US20080029029A1 - Transfer chamber for cluster system - Google Patents
Transfer chamber for cluster system Download PDFInfo
- Publication number
- US20080029029A1 US20080029029A1 US11/872,617 US87261707A US2008029029A1 US 20080029029 A1 US20080029029 A1 US 20080029029A1 US 87261707 A US87261707 A US 87261707A US 2008029029 A1 US2008029029 A1 US 2008029029A1
- Authority
- US
- United States
- Prior art keywords
- opening
- chamber
- transfer chamber
- combined
- chamber portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 60
- 239000000758 substrate Substances 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 15
- 238000012545 processing Methods 0.000 description 21
- 239000010409 thin film Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000032258 transport Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67196—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
Definitions
- the present invention relates to an apparatus of manufacturing a semiconductor device, and more particularly, to a transfer chamber for a cluster system of manufacturing a semiconductor device.
- LCD liquid crystal display
- CRT cathode ray tube
- the LCD device may include a plurality of pixels, in each of which a switching element may be formed to independently control the pixel.
- This LCD device is commonly referred to as an active matrix liquid crystal display (AMLCD) device.
- a thin film transistor may be used as the switching element, and the LCD device including the thin film transistor is referred to as a thin film transistor (TFT) LCD device.
- the TFT LCD device includes two substrates on which elements, such as electric field forming electrodes and thin film transistors, are formed as thin films.
- the elements are formed by repeatedly depositing a thin film and patterning the thin film through a photolithography process.
- the photolithography process includes a light exposing process for selectively exposing or covering the thin film, an etching process for selectively removing the thin film to have a predetermined shape, and a cleaning process for eliminating residues, wherein the cleaning process includes washing and drying.
- the cluster system includes processing chambers for carrying out the above processes and a transfer chamber for keeping the substrates and transporting or sending back the substrates.
- the cluster system is also used for a manufacturing process of a semiconductor device, which includes repeated processes of depositing a thin film on a semiconductor substrate such as silicon wafer, patterning the thin film through the photolithography process and cleaning the patterned thin film.
- a semiconductor substrate such as silicon wafer
- objects treated within the cluster system may be referred to as substrates.
- FIG. 1 is a schematic view of a related art cluster system.
- the cluster system includes a storing part 10 , a loadlock chamber 20 , a plurality of processing chambers 42 , 44 , 46 and 48 , a preheating chamber 50 , and a transfer chamber 30 .
- a plurality of substrates (not shown) are kept.
- the loadlock chamber 20 has at least one slot to load the substrates temporarily.
- treatments for the substrates are performed. Before the substrates are loaded in one of the processing chambers 42 , 44 , 46 and 48 and are dealt with, the substrates are preheated in the preheating chamber 50 .
- the transfer chamber 30 is connected to the loadlock chamber 20 , the plurality of processing chambers 42 , 44 , 46 and 48 , and the preheating chamber 50 .
- the transfer chamber 30 serves as a temporary storing place or passage that the substrates commonly pass through when the plurality of untreated substrates in the storing part 10 are dealt with through the loadlock chamber 20 , the preheating chamber 50 and the processing chambers 42 , 44 , 46 and 48 , respectively, and then are returned.
- FIG. 2 illustrates the transfer chamber for the related art cluster system.
- the transfer chamber 30 includes a body 32 and a cover 38 .
- the body 32 has an opening for combining with the cover 38 .
- Loadlock chamber connecting portions 34 are formed at one side of the body 32
- a plurality of processing chamber connecting portions 35 are formed at other sides of the body 32 , respectively.
- the loadlock chamber connecting portions 34 and the plurality of processing chamber connecting portions 35 are connected to an inner space 36 of the body 35 .
- a robot (not shown), which is equipped in the inner space 36 , transports the substrates into the storing part 10 , the loadlock chamber 20 , and the processing chambers 42 , 44 , 46 and 48 of FIG. 1 , and returns the substrates.
- a size of the transfer chamber 30 as the temporary storing place or passage of the substrate depends on a size of the substrate.
- a substrate for a latest fifth generation LCD device has a size of about 1,100 mm ⁇ 1,300 mm. According as the LCD device grows larger, a substrate for a sixth generation LCD device may have a size of about 1,500 mm ⁇ 1,800 mm to 1,800 mm ⁇ 2,000 mm. Therefore, the transfer chamber may have a maximum diagonal of about 4,200 mm.
- the transfer chamber is made of aluminum or stainless steel, it is difficult to manufacture the large transfer chamber as one body with other chambers.
- the large transfer chamber is manufactured as one body with other chambers, there are disadvantages that manufacturing costs is increased and it is not easy to transport the chambers.
- the present invention is directed to a transfer chamber for a cluster system of manufacturing a semiconductor device that substantially obviates one or more of problems due to limitations and disadvantages of the related art.
- An advantage of the present invention is to provide a transfer chamber for a cluster system of manufacturing a semiconductor device that deals with a large size substrate and is separable.
- Another advantage of the present invention is to provide a transfer chamber for a cluster system of manufacturing a semiconductor device that is manufactured at a low cost and is easily set up or transported.
- a transfer chamber for a cluster system includes a first body, a second body attached at one side of the first body, and a cover combined with an upper portion of the first body.
- the transfer chamber further includes a third body at another side of the first body, wherein the third body has the same shape as the second body.
- FIG. 1 is a schematic view of a related art cluster system
- FIG. 2 is a view of illustrating a transfer chamber for the related art cluster system
- FIG. 3 is a schematic view of a transfer chamber according to a first embodiment of the present invention.
- FIG. 4 is a schematic exploded view of the transfer chamber according to the first embodiment of the present invention.
- FIG. 5 is a schematic view of a transfer chamber according to a second embodiment of the present invention.
- FIG. 3 is a schematic view of a transfer chamber according to a first embodiment of the present invention and FIG. 4 is a schematic exploded view of the transfer chamber.
- the transfer chamber of the first embodiment may be connected to one loadlock chamber and five processing chambers.
- the transfer chamber 300 includes a first body 320 , a cover 380 , a second body 340 and a third body 360 .
- the cover 380 is combined with an upper portion of the first body 320 in the context of the figure.
- the second and third bodies 340 and 360 are joined with sides of the first body 320 facing each other.
- O-rings 330 , 350 and 370 are interposed between the first body 320 and the cover 380 and between the first body 320 and the second and third bodies 340 and 360 for sealing.
- the first body 320 has a hexahedral shape. More particularly, the first body 320 is a rectangular parallelepiped. An upper opening is formed in an upper side of the first body 320 and is connected to the cover 380 . Side openings 322 are formed at facing sides of the first body 320 , and two loadlock chamber connecting portions 326 and a processing chamber connecting portion 324 are formed at other facing sides of the first body 320 , respectively. The sides for the side openings 322 may be wider than the sides for the loadlock chamber connecting portions 326 and the processing chamber connecting portion 324 .
- the first body 320 is combined with the second and third bodies 340 and 360 through the side openings 322 .
- the loadlock chamber connecting portions 326 may be formed as one opening.
- a robot (not shown) is equipped in the first body 320 , and transports and returns substrates.
- the second and third bodies 340 and 360 have a triangular prism shape.
- a side opening 364 is formed at one side of the third body 360 , and although not shown in the figure, another side opening is formed at one side of the second body 340 facing the side opening 365 of the third body 360 .
- Processing chamber connecting portions 342 and 362 are formed at other sides of the second and third bodies 340 and 360 , respectively.
- a preheating chamber may be connected to the transfer chamber 300 through one of the processing chamber connecting portion 324 of the first body 320 and the processing chamber connecting portions 342 and 362 of the second and third bodies 340 and 360 to preheat the substrates before the substrates are dealt with in processing chambers (not shown).
- a loadlock chamber (not shown) may be connected to one of the processing chamber connecting portions 342 and 362 of the second and third bodies 340 and 360 , and a processing chamber (not shown) may be connected to the loadlock chamber connecting portion 326 of the first body 320 .
- O-rings 330 , 350 and 370 are interposed between the first body 320 and the cover 380 and between the first body 320 and the second and third bodies 340 and 360 .
- the transfer chamber 300 is easily broken up according to an inverse assembly order.
- the O-rings 330 , 350 and 370 are only one example and other connecting means may be used to combine the first body 320 with the cover and the second and third bodies 340 and 360 .
- the transfer chamber 300 of FIG. 3 has a hexagonal pillar shape, and is connected to six other chambers, for example, a loadlock chamber and five processing chambers.
- the first body 320 of FIG. 4 has the hexahedral shape, and more particularly, the rectangular parallelepiped shape.
- the second and third bodies 340 and 360 have the triangular prism shape. According as the number of chambers combined with the transfer chamber 300 increases, the transfer chamber 300 may have other shapes such as heptagonal and octagonal pillar shapes.
- the shapes of the second and third bodies 340 and 360 also vary depending on the shape of the transfer chamber 300 .
- FIG. 5 shows a transfer chamber according to a second embodiment of the present invention.
- the transfer chamber 400 may have an octagonal pillar shape.
- a first body 420 of the transfer chamber 400 has a rectangular parallelepiped shape
- second and third bodies 440 and 460 of the transfer chamber 400 have a square pillar shape.
- upper and lower sides of the second bodies 440 and 460 have a trapezoid shape.
- the transfer chamber for the cluster system is manufactured in a separable structure, and a space for a large size substrate is easily obtained. In addition, the manufacturing costs are reduced, and it is easy to set up and transport the cluster system.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Electron Beam Exposure (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
A transfer chamber for a cluster system includes a first body, a second body attached at one side of the first body, and a cover combined with an upper portion of the first body. The transfer chamber further includes a third body at another side of the first body, wherein the third body has the same shape as the second body.
Description
- This application is a continuation of U.S. patent application Ser. No. 10/859,893, filed Jun. 2, 2004, now pending and claims the benefit of Korean Patent Application No. 2003-0035350, filed in Korea on Jun. 2, 2003, which is hereby incorporated by reference.
- 1. Field of the Invention
- The present invention relates to an apparatus of manufacturing a semiconductor device, and more particularly, to a transfer chamber for a cluster system of manufacturing a semiconductor device.
- 2. Discussion of the Related Art
- Due to rapid development in information technology, display devices have evolved to process and display increasingly large amounts of information. Flat panel display technologies have been recently conceived and developed for display devices having small thickness, light weight, and low power consumption. Among these technologies, a liquid crystal display (LCD) device has been spotlight as a substitution for a cathode ray tube (CRT) because of its superior resolution, color image display, and image quality, and is already widely used for notebook computers, desktop monitors, and other application.
- The LCD device may include a plurality of pixels, in each of which a switching element may be formed to independently control the pixel. This LCD device is commonly referred to as an active matrix liquid crystal display (AMLCD) device. A thin film transistor may be used as the switching element, and the LCD device including the thin film transistor is referred to as a thin film transistor (TFT) LCD device.
- The TFT LCD device includes two substrates on which elements, such as electric field forming electrodes and thin film transistors, are formed as thin films. The elements are formed by repeatedly depositing a thin film and patterning the thin film through a photolithography process. The photolithography process includes a light exposing process for selectively exposing or covering the thin film, an etching process for selectively removing the thin film to have a predetermined shape, and a cleaning process for eliminating residues, wherein the cleaning process includes washing and drying.
- Each process is performed within a processing chamber where the optimum conditions are made for the corresponding process. Recently, to deal with a plurality of substrates in a short time, a cluster system is used. The cluster system includes processing chambers for carrying out the above processes and a transfer chamber for keeping the substrates and transporting or sending back the substrates.
- The cluster system is also used for a manufacturing process of a semiconductor device, which includes repeated processes of depositing a thin film on a semiconductor substrate such as silicon wafer, patterning the thin film through the photolithography process and cleaning the patterned thin film. Here, objects treated within the cluster system may be referred to as substrates.
-
FIG. 1 is a schematic view of a related art cluster system. InFIG. 1 , the cluster system includes astoring part 10, aloadlock chamber 20, a plurality ofprocessing chambers preheating chamber 50, and atransfer chamber 30. In thestoring part 10, a plurality of substrates (not shown) are kept. Theloadlock chamber 20 has at least one slot to load the substrates temporarily. In theprocessing chambers processing chambers preheating chamber 50. Thetransfer chamber 30 is connected to theloadlock chamber 20, the plurality ofprocessing chambers preheating chamber 50. - The
transfer chamber 30 serves as a temporary storing place or passage that the substrates commonly pass through when the plurality of untreated substrates in thestoring part 10 are dealt with through theloadlock chamber 20, thepreheating chamber 50 and theprocessing chambers -
FIG. 2 illustrates the transfer chamber for the related art cluster system. InFIG. 2 , thetransfer chamber 30 includes abody 32 and acover 38. Thebody 32 has an opening for combining with thecover 38. Loadlockchamber connecting portions 34 are formed at one side of thebody 32, and a plurality of processingchamber connecting portions 35 are formed at other sides of thebody 32, respectively. - The loadlock
chamber connecting portions 34 and the plurality of processingchamber connecting portions 35 are connected to aninner space 36 of thebody 35. Thus, a robot (not shown), which is equipped in theinner space 36, transports the substrates into thestoring part 10, theloadlock chamber 20, and theprocessing chambers FIG. 1 , and returns the substrates. - A size of the
transfer chamber 30 as the temporary storing place or passage of the substrate depends on a size of the substrate. A substrate for a latest fifth generation LCD device has a size of about 1,100 mm×1,300 mm. According as the LCD device grows larger, a substrate for a sixth generation LCD device may have a size of about 1,500 mm×1,800 mm to 1,800 mm×2,000 mm. Therefore, the transfer chamber may have a maximum diagonal of about 4,200 mm. - However, since the transfer chamber is made of aluminum or stainless steel, it is difficult to manufacture the large transfer chamber as one body with other chambers. In addition, although the large transfer chamber is manufactured as one body with other chambers, there are disadvantages that manufacturing costs is increased and it is not easy to transport the chambers.
- Accordingly, the present invention is directed to a transfer chamber for a cluster system of manufacturing a semiconductor device that substantially obviates one or more of problems due to limitations and disadvantages of the related art.
- An advantage of the present invention is to provide a transfer chamber for a cluster system of manufacturing a semiconductor device that deals with a large size substrate and is separable.
- Another advantage of the present invention is to provide a transfer chamber for a cluster system of manufacturing a semiconductor device that is manufactured at a low cost and is easily set up or transported.
- Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
- To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a transfer chamber for a cluster system includes a first body, a second body attached at one side of the first body, and a cover combined with an upper portion of the first body. The transfer chamber further includes a third body at another side of the first body, wherein the third body has the same shape as the second body.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
- The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
- In the drawings:
-
FIG. 1 is a schematic view of a related art cluster system; -
FIG. 2 is a view of illustrating a transfer chamber for the related art cluster system; -
FIG. 3 is a schematic view of a transfer chamber according to a first embodiment of the present invention; -
FIG. 4 is a schematic exploded view of the transfer chamber according to the first embodiment of the present invention; and -
FIG. 5 is a schematic view of a transfer chamber according to a second embodiment of the present invention. - Reference will now be made in detail to the illustrated embodiments of the present invention, the examples of which are illustrated in the accompanying drawings.
-
FIG. 3 is a schematic view of a transfer chamber according to a first embodiment of the present invention andFIG. 4 is a schematic exploded view of the transfer chamber. The transfer chamber of the first embodiment may be connected to one loadlock chamber and five processing chambers. - In
FIGS. 3 and 4 , thetransfer chamber 300 includes afirst body 320, acover 380, asecond body 340 and athird body 360. Thecover 380 is combined with an upper portion of thefirst body 320 in the context of the figure. The second andthird bodies first body 320 facing each other. O-rings first body 320 and thecover 380 and between thefirst body 320 and the second andthird bodies - The
first body 320 has a hexahedral shape. More particularly, thefirst body 320 is a rectangular parallelepiped. An upper opening is formed in an upper side of thefirst body 320 and is connected to thecover 380.Side openings 322 are formed at facing sides of thefirst body 320, and two loadlockchamber connecting portions 326 and a processingchamber connecting portion 324 are formed at other facing sides of thefirst body 320, respectively. The sides for theside openings 322 may be wider than the sides for the loadlockchamber connecting portions 326 and the processingchamber connecting portion 324. Thefirst body 320 is combined with the second andthird bodies side openings 322. The loadlockchamber connecting portions 326 may be formed as one opening. - A robot (not shown) is equipped in the
first body 320, and transports and returns substrates. - The second and
third bodies side opening 364 is formed at one side of thethird body 360, and although not shown in the figure, another side opening is formed at one side of thesecond body 340 facing the side opening 365 of thethird body 360. Processingchamber connecting portions third bodies - Spaces formed by combining the
first body 320 with the second andthird bodies transfer chamber 300 through one of the processingchamber connecting portion 324 of thefirst body 320 and the processingchamber connecting portions third bodies - A loadlock chamber (not shown) may be connected to one of the processing
chamber connecting portions third bodies chamber connecting portion 326 of thefirst body 320. - O-
rings first body 320 and thecover 380 and between thefirst body 320 and the second andthird bodies transfer chamber 300 is carried or repaired, thetransfer chamber 300 is easily broken up according to an inverse assembly order. The O-rings first body 320 with the cover and the second andthird bodies - The
transfer chamber 300 ofFIG. 3 has a hexagonal pillar shape, and is connected to six other chambers, for example, a loadlock chamber and five processing chambers. At this time, as stated above, thefirst body 320 ofFIG. 4 has the hexahedral shape, and more particularly, the rectangular parallelepiped shape. The second andthird bodies transfer chamber 300 increases, thetransfer chamber 300 may have other shapes such as heptagonal and octagonal pillar shapes. The shapes of the second andthird bodies transfer chamber 300. -
FIG. 5 shows a transfer chamber according to a second embodiment of the present invention. - As shown in
FIG. 5 , if eight chambers (not shown) including a loadlock chamber and processing chambers are connected to atransfer chamber 400, thetransfer chamber 400 may have an octagonal pillar shape. In this case, afirst body 420 of thetransfer chamber 400 has a rectangular parallelepiped shape, and second andthird bodies transfer chamber 400 have a square pillar shape. At this time, upper and lower sides of thesecond bodies - In the present invention, the transfer chamber for the cluster system is manufactured in a separable structure, and a space for a large size substrate is easily obtained. In addition, the manufacturing costs are reduced, and it is easy to set up and transport the cluster system.
- It will be apparent to those skilled in the art that various modifications and variations can be made in the fabrication and application of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Claims (29)
1. A transfer chamber for a cluster system, comprising:
a first body of a monolithic shape including a top surface and a plurality of side surfaces, the top surface having a first opening and at least one side surface having a second opening;
a cover combined with the first opening; and
a second body having a third opening combined with the second opening.
2. The chamber according to claim 1 , further comprising a first connecting means between the first opening and the cover and a second connecting means between the second opening and the third opening.
3. The chamber according to claim 2 , wherein the first and second connecting means are detachable from the first body, the cover and the second body.
4. The chamber according to claim 2 , wherein the first and second connecting means are an O-ring.
5. The chamber according to claim 1 , wherein the plurality of side surfaces include first, second, third and fourth side surfaces, the first and second side surfaces facing each other and each of the first and second side surfaces has the second opening, the third and fourth side surfaces facing each other.
6. The chamber according to claim 5 , further comprising a third body having a fourth opening combined with the second opening of the second side surface, wherein the third opening is combined with the second opening of the second side surface.
7. The chamber according to claim 6 , wherein the third and fourth side surfaces are connected to one of a loadlock chamber and a process chamber.
8. The chamber according to claim 6 , wherein the combined first, second and third bodies having a hexahedral pillar shape including the first body of a hexahedral shape, the second body of a triangular prism shape and the third body of a triangular prism shape.
9. The chamber according to claim 1 , wherein the second body includes a first side surface having the third opening and at least one second side surface is connected to one of a process chamber and a preheating chamber.
10. The chamber according to claim 1 , wherein further comprising a robot in the first body to transport and return a substrate.
11. The chamber according to claim 1 , wherein a space formed by combining the second opening and the third opening serves as a temporary storing place and passage for transporting and returning a substrate.
12. The chamber according to claim 1 , wherein the combined first and second bodies have one of hexahedral, heptagonal and octagonal pillar shapes.
13. A transfer chamber for a cluster system, comprising:
a first body including a top surface and a plurality of side surfaces, the top surface having a first opening and at least one side surface having a second opening;
a cover combined with the first opening; and
a second body of a monolithic shape and having a third opening combined with the second opening.
14. A transfer chamber for a cluster system, comprising:
a first body of a monolithic shape including a top surface and a plurality of side surfaces, the top surface having a first opening and at least one side surface having a second opening;
a cover combined with the first opening; and
a second body of a monolithic shape and having a third opening combined with the second opening.
15. A transfer chamber for a cluster system, comprising:
a first body of a monolithic shape including a top surface, a first side surface and a third side surface, the top surface having a first opening and each of the first and second side surface having a second opening;
a cover combined with the first opening;
a second body having a third opening combined with the second opening of the first side surface; and
a third body having a fourth opening combined with the second opening of the second side surface.
16. A transfer chamber for a cluster system, comprising:
a central chamber portion having no detachable parts;
a top cover connected to a top opening on a top surface of the central chamber portion; and
a first side chamber portion connected to a side opening on a first side surface of the central chamber portion.
17. The transfer chamber of claim 16 , wherein the connection between the top cover and the central chamber portion and between the first side chamber portion and the central chamber portion are sealed connections.
18. The transfer chamber of claim 17 , wherein each sealed connection includes an O-ring.
19. The transfer chamber of claim 16 , wherein the side chamber portion has no detachable parts.
20. The transfer chamber of claim 16 , further comprising a second side chamber portion connected to a side opening on a second side surface of the central chamber portion.
21. The transfer chamber of claim 20 , wherein the connection between the second side chamber portion and the central chamber portion is a sealed connection.
22. The transfer chamber of claim 21 , wherein the sealed connection includes an O-ring.
23. The transfer chamber of claim 20 , wherein the central chamber portion includes third and fourth side surfaces.
24. The transfer chamber of claim 23 , wherein one of a loadlock chamber and a process chamber is connected to the third and fourth side surfaces.
25. The transfer chamber of claim 20 , wherein the second side chamber portion has not detachable parts.
26. The transfer chamber of claim 20 , wherein the transfer chamber including the central chamber, first side chamber and second side chamber has shape of one of a hexahedral pillar, heptagonal pillar and octagonal pillar.
27. A transfer chamber for a cluster system, comprising:
a central chamber portion;
a top cover connected to a top opening on a top surface of the central chamber portion; and
a first side chamber portion having no detachable parts connected to a side opening on a first side surface of the central chamber portion.
28. The transfer chamber of claim 27 , wherein the connection between the top cover and the central chamber portion and between the first side chamber portion and the central chamber portion are sealed connections.
29. The transfer chamber of claim 28 , wherein each of the sealed connections includes an O-ring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/872,617 US20080029029A1 (en) | 2003-06-02 | 2007-10-15 | Transfer chamber for cluster system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2003-35350 | 2003-06-02 | ||
KR1020030035350A KR100441875B1 (en) | 2003-06-02 | 2003-06-02 | Separable type transfer chamber |
US10/859,893 US7282460B2 (en) | 2003-06-02 | 2004-06-02 | Transfer chamber for cluster system |
US11/872,617 US20080029029A1 (en) | 2003-06-02 | 2007-10-15 | Transfer chamber for cluster system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/859,893 Continuation US7282460B2 (en) | 2003-06-02 | 2004-06-02 | Transfer chamber for cluster system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080029029A1 true US20080029029A1 (en) | 2008-02-07 |
Family
ID=33448340
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/859,893 Active 2025-04-06 US7282460B2 (en) | 2003-06-02 | 2004-06-02 | Transfer chamber for cluster system |
US11/135,727 Active 2025-07-17 US7375041B2 (en) | 2003-06-02 | 2005-05-23 | Transfer chamber for cluster system |
US11/872,617 Abandoned US20080029029A1 (en) | 2003-06-02 | 2007-10-15 | Transfer chamber for cluster system |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/859,893 Active 2025-04-06 US7282460B2 (en) | 2003-06-02 | 2004-06-02 | Transfer chamber for cluster system |
US11/135,727 Active 2025-07-17 US7375041B2 (en) | 2003-06-02 | 2005-05-23 | Transfer chamber for cluster system |
Country Status (5)
Country | Link |
---|---|
US (3) | US7282460B2 (en) |
JP (1) | JP4527444B2 (en) |
KR (1) | KR100441875B1 (en) |
CN (1) | CN100375230C (en) |
TW (1) | TWI249186B (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7018517B2 (en) | 2002-06-21 | 2006-03-28 | Applied Materials, Inc. | Transfer chamber for vacuum processing system |
KR100441875B1 (en) * | 2003-06-02 | 2004-07-27 | 주성엔지니어링(주) | Separable type transfer chamber |
KR100716041B1 (en) * | 2004-06-02 | 2007-05-09 | 어플라이드 머티어리얼스, 인코포레이티드 | Methods and apparatus for sealing a chamber |
US8648977B2 (en) | 2004-06-02 | 2014-02-11 | Applied Materials, Inc. | Methods and apparatus for providing a floating seal having an isolated sealing surface for chamber doors |
US20060201074A1 (en) * | 2004-06-02 | 2006-09-14 | Shinichi Kurita | Electronic device manufacturing chamber and methods of forming the same |
US7784164B2 (en) | 2004-06-02 | 2010-08-31 | Applied Materials, Inc. | Electronic device manufacturing chamber method |
CN103199039B (en) * | 2004-06-02 | 2016-01-13 | 应用材料公司 | Electron device manufacturing chamber and forming method thereof |
KR100595418B1 (en) * | 2004-07-27 | 2006-07-03 | (주)아이씨디 | Aluminum plasma chamber and method for manufacturing the same |
KR100544896B1 (en) * | 2004-07-27 | 2006-01-24 | (주)아이씨디 | Aluminum plasma chamber having one body sealing member |
WO2006130811A2 (en) * | 2005-06-02 | 2006-12-07 | Applied Materials, Inc. | Electronic device manufacturing chamber and methods of forming the same |
JP4791110B2 (en) * | 2005-09-02 | 2011-10-12 | 東京エレクトロン株式会社 | Vacuum chamber and vacuum processing equipment |
KR100831950B1 (en) * | 2005-11-28 | 2008-05-23 | 주식회사 유진테크 | chamber |
US7845891B2 (en) * | 2006-01-13 | 2010-12-07 | Applied Materials, Inc. | Decoupled chamber body |
US20080025821A1 (en) * | 2006-07-25 | 2008-01-31 | Applied Materials, Inc. | Octagon transfer chamber |
JP4473343B2 (en) * | 2007-11-09 | 2010-06-02 | キヤノンアネルバ株式会社 | Inline wafer transfer device |
DE102007057644A1 (en) * | 2007-11-28 | 2009-06-04 | Oerlikon Trading Ag, Trübbach | Vacuum chamber on a frame basis for coating systems |
JP2009239085A (en) * | 2008-03-27 | 2009-10-15 | Foi:Kk | Semiconductor wafer conveying device and method |
KR101598176B1 (en) * | 2010-03-30 | 2016-02-26 | 주식회사 원익아이피에스 | Vacuum chamber |
JP2013527609A (en) * | 2010-04-30 | 2013-06-27 | アプライド マテリアルズ インコーポレイテッド | Vertical in-line CVD system |
CN108933097B (en) * | 2017-05-23 | 2023-06-23 | 东京毅力科创株式会社 | Vacuum conveying assembly and substrate processing device |
JP6972852B2 (en) * | 2017-05-23 | 2021-11-24 | 東京エレクトロン株式会社 | Vacuum transfer module and substrate processing equipment |
JP7526664B2 (en) | 2020-12-28 | 2024-08-01 | 東京エレクトロン株式会社 | Substrate Processing Equipment |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6045620A (en) * | 1997-07-11 | 2000-04-04 | Applied Materials, Inc. | Two-piece slit valve insert for vacuum processing system |
US6056849A (en) * | 1997-01-07 | 2000-05-02 | Straemke; Siegfried | Apparatus for the surface treatment of workpieces by means of a plasma |
US20020005168A1 (en) * | 1999-11-30 | 2002-01-17 | Applied Materials, Inc. | Dual wafer load lock |
US6405423B1 (en) * | 1998-09-10 | 2002-06-18 | Applied Materials, Inc. | Method for producing vacuum processing chambers |
US6977014B1 (en) * | 2000-06-02 | 2005-12-20 | Novellus Systems, Inc. | Architecture for high throughput semiconductor processing applications |
US20060051507A1 (en) * | 2004-06-02 | 2006-03-09 | Applied Materials, Inc. | Electronic device manufacturing chamber and methods of forming the same |
US20060101728A1 (en) * | 2004-06-02 | 2006-05-18 | White John M | Electronic device manufacturing chamber and methods of forming the same |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100367461C (en) * | 1993-11-05 | 2008-02-06 | 株式会社半导体能源研究所 | Method of manufacturing thin film transistor and electronic device |
JPH0864542A (en) * | 1994-08-25 | 1996-03-08 | Plasma Syst:Kk | Vacuum chamber for semiconductor processor and manufacture thereof |
US5672239A (en) * | 1995-05-10 | 1997-09-30 | Tegal Corporation | Integrated semiconductor wafer processing system |
US6312525B1 (en) * | 1997-07-11 | 2001-11-06 | Applied Materials, Inc. | Modular architecture for semiconductor wafer fabrication equipment |
US6558506B1 (en) * | 1999-02-01 | 2003-05-06 | Tokyo Electron Limited | Etching system and etching chamber |
IT1308606B1 (en) * | 1999-02-12 | 2002-01-08 | Lpe Spa | DEVICE FOR HANDLING SUBSTRATES BY MEANS OF A SELF-LEVELING DEPRESSION SYSTEM IN INDUCTION EPISTAXIAL REACTORS WITH SUCCESSOR |
JP4021125B2 (en) * | 2000-06-02 | 2007-12-12 | 東京エレクトロン株式会社 | Rail straightness holding device used when connecting equipment unit of wafer transfer equipment |
JP4253107B2 (en) * | 2000-08-24 | 2009-04-08 | キヤノンアネルバ株式会社 | Substrate processing apparatus and expansion method thereof |
JP2004335743A (en) * | 2003-05-08 | 2004-11-25 | Ulvac Japan Ltd | Vacuum chamber for vacuum processing apparatus |
KR100441875B1 (en) * | 2003-06-02 | 2004-07-27 | 주성엔지니어링(주) | Separable type transfer chamber |
-
2003
- 2003-06-02 KR KR1020030035350A patent/KR100441875B1/en not_active IP Right Cessation
-
2004
- 2004-06-01 TW TW093115658A patent/TWI249186B/en not_active IP Right Cessation
- 2004-06-01 JP JP2004162901A patent/JP4527444B2/en not_active Expired - Lifetime
- 2004-06-02 CN CNB2004100461822A patent/CN100375230C/en not_active Ceased
- 2004-06-02 US US10/859,893 patent/US7282460B2/en active Active
-
2005
- 2005-05-23 US US11/135,727 patent/US7375041B2/en active Active
-
2007
- 2007-10-15 US US11/872,617 patent/US20080029029A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6056849A (en) * | 1997-01-07 | 2000-05-02 | Straemke; Siegfried | Apparatus for the surface treatment of workpieces by means of a plasma |
US6045620A (en) * | 1997-07-11 | 2000-04-04 | Applied Materials, Inc. | Two-piece slit valve insert for vacuum processing system |
US6405423B1 (en) * | 1998-09-10 | 2002-06-18 | Applied Materials, Inc. | Method for producing vacuum processing chambers |
US20020005168A1 (en) * | 1999-11-30 | 2002-01-17 | Applied Materials, Inc. | Dual wafer load lock |
US6977014B1 (en) * | 2000-06-02 | 2005-12-20 | Novellus Systems, Inc. | Architecture for high throughput semiconductor processing applications |
US20060051507A1 (en) * | 2004-06-02 | 2006-03-09 | Applied Materials, Inc. | Electronic device manufacturing chamber and methods of forming the same |
US20060101728A1 (en) * | 2004-06-02 | 2006-05-18 | White John M | Electronic device manufacturing chamber and methods of forming the same |
Also Published As
Publication number | Publication date |
---|---|
KR100441875B1 (en) | 2004-07-27 |
US7375041B2 (en) | 2008-05-20 |
US20040240983A1 (en) | 2004-12-02 |
CN1573481A (en) | 2005-02-02 |
CN100375230C (en) | 2008-03-12 |
JP2004363601A (en) | 2004-12-24 |
TWI249186B (en) | 2006-02-11 |
US7282460B2 (en) | 2007-10-16 |
TW200501217A (en) | 2005-01-01 |
US20050205012A1 (en) | 2005-09-22 |
JP4527444B2 (en) | 2010-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7375041B2 (en) | Transfer chamber for cluster system | |
US20060182540A1 (en) | Cluster device having dual structure | |
US6870594B1 (en) | Method for manufacturing liquid crystal panel, liquid crystal panel and manufacturing system of the same | |
US8063856B2 (en) | Flexible active matrix display backplane and method | |
US7905960B2 (en) | Apparatus for manufacturing substrate | |
US7923309B2 (en) | Thin film transistor array substrate and method for manufacturing the same | |
US9837608B2 (en) | Mask assembly and apparatus and method of manufacturing display apparatus using the same | |
JP2004363601A5 (en) | ||
US7637799B2 (en) | Substrate production apparatus for producing a substrate for a display device | |
US20090256152A1 (en) | Pixel structure for transflective lcd panel | |
CN111653587A (en) | Display device, mask assembly, and apparatus and method for manufacturing display device | |
TWI388026B (en) | Apparatus and method for processing substrates | |
US9685357B2 (en) | Apparatus for treating substrate | |
US20070099356A1 (en) | Flat panel display device and method of manufacturing the same | |
US20030214614A1 (en) | Panel receiving device | |
JPH098094A (en) | Vacuum treatment equipment | |
US20210343769A1 (en) | Color filter substrate, manufacturing method thereof, display panel, display device and operation method thereof | |
KR20040064585A (en) | Cluster device having dual structure | |
KR100683520B1 (en) | Multi-layer Extension Stage | |
KR20050032475A (en) | Manufacturing apparatus for large-size lcd which exchanges substrate by conveyor, and transferring method for substrate using the same | |
KR20060017254A (en) | Transfer chamber which can be divided | |
KR100880863B1 (en) | Cassette including cooling system | |
KR100945355B1 (en) | Apparatus for transferring object of liquid crystal display device and method of transferring the same | |
KR20070068544A (en) | Loadlock chamber for manufacturing flat panel display device | |
KR20040104004A (en) | Cluster Apparatus for Liquid Crystal Display Apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |