US20070257376A1 - Semiconductor module - Google Patents
Semiconductor module Download PDFInfo
- Publication number
- US20070257376A1 US20070257376A1 US11/778,493 US77849307A US2007257376A1 US 20070257376 A1 US20070257376 A1 US 20070257376A1 US 77849307 A US77849307 A US 77849307A US 2007257376 A1 US2007257376 A1 US 2007257376A1
- Authority
- US
- United States
- Prior art keywords
- chip
- heat sink
- semiconductor module
- power mos
- chips
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 122
- 229910000679 solder Inorganic materials 0.000 description 35
- 239000000463 material Substances 0.000 description 34
- 239000011347 resin Substances 0.000 description 28
- 229920005989 resin Polymers 0.000 description 28
- 239000010410 layer Substances 0.000 description 19
- 230000005855 radiation Effects 0.000 description 15
- 239000004020 conductor Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 238000000465 moulding Methods 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000012212 insulator Substances 0.000 description 11
- 239000011229 interlayer Substances 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 230000008646 thermal stress Effects 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000003071 parasitic effect Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 210000000746 body region Anatomy 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000009290 primary effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 101100478187 Arabidopsis thaliana MOS4 gene Proteins 0.000 description 3
- 101100461812 Arabidopsis thaliana NUP96 gene Proteins 0.000 description 3
- 102100030393 G-patch domain and KOW motifs-containing protein Human genes 0.000 description 3
- 101150090280 MOS1 gene Proteins 0.000 description 3
- 101100401568 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) MIC10 gene Proteins 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 101001009694 Homo sapiens G-patch domain and KOW motifs-containing protein Proteins 0.000 description 1
- 229910020816 Sn Pb Inorganic materials 0.000 description 1
- 229910020830 Sn-Bi Inorganic materials 0.000 description 1
- 229910020922 Sn-Pb Inorganic materials 0.000 description 1
- 229910020994 Sn-Zn Inorganic materials 0.000 description 1
- 229910018728 Sn—Bi Inorganic materials 0.000 description 1
- 229910008783 Sn—Pb Inorganic materials 0.000 description 1
- 229910009069 Sn—Zn Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3121—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/565—Moulds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
- H01L23/4822—Beam leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49838—Geometry or layout
- H01L23/49844—Geometry or layout for devices being provided for in H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L24/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L24/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L24/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L24/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L24/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L24/41—Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L25/0655—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/165—Containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/0557—Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/05571—Disposition the external layer being disposed in a recess of the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05573—Single external layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/061—Disposition
- H01L2224/0612—Layout
- H01L2224/0613—Square or rectangular array
- H01L2224/06131—Square or rectangular array being uniform, i.e. having a uniform pitch across the array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L2224/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
- H01L2224/37001—Core members of the connector
- H01L2224/37099—Material
- H01L2224/371—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L2224/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
- H01L2224/37001—Core members of the connector
- H01L2224/37099—Material
- H01L2224/371—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/37117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/37124—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L2224/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
- H01L2224/37001—Core members of the connector
- H01L2224/37099—Material
- H01L2224/371—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/37138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/37147—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
- H01L2224/401—Disposition
- H01L2224/40151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/40221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/40225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/731—Location prior to the connecting process
- H01L2224/73151—Location prior to the connecting process on different surfaces
- H01L2224/73153—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
- H01L2224/848—Bonding techniques
- H01L2224/84801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49805—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the leads being also applied on the sidewalls or the bottom of the substrate, e.g. leadless packages for surface mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/4175—Source or drain electrodes for field effect devices for lateral devices where the connection to the source or drain region is done through at least one part of the semiconductor substrate thickness, e.g. with connecting sink or with via-hole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7803—Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
- H01L29/7806—Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7809—Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7813—Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
- H01L29/7835—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01023—Vanadium [V]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0103—Zinc [Zn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1203—Rectifying Diode
- H01L2924/12032—Schottky diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19041—Component type being a capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19042—Component type being an inductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19105—Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30105—Capacitance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30107—Inductance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3025—Electromagnetic shielding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
- H01L2924/3511—Warping
Definitions
- the present invention relates to a semiconductor module such as a multi-chip module.
- a DC-DC converter is a device that converts a certain voltage DC current into a different voltage DC current.
- the DC-DC converter is highly efficient and can be downsized. Therefore, it has been utilized as a power source incorporated in small electronic instruments (for example, information communications instruments such as notebook personal computers and mobile phones).
- a CPU In the information communications instruments such as PCs, a CPU is fine patterned and sped up to provide an advanced low-voltage/large-current power source (drive power source).
- a supply voltage for the CPU is mainly 5.0 (V) or 3.3 (V) in the year 1995.
- V voltage
- V current in a class of 100
- the power source circuit In order to respond to the operation speed of the CPU, the power source circuit is required to have an operation frequency of 1 MHz or higher. Therefore, it becomes also important to elevate the switching speed of transistors contained in the power source circuit.
- the low-voltage/large-current power source has changed the forms of the conventional power source system.
- a form of supplying power from a single power source to a plurality of circuits even slight parasitic impedance on a wire causes a voltage drop. Accordingly, a voltage required for the circuit is not supplied, which causes erroneous operations.
- the form is therefore transferred to another in which power sources are distributed to locate the power sources corresponding to the respective loads close to the loads.
- the notebook PC for example, it comprises loads such as a CPU, a LCD screen and a hard disc.
- the power sources that is, DC-DC converters
- corresponding to the respective loads are located near the loads.
- the conventional high-power DC-DC converters include a synchronous commutation non-insulating step-down converter, which comprises an N-channel type power MOSFET (Metal Oxide Semiconductor Field Effect Transistor), an SBD (Schottky Barrier Diode), a PWM (Pulse width Modulation) control IC and others. These components are individually packaged and the packaged components are mounted on a printed circuit board.
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- SBD Schottky Barrier Diode
- PWM Pulse width Modulation
- a power switching device such as the power MOSFET used in the power source circuit radiates heat caused from power losses due to on-resistance and switching. Therefore, it is required to attach a heat sink plate to the power MOSFET chip to dissipate the heat to outside the chip.
- a high-frequency multi-chip module structured to include a heat sink plate attached to a semiconductor chip is disclosed in JP-A 11-45976 (FIG. 1).
- the present invention provides a semiconductor module, which comprises a mounting board; a plurality of power switching device chips each having an upper surface and a lower surface and mounted on the mounting board by flip-chip bonding with the upper surface faced toward the mounting board; a drive IC chip mounted on the mounting board by flip-chip bonding and operative to drive gates of transistors formed in the plurality of power switching device chips; a plurality of heat sink members located on the lower surfaces of the plurality of power switching device chips; and a resinous member provided to seal the plurality of power switching device chips and the drive IC chip in a single package.
- FIG. 1 is a plan view of a semiconductor module according to a first embodiment
- FIG. 2 is a cross-sectional view taken along A 1 -A 2 line in FIG. 1 ;
- FIG. 3 is a cross-sectional view taken along B 1 -B 2 line 10 : in FIG. 1 ;
- FIG. 4 is a cross-sectional view of part of a power MOS chip provided in the first embodiment
- FIG. 5 is a circuit diagram of a DC-DC converter according to the first embodiment
- FIG. 6 is a timing chart of signals fed into power MOS chips 5 , 7 in FIG. 5 ;
- FIG. 7 is a plan view of a modification of the semiconductor module according to the first embodiment:
- FIG. 8 is a plan view of a semiconductor module according to a second embodiment
- FIG. 9 is a cross-sectional view taken along C 1 -C 2 line in FIG. 8 ;
- FIG. 10 is a perspective view of a heat sink member according to the second embodiment.
- FIG. 11 is a perspective view of a modification of the heat sink member according to the second embodiment.
- FIG. 12 is a cross-sectional view of part of a low-potential power MOS chip provided in a third embodiment
- FIG. 13 is a cross-sectional view of a semiconductor module in a first aspect according to a fourth embodiment
- FIG. 14 is a cross-sectional view of a semiconductor module in a second aspect according to the fourth embodiment.
- FIG. 15 is a cross-sectional view of a semiconductor module in a third aspect according to the fourth embodiment:
- FIG. 16 is across-sectional view of a semiconductor module in a fourth aspect according to the fourth embodiment.
- FIG. 17 is a plan view of a semiconductor module according to a fifth embodiment.
- FIG. 18 is a cross-sectional view taken along D 1 -D 2 line in FIG. 17 ;
- FIG. 19 is a first process diagram illustrative of a method of fabricating the semiconductor module according to the fifth embodiment.
- FIG. 20 is a second process diagram of the same method
- FIG. 21 is a third process diagram of the same method.
- FIG. 22 is a fourth process diagram of the same method.
- FIG. 23 is a fifth process diagram of the same method.
- FIG. 24 is a sixth process diagram of the same method.
- FIG. 25 is a graph exemplifying a temperature profile on solder reflow heating during fabrication of the semiconductor module according to the fifth embodiment
- FIG. 26 is a cross-sectional view of a semiconductor module according to an embodiment
- FIG. 27 is a cross-sectional view of a semiconductor module according to another embodiment.
- FIG. 28 is a cross-sectional view of a semiconductor module according to yet another embodiment.
- FIG. 29 is a bottom view of a semiconductor module according to a sixth embodiment.
- FIG. 30 is a bottom view of a semiconductor module according to the fifth embodiment.
- FIG. 31 is a cross-sectional view of a mounting board and so forth housed in a mold prior to resin sealing;
- FIG. 32 shows the mounting board deflected
- FIG. 33 is a bottom view of a modification of the semiconductor module according to the sixth embodiment.
- FIG. 34 is a plan view of an upper surface of a power MOS chip provided in a semiconductor module according to a seventh embodiment
- FIG. 35 is a plan view of a semiconductor module according to an eighth embodiment.
- FIG. 36 is a cross-sectional view taken along E 1 -E 2 line in FIG. 35 ;
- FIG. 37 is a cross-sectional view taken along F 1 -F 2 line in FIG. 35 ;
- FIG. 38 is a cross-sectional view of part of a power MOS chip 5 according to the eighth embodiment.
- FIG. 39 is a cross-sectional view of part of a power MOS chip 7 according to the eighth embodiment.
- FIG. 40 is across-sectional view of a semiconductor module according to a ninth embodiment.
- FIG. 41 is a cross-sectional view of part of a power MOS chip provided in the ninth embodiment.
- FIG. 42 is a plan view of a semiconductor module according to a tenth embodiment.
- FIG. 43 is a cross-sectional view taken along G 1 -G 2 line in FIG. 42 ;
- FIG. 44 is a circuit diagram of a semiconductor module according to the tenth embodiment:
- FIG. 45 shows external terminals related to condensers on the semiconductor module according to the tenth embodiment
- FIG. 46 is a plan view of a semiconductor module according to an eleventh embodiment.
- FIG. 47 is a cross-sectional view taken along H 1 -H 2 line in FIG. 46 ;
- FIG. 48 is a bottom view of the semiconductor module in FIG. 46 ;
- FIG. 49 is a plan view of a semiconductor module according to a twelfth embodiment.
- FIG. 50 is a circuit diagram of a DC-DC converter containing the semiconductor module according to the twelfth embodiment
- FIG. 51 is a circuit diagram of a speaker driver according to a thirteenth embodiment
- FIG. 52 is a plan view of a semiconductor module (half-bridged) contained in the speaker driver of FIG. 51 ;
- FIG. 53 is a plan view of a semiconductor module (full-bridged) contained in the speaker driver of FIG. 51 .
- a semiconductor module according to the embodiment is a multi-chip module, which includes a power MOS chip and a drive IC chip both sealed in a single package. This module serves as part of a DC-DC converter.
- the power MOS chip comprises an FET having a gate insulator containing a silicon oxide while the present invention is not limited to this but also applicable to a power MIS chip, which comprises an FET having an insulator (such as a high dielectric) other than the silicon oxide.
- the power NOS chip and the power MIS chip are also referred to as power switching devices.
- FIG. 1 is a plan view of the semiconductor module according to the first embodiment.
- FIG. 2 is a cross-sectional view taken along A 1 -A 2 line in FIG. 1 .
- FIG. 3 is a cross-sectional view taken along B 1 -B 2 line in FIG. 1 .
- the semiconductor module 1 comprises amounting board (such as a printed circuit board) 3 , two power MOS chips 5 , 7 (an example of the power switching devices) and a drive IC chip 9 all mounted on the mounting board.
- the drive IC chip 9 is a chip operative to drive gates of MOSFETs formed in the power MOS chips 5 , 7 .
- the power MOS chip 5 and the drive IC chip 9 are shaped square while the power MOS chip 7 is shaped rectangular. Thus, the chips 5 , 7 , 9 can be arranged efficiently on the square mounting board 3 .
- FIG. 4 is a cross-sectional view of part of the power MOS chip 5 , 7 .
- the chip 5 and 7 are structured with a number of vertical MOSFETs connected in parallel.
- the chip 5 , and 7 comprise an n + -type silicon substrate 13 having an n-type epitaxial layer 11 thereon.
- An upper layer located above the epitaxial layer 11 is a p-type body region 15 .
- a number of trench gates 17 are formed through the body region 15 in the epitaxial layer 11 .
- a gate oxide film 19 is formed around the trench gate 17 .
- n + -type source region 21 is formed in the upper surface of the body region 15 .
- An interlayer insulator 23 is formed covering the trench gate 17 and the source region 21 .
- Contact holes are formed through the interlayer insulator 23 such that a source electrode 24 is connected to the body region 15 and the source region 21 via the contact holes.
- the silicon substrate 13 serves as an n + -type drain region.
- a drain electrode 43 is formed entirely over the lower surface of the silicon substrate 13 .
- the mounting board 3 includes a square resin plate 25 .
- the square resin plate 25 has four sides provided with a number of external terminals 27 at a certain 20 , pitch.
- the terminals 27 has a semi-cylindrical shape so that edges of the mounting board 3 are recessed at the terminals 27 .
- Wires 29 are formed on both surfaces of the resin plate 25 and connected to the external terminals 27 .
- the external terminals 27 and the wires 29 are composed of a conductor such as copper foil.
- Solder resists 31 are formed on both surfaces of the resin plate 25 covering the wires 29 .
- the solder resists 31 do not cover the external terminals 27 but have apertures through the wires 29 at locations corresponding to electrodes 32 a , 32 b .
- a connection member 33 such as solder is screen-printed on the electrodes 32 a , 32 b.
- a number of through-holes are formed through the resin plate 25 .
- a conductive film 35 such as copper is formed, for example, plated on the side of the through-hole.
- the conductive film 35 is operative to electrically connect between the wires 29 on both surfaces of the resin plate 25 .
- a resin 37 is filled in a space surrounded by the conductive film 35 . Instead of the resin 37 , a resin containing a metal powder such as copper may be filled to lower the electric resistance.
- the power MOS chips 5 , 7 and the drive IC chip 9 are mounted on the mounting board 3 by flip-chip bonding.
- a gate electrode pad 39 and a source electrode pad 41 are formed on the upper surface of the power MOS chip 5 , 7 and a drain electrode pad 43 is formed on the lower surface thereof.
- the electrode pads 39 , 41 are formed in an upper layer of the source electrode 24 shown in FIG. 4 . Bump electrodes may be formed on the electrode pads 39 , 41 .
- the gate electrode pad 39 is commonly connected with the trench gates 17 .
- the source electrode pad 41 is connected with the source electrode 24 .
- the gate electrode pad 39 and the source electrode pad 41 on the power MOS chips 5 , 7 and the electrode pad 49 on the drive IC chip 9 are soldered to the electrode 32 a on the mounting board 3 with the connection member 33 .
- a space between the chips 5 , 7 , or 9 and the mounting board 3 is filled with an underfill material 51 .
- a square heats sink member 53 is arranged on the lower surface 47 ( FIG. 4 ) of the power MOS chip 5 so as to cover the power MOS chip 5 .
- a rectangular heat sink member 55 is arranged on the lower surface 47 ( FIG. 4 ) of the power MOS chip 7 so as to cover the power MOS chip 7 .
- the heat sink members 53 and 55 comprise respective single metallic heat sink plates.
- the heat sink members 53 and 55 have a side partly serving as a terminal 59 .
- the heat sink member 53 is provided with the terminal 59 on one of four sides.
- the heat sink member 55 is provided with the terminals 59 on two opposite longer sides of four sides (that is, two opposite longer sides of the rectangular chip 7 ).
- the heat sink members 53 and 55 are folded at the terminal 59 to form a step, which is soldered to the electrode 32 b on the mounting board 3 by the connection member 33 . Therefore, the heat sink members 53 and 55 are fixed to the electrode 32 b on the mounting board 3 and electrically connected to the wire 29 on the mounting board 3 .
- the heat sink member 53 has only one terminal 59 and is fixed at one location accordingly.
- the heat sink member 55 has two terminals 59 and is fixed at two locations accordingly. This is a requirement from the electric circuit that contains the heat sink members 53 , 55 . Therefore, depending on the requirement from the electric circuit, if two terminals 59 are formed on the heat sink member 53 , the heat sink member 53 is fixed at two locations. If the heat sink member 53 is fixed at one location, parallelism of the heat sink member to the mounting board may not be maintained. Measures for such the case will be described in a second embodiment.
- the heat sink members 53 and 55 each has a flat portion other than the terminal 59 , which opposes the lower surface of the power MOS chip 5 , 7 and serves as a heat sink. At the flat portion, the heat sink members 53 and 55 are soldered to the drain electrode 43 on the lower surface of the power MOS chip 5 , 7 via a conductive connection member 57 . Therefore, each heat sink member is electrically connected to the drain electrode on the lower surface of the corresponding one of the power MOS chips (or to the source electrode if the chip has the source electrode on the lower surface thereof).
- the heat sink members 53 and 55 (1) cover the power MOS chips 5 , 7 ; (2) have the terminals 59 connected to the electrode 32 b , and (3) have the same height at the heat sink members 53 , 55 (that is, are coplanar). Therefore, the size of the step of the heat sink members 53 and 55 is determined in consideration of a thickness of the connection member 57 , thickness of the power MOS chip 5 , 7 , a height of the electrode pad 39 , 41 , a height of the connection member 33 , and a height of the electrode 32 a , 32 b.
- the heat sink members 53 , 55 serves as a heat sink as well as a wire. Accordingly, copper is employed as a material because it has a thermally and electrically excellent conductivity. Alternatively, aluminum may also be employed because aluminum is higher in electric resistance but lighter and better in workability than copper. An iron-based material (such as a 42 alloy) may also be employed as a material of the heat sink members 53 , 55 . This material has a thermal expansion coefficient closer to that of the material of the power MOS chip 5 , 7 and prevents the heat sink members 53 , 55 from suffering fatigue due to the thermal expansion.
- thermal spray plating or plating may be applied to form a metal layer (such as copper, gold, silver, and nickel) or an alloy layer (such as solder, and silver wax) on the portion connected to the connection member 33 , (that is, the terminal 59 ), and the portion connected to the connection member 57 , of the heat sink members 53 , 55 . Formation of such the layer achieves excellent connectivity.
- a metal layer such as copper, gold, silver, and nickel
- an alloy layer such as solder, and silver wax
- the materials and thicknesses of the heat sink members 53 , 55 are usually same but may be made different for the reasons such as a difference between the amounts of heat radiation from the power MOS chips 5 , 7 .
- a guide of the thickness of the heat sink members 53 , 55 is preferably 100 ⁇ m or thicker (more preferably 200 ⁇ m or thicker).
- the heat sink members 53 and 55 covers the lower surface of the corresponding power MOS chip 5 , 7 entirely to improve the heat radiation and lower the electric resistance.
- the heat sink members 53 and 55 may expose the lower surface of the power MOS chip 5 and 7 partly instead of covering it entirely.
- a resinous member 61 is fixed on the mounting board 3 to seal the power MOS chips 5 , 7 and the drive IC chip 9 in a single package.
- the heat sink members 53 and 55 each has one surface 63 facing the lower surface of the corresponding power MOS chip 5 or 7 and the other surface 65 located opposite to the one surface.
- the other surface 65 is exposed to outside the semiconductor module 1 . Therefore, all the heat sink members are exposed to outside the semiconductor module 1 .
- FIG. 5 is a circuit diagram of the DC-DC converter 67 .
- the DC-DC converter 67 is of the synchronous commutation non-insulating step-down type. This is the most possible circuit to reduce the power loss and enhance the conversion efficiency.
- the power MOS chip (an element on the control side) 5 at a higher potential and the power MOS chip (an element on the synchronous commutation side) 7 at a lower potential both employ an N-channel MOSFET having a lower on-resistance and a lower gate capacitance.
- the power MOS chip 7 is connected in parallel with an SBD (Shottky Barrier Diode) 69 having a lower VF.
- the power MOS chips 5 and 7 have gate terminals connected to the drive IC chip 9 for driving the gates.
- the gates of the power MOS chips 5 and 7 are normally driven under the PWM (Pulse Width Modulation) control.
- the PWM control is a control scheme to stabilize the DC output voltage from a switching power source. Namely, the output voltage is controlled by varying a ratio of the ON time to the OFF time of the switching transistor (power MOS chip 5 ). When the output voltage lowers (elevates), the ON time is elongated (shortened) to keep a constant voltage.
- the gates of the power MOS chips 5 and 7 may also be driven under the PPM (Pulse Frequency Modulation) control.
- the PFM control is a control scheme to control the output voltage by varying the switching frequency while maintaining the ON time of the switching transistor (power MOS chip 5 ) unchanged. When the output voltage lowers (elevates), the switching frequency is increased (decreased) to keep a constant voltage.
- An inductor 73 and a condenser 73 are connected to the DC-DC converter 67 on the output side.
- a load such as a CPU 75 is connected across the output of the DC-DC converter 67 .
- FIG. 6 is a timing chart of signals fed into the power MOS chips 5 and 7 . If an input voltage VIN is 24 V, it is converted at the converter 67 into 1.5 V, for example, which is then supplied to the CPU 75 .
- the MOSFET (M 1 ) in the power MOS chip 5 is turned on.
- application of the input voltage VIN causes a current shown by the arrow ( 1 ) to flow to supply power to the CPU 75 through the inductor 71 .
- the MOSFET (M 1 ) is turned off to halt supplying power to the CPU 75 through 10 ; application of the input voltage VIN.
- the power accumulated in the inductor 71 causes a current shown by the arrow ( 2 ) to commutate via the SED 69 to supply power to the CPU 75 .
- the MOSFET (M 2 ) is turned on at time t 3 .
- the MOSFET (M 2 ) is lower in resistance than the SBD 69 so that the current generated from the power accumulated in the inductor 71 communicates through not the SBD 69 but the MOSFET (M 2 ) as shown by the arrow ( 3 ) to supply power to the CPU 75 .
- the condenser 73 is employed to smooth the output voltage waveform.
- the DC-DC converter can work without the power MOS chip 7 or the MOSFET (M 2 ).
- the MOSFET (M 2 ) is provided.
- the current shown by the arrow ( 2 ) flows through the SBD 69 .
- the flow of the current through the SBD 69 causes a voltage drop, which causes a corresponding loss in power supplied to the CPU 75 .
- a MOSFET can be made smaller in voltage drop than an SBD. Therefore, the current is controlled to flow via the SBD 69 during the dead time DT and flow via the MOSFET (M 2 ) after elapse of the dead time DT to supply power to the CPU 75 efficiently.
- the first embodiment is possible to achieve a reduction of area in mounting space, a reduction in wire impedance, and an improvement in heat radiation for a semiconductor device containing the semiconductor module (such as the DC-DC converter 67 ), which are described below in detail.
- a conventional DC-DC converter comprises components such as a power MOS chip, a drive IC chip and an SBD (Schottky Barrier Diode), which are individually packaged, and these packaged components are attached to a printed circuit board.
- SBD Schottky Barrier Diode
- a current capacity required in the conventional DC-DC converter may exceed a rated current of a single MOSFET (one power MOS chip).
- a plurality of power MOS chips are connected in parallel to provide the current capacity required. Therefore, the number of the power MOS chips must be increased to support the need for increasing the current, resulting in the increase in mounting space, which prevents the DC-DC converter from being downsized as a problem.
- the increase in wire impedance is described next.
- the increased mounting space enlarges the area of the mounting board, which inevitably elongates the wire length resulting in increases in resistance and inductance.
- the increase in resistance causes a voltage drop, which causes a lack in voltage applied across a load and leads to erroneous operations.
- the increase in inductance interferes with the achievement of high speed and high frequency properties and increases ringing, which may also cause erroneous operations.
- a load such as a CPU has a large amount of heat radiation and accordingly requires attachment of a large heat sink member to the load itself. Therefore, in the vicinity of the load, it is difficult to ensure a space to attach the heat sink member for the power MOS chip. If no heat sink member is attached to the power MOS chip, the number of the power MOS chips is increased to reduce the MOSFET resistance to avoid an excessive power loss in the power MOS chip. The increased number of the power MOS chips, however, causes problems associated with the increase in mounting space and the increase in wire impedance.
- the power MOS chips 5 , 7 and the drive IC chip 9 are encapsulated in a single package. In a word, these chips are mounted on an identical surrounder. Therefore, the mounting space of the DC-DC converter 67 can be reduced (downsized).
- the DC-DC converter 67 Downsizing improves the mounting density and accordingly shortens the wire between elements. Thus, the wire impedance on the DC-DC converter 67 can be reduced. Accordingly, the DC-DC converter 67 can operate at a high speed and a high frequency.
- the heat sink members 53 and 55 can dissipate the heat generated from the power MOS chip 5 and 7 efficiently.
- the heat radiation can be further improved.
- the power MOS chip 5 , 7 is mounted by flip-chip bonding and the heat sink members 53 , 55 is located on the lower surface of the power MOS chip 5 , 7 .
- the heat sink members 53 , 55 can be located without increasing the mounting area.
- the power MOS chip 5 , 7 is located close to the CPU, it does not prevent attachment of the heat sink member to the CPU.
- the heat sink members 53 and 55 each is attached to the power MOS chip 5 , 7 by the connection member 57 .
- the connection member 57 is excellent in thermal conductivity, the heat generated from the chip 5 and 7 can transfer to the heat sink member 53 , 55 quickly via the connection member 57 . Also from this viewpoint, heat can be dissipated efficiently.
- No heat sink member is attached to the drive IC chip 9 .
- the drive IC chip 9 is not covered with the heat sink member as is the power MOS chip 5 , 7 .
- a heat sink member may be disposed on the lower surface of the drive IC chip 9 .
- the first embodiment also exerts the following effect.
- the heat sink member 53 , 55 also serves as a wire that connects the drain electrode 43 on the power MOS chip 5 , 7 to the wire 29 on the mounting board 3 .
- the heat sink members 53 and 55 each has a wider current path and accordingly serves as a wire with less parasitic resistance and parasitic inductance.
- FIG. 7 is a plan view of a modification of the semiconductor module 1 according to the first embodiment, corresponding to FIG. 1 .
- the power MOS chip 7 configures a low-potential circuit while the power MOS chip 5 configures a high-potential circuit.
- the power MOS chip 7 is split into three chips 7 - 1 , 7 - 2 , 7 - 3 .
- the semiconductor module 1 in FIG. 7 differs from that in FIG. 1 .
- the heat sink member 55 has regions corresponding to the chips 7 - 1 , 7 - 2 , 7 - 3 , which serve as heat sink members for the respective chips. Therefore, it can be said in this case that a plurality of heat sink members are linked with each other to configure a single heat sink plate (heat sink member 55 ).
- the power MOS chip 7 in FIG. 1 has relatively large dimensions with a large thermal expansion efficiency and a large thermal stress.
- the power MOS chip 7 is split into three relatively small chips 7 - 1 , 7 - 2 , 7 - 3 to ensure the current capacity and reduce the thermal stress.
- a plurality of power MOS chips 7 - 1 , 7 - 2 , 7 - 3 may be arranged for feeding a large current to the semiconductor module 1 instead of reducing the thermal stress.
- the low-potential circuit includes three power MOS chips. It is sufficient that, however, at least one of the low-potential circuit and the high-potential circuit includes a plurality of power MOS chips. The number of chips is not limited to three but may be two or more.
- FIG. 8 is a plan view of a semiconductor module 1 according to a second embodiment.
- FIG. 9 is a cross-sectional view taken along C 1 -C 2 line in FIG. 8 .
- FIGS. 8 and 9 are employed to describe the second embodiment about differences from the first embodiment.
- the heat sink member 53 covering the power MOS chip 5 extends over the drive IC chip 9 so as to cover the drive IC chip 9 .
- the power MOS chip 5 and the drive IC chip 9 share the heat sink member 53 .
- a separate heat sink member for covering the drive IC chip 9 may be arranged aside from the heat sink member 53 . In comparison with such the case, the heat sink member can be given a larger area, which improves the heat radiation by the extent.
- the drive IC chip 9 has a lower surface 77 kept at the ground potential, which differs from the potential on the drain electrode 43 of the power MOS chip 5 . Therefore, the heat sink member 53 is insulated from the drive IC chip 9 via a resinous member 61 . In a word, the heat sink member 53 is insulated from the drive IC chip 9 and extends over the drive IC chip 9 .
- the heat sink member 53 is connected to the lower surface 77 of the drive IC chip 9 by a connection member, and the heat sink member 53 is insulated from the power MOS chip 5 via the resinous member 61 . It is easier for heat to conduct via the conductive connection member 57 than via the resin.
- the power MOB chip 5 has a larger amount of heat radiation than the drive IC chip 9 has. Therefore, in the second embodiment, the power MOS chip 5 is connected to the heat sink member 53 via the connection member 57 .
- the above connection makes the potential on the heat sink member 53 equal to the drain potential on the power MOS chip 5 . Accordingly, the drive IC chip 9 is shielded by the heat sink member 53 held at the fixed potential. The lower surface 77 of the drive IC chip 9 is kept at the ground potential. In a high-frequency DC-DC converter, a high frequency fluctuates the ground potential to erroneously operate the drive IC chip 9 possibly. In the second embodiment, as the drive IC chip 9 is shielded by the heat sink member 53 kept at the fixed potential, it is possible to prevent the high frequency from causing fluctuation of the ground potential.
- the drive IC chip 9 is polished thin to make the thickness of the drive IC chip 9 (for example, 140 ⁇ m) thinner than the thickness of the power MOS chip 5 (for example, 150 ⁇ m). This is effective to separate the lower surfaces of the chips 5 , 7 from each other without increasing the flat area between the chips 5 , 7 .
- FIG. 10 is a perspective view of the heat sink member 53 according to the second embodiment.
- the heat sink member 53 is provided with a single terminal 59 and fixed on the mounting board 3 at one location.
- the terminal 59 is formed on part of a longer side of the heat sink member 53 . Therefore, the heat sink member 53 is held unstable, and the parallelism of the heat sink member 53 to the mounting board 3 may not be kept occasionally. Arrangement of another terminal can keep the parallelism though such the terminal may not be required on the electric circuit.
- the heat sink member 53 includes two folded portions 79 , which are formed by folding two opposite shorter sides thereof.
- the folded portions 79 are mounted on the solder resist 31 on the mounting board 3 to keep the parallelism of the heat sink member 53 having only one terminal 59 .
- a third embodiment comprises a low-potential power MOS chip with a built-in SBD.
- FIG. 12 is a cross-sectional view of part of the low-potential power MOS chip 7 a provided in the third embodiment, corresponding to the power MOS chip 7 in FIG. 4 .
- An SBD 69 is formed at a certain distance away from an end terminal 81 of a MOSFET formation region. The certain distance means a distance that prevents the MOSFET and the SBD from interfering with each other.
- the SBD 69 includes an epitaxial layer 11 and a metal layer 83 such as aluminum formed thereon. When the epitaxial layer 11 makes contact with the metal layer 83 , a Schottky barrier is made at the contact portion.
- the SBD 69 is connected in parallel with the MOSFET in the power MOS chip 7 .
- a p-n junction diode may be employed instead of the SBD 69 .
- the number of components can be made smaller than when a chip of the SBD 69 is employed. This makes it possible to shorten the time for fabricating the semiconductor module and downsize the semiconductor module.
- no wire is required to connect the power MOS chip 7 a with the chip of the SBD 69 . Accordingly, it is possible to remove the impedance associated with such the wire and provide the semiconductor module with an excellent high-speed performance.
- a semiconductor module according to a fourth embodiment is mainly characterized by a short circuit protective structure.
- FIGS. 13-16 are cross-sectional views of a semiconductor module in first through fourth aspects according to the fourth embodiment, corresponding to FIG. 3 .
- the heat sink members 53 , 55 are covered with the resinous member 61 .
- a plurality of heat sink members are all covered with the resinous member 61 to achieve the short circuit protection.
- the chips 5 , 7 can operate with no problem even if the heat sink members 53 , 55 are covered with the resinous member 61 .
- the first aspect can be utilized.
- grease or the like may be coated over the heat sink members 53 , 55 shown in FIG. 3 .
- the semiconductor module 1 of the second aspect shown in FIG. 14 is structured to include an insulating heat sink plate 85 formed over the heat sink members 53 , 55 of the semiconductor module shown in FIG. 3 .
- the heat sink plate 85 is formed of a material such as ceramics.
- the second aspect is possible to improve the heat radiation better than the first aspect.
- the semiconductor module 1 of the third aspect shown in FIG. 15 includes the heats ink member 53 covered with the resinous member 61 and the heat sink member 55 exposed to outside. Therefore, a plurality of heat sink members include some heat sink member(s) exposed to outside. As the power MOS chip 7 has a relatively large amount of heat radiation, the heat sink member 55 is exposed to outside. The heat sink member 53 is covered with the resinous member 61 so that the power MOS chips 5 and 7 can be prevented from short-circuiting with each other.
- the power MOS chip 7 is controlled to have a thickness larger than that of the power MOS chip 5 to expose the heat sink member 55 to outside.
- the similarity is also found in the electrode 32 a on the mounting board, the connection member 33 , the electrode pads 39 , 41 , and the connection member 57 .
- the electrode 32 a corresponding to the power MOS chip 7 is controlled to have a height larger than that of the electrode 32 a corresponding to the power MOS chip 5 .
- the thickness of the chip and the height of the electrode may be controlled in combination or singly.
- the semiconductor module 1 of the fourth aspect shown in FIG. 16 comprises the heat sink members 53 and 55 exposed to outside, and the heat sink member 53 located on the lower surface of the power MOS chip 5 has no terminal 59 . Therefore, the heat sink member 53 can not serve as a wire.
- FIG. 17 is a plan view of a semiconductor module 1 according to a fifth embodiment.
- FIG. 18 is a cross-sectional view taken along D 1 -D 2 line in FIG. 17 .
- a difference from the semiconductor module 1 of FIG. 1 lies in location of the outer edge of the solder resist 31 .
- the fifth embodiment is described below in detail.
- the mounting board 3 is similar to the mounting board 3 of the preceding embodiments and defined by sides 87 , a surface 89 facing the chips 5 , 7 , 9 , and an opposite surface 91 located opposite to the surface 89 .
- the solder resist 31 of the fifth, embodiment is sandwiched between the edge of the resinous member 61 and the facing surface 89 .
- it is formed on the facing surface 89 along the edge of the resinous member 61 to protrude beyond the resinous member 61 . This is effective to prevent the resinous member 61 from flowing to the external terminal 27 at the time of molding. This effect will be described further in the steps of fabricating the semiconductor module 1 according to the fifth embodiment.
- FIGS. 19-24 show the steps of fabricating the semiconductor module 1 according to the fifth embodiment, in which the mounting board 3 and others are shown in section.
- the mounting board 3 is prepared as including the wire 29 , the electrodes 32 a , 32 b and so forth formed thereon.
- the wire 29 is covered with the solder resist 31 , and the electrodes 32 a , 32 b are exposed.
- the mounting board 3 is sized 11 mm long/wide.
- connection member 33 is solder, specifically Sn10Pb90 solder.
- solder materials such as Sn—Zn based solder and Sn—Bi based solder other than Sn—Pb based solder.
- a mounter (not shown) is employed to mount the chips 5 , 7 , 9 while the electrode pads 39 , 41 on the power MOS chips 5 , 7 and the electrode pad on the drive IC chip 9 (not shown) are faced to the electrode 32 a .
- the power MOS chip 5 is sized 2 mm long/wide and 250 ⁇ m thick.
- the power MOS chip 7 is sized 3 mm.times.5 mm long/wide and 250 ⁇ m thick.
- the drive IC chip 9 is sized 2 mm long/wide and 200 ⁇ m thick.
- the mounting board 3 with the chips mounted thereon is passed through a reflow furnace to forms older joints.
- An example of the temperature profile on reflow heating is shown in FIG. 25 .
- the temperature is elevated from room temperature to 180.degree. C. in 60 seconds at a constant rate, then from 180.degree. C. to 220.degree. C. in 80 seconds slowly, and from 220.degree. C. to 320.degree. C. in 40 seconds at a constant rate.
- Such the profile is employed.
- the mounting board 3 with the solder joints formed thereon is cleaned to remove the flux residue.
- the mounting board 3 is immersed, for example, into a commercially available flux cleaning solution while an ultrasound of 45 kHz is applied for 10 minutes to clean the flux residue.
- a dispenser is employed to supply an underfill material 51 into spaces between the chips 5 , 7 , 9 and the mounting board 3 .
- the underfill material 51 is filled in the spaces by the capillary phenomenon.
- the amount of filler in the underfill material 51 is small in order to facilitate the capillary phenomenon to arise. Therefore, a percentage of the filler in the underfill material 51 is lower than that of the resinous member 61 .
- the underfill material is a resin as well. Accordingly, it can be said that, in the resin member composed of the resinous member 61 and the underfill material 51 , the filler contents in the portions located in the spaces between the chips 5 , 7 , 9 and the mounting board 3 are less than those in other portions.
- the underfill material 51 Thereafter, a thermal treatment is applied to cure the underfill material 51 .
- the above spaces may be filled with a resin for use in later resin sealing.
- the underfill material may not be employed if there is no problem about the property and reliability.
- a dispense process is applied to supply the connection members 57 and 33 on the lower surfaces of the chips 5 , 7 , 9 and the electrode 32 b .
- the solder material employed comprises Sn5Pb95 solder having a melting point higher than that of Sn10Pb90 solder of the connection member used in the flip-chip connection.
- the solder material may include a Sn—Pb—Ag series.
- the solder material to be supplied has a melting point higher than that of the connection member used in the flip-chip connection. This reason will be described in the later paragraph associated with the primary effect of the fifth embodiment.
- a multi-functional mounter is employed to mount the heat sink members 53 , 55 as shown in FIG. 23 .
- a 200 ⁇ m thick copper frame is employed as the heat sink members 53 , 55 .
- the mounting board 3 with the heat sink members 53 , 55 mounted thereon is passed through a reflow furnace to solder the heat sink members 53 and 55 .
- a heating profile herein is different from the preceding heating profile only in peak temperature and includes heating under the condition of a peak temperature of 330.degree. C. After the reflow, the flux residue is cleaned.
- a molding step is executed as shown in FIG. 24 such that the cleaned mounting board 3 is provided in a mold 93 and a resin is applied to seal the chips 5 , 7 , 9 .
- the cleaned mounting board 3 is provided in the mold 93 held at 180.degree. C., and the resin is filled within the mold 93 in 10 seconds, then held for 60 seconds within the mold 93 to cure the resin. Thereafter, the mounting board 3 with the resin-sealed chips 5 , 7 , 9 is removed from the mold.
- Resin leakage may possibly arise on the other surface 65 (the surface exposed to outside) of the heat sink member 53 , 55 .
- the resin leakage can be prevented by adhering a tape over whole of the other surface 65 of the heat sink member 53 , 55 prior to molding, then molding, and peeling off the tape after the molding.
- edges 95 that define an aperture of the mold 93 entirely make contact with the solder resist 31 .
- the edge 95 and the facing surface 89 of the mounting board 3 sandwich the solder resist 31 therebetween.
- the solder resist 31 is relatively flexible so that the edge 95 and the facing surface 89 create no gap therebetween. As a result, the resin can be prevented from leaking to the external terminal 27 .
- the contact between the edge 95 and the solder resist 31 has a width of 100 ⁇ m, for example.
- connection member 57 (an example of the first connection member) electrically connects the drain electrode 43 on the lower surface of the power MOS chip 5 , 7 with the heat sink member 53 , 55 .
- the connection member 33 (the second connection member) electrically connects the gate electrode pad 39 and the source electrode pad 41 on the upper surface of the power MOS chip 5 , 7 with the electrode 32 a on the mounting board 3 .
- the connection member 57 (the example of the first connection member) is controlled to have a melting point higher than that of the connection member 33 (the second connection member).
- connection members 33 , 57 may be composed of the solder material with same composition (that is, the same melting point).
- the temperature is lowered down to room temperature after the molten connection member 57 is solidified.
- a problem may arise on the reliability of the connection member 33 (for example, bump open; the electrode pad 39 , 41 being peeled off the connection member 33 ). This is caused when a distortion remains in the connection member 33 or when the connection member 33 cannot follow the deformation of the heat sink member 53 , 55 .
- the joint area between the connection member 33 and the electrode pad 39 , 41 is small, the above cause leaves bump open.
- the melting point of the connection member 57 is higher than that of the connection member 33 . Accordingly, at the stage of lowering the temperature down to room temperature after the molten connection member 57 is solidified, the connection member 33 is not yet solidified. Therefore, the above cause does not arise on the connection member 33 and the bump open can be prevented. As a result, the fifth embodiment is possible to improve the reliability of the connection member 33 and consequently the reliability of the semiconductor package.
- the fifth embodiment employs solder as the material of the connection member 33 , 57 though it may employ a resin paste that contains a metal powder. Alternatively, it may employ solder as the material of the one connection member and the resin paste as the material of the other connection member.
- the present invention also includes embodiments shown in FIGS. 26-28 , which correspond to FIG. 3 .
- a semiconductor module 1 of FIG. 26 no underfill material 51 is provided in the spaces between the chips 5 , 7 , 9 and the mounting board 3 and the resinous member 61 is filled in that places instead.
- the above spaces are narrow so that the resinous member 61 may not enter the spaces on molding the resinous member 61 , leaving air bubbles in the resinous member 61 . Therefore, in the semiconductor module 1 of FIG. 3 , the underfill material 51 is injected into the spaces prior to molding in order to prevent generation of air bubbles.
- Molding the resinous member 61 into the spaces between the chips 5 , 7 , 9 and the mounting board 3 produces the semiconductor module 1 of FIG. 26 .
- the step of injecting the underfill material can be omitted.
- the resinous member 61 and the underfill material 51 are not provided. This is different from the semiconductor module 1 shown in FIG. 3 .
- the resinous member 61 As the resinous member 61 is not provided, the power MOS chips 5 , 7 , the drive IC chip 9 (not shown) and the heat sink members 53 , 55 are entirely exposed. As the underfill material 51 is not provided, spaces are formed between these chips and the mounting board 3 .
- the semiconductor module 1 of FIG. 27 can be employed.
- the mounting board 3 is a ceramic board
- the mounting board 3 has a thermal expansion coefficient close to those of the chips 5 , 7 . Therefore, even when heat radiation from the chips 5 , 7 expands the mounting board 3 and the chips 5 , 7 , the connection member 33 can be prevented from peeling off the electrode pads 39 , 41 . Thus, the reliability of the connection member 33 does not lower.
- the resinous member 61 and the underfill material 51 are not provided and accordingly the cost for manufacturing the semiconductor module can be lowered.
- the underfill material 51 is filled in the spaces between the power MOS chips 5 , 7 and the drive IC chip (not shown) and the mounting board 3 . This is different from the semiconductor module 1 of FIG. 27 . Therefore, only the electrode 32 a on the mounting board 3 , the connection member 33 , and the electrode pads 39 , 41 are sealed with resin.
- Heat radiation from the chips 5 , 7 causes thermal stresses to concentrate on the locations of the gate electrode pad 39 and the source electrode pad 41 .
- the underfill material 51 can prevent the thermal stresses from causing the connection member 33 to peel off the electrode pads 39 , 41 .
- FIG. 29 is a bottom view of a semiconductor module 1 according to a sixth embodiment while FIG. 30 is a bottom view of the semiconductor module 1 according to the fifth embodiment.
- the bottom corresponds to the opposite surface 91 of the surfaces of the mounting board 3 , which locates opposite to the surface facing the chips 5 , 7 , 9 .
- terminal plates 97 are formed extending from the external terminals 27 .
- a terminal plate 97 is connected to a single external terminal 27 only or to multiple external terminals 27 commonly.
- wires 29 are formed connecting the terminal plates 97 with each other.
- the wires 29 and the terminal plates 97 are covered with the solder resist 31 .
- the wire 29 on the semiconductor module 1 according to the sixth embodiment of FIG. 29 is much wider.
- the wire 29 in FIG. 29 covers almost the region corresponding to the chips 5 , 7 , 9 in the opposite surface 91 .
- the wire 29 in FIG. 29 also serves as a step corrective section, which is described below.
- FIG. 31 is a cross-sectional view of the mounting board 3 and so forth housed in the mold 93 prior to resin sealing, corresponding to FIG. 24 .
- no step is formed in the opposite surface 91 while a step 99 is formed in practice as shown in FIG. 31 for the following reason.
- FIG. 30 for the wire 29 and the terminal plate 97 , formation portions and non-formation portions are present in the opposite surface 91 .
- the solder resist 31 located on the non-formation portions differs in height from the solder resist 31 located on the formation portions.
- the wire 29 and the terminal plate 97 have a thickness of 35 ⁇ m, for example, which makes the step 99 about 35 ⁇ m thick.
- step 99 On molding in the presence of the step 99 , pressure of the resin injected into the mold 93 distorts the mounting board 3 within the mold 93 as shown in FIG. 32 and causes bump open and so forth, which lower the reliability of the semiconductor module. Even the step 99 about 18 ⁇ m thick may cause such the problem.
- the wire 29 also serves as the step corrective section to prevent the occurrence of the step in the solder resin 31 .
- the above distortion is prevented from arising on molding and the reliability of the semiconductor module can be improved accordingly.
- a dummy wire 101 may be formed in the step corrective section.
- the dummy wire 101 is formed at the same time with the wire 29 and has the same thickness as that of the wire. Therefore, the dummy wire 101 can also prevent the occurrence of the step in the solder resin 31 .
- the dummy wire 101 is not connected to any wires.
- FIG. 34 is a plan view of an upper surface 45 of the power MOS chip 5 provided in a semiconductor module according to a seventh embodiment.
- a single gate electrode pad 39 and a number of source electrode pads 41 are formed in the upper surface 45 .
- the gate electrode pad 39 serves as a lead electrode from the trench gate 17 of FIG. 4 .
- the source electrode pads 41 serves as lead electrodes from the source electrodes 24 of FIG. 4 , which are an example of the first main electrodes.
- the drain electrode 43 of FIG. 4 is the second electrode.
- the heat on molding extends the mounting board 3 .
- the influence from the extension becomes lager as closing to the corner. Therefore, the electrode pad located in the corner is easily made bump open due to thermal stresses.
- the gate electrode pad 39 is formed at the corner in the upper surface 45 . As the gate electrode pad 39 is single, an occurrence of bump open results in a failed semiconductor module.
- a source electrode pad 41 is formed around the gate electrode pad 39 . Therefore, the gate electrode pad 39 is not located in the corner and it is possible to prevent thermal stresses from causing bump open associated with the gate electrode pad 39 .
- FIG. 35 is a plan view of a semiconductor module 1 according to an eighth embodiment.
- FIG. 36 is a cross-sectional view taken along E 1 -E 2 line in FIG. 35 while
- FIG. 37 is a cross-sectional view taken along F 1 -F 2 line in FIG. 35 .
- the eighth embodiment differs from the second embodiment of FIG. 8 mainly in that the heat sink members 53 and 55 are linked to each other to configure a single heat sink plate 103 .
- the power MOS chip 5 (an example of the first power MIS chip) has an upper surface with a drain electrode pad 105 and a gate electrode pad 107 formed thereon and a lower surface with a source electrode 109 formed thereon.
- the power MOS chip 7 (an example of the second power MIS chip) has a source and a drain arranged inversely in comparison with the power MOS chip 5 .
- the power MOS chip 7 had an upper surface with a source electrode pad 111 and a gate electrode pad 113 formed thereon and a lower surface with a drain electrode 115 formed thereon.
- FIG. 38 is a cross-sectional view of part of the power MOS chip 5 according to the eighth embodiment.
- the chip 5 comprises a silicon substrate 117 and an epitaxial layer or p ⁇ -type base region 119 formed thereon.
- the silicon substrate 117 serves as a p + -type source region.
- the silicon substrate 117 has a lower surface entirely in contact with a source electrode 109 .
- an n + -type drain region 121 and an n ⁇ -type drift region 123 are formed adjacent to each other.
- An n + -type source region 125 is formed in the base region 119 apart from the drift region 123 , interposing an interval therebetween.
- a gate 127 is formed on a gate oxide film above a location between the drift region 123 and the source region 125 . The gate 127 is operative to form a channel in the base region 119 . Through the channel and the drift region 123 , the drain region 121 and the source region 125 are brought into conduction.
- a p + -type conductive region 129 is formed passing through the base region 119 and reaching the silicon substrate 117 .
- the conductive region 129 and the source region 125 are electrically connected with each other via a short electrode 131 .
- the source region 125 and the base region 119 are short-circuited.
- An interlayer insulator 133 is formed covering the gate 127 and the short electrode 131 .
- a drain electrode 135 is formed on the interlayer insulator 133 .
- the drain electrode 135 makes contact with the drain region 121 via a contact hole formed through the interlayer insulator 133 .
- the power MOS chip 5 having the above structure is of the so-called lateral type that allows current to flow in a direction parallel to the upper surface of the chip.
- the power MOS chip 7 is of the so-called vertical type that allows current to flow in a direction perpendicular to the upper surface of the chip.
- FIG. 39 is a cross-sectional view of part of the power MOS chip 7 according to the eighth embodiment.
- the chip 7 includes an n + -type silicon substrate 137 and an epitaxial layer or n ⁇ -type drift region 139 formed thereon.
- the silicon substrate 137 serves as an n + -type drain region.
- the silicon substrate 137 has a lower surface entirely brought into contact with the drain electrode 115 .
- the drift region 139 has a current path extending in a direction perpendicular to the upper surface of the silicon substrate 137 .
- a plurality of p-type base regions 141 are formed at intervals in the drift region 139 .
- n + -type source regions 143 are formed spaced from each other.
- a gate 145 is formed on a gate oxide film between the base regions 141 . The gate 145 is operative to form a channel in the base region 141 . Through the channel, the source region 143 and the drain region 139 are brought into conduction.
- An interlayer insulator 147 is formed covering the gate 145 .
- a source electrode 149 is formed on the interlayer insulator 147 .
- the source electrode 149 makes contact with the source region 143 and the base region 141 via a contact hole formed through the interlayer insulator 147 .
- the source electrode pad 41 on the power MOS chip 5 is connected to the drain electrode 43 on the power MOS chip 7 via the connection member 33 , the wire 29 , the connection member 33 , the terminal 59 and the heat sink member 55 .
- the source electrode pad 109 on the power MOS chip 5 is connected to the drain electrode 115 on the power MOS chip 7 via the heat sink plate 103 . Therefore, the eighth embodiment is possible to shorten the current path to reduce the wire resistance and reduce the parasitic inductance on the current path. Accordingly, it is possible to provide a high-efficiency electronic device (such as a DC-DC converter) that incorporates the semiconductor module according to the eighth embodiment therein.
- FIG. 40 is a cross-sectional view of a semiconductor module 1 according to a ninth embodiment, from which the sectional structure and the structure of the lower surface of the mounting board 3 are omitted.
- the semiconductor module 1 according to the ninth embodiment is similar to the semiconductor module 1 according to the eighth embodiment shown in FIGS. 35-37 because the heat sink members 53 , 55 are liked together to configure a single heat sink plate 103 .
- the lower surfaces of the power MOS chips 5 , 7 are electrically connected to each other via the heat sink plate 103 .
- the power MOS chips 5 , 7 according to the ninth embodiment differ in structure from those according to the eighth embodiment.
- the power MOS chip 5 is of the P-channel type while the power MOS chip 7 is of the N-channel type.
- a gate electrode pad 151 , a source electrode pad 153 and a drain electrode pad 155 are formed on the upper surface of the power MOS chip 5 , 7 .
- a connection conductor 157 is formed through the chip 5 , 7 .
- the drain electrode pad 155 is electrically connected to a drain electrode 159 on the lower surface of the chip 5 , 7 via the connection conductor 157 .
- the electrode pads 151 , 153 , 155 are connected to the electrode 32 a on the mounting board 3 by the connection member 33 .
- the electrode pads 151 , 153 , 155 may be provided with a bump electrode formed thereon. In this case, the electrode pads 151 , 153 , 155 are connected to the electrode 32 a via the bump electrode and the connection member 33
- the output VOUT from the semiconductor module 1 shown in FIG. 5 can be led out through the following two current paths.
- One is a current path including the heat sink plate 103 , the terminal of the heat sink member, and the wire on the mounting board 3 .
- Another is a current path including the heat sink plate 103 , the connection conductor 157 , the drain electrode pad 155 , the connection member 33 , and the wire on the mounting board 3 .
- the heat sink plate 103 may be isolated from the chip 5 , 7 .
- the heat sink plate 103 itself may be composed of an insulator. In these cases, it is possible to omit measures for insulation of the heat sink plate 103 from outside, which otherwise the user must implement, if required. In additional, it is possible to suppress EMI or the like. Such the insulation reduces the wire resistance and inductance even though both the power MOS chips 5 , 7 are of the N-channel type. In these cases, the drain electrodes 159 on the power MOS chips 5 , 7 are electrically connected via the wire formed on the mounting board 3 .
- FIG. 41 is a cross-sectional view of part of the power MOS chip 7 provided in the ninth embodiment.
- the chip 7 has a structure similar to that of the power MOS chip 7 in FIG. 39 except the connection conductor and the vicinity thereof.
- the source electrode 153 is an example of the first main electrode while the drain electrode 159 is an example of the second main electrode.
- a through-hole 161 is formed in the chip 7 extending from the upper surface to the lower surface of the power MOS chip 7 .
- the through-hole 161 has a diameter of 10 ⁇ m or larger.
- a connection conductor 157 is buried in the through-hole 161 .
- the connection conductor 157 is formed by, for example, plating Cu in the through-hole 161 .
- the connection conductor 157 becomes relatively thick. Therefore, the resistance of the connection conductor 157 can be made smaller than the resistance when the drain electrode is connected to the electrode on the mounting board 3 using a bonding wire or the like instead of the connection conductor 157 .
- connection conductor 157 makes contact with the drain electrode 159 having a thickness of 5 ⁇ m or larger.
- the thickness is 5 ⁇ m or larger: (1) it can lower the resistance on the current path extending from the n + -type silicon substrate 137 through the drain electrode 159 to the connection conductor 157 ; and (2) it can be employed as a stopper on formation of the through-hole 161 passing through the silicon layer.
- an n + -type impurity region 163 is formed surrounding the connection conductor 157 .
- the impurity region 163 prevents a depletion layer extending from the p-base region 141 from reaching the connection conductor 157 .
- the impurity region 163 keeps non-conduction between the p-base region 141 and the drain electrode 159 .
- This non-conduction may also be kept by formation of an insulating layer on the upper surface of the through-hole 161 . In this case, even if the depletion layer reaches the insulating layer on the upper surface of the through-hole 161 , conduction between the p-base region 141 and the drain electrode 159 can not be established immediately. Therefore, it is possible to reduce the distance between the through-hole 161 and the p-base region 141 by design and accordingly reduce the chip area.
- the power MOS chip 5 according to the ninth embodiment has a structure with reverse conduction types of parts in FIG. 41 .
- both the drain electrode and the source electrode are led out to the upper surfaces of the chips 5 , 7 . Accordingly, the distance between the drain electrode and the wire 29 on the mounting board 3 can be shortened to reduce the wire resistance on the current path. On the mounting board 3 , the distance between the wire 29 connected to the source electrode and the wire 29 connected to the drain electrode can be shortened to reduce the parasitic inductance on the current path.
- the MOSFET is of the planar type though it may be of the trench type.
- the trench type is possible to lower the resistance of the MOSFET itself so that the resistance of the circuit in the semiconductor module can be lowered further.
- the ninth embodiment can shorten the current path, similar to the eighth embodiment. Therefore, it is possible to lower the wire resistance and lower the parasitic inductance on the current path. Accordingly, it is possible to provide a high-efficiency electronic device (such as a DC-DC converter) that incorporates the semiconductor module according to the ninth embodiment therein,
- FIG. 42 is a plan view of a semiconductor module 1 according to a tenth embodiment and FIG. 43 is a cross-sectional view taken along G 1 -G 2 line in FIG. 42 .
- decoupling condensers 165 , 167 , 169 (hereinafter also referred to as condensers) are built in the semiconductor module 1 . These condensers are operative to cancel the wire inductance between the supply terminals and the ground terminals in the semiconductor module 1 and connected between the supply terminals and the ground terminals.
- the condenser 165 , 167 , 169 may be located on the mounting board 3 while in the structure of the tenth embodiment the condenser 165 , 167 , 169 is partly embedded in a recess 171 of the mounting board 3 as shown in FIG. 43 .
- the semiconductor module 1 is structured to protrude from the location of the condenser 165 , 167 , 169 .
- Formation of the condenser 165 , 167 , 169 in the recess 171 can lower the height of the location such that the heat sink members 53 , 55 can extend over the condensers 165 , 167 , 169 . Therefore, it is possible to enlarge the area of the heat sink member 53 , 55 to improve the heat radiation.
- FIG. 44 is a circuit diagram of the semiconductor module 1 according to the tenth embodiment.
- FIG. 45 shows external terminals related to condensers on the semiconductor module 1 according to the tenth embodiment.
- the tenth embodiment provides three decoupling condensers instead of sharing one for the reason described below.
- a power IC circuit includes a first block in which large current flows and a second block in which current slightly or hardly flows.
- Commonality of the ground terminals in the first and second blocks allows large current to flow from the first block to the ground wire in the second block in which current slightly or hardly flows. Accordingly, the second block suffers the influence of the resultant voltage drop. Therefore, the ground terminals are divided between the first block and the second block to prevent the above influence.
- the ground terminal in the first block is referred to as a PGND (power ground) terminal while the ground terminal in the second block is referred to as a SGND (signal ground) terminal.
- the circuit including the power MOS chips 5 , 7 corresponds to the first block while the circuit including the drive IC chip 9 corresponds to the second block. Therefore, it is required to provide two condensers.
- the drive IC chip 9 may also be divided into the first and second blocks.
- the drive IC chip 9 can be divided into a gate driver 173 operative to drive the gates of the power MOS chips 5 , 7 and a signal transmitter 175 operative to transmit signals from external to the gate driver 173 .
- the signal transmitter 175 has an arithmetic function in addition to the signal transmission. A relatively large current flows in the gate driver 173 while current hardly flows in the signal transmitter 175 . Thus, the ground terminal in the gate driver 173 is separated from the ground terminal in the signal transmitter 175 .
- the ground terminals therefore include three types: the PGND terminal or the ground terminal in the circuit including the power MOS chips 5 , 7 ; an IC-PGND terminal or the ground terminal in the gate driver 173 ; and the SGND terminal or the ground terminal in the signal transmitter 175 .
- the condenser 165 is connected between a VIN terminal or the supply terminal in the circuit including the power MOS chips 5 , 7 and the PGND terminal.
- the condenser 169 is connected between a VDD terminal or the supply terminal in the gate driver 173 and the IC-PGND terminal.
- the condenser 167 is connected between the VDD terminal or the supply terminal in the signal transmitter 175 and the SGND terminal.
- the decoupling condensers 165 , 167 , 169 are contained in the semiconductor module 1 . Therefore, the wire connecting the supply terminal with the ground terminal can be made shorter and accordingly the wire inductance can be made lower than when these condensers are connected to the semiconductor module 1 externally.
- FIG. 46 is a plan view of a semiconductor module 1 according to an eleventh embodiment.
- FIG. 47 is a cross-sectional view taken along H 1 -H 2 line in FIG. 46 .
- FIG. 48 is a bottom view of the semiconductor module 1 in FIG. 46 .
- the eleventh embodiment further defines the locations of the supply terminals and the ground terminals in the first embodiment shown in FIG. 1 .
- the external terminals 27 located on a first side 177 of the mounting board 3 are all assigned to the VIN terminal in the circuit including the power MOS chips 5 , 7 .
- the external terminals 27 located on a second side 179 adjacent to the first side 177 are all assigned to the PGND terminal in the above circuit.
- the external terminals 27 located on a third side 181 opposite to the first side 177 of the mounting board 3 are partly assigned to the VOUT terminal shown in FIG. 44 .
- the external terminals 27 located on the remaining final fourth side 183 are assigned to the IC-PGND terminal, the VDD terminal, the SGND terminal and others. These terminals are described earlier in the tenth embodiment.
- the decoupling condensers are attached to the semiconductor module 1 externally.
- the decoupling condenser 165 is externally connected between the VIN terminal and the PGND terminal.
- the VIN terminal is located on the first side 177 while the PGND terminal is located on the second side 179 . In a word, these terminals are located on two adjacent sides. Therefore, even if the decoupling condenser is externally connected, the wire connecting the VIN terminal with the PGND terminal can be shortened to reduce the wire inductance.
- the current path ( 1 ), ( 2 ) can be made shorter than when located on the fourth side 183 .
- Three terminals 59 provided in the circuit including the chips 5 , 7 , are aligned inline. Therefore, the current path ( 1 ) can be made shorter.
- the terminals 59 are located on two opposite longer sides. Therefore, the current path ( 1 ) can be made shorter than when located on two opposite shorter sides.
- the eleventh embodiment is possible to shorten the wire connecting the VIN terminal with the PGND terminal and shorten the current path. Accordingly, it is possible to provide a high-efficiency electronic device that incorporates the semiconductor module according to the eleventh embodiment therein.
- FIG. 49 is a plan view of a semiconductor module 1 according to a twelfth embodiment.
- the twelfth embodiment is provided with n power MOS chips 5 , 7 (chips 5 - 1 to 5 - n and chips 7 - 1 to 7 - n : n is a plurality).
- the number of the power MOS chips 5 , 7 driven by the drive IC chip 9 is varied. This is a major characteristic.
- FIG. 50 is a circuit diagram of a DC-DC converter 67 containing the semiconductor module 1 according to the twelfth embodiment.
- the DC-DC converter 67 of FIG. 50 further comprises a load current detector 185 operative to detect current flowing in the load CPU 75 in addition to the DC-DC converter 67 of FIG. 5 .
- the semiconductor module 1 comprises n power MOS chips 5 , 7 and the drive IC chip 9 .
- the drive IC chip 9 includes high-potential and low-potential driven chip number decision tables 187 , 189 ; high-potential and low-potential driven chip number switchers 191 , 193 ; and high-potential and low-potential chip drivers 195 - 1 to 195 - n , 197 - 1 to 197 - n .
- the chip drivers correspond to the respective chips.
- Pieces of data on the number of chips driven in response to the load current are stored in the tables 185 , 187 .
- the data are previously determined in consideration of the on-resistance, the gate capacitance and the number of the power MOS chip 5 , 7 .
- the value of the load current detected by the load current detector 185 is compared with the data in the table 187 , 189 to decide a certain number of chips actually driven.
- the driven chip number switchers 191 , 193 operate a certain number of chip drivers of the chip drivers 195 - 1 to 195 - n , 197 - 1 to 197 - n to drive a certain number of power MOS chips on the high-potential side and the low-potential side.
- Losses in a synchronous commutation step-down DC-DC converter include a steady-state loss caused by the on-resistance of the power MOS chip and other losses (such as a switching loss and a gate charge loss).
- the loss in the large current operation of the DC-DC converter mainly belongs to the steady-state loss while the loss in the small current operation mainly belongs to the other losses. Therefore, it is effective to reduce the steady-state loss in the large current operation of the DC-DC converter while it is effective to reduce the other losses in the small current operation.
- a reduction in steady-state loss can be achieved by a lowered on-resistance of MOS.
- a reduction in other losses can be achieved by a lowered gate capacitance.
- An increased area of the power MOS chip can lower the on-resistance of MOS but results in an increased gate capacitance.
- a decreased area of the power MOS chip can lower the gate capacitance but results in an increased on-resistance of MOS.
- the number of the driven power MOS chips 5 , 7 is varied based on the value of current flowing in the load to adjust the area of the power MOS chip 5 , 7 .
- the number of the driven power MOS chips 5 , 7 is increased in the large current operation and decreased in the small current operation. Accordingly, in the twelfth embodiment, the DC-DC converter can operate efficiently regardless of the large current operation and the small current operation.
- FIG. 51 is a circuit diagram of the speaker driver 199 according to the thirteenth embodiment.
- the power MOS chips 5 , 7 , the drive IC chip 9 and a low-pass filter 201 composed of L and C are contained in a set 203 . Two such sets 203 correspond to a channel (speaker).
- MOS 1 , MOS 2 , MOS 3 and MOS 4 employ chips having the same property. Therefore, as shown below, the chip 5 and the chip 7 are sized similarly and both shaped square.
- the following two ways can be considered.
- One is the use of a semiconductor module 1 (half-bridged) that includes one set 203 mounted thereon as shown in FIG. 52 . In this case, two such semiconductor modules 1 are required.
- Another is the use of a semiconductor module 1 (full-bridged) that includes two sets 203 mounted thereon as shown in FIG. 53 . In this case, a single semiconductor module 1 configures the speaker driver 199 . In either case, the low-pass filter 201 is not depicted.
- the drive IC chip 9 is located equidistant from the power MOS chip 5 and the power MOS chip 7 .
- location of the VIN terminal adjacent to the PGND terminal shortens the length of the wire associated with the decoupling condenser attached externally.
- the chips 5 , 7 , 9 are arranged such that the wires connected to the gates of the power MOS chips 5 , 7 from the drive IC chip 9 are shortened.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
A semiconductor module comprises a mounting board. A plurality of power switching device chips are mounted on the mounting board by flip-chip bonding. The chip has an upper surface and a lower surface and is configured to face the upper surface toward the mounting board. A drive IC chip is mounted on the mounting board by flip-chip bonding. The drive IC chip is operative to drive gates of transistors formed in the plurality of power switching device chips. A plurality of heat sink members are located on the lower surfaces of the plurality of power switching device chips, respectively. A resinous member is provided to seal the plurality of power switching device chips and the drive IC chip in a single package.
Description
- This application is a divisional of and claims the benefit of priority under 35 USC §120 from U.S. Ser. No. 11/214,730, filed Aug. 31, 2005 and is based upon and claims the benefit of priority under 35 USC §119 from the Japanese Patent Application No. 2004-253276, filed on Aug. 31, 2004, the entire contents of both of which are incorporated herein by reference.
- 1. Field of the Invention
- The present invention relates to a semiconductor module such as a multi-chip module.
- 2. Description of the Related Art
- A DC-DC converter is a device that converts a certain voltage DC current into a different voltage DC current. The DC-DC converter is highly efficient and can be downsized. Therefore, it has been utilized as a power source incorporated in small electronic instruments (for example, information communications instruments such as notebook personal computers and mobile phones).
- In the information communications instruments such as PCs, a CPU is fine patterned and sped up to provide an advanced low-voltage/large-current power source (drive power source). A supply voltage for the CPU is mainly 5.0 (V) or 3.3 (V) in the year 1995. In recent years, however, the debut of high-performance CPUs with clock frequencies over 1 GHz requires a voltage lowered down to 1.5 (V) and a current in a class of 100 (A). In addition, in order to respond to the operation speed of the CPU, the power source circuit is required to have an operation frequency of 1 MHz or higher. Therefore, it becomes also important to elevate the switching speed of transistors contained in the power source circuit.
- The low-voltage/large-current power source has changed the forms of the conventional power source system. In a form of supplying power from a single power source to a plurality of circuits, even slight parasitic impedance on a wire causes a voltage drop. Accordingly, a voltage required for the circuit is not supplied, which causes erroneous operations. At present the form is therefore transferred to another in which power sources are distributed to locate the power sources corresponding to the respective loads close to the loads.
- As for the notebook PC, for example, it comprises loads such as a CPU, a LCD screen and a hard disc. The power sources (that is, DC-DC converters) corresponding to the respective loads are located near the loads.
- The conventional high-power DC-DC converters include a synchronous commutation non-insulating step-down converter, which comprises an N-channel type power MOSFET (Metal Oxide Semiconductor Field Effect Transistor), an SBD (Schottky Barrier Diode), a PWM (Pulse width Modulation) control IC and others. These components are individually packaged and the packaged components are mounted on a printed circuit board.
- Normally, a power switching device such as the power MOSFET used in the power source circuit radiates heat caused from power losses due to on-resistance and switching. Therefore, it is required to attach a heat sink plate to the power MOSFET chip to dissipate the heat to outside the chip. A high-frequency multi-chip module structured to include a heat sink plate attached to a semiconductor chip is disclosed in JP-A 11-45976 (FIG. 1).
- In an aspect the present invention provides a semiconductor module, which comprises a mounting board; a plurality of power switching device chips each having an upper surface and a lower surface and mounted on the mounting board by flip-chip bonding with the upper surface faced toward the mounting board; a drive IC chip mounted on the mounting board by flip-chip bonding and operative to drive gates of transistors formed in the plurality of power switching device chips; a plurality of heat sink members located on the lower surfaces of the plurality of power switching device chips; and a resinous member provided to seal the plurality of power switching device chips and the drive IC chip in a single package.
-
FIG. 1 is a plan view of a semiconductor module according to a first embodiment; -
FIG. 2 is a cross-sectional view taken along A1-A2 line inFIG. 1 ; -
FIG. 3 is a cross-sectional view taken along B1-B2 line 10: inFIG. 1 ; -
FIG. 4 is a cross-sectional view of part of a power MOS chip provided in the first embodiment; -
FIG. 5 is a circuit diagram of a DC-DC converter according to the first embodiment; -
FIG. 6 is a timing chart of signals fed intopower MOS chips FIG. 5 ; -
FIG. 7 is a plan view of a modification of the semiconductor module according to the first embodiment: -
FIG. 8 is a plan view of a semiconductor module according to a second embodiment; -
FIG. 9 is a cross-sectional view taken along C1-C2 line inFIG. 8 ; -
FIG. 10 is a perspective view of a heat sink member according to the second embodiment; -
FIG. 11 is a perspective view of a modification of the heat sink member according to the second embodiment; -
FIG. 12 is a cross-sectional view of part of a low-potential power MOS chip provided in a third embodiment; -
FIG. 13 is a cross-sectional view of a semiconductor module in a first aspect according to a fourth embodiment; -
FIG. 14 is a cross-sectional view of a semiconductor module in a second aspect according to the fourth embodiment; -
FIG. 15 is a cross-sectional view of a semiconductor module in a third aspect according to the fourth embodiment: -
FIG. 16 is across-sectional view of a semiconductor module in a fourth aspect according to the fourth embodiment; -
FIG. 17 is a plan view of a semiconductor module according to a fifth embodiment; -
FIG. 18 is a cross-sectional view taken along D1-D2 line inFIG. 17 ; -
FIG. 19 is a first process diagram illustrative of a method of fabricating the semiconductor module according to the fifth embodiment; -
FIG. 20 is a second process diagram of the same method; -
FIG. 21 is a third process diagram of the same method; -
FIG. 22 is a fourth process diagram of the same method; -
FIG. 23 is a fifth process diagram of the same method; -
FIG. 24 is a sixth process diagram of the same method; -
FIG. 25 is a graph exemplifying a temperature profile on solder reflow heating during fabrication of the semiconductor module according to the fifth embodiment; -
FIG. 26 is a cross-sectional view of a semiconductor module according to an embodiment; -
FIG. 27 is a cross-sectional view of a semiconductor module according to another embodiment; -
FIG. 28 is a cross-sectional view of a semiconductor module according to yet another embodiment; -
FIG. 29 is a bottom view of a semiconductor module according to a sixth embodiment; -
FIG. 30 is a bottom view of a semiconductor module according to the fifth embodiment; -
FIG. 31 is a cross-sectional view of a mounting board and so forth housed in a mold prior to resin sealing; -
FIG. 32 shows the mounting board deflected: -
FIG. 33 is a bottom view of a modification of the semiconductor module according to the sixth embodiment; -
FIG. 34 is a plan view of an upper surface of a power MOS chip provided in a semiconductor module according to a seventh embodiment; -
FIG. 35 is a plan view of a semiconductor module according to an eighth embodiment; -
FIG. 36 is a cross-sectional view taken along E1-E2 line inFIG. 35 ; -
FIG. 37 is a cross-sectional view taken along F1-F2 line inFIG. 35 ; -
FIG. 38 is a cross-sectional view of part of apower MOS chip 5 according to the eighth embodiment; -
FIG. 39 is a cross-sectional view of part of apower MOS chip 7 according to the eighth embodiment; -
FIG. 40 is across-sectional view of a semiconductor module according to a ninth embodiment; -
FIG. 41 is a cross-sectional view of part of a power MOS chip provided in the ninth embodiment; -
FIG. 42 is a plan view of a semiconductor module according to a tenth embodiment; -
FIG. 43 is a cross-sectional view taken along G1-G2 line inFIG. 42 ; -
FIG. 44 is a circuit diagram of a semiconductor module according to the tenth embodiment: -
FIG. 45 shows external terminals related to condensers on the semiconductor module according to the tenth embodiment; -
FIG. 46 is a plan view of a semiconductor module according to an eleventh embodiment; -
FIG. 47 is a cross-sectional view taken along H1-H2 line inFIG. 46 ; -
FIG. 48 is a bottom view of the semiconductor module inFIG. 46 ; -
FIG. 49 is a plan view of a semiconductor module according to a twelfth embodiment; -
FIG. 50 is a circuit diagram of a DC-DC converter containing the semiconductor module according to the twelfth embodiment; -
FIG. 51 is a circuit diagram of a speaker driver according to a thirteenth embodiment; -
FIG. 52 is a plan view of a semiconductor module (half-bridged) contained in the speaker driver ofFIG. 51 ; and -
FIG. 53 is a plan view of a semiconductor module (full-bridged) contained in the speaker driver ofFIG. 51 . - Embodiments of the present invention will now be described with reference to the drawings. In the figures illustrative of the embodiments, the parts same as or similar to those denoted with the reference numerals in the figure once described are given the same reference numerals and omitted from the following description. A semiconductor module according to the embodiment is a multi-chip module, which includes a power MOS chip and a drive IC chip both sealed in a single package. This module serves as part of a DC-DC converter.
- The power MOS chip comprises an FET having a gate insulator containing a silicon oxide while the present invention is not limited to this but also applicable to a power MIS chip, which comprises an FET having an insulator (such as a high dielectric) other than the silicon oxide. The power NOS chip and the power MIS chip are also referred to as power switching devices.
- (Structure of Semiconductor Module)
- A structure of a semiconductor module according to a first embodiment is described with reference to
FIGS. 1-3 .FIG. 1 is a plan view of the semiconductor module according to the first embodiment.FIG. 2 is a cross-sectional view taken along A1-A2 line inFIG. 1 .FIG. 3 is a cross-sectional view taken along B1-B2 line inFIG. 1 . - The
semiconductor module 1 comprises amounting board (such as a printed circuit board) 3, twopower MOS chips 5, 7 (an example of the power switching devices) and adrive IC chip 9 all mounted on the mounting board. Thedrive IC chip 9 is a chip operative to drive gates of MOSFETs formed in thepower MOS chips power MOS chip 5 and thedrive IC chip 9 are shaped square while thepower MOS chip 7 is shaped rectangular. Thus, thechips board 3. -
FIG. 4 is a cross-sectional view of part of thepower MOS chip chip chip type silicon substrate 13 having an n-type epitaxial layer 11 thereon. An upper layer located above theepitaxial layer 11 is a p-type body region 15. A number oftrench gates 17 are formed through thebody region 15 in theepitaxial layer 11. Agate oxide film 19 is formed around thetrench gate 17. - An n+-
type source region 21 is formed in the upper surface of thebody region 15. Aninterlayer insulator 23 is formed covering thetrench gate 17 and thesource region 21. Contact holes are formed through theinterlayer insulator 23 such that asource electrode 24 is connected to thebody region 15 and thesource region 21 via the contact holes. Thesilicon substrate 13 serves as an n+-type drain region. Adrain electrode 43 is formed entirely over the lower surface of thesilicon substrate 13. - As shown in
FIGS. 1-3 , the mountingboard 3 includes asquare resin plate 25. Thesquare resin plate 25 has four sides provided with a number ofexternal terminals 27 at a certain 20, pitch. Theterminals 27 has a semi-cylindrical shape so that edges of the mountingboard 3 are recessed at theterminals 27.Wires 29 are formed on both surfaces of theresin plate 25 and connected to theexternal terminals 27. Theexternal terminals 27 and thewires 29 are composed of a conductor such as copper foil. - Solder resists 31 are formed on both surfaces of the
resin plate 25 covering thewires 29. The solder resists 31 do not cover theexternal terminals 27 but have apertures through thewires 29 at locations corresponding toelectrodes connection member 33 such as solder is screen-printed on theelectrodes - A number of through-holes are formed through the
resin plate 25. Aconductive film 35 such as copper is formed, for example, plated on the side of the through-hole. Theconductive film 35 is operative to electrically connect between thewires 29 on both surfaces of theresin plate 25. Aresin 37 is filled in a space surrounded by theconductive film 35. Instead of theresin 37, a resin containing a metal powder such as copper may be filled to lower the electric resistance. - The
power MOS chips drive IC chip 9 are mounted on the mountingboard 3 by flip-chip bonding. In detail, agate electrode pad 39 and asource electrode pad 41 are formed on the upper surface of thepower MOS chip drain electrode pad 43 is formed on the lower surface thereof. Theelectrode pads source electrode 24 shown inFIG. 4 . Bump electrodes may be formed on theelectrode pads gate electrode pad 39 is commonly connected with thetrench gates 17. Thesource electrode pad 41 is connected with thesource electrode 24. - The
gate electrode pad 39 and thesource electrode pad 41 on thepower MOS chips electrode pad 49 on thedrive IC chip 9 are soldered to theelectrode 32 a on the mountingboard 3 with theconnection member 33. A space between thechips board 3 is filled with anunderfill material 51. - A square heats sink
member 53 is arranged on the lower surface 47 (FIG. 4 ) of thepower MOS chip 5 so as to cover thepower MOS chip 5. Similarly, a rectangularheat sink member 55 is arranged on the lower surface 47 (FIG. 4 ) of thepower MOS chip 7 so as to cover thepower MOS chip 7. Theheat sink members - The
heat sink members heat sink member 53 is provided with the terminal 59 on one of four sides. To the contrary, theheat sink member 55 is provided with theterminals 59 on two opposite longer sides of four sides (that is, two opposite longer sides of the rectangular chip 7). Theheat sink members electrode 32 b on the mountingboard 3 by theconnection member 33. Therefore, theheat sink members electrode 32 b on the mountingboard 3 and electrically connected to thewire 29 on the mountingboard 3. - The
heat sink member 53 has only oneterminal 59 and is fixed at one location accordingly. On the other hand, theheat sink member 55 has twoterminals 59 and is fixed at two locations accordingly. This is a requirement from the electric circuit that contains theheat sink members terminals 59 are formed on theheat sink member 53, theheat sink member 53 is fixed at two locations. If theheat sink member 53 is fixed at one location, parallelism of the heat sink member to the mounting board may not be maintained. Measures for such the case will be described in a second embodiment. - The
heat sink members power MOS chip heat sink members drain electrode 43 on the lower surface of thepower MOS chip conductive connection member 57. Therefore, each heat sink member is electrically connected to the drain electrode on the lower surface of the corresponding one of the power MOS chips (or to the source electrode if the chip has the source electrode on the lower surface thereof). - The
heat sink members 53 and 55: (1) cover thepower MOS chips terminals 59 connected to theelectrode 32 b, and (3) have the same height at theheat sink members 53, 55 (that is, are coplanar). Therefore, the size of the step of theheat sink members connection member 57, thickness of thepower MOS chip electrode pad connection member 33, and a height of theelectrode - The
heat sink members heat sink members power MOS chip heat sink members - When aluminum or the iron-based material is employed as the
heat sink members connection member 33, (that is, the terminal 59), and the portion connected to theconnection member 57, of theheat sink members - The materials and thicknesses of the
heat sink members power MOS chips - If the thickness of the
heat sink members heat sink members heat sink members - The
heat sink members power MOS chip heat sink members power MOS chip - A
resinous member 61 is fixed on the mountingboard 3 to seal thepower MOS chips drive IC chip 9 in a single package. Theheat sink members surface 63 facing the lower surface of the correspondingpower MOS chip other surface 65 located opposite to the one surface. Theother surface 65 is exposed to outside thesemiconductor module 1. Therefore, all the heat sink members are exposed to outside thesemiconductor module 1. - (Circuitry and Operation of DC-DC Converter)
- The following description is given to the circuitry and operation of a DC-DC converter that contains the
semiconductor module 1.FIG. 5 is a circuit diagram of the DC-DC converter 67. The DC-DC converter 67 is of the synchronous commutation non-insulating step-down type. This is the most possible circuit to reduce the power loss and enhance the conversion efficiency. - The power MOS chip (an element on the control side) 5 at a higher potential and the power MOS chip (an element on the synchronous commutation side) 7 at a lower potential both employ an N-channel MOSFET having a lower on-resistance and a lower gate capacitance. The
power MOS chip 7 is connected in parallel with an SBD (Shottky Barrier Diode) 69 having a lower VF. Thepower MOS chips drive IC chip 9 for driving the gates. - The gates of the
power MOS chips power MOS chips - An
inductor 73 and acondenser 73 are connected to the DC-DC converter 67 on the output side. A load such as aCPU 75 is connected across the output of the DC-DC converter 67. - The basic operation of the DC-
DC converter 67 is described next with reference toFIGS. 5 and 6 .FIG. 6 is a timing chart of signals fed into thepower MOS chips converter 67 into 1.5 V, for example, which is then supplied to theCPU 75. - At time t1, while the MOSFET (M2) in the
power MOS chip 7 is kept off, the MOSFET (M1) in thepower MOS chip 5 is turned on. As a result, application of the input voltage VIN causes a current shown by the arrow (1) to flow to supply power to theCPU 75 through theinductor 71. At time t2, the MOSFET (M1) is turned off to halt supplying power to theCPU 75 through 10; application of the input voltage VIN. Instead, the power accumulated in theinductor 71 causes a current shown by the arrow (2) to commutate via theSED 69 to supply power to theCPU 75. - After elapse of a certain dead time DT set for prevention of through current from passing through the MOSFET (M1) and the MOSFET (M2), the MOSFET (M2) is turned on at time t3. The MOSFET (M2) is lower in resistance than the
SBD 69 so that the current generated from the power accumulated in theinductor 71 communicates through not theSBD 69 but the MOSFET (M2) as shown by the arrow (3) to supply power to theCPU 75. Thecondenser 73 is employed to smooth the output voltage waveform. The DC-DC converter can work without thepower MOS chip 7 or the MOSFET (M2). - The following description is given to the reason why the MOSFET (M2) is provided. At time t2, the current shown by the arrow (2) flows through the
SBD 69. The flow of the current through theSBD 69 causes a voltage drop, which causes a corresponding loss in power supplied to theCPU 75. A MOSFET can be made smaller in voltage drop than an SBD. Therefore, the current is controlled to flow via theSBD 69 during the dead time DT and flow via the MOSFET (M2) after elapse of the dead time DT to supply power to theCPU 75 efficiently. - (Primary Effects of First Embodiment)
- A primary effect of the first embodiment is described next. The first embodiment is possible to achieve a reduction of area in mounting space, a reduction in wire impedance, and an improvement in heat radiation for a semiconductor device containing the semiconductor module (such as the DC-DC converter 67), which are described below in detail.
- A conventional DC-DC converter comprises components such as a power MOS chip, a drive IC chip and an SBD (Schottky Barrier Diode), which are individually packaged, and these packaged components are attached to a printed circuit board. In recent years, lowering the voltage and increasing the current have proceeded rapidly for PCs and so forth. In the DC-DC converter with such the structure, there are problems associated with an increase in mounting space, an increase in wire impedance and difficulty in heat radiation.
- The increase in mounting space is described first. A current capacity required in the conventional DC-DC converter may exceed a rated current of a single MOSFET (one power MOS chip). In such the case, a plurality of power MOS chips are connected in parallel to provide the current capacity required. Therefore, the number of the power MOS chips must be increased to support the need for increasing the current, resulting in the increase in mounting space, which prevents the DC-DC converter from being downsized as a problem.
- The increase in wire impedance is described next. The increased mounting space enlarges the area of the mounting board, which inevitably elongates the wire length resulting in increases in resistance and inductance. The increase in resistance causes a voltage drop, which causes a lack in voltage applied across a load and leads to erroneous operations. The increase in inductance interferes with the achievement of high speed and high frequency properties and increases ringing, which may also cause erroneous operations.
- Finally, the problem associated with the difficulty in heat radiation is described. A load such as a CPU has a large amount of heat radiation and accordingly requires attachment of a large heat sink member to the load itself. Therefore, in the vicinity of the load, it is difficult to ensure a space to attach the heat sink member for the power MOS chip. If no heat sink member is attached to the power MOS chip, the number of the power MOS chips is increased to reduce the MOSFET resistance to avoid an excessive power loss in the power MOS chip. The increased number of the power MOS chips, however, causes problems associated with the increase in mounting space and the increase in wire impedance.
- In the
semiconductor module 1 according to the first embodiment, thepower MOS chips drive IC chip 9 are encapsulated in a single package. In a word, these chips are mounted on an identical surrounder. Therefore, the mounting space of the DC-DC converter 67 can be reduced (downsized). - Downsizing improves the mounting density and accordingly shortens the wire between elements. Thus, the wire impedance on the DC-
DC converter 67 can be reduced. Accordingly, the DC-DC converter 67 can operate at a high speed and a high frequency. - The
heat sink members power MOS chip other surface 65 of theheat sink members semiconductor module 1, the heat radiation can be further improved. In the first embodiment, thepower MOS chip heat sink members power MOS chip heat sink members power MOS chip heat sink members power MOS chip connection member 57. As theconnection member 57 is excellent in thermal conductivity, the heat generated from thechip heat sink member connection member 57. Also from this viewpoint, heat can be dissipated efficiently. - No heat sink member is attached to the
drive IC chip 9. In a word, thedrive IC chip 9 is not covered with the heat sink member as is thepower MOS chip drive IC chip 9 efficiently, however, a heat sink member may be disposed on the lower surface of thedrive IC chip 9. - The first embodiment also exerts the following effect. The
heat sink member drain electrode 43 on thepower MOS chip wire 29 on the mountingboard 3. Theheat sink members - (Modification of First Embodiment)
-
FIG. 7 is a plan view of a modification of thesemiconductor module 1 according to the first embodiment, corresponding toFIG. 1 . Thepower MOS chip 7 configures a low-potential circuit while thepower MOS chip 5 configures a high-potential circuit. Thepower MOS chip 7 is split into three chips 7-1, 7-2, 7-3. At this point, thesemiconductor module 1 inFIG. 7 differs from that inFIG. 1 . Theheat sink member 55 has regions corresponding to the chips 7-1, 7-2, 7-3, which serve as heat sink members for the respective chips. Therefore, it can be said in this case that a plurality of heat sink members are linked with each other to configure a single heat sink plate (heat sink member 55). - The
power MOS chip 7 inFIG. 1 has relatively large dimensions with a large thermal expansion efficiency and a large thermal stress. In the modification ofFIG. 7 , thepower MOS chip 7 is split into three relatively small chips 7-1, 7-2, 7-3 to ensure the current capacity and reduce the thermal stress. A plurality of power MOS chips 7-1, 7-2, 7-3 may be arranged for feeding a large current to thesemiconductor module 1 instead of reducing the thermal stress. - In the fifth embodiment, of the low-potential circuit and the high-potential circuit, the low-potential circuit includes three power MOS chips. It is sufficient that, however, at least one of the low-potential circuit and the high-potential circuit includes a plurality of power MOS chips. The number of chips is not limited to three but may be two or more.
-
FIG. 8 is a plan view of asemiconductor module 1 according to a second embodiment.FIG. 9 is a cross-sectional view taken along C1-C2 line inFIG. 8 .FIGS. 8 and 9 are employed to describe the second embodiment about differences from the first embodiment. - In the second embodiment, the
heat sink member 53 covering thepower MOS chip 5 extends over thedrive IC chip 9 so as to cover thedrive IC chip 9. Thepower MOS chip 5 and thedrive IC chip 9 share theheat sink member 53. A separate heat sink member for covering thedrive IC chip 9 may be arranged aside from theheat sink member 53. In comparison with such the case, the heat sink member can be given a larger area, which improves the heat radiation by the extent. - The
drive IC chip 9 has alower surface 77 kept at the ground potential, which differs from the potential on thedrain electrode 43 of thepower MOS chip 5. Therefore, theheat sink member 53 is insulated from thedrive IC chip 9 via aresinous member 61. In a word, theheat sink member 53 is insulated from thedrive IC chip 9 and extends over thedrive IC chip 9. - There is a possible inverted structure. In this structure, the
heat sink member 53 is connected to thelower surface 77 of thedrive IC chip 9 by a connection member, and theheat sink member 53 is insulated from thepower MOS chip 5 via theresinous member 61. It is easier for heat to conduct via theconductive connection member 57 than via the resin. Thepower MOB chip 5 has a larger amount of heat radiation than thedrive IC chip 9 has. Therefore, in the second embodiment, thepower MOS chip 5 is connected to theheat sink member 53 via theconnection member 57. - The above connection makes the potential on the
heat sink member 53 equal to the drain potential on thepower MOS chip 5. Accordingly, thedrive IC chip 9 is shielded by theheat sink member 53 held at the fixed potential. Thelower surface 77 of thedrive IC chip 9 is kept at the ground potential. In a high-frequency DC-DC converter, a high frequency fluctuates the ground potential to erroneously operate thedrive IC chip 9 possibly. In the second embodiment, as thedrive IC chip 9 is shielded by theheat sink member 53 kept at the fixed potential, it is possible to prevent the high frequency from causing fluctuation of the ground potential. - There is no terminal of the heat sink member between the
chips chips connection member 57 on the lower surface of thechip 5, theconnection member 57 may possibly extend and bring theconnection member 57 into contact with thechip 9. Therefore, in the second embodiment, thedrive IC chip 9 is polished thin to make the thickness of the drive IC chip 9 (for example, 140 μm) thinner than the thickness of the power MOS chip 5 (for example, 150 μm). This is effective to separate the lower surfaces of thechips chips - In the second embodiment, as the
heat sink member 53 extends over thedrive IC chip 9, theheat sink member 53 is shaped rectangular.FIG. 10 is a perspective view of theheat sink member 53 according to the second embodiment. Theheat sink member 53 is provided with asingle terminal 59 and fixed on the mountingboard 3 at one location. The terminal 59 is formed on part of a longer side of theheat sink member 53. Therefore, theheat sink member 53 is held unstable, and the parallelism of theheat sink member 53 to the mountingboard 3 may not be kept occasionally. Arrangement of another terminal can keep the parallelism though such the terminal may not be required on the electric circuit. - In such the case, the modification of the
heat sink member 53 according to the second embodiment shown inFIG. 11 is possible to keep the parallelism of theheat sink member 53. Theheat sink member 53 includes two foldedportions 79, which are formed by folding two opposite shorter sides thereof. The foldedportions 79 are mounted on the solder resist 31 on the mountingboard 3 to keep the parallelism of theheat sink member 53 having only oneterminal 59. - Different from the preceding embodiment, a third embodiment comprises a low-potential power MOS chip with a built-in SBD.
FIG. 12 is a cross-sectional view of part of the low-potentialpower MOS chip 7 a provided in the third embodiment, corresponding to thepower MOS chip 7 inFIG. 4 . AnSBD 69 is formed at a certain distance away from anend terminal 81 of a MOSFET formation region. The certain distance means a distance that prevents the MOSFET and the SBD from interfering with each other. - The
SBD 69 includes anepitaxial layer 11 and ametal layer 83 such as aluminum formed thereon. When theepitaxial layer 11 makes contact with themetal layer 83, a Schottky barrier is made at the contact portion. TheSBD 69 is connected in parallel with the MOSFET in thepower MOS chip 7. A p-n junction diode may be employed instead of theSBD 69. - When the
power MOS chip 7 a with the built-inSED 69 is employed in the semiconductor module as in the third embodiment, the number of components can be made smaller than when a chip of theSBD 69 is employed. This makes it possible to shorten the time for fabricating the semiconductor module and downsize the semiconductor module. In addition, no wire is required to connect thepower MOS chip 7 a with the chip of theSBD 69. Accordingly, it is possible to remove the impedance associated with such the wire and provide the semiconductor module with an excellent high-speed performance. - In the
semiconductor module 1 according to the first embodiment shown inFIG. 3 , theheat sink members semiconductor module 1. When theheat sink members semiconductor module 1, the heat radiation effect can be improved while it is required to prevent thepower MOS chips -
FIGS. 13-16 are cross-sectional views of a semiconductor module in first through fourth aspects according to the fourth embodiment, corresponding toFIG. 3 . In thesemiconductor module 1 of the first aspect shown inFIG. 13 , theheat sink members resinous member 61. In a word, a plurality of heat sink members are all covered with theresinous member 61 to achieve the short circuit protection. When the amounts of heat radiation from thepower MOS chips chips heat sink members resinous member 61. In such the case, the first aspect can be utilized. Instead of forming theresinous member 61, grease or the like may be coated over theheat sink members FIG. 3 . - The
semiconductor module 1 of the second aspect shown inFIG. 14 is structured to include an insulatingheat sink plate 85 formed over theheat sink members FIG. 3 . Theheat sink plate 85 is formed of a material such as ceramics. The second aspect is possible to improve the heat radiation better than the first aspect. - The
semiconductor module 1 of the third aspect shown inFIG. 15 includes theheats ink member 53 covered with theresinous member 61 and theheat sink member 55 exposed to outside. Therefore, a plurality of heat sink members include some heat sink member(s) exposed to outside. As thepower MOS chip 7 has a relatively large amount of heat radiation, theheat sink member 55 is exposed to outside. Theheat sink member 53 is covered with theresinous member 61 so that thepower MOS chips - In the third aspect, the
power MOS chip 7 is controlled to have a thickness larger than that of thepower MOS chip 5 to expose theheat sink member 55 to outside. Other than this part, the similarity is also found in theelectrode 32 a on the mounting board, theconnection member 33, theelectrode pads connection member 57. For example, theelectrode 32 a corresponding to thepower MOS chip 7 is controlled to have a height larger than that of theelectrode 32 a corresponding to thepower MOS chip 5. The thickness of the chip and the height of the electrode may be controlled in combination or singly. - The
semiconductor module 1 of the fourth aspect shown inFIG. 16 comprises theheat sink members heat sink member 53 located on the lower surface of thepower MOS chip 5 has no terminal 59. Therefore, theheat sink member 53 can not serve as a wire. -
FIG. 17 is a plan view of asemiconductor module 1 according to a fifth embodiment.FIG. 18 is a cross-sectional view taken along D1-D2 line inFIG. 17 . A difference from thesemiconductor module 1 ofFIG. 1 lies in location of the outer edge of the solder resist 31. The fifth embodiment is described below in detail. - The mounting
board 3 is similar to the mountingboard 3 of the preceding embodiments and defined bysides 87, asurface 89 facing thechips opposite surface 91 located opposite to thesurface 89. On the other hand, different from the preceding embodiments, the solder resist 31 of the fifth, embodiment is sandwiched between the edge of theresinous member 61 and the facingsurface 89. In addition, it is formed on the facingsurface 89 along the edge of theresinous member 61 to protrude beyond theresinous member 61. This is effective to prevent theresinous member 61 from flowing to theexternal terminal 27 at the time of molding. This effect will be described further in the steps of fabricating thesemiconductor module 1 according to the fifth embodiment. -
FIGS. 19-24 show the steps of fabricating thesemiconductor module 1 according to the fifth embodiment, in which the mountingboard 3 and others are shown in section. As shown inFIG. 19 , the mountingboard 3 is prepared as including thewire 29, theelectrodes wire 29 is covered with the solder resist 31, and theelectrodes board 3 is sized 11 mm long/wide. - As shown in
FIG. 20 , a process of printing is applied to supply theconnection member 33 onto theelectrodes connection member 33 is solder, specifically Sn10Pb90 solder. There are available solder materials such as Sn—Zn based solder and Sn—Bi based solder other than Sn—Pb based solder. - As shown in
FIG. 21 , a mounter (not shown) is employed to mount thechips electrode pads power MOS chips electrode 32 a. Thepower MOS chip 5 is sized 2 mm long/wide and 250 μm thick. Thepower MOS chip 7 is sized 3 mm.times.5 mm long/wide and 250 μm thick. Thedrive IC chip 9 is sized 2 mm long/wide and 200 μm thick. - The mounting
board 3 with the chips mounted thereon is passed through a reflow furnace to forms older joints. An example of the temperature profile on reflow heating is shown inFIG. 25 . In the heating, the temperature is elevated from room temperature to 180.degree. C. in 60 seconds at a constant rate, then from 180.degree. C. to 220.degree. C. in 80 seconds slowly, and from 220.degree. C. to 320.degree. C. in 40 seconds at a constant rate. Such the profile is employed. - After formation of the solder joints, the mounting
board 3 with the solder joints formed thereon is cleaned to remove the flux residue. The mountingboard 3 is immersed, for example, into a commercially available flux cleaning solution while an ultrasound of 45 kHz is applied for 10 minutes to clean the flux residue. - As shown in
FIG. 22 , a dispenser is employed to supply anunderfill material 51 into spaces between thechips board 3. Theunderfill material 51 is filled in the spaces by the capillary phenomenon. The amount of filler in theunderfill material 51 is small in order to facilitate the capillary phenomenon to arise. Therefore, a percentage of the filler in theunderfill material 51 is lower than that of theresinous member 61. The underfill material is a resin as well. Accordingly, it can be said that, in the resin member composed of theresinous member 61 and theunderfill material 51, the filler contents in the portions located in the spaces between thechips board 3 are less than those in other portions. - Thereafter, a thermal treatment is applied to cure the
underfill material 51. The above spaces may be filled with a resin for use in later resin sealing. In this method, the underfill material may not be employed if there is no problem about the property and reliability. - A dispense process is applied to supply the
connection members chips electrode 32 b. The solder material employed comprises Sn5Pb95 solder having a melting point higher than that of Sn10Pb90 solder of the connection member used in the flip-chip connection. The solder material may include a Sn—Pb—Ag series. The solder material to be supplied has a melting point higher than that of the connection member used in the flip-chip connection. This reason will be described in the later paragraph associated with the primary effect of the fifth embodiment. - After the step of
FIG. 22 , a multi-functional mounter is employed to mount theheat sink members FIG. 23 . A 200 μm thick copper frame is employed as theheat sink members - The mounting
board 3 with theheat sink members heat sink members - A molding step is executed as shown in
FIG. 24 such that the cleaned mountingboard 3 is provided in amold 93 and a resin is applied to seal thechips board 3 is provided in themold 93 held at 180.degree. C., and the resin is filled within themold 93 in 10 seconds, then held for 60 seconds within themold 93 to cure the resin. Thereafter, the mountingboard 3 with the resin-sealedchips - Usually, a number of mounting
boards 3 are processed in a single sheet state prior to the molding step. Therefore, dicing or stamping is applied to formindividual mounting boards 3 to finally complete the semiconductor module. - Resin leakage may possibly arise on the other surface 65 (the surface exposed to outside) of the
heat sink member other surface 65 of theheat sink member - Primary effects of the fifth embodiment will be described. In the fifth embodiment, edges 95 that define an aperture of the
mold 93 entirely make contact with the solder resist 31. In a word, theedge 95 and the facingsurface 89 of the mountingboard 3 sandwich the solder resist 31 therebetween. The solder resist 31 is relatively flexible so that theedge 95 and the facingsurface 89 create no gap therebetween. As a result, the resin can be prevented from leaking to theexternal terminal 27. The contact between theedge 95 and the solder resist 31 has a width of 100 μm, for example. - As shown in
FIG. 24 , in the fifth embodiment, the connection member 57 (an example of the first connection member) electrically connects thedrain electrode 43 on the lower surface of thepower MOS chip heat sink member gate electrode pad 39 and thesource electrode pad 41 on the upper surface of thepower MOS chip electrode 32 a on the mountingboard 3. The connection member 57 (the example of the first connection member) is controlled to have a melting point higher than that of the connection member 33 (the second connection member). - The
connection members connection member 57 to connect thedrain electrode 43 on thepower MOS chip heat sink member molten connection member 57 is solidified. At this stage, a problem may arise on the reliability of the connection member 33 (for example, bump open; theelectrode pad connection member 33 or when theconnection member 33 cannot follow the deformation of theheat sink member connection member 33 and theelectrode pad - In the fifth embodiment, the melting point of the
connection member 57 is higher than that of theconnection member 33. Accordingly, at the stage of lowering the temperature down to room temperature after themolten connection member 57 is solidified, theconnection member 33 is not yet solidified. Therefore, the above cause does not arise on theconnection member 33 and the bump open can be prevented. As a result, the fifth embodiment is possible to improve the reliability of theconnection member 33 and consequently the reliability of the semiconductor package. - The fifth embodiment employs solder as the material of the
connection member - The present invention also includes embodiments shown in
FIGS. 26-28 , which correspond toFIG. 3 . In asemiconductor module 1 ofFIG. 26 , nounderfill material 51 is provided in the spaces between thechips board 3 and theresinous member 61 is filled in that places instead. - The above spaces are narrow so that the
resinous member 61 may not enter the spaces on molding theresinous member 61, leaving air bubbles in theresinous member 61. Therefore, in thesemiconductor module 1 ofFIG. 3 , theunderfill material 51 is injected into the spaces prior to molding in order to prevent generation of air bubbles. - Molding the
resinous member 61 into the spaces between thechips board 3 produces thesemiconductor module 1 ofFIG. 26 . As a result, the step of injecting the underfill material can be omitted. - In a
semiconductor module 1 shown inFIG. 27 , theresinous member 61 and theunderfill material 51 are not provided. This is different from thesemiconductor module 1 shown inFIG. 3 . - As the
resinous member 61 is not provided, thepower MOS chips heat sink members underfill material 51 is not provided, spaces are formed between these chips and the mountingboard 3. - Even if the
resinous member 61 and theunderfill material 51 are not provided, nothing may interfere with the use of the semiconductor module depending on the case. In such the case, thesemiconductor module 1 ofFIG. 27 can be employed. For example, when the mountingboard 3 is a ceramic board, the mountingboard 3 has a thermal expansion coefficient close to those of thechips chips board 3 and thechips connection member 33 can be prevented from peeling off theelectrode pads connection member 33 does not lower. In thesemiconductor module 1 ofFIG. 27 , theresinous member 61 and theunderfill material 51 are not provided and accordingly the cost for manufacturing the semiconductor module can be lowered. - In a
semiconductor module 1 ofFIG. 28 , theunderfill material 51 is filled in the spaces between thepower MOS chips board 3. This is different from thesemiconductor module 1 ofFIG. 27 . Therefore, only theelectrode 32 a on the mountingboard 3, theconnection member 33, and theelectrode pads - Heat radiation from the
chips gate electrode pad 39 and thesource electrode pad 41. Theunderfill material 51 can prevent the thermal stresses from causing theconnection member 33 to peel off theelectrode pads -
FIG. 29 is a bottom view of asemiconductor module 1 according to a sixth embodiment whileFIG. 30 is a bottom view of thesemiconductor module 1 according to the fifth embodiment. The bottom corresponds to theopposite surface 91 of the surfaces of the mountingboard 3, which locates opposite to the surface facing thechips - In the
opposite surface 91,terminal plates 97 are formed extending from theexternal terminals 27. Aterminal plate 97 is connected to a singleexternal terminal 27 only or to multipleexternal terminals 27 commonly. In theopposite surface 91,wires 29 are formed connecting theterminal plates 97 with each other. Thewires 29 and theterminal plates 97 are covered with the solder resist 31. In comparison with thewire 29 on thesemiconductor module 1 according to the fifth embodiment ofFIG. 30 , thewire 29 on thesemiconductor module 1 according to the sixth embodiment ofFIG. 29 is much wider. Thewire 29 inFIG. 29 covers almost the region corresponding to thechips opposite surface 91. Thewire 29 inFIG. 29 also serves as a step corrective section, which is described below. -
FIG. 31 is a cross-sectional view of the mountingboard 3 and so forth housed in themold 93 prior to resin sealing, corresponding toFIG. 24 . InFIG. 24 no step is formed in theopposite surface 91 while astep 99 is formed in practice as shown inFIG. 31 for the following reason. As shown inFIG. 30 , for thewire 29 and theterminal plate 97, formation portions and non-formation portions are present in theopposite surface 91. In this case, the solder resist 31 located on the non-formation portions differs in height from the solder resist 31 located on the formation portions. Thewire 29 and theterminal plate 97 have a thickness of 35 μm, for example, which makes thestep 99 about 35 μm thick. - On molding in the presence of the
step 99, pressure of the resin injected into themold 93 distorts the mountingboard 3 within themold 93 as shown inFIG. 32 and causes bump open and so forth, which lower the reliability of the semiconductor module. Even thestep 99 about 18 μm thick may cause such the problem. - To the contrary, in the
semiconductor module 1 according to the sixth embodiment ofFIG. 29 , thewire 29 also serves as the step corrective section to prevent the occurrence of the step in thesolder resin 31. As a result, the above distortion is prevented from arising on molding and the reliability of the semiconductor module can be improved accordingly. - Like in a modification of the sixth embodiment shown in
FIG. 33 , adummy wire 101 may be formed in the step corrective section. Thedummy wire 101 is formed at the same time with thewire 29 and has the same thickness as that of the wire. Therefore, thedummy wire 101 can also prevent the occurrence of the step in thesolder resin 31. Thedummy wire 101 is not connected to any wires. -
FIG. 34 is a plan view of anupper surface 45 of thepower MOS chip 5 provided in a semiconductor module according to a seventh embodiment. In theupper surface 45, a singlegate electrode pad 39 and a number ofsource electrode pads 41 are formed. Thegate electrode pad 39 serves as a lead electrode from thetrench gate 17 ofFIG. 4 . Thesource electrode pads 41 serves as lead electrodes from thesource electrodes 24 ofFIG. 4 , which are an example of the first main electrodes. In this embodiment, thedrain electrode 43 ofFIG. 4 is the second electrode. - The heat on molding extends the mounting
board 3. The influence from the extension becomes lager as closing to the corner. Therefore, the electrode pad located in the corner is easily made bump open due to thermal stresses. Normally, thegate electrode pad 39 is formed at the corner in theupper surface 45. As thegate electrode pad 39 is single, an occurrence of bump open results in a failed semiconductor module. - In the seventh embodiment, a
source electrode pad 41 is formed around thegate electrode pad 39. Therefore, thegate electrode pad 39 is not located in the corner and it is possible to prevent thermal stresses from causing bump open associated with thegate electrode pad 39. -
FIG. 35 is a plan view of asemiconductor module 1 according to an eighth embodiment.FIG. 36 is a cross-sectional view taken along E1-E2 line inFIG. 35 whileFIG. 37 is a cross-sectional view taken along F1-F2 line inFIG. 35 . The eighth embodiment differs from the second embodiment ofFIG. 8 mainly in that theheat sink members heat sink plate 103. - The power MOS chip 5 (an example of the first power MIS chip) has an upper surface with a
drain electrode pad 105 and agate electrode pad 107 formed thereon and a lower surface with asource electrode 109 formed thereon. On the other hand, the power MOS chip 7 (an example of the second power MIS chip) has a source and a drain arranged inversely in comparison with thepower MOS chip 5. In a word, thepower MOS chip 7 had an upper surface with asource electrode pad 111 and agate electrode pad 113 formed thereon and a lower surface with adrain electrode 115 formed thereon. - The following description is given to the respective structures of the
power MOS chips FIG. 38 is a cross-sectional view of part of thepower MOS chip 5 according to the eighth embodiment. Thechip 5 comprises asilicon substrate 117 and an epitaxial layer or p−-type base region 119 formed thereon. Thesilicon substrate 117 serves as a p+-type source region. Thesilicon substrate 117 has a lower surface entirely in contact with asource electrode 109. - In the
base region 119, an n+-type drain region 121 and an n−-type drift region 123 are formed adjacent to each other. An n+-type source region 125 is formed in thebase region 119 apart from thedrift region 123, interposing an interval therebetween. Agate 127 is formed on a gate oxide film above a location between thedrift region 123 and thesource region 125. Thegate 127 is operative to form a channel in thebase region 119. Through the channel and thedrift region 123, thedrain region 121 and thesource region 125 are brought into conduction. - Adjacent to the
source region 125, a p+-typeconductive region 129 is formed passing through thebase region 119 and reaching thesilicon substrate 117. Theconductive region 129 and thesource region 125 are electrically connected with each other via ashort electrode 131. Thus, thesource region 125 and thebase region 119 are short-circuited. - An
interlayer insulator 133 is formed covering thegate 127 and theshort electrode 131. Adrain electrode 135 is formed on theinterlayer insulator 133. Thedrain electrode 135 makes contact with thedrain region 121 via a contact hole formed through theinterlayer insulator 133. - The
power MOS chip 5 having the above structure is of the so-called lateral type that allows current to flow in a direction parallel to the upper surface of the chip. To the contrary, thepower MOS chip 7 is of the so-called vertical type that allows current to flow in a direction perpendicular to the upper surface of the chip.FIG. 39 is a cross-sectional view of part of thepower MOS chip 7 according to the eighth embodiment. Thechip 7 includes an n+-type silicon substrate 137 and an epitaxial layer or n−-type drift region 139 formed thereon. Thesilicon substrate 137 serves as an n+-type drain region. Thesilicon substrate 137 has a lower surface entirely brought into contact with thedrain electrode 115. Thedrift region 139 has a current path extending in a direction perpendicular to the upper surface of thesilicon substrate 137. - A plurality of p-
type base regions 141 are formed at intervals in thedrift region 139. In eachbase region 141, n+-type source regions 143 are formed spaced from each other. Agate 145 is formed on a gate oxide film between thebase regions 141. Thegate 145 is operative to form a channel in thebase region 141. Through the channel, thesource region 143 and thedrain region 139 are brought into conduction. - An
interlayer insulator 147 is formed covering thegate 145. Asource electrode 149 is formed on theinterlayer insulator 147. Thesource electrode 149 makes contact with thesource region 143 and thebase region 141 via a contact hole formed through theinterlayer insulator 147. - As shown in
FIG. 3 , in the preceding embodiments, thesource electrode pad 41 on thepower MOS chip 5 is connected to thedrain electrode 43 on thepower MOS chip 7 via theconnection member 33, thewire 29, theconnection member 33, the terminal 59 and theheat sink member 55. To the contrary, in the eighth embodiment, thesource electrode pad 109 on thepower MOS chip 5 is connected to thedrain electrode 115 on thepower MOS chip 7 via theheat sink plate 103. Therefore, the eighth embodiment is possible to shorten the current path to reduce the wire resistance and reduce the parasitic inductance on the current path. Accordingly, it is possible to provide a high-efficiency electronic device (such as a DC-DC converter) that incorporates the semiconductor module according to the eighth embodiment therein. -
FIG. 40 is a cross-sectional view of asemiconductor module 1 according to a ninth embodiment, from which the sectional structure and the structure of the lower surface of the mountingboard 3 are omitted. Thesemiconductor module 1 according to the ninth embodiment is similar to thesemiconductor module 1 according to the eighth embodiment shown inFIGS. 35-37 because theheat sink members heat sink plate 103. The lower surfaces of thepower MOS chips heat sink plate 103. - On the other hand, the
power MOS chips power MOS chip 5 is of the P-channel type while thepower MOS chip 7 is of the N-channel type. On the upper surface of thepower MOS chip gate electrode pad 151, asource electrode pad 153 and adrain electrode pad 155 are formed. Aconnection conductor 157 is formed through thechip drain electrode pad 155 is electrically connected to adrain electrode 159 on the lower surface of thechip connection conductor 157. Theelectrode pads electrode 32 a on the mountingboard 3 by theconnection member 33. Theelectrode pads electrode pads electrode 32 a via the bump electrode and theconnection member 33. - In the ninth embodiment, the output VOUT from the
semiconductor module 1 shown inFIG. 5 can be led out through the following two current paths. One is a current path including theheat sink plate 103, the terminal of the heat sink member, and the wire on the mountingboard 3. Another is a current path including theheat sink plate 103, theconnection conductor 157, thedrain electrode pad 155, theconnection member 33, and the wire on the mountingboard 3. - As the
drain electrode pad 155 is formed on the upper surface of thepower MOS chip heat sink plate 103 may be isolated from thechip heat sink plate 103 itself may be composed of an insulator. In these cases, it is possible to omit measures for insulation of theheat sink plate 103 from outside, which otherwise the user must implement, if required. In additional, it is possible to suppress EMI or the like. Such the insulation reduces the wire resistance and inductance even though both thepower MOS chips drain electrodes 159 on thepower MOS chips board 3. -
FIG. 41 is a cross-sectional view of part of thepower MOS chip 7 provided in the ninth embodiment. Thechip 7 has a structure similar to that of thepower MOS chip 7 inFIG. 39 except the connection conductor and the vicinity thereof. In the ninth embodiment, thesource electrode 153 is an example of the first main electrode while thedrain electrode 159 is an example of the second main electrode. - A through-
hole 161 is formed in thechip 7 extending from the upper surface to the lower surface of thepower MOS chip 7. The through-hole 161 has a diameter of 10 μm or larger. Aconnection conductor 157 is buried in the through-hole 161. Theconnection conductor 157 is formed by, for example, plating Cu in the through-hole 161. As the diameter of the through-hole 161 is 10 μm or larger, theconnection conductor 157 becomes relatively thick. Therefore, the resistance of theconnection conductor 157 can be made smaller than the resistance when the drain electrode is connected to the electrode on the mountingboard 3 using a bonding wire or the like instead of theconnection conductor 157. Theconnection conductor 157 makes contact with thedrain electrode 159 having a thickness of 5 μm or larger. As the thickness is 5 μm or larger: (1) it can lower the resistance on the current path extending from the n+-type silicon substrate 137 through thedrain electrode 159 to theconnection conductor 157; and (2) it can be employed as a stopper on formation of the through-hole 161 passing through the silicon layer. - In the upper surface of the
power MOS chip 7, an n+-type impurity region 163 is formed surrounding theconnection conductor 157. Theimpurity region 163 prevents a depletion layer extending from the p-base region 141 from reaching theconnection conductor 157. In a word, theimpurity region 163 keeps non-conduction between the p-base region 141 and thedrain electrode 159. This non-conduction may also be kept by formation of an insulating layer on the upper surface of the through-hole 161. In this case, even if the depletion layer reaches the insulating layer on the upper surface of the through-hole 161, conduction between the p-base region 141 and thedrain electrode 159 can not be established immediately. Therefore, it is possible to reduce the distance between the through-hole 161 and the p-base region 141 by design and accordingly reduce the chip area. Thepower MOS chip 5 according to the ninth embodiment has a structure with reverse conduction types of parts inFIG. 41 . - In the ninth embodiment, both the drain electrode and the source electrode are led out to the upper surfaces of the
chips wire 29 on the mountingboard 3 can be shortened to reduce the wire resistance on the current path. On the mountingboard 3, the distance between thewire 29 connected to the source electrode and thewire 29 connected to the drain electrode can be shortened to reduce the parasitic inductance on the current path. - In the ninth embodiment the MOSFET is of the planar type though it may be of the trench type. The trench type is possible to lower the resistance of the MOSFET itself so that the resistance of the circuit in the semiconductor module can be lowered further.
- The ninth embodiment can shorten the current path, similar to the eighth embodiment. Therefore, it is possible to lower the wire resistance and lower the parasitic inductance on the current path. Accordingly, it is possible to provide a high-efficiency electronic device (such as a DC-DC converter) that incorporates the semiconductor module according to the ninth embodiment therein,
-
FIG. 42 is a plan view of asemiconductor module 1 according to a tenth embodiment andFIG. 43 is a cross-sectional view taken along G1-G2 line inFIG. 42 . In the tenth embodiment, in addition to the second embodiment shown inFIG. 8 ,decoupling condensers semiconductor module 1. These condensers are operative to cancel the wire inductance between the supply terminals and the ground terminals in thesemiconductor module 1 and connected between the supply terminals and the ground terminals. - The
condenser board 3 while in the structure of the tenth embodiment thecondenser recess 171 of the mountingboard 3 as shown inFIG. 43 . As thecondenser board 3, thesemiconductor module 1 is structured to protrude from the location of thecondenser condenser recess 171 can lower the height of the location such that theheat sink members condensers heat sink member - The following description is given to the supply terminals and the ground terminals connected to the
condensers FIG. 44 is a circuit diagram of thesemiconductor module 1 according to the tenth embodiment.FIG. 45 shows external terminals related to condensers on thesemiconductor module 1 according to the tenth embodiment. The tenth embodiment provides three decoupling condensers instead of sharing one for the reason described below. - A power IC circuit includes a first block in which large current flows and a second block in which current slightly or hardly flows. Commonality of the ground terminals in the first and second blocks allows large current to flow from the first block to the ground wire in the second block in which current slightly or hardly flows. Accordingly, the second block suffers the influence of the resultant voltage drop. Therefore, the ground terminals are divided between the first block and the second block to prevent the above influence. The ground terminal in the first block is referred to as a PGND (power ground) terminal while the ground terminal in the second block is referred to as a SGND (signal ground) terminal.
- The circuit including the
power MOS chips drive IC chip 9 corresponds to the second block. Therefore, it is required to provide two condensers. Thedrive IC chip 9 may also be divided into the first and second blocks. In a word, thedrive IC chip 9 can be divided into agate driver 173 operative to drive the gates of thepower MOS chips signal transmitter 175 operative to transmit signals from external to thegate driver 173. Thesignal transmitter 175 has an arithmetic function in addition to the signal transmission. A relatively large current flows in thegate driver 173 while current hardly flows in thesignal transmitter 175. Thus, the ground terminal in thegate driver 173 is separated from the ground terminal in thesignal transmitter 175. - The ground terminals therefore include three types: the PGND terminal or the ground terminal in the circuit including the
power MOS chips gate driver 173; and the SGND terminal or the ground terminal in thesignal transmitter 175. Thecondenser 165 is connected between a VIN terminal or the supply terminal in the circuit including thepower MOS chips condenser 169 is connected between a VDD terminal or the supply terminal in thegate driver 173 and the IC-PGND terminal. Thecondenser 167 is connected between the VDD terminal or the supply terminal in thesignal transmitter 175 and the SGND terminal. - In the tenth embodiment, the
decoupling condensers semiconductor module 1. Therefore, the wire connecting the supply terminal with the ground terminal can be made shorter and accordingly the wire inductance can be made lower than when these condensers are connected to thesemiconductor module 1 externally. -
FIG. 46 is a plan view of asemiconductor module 1 according to an eleventh embodiment.FIG. 47 is a cross-sectional view taken along H1-H2 line inFIG. 46 .FIG. 48 is a bottom view of thesemiconductor module 1 inFIG. 46 . The eleventh embodiment further defines the locations of the supply terminals and the ground terminals in the first embodiment shown inFIG. 1 . - The
external terminals 27 located on afirst side 177 of the mountingboard 3 are all assigned to the VIN terminal in the circuit including thepower MOS chips external terminals 27 located on asecond side 179 adjacent to thefirst side 177 are all assigned to the PGND terminal in the above circuit. Theexternal terminals 27 located on athird side 181 opposite to thefirst side 177 of the mountingboard 3 are partly assigned to the VOUT terminal shown inFIG. 44 . Theexternal terminals 27 located on the remaining finalfourth side 183 are assigned to the IC-PGND terminal, the VDD terminal, the SGND terminal and others. These terminals are described earlier in the tenth embodiment. - Different from the tenth embodiment, in the eleventh embodiment, the decoupling condensers are attached to the
semiconductor module 1 externally. For example, as shown inFIG. 48 , thedecoupling condenser 165 is externally connected between the VIN terminal and the PGND terminal. - The VIN terminal is located on the
first side 177 while the PGND terminal is located on thesecond side 179. In a word, these terminals are located on two adjacent sides. Therefore, even if the decoupling condenser is externally connected, the wire connecting the VIN terminal with the PGND terminal can be shortened to reduce the wire inductance. - There are two current paths in the circuit including the
chips FIG. 47 . One is a current path (1) of VIN terminal→VOUT terminal while another is a current path (2) of PGND terminal→VOUT terminal. - As the VOUT terminal is located on the
third side 181, the current path (1), (2) can be made shorter than when located on thefourth side 183. Threeterminals 59, provided in the circuit including thechips rectangular chip 7, theterminals 59 are located on two opposite longer sides. Therefore, the current path (1) can be made shorter than when located on two opposite shorter sides. - As described above, the eleventh embodiment is possible to shorten the wire connecting the VIN terminal with the PGND terminal and shorten the current path. Accordingly, it is possible to provide a high-efficiency electronic device that incorporates the semiconductor module according to the eleventh embodiment therein.
-
FIG. 49 is a plan view of asemiconductor module 1 according to a twelfth embodiment. The twelfth embodiment is provided with npower MOS chips 5, 7 (chips 5-1 to 5-n and chips 7-1 to 7-n: n is a plurality). Depending on the value of current flowing in the load under the control of thesemiconductor module 1, the number of thepower MOS chips drive IC chip 9 is varied. This is a major characteristic. -
FIG. 50 is a circuit diagram of a DC-DC converter 67 containing thesemiconductor module 1 according to the twelfth embodiment. The DC-DC converter 67 ofFIG. 50 further comprises a loadcurrent detector 185 operative to detect current flowing in theload CPU 75 in addition to the DC-DC converter 67 ofFIG. 5 . Thesemiconductor module 1 comprises npower MOS chips drive IC chip 9. - The
drive IC chip 9 includes high-potential and low-potential driven chip number decision tables 187, 189; high-potential and low-potential drivenchip number switchers - Pieces of data on the number of chips driven in response to the load current are stored in the tables 185, 187. The data are previously determined in consideration of the on-resistance, the gate capacitance and the number of the
power MOS chip current detector 185 is compared with the data in the table 187, 189 to decide a certain number of chips actually driven. - On the basis of this decision, the driven
chip number switchers - A major effect of the twelfth embodiment is described. Losses in a synchronous commutation step-down DC-DC converter include a steady-state loss caused by the on-resistance of the power MOS chip and other losses (such as a switching loss and a gate charge loss). The loss in the large current operation of the DC-DC converter mainly belongs to the steady-state loss while the loss in the small current operation mainly belongs to the other losses. Therefore, it is effective to reduce the steady-state loss in the large current operation of the DC-DC converter while it is effective to reduce the other losses in the small current operation.
- A reduction in steady-state loss can be achieved by a lowered on-resistance of MOS. A reduction in other losses can be achieved by a lowered gate capacitance. An increased area of the power MOS chip can lower the on-resistance of MOS but results in an increased gate capacitance. To the contrary, a decreased area of the power MOS chip can lower the gate capacitance but results in an increased on-resistance of MOS.
- Therefore, it is advantageous to increase the area of the power MOS chip in the large current operation and decrease the area of the power MOS chip in the small current operation. In the twelfth embodiment, the number of the driven
power MOS chips power MOS chip power MOS chips - A thirteenth embodiment is directed to a speaker driver applicable to FDA (Full Digital Audio).
FIG. 51 is a circuit diagram of thespeaker driver 199 according to the thirteenth embodiment. Thepower MOS chips drive IC chip 9 and a low-pass filter 201 composed of L and C are contained in aset 203. Twosuch sets 203 correspond to a channel (speaker). - A state of MOS1 (chip 5) and MOS4 (chip 7) kept on and MOS2 (chip 7) and MOS3 (chip 5) kept off and a state of MOS1 and MOS4 kept off and MOS2 and MOS3 kept on are alternately repeated to drive the
speaker 205. In general, MOS1, MOS2, MOS3 and MOS4 employ chips having the same property. Therefore, as shown below, thechip 5 and thechip 7 are sized similarly and both shaped square. - For configuration of the speaker driver of
FIG. 51 with the semiconductor module(s), the following two ways can be considered. One is the use of a semiconductor module 1 (half-bridged) that includes oneset 203 mounted thereon as shown inFIG. 52 . In this case, twosuch semiconductor modules 1 are required. Another is the use of a semiconductor module 1 (full-bridged) that includes twosets 203 mounted thereon as shown inFIG. 53 . In this case, asingle semiconductor module 1 configures thespeaker driver 199. In either case, the low-pass filter 201 is not depicted. In oneset 203, thedrive IC chip 9 is located equidistant from thepower MOS chip 5 and thepower MOS chip 7. - Similar to the eleventh embodiment shown in
FIG. 46 , location of the VIN terminal adjacent to the PGND terminal shortens the length of the wire associated with the decoupling condenser attached externally. Thechips power MOS chips drive IC chip 9 are shortened.
Claims (3)
1. A semiconductor module, comprising:
a mounting board formed to be rectangular in shape;
a plurality of power switching device chips each having an upper surface and a lower surface mounted on said mounting bard by flip-chip bonding with said upper surface faced toward said mounting board;
a drive IC chip mounted on said mounting board by flip-chip bonding and operation to drive gates of transistors formed in said plurality of power switching device chips;
a plurality of heat sink members located respectively on said lower surfaces of said plurality of power switching device chips;
a resinous member provided to seal said plurality of power switching device chips and said drive IC chip in a single package; and
a power sources terminal and a ground terminal of a circuit configured by said plurality of power switching device chips,
wherein said mounting board is defined by sides, a surface facing said plurality of power switching device chips and said drive IC chips, and an opposite surface located opposite to the surface; and
wherein said mounting board includes a wire formed at said opposite surface, and a step corrective section formed at a region at said opposite surface corresponding to said chips and having the same thickness as said wire.
2. The semiconductor module according to claim 1 , wherein said step corrective section is formed by expanding the width of said wire.
3. The semiconductor module according to claim 1 , wherein said step corrective section comprises a dummy wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/778,493 US20070257376A1 (en) | 2004-08-31 | 2007-07-16 | Semiconductor module |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-253276 | 2004-08-31 | ||
JP2004253276A JP4445351B2 (en) | 2004-08-31 | 2004-08-31 | Semiconductor module |
US11/214,730 US7514783B2 (en) | 2004-08-31 | 2005-08-31 | Semiconductor module |
US11/778,493 US20070257376A1 (en) | 2004-08-31 | 2007-07-16 | Semiconductor module |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/214,730 Division US7514783B2 (en) | 2004-08-31 | 2005-08-31 | Semiconductor module |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070257376A1 true US20070257376A1 (en) | 2007-11-08 |
Family
ID=36033232
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/214,730 Expired - Fee Related US7514783B2 (en) | 2004-08-31 | 2005-08-31 | Semiconductor module |
US11/778,516 Expired - Fee Related US7633153B2 (en) | 2004-08-31 | 2007-07-16 | Semiconductor module |
US11/778,493 Abandoned US20070257376A1 (en) | 2004-08-31 | 2007-07-16 | Semiconductor module |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/214,730 Expired - Fee Related US7514783B2 (en) | 2004-08-31 | 2005-08-31 | Semiconductor module |
US11/778,516 Expired - Fee Related US7633153B2 (en) | 2004-08-31 | 2007-07-16 | Semiconductor module |
Country Status (2)
Country | Link |
---|---|
US (3) | US7514783B2 (en) |
JP (1) | JP4445351B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070240848A1 (en) * | 2006-04-18 | 2007-10-18 | Jun-Cheng Liu | Heatsink and heatsink-positioning system |
US20090218684A1 (en) * | 2008-01-25 | 2009-09-03 | Mark Pavier | Autoclave capable chip-scale package |
US20090251873A1 (en) * | 2008-04-02 | 2009-10-08 | Sun-Wen Cyrus Cheng | Surface Mount Power Module Dual Footprint |
US20110075392A1 (en) * | 2009-09-29 | 2011-03-31 | Astec International Limited | Assemblies and Methods for Directly Connecting Integrated Circuits to Electrically Conductive Sheets |
US20110244631A1 (en) * | 2008-02-18 | 2011-10-06 | Shinko Electric Industries Co., Ltd. | Semiconductor device manufacturing method, semiconductor device, and wiring board |
US20120092832A1 (en) * | 2010-10-19 | 2012-04-19 | Tessera Research Llc | Enhanced stacked microelectronic assemblies with central contacts and improved thermal characteristics |
US20120168926A1 (en) * | 2011-01-03 | 2012-07-05 | International Rectifier Corporation | High Power Semiconductor Package with Conductive Clip and Flip Chip Driver IC with Integrated Control Transistor |
US20130182395A1 (en) * | 2012-01-17 | 2013-07-18 | Huawei Device Co., Ltd. | Integrated module, integrated system board, and electronic device |
US20140022731A1 (en) * | 2012-07-17 | 2014-01-23 | Lite-On Technology Corp. | Method for assembling heat generating element and heat dissipating element, pressure sensitive element, and power supplying unit |
US8928153B2 (en) | 2011-04-21 | 2015-01-06 | Tessera, Inc. | Flip-chip, face-up and face-down centerbond memory wirebond assemblies |
US8952516B2 (en) | 2011-04-21 | 2015-02-10 | Tessera, Inc. | Multiple die stacking for two or more die |
US8970028B2 (en) | 2011-12-29 | 2015-03-03 | Invensas Corporation | Embedded heat spreader for package with multiple microelectronic elements and face-down connection |
US9013033B2 (en) | 2011-04-21 | 2015-04-21 | Tessera, Inc. | Multiple die face-down stacking for two or more die |
US9093291B2 (en) | 2011-04-21 | 2015-07-28 | Tessera, Inc. | Flip-chip, face-up and face-down wirebond combination package |
TWI502161B (en) * | 2012-07-17 | 2015-10-01 | Lite On Technology Corp | A method of combining the heat element and the heat sink, a pressure sensitive adhesive |
US9281266B2 (en) | 2011-04-21 | 2016-03-08 | Tessera, Inc. | Stacked chip-on-board module with edge connector |
CN112447614A (en) * | 2019-08-30 | 2021-03-05 | 朋程科技股份有限公司 | Power device packaging structure |
CN112490202A (en) * | 2019-09-12 | 2021-03-12 | 朋程科技股份有限公司 | Power device packaging structure |
CN112530886A (en) * | 2019-09-18 | 2021-03-19 | 台达电子工业股份有限公司 | Packaging structure |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4445351B2 (en) | 2004-08-31 | 2010-04-07 | 株式会社東芝 | Semiconductor module |
US7449853B2 (en) * | 2005-09-01 | 2008-11-11 | Gm Global Technology Operations, Inc. | High power, low noise interconnection for an integrated dual wound motor to a dual inverter |
JP4679309B2 (en) * | 2005-09-06 | 2011-04-27 | 株式会社東芝 | Semiconductor device |
JP4686318B2 (en) * | 2005-09-28 | 2011-05-25 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
JP5291864B2 (en) * | 2006-02-21 | 2013-09-18 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device for DC / DC converter and semiconductor device for DC / DC converter |
US7514780B2 (en) * | 2006-03-15 | 2009-04-07 | Hitachi, Ltd. | Power semiconductor device |
JP4916745B2 (en) * | 2006-03-28 | 2012-04-18 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
US7618896B2 (en) * | 2006-04-24 | 2009-11-17 | Fairchild Semiconductor Corporation | Semiconductor die package including multiple dies and a common node structure |
US7812437B2 (en) * | 2006-05-19 | 2010-10-12 | Fairchild Semiconductor Corporation | Flip chip MLP with folded heat sink |
TW200812066A (en) * | 2006-05-30 | 2008-03-01 | Renesas Tech Corp | Semiconductor device and power source unit using the same |
JP5191689B2 (en) * | 2006-05-30 | 2013-05-08 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
JP2008042077A (en) * | 2006-08-09 | 2008-02-21 | Renesas Technology Corp | Semiconductor device and production method therefor |
WO2008053586A1 (en) * | 2006-11-02 | 2008-05-08 | Nec Corporation | Semiconductor device |
JP4827808B2 (en) * | 2007-08-15 | 2011-11-30 | パナソニック株式会社 | Semiconductor device |
WO2009055061A1 (en) | 2007-10-25 | 2009-04-30 | Trilliant Networks, Inc. | Gas meter having ultra-sensitive magnetic material retrofitted onto meter dial and method for performing meter retrofit |
CA2705074A1 (en) | 2007-11-25 | 2009-05-28 | Trilliant Networks, Inc. | Energy use control system and method |
WO2009067254A1 (en) | 2007-11-25 | 2009-05-28 | Trilliant Networks, Inc. | System and method for operating mesh devices in multi-tree overlapping mesh networks |
US8171364B2 (en) | 2007-11-25 | 2012-05-01 | Trilliant Networks, Inc. | System and method for power outage and restoration notification in an advanced metering infrastructure network |
US20090136042A1 (en) * | 2007-11-25 | 2009-05-28 | Michel Veillette | Application layer authorization token and method |
US7799614B2 (en) * | 2007-12-21 | 2010-09-21 | Infineon Technologies Ag | Method of fabricating a power electronic device |
JP4492695B2 (en) * | 2007-12-24 | 2010-06-30 | 株式会社デンソー | Semiconductor module mounting structure |
US7800219B2 (en) * | 2008-01-02 | 2010-09-21 | Fairchild Semiconductor Corporation | High-power semiconductor die packages with integrated heat-sink capability and methods of manufacturing the same |
US7741709B2 (en) * | 2008-01-09 | 2010-06-22 | Inpaq Technology Co., Ltd. | Embedded type multifunctional integrated structure for integrating protection components and method for manufacturing the same |
JP5060617B2 (en) * | 2008-04-03 | 2012-10-31 | パイオニア株式会社 | Circuit device driving method and circuit device |
US7851928B2 (en) * | 2008-06-10 | 2010-12-14 | Texas Instruments Incorporated | Semiconductor device having substrate with differentially plated copper and selective solder |
WO2010027495A1 (en) | 2008-09-04 | 2010-03-11 | Trilliant Networks, Inc. | A system and method for implementing mesh network communications using a mesh network protocol |
JP5107839B2 (en) | 2008-09-10 | 2012-12-26 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
JP2010092977A (en) * | 2008-10-06 | 2010-04-22 | Panasonic Corp | Semiconductor device, and method of manufacturing the same |
US8289182B2 (en) | 2008-11-21 | 2012-10-16 | Trilliant Networks, Inc. | Methods and systems for virtual energy management display |
JP2010129768A (en) * | 2008-11-27 | 2010-06-10 | Toshiba Corp | Semiconductor apparatus |
US8319658B2 (en) | 2009-03-11 | 2012-11-27 | Trilliant Networks, Inc. | Process, device and system for mapping transformers to meters and locating non-technical line losses |
JP2011187809A (en) * | 2010-03-10 | 2011-09-22 | Renesas Electronics Corp | Semiconductor device and multilayer wiring board |
JP5553652B2 (en) * | 2010-03-18 | 2014-07-16 | ルネサスエレクトロニクス株式会社 | Semiconductor substrate and semiconductor device |
US8582317B2 (en) | 2010-05-26 | 2013-11-12 | Semiconductor Components Industries, Llc | Method for manufacturing a semiconductor component and structure therefor |
US9084120B2 (en) | 2010-08-27 | 2015-07-14 | Trilliant Networks Inc. | System and method for interference free operation of co-located transceivers |
CA2813534A1 (en) | 2010-09-13 | 2012-03-22 | Trilliant Networks, Inc. | Process for detecting energy theft |
WO2012051704A1 (en) | 2010-10-19 | 2012-04-26 | Electronic Motion Systems Holdings Limited | A power module for converting dc to ac |
US8832428B2 (en) | 2010-11-15 | 2014-09-09 | Trilliant Holdings Inc. | System and method for securely communicating across multiple networks using a single radio |
US9282383B2 (en) | 2011-01-14 | 2016-03-08 | Trilliant Incorporated | Process, device and system for volt/VAR optimization |
WO2012103072A2 (en) | 2011-01-25 | 2012-08-02 | Trilliant Holdings, Inc. | Aggregated real-time power outages/restoration reporting (rtpor) in a secure mesh network |
EP3288236B1 (en) | 2011-02-10 | 2020-04-01 | Trilliant Holdings, Inc. | Device and method for facilitating secure communications over a cellular network |
US9041349B2 (en) | 2011-03-08 | 2015-05-26 | Trilliant Networks, Inc. | System and method for managing load distribution across a power grid |
JP5664475B2 (en) * | 2011-06-22 | 2015-02-04 | 株式会社デンソー | Semiconductor device |
JP5857468B2 (en) * | 2011-06-22 | 2016-02-10 | 株式会社デンソー | Semiconductor device |
US9001787B1 (en) | 2011-09-20 | 2015-04-07 | Trilliant Networks Inc. | System and method for implementing handover of a hybrid communications module |
JP5992695B2 (en) * | 2012-02-29 | 2016-09-14 | スタンレー電気株式会社 | Semiconductor light emitting element array and vehicle lamp |
US8916968B2 (en) | 2012-03-27 | 2014-12-23 | Infineon Technologies Ag | Multichip power semiconductor device |
TWI508238B (en) | 2012-12-17 | 2015-11-11 | Princo Corp | Chip thermal system |
JP2014187086A (en) * | 2013-03-22 | 2014-10-02 | Toshiba Corp | Semiconductor device |
US9437516B2 (en) | 2014-01-07 | 2016-09-06 | Infineon Technologies Austria Ag | Chip-embedded packages with backside die connection |
US9196577B2 (en) * | 2014-01-09 | 2015-11-24 | Infineon Technologies Ag | Semiconductor packaging arrangement |
US9831150B2 (en) | 2015-03-11 | 2017-11-28 | Toshiba Memory Corporation | Semiconductor device and electronic device |
CN106332499A (en) * | 2015-06-26 | 2017-01-11 | 台达电子工业股份有限公司 | Assembled structure for chip power supply, and electronic device |
JP6488938B2 (en) * | 2015-08-04 | 2019-03-27 | 株式会社デンソー | Manufacturing method of electronic device |
JP2017045820A (en) * | 2015-08-26 | 2017-03-02 | 京セラ株式会社 | Aggregate substrate |
US10607958B2 (en) * | 2015-08-28 | 2020-03-31 | Texas Instruments Incorporated | Flip chip backside die grounding techniques |
US10777475B2 (en) * | 2015-12-04 | 2020-09-15 | Renesas Electronics Corporation | Semiconductor chip, semiconductor device, and electronic device |
JP2017112241A (en) * | 2015-12-17 | 2017-06-22 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
JP6261625B2 (en) * | 2016-01-14 | 2018-01-17 | 三菱電機株式会社 | Electronic circuit equipment |
JP6888269B2 (en) * | 2016-10-07 | 2021-06-16 | 富士電機株式会社 | Gate drive |
KR102050130B1 (en) * | 2016-11-30 | 2019-11-29 | 매그나칩 반도체 유한회사 | Semiconductor package and a method of manufacturing the same |
DE102017108172B4 (en) * | 2017-04-18 | 2022-01-13 | Infineon Technologies Austria Ag | SMD package and method for manufacturing an SMD package |
US10763193B2 (en) * | 2018-10-30 | 2020-09-01 | Hamilton Sundstrand Corporation | Power control modules |
JP7192523B2 (en) * | 2019-01-23 | 2022-12-20 | 富士通株式会社 | Semiconductor packages and electronic devices |
TWI698969B (en) * | 2019-08-14 | 2020-07-11 | 朋程科技股份有限公司 | Package structure for power device |
JP7005781B2 (en) * | 2019-09-27 | 2022-01-24 | 新電元工業株式会社 | Electronic device |
TWI722633B (en) * | 2019-10-31 | 2021-03-21 | 同欣電子工業股份有限公司 | Chip packaging structure and chip packaging module |
JP7490974B2 (en) * | 2020-02-05 | 2024-05-28 | 富士電機株式会社 | Semiconductor module and method for manufacturing the same |
JP7354885B2 (en) * | 2020-03-12 | 2023-10-03 | 富士通株式会社 | Semiconductor device and semiconductor device manufacturing method |
JP7353233B2 (en) * | 2020-05-14 | 2023-09-29 | 三菱電機株式会社 | semiconductor equipment |
DE102020207401A1 (en) * | 2020-06-16 | 2021-12-16 | Zf Friedrichshafen Ag | Power module for operating an electric vehicle drive with improved heat conduction for control electronics |
JP2022035806A (en) | 2020-08-21 | 2022-03-04 | 株式会社村田製作所 | Semiconductor package, semiconductor device, semiconductor package-mounted apparatus, and semiconductor device-mounted apparatus |
US12040265B2 (en) * | 2021-07-28 | 2024-07-16 | Texas Instruments Incorporated | High-frequency ceramic packages with modified castellation and metal layer architectures |
CN117476631B (en) * | 2023-12-26 | 2024-03-22 | 广东仁懋电子有限公司 | Gallium nitride microwave power device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6313521B1 (en) * | 1998-11-04 | 2001-11-06 | Nec Corporation | Semiconductor device and method of manufacturing the same |
US6437240B2 (en) * | 1996-05-02 | 2002-08-20 | Tessera, Inc. | Microelectronic connections with liquid conductive elements |
US6548890B2 (en) * | 2001-01-23 | 2003-04-15 | Kabushiki Kaisha Toshiba | Press-contact type semiconductor device |
US20050029651A1 (en) * | 2003-06-26 | 2005-02-10 | Taizo Tomioka | Semiconductor apparatus and method of manufacturing the same |
US20050167849A1 (en) * | 2004-02-03 | 2005-08-04 | Kabushiki Kaisha Toshiba | Semiconductor module |
US7154174B2 (en) * | 2003-02-27 | 2006-12-26 | Power-One, Inc. | Power supply packaging system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1145976A (en) | 1997-07-28 | 1999-02-16 | Hitachi Ltd | High frequency multi chip module and manufacture thereof |
JP2001291823A (en) | 2000-04-05 | 2001-10-19 | Toshiba Digital Media Engineering Corp | Semiconductor device |
JP2002314029A (en) | 2001-04-09 | 2002-10-25 | Taiyo Yuden Co Ltd | Module electronic parts |
US6766817B2 (en) | 2001-07-25 | 2004-07-27 | Tubarc Technologies, Llc | Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action |
JP3495727B2 (en) * | 2001-11-07 | 2004-02-09 | 新光電気工業株式会社 | Semiconductor package and manufacturing method thereof |
JP2004221460A (en) | 2003-01-17 | 2004-08-05 | Matsushita Electric Ind Co Ltd | Semiconductor component, semiconductor device, and method of manufacturing semiconductor device |
US7015582B2 (en) * | 2003-04-01 | 2006-03-21 | International Business Machines Corporation | Dummy metal fill shapes for improved reliability of hybrid oxide/low-k dielectrics |
JP4445351B2 (en) | 2004-08-31 | 2010-04-07 | 株式会社東芝 | Semiconductor module |
US7250363B2 (en) * | 2005-05-09 | 2007-07-31 | International Business Machines Corporation | Aligned dummy metal fill and hole shapes |
-
2004
- 2004-08-31 JP JP2004253276A patent/JP4445351B2/en not_active Expired - Fee Related
-
2005
- 2005-08-31 US US11/214,730 patent/US7514783B2/en not_active Expired - Fee Related
-
2007
- 2007-07-16 US US11/778,516 patent/US7633153B2/en not_active Expired - Fee Related
- 2007-07-16 US US11/778,493 patent/US20070257376A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6437240B2 (en) * | 1996-05-02 | 2002-08-20 | Tessera, Inc. | Microelectronic connections with liquid conductive elements |
US6313521B1 (en) * | 1998-11-04 | 2001-11-06 | Nec Corporation | Semiconductor device and method of manufacturing the same |
US6548890B2 (en) * | 2001-01-23 | 2003-04-15 | Kabushiki Kaisha Toshiba | Press-contact type semiconductor device |
US7154174B2 (en) * | 2003-02-27 | 2006-12-26 | Power-One, Inc. | Power supply packaging system |
US20050029651A1 (en) * | 2003-06-26 | 2005-02-10 | Taizo Tomioka | Semiconductor apparatus and method of manufacturing the same |
US20050167849A1 (en) * | 2004-02-03 | 2005-08-04 | Kabushiki Kaisha Toshiba | Semiconductor module |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8800638B2 (en) * | 2006-04-18 | 2014-08-12 | Advanced Semiconductor Engineering, Inc. | Heatsink and heatsink-positioning system |
US20070240848A1 (en) * | 2006-04-18 | 2007-10-18 | Jun-Cheng Liu | Heatsink and heatsink-positioning system |
US20090218684A1 (en) * | 2008-01-25 | 2009-09-03 | Mark Pavier | Autoclave capable chip-scale package |
US8143729B2 (en) * | 2008-01-25 | 2012-03-27 | International Rectifier Corporation | Autoclave capable chip-scale package |
US9048242B2 (en) * | 2008-02-18 | 2015-06-02 | Shinko Electric Industries Co., Ltd. | Semiconductor device manufacturing method, semiconductor device, and wiring board |
US20110244631A1 (en) * | 2008-02-18 | 2011-10-06 | Shinko Electric Industries Co., Ltd. | Semiconductor device manufacturing method, semiconductor device, and wiring board |
US8319114B2 (en) * | 2008-04-02 | 2012-11-27 | Densel Lambda K.K. | Surface mount power module dual footprint |
US20090251873A1 (en) * | 2008-04-02 | 2009-10-08 | Sun-Wen Cyrus Cheng | Surface Mount Power Module Dual Footprint |
US9706638B2 (en) | 2009-09-29 | 2017-07-11 | Astec International Limited | Assemblies and methods for directly connecting integrated circuits to electrically conductive sheets |
US20110075392A1 (en) * | 2009-09-29 | 2011-03-31 | Astec International Limited | Assemblies and Methods for Directly Connecting Integrated Circuits to Electrically Conductive Sheets |
US8941999B2 (en) | 2010-10-19 | 2015-01-27 | Tessera, Inc. | Enhanced stacked microelectronic assemblies with central contacts and improved thermal characteristics |
US9312239B2 (en) | 2010-10-19 | 2016-04-12 | Tessera, Inc. | Enhanced stacked microelectronic assemblies with central contacts and improved thermal characteristics |
US8553420B2 (en) * | 2010-10-19 | 2013-10-08 | Tessera, Inc. | Enhanced stacked microelectronic assemblies with central contacts and improved thermal characteristics |
US20120092832A1 (en) * | 2010-10-19 | 2012-04-19 | Tessera Research Llc | Enhanced stacked microelectronic assemblies with central contacts and improved thermal characteristics |
US20120168926A1 (en) * | 2011-01-03 | 2012-07-05 | International Rectifier Corporation | High Power Semiconductor Package with Conductive Clip and Flip Chip Driver IC with Integrated Control Transistor |
US8749034B2 (en) * | 2011-01-03 | 2014-06-10 | International Rectifier Corporation | High power semiconductor package with conductive clip and flip chip driver IC with integrated control transistor |
US9735093B2 (en) | 2011-04-21 | 2017-08-15 | Tessera, Inc. | Stacked chip-on-board module with edge connector |
US8952516B2 (en) | 2011-04-21 | 2015-02-10 | Tessera, Inc. | Multiple die stacking for two or more die |
US8928153B2 (en) | 2011-04-21 | 2015-01-06 | Tessera, Inc. | Flip-chip, face-up and face-down centerbond memory wirebond assemblies |
US9013033B2 (en) | 2011-04-21 | 2015-04-21 | Tessera, Inc. | Multiple die face-down stacking for two or more die |
US9640515B2 (en) | 2011-04-21 | 2017-05-02 | Tessera, Inc. | Multiple die stacking for two or more die |
US9093291B2 (en) | 2011-04-21 | 2015-07-28 | Tessera, Inc. | Flip-chip, face-up and face-down wirebond combination package |
US9806017B2 (en) | 2011-04-21 | 2017-10-31 | Tessera, Inc. | Flip-chip, face-up and face-down centerbond memory wirebond assemblies |
US9281295B2 (en) | 2011-04-21 | 2016-03-08 | Invensas Corporation | Embedded heat spreader for package with multiple microelectronic elements and face-down connection |
US9281266B2 (en) | 2011-04-21 | 2016-03-08 | Tessera, Inc. | Stacked chip-on-board module with edge connector |
US9312244B2 (en) | 2011-04-21 | 2016-04-12 | Tessera, Inc. | Multiple die stacking for two or more die |
US10622289B2 (en) | 2011-04-21 | 2020-04-14 | Tessera, Inc. | Stacked chip-on-board module with edge connector |
US9437579B2 (en) | 2011-04-21 | 2016-09-06 | Tessera, Inc. | Multiple die face-down stacking for two or more die |
US8970028B2 (en) | 2011-12-29 | 2015-03-03 | Invensas Corporation | Embedded heat spreader for package with multiple microelectronic elements and face-down connection |
US20130182395A1 (en) * | 2012-01-17 | 2013-07-18 | Huawei Device Co., Ltd. | Integrated module, integrated system board, and electronic device |
TWI502161B (en) * | 2012-07-17 | 2015-10-01 | Lite On Technology Corp | A method of combining the heat element and the heat sink, a pressure sensitive adhesive |
US8877560B2 (en) * | 2012-07-17 | 2014-11-04 | Lite-On Technology Corp. | Method for assembling heat generating element and heat dissipating element, pressure sensitive element, and power supplying unit |
US20140022731A1 (en) * | 2012-07-17 | 2014-01-23 | Lite-On Technology Corp. | Method for assembling heat generating element and heat dissipating element, pressure sensitive element, and power supplying unit |
CN112447614A (en) * | 2019-08-30 | 2021-03-05 | 朋程科技股份有限公司 | Power device packaging structure |
CN112490202A (en) * | 2019-09-12 | 2021-03-12 | 朋程科技股份有限公司 | Power device packaging structure |
CN112530886A (en) * | 2019-09-18 | 2021-03-19 | 台达电子工业股份有限公司 | Packaging structure |
Also Published As
Publication number | Publication date |
---|---|
US7514783B2 (en) | 2009-04-07 |
US20070257708A1 (en) | 2007-11-08 |
JP4445351B2 (en) | 2010-04-07 |
US20060055432A1 (en) | 2006-03-16 |
US7633153B2 (en) | 2009-12-15 |
JP2006073664A (en) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7633153B2 (en) | Semiconductor module | |
JP3809168B2 (en) | Semiconductor module | |
JP4426955B2 (en) | Semiconductor device | |
CN101378053B (en) | High and low voltage side N channel metal oxide semiconductor field effect transistor combined package | |
US9461163B2 (en) | Semiconductor device including Schottky barrier diode and power MOSFETs and a manufacturing method of the same | |
US6842346B2 (en) | Semiconductor device | |
JP4565879B2 (en) | Semiconductor device | |
US8044520B2 (en) | Semiconductor device | |
JP4010792B2 (en) | Semiconductor device | |
US20060044772A1 (en) | Semiconductor module | |
JP2006216940A (en) | Semiconductor device | |
JP2006222298A (en) | Semiconductor device and manufacturing method thereof | |
JP2007012857A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |