US20070190812A1 - Semiconductor device having sufficient process margin and method of forming same - Google Patents

Semiconductor device having sufficient process margin and method of forming same Download PDF

Info

Publication number
US20070190812A1
US20070190812A1 US11/737,675 US73767507A US2007190812A1 US 20070190812 A1 US20070190812 A1 US 20070190812A1 US 73767507 A US73767507 A US 73767507A US 2007190812 A1 US2007190812 A1 US 2007190812A1
Authority
US
United States
Prior art keywords
patterns
pitch
type
active
type impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/737,675
Inventor
Man-Hyoung Ryoo
Gi-sung Yeo
Si-hyeung Lee
Gyu-Chul Kim
Sung-Gon Jung
Chang-min Park
Hoo-Sung Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US11/737,675 priority Critical patent/US20070190812A1/en
Publication of US20070190812A1 publication Critical patent/US20070190812A1/en
Priority to US12/654,798 priority patent/US8193047B2/en
Priority to US13/064,138 priority patent/US20110156159A1/en
Priority to US14/264,694 priority patent/US9673195B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/903FET configuration adapted for use as static memory cell

Definitions

  • the present invention relates to a semiconductor device, a method of manufacturing a semiconductor device, an SRAM device and a method of manufacturing an SRAM device. More particularly, the present invention relates to a semiconductor device, a method of manufacturing a semiconductor device, an SRAM device and a method of manufacturing an SRAM device having a sufficient process margin.
  • semiconductor memory devices may be categorized as either a dynamic random access memory (DRAM) device or a static random access memory (SRAM) device in accordance with memory type.
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • the SRAM device has a rapid speed, low power consumption, and a simply operated structure. Accordingly, the SRAM device is currently noticed in a semiconductor memory field. Information stored in the DRAM device is periodically refreshed. A periodical refresh of information stored in the SRAM device is, however, not necessary.
  • a typical SRAM device includes two pull-down elements, two pass elements, and two pull-up elements.
  • the SRAM device may be classified as either a full CMOS type, a high load resistor (HLR) type, or a thin film transistor (TFT) type in accordance with the configuration of the pull-up element.
  • a p-channel bulk MOSFET is used as the pull-up element in the full CMOS type.
  • a polysilicon layer having a high resistance value is used as the pull-up element in the HLR type.
  • a p-channel polysilicon TFT is used as the pull-up element in the TFT type.
  • the SRAM device having the full CMOS type of a cell has a low standby current, and also stably operates compared to the SRAM having other types of cells.
  • FIG. 1 is a circuit illustrating a conventional full CMOS type SRAM cell.
  • a conventional SRAM cell includes first and second pass transistors Q 1 and Q 2 for electrically connecting first and second bit lines BL 1 and BL 2 to first and second memory cell nodes Nd 1 and Nd 2 , respectively, a PMOS type pull-up transistor Q 5 electrically connected between the first memory cell node Nd 1 and a positive supply voltage Vdd, and an NMOS type pull-down transistor Q 3 electrically connected between the first memory cell node Nd 1 and a negative supply voltage Vss.
  • the PMOS type pull-up transistor Q 5 and the NMOS type pull-down transistor Q 3 are controlled by a signal outputted from the second memory cell node Nd 2 to thereby provide the positive supply voltage Vdd or the negative supply voltage Vss to the first memory cell node Nd 1 .
  • the conventional SRAM cell further includes a PMOS type pull-up transistor Q 6 electrically connected between the positive supply voltage Vdd and the second memory cell node Nd 2 , and an NMOS type pull-down transistor Q 4 electrically connected between the second memory node Nd 2 and the negative supply voltage Vss.
  • the PMOS type pull-up transistor Q 6 and the NMOS type pull-down transistor Q 4 are controlled by a signal outputted from the first memory cell node Nd 1 to thereby provide the positive supply voltage Vdd or the negative supply voltage Vss to the second memory cell node Nd 2 .
  • the first pass transistor Q 1 , the NMOS type pull-down transistor Q 3 and the PMOS pull-up transistor Q 5 are interconnected at the first memory cell node Nd 1 .
  • the second pass transistor Q 2 , the NMOS type pull-down transistor Q 4 and the PMOS pull-up transistor Q 6 are interconnected at the second memory cell node Nd 2 .
  • the full CMOS type SRAM cell includes the NMOS type transistors Q 1 , Q 2 , Q 3 and Q 4 , and the PMOS type transistors Q 5 and Q 6 .
  • NMOS and PMOS type transistors are disposed adjacently to each other in one cell, a latch-up and the like may occur, which causes an excessive current to flow between a positive supply voltage line and a negative supply voltage line.
  • active patterns are disposed so that pitches between the active patterns can have more than two sizes. Namely, in such arrangement of the active patterns, a pitch between an active pattern in which the PMOS type transistor is formed and an active pattern in which the NMOS type transistor is formed is relatively lengthened to perform an entirely elemental isolation between the PMOS and NMOS transistors. On the contrary, a pitch between active patterns in which identical MOS type transistors are disposed is relatively shortened.
  • pitches between the active patterns have more than two sizes that are different from each other, pitches between patterns and pitches between contacts formed on the active pattern, respectively, are also more than two sizes.
  • pitches between the patterns formed by the same process are varied as described above, a margin of a photolithography process for forming the patterns is determined based on the minimal one of the pitches between the patterns. Accordingly, the process margin is greatly decreased so that a probability of failures in forming the patterns may be high. Furthermore, it may be difficult to manufacture a highly-integrated semiconductor device by shrinking a cell size of the semiconductor device.
  • Embodiments of the invention address these and other disadvantages of the conventional art.
  • the present invention provides a semiconductor device having an increased margin of a photolithography process.
  • the present invention also provides a method of manufacturing a semiconductor device having an increased margin of a photolithography process.
  • the present invention still also provides an SRAM device having an increased margin of a photolithography process.
  • the present invention still also provides a method of manufacturing an SRAM device having an increased margin of a photolithography process.
  • FIG. 1 is a circuit diagram illustrating a conventional full CMOS type SRAM cell.
  • FIG. 2 is a layout diagram illustrating active patterns and gate patterns of a full CMOS type SRAM cell in accordance with some embodiments of the invention.
  • FIGS. 3A to 3 D are layout diagrams illustrating a method of manufacturing a full CMOS type SRAM cell in accordance with the embodiments illustrated in FIG. 2 .
  • FIG. 4 is a plan view diagram illustrating a first exposure mask in accordance with the embodiments illustrated in FIG. 2 .
  • FIG. 5 is a plan view diagram illustrating a second exposure mask in accordance with the embodiments illustrated in FIG. 2 .
  • FIG. 6 is a plan view diagram illustrating a third exposure mask in accordance with the embodiments illustrated in FIG. 2 .
  • FIGS. 7A to 7 C, 8 A to 8 C and 9 are plan views illustrating photoresist patterns manufactured in accordance with conventional processes and having non-uniform pitches.
  • FIGS. 10A to 10 C, 11 A to 11 C and 12 A to 12 C are plan views illustrating photoresist patterns having uniform pitches and manufactured in accordance with embodiments of the invention.
  • FIGS. 13A and 13B are plan views illustrating photoresist patterns for forming contacts, the photoresist patterns formed using a conventional exposure mask having non-uniform pitches.
  • FIGS. 14A to 14 C are plan views illustrating photoresist patterns for forming contact holes, the contact holes formed using an exposure mask having uniform pitches in accordance with embodiments of the invention.
  • FIGS. 15A to 15 C are plan views illustrating contact holes formed using an exposure mask into which a dummy pattern is inserted in accordance with embodiments of the invention.
  • a semiconductor device generally includes a data input/output interface, a cell array on which memory cells are disposed, an address recorder, and a controller for controlling writing/reading of a data.
  • a plurality of cells is formed in the cell array to form cell regions.
  • Each unit cell region includes a P type impurity region into which a P type impurity is implanted and an N type impurity region into which an N type impurity is implanted.
  • active patterns including first and second patterns that have a first pitch are disposed.
  • the first pitch represents a distance between a first side of the first pattern and a first side of the second pattern adjacent to the first pattern.
  • a number of gate patterns having a second pitch are disposed on the active patterns.
  • the gate patterns are disposed in a direction substantially perpendicular to the active patterns.
  • the first pitch may be substantially identical to the second pitch.
  • a first side of the cell region has a length substantially equal to an integral multiple of the first pitch.
  • a second side of the cell region substantially perpendicular to the first side has a length substantially equal to an integral multiple of the second pitch.
  • the first side is substantially perpendicular to the active patterns.
  • the second side is substantially parallel to the active patterns.
  • a cell region is disposed in a cell array of a substrate doped with a P type impurity.
  • An N type impurity is implanted selectively into a first region of the cell region to form an N type impurity region. Accordingly, a second region of the cell region except for the first region is a P type impurity region.
  • Active patterns having a first pitch are formed in the N type and P type impurity regions.
  • a first photoresist pattern having the first pitch is formed on the cell region so that the first photoresist pattern may cover an active region of the cell region.
  • the substrate is etched using the photoresist pattern as an etching mask to form a trench.
  • the trench is filled with a field oxide layer to form the active patterns and field patterns.
  • Gate patterns having a second pitch are formed in a direction perpendicular to and on the active patterns. Particularly, a gate oxide layer is formed on the active patterns of the substrate. A conductive layer is formed on the gate oxide layer. A second photoresist pattern having the second pitch is formed on the conductive layer. The conductive layer and the gate oxide layer are etched using the second photoresist pattern as an etching mask to form the gate patterns having the second pitch.
  • the first pitch may have substantially identical to the second pitch. On the contrary, the first pitch may be different from the second pitch.
  • the unit cell region of a semiconductor device is determined.
  • a first side of the unit cell region has a length substantially equal to integer times of the first pitch.
  • a second side of the unit cell region substantially perpendicular to the first side has a length substantially equal to integer times of the second pitch.
  • the first side is substantially perpendicular to the active patterns.
  • the second side is substantially parallel to the active patterns.
  • a semiconductor device is manufactured by performing a doping process for forming source/drain regions, a process for forming an insulating interlayer, and a process for forming a contact, etc.
  • FIG. 2 is a layout diagram illustrating active patterns and gate patterns of a full CMOS type SRAM cell according to some embodiments of the invention.
  • An SRAM cell includes first and second pass transistors for electrically connecting first and second bit lines to first and second memory cell nodes, a PMOS type pull-up transistor electrically connected between the first memory cell node and a positive supply voltage, and an NMOS type pull-down transistor electrically connected between the first memory cell node and a negative supply voltage.
  • the SRAM cell further includes another PMOS type pull-up transistor electrically connected between the positive supply voltage and the second memory cell node, and another NMOS type pull-down transistor electrically connected between the second memory node and the negative supply voltages.
  • the full CMOS type SRAM cell includes both NMOS type transistors and PMOS type transistors. Accordingly, the active patterns are formed to provide the regions in which the PMOS type transistors and the NMOS type transistors are formed in the one SRAM cell.
  • a plurality of chips are formed on a substrate.
  • a cell array in which a unit cell is formed is provided in the chips.
  • a region in which the single cell is formed is referred to as a unit cell region C.
  • a P type well corresponding to a well of the NMOS transistor is formed in the unit cell region C.
  • a P type impurity is implanted into the P type well.
  • An N type well corresponding to a well of the PMOS transistor is also formed in the cell region C.
  • An N type impurity is implanted into the N type well.
  • Linear active patterns 102 are disposed at a distance of the same first pitch P 1 from each other on the N type and P type wells.
  • the first pitch P 1 indicates the shortest distance between a first side of a first linear active pattern and a first side of a second linear active pattern adjacent to the first linear active pattern.
  • a plurality of gate patterns 104 are formed at a distance of the same second pitch P 2 from each other on active patterns 102 .
  • the gate patterns 104 are disposed in a direction substantially perpendicular to the active patterns 102 .
  • the gate patterns 104 include a gate oxide layer (not shown) and a conductive layer (not shown) formed on the gate oxide layer.
  • the gate patterns 104 are provided to function as gate electrodes of the PMOS and NMOS transistors.
  • the first pitch P 1 may have a size substantially identical to the second pitch P 2 .
  • the first pitch P 1 may be different from the second pitch P 2 .
  • a first side L 1 of the cell region C has a length substantially equal to an integral multiple of the first pitch P 1 .
  • a second side L 2 of the cell region C substantially perpendicular to the first side L 1 has a length substantially equal to an integral multiple of the second pitch P 2 .
  • the first side 11 is substantially perpendicular to the active patterns 102 .
  • the second side L 2 is substantially parallel to the active patterns 102 .
  • An insulating interlayer (not shown) is formed on the active patterns 102 and the gate patterns 104 .
  • Contacts (not shown) are formed through the insulating interlayer.
  • the contacts include a bit line contact electrically connected to the bit lines, a pass gate contact formed on a surface of the gate patterns 104 of the first and second pass transistors, a positive supply voltage contact, and a negative supply voltage contact.
  • a word line is connected to the pass gate contact.
  • a positive supply voltage line is connected to the positive supply voltage contact.
  • a negative supply voltage is connected to the negative supply voltage contact.
  • FIGS. 3A to 3 D are layout diagrams illustrating a method of manufacturing a full CMOS type SRAM cell in accordance with the embodiments illustrated in FIG. 2 .
  • a substrate doped with a P type impurity is provided.
  • An N type impurity is implanted into regions within a cell array region of the substrate to form N type wells 10 .
  • the N-type wells 10 are used for forming PMOS transistors.
  • the substrate is divided into N type wells 10 and P type wells.
  • a pad oxide layer (not shown) is formed on the substrate.
  • a silicon nitride layer (not shown) is formed on the pad oxide layer.
  • a photoresist layer (not shown) is formed on the silicon nitride layer.
  • the photoresist layer is exposed and developed using a first exposure mask, which is illustrated in FIG. 4 , to form a first photoresist pattern (not shown) having a first pitch P 1 .
  • the first photoresist pattern is used for forming active patterns 102 .
  • FIG. 4 is a plan view diagram illustrating the first exposure mask according to the embodiments illustrated in FIG. 2 .
  • the first exposure mask 20 includes a plurality of first shield patterns 22 for blocking light.
  • the first shield patterns 22 correspond to regions for forming an active pattern in the cell array.
  • the pitches between the first shield patterns 22 are substantially identical to the first pitch P 1 .
  • the first shield patterns 22 are disposed substantially parallel to each other.
  • the silicon nitride layer (not shown) is etched using the first photoresist pattern as an etching mask to form a silicon nitride layer pattern (not shown).
  • the pad oxide layer and the substrate are etched using the silicon nitride layer pattern as a hard mask to form a trench (not shown) defining a field region in the substrate.
  • the trench is filled with a silicon oxide layer (not shown).
  • the silicon oxide layer is polished to expose the pad oxide layer.
  • the silicon nitride layer pattern and the pad oxide layer are removed to form field patterns 100 and active patterns 102 .
  • the active patterns 102 having the first pitch P 1 and substantially parallel to each other are formed.
  • the active patterns 102 define a unit cell region C.
  • the cell region C has a first side and a second side substantially perpendicular to the first side.
  • the first side is substantially perpendicular to the first pitch P 1 .
  • the first side has a length L 1 substantially equal to an integral multiple of the first pitch P 1 .
  • the length L 2 of the second side is shorter than the length L 1 of the first side.
  • a gate oxide layer (not shown) having a thickness of about 30 ⁇ to about 300 ⁇ is formed on the substrate in which the linear active patterns 102 are formed.
  • a polysilicon layer (not shown) is formed on the gate oxide layer.
  • a metal silicide layer (not shown) is formed on the polysilicon layer.
  • a photoresist layer (not shown) is formed on the metal silicide layer.
  • the photoresist layer is exposed and developed using a second exposure mask, which is illustrated in FIG. 5 , to form a second photoresist pattern (not shown) having a second pitch P 2 .
  • the second photoresist pattern is used for forming a gate pattern.
  • FIG. 5 is a plan view diagram illustrating the second exposure mask according to the embodiments illustrated in FIG. 2 .
  • the second exposure mask 30 includes a plurality of second shield patterns 32 for blocking light.
  • the second shield patterns 32 correspond to regions for forming the gate patterns 104 .
  • the pitches between second shield patterns 32 are substantially identical to the second pitch P 2 .
  • the shield patterns 32 are substantially perpendicular to the active patterns 102 .
  • the second pitch P 2 may be substantially identical to the first pitch P 1 .
  • the second pitch P 2 may be different from the first pitch P 1 .
  • the metal silicide layer, the polysilicon layer, and the gate oxide layer in turn are subsequently etched using the second photoresist pattern 30 as an etching mask to form the gate patterns 104 .
  • the gate patterns 104 having the second pitch P 2 are disposed substantially perpendicular to the active patterns 102 .
  • the length L 2 of the second side is substantially equal to an integral multiple of the second pitch P 2 .
  • the second side is substantially parallel to the active patterns 102 .
  • an insulating interlayer (not shown) is formed on the gate patterns 104 .
  • the insulating interlayer may include silicon oxide.
  • a photoresist layer (not shown) is formed on the insulating interlayer.
  • the photoresist layer is exposed and developed using a third exposure mask, which is illustrated in FIG. 6 , to form a third photoresist pattern (not shown) used for forming a contact hole.
  • FIG. 6 is a plan view diagram illustrating the third exposure mask 40 according to the embodiments illustrated in FIG. 2 .
  • the third exposure mask 40 includes contact patterns 42 for exposing regions in which the contact holes are formed, and also includes dummy contact patterns 44 irregularly disposed between the contact patterns 42 .
  • Pitches between the contact patterns 42 in an X direction have a length substantially equal to an integral multiple of a minimum pitch between contact patterns 42 in the X direction.
  • Pitches between the contact patterns 42 in a Y direction have a length substantially equal to an integral multiple of a minimum pitch between contact patterns 42 in the Y direction.
  • a pitch X 1 is substantially identical to a pitch X 2 .
  • a pitch Y 2 is about two times larger than the pitch Y 1 .
  • the dummy contact patterns 44 give a proximity effect to the contact patterns 42 adjacent to the dummy contact patterns 44 so that the third photoresist pattern has uniform openings.
  • the dummy contact patterns 44 are disposed in spaces between the contact patterns 42 that have a wide pitch.
  • the pitches between the contact patterns 42 in the X and Y directions have a length substantially equal to an integral multiple of the minimum pitch in the corresponding direction, respectively.
  • the dummy contact patterns 44 are interpositioned such that a pitch between the dummy contact pattern 44 and the contact pattern 42 is substantially similar to the minimum pitch between the contact patterns 42 . Therefore, the entire patterns including the dummy contact patterns 44 and the contact patterns 42 are regularly disposed. As a result, exposure conditions in a space between the contact patterns 42 having a relatively narrow pitch and in a space between the contact patterns 42 having relatively wide pitch are similar so that the third photoresist pattern has the uniform openings.
  • the insulating interlayer is etched using the third photoresist pattern as an etching mask to form contact holes 110 that partially expose surfaces of the gate patterns 104 and the active patterns 102 .
  • the contact holes 110 include a bit line contact electrically connected to the bit lines, a pass gate contact formed on a surface of the gate patterns 104 of the first and second pass transistors, a positive supply voltage contact and a negative supply voltage contact.
  • pitches between the contact holes 110 in an X direction have a length substantially equal to an integral multiple of a minimum pitch between the contact holes 110 in the X direction.
  • pitches between the contact holes 110 in a Y direction have a length substantially equal to an integral multiple of a minimum pitch between contact holes 110 in the Y direction.
  • the contact holes 110 are filled with a conductive layer therein.
  • the conductive layer is planarized to form contacts.
  • the contacts include bit lines, bit line contacts electrically connected to the bit lines, pass gate contacts formed on a surface of the gate patterns 104 of the first and second pass transistors, positive supply voltage contacts, and negative supply voltage contacts.
  • a word line is connected to the pass gate contact.
  • a positive supply voltage line is connected to the positive supply voltage contact.
  • a negative supply voltage is connected to the negative supply voltage contact.
  • FIGS. 7A to 7 C, 8 A to 8 C and 9 show simulation results of forming photoresist patterns for an active region using conventional processes, which results in non-uniform pitches.
  • the exposure equipment used in this simulation had a numerical aperture of about 0.78 and an annular illuminator having a diameter of about 0.72 mm to 0.92 mm.
  • the photoresist pattern in FIG. 7A was formed under conditions where a focus margin was about 0.0 ⁇ m.
  • the photoresist pattern in FIG. 7B was formed under conditions where the focus margin was about 0.1 ⁇ m.
  • the photoresist pattern in FIG. 7C was formed under conditions where the focus margin was about 0.21 ⁇ m. As shown in FIG. 7C , even though the focus margin was about 0.2 ⁇ m, the photoresist pattern was not normally formed.
  • FIGS. 8A to 8 C show photoresist patterns that were formed using exposure masks whose sizes were shrunk by about 80% from those of the exposure masks that were used for forming the photoresist patterns in FIGS. 7A to 7 C.
  • the photoresist pattern in FIG. 8A was formed under conditions where a focus margin was about 0.0 ⁇ m.
  • the photoresist pattern in FIG. 8B was formed under conditions where the focus margin was about 0.1 ⁇ m.
  • the photoresist pattern in FIG. 8C was formed under conditions where the focus margin was about 0.2 ⁇ m. As shown in FIG. 8C , even though the focus margin was about 0.2 ⁇ m, the photoresist pattern was not normally formed.
  • FIG. 9 shows an active photoresist pattern that was formed using an exposure mask whose size was shrunk by about 65% from that of the exposure mask that was used for forming the photoresist patterns in FIGS. 7A to 7 C.
  • the photoresist pattern in FIG. 9 was formed under conditions where the focus margin was about 0.0 cm. As shown in FIG. 9 , even though the focus margin was about 0.0 ⁇ m, the photoresist pattern was not normally formed.
  • FIGS. 10A to 10 C, 11 A to 11 C and 12 A to 12 C show simulation results of forming photoresist patterns for an active region, the photoresist patterns having uniform pitches in accordance with embodiments of the invention.
  • the exposure equipment used in this experiment had a numerical aperture of about 0.78 and an annular illuminator having a diameter of about 0.72 mm to 0.92 mm.
  • the photoresist pattern in FIG. 10A was formed under conditions where a focus margin was about 0.0 ⁇ m.
  • the photoresist pattern in FIG. 10B was formed under conditions where the focus margin was about 0.1 ⁇ m.
  • the photoresist pattern in FIG. 10C was formed under conditions where the focus margin was about 0.2 ⁇ m. As shown in FIG. 10C , even though the focus margin was about 0.2 ⁇ m, the photoresist pattern was normally formed.
  • FIGS. 11A to 11 C show photoresist patterns that were formed using an exposure mask whose sizes were shrunk by about 80% from those of the exposure masks that were used for forming the photoresist patterns in FIGS. 10A to 10 C.
  • the photoresist pattern in FIG. 11A was formed under conditions where a focus margin was about 0.0 ⁇ M.
  • the photoresist pattern in FIG. 11B was formed under conditions where the focus margin was about 0.1 ⁇ m.
  • the photoresist pattern in FIG. 11C was formed under conditions where the focus margin was about 0.2 ⁇ m. As shown in FIG. 11C , even though the locus margin was about 0.2 ⁇ m, the photoresist pattern was normally formed.
  • FIGS. 12A to 12 C show photoresist patterns that were formed using exposure masks whose sizes were shrunk by about 65% from those of the exposure masks that were used for forming the photoresist patterns in FIGS. 10A to 10 C.
  • the photoresist pattern in FIG. 12B was formed under conditions where a focus margin was about 0.1 ⁇ m. As shown in FIG. 12B , even though the focus margin was about 0.1 ⁇ m, the photoresist pattern was normally formed.
  • FIGS. 13A and 13B show simulation results of forming photoresist patterns for a contact, the photoresist patterns formed using a conventional exposure mask having non-uniform pitches.
  • FIGS. 13A and 13B squares represent contact patterns on an exposure mask, and circles represent photoresist patterns for contacts to be formed by an exposure process.
  • the exposure equipment used in this simulation had a numerical aperture of about 0.78 and a conventional illuminator having a diameter of about 0.8 mm.
  • the photoresist pattern in FIG. 13A was formed under conditions where a focus margin was about 0.0 ⁇ m.
  • the photoresist pattern in FIG. 13B was formed under conditions where the Focus margin was about 0.1 ⁇ m. Although this is not represented in drawings, when the focus margin was about 0.2 ⁇ m, the photoresist pattern might not be formed.
  • FIGS. 14A to 14 C show simulation results of forming photoresist patterns for a contact hole, the photoresist patterns formed using an exposure mask having uniform pitches according to embodiments of the invention.
  • FIGS. 14A to 14 C squares represent contact patterns on an exposure mask, and circles represent photoresist patterns for contacts to be formed by an exposure process.
  • the exposure equipment used in this simulation had a numerical aperture of about 0.78 and a conventional illuminator having a diameter of about 0.8 mm.
  • the photoresist pattern in FIG. 14A was formed under conditions where a focus margin was about 0.0 ⁇ m.
  • the photoresist pattern in FIG. 14B was formed under conditions where the focus margin was about 0.1 ⁇ m.
  • the photoresist pattern in FIG. 14C was formed under conditions where the focus margin was about 0.2 ⁇ m. As shown in FIG. 14C , even though the focus margin was about 0.2 ⁇ m, the photoresist pattern was normally formed.
  • FIGS. 15A to 15 C show simulation results of forming contact holes that were formed in accordance with embodiments of the invention, the contact holes formed using an exposure mask on which dummy pattern were interposed to form the uniform pitches between the contact patterns.
  • FIGS. 15A to 15 C squares represent contact patterns on an exposure mask, and circles represent photoresist patterns for contacts to be formed by an exposure process.
  • the exposure equipment used in this simulation had a numerical aperture of about 0.78 and a conventional illuminator having a diameter of about 0.8 mm.
  • the photoresist pattern in FIG. 15A was formed under conditions where a focus margin was about 0.0 cm.
  • the photoresist pattern in FIG. 15B was formed under conditions where the focus margin was about 0.1 ⁇ m.
  • the photoresist pattern in FIG. 15C was formed under conditions where the focus margin was about 0.2 ⁇ m. As shown in FIG. 15C , even though the focus margin was any one of 0.0 ⁇ m to 0.2 ⁇ m, the photoresist pattern for contacts was normally and uniformly formed.
  • a semiconductor device having an increased margin of a photolithography process may be manufactured, and the resulting semiconductor device may be highly integrated by shrinking a cell size of the semiconductor device.
  • a semiconductor device in accordance with some embodiments of the invention includes a P type impurity region and an N type impurity region provided on a substrate, active patterns, and gate patterns.
  • the active patterns are disposed to have a first pitch from each other in the P type and N type impurity regions.
  • the gate patterns are disposed in a direction substantially perpendicular to and on the active patterns to have a second pitch between them.
  • a substrate doped with a P type impurity is provided.
  • An N type impurity is doped into the substrate to divide the substrate into a P type impurity region and an N type impurity region.
  • Active patterns having a first pitch are formed in the P type and N type impurity regions.
  • Gate patterns having a second pitch are formed in a direction substantially perpendicular to the active patterns and on the active patterns.
  • An SRAM device in accordance with other embodiments of the invention includes an N type well and a P type well provided on a substrate. Active patterns having a first pitch are disposed in the N type and P type wells. Gate patterns having a second pitch are disposed in a direction substantially perpendicular to the active patterns and on the active patterns.
  • a substrate doped with a P type impurity is provided.
  • An N type impurity is doped into the substrate to divide the substrate into a P type well and an N type well.
  • Active patterns having a first pitch are formed in the P type and N type wells.
  • Gate patterns having a second pitch are formed in a direction substantially perpendicular to the active patterns and on the active patterns.
  • a semiconductor device having an increased margin of a photolithography process may be formed. Because it is easy to shrink the cell size of such a semiconductor device, the semiconductor device may be highly integrated.

Abstract

According to some embodiments of the invention, a substrate doped with a P type impurity is provided. An N type impurity is doped into the substrate to divide the substrate into a P type impurity region and an N type impurity region. Active patterns having a first pitch are formed in the P type and N type impurity regions. Gate patterns having a second pitch are formed on the active patterns in a direction substantially perpendicular to the active patterns. Other embodiments are described and claimed.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 10/892,588, filed on Jul. 15, 2004, now pending, which claims priority under 35 U.S.C. § 119 to Korean Patent Application No. 2003-48223, filed on Jul. 15, 2003, the contents of which are herein incorporated by reference in their entirety for all purposes.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a semiconductor device, a method of manufacturing a semiconductor device, an SRAM device and a method of manufacturing an SRAM device. More particularly, the present invention relates to a semiconductor device, a method of manufacturing a semiconductor device, an SRAM device and a method of manufacturing an SRAM device having a sufficient process margin.
  • 2. Description of the Related Art
  • Generally, semiconductor memory devices may be categorized as either a dynamic random access memory (DRAM) device or a static random access memory (SRAM) device in accordance with memory type. The SRAM device has a rapid speed, low power consumption, and a simply operated structure. Accordingly, the SRAM device is currently noticed in a semiconductor memory field. Information stored in the DRAM device is periodically refreshed. A periodical refresh of information stored in the SRAM device is, however, not necessary.
  • A typical SRAM device includes two pull-down elements, two pass elements, and two pull-up elements. The SRAM device may be classified as either a full CMOS type, a high load resistor (HLR) type, or a thin film transistor (TFT) type in accordance with the configuration of the pull-up element. A p-channel bulk MOSFET is used as the pull-up element in the full CMOS type. A polysilicon layer having a high resistance value is used as the pull-up element in the HLR type. A p-channel polysilicon TFT is used as the pull-up element in the TFT type. The SRAM device having the full CMOS type of a cell has a low standby current, and also stably operates compared to the SRAM having other types of cells. FIG. 1 is a circuit illustrating a conventional full CMOS type SRAM cell.
  • Referring to FIG. 1, a conventional SRAM cell includes first and second pass transistors Q1 and Q2 for electrically connecting first and second bit lines BL1 and BL2 to first and second memory cell nodes Nd1 and Nd2, respectively, a PMOS type pull-up transistor Q5 electrically connected between the first memory cell node Nd1 and a positive supply voltage Vdd, and an NMOS type pull-down transistor Q3 electrically connected between the first memory cell node Nd1 and a negative supply voltage Vss. The PMOS type pull-up transistor Q5 and the NMOS type pull-down transistor Q3 are controlled by a signal outputted from the second memory cell node Nd2 to thereby provide the positive supply voltage Vdd or the negative supply voltage Vss to the first memory cell node Nd1.
  • The conventional SRAM cell further includes a PMOS type pull-up transistor Q6 electrically connected between the positive supply voltage Vdd and the second memory cell node Nd2, and an NMOS type pull-down transistor Q4 electrically connected between the second memory node Nd2 and the negative supply voltage Vss. The PMOS type pull-up transistor Q6 and the NMOS type pull-down transistor Q4 are controlled by a signal outputted from the first memory cell node Nd1 to thereby provide the positive supply voltage Vdd or the negative supply voltage Vss to the second memory cell node Nd2.
  • The first pass transistor Q1, the NMOS type pull-down transistor Q3 and the PMOS pull-up transistor Q5 are interconnected at the first memory cell node Nd1. The second pass transistor Q2, the NMOS type pull-down transistor Q4 and the PMOS pull-up transistor Q6 are interconnected at the second memory cell node Nd2.
  • The full CMOS type SRAM cell includes the NMOS type transistors Q1, Q2, Q3 and Q4, and the PMOS type transistors Q5 and Q6. When the NMOS and PMOS type transistors are disposed adjacently to each other in one cell, a latch-up and the like may occur, which causes an excessive current to flow between a positive supply voltage line and a negative supply voltage line.
  • To prevent the occurrence of the latch-up, active patterns are disposed so that pitches between the active patterns can have more than two sizes. Namely, in such arrangement of the active patterns, a pitch between an active pattern in which the PMOS type transistor is formed and an active pattern in which the NMOS type transistor is formed is relatively lengthened to perform an entirely elemental isolation between the PMOS and NMOS transistors. On the contrary, a pitch between active patterns in which identical MOS type transistors are disposed is relatively shortened.
  • Thus, in the conventional full CMOS type SRAM cell, since the pitches between the active patterns have more than two sizes that are different from each other, pitches between patterns and pitches between contacts formed on the active pattern, respectively, are also more than two sizes. When the pitches between the patterns formed by the same process are varied as described above, a margin of a photolithography process for forming the patterns is determined based on the minimal one of the pitches between the patterns. Accordingly, the process margin is greatly decreased so that a probability of failures in forming the patterns may be high. Furthermore, it may be difficult to manufacture a highly-integrated semiconductor device by shrinking a cell size of the semiconductor device.
  • Embodiments of the invention address these and other disadvantages of the conventional art.
  • SUMMARY OF THE INVENTION
  • The present invention provides a semiconductor device having an increased margin of a photolithography process.
  • The present invention also provides a method of manufacturing a semiconductor device having an increased margin of a photolithography process.
  • The present invention still also provides an SRAM device having an increased margin of a photolithography process.
  • The present invention still also provides a method of manufacturing an SRAM device having an increased margin of a photolithography process.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other features and advantages of the invention will become readily apparent by reference to the following detailed description when considered in conjunction with the accompanying drawings.
  • FIG. 1 is a circuit diagram illustrating a conventional full CMOS type SRAM cell.
  • FIG. 2 is a layout diagram illustrating active patterns and gate patterns of a full CMOS type SRAM cell in accordance with some embodiments of the invention.
  • FIGS. 3A to 3D are layout diagrams illustrating a method of manufacturing a full CMOS type SRAM cell in accordance with the embodiments illustrated in FIG. 2.
  • FIG. 4 is a plan view diagram illustrating a first exposure mask in accordance with the embodiments illustrated in FIG. 2.
  • FIG. 5 is a plan view diagram illustrating a second exposure mask in accordance with the embodiments illustrated in FIG. 2.
  • FIG. 6 is a plan view diagram illustrating a third exposure mask in accordance with the embodiments illustrated in FIG. 2.
  • FIGS. 7A to 7C, 8A to 8C and 9 are plan views illustrating photoresist patterns manufactured in accordance with conventional processes and having non-uniform pitches.
  • FIGS. 10A to 10C, 11A to 11C and 12A to 12C are plan views illustrating photoresist patterns having uniform pitches and manufactured in accordance with embodiments of the invention.
  • FIGS. 13A and 13B are plan views illustrating photoresist patterns for forming contacts, the photoresist patterns formed using a conventional exposure mask having non-uniform pitches.
  • FIGS. 14A to 14C are plan views illustrating photoresist patterns for forming contact holes, the contact holes formed using an exposure mask having uniform pitches in accordance with embodiments of the invention.
  • FIGS. 15A to 15C are plan views illustrating contact holes formed using an exposure mask into which a dummy pattern is inserted in accordance with embodiments of the invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The invention will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the thickness of layers and regions are exaggerated for clarity. Like numbers refer to similar or identical elements throughout. It will be understood that when an element such as a layer, region or substrate is referred to as being “on” or “onto” another element, it can be directly on the other element or intervening elements may also be present.
  • Hereinafter, a semiconductor device according to several embodiments of the invention will be described and illustrated in detail.
  • A semiconductor device generally includes a data input/output interface, a cell array on which memory cells are disposed, an address recorder, and a controller for controlling writing/reading of a data. A plurality of cells is formed in the cell array to form cell regions.
  • Each unit cell region includes a P type impurity region into which a P type impurity is implanted and an N type impurity region into which an N type impurity is implanted. In the P type and N type impurity regions, active patterns including first and second patterns that have a first pitch are disposed. Here, the first pitch represents a distance between a first side of the first pattern and a first side of the second pattern adjacent to the first pattern.
  • On the active patterns, a number of gate patterns having a second pitch are disposed. The gate patterns are disposed in a direction substantially perpendicular to the active patterns. The first pitch may be substantially identical to the second pitch.
  • A first side of the cell region has a length substantially equal to an integral multiple of the first pitch. A second side of the cell region substantially perpendicular to the first side has a length substantially equal to an integral multiple of the second pitch. Here, the first side is substantially perpendicular to the active patterns. The second side is substantially parallel to the active patterns.
  • Hereinafter, a method of manufacturing a semiconductor device is illustrated in detail.
  • A cell region is disposed in a cell array of a substrate doped with a P type impurity. An N type impurity is implanted selectively into a first region of the cell region to form an N type impurity region. Accordingly, a second region of the cell region except for the first region is a P type impurity region.
  • Active patterns having a first pitch are formed in the N type and P type impurity regions. In particular, a first photoresist pattern having the first pitch is formed on the cell region so that the first photoresist pattern may cover an active region of the cell region. The substrate is etched using the photoresist pattern as an etching mask to form a trench. The trench is filled with a field oxide layer to form the active patterns and field patterns.
  • Gate patterns having a second pitch are formed in a direction perpendicular to and on the active patterns. Particularly, a gate oxide layer is formed on the active patterns of the substrate. A conductive layer is formed on the gate oxide layer. A second photoresist pattern having the second pitch is formed on the conductive layer. The conductive layer and the gate oxide layer are etched using the second photoresist pattern as an etching mask to form the gate patterns having the second pitch. Here, the first pitch may have substantially identical to the second pitch. On the contrary, the first pitch may be different from the second pitch.
  • After the active patterns are formed, the unit cell region of a semiconductor device is determined. A first side of the unit cell region has a length substantially equal to integer times of the first pitch. A second side of the unit cell region substantially perpendicular to the first side has a length substantially equal to integer times of the second pitch. Here, the first side is substantially perpendicular to the active patterns. The second side is substantially parallel to the active patterns.
  • Finally, a semiconductor device is manufactured by performing a doping process for forming source/drain regions, a process for forming an insulating interlayer, and a process for forming a contact, etc.
  • FIG. 2 is a layout diagram illustrating active patterns and gate patterns of a full CMOS type SRAM cell according to some embodiments of the invention.
  • An SRAM cell includes first and second pass transistors for electrically connecting first and second bit lines to first and second memory cell nodes, a PMOS type pull-up transistor electrically connected between the first memory cell node and a positive supply voltage, and an NMOS type pull-down transistor electrically connected between the first memory cell node and a negative supply voltage. The SRAM cell further includes another PMOS type pull-up transistor electrically connected between the positive supply voltage and the second memory cell node, and another NMOS type pull-down transistor electrically connected between the second memory node and the negative supply voltages.
  • That is, the full CMOS type SRAM cell includes both NMOS type transistors and PMOS type transistors. Accordingly, the active patterns are formed to provide the regions in which the PMOS type transistors and the NMOS type transistors are formed in the one SRAM cell.
  • Referring to FIG. 2, a plurality of chips are formed on a substrate. A cell array in which a unit cell is formed is provided in the chips. A region in which the single cell is formed is referred to as a unit cell region C.
  • A P type well corresponding to a well of the NMOS transistor is formed in the unit cell region C. A P type impurity is implanted into the P type well. An N type well corresponding to a well of the PMOS transistor is also formed in the cell region C. An N type impurity is implanted into the N type well.
  • Linear active patterns 102 are disposed at a distance of the same first pitch P1 from each other on the N type and P type wells. Here, the first pitch P1 indicates the shortest distance between a first side of a first linear active pattern and a first side of a second linear active pattern adjacent to the first linear active pattern.
  • Also, a plurality of gate patterns 104 are formed at a distance of the same second pitch P2 from each other on active patterns 102. The gate patterns 104 are disposed in a direction substantially perpendicular to the active patterns 102. The gate patterns 104 include a gate oxide layer (not shown) and a conductive layer (not shown) formed on the gate oxide layer. The gate patterns 104 are provided to function as gate electrodes of the PMOS and NMOS transistors.
  • Here, the first pitch P1 may have a size substantially identical to the second pitch P2. Alternatively, the first pitch P1 may be different from the second pitch P2.
  • A first side L1 of the cell region C has a length substantially equal to an integral multiple of the first pitch P1. A second side L2 of the cell region C substantially perpendicular to the first side L1 has a length substantially equal to an integral multiple of the second pitch P2. Here, the first side 11 is substantially perpendicular to the active patterns 102. The second side L2 is substantially parallel to the active patterns 102.
  • An insulating interlayer (not shown) is formed on the active patterns 102 and the gate patterns 104. Contacts (not shown) are formed through the insulating interlayer. The contacts include a bit line contact electrically connected to the bit lines, a pass gate contact formed on a surface of the gate patterns 104 of the first and second pass transistors, a positive supply voltage contact, and a negative supply voltage contact.
  • Additionally, although there are not shown in drawings, a word line is connected to the pass gate contact. A positive supply voltage line is connected to the positive supply voltage contact. Also, a negative supply voltage is connected to the negative supply voltage contact.
  • FIGS. 3A to 3D are layout diagrams illustrating a method of manufacturing a full CMOS type SRAM cell in accordance with the embodiments illustrated in FIG. 2.
  • Referring to FIG. 3A, a substrate doped with a P type impurity is provided. An N type impurity is implanted into regions within a cell array region of the substrate to form N type wells 10. The N-type wells 10 are used for forming PMOS transistors. Thus, the substrate is divided into N type wells 10 and P type wells.
  • Referring to FIG. 3B, a pad oxide layer (not shown) is formed on the substrate. A silicon nitride layer (not shown) is formed on the pad oxide layer. A photoresist layer (not shown) is formed on the silicon nitride layer. The photoresist layer is exposed and developed using a first exposure mask, which is illustrated in FIG. 4, to form a first photoresist pattern (not shown) having a first pitch P1. The first photoresist pattern is used for forming active patterns 102.
  • FIG. 4 is a plan view diagram illustrating the first exposure mask according to the embodiments illustrated in FIG. 2. With reference to FIG. 4, the first exposure mask 20 includes a plurality of first shield patterns 22 for blocking light. The first shield patterns 22 correspond to regions for forming an active pattern in the cell array. The pitches between the first shield patterns 22 are substantially identical to the first pitch P1. The first shield patterns 22 are disposed substantially parallel to each other.
  • The silicon nitride layer (not shown) is etched using the first photoresist pattern as an etching mask to form a silicon nitride layer pattern (not shown). The pad oxide layer and the substrate are etched using the silicon nitride layer pattern as a hard mask to form a trench (not shown) defining a field region in the substrate. The trench is filled with a silicon oxide layer (not shown). The silicon oxide layer is polished to expose the pad oxide layer.
  • The silicon nitride layer pattern and the pad oxide layer are removed to form field patterns 100 and active patterns 102. By the above-described process, the active patterns 102 having the first pitch P1 and substantially parallel to each other are formed.
  • The active patterns 102 define a unit cell region C. The cell region C has a first side and a second side substantially perpendicular to the first side. The first side is substantially perpendicular to the first pitch P1. The first side has a length L1 substantially equal to an integral multiple of the first pitch P1. The length L2 of the second side is shorter than the length L1 of the first side.
  • Referring to FIG. 3C, a gate oxide layer (not shown) having a thickness of about 30 Å to about 300 Å is formed on the substrate in which the linear active patterns 102 are formed. Successively, a polysilicon layer (not shown) is formed on the gate oxide layer. A metal silicide layer (not shown) is formed on the polysilicon layer.
  • Further, a photoresist layer (not shown) is formed on the metal silicide layer. The photoresist layer is exposed and developed using a second exposure mask, which is illustrated in FIG. 5, to form a second photoresist pattern (not shown) having a second pitch P2. The second photoresist pattern is used for forming a gate pattern.
  • FIG. 5 is a plan view diagram illustrating the second exposure mask according to the embodiments illustrated in FIG. 2. With reference to FIG. 5, the second exposure mask 30 includes a plurality of second shield patterns 32 for blocking light. The second shield patterns 32 correspond to regions for forming the gate patterns 104. The pitches between second shield patterns 32 are substantially identical to the second pitch P2. The shield patterns 32 are substantially perpendicular to the active patterns 102. Here, the second pitch P2 may be substantially identical to the first pitch P1. Alternatively, the second pitch P2 may be different from the first pitch P1.
  • Returning to FIG. 3C, the metal silicide layer, the polysilicon layer, and the gate oxide layer in turn are subsequently etched using the second photoresist pattern 30 as an etching mask to form the gate patterns 104. The gate patterns 104 having the second pitch P2 are disposed substantially perpendicular to the active patterns 102. The length L2 of the second side is substantially equal to an integral multiple of the second pitch P2. Here, the second side is substantially parallel to the active patterns 102.
  • Referring to FIG. 3D, an insulating interlayer (not shown) is formed on the gate patterns 104. The insulating interlayer may include silicon oxide.
  • A photoresist layer (not shown) is formed on the insulating interlayer. The photoresist layer is exposed and developed using a third exposure mask, which is illustrated in FIG. 6, to form a third photoresist pattern (not shown) used for forming a contact hole.
  • FIG. 6 is a plan view diagram illustrating the third exposure mask 40 according to the embodiments illustrated in FIG. 2. With reference to FIG. 6, the third exposure mask 40 includes contact patterns 42 for exposing regions in which the contact holes are formed, and also includes dummy contact patterns 44 irregularly disposed between the contact patterns 42. Pitches between the contact patterns 42 in an X direction have a length substantially equal to an integral multiple of a minimum pitch between contact patterns 42 in the X direction. Pitches between the contact patterns 42 in a Y direction have a length substantially equal to an integral multiple of a minimum pitch between contact patterns 42 in the Y direction. For example, in FIG. 6, a pitch X1 is substantially identical to a pitch X2. A pitch Y2 is about two times larger than the pitch Y1.
  • Although light is irradiated through the dummy contact patterns 44 onto portions of the photoresist layer, the portions of the photoresist layer are not developed. Thus, the portions of the photoresist layer are not patterned. However, the dummy contact patterns 44 give a proximity effect to the contact patterns 42 adjacent to the dummy contact patterns 44 so that the third photoresist pattern has uniform openings.
  • The dummy contact patterns 44 are disposed in spaces between the contact patterns 42 that have a wide pitch. The pitches between the contact patterns 42 in the X and Y directions have a length substantially equal to an integral multiple of the minimum pitch in the corresponding direction, respectively. Thus, the dummy contact patterns 44 are interpositioned such that a pitch between the dummy contact pattern 44 and the contact pattern 42 is substantially similar to the minimum pitch between the contact patterns 42. Therefore, the entire patterns including the dummy contact patterns 44 and the contact patterns 42 are regularly disposed. As a result, exposure conditions in a space between the contact patterns 42 having a relatively narrow pitch and in a space between the contact patterns 42 having relatively wide pitch are similar so that the third photoresist pattern has the uniform openings.
  • Returning to FIG. 3D, the insulating interlayer is etched using the third photoresist pattern as an etching mask to form contact holes 110 that partially expose surfaces of the gate patterns 104 and the active patterns 102. The contact holes 110 include a bit line contact electrically connected to the bit lines, a pass gate contact formed on a surface of the gate patterns 104 of the first and second pass transistors, a positive supply voltage contact and a negative supply voltage contact.
  • Here, pitches between the contact holes 110 in an X direction have a length substantially equal to an integral multiple of a minimum pitch between the contact holes 110 in the X direction. Pitches between the contact holes 110 in a Y direction have a length substantially equal to an integral multiple of a minimum pitch between contact holes 110 in the Y direction.
  • The contact holes 110 are filled with a conductive layer therein. The conductive layer is planarized to form contacts. The contacts include bit lines, bit line contacts electrically connected to the bit lines, pass gate contacts formed on a surface of the gate patterns 104 of the first and second pass transistors, positive supply voltage contacts, and negative supply voltage contacts.
  • Additionally, a word line is connected to the pass gate contact. A positive supply voltage line is connected to the positive supply voltage contact. A negative supply voltage is connected to the negative supply voltage contact.
  • According to the above described embodiments for forming the SRAM cell, a margin of the processes increases.
  • FIGS. 7A to 7C, 8A to 8C and 9 show simulation results of forming photoresist patterns for an active region using conventional processes, which results in non-uniform pitches.
  • The exposure equipment used in this simulation had a numerical aperture of about 0.78 and an annular illuminator having a diameter of about 0.72 mm to 0.92 mm.
  • The photoresist pattern in FIG. 7A was formed under conditions where a focus margin was about 0.0 μm. The photoresist pattern in FIG. 7B was formed under conditions where the focus margin was about 0.1 μm. The photoresist pattern in FIG. 7C was formed under conditions where the focus margin was about 0.21 μm. As shown in FIG. 7C, even though the focus margin was about 0.2 μm, the photoresist pattern was not normally formed.
  • FIGS. 8A to 8C show photoresist patterns that were formed using exposure masks whose sizes were shrunk by about 80% from those of the exposure masks that were used for forming the photoresist patterns in FIGS. 7A to 7C.
  • The photoresist pattern in FIG. 8A was formed under conditions where a focus margin was about 0.0 μm. The photoresist pattern in FIG. 8B was formed under conditions where the focus margin was about 0.1 μm. The photoresist pattern in FIG. 8C was formed under conditions where the focus margin was about 0.2 μm. As shown in FIG. 8C, even though the focus margin was about 0.2 μm, the photoresist pattern was not normally formed.
  • FIG. 9 shows an active photoresist pattern that was formed using an exposure mask whose size was shrunk by about 65% from that of the exposure mask that was used for forming the photoresist patterns in FIGS. 7A to 7C.
  • The photoresist pattern in FIG. 9 was formed under conditions where the focus margin was about 0.0 cm. As shown in FIG. 9, even though the focus margin was about 0.0 μm, the photoresist pattern was not normally formed.
  • From the above experimental results, it should be noted that, when the pitches are non-uniform, it is very difficult to normally form the photoresist pattern due to a low focus margin.
  • FIGS. 10A to 10C, 11A to 11C and 12A to 12C show simulation results of forming photoresist patterns for an active region, the photoresist patterns having uniform pitches in accordance with embodiments of the invention.
  • The exposure equipment used in this experiment had a numerical aperture of about 0.78 and an annular illuminator having a diameter of about 0.72 mm to 0.92 mm.
  • The photoresist pattern in FIG. 10A was formed under conditions where a focus margin was about 0.0 μm. The photoresist pattern in FIG. 10B was formed under conditions where the focus margin was about 0.1 μm. The photoresist pattern in FIG. 10C was formed under conditions where the focus margin was about 0.2 μm. As shown in FIG. 10C, even though the focus margin was about 0.2 μm, the photoresist pattern was normally formed.
  • FIGS. 11A to 11C show photoresist patterns that were formed using an exposure mask whose sizes were shrunk by about 80% from those of the exposure masks that were used for forming the photoresist patterns in FIGS. 10A to 10C.
  • The photoresist pattern in FIG. 11A was formed under conditions where a focus margin was about 0.0 μM. The photoresist pattern in FIG. 11B was formed under conditions where the focus margin was about 0.1 μm. The photoresist pattern in FIG. 11C was formed under conditions where the focus margin was about 0.2 μm. As shown in FIG. 11C, even though the locus margin was about 0.2 μm, the photoresist pattern was normally formed.
  • Also, FIGS. 12A to 12C show photoresist patterns that were formed using exposure masks whose sizes were shrunk by about 65% from those of the exposure masks that were used for forming the photoresist patterns in FIGS. 10A to 10C.
  • The photoresist pattern in FIG. 12B was formed under conditions where a focus margin was about 0.1 μm. As shown in FIG. 12B, even though the focus margin was about 0.1 μm, the photoresist pattern was normally formed.
  • From the above experimental results, it should be noted that, because the focus margin is increased when the pitches are uniform, it is easy to normally form the active photoresist pattern and the ability to shrink the resulting pattern is thereby increased.
  • FIGS. 13A and 13B show simulation results of forming photoresist patterns for a contact, the photoresist patterns formed using a conventional exposure mask having non-uniform pitches.
  • In FIGS. 13A and 13B, squares represent contact patterns on an exposure mask, and circles represent photoresist patterns for contacts to be formed by an exposure process. The exposure equipment used in this simulation had a numerical aperture of about 0.78 and a conventional illuminator having a diameter of about 0.8 mm.
  • The photoresist pattern in FIG. 13A was formed under conditions where a focus margin was about 0.0 μm. The photoresist pattern in FIG. 13B was formed under conditions where the Focus margin was about 0.1 μm. Although this is not represented in drawings, when the focus margin was about 0.2 μm, the photoresist pattern might not be formed.
  • FIGS. 14A to 14C show simulation results of forming photoresist patterns for a contact hole, the photoresist patterns formed using an exposure mask having uniform pitches according to embodiments of the invention.
  • In FIGS. 14A to 14C, squares represent contact patterns on an exposure mask, and circles represent photoresist patterns for contacts to be formed by an exposure process. The exposure equipment used in this simulation had a numerical aperture of about 0.78 and a conventional illuminator having a diameter of about 0.8 mm.
  • The photoresist pattern in FIG. 14A was formed under conditions where a focus margin was about 0.0 μm. The photoresist pattern in FIG. 14B was formed under conditions where the focus margin was about 0.1 μm. The photoresist pattern in FIG. 14C was formed under conditions where the focus margin was about 0.2 μm. As shown in FIG. 14C, even though the focus margin was about 0.2 μm, the photoresist pattern was normally formed.
  • FIGS. 15A to 15C show simulation results of forming contact holes that were formed in accordance with embodiments of the invention, the contact holes formed using an exposure mask on which dummy pattern were interposed to form the uniform pitches between the contact patterns.
  • In FIGS. 15A to 15C, squares represent contact patterns on an exposure mask, and circles represent photoresist patterns for contacts to be formed by an exposure process. The exposure equipment used in this simulation had a numerical aperture of about 0.78 and a conventional illuminator having a diameter of about 0.8 mm.
  • The photoresist pattern in FIG. 15A was formed under conditions where a focus margin was about 0.0 cm. The photoresist pattern in FIG. 15B was formed under conditions where the focus margin was about 0.1 μm. The photoresist pattern in FIG. 15C was formed under conditions where the focus margin was about 0.2 μm. As shown in FIG. 15C, even though the focus margin was any one of 0.0 μm to 0.2 μm, the photoresist pattern for contacts was normally and uniformly formed.
  • Thus, according to embodiments of the invention, a semiconductor device having an increased margin of a photolithography process may be manufactured, and the resulting semiconductor device may be highly integrated by shrinking a cell size of the semiconductor device.
  • The invention may be practiced in many ways. What follows are exemplary, non-limiting descriptions of some embodiments of the invention.
  • A semiconductor device in accordance with some embodiments of the invention includes a P type impurity region and an N type impurity region provided on a substrate, active patterns, and gate patterns. The active patterns are disposed to have a first pitch from each other in the P type and N type impurity regions. The gate patterns are disposed in a direction substantially perpendicular to and on the active patterns to have a second pitch between them. In a method of manufacturing a semiconductor device in accordance with other embodiments of the invention, a substrate doped with a P type impurity is provided. An N type impurity is doped into the substrate to divide the substrate into a P type impurity region and an N type impurity region. Active patterns having a first pitch are formed in the P type and N type impurity regions. Gate patterns having a second pitch are formed in a direction substantially perpendicular to the active patterns and on the active patterns.
  • An SRAM device in accordance with other embodiments of the invention includes an N type well and a P type well provided on a substrate. Active patterns having a first pitch are disposed in the N type and P type wells. Gate patterns having a second pitch are disposed in a direction substantially perpendicular to the active patterns and on the active patterns.
  • In a method of manufacturing an SRAM device in accordance with still other embodiments of the invention, a substrate doped with a P type impurity is provided. An N type impurity is doped into the substrate to divide the substrate into a P type well and an N type well. Active patterns having a first pitch are formed in the P type and N type wells. Gate patterns having a second pitch are formed in a direction substantially perpendicular to the active patterns and on the active patterns.
  • According to embodiments of the invention, a semiconductor device having an increased margin of a photolithography process may be formed. Because it is easy to shrink the cell size of such a semiconductor device, the semiconductor device may be highly integrated.
  • Furthermore, a failure rate in manufacturing the semiconductor device on the photolithography process is reduced so that the manufacturing yield of the semiconductor device may increase.
  • Having described preferred embodiments of the invention, it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made to the particular embodiments of the invention disclosed that are nevertheless still within the scope and the spirit of the invention as defined by the appended claims.

Claims (12)

1. A method of manufacturing a semiconductor device comprising:
providing a substrate doped with a P type impurity;
doping an N type impurity into the substrate to divide the substrate into a P type impurity region and an N type impurity region;
forming active patterns having a first pitch in the P type and N type impurity regions; and
forming gate patterns having a second pitch on the active patterns in a direction substantially perpendicular to the active patterns.
2. The method of claim 1, wherein the first pitch is substantially the same as the second pitch.
3. The method of claim 1, wherein the unit cell region comprises a first side and a second side substantially perpendicular to the first side, and wherein the first side has a length substantially equal to an integral multiple of the first pitch.
4. The method of claim 3, wherein the second side has a length substantially equal to an integral multiple of the second pitch.
5. A method of manufacturing an SRAM device comprising:
doping a substrate with a P type impurity;
doping an N type impurity into the substrate to divide the substrate into a P type well and an N type well;
forming active patterns having a first pitch in the P type and N type wells; and
forming gate patterns having a second pitch on the active patterns in a direction substantially perpendicular to the active patterns.
6. The method of claim 5, wherein the first pitch is substantially identical to the second pitch.
7. The method of claim 5, wherein the unit cell region comprises a first side and a second side substantially perpendicular to the first side, and wherein the first side of the unit cell region has a length substantially equal to an integral multiple of the first pitch.
8. The method of claim 7, wherein the second side of the unit cell region has a length substantially equal to an integral multiple of the second pitch.
9. The method of claim 5, further comprising:
forming an insulating interlayer on the active and gate patterns;
etching the insulating interlayer to form contact holes partially exposing surfaces of the active and gate patterns, the contact holes being disposed to have third pitches in an X direction and fourth pitches in a Y direction substantially perpendicular to the X direction, the third pitches substantially equal to an integral multiple of a minimum pitch among the third pitches, and the fourth pitches substantially equal to an integral multiple of a minimum pitch among the fourth pitches; and
filling the contact holes with a conductive layer to form contacts.
10. The method of claim 9, wherein forming the contact holes comprises:
forming a photoresist layer on the insulating interlayer;
exposing the photoresist layer using an exposure mask to form a photoresist pattern; and
etching the insulating interlayer using the photoresist pattern as an etching mask.
11. The method of claim 10, wherein the exposure mask comprises contact patterns for forming the contacts and dummy contact patterns disposed between the contact patterns.
12. The method of claim 11, wherein the contact patterns and the dummy contact patterns are uniformly spaced apart from each other.
US11/737,675 2003-07-15 2007-04-19 Semiconductor device having sufficient process margin and method of forming same Abandoned US20070190812A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/737,675 US20070190812A1 (en) 2003-07-15 2007-04-19 Semiconductor device having sufficient process margin and method of forming same
US12/654,798 US8193047B2 (en) 2003-07-15 2010-01-04 Semiconductor device having sufficient process margin and method of forming same
US13/064,138 US20110156159A1 (en) 2003-07-15 2011-03-08 Semiconductor device having sufficient process margin and method of forming same
US14/264,694 US9673195B2 (en) 2003-07-15 2014-04-29 Semiconductor device having sufficient process margin and method of forming same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020030048223A KR100577610B1 (en) 2003-07-15 2003-07-15 semiconductor device, method for manufacturing semiconductor decice, SRAM device and method for manufacturing SRAM
KR2003-48223 2003-07-15
US10/892,588 US7221031B2 (en) 2003-07-15 2004-07-15 Semiconductor device having sufficient process margin and method of forming same
US11/737,675 US20070190812A1 (en) 2003-07-15 2007-04-19 Semiconductor device having sufficient process margin and method of forming same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/892,588 Division US7221031B2 (en) 2003-07-15 2004-07-15 Semiconductor device having sufficient process margin and method of forming same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/654,798 Continuation US8193047B2 (en) 2003-07-15 2010-01-04 Semiconductor device having sufficient process margin and method of forming same

Publications (1)

Publication Number Publication Date
US20070190812A1 true US20070190812A1 (en) 2007-08-16

Family

ID=34056850

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/892,588 Active 2024-10-12 US7221031B2 (en) 2003-07-15 2004-07-15 Semiconductor device having sufficient process margin and method of forming same
US11/737,675 Abandoned US20070190812A1 (en) 2003-07-15 2007-04-19 Semiconductor device having sufficient process margin and method of forming same
US12/654,798 Active US8193047B2 (en) 2003-07-15 2010-01-04 Semiconductor device having sufficient process margin and method of forming same
US13/064,138 Abandoned US20110156159A1 (en) 2003-07-15 2011-03-08 Semiconductor device having sufficient process margin and method of forming same
US14/264,694 Active 2025-05-11 US9673195B2 (en) 2003-07-15 2014-04-29 Semiconductor device having sufficient process margin and method of forming same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/892,588 Active 2024-10-12 US7221031B2 (en) 2003-07-15 2004-07-15 Semiconductor device having sufficient process margin and method of forming same

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/654,798 Active US8193047B2 (en) 2003-07-15 2010-01-04 Semiconductor device having sufficient process margin and method of forming same
US13/064,138 Abandoned US20110156159A1 (en) 2003-07-15 2011-03-08 Semiconductor device having sufficient process margin and method of forming same
US14/264,694 Active 2025-05-11 US9673195B2 (en) 2003-07-15 2014-04-29 Semiconductor device having sufficient process margin and method of forming same

Country Status (2)

Country Link
US (5) US7221031B2 (en)
KR (1) KR100577610B1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100577610B1 (en) * 2003-07-15 2006-05-10 삼성전자주식회사 semiconductor device, method for manufacturing semiconductor decice, SRAM device and method for manufacturing SRAM
US8839175B2 (en) 2006-03-09 2014-09-16 Tela Innovations, Inc. Scalable meta-data objects
US8448102B2 (en) 2006-03-09 2013-05-21 Tela Innovations, Inc. Optimizing layout of irregular structures in regular layout context
US7763534B2 (en) 2007-10-26 2010-07-27 Tela Innovations, Inc. Methods, structures and designs for self-aligning local interconnects used in integrated circuits
US9563733B2 (en) * 2009-05-06 2017-02-07 Tela Innovations, Inc. Cell circuit and layout with linear finfet structures
US9035359B2 (en) 2006-03-09 2015-05-19 Tela Innovations, Inc. Semiconductor chip including region including linear-shaped conductive structures forming gate electrodes and having electrical connection areas arranged relative to inner region between transistors of different types and associated methods
US7908578B2 (en) * 2007-08-02 2011-03-15 Tela Innovations, Inc. Methods for designing semiconductor device with dynamic array section
US8541879B2 (en) 2007-12-13 2013-09-24 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US9009641B2 (en) 2006-03-09 2015-04-14 Tela Innovations, Inc. Circuits with linear finfet structures
US7446352B2 (en) 2006-03-09 2008-11-04 Tela Innovations, Inc. Dynamic array architecture
US8658542B2 (en) 2006-03-09 2014-02-25 Tela Innovations, Inc. Coarse grid design methods and structures
US7956421B2 (en) * 2008-03-13 2011-06-07 Tela Innovations, Inc. Cross-coupled transistor layouts in restricted gate level layout architecture
US9230910B2 (en) 2006-03-09 2016-01-05 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US8653857B2 (en) 2006-03-09 2014-02-18 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US8667443B2 (en) 2007-03-05 2014-03-04 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
JP2008227076A (en) * 2007-03-12 2008-09-25 Nec Electronics Corp Semiconductor device
US8453094B2 (en) 2008-01-31 2013-05-28 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US7939443B2 (en) 2008-03-27 2011-05-10 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
US8013400B1 (en) * 2008-04-21 2011-09-06 National Semiconductor Corporation Method and system for scaling channel length
KR101739709B1 (en) 2008-07-16 2017-05-24 텔라 이노베이션스, 인코포레이티드 Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US9122832B2 (en) * 2008-08-01 2015-09-01 Tela Innovations, Inc. Methods for controlling microloading variation in semiconductor wafer layout and fabrication
US8661392B2 (en) 2009-10-13 2014-02-25 Tela Innovations, Inc. Methods for cell boundary encroachment and layouts implementing the Same
US8222100B2 (en) * 2010-01-15 2012-07-17 International Business Machines Corporation CMOS circuit with low-k spacer and stress liner
US9159627B2 (en) 2010-11-12 2015-10-13 Tela Innovations, Inc. Methods for linewidth modification and apparatus implementing the same
CN102760654B (en) * 2011-04-29 2014-10-29 中芯国际集成电路制造(上海)有限公司 Method for forming grid pattern and semiconductor device
US9576978B2 (en) 2012-10-09 2017-02-21 Samsung Electronics Co., Ltd. Cells including at least one fin field effect transistor and semiconductor integrated circuits including the same
JP6366412B2 (en) * 2014-08-01 2018-08-01 キヤノン株式会社 Pattern formation method
CN105448699B (en) * 2014-09-02 2018-06-12 中芯国际集成电路制造(上海)有限公司 It is used to form the production method of the mask plate component and fin of SRAM fins
KR102435524B1 (en) 2015-10-21 2022-08-23 삼성전자주식회사 Semiconductor memory device
US11545495B2 (en) * 2017-06-29 2023-01-03 Taiwan Semiconductor Manufacturing Co., Ltd. Preventing gate-to-contact bridging by reducing contact dimensions in FinFET SRAM
US10497692B2 (en) 2017-08-29 2019-12-03 Globalfoundries Inc. SRAM structure with alternate gate pitches
CN111312817B (en) 2018-12-12 2023-03-24 联华电子股份有限公司 Fin field effect transistor structure with special grid shape

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747380A (en) * 1996-02-26 1998-05-05 Taiwan Semiconductor Manufacturing Company, Ltd. Robust end-point detection for contact and via etching
US6297129B2 (en) * 1997-04-22 2001-10-02 Micron Technology, Inc. Methods of forming integrated circuitry, and methods of forming dynamic random access memory circuitry
US6483136B1 (en) * 1997-06-20 2002-11-19 Hitachi, Ltd. Semiconductor integrated circuit and method of fabricating the same
US20040110095A1 (en) * 2000-07-14 2004-06-10 Akira Imai Manufacturing method of semiconductor integrated circuit device
US6791200B2 (en) * 2002-06-17 2004-09-14 Renesas Technology Corp. Semiconductor memory device
US6812534B2 (en) * 2002-09-10 2004-11-02 Renesas Technology Corp. Static semiconductor memory device
US7057225B2 (en) * 1995-09-20 2006-06-06 Micron Technology, Inc. Semiconductor memory circuitry

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100236090B1 (en) 1996-12-31 1999-12-15 김영환 Sram cell and fabrication method thereof
JP3119217B2 (en) * 1997-10-31 2000-12-18 日本電気株式会社 Photomask and exposure method using photomask
KR19990074949A (en) 1998-03-16 1999-10-05 윤종용 Memory device of semiconductor device
KR100301059B1 (en) 1999-07-20 2001-11-01 윤종용 Full CMOS SRAM cell
JP4794030B2 (en) 2000-07-10 2011-10-12 ルネサスエレクトロニクス株式会社 Semiconductor device
US7352024B2 (en) * 2001-02-22 2008-04-01 Sharp Kabushiki Kaisha Semiconductor storage device and semiconductor integrated circuit
JP2003203993A (en) * 2002-01-10 2003-07-18 Mitsubishi Electric Corp Semiconductor storage device and its manufacturing method
US6780762B2 (en) * 2002-08-29 2004-08-24 Micron Technology, Inc. Self-aligned, integrated circuit contact and formation method
KR100577610B1 (en) * 2003-07-15 2006-05-10 삼성전자주식회사 semiconductor device, method for manufacturing semiconductor decice, SRAM device and method for manufacturing SRAM

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057225B2 (en) * 1995-09-20 2006-06-06 Micron Technology, Inc. Semiconductor memory circuitry
US5747380A (en) * 1996-02-26 1998-05-05 Taiwan Semiconductor Manufacturing Company, Ltd. Robust end-point detection for contact and via etching
US6297129B2 (en) * 1997-04-22 2001-10-02 Micron Technology, Inc. Methods of forming integrated circuitry, and methods of forming dynamic random access memory circuitry
US6483136B1 (en) * 1997-06-20 2002-11-19 Hitachi, Ltd. Semiconductor integrated circuit and method of fabricating the same
US20040110095A1 (en) * 2000-07-14 2004-06-10 Akira Imai Manufacturing method of semiconductor integrated circuit device
US6791200B2 (en) * 2002-06-17 2004-09-14 Renesas Technology Corp. Semiconductor memory device
US6812534B2 (en) * 2002-09-10 2004-11-02 Renesas Technology Corp. Static semiconductor memory device

Also Published As

Publication number Publication date
US20100190303A1 (en) 2010-07-29
US20110156159A1 (en) 2011-06-30
US7221031B2 (en) 2007-05-22
US20050012157A1 (en) 2005-01-20
US8193047B2 (en) 2012-06-05
US20140231925A1 (en) 2014-08-21
US9673195B2 (en) 2017-06-06
KR100577610B1 (en) 2006-05-10
KR20050008309A (en) 2005-01-21

Similar Documents

Publication Publication Date Title
US9673195B2 (en) Semiconductor device having sufficient process margin and method of forming same
US7829952B2 (en) Semiconductor memory device and a method of manufacturing the same
US6118158A (en) Static random access memory device having a memory cell array region in which a unit cell is arranged in a matrix
US6657243B2 (en) Semiconductor device with SRAM section including a plurality of memory cells
US6700166B2 (en) Semiconductor memory device with improved soft-error resistance
KR20010015476A (en) Semiconductor device
US20050176193A1 (en) Method of forming a gate of a semiconductor device
KR100190838B1 (en) Sram semiconductor device
US10050044B2 (en) Static random-access memory device
US6812534B2 (en) Static semiconductor memory device
KR100293079B1 (en) Semiconductor device comprising high density integrated circuit having a large number of insulated gate field effect transistors
US5989946A (en) Method of forming SRAM cells and pairs of field effect transistors
US6184588B1 (en) SRAM cell having bit line shorter than word line
US20070158758A1 (en) Static random access memory and method for manufacturing the same
US6563177B2 (en) Semiconductor memory device having a trench and a gate electrode vertically formed on a wall of the trench
US6347048B2 (en) Semiconductor memory device
JPH10284618A (en) Semiconductor device and manufacture therefor
KR100401513B1 (en) a method for forming line of semiconductor device
US6713345B1 (en) Semiconductor memory device having a trench and a gate electrode vertically formed on a wall of the trench
KR100228351B1 (en) Manufacture of semiconductor device
KR100338816B1 (en) Method for forming SRAM MOS transistor and Thin Film Transistor gate
KR20020034314A (en) Method of manufacturing sram cell
JPH01169943A (en) Semiconductor memory device
JPH01169944A (en) Semiconductor memory device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION