagnie Generale Des Etablissements Michelin Tire comprising a rubber composition
US11286369B2 (en) 2017-03-08 2022-03-29 Compagnie Generale Des Etablissements Michelin Tire having a composition comprising an ethylene-rich elastomer, a peroxide and a polyfunctional acrylate derivative
US11254804B2 (en) 2017-03-08 2022-02-22 Compagnie Generale Des Etablissements Michelin Tire having a composition comprising an ethylene-rich elastomer, a peroxide and a zinc acrylate
US11241912B2 (en) 2017-03-21 2022-02-08 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
US11492465B2 (en) 2017-04-14 2022-11-08 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a specific hydrocarbon resin
US11111360B2 (en) 2017-05-05 2021-09-07 Compagnie Generale Des Etablissements Michelin Rubber composition comprising at least one silica as inorganic reinforcing filler
US11724545B2 (en) 2017-05-31 2023-08-15 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
US12017481B2 (en) 2017-06-30 2024-06-25 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
US11724542B2 (en) 2017-09-28 2023-08-15 Compagnie Generale Des Etablissements Michelin Tire comprising a rubber composition
US12060489B2 (en) 2017-10-30 2024-08-13 Compagnie Generale Des Etablissements Michelin Tire provided with an inner layer made from at least an isoprene elastomer, a reinforcing resin and a metal salt
US11674019B2 (en) 2017-11-17 2023-06-13 Compagnie Generale Des Etablissements Michelin Tire provided with an outer sidewall comprising a liquid plasticizer having a low glass transition temperature
US12071545B2 (en) 2017-11-30 2024-08-27 Compagnie Generale Des Etablissements Michelin High-modulus rubber composition comprising a vulcanization ultra-accelerator
US11572458B2 (en) 2017-12-21 2023-02-07 Compagnie Generale Des Etablissements Michelin Diacid-crosslinked rubber composition comprising a phenolic compound
US11492458B2 (en) 2017-12-21 2022-11-08 Compagnie Generale Des Etablissements Michelin Sulfur-free crosslinked composition comprising a phenolic compound
US11767417B2 (en) 2018-03-30 2023-09-26 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
US11685821B2 (en) 2018-06-15 2023-06-27 Compagnie Generale Des Etablissements Michelin Rubber composition for a tire tread
US11865866B2 (en) 2018-12-04 2024-01-09 Compagnie Generale Des Etablissements Michelin Tread for an aircraft tire
US11999854B2 (en) 2019-04-25 2024-06-04 Compagnie Generale Des Etablissements Michelin Rubber composition
CN110713632A (en) * 2019-11-26 2020-01-21 三角轮胎股份有限公司 All-steel radial tire tread rubber composition

Also Published As

Publication number Publication date
US20110152458A1 (en) 2011-06-23
CN101233181B (en) 2012-02-08
JP5172662B2 (en) 2013-03-27
ATE412031T1 (en) 2008-11-15
DE602006003341D1 (en) 2008-12-04
EP1893682A1 (en) 2008-03-05
CN101233181A (en) 2008-07-30
EP1893682B1 (en) 2008-10-22
WO2006125532A1 (en) 2006-11-30
FR2886306B1 (en) 2007-07-06
JP2008542455A (en) 2008-11-27
US8492475B2 (en) 2013-07-23
FR2886306A1 (en) 2006-12-01

Similar Documents

Publication Publication Date Title
US8492475B2 (en) Rubber composition for tire comprising an organosiloxane coupling agent
US9010393B2 (en) Rubber composition for tire comprising an organosilicon coupling system
US20090186961A1 (en) Rubber Composition for Tire Comprising an Organosilicon Coupling Agent and an Inorganic Filler Covering Agent
US9624358B2 (en) Rubber tire composition comprising an azo-silane coupling agent
US20110009547A1 (en) Rubber composition for a tyre comprising a hydroxysilane covering agent
RU2320683C2 (en) Elastomeric mixture containing polyfunctional organosilane as binding agent
US6878768B2 (en) Rubber composition for a tire comprising a multifunctional polyorganosiloxane as coupling agent
US8314164B2 (en) Filled rubber compositions
US9303148B2 (en) Rubber composition devoid of or practically devoid of zinc
US20150031810A1 (en) Rubber Composition for Tire Including a Novel Anti-oxidant System
US8623937B2 (en) Rubber compound containing a blocked mercaptosilane coupling agent
US7238740B2 (en) Rubber composition for a tire comprising a citraconimido-alkoxysilane as coupling agent
US20090165919A1 (en) Tyre belt incorporating an antioxidant agent
KR20010072010A (en) Coupling system (white filler/diene elastomer) based on polysulphide alkoxysilane, enamine and guanidine derivative
US20140371345A1 (en) Rubber tire composition comprising an azo-silane coupling agent
US20150299435A1 (en) Tire comprising a rubber composition comprising an epoxide elastomer crosslinked with a polycarboxylic acid
US20150005448A1 (en) Rubber composition comprising a blocked mercaptosilane coupling agent
US20130085223A1 (en) Rubber Composition Comprising a Thiazole
US20050043448A1 (en) Tread for a tire
US9034969B2 (en) Rubber composition comprising a thiazoline
US7098260B2 (en) Rubber composition comprising a siloxane polysulfide
US9187620B2 (en) Rubber composition comprising a thiadiazole

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICHELIN RECHERCHE ET TECHNIQUE S.A., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARAUJO DA SILVA, JOSE CARLOS;LONGCHAMBON, KARINE;STERIN, SABASTIEN;REEL/FRAME:022265/0178;SIGNING DATES FROM 20090119 TO 20090120

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION