US20090120618A1 - Cooling apparatus for a computer system - Google Patents

Cooling apparatus for a computer system Download PDF

Info

Publication number
US20090120618A1
US20090120618A1 US12/264,796 US26479608A US2009120618A1 US 20090120618 A1 US20090120618 A1 US 20090120618A1 US 26479608 A US26479608 A US 26479608A US 2009120618 A1 US2009120618 A1 US 2009120618A1
Authority
US
United States
Prior art keywords
heat
cooling apparatus
evaporator
working medium
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/264,796
Other languages
English (en)
Inventor
Christoph Konig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Technology Solutions GmbH
Original Assignee
Fujitsu Technology Solutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Technology Solutions GmbH filed Critical Fujitsu Technology Solutions GmbH
Assigned to FUJITSU SIEMENS COMPUTERSE GMBH reassignment FUJITSU SIEMENS COMPUTERSE GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KONIG, CHRISTOPH
Publication of US20090120618A1 publication Critical patent/US20090120618A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20827Liquid cooling with phase change within rooms for removing heat from cabinets, e.g. air conditioning devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid

Definitions

  • the invention relates to a cooling apparatus for a computer system and to a method for cooling at least one heat producing component of a computer system.
  • the purpose of the invention is to create a cooling apparatus for a computer system, and a method for cooling at least one heat producing component of a computer system, which enables an effective cooling and an efficient and versatile use of waste heat from a computer system.
  • the problem is solved by means of a cooling apparatus for a computer system which features an evaporator for a working medium, where the evaporator can be thermally coupled to the at least one heat producing component of the computer system, and the cooling apparatus is a heat engine.
  • the cooling apparatus For the cooling apparatus, evaporation of the working medium achieves an effective heat absorption, which brings about good cooling properties.
  • the absorbed heat can be converted in a thermodynamic cycle of the heat engine into mechanical energy, which is usable in manifold ways.
  • a steam turbine having a generator for converting the mechanical energy into electrical power can be employed, and the electrical power can be used to cover a portion of the primary power requirement of the computer system.
  • the working medium is a mixture of ammonia and water.
  • a thermodynamic cycle based on this working medium is also termed a Kalina process.
  • This mixture evaporates at temperatures below the maximum possible operating temperature of electronic components, of processors in particular. For this reason, evaporation of this type of working medium is well-suited for cooling the components of a computer system.
  • an ammonia-rich vapor phase and an ammonia-poor liquid phase arise during evaporation, by means of which the evaporating temperature of the yet liquid portion of the mixture increases during evaporation. The increase brings about good heat transfer properties in the evaporator.
  • the problem is solved by means of a method for cooling at least one heat-producing component of a computer system, with the evaporator being capable of being coupled thermally to the at least one heat producing component of the computer system and the cooling apparatus being an absorption refrigerator.
  • Heat absorbed in the evaporator can be used for cooling purposes in the cooling apparatus by means of the thermodynamic cycle of the absorption refrigerator.
  • an air-conditioning system can be operated or supported in order to provide climate control for the rooms of the computer system, effectively lowering the primary power requirement connected with operation of the computer system.
  • the problem is solved by means of a method for which a working medium is at least partially evaporated in an evaporator by means of the generated heat, and a vapor phase of the working medium arising in the course of evaporation is expanded in a steam turbine with the delivery of a mechanical yield.
  • the problem is solved by means of a method for which a working medium is partially evaporated in an evaporator by means of the generated heat, a vapor phase of said working medium arising in the course of a partial evaporation is refrigerated and condensed and the condensed working medium is evaporated in an additional evaporator while absorbing evaporation heat.
  • FIG. 1 is a schematic depiction of a first embodiment of a cooling apparatus for a computer system
  • FIG. 2 is the schematic depiction of a second embodiment of a cooling apparatus for a computer system
  • FIG. 3 is the schematic depiction of a third embodiment of a cooling apparatus for a computer system.
  • a processor 1 is in direct thermal contact with an evaporator 2 .
  • the evaporator 2 is connected by means of a working medium circuit 3 , to a separator 4 .
  • a first outlet of the separator 4 is connected to a steam turbine 5 , which is coupled to a generator 6 .
  • a low-pressure outlet of the steam turbine 5 and a second outlet of the separator 4 are led to a condenser 7 that is tied to a cooling-water flow 8 .
  • the outlet of the condenser 7 is connected to the evaporator 2 by means of a condensate pump 9 .
  • waste heat from a heat producing component of the computer system here, by means of example, the processor 1
  • the evaporator 2 is in direct thermal contact with the processor 1 for this purpose. To this end, it works to advantage for the evaporator 2 to feature a contact surface with the processor 1 and mounting elements corresponding to the specifications of heat sinks or cooling elements for the processor 1 .
  • a working medium 3 flows through the evaporator 2 .
  • Said working medium is a liquid which evaporates or partially evaporates at relatively low temperatures at the prevailing pressure conditions within the working medium circuit 3 .
  • the working medium is evaporated in the evaporator 2 , absorbing, in this connection, a quantity of heat dependent on its heat of evaporation and on the flow rate. For this reason, the lowest temperature to which the evaporator can be brought is the boiling temperature of the working medium in the evaporator 2 at the prevailing pressure in the working medium circuit 3 .
  • the temperature of the processor 1 will be somewhat, e.g., several degrees, higher than the boiling temperature of the working medium. Since processors and electronic components in general must not exceed a certain maximum temperature, above which error functions and/or a reduction of the lifespan can result, the working medium is to be selected appropriately such that an acceptable operating temperature is reached at the component during operation.
  • a mixture of ammonia and water is particularly suited as a working medium.
  • a thermodynamic cycle which is operated with such a working medium is also termed a Kalina process.
  • a distinctive feature of the Kalina process is that an ammonia-rich vapor phase and an ammonia-poor liquid phase arise during evaporation. Changing the ammonia concentration in the liquid phase increases its evaporation temperature, leading to good heat transfer properties in the evaporator 2 .
  • the liquid phase and the vapor phase are separated from one another in the separator 4 .
  • the vapor phase is supplied to the steam turbine 5 designed as a low-pressure turbine. It is expanded in the steam turbine 5 while delivering mechanical energy that is conveyed to the generator 6 to generate electrical power.
  • the power generated by the generator 6 can be supplied again to the computer system, reducing the primary power requirement (energy consumption) of the computer system.
  • mechanical energy furnished by the steam turbine 5 can be used in other ways, e.g., in order to operate compressors for air conditioners, which are frequently employed in combination with large computer systems for additional cooling by means of air circulation.
  • the power requirement of a computer system also can be indirectly lowered in this way.
  • the expanded ammonia-rich vapor leaving the low pressure outlet of the steam turbine 5 is mixed with the ammonia-poor liquid phase isolated by the separator 4 and supplied to the condenser 7 .
  • Mixing lowers the boiling point of the working medium, which leads to a reduction in pressure.
  • the pressure difference utilized by the steam turbine 5 consequently increases, which is advantageous for an effective energy conversion in the steam turbine 5 .
  • a lowering of the temperature in the condenser makes the temperature difference attainable between evaporator and condenser greater than could be achieved with a working medium having a constant boiling point. This leads to a correspondingly superior Carnot efficiency.
  • the working medium is chilled to the point of liquefaction and can in turn be supplied to the evaporator 2 by the condensate pump 9 , closing the thermodynamic cycle.
  • liquefaction can also occur not until, or during, compression by means of the condensate pump 9 .
  • a cooling-water flow 8 passes through the condenser 7 .
  • Said cooling-water flow 8 can be part of a closed circuit in which absorbed heat is emitted, e.g. outside the building to ambient air by means of heat exchangers, or is supplied to a heating system.
  • the cooling-water flow 8 can be a fresh water flow in which absorbed heat then serves, e.g., for hot water production.
  • FIG. 1 For the sake of clarity, only one processor 1 is shown in FIG. 1 as a heat producing component of a computer system.
  • a meaningful use of the waste heat of a computer system in the way shown is effective when a cooling apparatus is employed for a large computer system having a multitude of heat producing components, thus, for example, a multitude of processors or also power supplies. If so, a provision can be made to provide an evaporator 2 on every heat producing component, with the evaporators 2 then being arranged in parallel within the working medium circuit 3 .
  • a temperature-dependent controlled valve can be provided at each evaporator 2 in order to control the partial streams of working medium conducted through the individual evaporators 2 .
  • evaporator 2 that is connected to the individual heat producing components by means of heat conducting elements, e.g., heat pipes.
  • Heat conducting elements e.g., heat pipes.
  • Larger server farms customarily feature a multitude of server racks, which, in each case, are fitted with a number of individual servers, each of which can feature several processors 1 .
  • one evaporator 2 per server can be provided that is thermally coupled to the individual processors 1 of the server by means of heat pipes.
  • FIG. 2 shows an additional embodiment of a cooling apparatus for a computer system.
  • identical reference numbers in FIGS. 1 and 2 denote identical or equally acting elements.
  • two processors 1 are in respective direct thermal contact with a first heat exchanger 10 .
  • the first heat exchangers 10 form, together with a second heat exchanger 11 and a cooling-medium pump 12 , a closed cooling circuit 13 .
  • An evaporator 2 is in direct thermal contact with the second heat exchanger 11 .
  • the evaporator 2 forms a closed working medium circuit 3 with a steam turbine 5 that is coupled to a generator 6 , a condenser 7 , and a condensate pump 9 .
  • the condenser 7 features a cooling surface 14 that is exposed to a cooling-air flow 15 .
  • the evaporation heat of a working medium also is applied in an evaporator 2 as a thermodynamic cycle is completed in order to cool processors 1 of a computer system.
  • the working medium circuit 3 does not feature a separator 4 . It is therefore not a binary method for a thermodynamic cycle having a mixed working medium that undergoes a change in concentration during evaporation.
  • a working medium such as silicone oil or another organic compounds having an inherently low boiling point is suitable.
  • a thermodynamic cycle implemented with such a working medium also is designated as an organic Rankine cycle (ORC).
  • the condenser 7 is likewise designed differently in the two embodiments.
  • an air cooling of the condenser 7 by means of the cooling surface 14 and a cooling-air flow 15 is provided instead of a liquid cooling.
  • heat absorption from heat producing components of the computer system is carried out indirectly by means of the first heat exchanger 10 and the second heat exchanger 11 , which together with the cooling-medium pump 12 form a cooling circuit 13 .
  • the heat exchangers 10 are arranged in parallel in the cooling circuit 13 .
  • a control valve can be provided ahead of each heat exchanger. Said control valve can control, for example, the flow rate to a predetermined value. A provision also can be made to control the flow rate as a function of the temperature of the heat exchanger 10 or of the corresponding processor 1 .
  • Such a construction can easily achieve a thermal coupling of several of the heat producing components to an evaporator 2 .
  • An additional advantage of this arrangement is that commercially available cooling elements for liquid cooling that are usually used in the server field can be employed as the first heat exchanger 10 .
  • This also enables a possibly aggressive working medium in the working medium circuit 3 to be spatially separated from the computer system, as indicated by a dashed line in FIG. 2 .
  • one evaporator 2 mounted outside of the servers can be provided per server rack, with this being connected to the processors 1 of the server by means of one or several second heat exchangers 11 and one or several cooling circuits 13 and a corresponding number of first heat exchangers 10 .
  • FIG. 3 An additional embodiment of a cooling apparatus for a computer system is depicted In FIG. 3 .
  • Reference numbers identical to those in FIGS. 1 and 2 likewise denote identical or equally acting elements.
  • two processors 1 are also in respective direct thermal contact with a first heat exchanger 10 .
  • the first heat exchangers 10 form, together with a second heat exchanger 11 and a cooling-medium pump 12 , a closed cooling circuit 13 .
  • An evaporator 2 is directly thermally coupled to the second heat exchanger 11 .
  • the evaporator 2 forms, together with a condenser 7 , an additional evaporator 16 , an absorber 18 and a condensate pump 9 , a closed working medium circuit 3 .
  • the condenser 7 and absorber 18 are thermally coupled to a cooling-water flow 8 .
  • the additional evaporator 16 is in thermal contact with a cooling circuit 17 .
  • Returns 19 are provided from the evaporator 2 to the absorber 18 and from the absorber 18 to the additional evaporator 16 .
  • thermodynamic cycle serves here not for mechanical energy production but for cold production by means of an absorption refrigerator.
  • a working medium having at least two components dissolved into one another, e.g., a mixture of ammonia and water or lithium bromide dissolved in water.
  • the evaporator 2 frequently is also designated as an ejector.
  • the working medium is partially evaporated in the evaporator 2 , with one of the components of the working medium being concentrated in the vapor phase.
  • Said component ammonia for an ammonia/water mixture, water for a lithium bromide/water mixture
  • the cooling medium is also referred to as the cooling medium.
  • This liquid phase of the working medium is conducted back to the absorber 18 by means of the return line 19 , depicted in FIG. 3 by a solid line.
  • the cooling medium-rich vapor phase is subsequently cooled in the condenser 7 and liquefied. The heat accumulated in this connection is absorbed by the cooling-water flow 8 and can be used for heating purposes and/or for hot water production.
  • the cooling medium-rich working medium is then evaporated in an additional evaporator 16 at low pressure, wherein a choke element can be provided in order to lower the pressure. Due to the low pressure, evaporation heat is absorbed from the cooling circuit 17 at such a low temperature level that the cooling circuit 17 can be employed in order to air-condition a room. Waste heat of the computer system can be used in this way directly, i.e., without a detour via mechanical energy, in order to air-condition the rooms in which the computer system is operated. The overall primary energy requirement for operating the computer system can thus be lowered.
  • the cooling medium-rich working medium is in turn condensed in the absorber 18 and dissolved in the cooling medium-poor working medium conducted back from the evaporator 2 .
  • the condensation heat and heat of solution emitted in this connection is conducted away by the cooling-agent stream 8 .
  • an auxiliary-medium cycle having an auxiliary medium, e.g., hydrogen gas in the case of an ammonia/water mixture as the working medium, can be additionally provided.
  • the optional return 19 depicted in FIG. 3 with a dashed line then serves to return the auxiliary medium from the absorber 18 to the additional evaporator 16 .
  • the working medium is subsequently again conducted to the evaporator 2 from the absorber 18 with the aid of the working medium pump 9 , closing the cycle.
  • the selection of a suitable working medium and a suitable dimensioning of the components can be used to achieve an efficient utilization of waste heat even for a relatively low temperature of the evaporator 2 in the range of 60-100° C. At these temperatures, components of a computer system, processors in particular, can be operated without any danger of error functions and damage.
  • an indirect heat transmission from the processors 1 to the evaporators 2 by means of the cooling circuit 13 also can be employed in combination with the Kalina cycle shown in FIG. 1
  • an air-cooling of the condenser 7 indicated in connection with FIG. 2 also can be employed with the other embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
US12/264,796 2007-11-06 2008-11-04 Cooling apparatus for a computer system Abandoned US20090120618A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007053219A DE102007053219A1 (de) 2007-11-06 2007-11-06 Kühlvorrichtung für ein Computersystem
DE102007053219.0 2007-11-06

Publications (1)

Publication Number Publication Date
US20090120618A1 true US20090120618A1 (en) 2009-05-14

Family

ID=40019208

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/264,796 Abandoned US20090120618A1 (en) 2007-11-06 2008-11-04 Cooling apparatus for a computer system

Country Status (4)

Country Link
US (1) US20090120618A1 (de)
EP (1) EP2059104A3 (de)
CN (1) CN101430590A (de)
DE (1) DE102007053219A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110232875A1 (en) * 2008-03-31 2011-09-29 Mccutchen Co. Vapor vortex heat sink
US20110240281A1 (en) * 2010-03-31 2011-10-06 Industrial Idea Partners, Inc. Liquid-Based Cooling System For Data Centers Having Proportional Flow Control Device
JP2014052115A (ja) * 2012-09-06 2014-03-20 Panasonic Corp 冷却装置およびこれを搭載した電気自動車
US20140174082A1 (en) * 2011-05-08 2014-06-26 Zibo Natergy Chemical Industry Co., Ltd. Method of generating a high-speed airflow
US20160123206A1 (en) * 2014-11-03 2016-05-05 The Boeing Company Waste heat reclamation system, method for reclamation of waste heat, and system and method for using waste heat
JP2019502089A (ja) * 2015-12-10 2019-01-24 広東合一新材料研究院有限公司Guangdong Hi−1 New Materials Technology Research Institute Co., Ltd. 各種データセンター用自然冷却源放熱システム
US20200084916A1 (en) * 2018-09-07 2020-03-12 Hensoldt Sensors Gmbh Apparatus and Method for Cooling an Electronic Assembly
US10796977B2 (en) * 2019-03-04 2020-10-06 Intel Corporation Method and apparatus to control temperature of a semiconductor die in a computer system
CN113565592A (zh) * 2021-09-01 2021-10-29 房盼盼 一种分布式冷、水、电联产系统
US11536491B2 (en) * 2020-03-30 2022-12-27 Kurt Schramm Electric integrated circuit water heater system
US11683915B1 (en) 2021-04-03 2023-06-20 Nautilus True, Llc Data center liquid conduction and carbon dioxide based cooling apparatus and method
WO2023187401A1 (en) * 2022-04-01 2023-10-05 Katrick Technologies Limited Cooling apparatus, system and method of manufacture
WO2023233116A1 (fr) * 2022-06-02 2023-12-07 Value Park Dispositif autonome de refroidissement d'un processus industriel, notamment d'un centre de traitement de données, et centre de traitement de données utilisant ledit dispositif

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305113A (zh) * 2011-09-13 2012-01-04 上海盛合新能源科技有限公司 一种石化行业中使用的低温余热回收设备
DE102011115657A1 (de) 2011-09-28 2013-03-28 Fujitsu Technology Solutions Intellectual Property Gmbh Maritimes Rechenzentrum und Arbeitsverfahren
CN103853214B (zh) * 2012-12-04 2016-04-27 联想(北京)有限公司 一种控制温度的电子设备及方法
CN103617941B (zh) * 2013-11-14 2016-05-25 中国科学院等离子体物理研究所 一种强流离子源电极的液态金属两级冷却方法
CN107168495B (zh) * 2017-06-15 2019-11-08 任剑岚 一种散热计算机主机
CN109339871A (zh) * 2018-08-17 2019-02-15 曙光信息产业(北京)有限公司 一种浸没式液冷系统的回收装置及回收方法
JP2020128838A (ja) * 2019-02-08 2020-08-27 株式会社デンソー 熱輸送システム
CN113819452A (zh) * 2020-06-18 2021-12-21 华为技术有限公司 发电系统和发电方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452722A (en) * 1966-12-30 1969-07-01 Sulzer Ag Positively operated steam generator
US5588297A (en) * 1993-09-22 1996-12-31 Saga University Thermal power generator
US6052997A (en) * 1998-09-03 2000-04-25 Rosenblatt; Joel H. Reheat cycle for a sub-ambient turbine system
US20030016499A1 (en) * 2001-07-19 2003-01-23 Masaaki Tanaka Heat collector
US6549408B2 (en) * 2000-11-20 2003-04-15 Global Cooling Bv CPU cooling device using thermo-siphon
US20030102108A1 (en) * 2001-11-30 2003-06-05 Sarraf David B. Cooling system for electronics with improved thermal interface
US6574963B1 (en) * 2001-11-16 2003-06-10 Intel Corporation Electrical energy-generating heat sink system and method of using same to recharge an energy storage device
US20050078447A1 (en) * 2003-10-08 2005-04-14 International Business Machines Corporation Method and apparatus for improving power efficiencies of computer systems
US6931876B2 (en) * 2003-10-08 2005-08-23 International Business Machines Corporation Apparatus and method for utilizing recirculated heat to cause refrigeration

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29821758U1 (de) * 1998-12-07 1999-05-12 Hagedorn, Markus, 41468 Neuss Kühlvorrichtung für Computerfunktionseinheiten
US6989989B2 (en) * 2003-06-17 2006-01-24 Utc Power Llc Power converter cooling
US7003966B2 (en) * 2003-12-19 2006-02-28 Hewlett Packard Development Company, L.P. Energy consumption reduction in a multi-effect absorption system
GB2436129A (en) * 2006-03-13 2007-09-19 Univ City Vapour power system
US20100146996A1 (en) * 2008-12-11 2010-06-17 International Business Machines Corporation Data center cooling energy recovery system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452722A (en) * 1966-12-30 1969-07-01 Sulzer Ag Positively operated steam generator
US5588297A (en) * 1993-09-22 1996-12-31 Saga University Thermal power generator
US6052997A (en) * 1998-09-03 2000-04-25 Rosenblatt; Joel H. Reheat cycle for a sub-ambient turbine system
US6549408B2 (en) * 2000-11-20 2003-04-15 Global Cooling Bv CPU cooling device using thermo-siphon
US20030016499A1 (en) * 2001-07-19 2003-01-23 Masaaki Tanaka Heat collector
US6574963B1 (en) * 2001-11-16 2003-06-10 Intel Corporation Electrical energy-generating heat sink system and method of using same to recharge an energy storage device
US20030102108A1 (en) * 2001-11-30 2003-06-05 Sarraf David B. Cooling system for electronics with improved thermal interface
US20050078447A1 (en) * 2003-10-08 2005-04-14 International Business Machines Corporation Method and apparatus for improving power efficiencies of computer systems
US6931876B2 (en) * 2003-10-08 2005-08-23 International Business Machines Corporation Apparatus and method for utilizing recirculated heat to cause refrigeration

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110232875A1 (en) * 2008-03-31 2011-09-29 Mccutchen Co. Vapor vortex heat sink
US8739540B2 (en) * 2008-03-31 2014-06-03 Mccutchen Co. Vapor vortex heat sink
US20110240281A1 (en) * 2010-03-31 2011-10-06 Industrial Idea Partners, Inc. Liquid-Based Cooling System For Data Centers Having Proportional Flow Control Device
US20140174082A1 (en) * 2011-05-08 2014-06-26 Zibo Natergy Chemical Industry Co., Ltd. Method of generating a high-speed airflow
US9650920B2 (en) * 2011-05-08 2017-05-16 Shandong Natergy Energy Technology Co., Ltd. Method of generating a high-speed airflow
JP2014052115A (ja) * 2012-09-06 2014-03-20 Panasonic Corp 冷却装置およびこれを搭載した電気自動車
US20160123206A1 (en) * 2014-11-03 2016-05-05 The Boeing Company Waste heat reclamation system, method for reclamation of waste heat, and system and method for using waste heat
JP2019502089A (ja) * 2015-12-10 2019-01-24 広東合一新材料研究院有限公司Guangdong Hi−1 New Materials Technology Research Institute Co., Ltd. 各種データセンター用自然冷却源放熱システム
US20200084916A1 (en) * 2018-09-07 2020-03-12 Hensoldt Sensors Gmbh Apparatus and Method for Cooling an Electronic Assembly
JP2020053682A (ja) * 2018-09-07 2020-04-02 ヘンソルト、センサーズ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングHensoldt Sensors Gmbh 電子アセンブリを冷却するための装置および方法
US10856440B2 (en) * 2018-09-07 2020-12-01 Hensoldt Sensors Gmbh Apparatus and method for cooling an electronic assembly
JP7349854B2 (ja) 2018-09-07 2023-09-25 ヘンソルト、センサーズ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 電子アセンブリを冷却するための装置および方法
US10796977B2 (en) * 2019-03-04 2020-10-06 Intel Corporation Method and apparatus to control temperature of a semiconductor die in a computer system
US11536491B2 (en) * 2020-03-30 2022-12-27 Kurt Schramm Electric integrated circuit water heater system
US11683915B1 (en) 2021-04-03 2023-06-20 Nautilus True, Llc Data center liquid conduction and carbon dioxide based cooling apparatus and method
CN113565592A (zh) * 2021-09-01 2021-10-29 房盼盼 一种分布式冷、水、电联产系统
WO2023187401A1 (en) * 2022-04-01 2023-10-05 Katrick Technologies Limited Cooling apparatus, system and method of manufacture
WO2023233116A1 (fr) * 2022-06-02 2023-12-07 Value Park Dispositif autonome de refroidissement d'un processus industriel, notamment d'un centre de traitement de données, et centre de traitement de données utilisant ledit dispositif
FR3136273A1 (fr) * 2022-06-02 2023-12-08 Value Park Dispositif autonome de refroidissement d’un processus industriel, notament d’un centre de traitement de données, et centre de traitement de données utilisant ledit dispositif

Also Published As

Publication number Publication date
CN101430590A (zh) 2009-05-13
EP2059104A3 (de) 2011-10-19
EP2059104A2 (de) 2009-05-13
DE102007053219A1 (de) 2009-05-07

Similar Documents

Publication Publication Date Title
US20090120618A1 (en) Cooling apparatus for a computer system
US7178348B2 (en) Refrigeration power plant
CA2755034C (en) Rankine cycle integrated with absorption chiller
KR101280520B1 (ko) 폐열원 전력생산 시스템
JP2009529237A (ja) サーバーベースデータセンタを冷却するためのシステム及び方法
Mohammadi et al. Energy and exergy comparison of a cascade air conditioning system using different cooling strategies
JP2009216383A (ja) 多元ヒートポンプ式蒸気・温水発生装置
KR20110103999A (ko) 냉각 방법 및 장치
JP2008298407A (ja) 多元ヒートポンプ式蒸気・温水発生装置
US20080314077A1 (en) Cooler For Transformer Using Generation Cycle
JP2011099640A (ja) ハイブリッドヒートポンプ
KR101218547B1 (ko) 복합 냉동기
WO2017169925A1 (ja) 冷却システムおよび冷却方法
KR101060512B1 (ko) 냉·온수 생성장치
JP6666148B2 (ja) 吸収熱機関を有する冷却される燃料電池を有する電気設備
KR200428357Y1 (ko) 히트펌프용 냉수/온수 발생 시스템
JP2007187428A (ja) 換気排熱・蓄熱材併用高効率ヒートポンプ暖冷房装置
CN110274330A (zh) 一种太阳能节能空调器
JP3918980B2 (ja) 冷凍装置
CN219628169U (zh) 一种散热系统
RU2407960C1 (ru) Установка водяного охлаждения
CN213690433U (zh) 一种电脑cpu冷却装置
US20240219091A1 (en) Watermaker with Sandwich Evaporation Assembly
KR101829771B1 (ko) 내구성과 에너지 효율성이 향상된 히트펌프의 시스템
JP5262428B2 (ja) ヒートポンプシステム

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJITSU SIEMENS COMPUTERSE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KONIG, CHRISTOPH;REEL/FRAME:022100/0303

Effective date: 20081111

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION