US20090168752A1 - Method and apparatus for distributing content - Google Patents

Method and apparatus for distributing content Download PDF

Info

Publication number
US20090168752A1
US20090168752A1 US11/967,365 US96736507A US2009168752A1 US 20090168752 A1 US20090168752 A1 US 20090168752A1 US 96736507 A US96736507 A US 96736507A US 2009168752 A1 US2009168752 A1 US 2009168752A1
Authority
US
United States
Prior art keywords
content
utility
item
content item
items
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/967,365
Other languages
English (en)
Inventor
Jonathan Segel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Priority to US11/967,365 priority Critical patent/US20090168752A1/en
Assigned to ALCATEL LUCENT reassignment ALCATEL LUCENT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEGEL, JONATHAN
Priority to CN200880123239.0A priority patent/CN101911687B/zh
Priority to EP21205527.1A priority patent/EP3982639A1/de
Priority to JP2010540213A priority patent/JP2011508333A/ja
Priority to KR1020107014380A priority patent/KR20100100917A/ko
Priority to PCT/IB2008/055689 priority patent/WO2009087550A2/en
Priority to EP08869357A priority patent/EP2238753A2/de
Publication of US20090168752A1 publication Critical patent/US20090168752A1/en
Assigned to CREDIT SUISSE AG reassignment CREDIT SUISSE AG SECURITY AGREEMENT Assignors: ALCATEL LUCENT
Priority to JP2013195263A priority patent/JP5749308B2/ja
Assigned to ALCATEL LUCENT reassignment ALCATEL LUCENT RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CREDIT SUISSE AG
Priority to US16/218,725 priority patent/US10560663B2/en
Priority to US16/775,810 priority patent/US11134219B2/en
Priority to US17/477,814 priority patent/US20220006977A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/173Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/173Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
    • H04N7/17309Transmission or handling of upstream communications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/258Client or end-user data management, e.g. managing client capabilities, user preferences or demographics, processing of multiple end-users preferences to derive collaborative data
    • H04N21/25866Management of end-user data
    • H04N21/25891Management of end-user data being end-user preferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/262Content or additional data distribution scheduling, e.g. sending additional data at off-peak times, updating software modules, calculating the carousel transmission frequency, delaying a video stream transmission, generating play-lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/65Transmission of management data between client and server
    • H04N21/658Transmission by the client directed to the server
    • H04N21/6582Data stored in the client, e.g. viewing habits, hardware capabilities, credit card number
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1095Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes

Definitions

  • the invention relates to the field of communication networks and, more specifically, to content distribution.
  • a first method includes receiving content utility prediction information for a content item, selecting a content distribution mode for the content item using the content utility prediction information, and propagating the content item toward at least one of the content destination nodes using the selected content distribution mode.
  • the content utility prediction information is associated with the content destination nodes, and is indicative of a level of utility of the content item to the content destination nodes.
  • the content distribution mode may include any content distribution mode, such as broadcast, switched broadcast, multicast, unicast, and the like.
  • the content utility prediction information is received from one or more content prediction nodes.
  • the content is distributed to one or more content destination nodes, which may include end user terminals and/or network-based caching nodes.
  • a second method includes receiving, from a plurality of content prediction nodes, content utility prediction information for each of a plurality of content items selecting, for each of the content items, a content distribution mode for the content item using the content utility prediction information associated with the content item, and propagating each of the content items toward at least one content destination node using the respective content distribution modes selected for the content items.
  • An embodiment may further include selecting, for each of the content items, a propagation time at which the content item is propagated using the selected content distribution mode.
  • the selection of the respective propagation times for the content items may include at least one of prioritizing the content items with respect to each other, sequencing the content items with respect to each other, and scheduling the content items with respect to available time/capacity slots.
  • FIG. 1 depicts a high-level block diagram of a communication network architecture
  • FIG. 2 depicts a method according to one embodiment of the present invention
  • FIG. 3A depicts a high-level block diagram of an example depicting the content distribution functions of the present invention
  • FIG. 3B depicts a high-level block diagram of an example depicting the content distribution functions of the present invention
  • FIG. 4 depicts a high-level block diagram of a general-purpose computer suitable for use in performing the functions described herein;
  • FIG. 5A and FIG. 5B depict exemplary graphs showing probability of usage for a content item as a function of time and sample implementation of an item-node utility function for computing utility.
  • the present invention enhances efficiency of content delivery within the context of increasingly personalized content delivery.
  • the present invention delivers content items from content sources to content destination nodes.
  • the present invention selects a mode of delivery for a content item based on predictive information indicative of a probability of utility of the content item (e.g., that the content item is, will be, or may be useful) to one or more content destination nodes and a number of content destination nodes which may want the content item.
  • the content item is distributed to one or more content destination nodes using the selected content distribution mode.
  • the content distribution mode may include a broadcast mode, a switched broadcast mode, a multicast mode, a unicast mode, and the like.
  • the present invention chooses which content items to distribute, which content destination nodes the content items should be distributed to, when the content items should be distributed, and which distribution mode to use to distribute the content items in a manner tending to optimize usage of the constrained network capacity.
  • the present invention increases the ability of the network to satisfy customer requests for content items during peak demand periods, thereby increasing value to end users through the ability to satisfy an increased number of unique content requests and/or to reduce service provider costs by avoiding the need to augment network capacity to meet demand peaks.
  • FIG. 1 depicts a high-level block diagram of a communication network architecture.
  • communication network architecture 100 includes a content source (CS) 110 , a content distribution network (CDN) 120 , and a plurality of end user terminals (EUTs) 140 (collectively, EUTs 140 ).
  • the CS 110 communicates with CDN 120 using a communication path 115 .
  • the CDN 120 communicates with some of the EUTs 140 using communication paths 135 .
  • the CDN 120 communicates with others of the EUTs 140 via a local network (LN) 130 , where CDN 120 communicates with LN 130 using a communication path 123 and LN 130 communicates with EUTs 140 using communication paths 125 .
  • the communication network architecture further includes a content distribution scheduler (CDS) 150 , which communicates with CS 110 and CDN 120 .
  • CDS content distribution scheduler
  • the present invention may be implemented within the context of other communications network architectures including various other numbers and/or configurations of content sources, content distribution networks, and end user terminals.
  • other possible content sources have been omitted from FIG. 1 for purposes of clarity.
  • the present invention is not intended to be limited by communications network architecture depicted in FIG. 1 .
  • the CDN 120 facilitates distribution of content from CS 110 to EUTs 140 and, optionally, to network elements serving EUTs 140 (e.g., network-based nodes, such as local network caching nodes, access network caching nodes, core network caching nodes, and the like, as well as various combinations thereof).
  • the CDN 120 supports multiple content distribution modes. For example, CDN 120 may support content distribution modes such as a broadcast mode, a switched broadcast mode, a multicast mode, a unicast mode, and the like, as well as various combinations thereof.
  • the CDN 120 includes a plurality of content distribution nodes (CDNs) 121 1 - 121 N (collectively, CDNs 121 ) which facilitate distribution of content from CS 110 to (or at least toward, e.g., in the case of caching nodes) EUTs 140 using the different content distribution modes.
  • CDNs content distribution nodes
  • the CDNs 121 may include any network elements for facilitating distribution of content from CS 110 to EUTs 140 .
  • the CDNs 121 may vary for different content distribution modes.
  • CDNs 121 may include broadcast nodes supporting content broadcast and/or switched broadcast capabilities (e.g., broadcast replication elements for replicating broadcast content, switches, routers, servers, caching nodes, and like elements), multicast nodes supporting content multicast capabilities (e.g., multicast replication elements for replicating multicast content, switches, routers, servers, caching nodes, and like elements), unicast nodes supporting content unicast capabilities (e.g., routers, switches, caching nodes, and like elements), and the like, as well as various combinations thereof.
  • broadcast replication elements for replicating broadcast content, switches, routers, servers, caching nodes, and like elements
  • multicast nodes supporting content multicast capabilities e.g., multicast replication elements for replicating multicast content, switches, routers, servers, caching nodes, and like elements
  • the CDN 120 is depicted herein as one communication network (i.e., for purposes of clarity, the specific content distribution networks have not been depicted); however, as described herein, CDN 120 may include one or more of a broadcast network, a switched broadcast network, a multicast network, a unicast network, and the like, as well as various combinations thereof.
  • the broadcast, switched broadcast, multicast, and unicast networks may be implemented as one or more distinct networks.
  • broadcast or switched broadcast capabilities may be provided by a broadcast network (or broadcast-like network), while multicast and unicast capabilities may be provided by a multicast/unicast network.
  • broadcast and switched broadcast capabilities may be provided by a broadcast network, multicast capabilities may be provided by a multicast network, and unicast capabilities may be provided by a unicast network.
  • different content distribution modes may be supported using different numbers and/or combinations of content distribution networks, as well as different levels of interaction between such networks (e.g., from isolated networks to fully integrated networks).
  • content broadcast capabilities may be provided by one or more wired broadcast networks (e.g., an HFC-based broadcast network, an IP-based broadcast network, or any other similar wired networks), wireless broadcast networks (e.g., a Digital Terrestrial Television (DTT) network, a Media-Forward Link Only (MediaFLO) wireless network, a Digital Video Broadcasting-Handheld (DVB-H) wireless network, a Digital Multimedia Broadcasting (DMB) wireless network, a Digital Video Broadcasting-Satellite (DVB-S) network, or any other similar wireless networks), and the like, as well as various combinations thereof.
  • wired broadcast networks e.g., an HFC-based broadcast network, an IP-based broadcast network, or any other similar wired networks
  • wireless broadcast networks e.g., a Digital Terrestrial Television (DTT) network, a Media-Forward Link Only (MediaFLO) wireless network, a Digital Video Broadcasting-Handheld (DVB-H) wireless network, a Digital Multimedia Broad
  • content multicast capabilities and/or unicast capabilities may be provided by one or more of wired multicast/unicast networks (e.g., IP networks and the like), wireless multicast/unicast networks (e.g., a General Packet Radio Service (GPRS) wireless network, a Universal Mobile Telecommunications System (UMTS) wireless network, a Code Division Multiple Access (CDMA) 2000 (CDMA2000)-based Evolution Data Optimized (EVDO) wireless network, and the like), and the like, as well as various combinations thereof.
  • GPRS General Packet Radio Service
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • EVDO Evolution Data Optimized
  • the content distribution modes may be provided using various other types of communications networks.
  • the CS 110 includes a plurality of content distribution servers (CDSs) 111 1 - 111 N (collectively, CDSs 111 ).
  • the CDSs 111 may deliver stored content and/or live content to EUTs 140 .
  • the CDSs 111 may deliver stored content and/or live content to network-based nodes capable of storing content for eventual distribution to EUTs 140 (e.g., to one or more of CDSs 121 , LCN 131 , and the like, as well as various combinations thereof).
  • the CDSs 111 may include broadcast servers, switched broadcast servers, multicast servers, unicast servers, and the like, or any other network element(s) capable of distributing content.
  • the CDSs 111 distribute content to EUTs 140 , and to network nodes capable of storing the content for distribution to EUTs 140 , using CDNs 120 .
  • the CDSs 111 may distribute any type of content (e.g., data, audio, video, multimedia, and the like, as well as various combinations thereof).
  • the EUTs 140 include any end user terminals capable of requesting, receiving, and displaying content.
  • the EUTs 140 include end user interaction interfaces by which users may request content, as well as interact with presented content.
  • the EUTs 140 include one or more presentation interfaces by which received content is presented to the end user.
  • the EUTs 140 may store content items locally and, thus, may also act as a source of content items for other EUTs 140 in a peer-to-peer fashion. If an EUT 140 is able to retrieve a content item from another EUT 140 or from a local caching node (illustratively, LCN 131 ), this will reduce the need for that EUT 140 to request the content item from one of the CDSs 111 .
  • EUTs 140 may include computers, television systems (e.g., the set top box, television, associated remote controls, and the like), wireless phones, personal digital assistants (PDAs), and the like, as well as various combinations thereof.
  • the EUTs 140 and LCN 131 may be collectively referred to herein as content destination nodes.
  • the EUTs 140 are considered content destination nodes since the content items are ultimately delivered to EUTs 140 for presentation to end users.
  • the LCN 131 (as well as any other network-based nodes capable of caching content within the content distribution network or other local networks, which nodes have been omitted for purposes of clarity) is considered a content destination node since the content items are delivered to LCN 131 to be cached on behalf of some EUTs 140 for later delivery to those EUTs 140 .
  • content destination nodes may include any nodes adapted for receiving content items and presenting and/or caching the received content items.
  • the CDS 150 is adapted for scheduling delivery of content from CS 110 to content destination nodes (e.g., EUTs 140 , and network nodes capable of storing content for distribution to EUTs 140 (i.e., on behalf of EUTs 140 )).
  • the CDS 150 receives content utility prediction information from content prediction nodes.
  • the content utility prediction information is associated with EUTs 140 and network nodes acting on behalf of EUTs 140 .
  • the CDS 150 determines a content distribution schedule for distribution of the content items from CS 110 (i.e., to EUTs 140 and to network nodes capable of storing content for distribution to EUTs 140 ).
  • the CDS 150 directs CS 110 to distribute content items according to the content distribution schedule (i.e., using the selected distribution modes and, optionally, associated content item distribution times determined for the content items).
  • the content distributed from CS 110 to content destination nodes may be any content capable of being delivered over a communication network.
  • the content delivered from CS 110 to content destination nodes may include one or more content items, or one or more portions of one or more content items.
  • content delivered from CS 110 to content destination nodes may include one or more segments of the content item (e.g., only a subset of the total segments of the content item).
  • the segments of a content item may be retrieved independently from a single location or different locations and reassembled at the content destination node.
  • a content item may include a portion of a data file, a data file, a group of data files, a webpage, a portion of an audio clip, an audio clip, a collection of audio clips, a portion of a video clip, a video clip, a collection of video clips, a portion of a multimedia clip, a multimedia clip, a collection of multimedia clips, a user generated video, a live television program, a stored television program, a short or long movie, an on-demand movie, and the like, as well as various combinations thereof.
  • a content item is any content work or segment of a content work for which distribution of the content item may be scheduled.
  • the content items may include any other forms of content.
  • the content utility prediction information includes information adapted for use in scheduling distribution of content items from content source nodes to content destination nodes.
  • the content utility prediction information for a content item includes a utility value indicative of a probability of the usefulness of the content item and a volume value indicative of a number of the content destination nodes for which the content item may be useful (also referred to herein as a “fan-out”).
  • the content utility prediction information may be received in any format. As described herein, the content utility prediction information may be received from one or more content prediction nodes.
  • the content prediction nodes include any devices including predictive intelligence capable of determining content utility prediction information and providing the content utility prediction information to a content scheduler (illustratively, CDS 150 ).
  • predictive intelligence may be implemented within the network (e.g., on any network element or network elements, such as CSs 111 , CDNs 121 , LCN 131 , and the like, as well as various combinations thereof).
  • predictive intelligence may be implemented at the end user (i.e., on EUTs 140 ). In one embodiment, predictive intelligence may be implemented both within the network and at the end user.
  • the predictive intelligence may determine content utility prediction information based on content utility feedback information associated with content destination nodes.
  • each content destination node (n) has associated with it a probability that a content item (i) will be used at a certain time (t), or P (n,i,t) .
  • the probabilities P (n,i,t) for multiple content destination nodes (n) of a network segment (N) may be used to compute a utility factor (U) indicative of the value of sending content item (i) to the network segment (N) having multiple content destination nodes.
  • the utility factor U incorporates multiple factors, including the number of content destination nodes having a non-zero probability P (n,i,t) .
  • the utility (U) of sending a content item (i) via a content distribution mode (m) to a network segment (N) having multiple content destination nodes (n) at time (t) may be expressed (in its simplest form) as:
  • P (n,i,t) is the probability that content item (i) will be used by content destination node (n) at time (t)
  • f 1 is a generalized function indicative that the calculation of utility as a function of the aggregated information from many content destination nodes may involve combining the per content destination node information in different ways.
  • the utility (U) of sending a particular content item (i) is therefore a function of the sum across all relevant content destination nodes of the probabilities that this content item (i) will be useful to those content destination nodes.
  • the scope of a network segment (N) is defined in part by the physical topology of the network and in part by the content distribution mode. Broadcast, by definition, reaches all content distribution nodes that are broadcast aware. Switched Broadcast reaches all content distribution nodes that are within a defined switching area (which is typically geographically defined). Multicast reaches all content distribution nodes that are subtended from a multicast replication point. Unicast reaches one content distribution node. Although primarily depicted and described with respect to this definition of the scope of a network segment (N), in other embodiments a network segment may be defined in other ways.
  • information is fed back from content destination nodes to decision points in the network to determine which content items should be sent, and with what priority, sequence, or schedule.
  • feedback information may also include information identifying content items currently available at content destination nodes.
  • the calculation of utility (U) may be modified to incorporate a storage factor (S) which represents a probability that a content item (i) will not be available at content distribution node (n) at time (t) from the content destination node itself, from a local caching node, or from a nearby content destination node, and, thus, must be obtained from a content distribution server.
  • S storage factor
  • the modified utility (U) may be expressed as:
  • P (n,i,t) is the probability that content item (i) will be used by content destination node (n) at time (t)
  • S (n,i,t) is the storage factor representing a probability that content item (i) will not be available at content distribution node (n) at time (t)
  • f 1 is a generalized function indicative that the calculation of utility as a function of the aggregated information from many content destination nodes may involve combining the per content destination node information in different ways
  • f 2 is a generalized function indicative that there are multiple ways of calculating utility as a function of those factors affecting utility which are specific to a particular content destination node.
  • the content items currently available at the content destination nodes may be reported by each of the content destination nodes, or determined in any other manner (e.g., based on the history of the content items which were previously sent to that content destination node).
  • the content items which may be useful to the content destination nodes may be determined in any manner (e.g., based on one or more of requests for content items received from content destination nodes, predictions of requests for content items expected to be received from content destination nodes, recommendations of content items, and the like, as well as various combinations thereof).
  • recommendation agents may request content on behalf of an EUT 140 based on a prediction of which content items are likely to be of interest to the end user.
  • predictions P (n,i,t) may be based on an analysis of various factors, such as past content consumed, direct signaling from the end user regarding which types of content items are of interest, the catalog of possible content items which might be proposed to the end user, a list of content items which will be proposed to the end user, observed patterns of consumption from other users (e.g., end users determined to be similar to this end user), one or more characteristics of the content item (e.g., type of content, quality of content, and like characteristics), end user terminal characteristics (e.g., storage capabilities, screen size, and similar characteristics), and the like, as well as various combinations thereof.
  • characteristics of the content item e.g., type of content, quality of content, and like characteristics
  • end user terminal characteristics e.g., storage capabilities, screen size, and similar characteristics
  • the requests from such recommendation agents may occur without any active involvement from the end user such that a ‘request’ for a content item may therefore occur without any active involvement of the end user.
  • a request for a content item (i) that is generated by a recommendation agent will have a lower probability P (n,i,t) of being useful than a request for a content item (i) that is directly requested by an end user (e.g., since the content item that is directly requested by the end user will very likely be used by the end user while the content item that is recommended to the end user may not be accepted by the end user).
  • the probability that a content item will be useful at a time in the future may be a function of time.
  • a content item may be more likely or less likely to be requested as a function of the time of day, day of week, day of year, time before or since some event, and the like, as well as various combinations thereof.
  • a recently released movie may have a higher probability of being used than a movie not recently released
  • a horror film may have a higher probability of being used at night
  • a holiday film might have a higher probability of being used near the corresponding holiday, and so forth.
  • a value indicative of the probability that a content item will be useful at a time in the future may be calculated in a number of ways.
  • the value indicative of the probability that a particular content item will be useful at a time in the future may be calculated by calculating the area under a graph in which the probability of utility of that content item is graphed as a function of time. An example is depicted and described with respect to FIG. 5A .
  • FIG. 5A depicts an exemplary graph showing a probability of usage for a content item (i) as a function of time (t) and a sample implementation of the item-node utility function f 2 which may be used for computing utility U based on the exemplary probability of usage. As depicted in FIG. 5A , this example is for a horror movie.
  • a graph 501 of the probability of usage of content item (i) for a node (n) as a function of time (t) is provided (denoted as P (i,n) ).
  • P (i,n) the probability of usage of content item (i) for a node (n) as a function of time (t)
  • the value indicative of the probability that a content item will be useful at a time in the future may be calculated by applying weighting factors to the probability that the content item will be used, on the basis of time.
  • An example is depicted and described with respect to FIG. 5B .
  • FIG. 5B depicts an exemplary graph showing a probability of usage for a content item (i) as a function of time (t) and a sample implementation of the item-node utility function f 2 which may be used for computing utility U based on the exemplary probability of usage. As depicted in FIG. 5B , this example is for a horror movie.
  • a graph 501 of the probability of usage of content item (i) for a node (n) as a function of time (t) is provided (denoted as P (i,n) ).
  • P (i,n) the probability of usage of content item (i) for a node (n) as a function of time (t)
  • item-node utility function f 2 may be implemented by determining the area under graph 501 (depicted as graph 521 ) where areas under the graph at different times are modified by a weighting function W (t) that is applied in determining item-node utility function f 2 .
  • item-node utility function f 2 ⁇ (P (i,n) *W (t) )dt. This function gives a weighted representation of the area under the curve of graph 501 (seen as a shaded area in graph 521 ). It should be noted that this is merely a sample implementation of item-node utility function f 2 , which may be implemented in various other ways.
  • a graph 522 of the weighting function W (t) as a function of time (t) is provided.
  • the weighting value of weighting function W (t) decreases during the hours of peak network usage and then increases during the hours of off-peak network usage, and, in the long term the weighting value of weighting function W (t) decreases linearly. It should be noted that this is merely one example of a graph for weighting function W (t) .
  • the weighting function W (t) (e.g., the manner in which the value of the weight varies over time) may be implemented in many different ways, some examples of which follow.
  • the value may be low because the network will not have time to deliver the content in its entirety.
  • probability of being used prior to the next off-peak period may have a low value because there is no opportunity to remove demand from the network peak load.
  • probabilities of usage which are distant in the future may be given a lower value because during the intervening period the end user preferences may change, which will modify the probability that a content item will be useful to the end user.
  • the value indicative of the probability that a content item will be useful at a time in the future may also be calculated in various other ways.
  • the value indicative of the probability that a content item will be useful incorporates information about already-cached partial or complete instances of the content item in end user terminals or in the network. For example, it may be assumed that, if a content item is sent to a content distribution node that already has that content item in its entirety, the new instance of the content item has a low (or zero) probability of being used because the existing version will be used. It will not necessarily be zero in all cases, however, because, for example, there might be a large number of end users requesting a content item such that the end users exceed the serving capacity of an intermediate node at which the content item is cached. In this case, sending the same content item in broadcast mode, or to be stored at additional caching points, has utility.
  • calculation of utility incorporates information about the marginal value MV (n,i,t) of delivering a content item (i) to a content destination node (n) at time (t), assuming that the content item will be used at that content destination node.
  • content items might be priced individually, and some items might be ‘premium’ content having a higher price, and therefore a greater marginal value if available at the content distribution node.
  • prices for the same content item may differ between content distribution nodes (e.g., geographically segmented pricing), as a function of time, and the like, as well as various combinations thereof.
  • modified utility (U) may be expressed as:
  • P (n,i,t) is the probability that content item (i) will be used by content destination node (n) at time (t)
  • S (n,i,t) is the storage factor representing a probability that content item (i) will not be already available at content distribution node (n) at time (t)
  • MV (n,i,t) is the marginal value of delivering a content item (i) to a content destination node (n) at time (t)
  • f 1 is a generalized function as described hereinabove
  • f 2 is a generalized function as described hereinabove.
  • the content utility prediction information may be provided to the content distribution scheduler from any number of predictive intelligence points.
  • the predictive intelligence point is a network node
  • the predictive intelligence point(s) may be network nodes and/or end user terminals.
  • the CDS 150 determines the distribution schedule for the content items by selecting, for each content item, a content distribution mode by which the content item will be distributed, and, optionally, a distribution time of the content item.
  • the distribution mode selected for a content item is one of broadcast distribution, switched broadcast distribution, multicast distribution, unicast distribution, and the like.
  • the distribution time selected for a content item is the time at which the content item is propagated from the source of the content item to the content destination node(s) for which the content item is intended.
  • the distribution schedule (e.g., selection of content distribution modes for respective content items and, optionally, selection of distribution times for the respective content items) may be determined based on various factors.
  • the selection of the content distribution mode for a content item is based on the content utility prediction information for the content item (e.g., based on the utility value indicative of the number of content destination nodes which are expected to find a content item useful, weighted by a value indicative of the probability that a given content item will be useful for each of the content distribution node). That is, using the embodiment of the utility calculation described hereinabove (where • represents P (n,i,t) and, optionally, one or both of S (n,i,t) and MV (n,i,t) ):
  • the content distribution mode (m) for delivering content item (i) into network segment (N) may be selected by calculating a utility value U (m,i,N,t) for each available content distribution mode (m).
  • the content distribution mode (m) for which the highest utility value U (m,i,N,t) is calculated is selected as the content distribution mode by which that content item (i) is distributed to that network segment (N).
  • U THRESHOLD 0, such that the count of content destination nodes with a non-zero utility in a network segment N is the fan-out for that content item.
  • the distribution mode (m) is selected based on the computed F-O (i,N,t) .
  • content items having the highest F-O (i,N,t) values are distributed using broadcast, the content items having intermediate F-O (i,N,t) values are distributed using multicast, and the content items having the lowest F-O (i,N,t) values are distributed using unicast.
  • the distribution mode (m) is selected based on any combination of utility (U) and fan-out (F-O), and, optionally, may factor-in specifics of the network by which the content items are delivered.
  • all content items having a high fan-out (F-O) satisfying at least some minimum utility threshold are distributed via a broadcast network until a desired amount of available time/capacity slots have been filled for a broadcast distribution window, at which point remaining content items may be assigned to a shared network using a sum of content destination node utility values as a prioritization mechanism (e.g., using multicast mode if the content item is intended for distribution to multiple content destination nodes; using unicast mode if the content item is intended for distribution to only one content destination node, i.e., U (i,N,t) >U THRESHOLD ).
  • F-O fan-out
  • a combination of utility (U) and fan-out (F-O) may be used in various other ways for selecting the content distribution mode by which different content items are distributed.
  • U (i,t) is a measure of the importance of distributing content item (i), which may be used for prioritizing, sequencing, and/or scheduling content items.
  • the selection of distribution order and timing for content items may be performed in a number of ways.
  • the selection of distribution order/times for content items may include prioritizing the content items with respect to each other (e.g., using rank ordering based on respective U (i,t) values).
  • the selection of distribution order/times for content items may include sequencing the content items with respect to each other.
  • the selection of distribution order/times for content items may include scheduling the content items into defined time/capacity slots.
  • the determination of the content distribution schedule may be performed using other information.
  • the distribution schedule may be determined based on times at which the content items become available, times until which the content items remain available, end user expectations regarding delivery of the content items (e.g., whether users will expect to receive the content items as soon as they becomes available or will be willing to wait a certain period of time before receiving the content items), end user plans regarding presentation of the content items (e.g., whether the end users are expected to or plan to review the content immediately or at a later time), respective values of the content items, and the like, as well as various combinations thereof.
  • end user expectations regarding delivery of the content items e.g., whether users will expect to receive the content items as soon as they becomes available or will be willing to wait a certain period of time before receiving the content items
  • end user plans regarding presentation of the content items e.g., whether the end users are expected to or plan to review the content immediately or at a later time
  • respective values of the content items e.g., whether the end users are expected to or plan to review the content immediately or at a later time
  • the distribution schedule may be determined based on network status information associated with the current and/or expected state of the network, such as network capacity constraint information (e.g., network capacity that is available, network capacity expected to be available in the future, and the like), the cost of delivering the content item (e.g., in terms of network resources or some other measure of cost, such as the size of the content item and the associated share of network resources that will be consumed by sending the content item), and the like, as well as various combinations thereof.
  • network capacity constraint information e.g., network capacity that is available, network capacity expected to be available in the future, and the like
  • cost of delivering the content item e.g., in terms of network resources or some other measure of cost, such as the size of the content item and the associated share of network resources that will be consumed by sending the content item
  • the like as well as various combinations thereof.
  • the content distribution schedule may be determined based on various other factors.
  • a local caching node (illustratively, LCN 131 ) is a special instance of a content destination node.
  • the local caching node is a server in the access or aggregation network that stores content on behalf of a set of end users.
  • the function of the local caching server is to keep content distribution local.
  • One use of a local caching server is to store content for access by one or more end users who have end user terminals with no storage capacity.
  • Another use of a local caching server is to store an instance of a content item and distribute it, when required, to multiple end users, thereby reducing the load on the network between the local caching server and a content distribution server.
  • the probability that a content item at a local caching node will be used is a function of the probability that the content item will be used by one or more of the end users with access to that local caching node.
  • P (n,i,t) is the probability that content item (i) will be used by content destination node (n) attached to the local caching node (LCN) at time (t)
  • f 3 is a function combining the probabilities of use by one of the end users.
  • function f 3 may be implemented according to the following procedure:
  • the P LCN (i,t) for the local caching node LCN may be computed as follows.
  • the initial assessment of P LCN (i,t) is 0.6 based on the first user.
  • the final value of P LCN (i,t) for the local caching node LCN is 0.748.
  • function f 3 may be implemented using recursive Bayesian estimation, which may incorporate other information known at the local caching nodes (e.g., such as the history that a given end user use probability has been reported given that a content item was used).
  • the function f 3 may be implemented in various other ways.
  • the CDS 150 directs distribution of content items to content destination nodes based on the content distribution schedule.
  • the CDS 150 provides the content distribution schedule information to CS 110 , for use by CDSs 111 in determining: which content items should be distributed, to which content destination nodes the content items should be distributed, the order in which content items should be distributed (e.g., priority), the content distribution mode(s) by which the content items should be distributed, at which time(s) the content items should be distributed, and the like, as well as various combinations thereof.
  • the CDS 150 may direct distribution of content items from CS 110 to content destination nodes in any manner.
  • CDS 150 may provide the content distribution schedule to CS 110 such that each CDS 111 processes the content distribution schedule in order to determine which portion(s) of the content distribution schedule have applicability to that CDS 111 .
  • CDS 150 may process the content distribution schedule in order to direct each of the CDSs 111 to distribute content to the content destination nodes according to the content distribution schedule.
  • the CDS 150 may direct distribution of content items from CS 110 to content destination nodes in any other manner.
  • CDS 150 in performing content distribution functions of the present invention may be better understood with respect to the method depicted and described with respect to FIG. 2 and the example depicted and described with respect to FIG. 3 .
  • FIG. 2 depicts a method according to one embodiment of the present invention.
  • method 200 of FIG. 2 includes a method for delivering content from content sources to content destination nodes according to a content distribution schedule determined based on content utility prediction information. Although depicted and described as being performed serially, at least a portion of the steps of method 200 of FIG. 2 may be performed contemporaneously, or in a different order than depicted and described with respect to FIG. 2 .
  • the method 200 begins at step 202 and proceeds to step 204 .
  • step 204 content utility prediction information is received.
  • step 206 a content distribution schedule is determined.
  • step 208 content is distributed to content destination nodes based on the content distribution schedule.
  • step 210 method 200 ends. The operation of method 200 may be better understood when considered in conjunction with the description of FIG. 1 . Although depicted and described as ending (for purposes of clarity), it will be understood that method 200 will continue to operate such that distribution of content according to content utility prediction information continues to be performed dynamically.
  • FIG. 3 depicts high-level block diagrams of an example illustrating the operation of content distribution functions of the present invention.
  • the example is described within the context of a portion of the communication network architecture depicted and described with respect to FIG. 1 and, further, is depicted and described within the context of a network in which only four content items (illustratively, denoted as content items A, B, C, and D) are available to be distributed from content source(s) to content destination nodes using different content distribution modes.
  • content items A, B, C, and D are available to be distributed from content source(s) to content destination nodes using different content distribution modes.
  • FIG. 3A depicts a communication network architecture 300 A for the content distribution scheduling portion of the content distribution functions of the present invention. Specifically, FIG. 3A depicts content distribution scheduling for four content destination nodes (illustratively, including a first EUT 140 1 , a second EUT 140 2 , and a third EUT 140 3 , and a LCN 131 ).
  • the communication network architecture 300 A includes a content prediction node (CPN) 310 .
  • the CPN 310 receives content utility feedback information 305 associated with the content destination nodes.
  • the CPN 310 processes the content utility feedback information 305 to determine content utility prediction information 315 .
  • the CPN 310 provides the content utility prediction information 315 to a content distribution scheduler (illustratively, CDS 150 ).
  • first EUT 140 1 , second EUT 140 2 , and third EUT 140 3 comprise ones of the EUTs 140 of FIG. 1
  • LCN 131 is LCN 131 of FIG. 1
  • CDS 150 is CDS 150 of FIG. 1 .
  • CPN 310 which is capable of receiving content utility feedback information 305 and producing content utility prediction information 315 , may be any node including predictive intelligence.
  • CPN 310 may include one or more of the nodes of FIG. 1 (e.g., one or more of CDNs 121 , one or more of CSs 111 , or any other nodes capable of performing predictive intelligence).
  • predictive intelligence may also be provided by some or all of the content destination nodes, either in place of network-based predictive intelligence or in conjunction with network-based predictive intelligence.
  • content utility feedback information may include information identifying content items currently available at content destination nodes, content items that are, will be, and/or may be useful to content destination nodes, and the like, as well as various combinations thereof.
  • content utility feedback information for a content item provides an indication of a level of utility of that content item to the content destination node(s).
  • content utility feedback information 305 for this example indicates the following: first EUT 140 1 wants A (with probability 0.5), B (with probability 0.3), and D (with probability 0.4), and has B; second EUT 140 2 wants A (with probability 0.6) and C (with probability 0.1), but does not have any storage capabilities; third EUT 140 3 wants A (with probability 0.4), B (with probability 0.3), and C (with probability 0.2), and can get B from LCN 131 ; and LCN 131 wants A (with probability 0.6) and wants C on behalf of second EUT 140 2 (with probability 0.1).
  • this example uses static probabilities that do not vary over time, and, further, assumes that all content items are of equal marginal value.
  • content utility prediction information for a given content item may include a utility value indicative of a probability of utility of the content item, a volume (fan-out) value indicative of a number of content destination nodes which may consider the content item to be useful, and the like.
  • fan-out (F-O) is used to a select distribution mode for each content item and utility (U) is used to determine sequencing of the content items for delivery to content destination nodes.
  • the content utility prediction information 315 indicates the following: content item A has a utility value of 1.5 and a fan-out of 4 (since all 4 content destination nodes either want or may want content item A); content item B has a utility value of 0 and a fan-out of 0 (since although first EUT 140 1 may want B it also already has B; and although third EUT 140 3 may want B it can get B from LCN 131 ); content item C has a utility value of 0.3 and a fan-out of 2 (since although three of the content destination nodes want content item C, LCN 131 wants content item C on behalf of second EUT 140 2 because second EUT 140 2 has no storage); and content item D has a utility value of 0.4 and a fan-out of 1 (since the first EUT 140 1 is the only one of the four content destination nodes for which there is any indication that content item D may be useful).
  • the utility value for a content item may be computed in other ways (e.g., computing an average probability value for the content item using the individual probability values of the content utility feedback information, computing a weighted utility value using weighted versions of the probability values of the content utility feedback information, factoring in content utility for future points in time, and the like).
  • FIG. 3B depicts a communication network architecture 300 B for the content distribution portion of the content distribution functions of the present invention. Specifically, FIG. 3B depicts content distribution for four content destination nodes (illustratively, first EUT 140 1 , second EUT 140 2 , third EUT 140 3 , and LCN 131 depicted and described with respect to FIG. 3A ).
  • the communication network architecture 300 B includes a content distribution scheduler (illustratively, CDS 150 of FIG. 1 ) directing distribution of content items from a content source (illustratively, CS 110 of FIG. 1 ) to the content destination nodes.
  • the CDS 150 schedules distribution of content items from the CS 110 to the content destination nodes using received content utility prediction information (illustratively, content utility prediction information 315 depicted and described with respect to FIG. 3A ).
  • CDS 150 selects the content distribution mode for a content item using various information, such as content utility prediction information 315 associated with the content item (depicted and described with respect to FIG. 3A ) and, optionally, other information (e.g., such as network topology, current state of the network, expected state of the network, or any other relevant information), and the like, as well as various combinations thereof.
  • the CDS 150 may prioritize distribution of the content items using various information, such as the content distribution modes selected for the respective content items, as well as other information (e.g., current and/or expected state of the network, and like information), and the like, as well as various combinations thereof.
  • the CDS 150 outputs a content distribution schedule 320 that specifies a content distribution mode for each content item selected to be distributed to one or more content destination nodes and, optionally, prioritizes distribution of the content items.
  • the content distribution schedule 320 may include other information related to content distribution (omitted from FIG. 3B for purposes of clarity).
  • broadcast distribution is selected for content item A (since utility is 1.5 and the fan-out is 4), multicast distribution is selected for content item C (since utility is 0.4 and the fan-out is 2), and unicast distribution is selected for content item D (since utility is 0.3 and the fan-out is 1).
  • the content item B does not need to be distributed because LCN 131 already has a copy of content item B, first EUT 140 1 already has a copy of content item B, there is no indication that second EUT 140 2 wants content item B (and even if second EUT 140 2 does want content item B, it can be sourced from LCN 131 or from EUT 140 1 ), and third EUT 140 3 can get content item B from LCN 131 or from EUT 140 1 .
  • the content items are prioritized as follows (from highest priority to lowest priority): content item A via broadcast, content item D via unicast, and content item C via multicast.
  • the CDS 150 provides the content distribution schedule 320 to CS 110 .
  • the CS 110 distributes content to content distribution nodes according to the content distribution schedule 320 .
  • the broadcast network is a separate network (e.g., via satellite or some other broadcast network), but that the multicast and unicast distribution modes share a network (e.g., a wireline broadband network or some other network).
  • a network e.g., a wireline broadband network or some other network.
  • each of these networks only has enough capacity to send one content item at a time.
  • content items A, D, and C are distributed.
  • the content item A is distributed, via broadcast to one of the CDNs 121 of CDN 120 , which distributes content item A to LCN 131 and all three EUTs 140 1 - 140 3 .
  • the content item D is distributed (contemporaneously with distribution of content item A via broadcast transmission) in unicast mode on the shared multicast/unicast network.
  • the next content item distributed on the shared multicast/unicast network is content item C, which is distributed via multicast.
  • the CS 110 transmits one copy of content item C to a multicast replication point (illustratively, one of CDNs 121 of CDN 120 ), which replicates content item C and delivers the copies of content item C to LCN 131 and third EUT 140 3 .
  • a multicast replication point illustrated in this last example, one of CDNs 121 of CDN 120 , which replicates content item C and delivers the copies of content item C to LCN 131 and third EUT 140 3 .
  • content item C could have been retrieved by EUT 140 3 from LCN 131 , but in other instances (e.g., where no LCN exists), multicast will enable the distribution of popular content to many EUTs efficiently.
  • the present invention enables efficient merging of scheduled content distribution (e.g., in broadcast, switched broadcast, and multicast networks) with non-scheduled content delivery (e.g., unicast networks) using 1:N distribution capabilities and content caching to gain network efficiencies.
  • scheduled content distribution e.g., in broadcast, switched broadcast, and multicast networks
  • non-scheduled content delivery e.g., unicast networks
  • the present invention enhances efficiency of content delivery within the context of increasingly personalized content.
  • the efficient use of network resources drives services capabilities and controls costs, both of which are important for service providers.
  • FIG. 4 depicts a high-level block diagram of a general-purpose computer suitable for use in performing the functions described herein.
  • system 400 comprises a processor element 402 (e.g., a CPU), a memory 404 , e.g., random access memory (RAM) and/or read only memory (ROM), a content distribution module 405 , and various input/output devices 406 (e.g., storage devices, including but not limited to, a tape drive, a floppy drive, a hard disk drive or a compact disk drive, a receiver, a transmitter, a speaker, a display, an output port, and a user input device (such as a keyboard, a keypad, a mouse, and the like)).
  • processor element 402 e.g., a CPU
  • memory 404 e.g., random access memory (RAM) and/or read only memory (ROM)
  • ROM read only memory
  • content distribution module 405 e.g., storage devices, including but not limited to,
  • the present invention may be implemented in software and/or in a combination of software and hardware, e.g., using application specific integrated circuits (ASIC), a general purpose computer or any other hardware equivalents.
  • ASIC application specific integrated circuits
  • the present content distribution process 405 can be loaded into memory 404 and executed by processor 402 to implement the functions as discussed above.
  • content distribution process 405 (including associated data structures) of the present invention can be stored on a computer readable medium or carrier, e.g., RAM memory, magnetic or optical drive or diskette, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Computer Graphics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Transfer Between Computers (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
US11/967,365 2007-12-31 2007-12-31 Method and apparatus for distributing content Abandoned US20090168752A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US11/967,365 US20090168752A1 (en) 2007-12-31 2007-12-31 Method and apparatus for distributing content
CN200880123239.0A CN101911687B (zh) 2007-12-31 2008-12-22 用于分发内容的方法和装置
EP21205527.1A EP3982639A1 (de) 2007-12-31 2008-12-22 Verfahren und vorrichtung für inhaltsverteilung
JP2010540213A JP2011508333A (ja) 2007-12-31 2008-12-22 コンテンツを配信するための方法および装置
KR1020107014380A KR20100100917A (ko) 2007-12-31 2008-12-22 콘텐츠 제공 방법, 콘텐츠 제공 장치, 콘텐츠 분배 방법, 및 콘텐츠 분배 장치
PCT/IB2008/055689 WO2009087550A2 (en) 2007-12-31 2008-12-22 Method and apparatus for distributing content
EP08869357A EP2238753A2 (de) 2007-12-31 2008-12-22 Verfahren und vorrichtung für inhaltsverteilung
JP2013195263A JP5749308B2 (ja) 2007-12-31 2013-09-20 コンテンツを配信するための方法および装置
US16/218,725 US10560663B2 (en) 2007-12-31 2018-12-13 Method and apparatus for distributing content
US16/775,810 US11134219B2 (en) 2007-12-31 2020-01-29 Method and apparatus for distributing content
US17/477,814 US20220006977A1 (en) 2007-12-31 2021-09-17 Method and apparatus for distributing content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/967,365 US20090168752A1 (en) 2007-12-31 2007-12-31 Method and apparatus for distributing content

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/218,725 Continuation US10560663B2 (en) 2007-12-31 2018-12-13 Method and apparatus for distributing content

Publications (1)

Publication Number Publication Date
US20090168752A1 true US20090168752A1 (en) 2009-07-02

Family

ID=40798332

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/967,365 Abandoned US20090168752A1 (en) 2007-12-31 2007-12-31 Method and apparatus for distributing content
US16/218,725 Active US10560663B2 (en) 2007-12-31 2018-12-13 Method and apparatus for distributing content
US16/775,810 Active 2028-03-10 US11134219B2 (en) 2007-12-31 2020-01-29 Method and apparatus for distributing content
US17/477,814 Pending US20220006977A1 (en) 2007-12-31 2021-09-17 Method and apparatus for distributing content

Family Applications After (3)

Application Number Title Priority Date Filing Date
US16/218,725 Active US10560663B2 (en) 2007-12-31 2018-12-13 Method and apparatus for distributing content
US16/775,810 Active 2028-03-10 US11134219B2 (en) 2007-12-31 2020-01-29 Method and apparatus for distributing content
US17/477,814 Pending US20220006977A1 (en) 2007-12-31 2021-09-17 Method and apparatus for distributing content

Country Status (6)

Country Link
US (4) US20090168752A1 (de)
EP (2) EP3982639A1 (de)
JP (2) JP2011508333A (de)
KR (1) KR20100100917A (de)
CN (1) CN101911687B (de)
WO (1) WO2009087550A2 (de)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201889A1 (en) * 2008-02-12 2009-08-13 Nec Laboratories America, Inc. Integrated scheduling of unicast and multicast traffic in relay-enabled wireless networks
US20090234945A1 (en) * 2008-03-14 2009-09-17 Suresh Balakrishnan Chande Method, apparatus and computer program product for active node selection
US20090319612A1 (en) * 2008-06-19 2009-12-24 Brother Kogyo Kabushiki Kaisha Information distribution system, terminal apparatus, distribution server and introduction server in the information distribution system, and recording medium on which program thereof is recorded
US20120093054A1 (en) * 2010-10-18 2012-04-19 Yali Liu Systems, Methods, and Computer Program Products for Optimizing Content Distribution in a Data Networks
US20140032702A1 (en) * 2011-04-22 2014-01-30 Nec Corporation Content distribution system, control apparatus, and content distribution method
US20140052812A1 (en) * 2011-04-22 2014-02-20 Nec Corporation Content distribution system, control apparatus, and content distribution method
EP2779666A1 (de) * 2013-03-14 2014-09-17 Comcast Cable Communications, LLC Lieferung von Inhalt
US9137202B2 (en) 2011-06-09 2015-09-15 At&T Intellectual Property I, L.P. System and method for dynamically adapting network delivery modes of content
US20150264413A1 (en) * 2012-09-21 2015-09-17 Hulu, LLC Dynamic Maintenance and Distribution of Video Content on Content Delivery Networks
EP3017613A1 (de) * 2013-07-16 2016-05-11 Fastly Inc. Netzwerkparameterkonfiguration auf basis der eigenschaften einer endbenutzervorrichtung
CN105657462A (zh) * 2016-01-12 2016-06-08 深圳羚羊极速科技有限公司 一种节省流媒体服务器分发网络带宽的方法
US9553735B1 (en) * 2014-07-31 2017-01-24 Sprint Spectrum L.P. Systems and methods for determining broadcast parameters for a transmission
US20170026433A1 (en) * 2009-03-10 2017-01-26 Viasat, Inc. Internet protocol broadcasting
WO2017151738A1 (en) * 2016-03-01 2017-09-08 Hughes Network Systems, Llc Caching using multicast radio transmissions
US11082741B2 (en) 2019-11-19 2021-08-03 Hulu, LLC Dynamic multi-content delivery network selection during video playback
US11222061B2 (en) * 2019-03-28 2022-01-11 Facebook, Inc. Generating digital media clusters corresponding to predicted distribution classes from a repository of digital media based on network distribution history
US20220060444A1 (en) * 2018-12-20 2022-02-24 British Telecommunications Public Limited Company Cellular telecommunications network
CN114449477A (zh) * 2022-03-08 2022-05-06 天津理工大学 一种基于边缘缓存和免疫克隆策略的车联网内容分发方法
US11496786B2 (en) 2021-01-06 2022-11-08 Hulu, LLC Global constraint-based content delivery network (CDN) selection in a video streaming system
US12114027B2 (en) 2022-12-19 2024-10-08 Beijing Hulu Software Technology Development Co., Ltd Selection of content delivery networks using agents
US12120404B2 (en) 2020-08-14 2024-10-15 Novi Digital Entertainment Private Limited System and method for delivering media content to users

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2474227B (en) 2009-09-08 2012-02-08 Nds Ltd Delivering an audio video asset
US20110112909A1 (en) * 2009-11-10 2011-05-12 Alcatel-Lucent Usa Inc. Multicasting personalized high definition video content to consumer storage
US8977767B2 (en) 2010-10-20 2015-03-10 Qualcomm Incorporated Methods and apparatuses for affecting programming of content for transmission over a multicast network
CN102457532B (zh) * 2010-10-21 2016-03-30 中兴通讯股份有限公司 一种实现多cdn同主题视频共享的方法、装置和系统
WO2012106918A1 (zh) 2011-07-22 2012-08-16 华为技术有限公司 内容处理方法、装置和系统
WO2013103828A1 (en) * 2012-01-05 2013-07-11 Telcom Ventures, L.L.C. Systems, methods, and devices for selecting a content delivery method based on demand for particular content by customers
JP5967480B2 (ja) * 2012-07-23 2016-08-10 パナソニックIpマネジメント株式会社 コンテンツ伝送システム、コンテンツ伝送方法、送信装置、送信方法、送信プログラム、及び受信装置
CN103095708A (zh) * 2013-01-16 2013-05-08 上海交通大学 自适应海量信息传输架构
CN106161569B (zh) * 2015-04-24 2019-05-28 华为软件技术有限公司 网络内容的推荐、缓存替换方法和设备
WO2017068926A1 (ja) * 2015-10-21 2017-04-27 ソニー株式会社 情報処理装置及びその制御方法、並びにコンピュータ・プログラム
CN107369069B (zh) * 2017-07-07 2020-06-05 成都理工大学 一种基于三角形面积计算模式的商品推荐方法
CN108683728B (zh) * 2018-05-11 2022-02-25 深圳市网心科技有限公司 数据传输方法、服务器、终端、网络系统和存储介质
CN108667935A (zh) * 2018-05-11 2018-10-16 深圳市网心科技有限公司 网络业务方法、服务器、网络系统和存储介质
US11683666B2 (en) 2019-06-18 2023-06-20 Nokia Technologies Oy Data transmission
US11765417B2 (en) 2020-04-08 2023-09-19 Google Llc Systems and methods to reduce acknowledgment requests in broadcast transmission networks
CN115695560A (zh) 2021-07-23 2023-02-03 伊姆西Ip控股有限责任公司 内容分发方法、电子设备和计算机程序产品

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020078174A1 (en) * 2000-10-26 2002-06-20 Sim Siew Yong Method and apparatus for automatically adapting a node in a network
US20020156911A1 (en) * 1998-11-16 2002-10-24 Croman Joe D. Systems and methods for delivering content over a computer network
US20030002862A1 (en) * 2001-06-29 2003-01-02 Rodriguez Arturo A. Bandwidth allocation and pricing system for downloadable media content
US20030061040A1 (en) * 2001-09-25 2003-03-27 Maxim Likhachev Probabalistic networks for detecting signal content
US20030115278A1 (en) * 2001-12-13 2003-06-19 Goker Mehmet H. Method and system for personalizing content to be delivered to a group factoring into account individual interests of each group member
US20030130887A1 (en) * 2001-10-03 2003-07-10 Thurston Nathaniel Non-deterministic method and system for the optimization of a targeted content delivery
US20030227478A1 (en) * 2002-06-05 2003-12-11 Chatfield Keith M. Systems and methods for a group directed media experience
US20050010653A1 (en) * 1999-09-03 2005-01-13 Fastforward Networks, Inc. Content distribution system for operation over an internetwork including content peering arrangements
US20050076104A1 (en) * 2002-11-08 2005-04-07 Barbara Liskov Methods and apparatus for performing content distribution in a content distribution network
US20050108356A1 (en) * 2003-10-31 2005-05-19 Marcel-Catalin Rosu Method and apparatus for bandwidth efficient distribution of content
US20050120373A1 (en) * 2003-09-15 2005-06-02 Thomas William L. Systems and methods for exporting digital content using an interactive television application
US20060149854A1 (en) * 2002-01-31 2006-07-06 Steven Rudkin Network service selection
US20060195557A1 (en) * 2005-02-11 2006-08-31 Critical Path, Inc., A California Corporation Configuration of digital content communication systems
US20070124769A1 (en) * 2005-11-30 2007-05-31 Qwest Communications International Inc. Personal broadcast channels
US20070130585A1 (en) * 2005-12-05 2007-06-07 Perret Pierre A Virtual Store Management Method and System for Operating an Interactive Audio/Video Entertainment System According to Viewers Tastes and Preferences
US20070204057A1 (en) * 2006-02-28 2007-08-30 Maven Networks, Inc. Systems and methods for providing a similar offline viewing experience of online web-site content
US20070234102A1 (en) * 2006-03-31 2007-10-04 International Business Machines Corporation Data replica selector
US20080005349A1 (en) * 2004-04-16 2008-01-03 Utstarcom Distributed multimedia streaming system
US20080177861A1 (en) * 2000-04-07 2008-07-24 Basani Vijay R Method and apparatus for dynamic resource discovery and information distribution in a data network
US20080209694A1 (en) * 2006-08-11 2008-09-04 Ykk Corporation Fastener stringer and slide fastener
US20080273591A1 (en) * 2007-05-04 2008-11-06 Brooks Paul D Methods and apparatus for predictive capacity allocation
US20080301736A1 (en) * 2005-12-20 2008-12-04 Bce Inc. Method, System and Apparatus for Conveying Personalized Content to a Viewer
US20080320516A1 (en) * 2007-06-25 2008-12-25 Microsoft Corporation Tailored channel for content consumption
US20090049185A1 (en) * 2002-04-26 2009-02-19 Hudson Michael D System and methods of streamlining media files from a dispersed peer network to maintain quality of service
US20090049471A1 (en) * 2005-07-22 2009-02-19 Masahiro Kamiya Digital Broadcast Receiving Apparatus and Content Display Method
US20090106802A1 (en) * 2006-06-20 2009-04-23 Patentvc Ltd. Methods and systems for streaming from a distributed storage system
US20090133079A1 (en) * 2007-11-15 2009-05-21 At&T Knowledge Ventures, L.P. Detecting Distribution of Multimedia Content
US20090157899A1 (en) * 2007-12-13 2009-06-18 Highwinds Holdings, Inc. Content delivery network
US7584214B2 (en) * 2003-05-30 2009-09-01 Sony Corporation Information processing apparatus, information processing method, and computer program
US20100250674A1 (en) * 2007-06-22 2010-09-30 Pioneer Corporation Content delivery apparatus, content delivery method, and content delivery program

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6826564B2 (en) * 2000-07-10 2004-11-30 Fastforward Networks Scalable and programmable query distribution and collection in a network of queryable devices
US7689510B2 (en) * 2000-09-07 2010-03-30 Sonic Solutions Methods and system for use in network management of content
WO2002023363A1 (en) * 2000-09-11 2002-03-21 Into Networks, Inc. Systems and methods for delivering content over a computer network
JP4191902B2 (ja) * 2001-02-28 2008-12-03 株式会社日立製作所 コンテンツ配信装置
GB2385683A (en) * 2002-02-22 2003-08-27 Thirdspace Living Ltd Distribution system with content replication
JP2004220183A (ja) * 2003-01-10 2004-08-05 Sony Corp 情報処理装置および情報処理方法、並びにコンピュータ・プログラム
JP2004294584A (ja) * 2003-03-26 2004-10-21 Sony Corp 音楽データ転送記録方法および音楽再生装置
JP2005051562A (ja) * 2003-07-29 2005-02-24 Matsushita Electric Ind Co Ltd コンテンツ送信方法及び装置、並びにこれらを用いたコンテンツ配信システム
US20050160458A1 (en) 2004-01-21 2005-07-21 United Video Properties, Inc. Interactive television system with custom video-on-demand menus based on personal profiles
US7912457B2 (en) 2004-04-21 2011-03-22 Qualcomm Incorporated Methods and apparatus for creation and transport of multimedia content flows
US7627824B2 (en) 2004-07-12 2009-12-01 Alcatel Lucent Personalized video entertainment system
CN100405795C (zh) * 2005-02-24 2008-07-23 广东省电信有限公司研究院 分布式对等流媒体的服务系统及其点播节目的实现方法
US9491408B2 (en) * 2005-12-13 2016-11-08 Telefonaktiebolaget L M Ericsson (Publ) Technique for distributing content via different bearer types
JP2007324897A (ja) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd 配信サーバ及びクライアント端末
US8595348B2 (en) * 2006-08-09 2013-11-26 Aol Inc. Content distribution tracking through wireless mesh networks
US8201202B2 (en) 2006-12-21 2012-06-12 Sony Corporation High quality video delivery via the internet
CN101039329B (zh) * 2006-12-28 2012-03-28 中兴通讯股份有限公司 基于媒体交付的网络电视系统的媒体交付系统
CN100518305C (zh) * 2007-04-09 2009-07-22 中兴通讯股份有限公司 一种内容分发网络系统及其内容和服务调度方法
US8272015B2 (en) 2007-11-01 2012-09-18 Microsoft Corporation Alternate source conflict resolution

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020156911A1 (en) * 1998-11-16 2002-10-24 Croman Joe D. Systems and methods for delivering content over a computer network
US20050010653A1 (en) * 1999-09-03 2005-01-13 Fastforward Networks, Inc. Content distribution system for operation over an internetwork including content peering arrangements
US20080177861A1 (en) * 2000-04-07 2008-07-24 Basani Vijay R Method and apparatus for dynamic resource discovery and information distribution in a data network
US20020083118A1 (en) * 2000-10-26 2002-06-27 Sim Siew Yong Method and apparatus for managing a plurality of servers in a content delivery network
US20020078174A1 (en) * 2000-10-26 2002-06-20 Sim Siew Yong Method and apparatus for automatically adapting a node in a network
US20030002862A1 (en) * 2001-06-29 2003-01-02 Rodriguez Arturo A. Bandwidth allocation and pricing system for downloadable media content
US20030061040A1 (en) * 2001-09-25 2003-03-27 Maxim Likhachev Probabalistic networks for detecting signal content
US20030130887A1 (en) * 2001-10-03 2003-07-10 Thurston Nathaniel Non-deterministic method and system for the optimization of a targeted content delivery
US20030115278A1 (en) * 2001-12-13 2003-06-19 Goker Mehmet H. Method and system for personalizing content to be delivered to a group factoring into account individual interests of each group member
US20060149854A1 (en) * 2002-01-31 2006-07-06 Steven Rudkin Network service selection
US20090049185A1 (en) * 2002-04-26 2009-02-19 Hudson Michael D System and methods of streamlining media files from a dispersed peer network to maintain quality of service
US20090055506A1 (en) * 2002-04-26 2009-02-26 Hudson Michael D Centralized selection of peers as media data sources in a dispersed peer network
US20090055547A1 (en) * 2002-04-26 2009-02-26 Hudson Michael D Mediated multi-source peer content delivery network architecture
US20090210549A1 (en) * 2002-04-26 2009-08-20 Hudson Michael D System and methods of streamlining media files from a dispersed peer network to maintain quality of service
US20030227478A1 (en) * 2002-06-05 2003-12-11 Chatfield Keith M. Systems and methods for a group directed media experience
US20050076104A1 (en) * 2002-11-08 2005-04-07 Barbara Liskov Methods and apparatus for performing content distribution in a content distribution network
US7584214B2 (en) * 2003-05-30 2009-09-01 Sony Corporation Information processing apparatus, information processing method, and computer program
US20050120373A1 (en) * 2003-09-15 2005-06-02 Thomas William L. Systems and methods for exporting digital content using an interactive television application
US20050108356A1 (en) * 2003-10-31 2005-05-19 Marcel-Catalin Rosu Method and apparatus for bandwidth efficient distribution of content
US20080005349A1 (en) * 2004-04-16 2008-01-03 Utstarcom Distributed multimedia streaming system
US20060195557A1 (en) * 2005-02-11 2006-08-31 Critical Path, Inc., A California Corporation Configuration of digital content communication systems
US20090049471A1 (en) * 2005-07-22 2009-02-19 Masahiro Kamiya Digital Broadcast Receiving Apparatus and Content Display Method
US20070124769A1 (en) * 2005-11-30 2007-05-31 Qwest Communications International Inc. Personal broadcast channels
US20070130585A1 (en) * 2005-12-05 2007-06-07 Perret Pierre A Virtual Store Management Method and System for Operating an Interactive Audio/Video Entertainment System According to Viewers Tastes and Preferences
US20080301736A1 (en) * 2005-12-20 2008-12-04 Bce Inc. Method, System and Apparatus for Conveying Personalized Content to a Viewer
US20070204057A1 (en) * 2006-02-28 2007-08-30 Maven Networks, Inc. Systems and methods for providing a similar offline viewing experience of online web-site content
US20070234102A1 (en) * 2006-03-31 2007-10-04 International Business Machines Corporation Data replica selector
US20090106802A1 (en) * 2006-06-20 2009-04-23 Patentvc Ltd. Methods and systems for streaming from a distributed storage system
US20080209694A1 (en) * 2006-08-11 2008-09-04 Ykk Corporation Fastener stringer and slide fastener
US20080273591A1 (en) * 2007-05-04 2008-11-06 Brooks Paul D Methods and apparatus for predictive capacity allocation
US20100250674A1 (en) * 2007-06-22 2010-09-30 Pioneer Corporation Content delivery apparatus, content delivery method, and content delivery program
US20080320516A1 (en) * 2007-06-25 2008-12-25 Microsoft Corporation Tailored channel for content consumption
US20090133079A1 (en) * 2007-11-15 2009-05-21 At&T Knowledge Ventures, L.P. Detecting Distribution of Multimedia Content
US20090157899A1 (en) * 2007-12-13 2009-06-18 Highwinds Holdings, Inc. Content delivery network

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8098609B2 (en) * 2008-02-12 2012-01-17 Nec Laboratories America, Inc. Integrated scheduling of unicast and multicast traffic in relay-enabled wireless networks
US20090201889A1 (en) * 2008-02-12 2009-08-13 Nec Laboratories America, Inc. Integrated scheduling of unicast and multicast traffic in relay-enabled wireless networks
US20090234945A1 (en) * 2008-03-14 2009-09-17 Suresh Balakrishnan Chande Method, apparatus and computer program product for active node selection
US20090319612A1 (en) * 2008-06-19 2009-12-24 Brother Kogyo Kabushiki Kaisha Information distribution system, terminal apparatus, distribution server and introduction server in the information distribution system, and recording medium on which program thereof is recorded
US11212328B2 (en) 2009-03-10 2021-12-28 Viasat, Inc. Internet protocol broadcasting
US20170026433A1 (en) * 2009-03-10 2017-01-26 Viasat, Inc. Internet protocol broadcasting
US10637901B2 (en) * 2009-03-10 2020-04-28 Viasat, Inc. Internet protocol broadcasting
US20120093054A1 (en) * 2010-10-18 2012-04-19 Yali Liu Systems, Methods, and Computer Program Products for Optimizing Content Distribution in a Data Networks
US8527648B2 (en) * 2010-10-18 2013-09-03 At&T Intellectual Property I, L.P. Systems, methods, and computer program products for optimizing content distribution in data networks
EP2701067A1 (de) * 2011-04-22 2014-02-26 Nec Corporation Inhaltsverteilungssystem, steuervorrichtung und inhaltsverteilungsverfahren
EP2701067A4 (de) * 2011-04-22 2015-01-21 Nec Corp Inhaltsverteilungssystem, steuervorrichtung und inhaltsverteilungsverfahren
US20140052812A1 (en) * 2011-04-22 2014-02-20 Nec Corporation Content distribution system, control apparatus, and content distribution method
US20140032702A1 (en) * 2011-04-22 2014-01-30 Nec Corporation Content distribution system, control apparatus, and content distribution method
US9137202B2 (en) 2011-06-09 2015-09-15 At&T Intellectual Property I, L.P. System and method for dynamically adapting network delivery modes of content
US11290567B2 (en) 2011-06-09 2022-03-29 At&T Intellectual Property L, L.P. System and method for dynamically adapting network delivery modes of content
US11601526B2 (en) 2011-06-09 2023-03-07 At&T Intellectual Property I, L.P. System and method for dynamically adapting network delivery modes of content
US10944848B2 (en) 2011-06-09 2021-03-09 At&T Intellectual Property I, L.P. System and method for dynamically adapting network delivery modes of content
US9516139B2 (en) 2011-06-09 2016-12-06 At&T Intellectual Property I, L.P. System and method for dynamically adapting network delivery modes of content
US10356207B2 (en) 2011-06-09 2019-07-16 At&T Intellectual Property I, L.P. System and method for dynamically adapting network delivery modes of content
US9712850B2 (en) * 2012-09-21 2017-07-18 Hulu, LLC Dynamic maintenance and distribution of video content on content delivery networks
US20150264413A1 (en) * 2012-09-21 2015-09-17 Hulu, LLC Dynamic Maintenance and Distribution of Video Content on Content Delivery Networks
US9357021B2 (en) 2013-03-14 2016-05-31 Comcast Cable Communications, Llc Delivery of content
US11689593B2 (en) 2013-03-14 2023-06-27 Comcast Cable Communications, Llc Delivery of content
US11245739B2 (en) 2013-03-14 2022-02-08 Comcast Cable Communications, Llc Delivery of content
EP2779666A1 (de) * 2013-03-14 2014-09-17 Comcast Cable Communications, LLC Lieferung von Inhalt
US11962631B2 (en) 2013-03-14 2024-04-16 Comcast Cable Communications, Llc Delivery of content
US10728299B2 (en) 2013-03-14 2020-07-28 Comcast Cable Communications, Llc Delivery of content
EP3017613A1 (de) * 2013-07-16 2016-05-11 Fastly Inc. Netzwerkparameterkonfiguration auf basis der eigenschaften einer endbenutzervorrichtung
US10432482B2 (en) 2013-07-16 2019-10-01 Fastly, Inc. Network parameter configuration based on end user device characteristics
EP3017613A4 (de) * 2013-07-16 2017-03-29 Fastly Inc. Netzwerkparameterkonfiguration auf basis der eigenschaften einer endbenutzervorrichtung
US9553735B1 (en) * 2014-07-31 2017-01-24 Sprint Spectrum L.P. Systems and methods for determining broadcast parameters for a transmission
CN105657462A (zh) * 2016-01-12 2016-06-08 深圳羚羊极速科技有限公司 一种节省流媒体服务器分发网络带宽的方法
US10158687B2 (en) 2016-03-01 2018-12-18 Hughes Network Systems, Llc Caching using multicast radio transmissions
WO2017151738A1 (en) * 2016-03-01 2017-09-08 Hughes Network Systems, Llc Caching using multicast radio transmissions
US20220060444A1 (en) * 2018-12-20 2022-02-24 British Telecommunications Public Limited Company Cellular telecommunications network
US11222061B2 (en) * 2019-03-28 2022-01-11 Facebook, Inc. Generating digital media clusters corresponding to predicted distribution classes from a repository of digital media based on network distribution history
US11082741B2 (en) 2019-11-19 2021-08-03 Hulu, LLC Dynamic multi-content delivery network selection during video playback
US12120404B2 (en) 2020-08-14 2024-10-15 Novi Digital Entertainment Private Limited System and method for delivering media content to users
US11496786B2 (en) 2021-01-06 2022-11-08 Hulu, LLC Global constraint-based content delivery network (CDN) selection in a video streaming system
US11889140B2 (en) 2021-01-06 2024-01-30 Hulu, LLC Global constraint-based content delivery network (CDN) selection in a video streaming system
CN114449477A (zh) * 2022-03-08 2022-05-06 天津理工大学 一种基于边缘缓存和免疫克隆策略的车联网内容分发方法
US12114027B2 (en) 2022-12-19 2024-10-08 Beijing Hulu Software Technology Development Co., Ltd Selection of content delivery networks using agents

Also Published As

Publication number Publication date
WO2009087550A2 (en) 2009-07-16
US11134219B2 (en) 2021-09-28
US10560663B2 (en) 2020-02-11
CN101911687A (zh) 2010-12-08
CN101911687B (zh) 2015-07-22
EP3982639A1 (de) 2022-04-13
US20200169697A1 (en) 2020-05-28
EP2238753A2 (de) 2010-10-13
US20190116340A1 (en) 2019-04-18
WO2009087550A3 (en) 2009-09-11
US20220006977A1 (en) 2022-01-06
JP2014059878A (ja) 2014-04-03
KR20100100917A (ko) 2010-09-15
JP5749308B2 (ja) 2015-07-15
JP2011508333A (ja) 2011-03-10

Similar Documents

Publication Publication Date Title
US11134219B2 (en) Method and apparatus for distributing content
US10356199B2 (en) Content distribution with a quality based on current network connection type
US9210217B2 (en) Content broker that offers preloading opportunities
US9338233B2 (en) Distributing content by generating and preloading queues of content
US8868639B2 (en) Content broker assisting distribution of content
US9513893B2 (en) Scheduled downloads: enabling background processes to receive broadcast data
JP4603565B2 (ja) 動的にシンジゲートされたコンテンツ配信のシステムおよび方法
US20110196758A1 (en) Intelligent broadcast techniques to optimize wireless device bandwidth usage
JP4886854B2 (ja) ブロードキャスト・ネットワーク上における個別化コンテンツの配信
US11373223B1 (en) Systems and methods for proactively loading content to a device
KR101986625B1 (ko) 콘텐츠 브로커의 콘텐츠 분배 보조
GB2440408A (en) Method and System for Scheduling of Messages
US9326296B2 (en) Method and apparatus for scheduling delivery of content according to quality of service parameters
US20060230173A1 (en) Methods and apparatus for service planning and analysis
US11895530B2 (en) System and method for out-of-order transmission stream of content via ambient intelligent one-to-many transmission mode

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALCATEL LUCENT, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEGEL, JONATHAN;REEL/FRAME:020304/0268

Effective date: 20071221

AS Assignment

Owner name: CREDIT SUISSE AG, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:LUCENT, ALCATEL;REEL/FRAME:029821/0001

Effective date: 20130130

Owner name: CREDIT SUISSE AG, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:ALCATEL LUCENT;REEL/FRAME:029821/0001

Effective date: 20130130

AS Assignment

Owner name: ALCATEL LUCENT, FRANCE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG;REEL/FRAME:033868/0555

Effective date: 20140819

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION