US20080159879A1 - Axial Piston Machine - Google Patents
Axial Piston Machine Download PDFInfo
- Publication number
- US20080159879A1 US20080159879A1 US10/591,024 US59102405A US2008159879A1 US 20080159879 A1 US20080159879 A1 US 20080159879A1 US 59102405 A US59102405 A US 59102405A US 2008159879 A1 US2008159879 A1 US 2008159879A1
- Authority
- US
- United States
- Prior art keywords
- pressure
- axial piston
- piston machine
- control disk
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/12—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
- F04B1/20—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
- F04B1/22—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
- F04B1/24—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons inclined to the main shaft axis
Definitions
- the invention relates to an axial piston machine in accordance with the preamble of claim 1 .
- Axial piston machines of this type known, for instance, from WO 03/058034 A1 comprise two cylinder drums in each of which a plurality of cylinders is formed.
- a shaft which is fixedly connected to a plurality of pistons confining a respective pressure chamber by the cylinders of the cylinder drums passes through the two cylinder drums.
- the cylinder drums are supported on inclined surfaces the inclination of which is selected such that the axis of rotation of the cylinder drums is inclined with respect to the shaft axis.
- the inclined surfaces supporting the cylinder drums do not rotate together with the shaft or the cylinder drum so that the pistons pass an elliptic track of motion with respect to the plane of the inclined surfaces supporting the cylinder drums.
- the cylinder drums are located with the pistons between the two inclined surfaces, the latter being respectively formed on control disks which are supported on the housing of the axial piston pump and via which pressure is supplied and released.
- the object underlying the invention is to provide an axial piston machine having a comparatively simple design in which the noise emission is reduced vis-à-vis conventional solutions.
- two cylinder drums of the axial piston machine are formed on respective inclined surfaces, wherein said inclined surfaces are arranged centrally, i.e. in the area between the two cylinder drums, and a pressure channel and a tank channel end in said inclined surfaces.
- the ducting can be considerably facilitated compared to the conventional solutions so that the costs of manufacturing the axial piston machine are comparatively low.
- the forces of pressure acting on the two inclined surfaces are substantially mutually neutralized so that the pressure forces introduced into the housing via the inclined surfaces are very small and, accordingly, also the noise emission is reduced which, in conventional solutions, can adopt an unacceptable degree by the forces introduced via the external control disks into the housing having large noise-radiating surfaces.
- the two end faces are formed on a control disk which is centrally inserted in the housing and through which a shaft supporting the pistons passes.
- control disk For further reducing the noise emission an insulating layer can be provided between the control disk and the housing.
- control disk includes a protection against torsional twist in the form of a flattened portion, for instance.
- control disk has two kidney-shaped control members one of which is allocated to a pressure port and the other is allocated to a tank port.
- the channels connected to the pressure and tank ports tangentially end in the kidney-shaped control members.
- the axial piston machine can be basically operated as hydraulic transformer as well. However, this requires that the control disk is rotatably accommodated in the housing and that it includes three kidney-shaped control members.
- FIG. 1 shows a schematic longitudinal section across a first embodiment of an axial piston machine
- FIG. 2 shows a simplified sectional representation of the axial piston machine from FIG. 1 ;
- FIG. 3 shows an enlarged detailed representation of the axial piston machine from FIG. 1 and
- FIGS. 4 , 5 are representations of a second embodiment of an axial piston machine corresponding to the FIGS. 1 and 2 .
- FIG. 1 a simplified longitudinal section across a first embodiment of an axial piston machine 1 , for instance a hydraulic pump, is shown.
- FIG. 2 illustrates a section, which is geometrically not exact, along the dot-dash vertical line y in FIG. 1 .
- the axial piston machine 1 has a housing 2 in which a shaft bore 4 is formed.
- a shaft 6 is supported by two shaft bearings 8 , 10 .
- Said shaft 6 (drive shaft in a pump) supports two cylinder drums 12 , 14 the rotational axes Z 1 and Z 2 of which are inclined with respect to the rotational axis X of the shaft 6 .
- the two cylinder drums 12 , 14 inclined with respect to each other are supported on a control disk 16 accommodated centrally (view according to FIG. 1 ) in the housing 2 .
- the end faces of said control disk 16 are formed by two inclined surfaces 18 , 20 . According to FIG. 1 , these inclined surfaces 18 , 20 are inclined with respect to each other in such manner that the control disk 16 is tapered downwards from the radially upper portion of the housing 2 .
- Each cylinder drum 12 , 14 has a plurality of cylinders 22 and 24 , respectively, in each of which a piston 26 , 28 immerses.
- the pistons 26 and 28 resp., allocated to the cylinder drums 12 , 14 are arranged axially in parallel to the shaft axis X and are mounted on a flange 30 , 32 which is formed integrally with the shaft 6 or is mounted on the same.
- the pistons 26 , 28 confine by the cylinders 22 , 24 a respective pressure chamber 34 , 36 which is adapted to be connected—as described in detail hereinafter—to a pressure port P or a tank port T.
- the two ports T, P are arranged at the cylinder housing 2 in the central plane including the central axis Y.
- the two ports P, T are connected to a respective kidney-shaped control member (tank control member 42 and pressure control member 44 ) via a tank channel 38 and a pressure channel 40 , respectively.
- the two channels 38 , 40 tangentially end in the allocated kidney-shaped control member 42 and 44 , respectively.
- the latter encompass the shaft 6 in portions so that a respective land 46 , 48 of the control disk 16 remains between the end portions thereof arranged at the top in FIG. 2 and the end portions thereof arranged at the bottom in FIG. 2 .
- the two control members 42 , 44 end in the respective two inclined surfaces 18 , 20 .
- the axial piston machine 1 has a symmetric design with respect to the Y axis, wherein the control disk 16 is centrally arranged at the inclined surfaces 18 , 20 of which the two cylinder drums 12 , 14 are supported. Said cylinder drums interact with the pistons 26 , 28 which are fixedly connected to the shaft 6 via the flange 30 and 32 , respectively.
- the cylinder drum 14 has a drum plate 50 which is slidingly supported on the inclined surface 20 of the control disk 16 by its end face 52 shown on the left in FIG. 3 .
- the drum plate 50 has a mounting hub 54 which is supported on a domed, i.e. convexly curved bearing portion 59 of the shaft 6 by a self-aligning bearing 56 or the like.
- This self-aligning bearing 56 permits an inclination of the axis Z 2 of the rotational axis of the cylinder drum 14 vis-à-vis the shaft axis X.
- An annular drum body 60 on which the cylinders 24 of the cylinder drum 14 are formed is supported on an annular end face 58 of the drum plate 50 which is internally confined by the mounting hub 54 .
- Said drum body 60 can be composed of a plurality of individual elements.
- this drum body 60 is formed of a plurality of cylinder sleeves, for instance, which are interconnected by a holding ring.
- the cylinder sleeves can also be supported on the drum plate 50 via spring bias and a joint.
- the drum body 60 can also be integrally formed.
- the drum body 60 or the individual elements thereof forming the cylinder 24 are not in full-surface contact with the annular end face 58 but are only in contact by a contacting portion formed by a projection 62 .
- a plurality of cylinders 24 is formed in which the end portions of the pistons 28 immerse so that respective pressure chambers 24 , 36 are confined by the cylinders 24 and the pistons 28 .
- the pressure chamber 36 located at the bottom in FIG. 3 has the maximum volume (piston provided in its outer dead-center position), while in the relative position between the piston 28 and the cylinder 24 shown at the top of FIG. 3 the pressure chamber 36 has its minimum volume (piston provided in its inner dead-center position).
- Pressure is supplied to said pressure chambers 36 of the cylinders 24 via sockets 62 passing through the bottom of the cylinder chambers 24 and being slidingly supported on the inner end face of the respective cylinder 24 of the drum body 60 by a radial projection 64 .
- the end portion of the socket 62 distant from the radial projection 64 is inserted in an appropriately designed seat 66 of the drum plate 50 .
- Each piston 28 includes a mounting portion 70 via which it is supported in the flange 32 of the shaft 6 . Subsequent to the mounting portion 70 the piston 28 is radially set back and is transformed into a tapered portion 72 by which the piston 28 is extended up to its maximum cross-section. Said maximum cross-section is provided with the reference numeral 74 in FIG. 3 . Subsequent to said maximum cross-section 74 the piston is somewhat tapered again. This tapered shape of the pistons 28 is necessary so that they do not collide with the cylinder walls in the inner dead-center position (top of FIG. 3 ). In accordance with FIG. 3 , the pistons are adjacent to the inner circumferential surfaces of the cylinders 24 along their maximum cross-section. For improving the seal a respective piston ring may be provided at the outer circumference of the pistons 28 in this contacting area.
- the drum body 60 is designed such that the elements forming the cylinders can slightly slide off along the annular end face 58 so as to compensate for these relative movements.
- the noise radiation during operation of the axial piston machine can be further improved by the embodiment illustrated by way of the FIGS. 4 and 5 .
- FIGS. 4 and 5 substantially differs from the afore-described embodiment merely by the design of the control disk 16 and the ducting in the control disk 16 .
- the structure of the cylinder drum 12 , 14 and the shaft 6 is identical to the above-described embodiment so that hereinafter only the differences will be discussed.
- control disk 16 is neither mounted directly in the housing 2 nor is it formed integrally with the same, but it is a separate component part, wherein in the mounted state an insulating layer is formed between the housing 2 and the control disk 16 .
- Said layer can be made, for instance, of elastic synthetic material having sound-insulating characteristics.
- For protecting the control disk 16 against twisting it is provided with a flattened portion 78 ; a recess 80 of the housing 2 is appropriately designed.
- the elastic insulating layer 76 is inserted in said recess 80 and encompasses the outer circumference of the control disk 16 .
- the noise emissions can be further reduced, to be sure, in the case of unfavorable operating conditions, however, a relative twist can occur between the control disk 16 and the housing 2 despite the flattened portion due to the elasticity of the insulating layer 76 .
- the ports T, P are located such that the pressure forces acting on the control disk 16 via the two ports T, P (especially P) can compensate for this torque. I.e.
- the axial distance a and the cross-sectional area of the pressure channel 40 are selected, for instance, such that the pressure force FH transmitted via the pressure fluid at the control port P to the control disk 16 generates a torque (FH ⁇ a) which compensates for the radial force acting on the control disk 16 during operation and the torque resulting therefrom.
- FH ⁇ a the pressure force transmitted via the pressure fluid at the control port P to the control disk 16
- An axial piston machine comprising two cylinder drums which are guided in a housing, can be respectively rotated about a drum axis and are respectively supported on an inclined surface arranged in the direction of a shaft rotational axis.
- said inclined surfaces are located in the region between the two cylinder drums and the channels for supplying and releasing pressure end in said two inclined surfaces, i.e. pressure is supplied and released centrally.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004010373A DE102004010373A1 (de) | 2004-03-03 | 2004-03-03 | Axialkolbenmaschine |
PCT/EP2005/001786 WO2005085635A1 (de) | 2004-03-03 | 2005-02-21 | Axialkolbenmaschine |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080159879A1 true US20080159879A1 (en) | 2008-07-03 |
Family
ID=34877304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/591,024 Abandoned US20080159879A1 (en) | 2004-03-03 | 2005-02-21 | Axial Piston Machine |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080159879A1 (de) |
EP (1) | EP1723335A1 (de) |
CN (1) | CN1926332A (de) |
DE (1) | DE102004010373A1 (de) |
WO (1) | WO2005085635A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110072811A1 (en) * | 2009-09-30 | 2011-03-31 | Rs Drawings, Llc | Engine driven lift gate power system |
EP4424985A1 (de) * | 2023-03-03 | 2024-09-04 | Innas B.V. | Hydraulischer transformator |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005058938A1 (de) * | 2005-11-11 | 2007-05-16 | Brueninghaus Hydromatik Gmbh | Hydrostatische Kolbenmaschine |
DE102007024174B4 (de) | 2006-12-11 | 2022-09-08 | Robert Bosch Gmbh | Axialkolbenmaschine mit einer Verdrehsicherung für die Steuerplatte |
DE102010026157A1 (de) * | 2010-07-06 | 2012-01-12 | Robert Bosch Gmbh | Hydrostatische Maschine, insbesondere Axialkolbenmaschine |
BR112017009603A2 (pt) * | 2014-11-08 | 2017-12-19 | Money S R L | máquina hidráulica com cilindros axiais oscilantes aperfeiçoados |
EP3020967B1 (de) * | 2014-11-11 | 2017-09-27 | Danfoss A/S | Pumpvorrichtung |
CN107299843A (zh) * | 2015-10-07 | 2017-10-27 | 熵零控股股份有限公司 | 一种柱塞流体机构 |
CN106567740A (zh) * | 2015-10-09 | 2017-04-19 | 熵零控股股份有限公司 | 一种柱塞流体机构 |
CN106567741A (zh) * | 2015-10-10 | 2017-04-19 | 熵零控股股份有限公司 | 一种柱塞流体机构 |
CN106567742A (zh) * | 2015-10-13 | 2017-04-19 | 熵零控股股份有限公司 | 一种柱塞流体机构 |
CN106593535B (zh) * | 2015-10-14 | 2021-06-22 | 熵零控股股份有限公司 | 主动驱动流体机构 |
CN106593536B (zh) * | 2015-10-14 | 2021-08-24 | 熵零控股股份有限公司 | 小余隙柱塞流体机构 |
CN106593537B (zh) * | 2015-10-15 | 2019-04-19 | 熵零控股股份有限公司 | 柱塞流体机构 |
CN106593800A (zh) * | 2015-10-16 | 2017-04-26 | 熵零控股股份有限公司 | 正反馈柱塞流体机构 |
CN106855108A (zh) * | 2015-12-09 | 2017-06-16 | 熵零技术逻辑工程院集团股份有限公司 | 高压腔能量调整系统 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4872394A (en) * | 1984-02-29 | 1989-10-10 | Shimadzu Corporation | Bent axis type axial piston pump or motor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3630026A (en) * | 1969-04-15 | 1971-12-28 | Lucas Industries Ltd | Hydraulic pumps and motors |
US4624175A (en) * | 1985-08-28 | 1986-11-25 | Wahlmark Gunnar A | Quiet hydraulic apparatus |
DE20015343U1 (de) * | 2000-09-05 | 2002-01-17 | Liebherr-Machines Bulle S.A., Bulle | Hydrostatische Axialkolbenmaschine |
NL1020932C2 (nl) | 2002-01-12 | 2003-07-15 | Innas Bv | Hydraulische inrichting. |
-
2004
- 2004-03-03 DE DE102004010373A patent/DE102004010373A1/de not_active Ceased
-
2005
- 2005-02-21 CN CNA2005800067689A patent/CN1926332A/zh active Pending
- 2005-02-21 EP EP05715429A patent/EP1723335A1/de not_active Withdrawn
- 2005-02-21 US US10/591,024 patent/US20080159879A1/en not_active Abandoned
- 2005-02-21 WO PCT/EP2005/001786 patent/WO2005085635A1/de not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4872394A (en) * | 1984-02-29 | 1989-10-10 | Shimadzu Corporation | Bent axis type axial piston pump or motor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110072811A1 (en) * | 2009-09-30 | 2011-03-31 | Rs Drawings, Llc | Engine driven lift gate power system |
EP4424985A1 (de) * | 2023-03-03 | 2024-09-04 | Innas B.V. | Hydraulischer transformator |
WO2024184141A1 (en) * | 2023-03-03 | 2024-09-12 | Innas Bv | A hydraulic transformer |
Also Published As
Publication number | Publication date |
---|---|
WO2005085635A1 (de) | 2005-09-15 |
EP1723335A1 (de) | 2006-11-22 |
DE102004010373A1 (de) | 2005-09-22 |
CN1926332A (zh) | 2007-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080159879A1 (en) | Axial Piston Machine | |
KR100918603B1 (ko) | 사축식 가변 용량형 펌프·모터 | |
US20080240935A1 (en) | Balanced variable displacement vane pump with floating face seals and biased vane seals | |
US5439356A (en) | Hydraulic motor and pump having hydraulic counter balancing means | |
US8845195B2 (en) | Hydraulic machine having a sliding bearing having a bearing element | |
CA2283224A1 (en) | Pump having unidirectional tapered land thrust bearing cluster | |
JP3127842B2 (ja) | カムモータ装置 | |
RU2401386C2 (ru) | Гидравлическое устройство | |
JPH0440169U (de) | ||
US6494126B1 (en) | Radial piston hydraulic motor | |
US6257853B1 (en) | Hydraulic motor with pressure compensating manifold | |
US20240044319A1 (en) | Hydrostatic radial piston unit | |
GB2383611A (en) | Rotary vane-type machine | |
CN110388308B (zh) | 具有到穿过驱动空间中的压力减压部的轴向活塞机 | |
US8079298B2 (en) | Compact hydraulic mechanism with radial pistons | |
JP2009503346A (ja) | バルブプレートを有するユニット形流体圧機械 | |
US20240328381A1 (en) | Brake mechanism for a radial piston unit | |
US20080031759A1 (en) | Hydraulic rotary motor | |
JP3204128B2 (ja) | カムモータ装置 | |
US20240309839A1 (en) | Bearing arrangement for radial piston units | |
JPS59105976A (ja) | 斜板式液圧回転機 | |
JP3825972B2 (ja) | 油圧ポンプ・モータ | |
CN116335907A (zh) | 凸轮凸角结构的静液压径向柱塞单元 | |
JPH09280161A (ja) | 可変容量形ピストンポンプ | |
CN116335871A (zh) | 具有换速结构的摆线液压马达 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOSCH REXROTH AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DANTLGRABER, JOERG;SCHAEFFER, RUDOLF;REEL/FRAME:018371/0993 Effective date: 20060914 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |