US20070251249A1 - Heat exchanger and a charge air cooling method - Google Patents
Heat exchanger and a charge air cooling method Download PDFInfo
- Publication number
- US20070251249A1 US20070251249A1 US11/664,259 US66425905A US2007251249A1 US 20070251249 A1 US20070251249 A1 US 20070251249A1 US 66425905 A US66425905 A US 66425905A US 2007251249 A1 US2007251249 A1 US 2007251249A1
- Authority
- US
- United States
- Prior art keywords
- heat exchanger
- charge air
- droplets
- condensation water
- fins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/025—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
- F28F3/027—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/045—Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
- F02B29/0462—Liquid cooled heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/02—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/10—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by imparting a pulsating motion to the flow, e.g. by sonic vibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/16—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying an electrostatic field to the body of the heat-exchange medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0082—Charged air coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2245/00—Coatings; Surface treatments
- F28F2245/02—Coatings; Surface treatments hydrophilic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2245/00—Coatings; Surface treatments
- F28F2245/04—Coatings; Surface treatments hydrophobic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention relates to a heat exchanger according to the preamble of claim 1 and to a method for cooling charge air according to the preamble of claim 11 .
- turbochargers are used to compress the air.
- the air referred to in the following as charge air
- charge air is heated to temperatures of over 150° C. as a result of the compression in the turbocharger.
- air coolers are used which are arranged at the front of the cooling module and serve to cool the charge air.
- the charge air flows through a heat exchanger which has ambient air flowing through it, and said charge air is thus cooled. This makes it possible to cool the charge air to a temperature which is approximately 20-90 K above the temperature of the ambient air. Cooling the charge air permits an increase in engine performance.
- a two-stage device for cooling charge air and a method for operating such a device is known, for example, from DE 102 54 016 A1, said device permitting a further increase in performance as a result of improved charge air cooling.
- a method and a device for operating a supercharged internal combustion engine are known from DE 28 14 593 C2, said method and device being used to accumulate the condensation water precipitated in the charge air cooler, discharge said condensation water out of the charge air cooler, accumulate said condensation water in an accumulation tank arranged separately from the charge air cooler, and supply the accumulated condensation water into the exhaust line of the internal combustion engine upstream of the exhaust gas turbine in the flow direction.
- a pump or at least a sufficient pressure drop is provided which conveys the condensation water from the accumulation tank into the exhaust line.
- Heat exchangers which are used to cool air are provided with a hydrophilic coating in order to better discharge the condensation water which is accumulated from said air, since it is conventionally sought to avoid liquid water components in the cooled air.
- Heat exchangers of said type leave something to be desired.
- a heat exchanger for cooling charge air to which water, in particular condensation water, can be added in the form of droplets and/or mist, the heat exchanger having a hydrophobic surface at least in a partial region.
- the contact angle of a droplet is preferably greater than 90°, preferably greater than 120° and particularly preferably greater than 150°, so that the condensation water accumulates on the surface in the manner of a pearl and can be easily entrained by the charge air flow.
- the hydrophobic surface permits the formation of approximately spherical droplets which are transported and entrained by the charge air flow when they are of a small size.
- Separation edges are preferably provided on the heat exchanger, at which separation edges the droplets which have collected on the hydrophobic surface detach from the heat exchanger as a result of the prevailing charge air flow.
- the separation edges are preferably also provided with a hydrophobic coating, so that the low adhesion forces allow the droplets to be easily detached from the surface.
- the separation edges are preferably formed by ends of web fins or gills of gill fins.
- the detachment is supported by flow speeds of preferably over 3 m/s, particularly preferably over 6 m/s, for which the heat exchanger is correspondingly designed in terms of flow.
- High flow speeds additionally assist in the residence times on the hydrophobic surfaces being short, which can prevent a plurality of droplets coalescing, and makes the droplet size at the time of separation smaller.
- the heat exchanger can be electrostatically charged at least in a partial region of the surface, so that the droplets which are formed impact against one another as a result of the electrostatic charge and can, as a result, detach from the fin structure of the heat exchanger more easily.
- the tendency is reduced for the droplets to be trapped again by heat exchanger structures arranged in the flow direction. Electrostatic charging of the droplets also prevents said droplets joining together in the air flow, so that the droplets do not coalesce to form larger droplets.
- the tendency for the droplets to be trapped again by subsequent fin structures is considerably greater for larger droplets as a result of the larger inertial forces, so that it is desirable for the droplets to be as small as possible.
- the hydrophobic surface preferably has dispersing, electrically conductive constituents, for example in the form of nanoparticles which permit electrically conductive contact between the charged hydrophobic surfaces and the droplets rolling over the hydrophobic coating, so that the electrical charge can be better transmitted to said droplets.
- the heat exchanger can have at least one region with a neutral or hydrophilic, electrically conductive surface which permits electrostatic charging of the droplets.
- the hydrophilic region is preferably considerably smaller, than the hydrophobic region.
- the fins of the heat exchanger preferably have a spacing of a maximum of 2 mm, in particular a maximum of 1.5 mm, and can therefore be situated considerably closer together than the fins of conventional heat exchangers.
- One preferred embodiment involves combining the features of a hydrophobic surface with mechanical vibration generation, preferably in the inaudible ultrasound range.
- a vibration transducer to the evaporator, with the aim of detaching the condensate droplets which form primarily on the transmitting face of the heat exchanger from the surface by means of mechanical vibrations, and if appropriate, of separating said droplets into smaller droplets.
- the vibration direction of the vibration transducer which couples vibrations in is preferably selected such that it is aligned perpendicular to the heat transmitting face.
- at least two vibration transducers are coupled to the evaporator, said vibration transducers being distributed locally such that the body-borne noise vibration field which permeates the evaporator is as homogeneous as possible and/or said vibration transducers complementing one another in terms of their vibration direction and phase position such that circular body-borne noise vibration is generated. This makes it possible for all the heat transmitting faces to vibrate with a vibration component perpendicular to the surface.
- the vibration transducer can be adapted in terms of its frequency and amplitude such that resonant effects occur which preferably detach droplets of a particularly certain size from the surface.
- the power of the required ultrasound transducer can be limited to small values, and the detachment of small droplets can be assisted.
- the frequency and arrangement of the one or more vibration transducers in combination with the mounting of the heat exchanger and/or the connection of further noise conducting components can be adapted in terms of impedance in such a way that stationary waves with a particularly advantageous amplitude distribution are generated.
- the vibration generation can also be utilized to increase the heat transfer coefficient, or to reduce the pressure loss, on the inside of the heat exchanger (that is to say the other fluid side).
- the formation of bubbles can be assisted and/or laminar viscous underlayers can be broken up by means of cavitation effects. This could prove to be particularly useful in the evaporation of multi-component mixtures (for example refrigerant/cooling oil).
- Coupling mechanical vibrations into the heat transmitting structure causes condensate droplets which form on the surface to be detached at least at times, and as a result permits the gas flow passing through the structure to be discharged out of the structure faster.
- FIG. 1 is a greatly enlarged schematic illustration of a partial region (gill fins), which is provided with a coating according to the invention, of a heat exchanger according to the first exemplary embodiment,
- FIG. 2 is a greatly enlarged schematic illustration of a partial region (web fins), which is provided with a coating according to the invention, of a heat exchanger according to the second exemplary embodiment, and
- FIG. 3 is an enlarged schematic illustration of a heat exchanger according to the third exemplary embodiment.
- a heat exchanger 1 for cooling charge air which is supplied to a motor vehicle engine has a structure, which is known in principle, with gill fins 2 which are arranged obliquely and parallel to one another, with FIG. 1 illustrating only a greatly simplified and enlarged section through part of the gill fins 2 .
- the gill fins 2 are provided with a hydrophobic surface coating which has the effect that the condensation water which accumulates on the gill fins 2 , said condensation water accumulating out of the charge air on the cooler surface of the heat exchanger 1 , accumulates in the form of droplets, as indicated by approximately circularly illustrated droplets 3 in FIG. 1 .
- the droplets 3 which have accumulated on the hydrophobic surface of the heat exchanger 1 , have a contact angle of more than 90° relative to the surface of the heat exchanger 1 , so that they roll off the surface of the heat exchanger 1 , are entrained by the charge air flow, indicated by arrows, along the faces of the gill fins 2 and—after separation at a separation edge 4 —are conveyed with the charge air flow as condensation water mist 5 .
- the charge air flows in the region of the separation edges 4 at a flow speed of over 6 m/s, so as to ensure that the droplets 3 are separated and entrained.
- the charge air is cooled further, with the result that the engine performance can be further increased, for example by increasing the injection quantity and by means of its timing.
- the heat exchanger 1 has a structure, which is known in principle, with web fins 12 which are arranged parallel and offset relative to one another.
- the web fins 12 of the second exemplary embodiment are provided with a hydrophobic coating which ensures that the condensation water which accumulates on the relatively cool web fins 12 rolls off.
- hydrophobic coating is the same as in the previously described first exemplary embodiment, so this is not described in any more detail, but the flow profile of the charge air is more uniform as a result of the shape of the fins, and the charge air is not deflected significantly by the web fins 12 which run parallel to the flow profile.
- FIG. 3 shows, in the form of a section, a heat exchanger 21 having flow ducts 22 , embodied here as tubes, through which a fluid 1 flows, and having fins 23 which are embodied here as corrugated fins.
- a vibration 24 aligned perpendicular to the heat transmitting face is generated by means of two vibration transducers (not illustrated) with vibration directions (excitation 1 and excitation 2 respectively) which lie substantially perpendicular to one another.
- the body-borne noise vibration field which permeates the heat exchanger 21 is homogenized as a result.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Supercharger (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004048207.1 | 2004-09-30 | ||
DE102004048207 | 2004-09-30 | ||
PCT/EP2005/010586 WO2006034876A1 (de) | 2004-09-30 | 2005-09-30 | Wärmeübertrager und verfahren zur kühlung von ladeluft |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070251249A1 true US20070251249A1 (en) | 2007-11-01 |
Family
ID=35447445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/664,259 Abandoned US20070251249A1 (en) | 2004-09-30 | 2005-09-30 | Heat exchanger and a charge air cooling method |
Country Status (6)
Country | Link |
---|---|
US (1) | US20070251249A1 (ja) |
EP (1) | EP1800081B1 (ja) |
JP (1) | JP2008514897A (ja) |
KR (1) | KR20070072563A (ja) |
CN (1) | CN101031771A (ja) |
WO (1) | WO2006034876A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080073063A1 (en) * | 2006-06-23 | 2008-03-27 | Exxonmobil Research And Engineering Company | Reduction of fouling in heat exchangers |
US20090090613A1 (en) * | 2007-10-05 | 2009-04-09 | Exxonmobil Research And Engineering Company | Crude oil pre-heat train with improved heat transfer and method of improving heat transfer |
US20110203772A1 (en) * | 2010-02-19 | 2011-08-25 | Battelle Memorial Institute | System and method for enhanced heat transfer using nanoporous textured surfaces |
US20120111549A1 (en) * | 2010-11-09 | 2012-05-10 | Denso Corporation | Heat transport fluid passage device with hydrophobic membrane |
US8842435B2 (en) | 2012-05-15 | 2014-09-23 | Toyota Motor Engineering & Manufacturing North America, Inc. | Two-phase heat transfer assemblies and power electronics incorporating the same |
US9038607B2 (en) | 2013-02-06 | 2015-05-26 | Ford Global Technologies, Llc | Air cooler and method for operation of an air cooler |
US9334791B2 (en) | 2012-09-17 | 2016-05-10 | Ford Global Technologies, Llc | Charge air cooler condensation control |
US20160187068A1 (en) * | 2014-12-29 | 2016-06-30 | Christopher Phillip Migliaccio | Methods and apparatus for dropwise excitation heat transfer |
US20170114738A1 (en) * | 2015-10-26 | 2017-04-27 | Ford Global Technologies, Llc | Method for utilizing condensate to improve engine efficiency |
US10563931B2 (en) | 2016-10-05 | 2020-02-18 | Johnson Controls Technology Company | Ultrasonic enhanced heat exchanger systems and methods |
US11419340B2 (en) | 2019-05-03 | 2022-08-23 | Graco Minnesota Inc. | Electrostatic spray chilling of foodstuffs |
US20220349338A1 (en) * | 2021-05-03 | 2022-11-03 | Hyundai Motor Company | Apparatus and method for removing condensed water of intercooler |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2967765B1 (fr) | 2010-11-19 | 2015-03-06 | Valeo Systemes Thermiques | Composant brasable et echangeur de chaleur le comportant |
KR20120054321A (ko) * | 2010-11-19 | 2012-05-30 | 엘지전자 주식회사 | 히트 펌프 |
US9476345B2 (en) * | 2012-10-19 | 2016-10-25 | Ford Global Technologies, Llc | Engine cooling fan to reduce charge air cooler corrosion |
CN104775891A (zh) * | 2014-01-13 | 2015-07-15 | 潍坊市明冠节能科技有限公司 | 一种涡轮增压发动机 |
US10622868B2 (en) * | 2017-03-29 | 2020-04-14 | Ford Global Technologies, Llc | Coolant flow distribution using coating materials |
CN109942042A (zh) * | 2019-04-08 | 2019-06-28 | 山东省水利科学研究院 | 一种利用太阳能及深海底低温水进行海水淡化装置 |
CN110736383B (zh) * | 2019-11-06 | 2021-07-27 | 江苏维良冷却设备有限公司 | 一种滴水速度快的冷却塔用收水器 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4332293A (en) * | 1980-04-30 | 1982-06-01 | Nippondenso Co., Ltd. | Corrugated fin type heat exchanger |
US4550775A (en) * | 1983-10-21 | 1985-11-05 | American Standard Inc. | Compressor intercooler |
US5181558A (en) * | 1990-11-13 | 1993-01-26 | Matsushita Refrigeration Company | Heat exchanger |
US5809981A (en) * | 1993-06-04 | 1998-09-22 | Man B&W Diesel A/S | Large supercharged internal combustion engine and a method of operating a cooler for cooling the intake air of such an engine |
US20010027857A1 (en) * | 2000-01-28 | 2001-10-11 | Karsten Emrich | Charge air cooler, especially for motor vehicles |
US6405686B1 (en) * | 1999-08-12 | 2002-06-18 | Munters Euroform Gmbh | Moistener for intake air of internal combustion machines with turbocharging |
US6619383B2 (en) * | 2000-07-25 | 2003-09-16 | Arthur M. Squires | Vibrated-bed method and apparatus for heat exchange |
US20040050539A1 (en) * | 2002-09-12 | 2004-03-18 | York International Corporation | Heat exchanger fin having canted lances |
US20040249222A1 (en) * | 2001-05-08 | 2004-12-09 | Thomas Zwieg | Ice nucleating non-stick coating |
US6872686B2 (en) * | 1998-03-23 | 2005-03-29 | Engelhard Corporation | Hydrophobic catalytic materials and method of forming the same |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2814593C2 (de) * | 1978-04-05 | 1985-12-12 | M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg | Verfahren und Vorrichtung zum Betrieb einer aufgeladenen Brennkraftmaschine |
US4321534A (en) * | 1980-03-12 | 1982-03-23 | Magnaflux Corporation | Magnetic particle testing procedure involving pre-coating with a hydrophobic coating |
JPS5826995A (ja) * | 1981-08-08 | 1983-02-17 | Matsushita Electric Ind Co Ltd | 熱交換器 |
JPH0295729A (ja) * | 1988-09-29 | 1990-04-06 | Ishikawajima Harima Heavy Ind Co Ltd | 内燃機関の空気冷却器付過給装置 |
JPH05203381A (ja) * | 1992-01-27 | 1993-08-10 | Toshiba Corp | 熱交換器 |
JPH08170895A (ja) * | 1994-12-15 | 1996-07-02 | Sharp Corp | 熱交換器 |
JPH08319115A (ja) * | 1995-05-22 | 1996-12-03 | Mitsubishi Materials Corp | 疎水性金属酸化物粉体およびこれを含有する電子写真用現像剤 |
JPH09113181A (ja) * | 1995-10-19 | 1997-05-02 | Kobe Steel Ltd | 熱交換器用アルミニウム部材及びその製造方法 |
JPH10197183A (ja) * | 1997-01-06 | 1998-07-31 | Matsushita Refrig Co Ltd | フィン付熱交換器 |
JPH10242678A (ja) * | 1997-02-21 | 1998-09-11 | Fujikura Ltd | 熱交換フィンの構造 |
JP3725343B2 (ja) * | 1998-08-25 | 2005-12-07 | 三菱電機株式会社 | 変圧器用冷却器 |
JP2002156360A (ja) * | 2000-09-05 | 2002-05-31 | Nippon Paint Co Ltd | 親水性塗膜と疎水性塗膜とを判別する方法 |
FI112692B (fi) * | 2000-11-03 | 2003-12-31 | Waertsilae Finland Oy | Menetelmä ja järjestely ahdetun mäntämoottorin typpioksidipäästöjen (NOx) vähentämiseksi |
JP4936237B2 (ja) * | 2001-04-12 | 2012-05-23 | 日本アエロジル株式会社 | 正帯電性疎水性酸化チタン微粉末とその製法および用途 |
DE10120989A1 (de) * | 2001-04-25 | 2002-11-07 | Inst Polymerforschung Dresden | Hydrophobe permanente Beschichtungen auf Substraten und Verfahren zu ihrer Herstellung |
DE10122329B4 (de) * | 2001-05-08 | 2004-06-03 | Tinox Gmbh | Wärmetauscher-Vorrichtung mit einer oberflächenbeschichteten Wand, die Medium 1 von Medium 2 trennt |
JP3883880B2 (ja) * | 2002-02-22 | 2007-02-21 | 東芝キヤリア株式会社 | 熱交換器 |
JP4634000B2 (ja) * | 2002-11-26 | 2011-02-16 | ダイキン工業株式会社 | 冷凍装置 |
-
2005
- 2005-09-30 KR KR1020077009870A patent/KR20070072563A/ko not_active Application Discontinuation
- 2005-09-30 US US11/664,259 patent/US20070251249A1/en not_active Abandoned
- 2005-09-30 JP JP2007533954A patent/JP2008514897A/ja active Pending
- 2005-09-30 CN CNA2005800329520A patent/CN101031771A/zh active Pending
- 2005-09-30 WO PCT/EP2005/010586 patent/WO2006034876A1/de active Application Filing
- 2005-09-30 EP EP05797105.3A patent/EP1800081B1/de not_active Not-in-force
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4332293A (en) * | 1980-04-30 | 1982-06-01 | Nippondenso Co., Ltd. | Corrugated fin type heat exchanger |
US4550775A (en) * | 1983-10-21 | 1985-11-05 | American Standard Inc. | Compressor intercooler |
US5181558A (en) * | 1990-11-13 | 1993-01-26 | Matsushita Refrigeration Company | Heat exchanger |
US5809981A (en) * | 1993-06-04 | 1998-09-22 | Man B&W Diesel A/S | Large supercharged internal combustion engine and a method of operating a cooler for cooling the intake air of such an engine |
US6872686B2 (en) * | 1998-03-23 | 2005-03-29 | Engelhard Corporation | Hydrophobic catalytic materials and method of forming the same |
US6405686B1 (en) * | 1999-08-12 | 2002-06-18 | Munters Euroform Gmbh | Moistener for intake air of internal combustion machines with turbocharging |
US20010027857A1 (en) * | 2000-01-28 | 2001-10-11 | Karsten Emrich | Charge air cooler, especially for motor vehicles |
US6619383B2 (en) * | 2000-07-25 | 2003-09-16 | Arthur M. Squires | Vibrated-bed method and apparatus for heat exchange |
US20040249222A1 (en) * | 2001-05-08 | 2004-12-09 | Thomas Zwieg | Ice nucleating non-stick coating |
US20040050539A1 (en) * | 2002-09-12 | 2004-03-18 | York International Corporation | Heat exchanger fin having canted lances |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080073063A1 (en) * | 2006-06-23 | 2008-03-27 | Exxonmobil Research And Engineering Company | Reduction of fouling in heat exchangers |
US20090090613A1 (en) * | 2007-10-05 | 2009-04-09 | Exxonmobil Research And Engineering Company | Crude oil pre-heat train with improved heat transfer and method of improving heat transfer |
US8349267B2 (en) | 2007-10-05 | 2013-01-08 | Exxonmobil Research And Engineering Company | Crude oil pre-heat train with improved heat transfer |
US20110203772A1 (en) * | 2010-02-19 | 2011-08-25 | Battelle Memorial Institute | System and method for enhanced heat transfer using nanoporous textured surfaces |
US20120111549A1 (en) * | 2010-11-09 | 2012-05-10 | Denso Corporation | Heat transport fluid passage device with hydrophobic membrane |
US9022099B2 (en) * | 2010-11-09 | 2015-05-05 | Denso Corporation | Heat transport fluid passage device with hydrophobic membrane |
US8842435B2 (en) | 2012-05-15 | 2014-09-23 | Toyota Motor Engineering & Manufacturing North America, Inc. | Two-phase heat transfer assemblies and power electronics incorporating the same |
US9334791B2 (en) | 2012-09-17 | 2016-05-10 | Ford Global Technologies, Llc | Charge air cooler condensation control |
RU2620914C2 (ru) * | 2012-09-17 | 2017-05-30 | Форд Глобал Технолоджис, ЛЛК | Способ эксплуатации двигателя и система двигателя |
US9038607B2 (en) | 2013-02-06 | 2015-05-26 | Ford Global Technologies, Llc | Air cooler and method for operation of an air cooler |
US20160187068A1 (en) * | 2014-12-29 | 2016-06-30 | Christopher Phillip Migliaccio | Methods and apparatus for dropwise excitation heat transfer |
US11300370B2 (en) * | 2014-12-29 | 2022-04-12 | The United States Of America As Represented By The Secretary Of The Army | Methods and apparatus for dropwise excitation heat transfer |
US20170114738A1 (en) * | 2015-10-26 | 2017-04-27 | Ford Global Technologies, Llc | Method for utilizing condensate to improve engine efficiency |
US9932921B2 (en) * | 2015-10-26 | 2018-04-03 | Ford Global Technologies, Llc | Method for utilizing condensate to improve engine efficiency |
US10563931B2 (en) | 2016-10-05 | 2020-02-18 | Johnson Controls Technology Company | Ultrasonic enhanced heat exchanger systems and methods |
US11419340B2 (en) | 2019-05-03 | 2022-08-23 | Graco Minnesota Inc. | Electrostatic spray chilling of foodstuffs |
US20220349338A1 (en) * | 2021-05-03 | 2022-11-03 | Hyundai Motor Company | Apparatus and method for removing condensed water of intercooler |
US11619162B2 (en) * | 2021-05-03 | 2023-04-04 | Hyundai Motor Company | Apparatus and method for removing condensed water of intercooler |
Also Published As
Publication number | Publication date |
---|---|
CN101031771A (zh) | 2007-09-05 |
WO2006034876A1 (de) | 2006-04-06 |
EP1800081A1 (de) | 2007-06-27 |
KR20070072563A (ko) | 2007-07-04 |
EP1800081B1 (de) | 2016-04-13 |
JP2008514897A (ja) | 2008-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070251249A1 (en) | Heat exchanger and a charge air cooling method | |
US20100025125A1 (en) | Method and Apparatus for the Operation of a Vehicle | |
US10254056B2 (en) | Heat exchanger | |
US6425943B1 (en) | Powered low restriction air precleaner device and method for providing a clean air flow to an apparatus such as a combustion engine air intake, engine cooling system, ventilation system and cab air intake system | |
JP2006021749A (ja) | ハイブリッド自動車用冷却システム | |
US20070144713A1 (en) | Integrated heat exchanger and heat exchanger | |
US9719732B2 (en) | Cold storage heat exchanger | |
US20140090800A1 (en) | Cooling system for a motor vehicle or for a stationary internal combustion engine | |
US20150369119A1 (en) | Charge air cooler water protection | |
JP2004053132A (ja) | 冷却器 | |
US20130020060A1 (en) | Heat exchanger | |
US20100037836A1 (en) | Gas extractor for an engine coolant system | |
US20200318583A1 (en) | Charge air cooler (cac) condensate dispersion system and method of dispersing condensate from a cac | |
US9890693B2 (en) | Charge air cooler | |
US5080167A (en) | Combination radiator and condenser apparatus for motor vehicle | |
JP2007001514A (ja) | 燃料電池自動車用の熱交換器 | |
CN104802616A (zh) | 一种大客车用高效空调器 | |
US5036910A (en) | Combination radiator and condenser apparatus for motor vehicle | |
US20190170057A1 (en) | Charge air cooler (cac) having a condensate dispersion device and a method of dispersing condensate from a cac | |
US11186136B2 (en) | Cooling apparatus for a motor vehicle, and motor vehicle having such a cooling apparatus | |
US20150101782A1 (en) | Evaporative intercooler | |
US10471807B2 (en) | Coolant circuit, in particular a heat pump circuit | |
DE102005047440A1 (de) | Wärmeübertrager und Verfahren zur Kühlung von Ladeluft | |
JP6526432B2 (ja) | 廃熱回収装置 | |
US11852057B2 (en) | Heat exchanger, and internal combustion engine blow-by gas processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BEHR GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BURK, ROLAND;REEL/FRAME:019241/0060 Effective date: 20070420 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |