US20070142534A1 - Process for the preparation of polyolefin nanocomposites - Google Patents

Process for the preparation of polyolefin nanocomposites Download PDF

Info

Publication number
US20070142534A1
US20070142534A1 US10/533,011 US53301103A US2007142534A1 US 20070142534 A1 US20070142534 A1 US 20070142534A1 US 53301103 A US53301103 A US 53301103A US 2007142534 A1 US2007142534 A1 US 2007142534A1
Authority
US
United States
Prior art keywords
polyolefin
tert
process according
butyl
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/533,011
Other languages
English (en)
Inventor
Graeme Moad
George Simon
Katherine Dean
Guoxin Li
Roshan Tyrrel Mayadunne
Rudolf Pfaendner
Hendrik Wermter
Armin Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymers Australia Pty Ltd
Original Assignee
Polymers Australia Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymers Australia Pty Ltd filed Critical Polymers Australia Pty Ltd
Assigned to POLYMERS AUSTRALIA PTY. LIMITED reassignment POLYMERS AUSTRALIA PTY. LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHNEIDER, ARMIN, DEAN, KATHERINE MAREE, LI, GUOXIN, SIMON, GEORGE PHILIP, MAYADUNNE, ROSHAN TYRREL ANTON, MOAD, GRAEME, PFAENDNER, RUDOLF, WERMTER, HENDRIK
Publication of US20070142534A1 publication Critical patent/US20070142534A1/en
Priority to US12/860,006 priority Critical patent/US8080613B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/44Products obtained from layered base-exchange silicates by ion-exchange with organic compounds such as ammonium, phosphonium or sulfonium compounds or by intercalation of organic compounds, e.g. organoclay material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms
    • C08L23/0815Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms with aliphatic 1-olefins containing one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/42Clays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • C01P2006/37Stability against thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to a novel process for the preparation of a polyolefin nanocomposite which comprises melt mixing a mixture of a polyolefin, a filler and a non-ionic surfactant.
  • a further embodiment of the present invention is the use of a non-ionic surfactant to intercalate and exfoliate a filler and disperse the filler in a polyolefin matrix to form a nanocomposite.
  • a further embodiment of the present Invention is a nanocomposite comprising a) a polyolefin which is susceptible to oxidative, thermal or light-induced degradation, b) a filler, c) a non-ionic surfactant, and d) an additive selected from the group consisting of phenolic antioxidants, light-stabilizers, processing stabilizers, pigments, dyes, plasticizers, compatibilizers, toughening agents, thixotropic agents, levelling assistants, acid scavengers and metal passivators or mixtures thereof.
  • organic-inorganic nanocomposites based on clays or layered silicates such as montmorillonite and synthetic polymers.
  • Polyolefin nanocomposites have been prepared from organic modified clays.
  • the clays used are generally modified with long chain alkyl or dialkyl ammonium ions or amines or in a few cases other onium ions, like for example phosphonium.
  • the ammonium ion/amine additives are usually incorporated into the clay structure by a separate intercalation step.
  • Polyolefin nanocomposite formation by melt processing has thus required use of an additional additive, most often a polypropylene-graft-maleic anhydride, which in working examples is present as one of the major component of the final product.
  • A. Okada et al., Macromolecules 1997, 30, 6333-6338 or U.S. Pat. No. 5,973,053 disclose that a polypropylene nanocomposite is obtained when a clay, premodified with octadecylammonium salts, is compounded with polypropylene in the presence of polyolefin oligomers containing polar functionality, for example polypropylene-graft-maleic anhydride.
  • U.S. Pat. No. 5,939,184 discloses the formation of polypropylene nanocomposites based on alkyl ammonium modified clays and a polar graft polyolefin or an olefin copolymer which is typically used in excess of the amount of clay.
  • WO-A-99/07790 discloses a nanocomposite material on the basis of a clay having a layered structure and a cation exchange capacity of from 30 to 250 milliequivalents per 100 gram, a polymeric matrix and a block copolymer or a graft copolymer, which block copolymer or graft copolymer comprises one or more first structural units (A), which are compatible with the clay, and one or more second structural units (B), which are compatible with the polymeric matrix.
  • A first structural units
  • B second structural units
  • block copolymers consisting of one polyethylene oxide block (PEO) and one polystyrene block (PS); one poly-4-vinylpyridine block (P4VP) and one polystyrene block (PS); one dendritic polyethylenimine block (dend-P 8 PEI) and one poylstyrene block (PS); or a multiblock copolymer consisting of one dendritic polyethylenimine core block (dend, 16 ) functionalized with 16 octadecyl groups (block B, PE-compatible).
  • PEO polyethylene oxide block
  • PS polystyrene block
  • P4VP poly-4-vinylpyridine block
  • P4VP polystyrene block
  • dend-P 8 PEI dendritic polyethylenimine block
  • PS poylstyrene block
  • a multiblock copolymer consisting of one dendritic polyethylenimine core block (dend, 16 )
  • WO-A-00/34393 discloses a polymer-clay nanocomposite comprising (i) a melt-processible matrix polymer, (ii) a layered clay material, and (iii) a matrix polymer-compatible functionalized oligomer or polymer.
  • component (iii) is for example an ammonium functionalized polycaprolactone.
  • WO-A-01/48080 discloses polyolefin nanocomposites based on the use of cation exchanged clay and a high molecular weight polypropylene graft maleic anhydride.
  • WO-A-01/85831 discloses polyolefin nanocomposites based on the use of cation exchanged clay and a polyolefin graft organic cation like for example an ammonium ion.
  • WO-A-02100776 relates to a porous mold for use in a pressure casting process, which mold is manufactured of a polymeric material forming a matrix into which a clay and a block copolymer or a graft copolymer have been incorporated, wherein the block copolymer or graft copolymer comprises one or more first structural units (A), which are compatible with the clay, and one or more second structural units (B), which are compatible with the polymeric matrix for the manufacture of a porous filter material.
  • a specifically disclosed example of such a block copolymer is a block copolymer consisting of one polyethylene oxide block (PEO) and one poly(methylmethacrylate) block (PMMA).
  • the present invention therefore relates to a process for the preparation of a polyolefin nanocomposite which comprises melt mixing a mixture of a) a polyolefin, b) a filler and c) a non-ionic surfactant.
  • the Incorporation can be carried out in any heatable container equipped with a stirrer, for example In a closed apparatus such as a kneader, mixer or stirred vessel.
  • the incorporation is preferably carried out in an extruder or in a kneader. It is immaterial whether processing takes place in an inert atmosphere or in the presence of oxygen.
  • components (a), (b) and (c) can be carried out in all customary mixing machines in which the polymer is melted and mixed with the additives.
  • Suitable machines are known to those skilled in the art. They are predominantly mixers, kneaders and extruders.
  • the process is preferably carried out in an extruder by introducing the additive during processing.
  • Particularly preferred processing machines are single-screw extruders, contrarotating and corotating twin-screw extruders, planetary-gear extruders, ring extruders or cokneaders. It is also possible to use processing machines provided with at least one gas removal compartment to which a vacuum can be applied.
  • Suitable extruders and kneaders are described, for example, In Handbuch der Kunststoffextrusion, Vol. 1, Klan, Editors F. Hensen, W. Knappe, H. Potente, 1989, pp. 3-7, ISBN:3-446-14339-4; and Vol. 2 Extrusions-anlagen 1986, ISBN 3-446-14329-7.
  • the screw length is 1-60 screw diameters, preferably 35-48 screw diameters.
  • the rotational speed of the screw is preferably 10 to 600 rotations per minute (rpm), for example 25-300 rpm.
  • the maximum throughput is dependent on the screw diameter, the rotational speed and the driving force.
  • the process of the present invention can also be carried out at a level lower than maximum throughput by varying the parameters mentioned or employing weighing machines delivering dosage amounts. If a plurality of components are added, these can be premixed or added individually.
  • the filler is a natural or synthetic phyllosilicate or a mixture of such phyllosilicates or a layered hydroxycarbonate.
  • the filler is a layered silicate clay or a layered hydroxycarbonate.
  • a process for the preparation of a polyolefin nanocomposite wherein the filler is a montmorillonite, bentonite, beidellite, mica, hectorite, saponite, nontronite, sauconite, vermiculite, ledikite, magadite, kenyaite, stevensite, volkonskoite, hydrotalcite or a mixture thereof.
  • the filler is a montmorillonite, bentonite, beidellite, mica, hectorite, saponite, nontronite, sauconite, vermiculite, ledikite, magadite, kenyaite, stevensite, volkonskoite, hydrotalcite or a mixture thereof.
  • a y ⁇ is preferably OH ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , ClO 4 ⁇ , HCO 3 ⁇ , CH 3 COO ⁇ , C 6 H 5 COO ⁇ , CO 3 2 ⁇ , SO 4 2 ⁇ , ( ⁇ OOC—COO ⁇ ), (CHOHCOO) 2 2 ⁇ , (CHOH) 4 CH 2 OHCOO ⁇ .
  • hydrotalcites which can preferably be used are compounds having the general formula IIIa, M 2+ x .Al 2 .(OH) 2x+6yz .(A y ⁇ ) 2 .pH 2 O (IIIa) wherein M 2+ is at least one metal from the series consisting of Mg and Zn, preferably Mg, A y ⁇ is an anion, for example from the series consisting of CO 3 2 ⁇ ,
  • M 2 + is Mg or a solid solution of Mg and Zn
  • a y ⁇ is CO 3 2 ⁇
  • x is a number from 0 to 0.5
  • p is a number from 0 to 20.
  • non-ionic surfactant is a linear non-ionic surfactant
  • non-ionic surfactant is a block or graft copolymer containing a hydrophilic or “clayophilic” and a hydrophobic segment(s) which do not contain an onium functionality.
  • a hydrophilic or “clayophilic” segment comprises multiple polar groups such as ether [—O—], nitrile and hydroxy in appropriate proximity.
  • block grafts are poly(ethylene oxide), poly(vinyl pyrrolidone), polyacrylamide, polyacrylonitrile or poly(vinyl alcohol).
  • a hydrophobic segment is “polyolefin-philic” characterized by being miscible or compatible with the polyolefin matrix phase such as a hydrocarbon segment.
  • the hydrophobic segment is incompatible with the polyolefin and comprises a non-aggregating material such as a fluorocarbon, a siloxane segment or a low molecular weight methacrylate.
  • non-ionic surfactant is a block or graft copolymer containing hydrophilic and hydrophobic segment(s) which do not contain an onium functionality
  • hydrophilic segment is a poly(ethylene oxide) block
  • hydrophobic segment is a branched or unbranched polyolefin, a fluorocarbon, a siloxane or a low molecular weight methacrylate.
  • non-ionic surfactant is a block or graft copolymer containing hydrophilic and hydrophobic segment(s) which do not contain an onium functionality, and the hydrophilic segment is a poly(ethylene oxide) block and the hydrophobic segment is a branched or unbranched polyolefin.
  • non-ionic surfactant is a sorbitan ester, a dimethylsiloxane-ethylene oxide-block copolymer, a poly(methyl methacrylate)-block-poly(oxyethylene) copolymer or a compound of the formula I wherein
  • the compounds of the formula I are symmetrical or asymmetrical. This means that, if n is 2, “x” may be identical or different to the “x” in the other residue.
  • Alkyl having up to 25 carbon atoms is a branched or unbranched radical, for example methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, 2-ethylbutyl, n-pentyl, isopentyl, 1-methylpentyl, 1,3-dimethylbutyl, n-hexyl, 1-methylhexyl, n-heptyl, isoheptyl, 1,1,3,3-tetramethylbutyl, 1-methylheptyl, 3-methylheptyl, n-octyl, 2-ethylhexyl, 1,1,3-trimethylhexyl, 1,1,3,3-tetramethylpentyl, nonyl, decyl, undecyl, 1-methylundecyl, dodecyl, 1,1,3,3,5,5-hexamethylhexy
  • Preferred compounds of the formula I are linear polyethylene-block-poly(ethylene oxides) of the formula I, wherein
  • linear polyethylene-block-poly(ethylene oxides) are commercially available like for example Aldrich polyethylene-block-poly(ethylene oxide) MW 1400 (average x is 50; average y is 15); Aldrich polyethylene-block-poly(ethylene oxide) MW 875 (average x is 50; average y is 4); Aldrich polyethylene-block-poly(ethylene oxide) MW 920 (average x is 32; average y is 10); Aldrich polyethylene-block-poly(ethylene oxide) MW 575 (average x is 33; average y is 2-3); Nafol 1822+2EO (average x is 20; average y is 2).
  • Especially preferred compounds of the formula I are polyethylene-block-poly(ethylene oxides) of the formula I such as for example the compounds of the formula Ia, Ib, Ic, Id or Ie which are accessible according to known literature methods, referenced as DAB25, DAB50, Aduxol GA7-02, Aduxol GA8-03 and Aduxol GA10-03.
  • Preferred sorbitan esters are esters of sorbitol or an ethoxylated sorbitan with a C 12 -C 25 carboxylic acid.
  • C 12 -C 25 carboxylic acids are lauric acid, oleic acid, palmitic acid or stearic acid.
  • Esters of these carboxylic acids with sorbitol are commercially available from Fluka (Switzerland) as Span 20 (RTM) [sorbitan monolaurate], Span 40 (RTM) [sorbitan monopalmitate], Span 60 (RTM) [sorbitan monostearate], Span 65 (RTM) [sorbitan tristearate], Span 80 (RTM) [sorbitan monooleate] or Span 85 (RTM) [sorbitan trioleate].
  • a preferred ester of an ethoxylated sorbitan with a C 12 -C25carboxylic acid is for example the compound of the formula II wherein R 2 is C 12 -C 25 alkanoyl or C 12 -C 25 alkenoyl.
  • Alkanoyl having 12 to 25 carbon atoms is a branched or unbranched radical, for example, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, heptadecanoyl, octadecanoyl, icosanoyl or docosanoyl.
  • Preference is given to alkanoyl having from 14 to 18 carbon atoms.
  • Special preference is given to octadecanoyl (stearoyl).
  • Alkenoyl having 12 to 25 carbon atoms is a branched or unbranched radical comprising one or more carbon-carbon double bonds, for example, dodecenoyl, tridecenoyl, tetradecenoyl, pentadecenoyl, hexadecenoyl, heptadecenoyl or octadecenoyl. Preference is given to alkenoyl having from 14 to 18 carbon atoms. Special preference is given to octadecenyl (oleyl).
  • Fluorocarbons of special interest are for example semifluorinated surfactants like for example Du Pont Zonyl (RTM) fluorosurfactans.
  • RTM Du Pont Zonyl fluorosurfactans.
  • examples of such compounds are Zonyl FSA (RTM) [R F CH 2 CH 2 SCH 2 CH 2 CO 2 Li]; Zonyl FSN (RTM) [R F CH 2 CH 2 O(CH 2 CH 2 ) x H]; or Zonyl TBS (RTM) [R F CH 2 CH 2 SO 3 Y], wherein R F is F(CF 2 CF 2 ) 3-8 , and Y is hydrogen.
  • Siloxanes of special interest are for example polysiloxanes like for example those disclosed in Table A. TABLE A Examples of polysiloxanes Code Structure DBE-224 PDMS-PEO block (75/25) DBE-712 PDMS-PEO block (25/75) DBE-814 PDMS-PEO block (20/80) DBE-821 PDMS-PEO block (15/85) DBP-732 PDMS-(PPO/60-PEO/40) block (30/70) DMS-E12 EPCH 2 O(CH 2 ) 3 -PDMS-(CH 2 ) 3 OCH 2 EP (EPOXYPROPOXYPROPYL TERMINATED POLYDIMETHYLSILOXANE) DMS-E21 EPCH 2 O(CH 2 ) 3 -PDMS-(CH 2 ) 3 OCH 2 EP DMS-A12 H 2 N(CH 2 ) 3 -PDMS-(CH 2 ) 3 NH 2 DMS-A21 H 2 N(CH 2 )
  • polyolefins are:
  • Polyolefins i.e. the polymers of monoolefins exemplified in the preceding paragraph, preferably polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:
  • the polyolefin is polyethylene or polypropylene or copolymers thereof.
  • Also of Interest is a process for the preparation of a polyolefin nanocomposite, wherein the non-ionic surfactant is present in an amount of from 0.1 to 7.5%, preferably 0.1 to 5%, based on the weight of the polyolefin.
  • melt mixing of the components occurs between 120 and 290° C., preferably between 140 and 250° C., for example between 170 and 230° C.
  • the present process may comprise in addition, besides components (a), (b) and (c), further additives.
  • the process of the invention may optionally also contain from 0.01 to 10%, preferably from 0.025 to 5%, and especially from 0.1 to 3% by weight of various conventional stabilizer coadditives, such as the materials listed below, or mixtures thereof.
  • Alkylated monophenols for example 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-di-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-dicyclopentyl-4-methylphenol, 2-( ⁇ -methylcyclohexyl)-4,6-dimethyl-phenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-tert-butyl-4-methoxymethylphenol, nonylphenols which are linear or branched in the side chains, for example, 2,6-di-nonyl-4-methylphenol, 2,4-dimethyl-6-(1′-methylundec-1′-yl)phenol
  • Alkylthiomethylphenols for example 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctyl-thiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-di-dodecylthiomethyl-4-nonylphenol.
  • Hydroquinones and alkylated hydroquinones for example 2,6-di-tert-butyl-4-methoxy-phenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-octadecyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenyl stearate, bis(3,5-di-tert-butyl-4-hydroxy-phenyl) adipate.
  • 2,6-di-tert-butyl-4-methoxy-phenol 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-dipheny
  • Tocopherols for example ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol and mixtures thereof (vitamin E).
  • Hydroxylated thiodiphenyl ethers for example 2,2′-thiobis(6-tert-butyl-4-methylphenol), 2,2′-thiobis(4-octylphenol), 4,4′-thiobis(6-tert-butyl-3-methylphenol), 4,4′-thiobis(6-tert-butyl-2-methylphenol), 4,4′-thiobis(3,6-di-sec-amylphenol), 4,4′-bis(2,6-dimethyl-4-hydroxyphenyl)-isulfide.
  • 2,2′-thiobis(6-tert-butyl-4-methylphenol 2,2′-thiobis(4-octylphenol), 4,4′-thiobis(6-tert-butyl-3-methylphenol), 4,4′-thiobis(6-tert-butyl-2-methylphenol), 4,4′-thiobis(3,6-di-sec-amylphenol), 4,4′-bis(2,6-d
  • Alkylidenebisphenols for example 2,2′-methylenebis(6-tert-butyl-4-methylphenol), 2,2′-methylenebis(6-tert-butyl-4-ethylphenol), 2,2′-methylenebis[4-methyl-6-( ⁇ -methylcyclohexyl)-phenol], 2,2′-methylenebis(4-methyl-6-cyclohexylphenol), 2,2′-methylenebis(6-nonyl-4-methylphenol), 2,2′-methylenebis(4,6-di-tert-butylphenol), 2,2′-ethylidenebis(4,6-di-tert-butyphenol), 2,2′-ethylidenebis(6-tert-butyl-4-isobutylphenol), 2,2′-methylenebis[6-( ⁇ -methylbenzyl)-4-nonylphenol], 2,2′-methylenebis[6-( ⁇ , ⁇ -dimethylbenzyl)-4-nonylphenol],
  • O—, N— and S-benzyl compounds for example 3,5,3′,5′-tetra-tert-butyl-4,4′-dihydroxydibenzyl ether, octadecyl-4-hydroxy-3,5-dimethylbenzylmercaptoacetate, tridecyl-4-hydroxy-3,5-di-tert-butylbenzylmercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)amine, bis(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)dithioterephthalate, bis(3,5-di-tert-butyl-4-hydroxy-benzyl)sulfide, isooctyl-3,5-di-tert-butyl-4-hydroxybenzylmercaptoacetate.
  • Hydroxybenzylated malonates for example dioctadecyl-2,2-bis(3,5-di-tert-butyl-2-hydroxybenzyl)malonate, di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)malonate, di-dodecylmercaptoethyl-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate, bis[4-(1,1,3,3-tetramethylbutyl)phenyl]-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate.
  • Aromatic hydroxybenzyl compounds for example 1,3,5-tris(3,5-di-tert-butyl-4-hydroxy-benzyl)-2,4,6-trimethylbenzene, 1,4-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetra-methylbenzene, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol.
  • Triazine compounds for example 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4-hydroxy-anilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-tri-azine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,3,5-triazine, 2,4,6-tris-(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazine, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 2,4,6-tri-tri
  • Benzylphosohonates for example dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphosphonate, diethyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl-5-tert-butyl-4-hydroxy-3-methylbenzylphosphonate, the calcium salt of the monoethyl ester of 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid.
  • Acylaminophenols for example 4-hydroxylauranilide, 4-hydroxystearanilide, octyl N-(3,5-di-tert-butyl-4-hydroxyphenyl)carbamate.
  • esters of ⁇ -(3.5-di-tert-butyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N′-bis(hy-droxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-triox
  • esters of ⁇ -(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid with mono- or poly-hydric alcohols e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N′-bis-(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo
  • esters of ⁇ -(3.5-dicyclohexyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, tri-ethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
  • esters of 3,5-di-tert-butyl-4-hydroxyphenyl acetic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethyiene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
  • Aminic antioxidants for example N,N′-di-isopropyl-p-phenylenediamine, N,N′-di-sec-butyl-p-phenylenediamine, N,N′-bis(1,4-dimethylpentyl)-p-phenylenediamine, N,N′-bis(1-ethyl-3-methylpentyl)-p-phenylenediamine, N,N′-bis(1-methylheptyl)-p-phenylenediamine, N,N′-dicyclohexyl-p-phenylenediamine, N,N′-diphenyl-p-phenylenediamine, N,N′-bis(2-naphthyl)-p-phenylenediamine, N-isopropyl-N′-phenyl-p-phenylenediamine, N-(1,3dimethylbutyl)-N′-phenyl-p-phenyl-
  • 2-(2′-Hydroxyohenyl)benzotriazoles for example 2-(2′-hydroxy-5′-methylphenyl)benzo-triazole, 2-(3′,5′-di-tert-butyl-2′-hydroxyphenyl)benzotriazole, 2-(5′-tert-butyl-2′-hydroxyphenyl)benzotriazole, 2-(2′-hydroxy-5′-(1,1,3,3-tetramethylbutyl)phenyl)benzotriazole, 2-(3′,5′-di-tert-butyl-2′-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3′-tert-butyl-2′-hydroxy-5′-methylphenyl)-5-chlorobenzotriazole, 2-(3′-sec-butyl-5′-tert-butyl-2′-hydroxyphenyl)benzotriazole, 2-(2′-hydroxy-4′-octyloxyphen
  • 2-Hydroxybenzophenones for example the 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyloxy, 4-dodecyloxy, 4-benzyloxy, 4,2′,4′-trihydroxy and 2′-hydroxy-4,4′-dimethoxy derivatives.
  • Esters of substituted and unsubstituted benzoic acids for example 4-tert-butylphenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoyl resorcinol, bis(4-tert-butylbenzoyl)resorcinol, benzoyl resorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, 2-methyl-4,6-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate.
  • Acrylates for example ethyl ⁇ -cyano- ⁇ , ⁇ -diphenylacrylate, isooctyl ⁇ -cyano- ⁇ , ⁇ -diphenylacrylate, methyl ⁇ -carbomethoxycinnamate, methyl ⁇ -cyano- ⁇ -methyl-p-methoxycinnamate, butyl ⁇ -cyano- ⁇ -methyl-p-methoxycinnamate, methyl ⁇ -carbomethoxy-p-methoxycinnamate and N-( ⁇ -carbomethoxy- ⁇ -cyanovinyl)-2-methylindoline.
  • Nickel compounds for example nickel complexes of 2,2′-thiobis[4-(1,1,3,3-tetramethylbutyl)phenol], such as the 1:1 or 1:2 complex, with or without additional ligands such as n-butylamine, triethanolamine or N-cyclohexyldiethanolamine, nickel dibutyidithiocarbamate, nickel salts of the monoalkyl esters, e.g. the methyl or ethyl ester, of 4-hydroxy-3,5-di-tert-butylbenzylphosphonic acid, nickel complexes of ketoximes, e.g. of 2-hydroxy-4-methylphenylundecylketoxime, nickel complexes of 1-phenyl-4-lauroyl-5-hydroxypyrazole, with or without additional ligands.
  • additional ligands such as n-butylamine, triethanolamine or N-cyclohexyldiethanolamine, nickel dibutyidithiocarbamate,
  • Sterically hindered amines for example bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(2,2,6,6-tetramethyl-4-piperidyl)succinate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate, bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl) n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate, the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid, linear or cyclic condensates of N,N′-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-tert-octylamino-2,
  • Oxamides for example 4,4′-dioctyloxyoxanilide, 2,2′-diethoxyoxanilide, 2,2′-dioctyloxy-5,5′-di-tert-butoxanilide, 2,2′-didodecyloxy-5,5′-di-tert-butoxanilide, 2-ethoxy-2′-ethyloxanilide, N,N′-bis(3-dimethylaminopropyl)oxamide, 2-ethoxy-5-tert-butyl-2′-ethoxanilide and its mixture with 2-ethoxy-2′-ethyl-5,4′-di-tert-butoxanilide, mixtures of o- and p-methoxy-disubstituted oxanilides and mixtures of o- and p-ethoxy-disubstituted oxanilides.
  • Metal deactivators for example N,N′-diphenyloxamide, N-salicylal-N′-salicyloyl hydrazine, N,N′-bis(salicyloyl)hydrazine, N,N′-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hydrazine, 3-salicyloylamino-1,2,4-triazole, bis(benzylidene)oxalyl dihydrazide, oxanilide, isophthaloyl dihydrazide, sebacoyl bisphenylhydrazide, N,N′-diacetyladipoyl dihydrazide, N,N′-bis(salicyloyl)oxalyl dihydrazide, N,N′-bis(salicyloyl)thiopropionyl dihydrazide.
  • N,N′-diphenyloxamide N
  • Phosphites and phosphonites for example triphenyl phosphite, diphenylalkyl phosphites, phenyldialkyl phosphites, tris(nonylphenyl) phosphite, trilauryl phosphite, trioctadecyl phosphite, distearylpentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl) phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,4-di-cumylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphos
  • Hydroxylamines for example, N,N-dibenzylhydroxylamine, N,N-diethylhydroxylamine, N,N-dioctylhydroxylamine, N,N-dilaurylhydroxylamine, N,N-ditetradecylhydroxylamine, N,N-dihexadecylhydroxylamine, N,N-dioctadecylhydroxylamine, N-hexadecyl-N-octadecylhydrox-ylamine, N-heptadecyl-N-octadecylhydroxylamine, N,N-dialkylhydroxylamine derived from hydrogenated tallow amine.
  • Nitrones for example, N-benzyl-alpha-phenylnitrone, N-ethyl-alpha-methyinitrone, N-octyl-alpha-heptyinitrone, N-lauryl-alpha-undecylnitrone, N-tetradecyl-alpha-tridecyinitrone, N-hexadecyl-alpha-pentadecylnitrone, N-octadecyl-alpha-heptadecylnitrone, N-hexadecyl-alpha-heptadecylnitrone, N-ocatadecyl-alpha-pentadecylnitrone, N-heptadecyl-alpha-heptadecylnitrone, N-octadecyl-alpha-hexadecylnitrone, nitrone derived from N,N
  • Thiosyneraists for example, dilauryl thiodipropionate or distearyl thiodipropionate.
  • Peroxide scavengers for example esters of ⁇ -thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole, zinc dibutyldithiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis(p-dodecylmercapto)propionate.
  • esters of ⁇ -thiodipropionic acid for example the lauryl, stearyl, myristyl or tridecyl esters
  • mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole zinc dibutyldithiocarbamate
  • dioctadecyl disulfide pentaerythritol tetrakis(p-dodecylmercap
  • Polyamide stabilisers for example, copper salts in combination with iodides and/or phosphorus compounds and salts of divalent manganese.
  • Basic co-stabilisers for example, melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids, for example calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate or zinc pyrocatecholate.
  • Basic co-stabilisers for example, melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids, for example calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium
  • Nucleatina agents for example, inorganic substances, such as talcum, metal oxides, such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals; organic compounds, such as mono- or polycarboxylic acids and the salts thereof, e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate or sodium benzoate; polymeric compounds, such as ionic copolymers (ionomers).
  • inorganic substances such as talcum
  • metal oxides such as titanium dioxide or magnesium oxide
  • organic compounds such as mono- or polycarboxylic acids and the salts thereof, e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate or sodium benzoate
  • polymeric compounds such as ionic copo
  • additives for example, plasticisers, lubricants, emulsifiers, pigments, rheology additives, catalysts, flow-control agents, optical brighteners, flameproofing agents, antistatic agents and blowing agents.
  • polyolefin nanocomposites which comprises as further additives phenolic antioxidants, light-stabilizers, processing stabilizers, pigments, dyes, plasticizers, compatibilizers, toughening agents, thixotropic agents, levelling assistants, acid scavengers and/or metal passivators.
  • further additives are phenolic antioxidants, light-stabilizers and processing stabilizers.
  • components (a) (b) and (c) and optionally further additives is done by commonly used techniques such as roll-milling, mixing in a Banbury type mixer, or mixing in an extruder barrel and the like.
  • non-ionic surfactants interact with the filler like for example the layered silicate clays.
  • the non-ionic surfactants intercalate and partially exfoliate the clay structure when added to the clay in a polyolefin melt. Most importantly, there is no requirement to preintercalate the clay with an additive.
  • the polyolefin nanocomposites obtained according to the process of the present invention possess properties and applications associated with polyolefin nanocomposites. These properties include improved heat distortion temperature, improved fire retardancy, improved gas barrier, enhanced stiffness and dimensional stability, and improved mechanical properties like for example higher tensile modulus and a tensile strength which are similar or higher than a polyolefin matrix phase alone.
  • the polyolefin nanocomposites obtained according to the process of the present invention possess also improved homogeneity and/or transparency, and improved wettability which improves dyeability or printability of the polyolefin.
  • Polyolefin nanocomposites obtained by a process according to the present invention possess the above mentioned physical properties and improved long-term thermal stability and higher elongation at break when compared to conventional nanocomposites which are for example ammonium modified clays.
  • a process for the preparation of a polyolefin nanocomposite which comprises melt mixing a mixture of a polyolefin, a filler and a non-ionic surfactant, wherein the filler is an unmodified filler.
  • the mixture of the filler and the non-ionic surfactant, and where applicable further additives, may also be added to the polyolefin in the form of a master batch that contains the mixture in a concentration of, for example, from 2.5 to 40% by weight.
  • This master batch is then heated with a polyolefin to form a polyolefin nanocomposite.
  • An embodiment of the present invention is therefore also a process for the preparation of a polyolefin nanocomposite which comprises melt mixing a mixture of a) a polyolefin, b) a filler and c) a non-ionic surfactant, wherein the mixture of the filler and the non-ionic surfactant, and where applicable further additives, are added to the polyolefin In the form of a master batch which contains the mixture in a concentration of from 2.5 to 40% by weight.
  • the filler and the non-ionic surfactant, and where applicable further additives are precompounded before melt blending with a polyolefin.
  • the present invention also relates to polyolefin nanocomposites obtained by melt mixing a mixture of a polyolefin, a filler and a non-ionic surfactant.
  • component (d) is a phenolic antioxidant, light-stabilizer, processing stabilizer and metal passivator or mixtures thereof.
  • the preferred non-ionic surfactants, fillers and polyolefins are the same as those described in the process for the preparation of the polyolefin nanocomposites.
  • polyolefin nanocomposites according to the invention may be used in an extremely wide variety of forms, e.g. in the form of films, fibres, tapes, moulding compounds or profiles, or as binders for surface-coatings, especially powder coatings, adhesives or cements.
  • polyolefin nanocomposites according to the invention may likewise be used in an extremely wide variety of forms, especially in the form of thick-layer polyolefin moulded articles that are in lasting contact with extracting media, such as, for example, pipes for liquids or gases, films, fibres, geomembranes, tapes, profiles or tanks.
  • extracting media such as, for example, pipes for liquids or gases, films, fibres, geomembranes, tapes, profiles or tanks.
  • polyolefin nanocomposites according to the invention can be advantageously used for the preparation of various shaped articles. Examples are:
  • a further embodiment of the present invention relates to articles, in particular films, pipes, tapes, profile, bottles, tanks or containers, fibers, moulding compounds, binders for surface coatings, especially powder coatings, adhesives or cements containing a polyolefin nanocomposite as described above.
  • a film as barrier material is preferred.
  • the film can be prepared as a blown film cast film or via extrusion coating.
  • a further embodiment of the present invention relates to a molded article containing a polyolefin nanocomposite as described above.
  • the molding is in particular effected by injection, blow, compression, roto-molding or slush-molding or extrusion.
  • a preferred embodiment of the present invention is likewise the use of a non-ionic surfactant to intercalate and exfoliate a filler and disperse the filler in a polyolefin matrix to form a nanocomposite.
  • the preferred non-ionic surfactants, fillers and polyolefins are the same as those described in the process for the preparation of the polyolefin nanocomposites.
  • irganox 1010 (pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]) and 0.25% of Irgafos 168 (RTM) (tris(2,4-di-tert-butylphenyl) phosphate), 5% of a montmorillonite clay [Cloisite (Na + ) (RTM) obtained from Southern Clay Industries] and 2.5% of a non-ionic surfactant according to Table 1 in a plastic cup and then added to a batch mixer operating at 25 rpm and 180° C., the mixture is then taken to 50 rpm for 10 minutes.
  • RTM irganox 1010
  • RTM penentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]
  • Irgafos 168 RTM
  • Small scale injection moulding is performed with a CS-183MMX Minimax moulder.
  • the mixing chamber is preheated to 230° C. and the mould is oven heated to 120° C. for one hour prior to injection moulding.
  • Approximately 5 g of the material is placed in the mixing chamber and heated for 4 to 5 minutes.
  • a small shot was taken form the CS-183 MMX Minimax moulder prior to placing the mould in position.
  • Six tensile bars with the dimensions 18 mm by 5 mm by 0.85 mm are produced for each of the 5 g material.
  • PE-b-PEO MW 1400
  • RTM is a linear polyethylene-block- poly(ethylene oxide) of the formula I, wherein m is 1, n is 1, average x is 50, average y is 15, z is 0, and R 1 is hydrogen.
  • Aduxol GA8-03 is a compound of the formula Id
  • Aduxol GA10-03 is a compound of the formula Ie
  • Aduxol GA7-02 (RTM) is a compound of the formula Ic k)
  • DAB25 RTM
  • DAB50 is a compound of the formula Ib
  • X-ray diffraction (XRD) spectra show that all non-ionic surfactants according to Table 1 intercalate the used clay in the direct melt blending experiments in the batch mixer. This is demonstrated by an increase in d-spacing—the spacing between clay layers—from 10 ⁇ to 13-17 ⁇ .
  • the elasticity modulus of samples is enhanced 4-25% over polypropylene.
  • Nanocomposites are prepared as described in Example 1 but with 2.5% of a non-ionic surfactant according to Table 2.
  • Example according to the invention Example according to the invention.
  • d) Normalized modulus of elasticity relative to polypropylene processed under similar conditions ( 1.0).
  • DBE 224 is dimethylsiloxane-ethylene oxide-block copolymer (25% non siloxane, MW 10000), commercially available from ABCR GmbH & Co KG (Karlsruhe, Germany).
  • DBE 821 is dimethylsiloxane-ethylene oxide-block copolymer (85% non siloxane, MW3600), commercially available from ABCR GmbH & Co KG (Karlsruhe, Germany).
  • Tegomer ME 1010 is polymethyl methacrylate-block-polyoxyethylene copolymer, commercially available from Goldschmidt AG (Essen, Germany).
  • X-ray diffraction (XRD) spectra show that all non-ionic surfactants according to Table 2 intercalate the used clay in the direct melt blending experiments in the batch mixer. This is demonstrated by an increase in d-spacing—the spacing between clay layers—from 10 ⁇ to 14-17 ⁇ .
  • the elasticity modulus of samples is enhanced 32-36% over polypropylene.
  • Nanocomposites were prepared as described in Example 1 but with 2.5% of a non-ionic surfactant according to Table 3.
  • TABLE 3 Normalized Modulus of Example Non-ionic surfactant d-001 in ⁇ c) Elasticity e) 3a a) none 10 1.12 3b b) Sorbitan monoleate 13.7 1.32 3c b) Sorbitan trioleate 12 1.21 3d b) Sorbitan monostearate 13.7 1.36 3e b) Ethoxylated sorbitan estere e) 12 1.16 a) Comparative Example. b) Example according to the invention. c) Interlayer distance determined by X-ray diffraction. d) Normalized modulus of elasticity relative to polypropylene processed under similar conditions ( 1.0). e) Ethoxylated sorbitan ester is a compound of the formula IIa
  • R 2 is C 18 alkanoyl
  • X-ray diffraction (XRD) spectra show that all non-ionic surfactants according to Table 3 intercalate the used clay in the direct melt blending experiments in the batch mixer. This is demonstrated by an increase in d-spacing—the spacing between clay layers—from 10 ⁇ to 12-14 ⁇ .
  • the elasticity modulus of samples is enhanced 16-36% over polypropylene.
  • JSW TEX 30 Japan Steel Works 30 mm diameter twin screw extruder of L/D ratio 42
  • the screw configuration consists of a combination of mixing, kneading and conveying elements familiar to those skilled in the art.
  • Materials are fed into the extruder via a JSW TTF20 gravimetric feeder (Feed 1) and a K-Tron KQX gravimetric feeder (Feed 2).
  • the JSW TEX 30 is operated in a co rotating (intermeshing self wiping) mode with throughput of 10 kg/hr and a screw speed of 200 rpm. Vacuum venting is applied to the final barrel section. The extrudate is cooled in a water filled strand bath and pelletized.
  • Feed 1 comprises a dry blend of polypropylene [Basell HP400N (RTM)] and a stabilizer which is composed of 0.25 wt % of Irganox 1010 (RTM) (pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]) and 0.25 wt % of Irgafos 168 (RTM) (tris(2,4-di-tert-butylphenyl)phosphite).
  • Feed 2 comprises a blend of the clay [Cloisite (Na + ) (RTM) obtained from Southern Clay Industries] and the non-ionic surfactant in the ratio defined In Table 4. All barrel sections are heated to 170° C.
  • the masterbatch is let down to the required clay level (see Table 4) by blending the masterbatch (Feed 2) with further polypropylene plus stabilizer (Feed 1).
  • the first barrel section is heated at 180° C. the remaining barrel sections are heated at 200° C.
  • Injection moulding of the extruded samples are preformed with a Cincinnati Milacron VS55 28 mm diameter injection moulding machine comprising four temperature controlled sections of UD23/1.
  • the machine is operated at a clamp force of 50 tons and at a maximum injection pressure of 2005 bar.
  • PE-b-PEO is a linear polyethylene-block-poly(ethylene oxide) of the formula I, wherein m is 1, n is 1, average x is 33, average y is 2-3, z is 0, and R 1 is hydrogen.
  • PE-b-PEO (MW 1400) (RTM) is a linear polyethylene-block-poly(ethylene oxide) of the formula I, wherein m is 1, n is 1, average x is 50, average y is 15, z is 0, and R 1 is hydrogen.
  • PE-b-PEO (MW 920) (RTM) is a linear polyethylene-block-poly(ethylene oxide) of the formula I, wherein m is 1, n is 1, average x is 32, average y is 10, z is 0, and R 1 is hydrogen.
  • PE-b-PEO (MW 875) (RTM) is a linear polyethylene-block-poly(ethylene oxide) of the formula I, wherein m is 1, n is 1, average x is 50, average y is 4, z is 0, and R 1 is hydrogen.
  • PE-b-PEO (MW 575)
  • RTM is a linear polyethylene-block-poly(ethylene oxide) of the formula I, wherein m is 1, n is 1, average x is 33, average y is 2-3, z is 0, and R 1 is hydrogen.
  • the viscosity of the samples is slightly reduced with respect to polypropylene.
  • Conventional organic modified clays and derived nanocomposites have significantly increased viscosity.
  • the nanocomposites of the present invention are more readily processed than conventional nanocomposites based on organic modified clays.
  • melt behavior of the blends and neat components in the low shear rate (frequency) range is studied using a dynamic rheometer ARES (Advanced Rheometric Expansion Systems). Measurements are performed in the plate-plate configuration with a gap of 1.5 to 2.0 mm. Specimens are disks with diameter of 25 mm cut from the approximately 2 mm thick sheets prepared by compression molding. Frequency sweep experiments are performed on each of the materials over a frequency range of 0.1 to 100 rad/s, with data collected at five points per decade. Temperature of the experiments is set at 200° C., corresponding to the temperature of the composite preparation. The results are summarized in Table 8. TABLE 8 Complex Viscosity, Pa ⁇ s @ 200° C.
  • PE-b-PEO (MW 575) (RTM) is a linear polyethylene-block-poly(ethylene oxide) of the formula I, wherein m is 1, n is 1, average x is 33, average y is 2-3, z is 0, and R 1 is hydrogen.
  • PE-b-PEO (MW 875) (RTM) is a linear polyethylene-block-poly(ethylene oxide) of the formula I, wherein m is 1, n is 1, average x is 50, average y is 4, z is 0, and R 1 is hydrogen.
  • PE-b-PEO (MW 920) (RTM) is a linear polyethylene-block-poly(ethylene oxide) of the formula I, wherein m is 1, n is 1, average x is 32, average y is 10, z is 0, and R 1 is hydrogen.
  • PE-b-PEO (MW 1400) (RTM) is a linear polyethylene-block-poly(ethylene oxide) of the formula I, wherein m is 1, n is 1, average x is 50, average y is 15, z is 0, and R 1 is hydrogen.
  • a 10 wt % clay masterbatch consisting of Profax®PH 350 (Basell Polyolefins, Germany), 0.25 wt % of Irganox B225 (RTM) [1:1 mixture of Irganox 1010 (RTM) (pentaerythritol ester of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid) and Irgafos 168 (RTM) (tris(2,4-di-tert-butylphenyl)phosphite)], Cloisite (Na + ) [(RTM) obtained from Southem Clay Industries] and the non-ionic surfactant in the ratio defined in Table 9, is prepared on a Werner&Pfleiderer twin-screw extruder (ZSK25) at a temperature of at most 200° C.
  • ZSK25 Werner&Pfleiderer twin-screw extruder
  • the masterbatch is let down to the required clay level (Table 9) by blending the masterbatch (Feed 2) with further polypropylene plus stabilizer (Feed 1).
  • the first barrel section is heated at 180° C. the remaining barrel sections are heated at 200° C.
  • Injection moulding of the extruded samples are preformed with a Arburg 320 S at a temperature of 230° C.
  • Tensile testing is performed according to ISO 521 using an Instron 5500R material tensile tester.
  • PE-b-PEO (MW 575) (RTM) is a linear polyethylene-block- poly(ethylene oxide) of the formula I, wherein m is 1, n is 1, average x is 33, average y is 2-3, z is 0, and R 1 is hydrogen.
  • Aduxol GA10-03 is the compound of the formula Ie
  • the presence of a non-ionic surfactant improves the long-term thermal stability from 19 days (nanocomposite without non-ionic surfactant) to more than 42 days.
  • Nanocomposites are prepared as described in Example 9 but with 5% Hydrotalcite [Hycite 713 (RTM)] instead of the clay [Cloisite (Na + ) (RTM) obtained from Southern Clay Industries].
  • RTM Hydrotalcite
  • TABLE 10 % Hycite Elongation Tensile Example 713 Non ionic surfactant at break c) Modulus d) 10a a) 5 — 0.88 1.07 10b b) 5 1% Aduxol GA8-03 e) 1.09 1.30 10c b) 5 1% Nafol 1822C + 2EO f) 1.02 1.33 10d b) 5 1% Tegomer1010 g) 1.00 1.45 a) Comparative Example. b) Example according to the invention.
  • Aduxol GA8-03 is a compound of the formula 1d
  • Nafol 1822 + 2EO is a linear polyethylene-block-poly(ethylene oxide) of the formula I wherein m is 1, n is 1, average x is 20, average y is 2, z is 0, and R 1 is hydrogen.
  • Tegomer ME 1010 RTM is polymethyl methacrylate-block- polyoxyethylene copolymer, commercially available from Goldschmidt AG (Essen, Germany).
  • the Examples demonstrate the improved properties of hydrotalcite polypropylene nanocomposites containing non-ionic surfactants.
  • the tensile modulus was improved by up to 45% whereas the elongation at break was retained at the value of the used polypropylene.
  • a LDPE nanocomposite compound is prepared on a Haake TW100 extruder at a temperature of at most 180° C.
  • the compound consisted of (Lupolen®2420F 350, Basell Polyolefins, Germany), 0.1 wt % of Irganox B921 (RTM) [1:2 mixture of Irganox 1076 (n-octadecyl 3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionate) and Irgafos 168 (RTM) (tris(2,4-di-tert-butyl-phenyl)phosphite)], 4% of clay [Cloisite (20 A) (RTM) obtained from Southern Clay Industries or Somasif ME100 (RTM) obtained from CO-OP Chemical Co., LTD.) and a non-ionic surfactant in the ratio defined in Table 11.
  • a LDPE film is blown on the Haake TW100 with a ring dye of 25 mm at a temperature of 200° C. LDPE films of about 50-80 ⁇ m are obtained.
  • the oxygen permeability measurements are carried out on an instrument of Modern Controls Inc. according to DIN 53380, part 3. The results are summarized in Table 11.
  • the oxygen gas permeability of non-ionic surfactant containing LDPE nanocomposite is reduced by about 37% compared to pure LDPE films. Furthermore the optical properties respectively transparency of the LDPE films is improved by adding non-ionic surfactants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
US10/533,011 2002-11-08 2003-11-03 Process for the preparation of polyolefin nanocomposites Abandoned US20070142534A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/860,006 US8080613B2 (en) 2002-11-08 2010-08-20 Process for the preparation of polyolefin nanocamposites

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP02405964.4 2002-11-08
EP02405964 2002-11-08
PCT/EP2003/012204 WO2004041721A1 (en) 2002-11-08 2003-11-03 Process for the preparation of polyolefin nanocomposites

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/012204 A-371-Of-International WO2004041721A1 (en) 2002-11-08 2003-11-03 Process for the preparation of polyolefin nanocomposites

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/860,006 Continuation US8080613B2 (en) 2002-11-08 2010-08-20 Process for the preparation of polyolefin nanocamposites

Publications (1)

Publication Number Publication Date
US20070142534A1 true US20070142534A1 (en) 2007-06-21

Family

ID=32309515

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/533,011 Abandoned US20070142534A1 (en) 2002-11-08 2003-11-03 Process for the preparation of polyolefin nanocomposites
US12/860,006 Expired - Fee Related US8080613B2 (en) 2002-11-08 2010-08-20 Process for the preparation of polyolefin nanocamposites

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/860,006 Expired - Fee Related US8080613B2 (en) 2002-11-08 2010-08-20 Process for the preparation of polyolefin nanocamposites

Country Status (15)

Country Link
US (2) US20070142534A1 (enrdf_load_stackoverflow)
EP (1) EP1575873B1 (enrdf_load_stackoverflow)
JP (1) JP2006505641A (enrdf_load_stackoverflow)
KR (1) KR101037996B1 (enrdf_load_stackoverflow)
CN (1) CN100393620C (enrdf_load_stackoverflow)
AR (1) AR041911A1 (enrdf_load_stackoverflow)
AT (1) ATE500201T1 (enrdf_load_stackoverflow)
AU (1) AU2003287983B2 (enrdf_load_stackoverflow)
BR (1) BR0315303A (enrdf_load_stackoverflow)
CA (1) CA2503579A1 (enrdf_load_stackoverflow)
DE (1) DE60336262D1 (enrdf_load_stackoverflow)
ES (1) ES2362422T3 (enrdf_load_stackoverflow)
RU (1) RU2360933C2 (enrdf_load_stackoverflow)
TW (1) TWI329120B (enrdf_load_stackoverflow)
WO (1) WO2004041721A1 (enrdf_load_stackoverflow)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060052511A1 (en) * 2004-09-08 2006-03-09 Fan Xiyun S Ethylene copolymer modified polypropylene and shaped articles
US20080172981A1 (en) * 2007-01-22 2008-07-24 Crawford Industries Llc Non-organic composite lumber
EP2028219A1 (en) * 2007-08-24 2009-02-25 Total Petrochemicals Research Feluy Resin compositions comprising polyolefins, poly(hydroxy carboxylic acid) and nanoclays.
US20090117393A1 (en) * 2006-04-03 2009-05-07 Polyone Corporation Nucleated polypropylene nanocomposites
US20090297568A1 (en) * 2005-08-19 2009-12-03 Grah Michael D Intercalated layered silicate
US20100304068A1 (en) * 2007-11-27 2010-12-02 Basell Poliolefine Italia S.R.L. Polyolefin nanocomposites materials
US20110071252A1 (en) * 2009-09-23 2011-03-24 Revolutionary Plastics, Llc System and method for forming a composition with an optimized filler
US20110130501A1 (en) * 2009-09-23 2011-06-02 Revolutionary Plastics, Llc Master batch method with optimized filler
US20110142899A1 (en) * 2008-06-25 2011-06-16 Nanobiomatters, S.L. Active nanocomposite materials and production method thereof
US20110144243A1 (en) * 2005-03-29 2011-06-16 Revolutionary Plastics, Llc Thermoplastic composition with fly ash material
WO2013082024A1 (en) * 2011-11-29 2013-06-06 Revolutionary Plastics, Llc Low density high impact resistant composition and method of forming
US10414900B2 (en) 2013-12-17 2019-09-17 Byk Usa Inc. Pre-exfoliated layered material
CN114031888A (zh) * 2021-12-17 2022-02-11 宁波瑞隆新材料科技有限公司 一种高亮pmma、abs复合材料及其制备方法
US11441025B2 (en) * 2016-05-24 2022-09-13 Clariant International Ltd Release components to increase anti-adhesion properties of thermoplastic packaging material

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910294B1 (ko) * 2003-01-23 2009-08-03 삼성토탈 주식회사 나노클레이를 포함하는 폴리프로필렌 수지 조성물
JP4795227B2 (ja) * 2003-03-03 2011-10-19 ポリマーズ オーストラリア プロプライアタリー リミティド ナノ複合材料における分散剤
CN1809612B (zh) * 2003-06-24 2010-09-01 澳大利亚聚合物股份有限公司 纳米复合材料中的丙烯酸类分散剂
NL1026444C2 (nl) * 2004-06-17 2005-12-20 Ten Cate Thiolon Bv Kunstgrassportveld voorzien van een instrooimateriaal alsmede een dergelijk instrooimateriaal.
US7945069B2 (en) 2004-11-22 2011-05-17 Harman International Industries, Incorporated Loudspeaker plastic cone body
WO2006062833A1 (en) * 2004-12-07 2006-06-15 Polyone Corporation Acoustic surfaces made from nanocomposites
NL1028224C2 (nl) 2005-02-08 2006-08-09 Ten Cate Thiolon Bv Kunststofvezel van het monofilament-type voor toepassing in een kunstgrassportveld alsmede een kunstgrasmat geschikt voor sportvelden voorzien van dergelijke kunststofvezels.
EP1695995A1 (en) * 2005-02-24 2006-08-30 Dutch Polymer Institute Novel nanocomposite
WO2006091067A1 (en) 2005-02-28 2006-08-31 Ten Cate Thiolon B.V. Artificial grass turf system
KR100768743B1 (ko) * 2005-09-07 2007-10-19 주식회사 엘지화학 차단성 나노복합체 조성물
ES2364762T3 (es) * 2005-09-27 2011-09-13 Advanced Polymerik Pty Limited Agentes dispersantes en compuestos.
RU2403269C2 (ru) * 2008-10-15 2010-11-10 Учреждение Российской академии наук Институт нефтехимического синтеза им. А.В. Топчиева РАН (ИНХС РАН) Способ изготовления полимерного нанокомпозиционного материала и материал, изготовленный этим способом
CN101597392B (zh) * 2009-07-09 2012-05-09 国家复合改性聚合物材料工程技术研究中心 一种纳米无机材料/聚烯烃发泡材料及其制备方法
CN101824200B (zh) * 2010-01-15 2011-08-24 上海工程技术大学 树枝形阻燃层状硅酸盐及其制备方法
RU2465290C1 (ru) * 2011-03-14 2012-10-27 Общество с ограниченной ответственностью "Краспан" Огнестойкий полимерный композит для панелей
US8986807B2 (en) 2011-04-18 2015-03-24 Tarkett Inc. Fire resistant artificial turf
US20150010652A1 (en) * 2012-03-26 2015-01-08 Kyowa Chemical Industry Co., Ltd. Hydrotalcite fine particles
RU2542257C2 (ru) * 2012-06-29 2015-02-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИСиС" (НИТУ "МИСИС") Способ получения ультрадисперсного порошка монтмориллонита
MX387544B (es) 2014-08-15 2025-03-18 Dow Global Technologies Llc Espuma de polietileno injertada con polidimetilsiloxano.
WO2017039995A1 (en) 2015-08-31 2017-03-09 Exxonmobil Chemical Patents Inc. Aluminum alkyls with pendant olefins for polyolefin reactions
US10676547B2 (en) 2015-08-31 2020-06-09 Exxonmobil Chemical Patents Inc. Aluminum alkyls with pendant olefins on clays
US10618988B2 (en) 2015-08-31 2020-04-14 Exxonmobil Chemical Patents Inc. Branched propylene polymers produced via use of vinyl transfer agents and processes for production thereof
US9982067B2 (en) * 2015-09-24 2018-05-29 Exxonmobil Chemical Patents Inc. Polymerization process using pyridyldiamido compounds supported on organoaluminum treated layered silicate supports
US9994657B2 (en) 2015-10-02 2018-06-12 Exxonmobil Chemical Patents Inc. Polymerization process using bis phenolate compounds supported on organoaluminum treated layered silicate supports
US9982076B2 (en) 2015-10-02 2018-05-29 Exxonmobil Chemical Patents Inc. Supported bis phenolate transition metals complexes, production and use thereof
US9994658B2 (en) 2015-10-02 2018-06-12 Exxonmobil Chemical Patents Inc. Polymerization process using bis phenolate compounds supported on organoaluminum treated layered silicate supports
US9975973B2 (en) 2015-10-02 2018-05-22 Exxonmobil Chemical Patents Inc. Asymmetric fluorenyl-substituted salan catalysts
US10414887B2 (en) 2015-10-02 2019-09-17 Exxonmobil Chemical Patents Inc. Supported catalyst systems and methods of using same
US10000593B2 (en) 2015-10-02 2018-06-19 Exxonmobil Chemical Patents Inc. Supported Salan catalysts
WO2017151555A1 (en) * 2016-02-29 2017-09-08 Kimberly-Clark Worldwide, Inc. Single step compounding of organoclay and titanium dioxide for nanocomposite films
BR112018068755B1 (pt) 2016-03-15 2023-04-11 Colormatrix Holdings, Inc Método de preparo de aditivos de barreira para um polímero pré- selecionado, composição de polímero compreendendo os referidos aditivos e artigo polimérico
US10562987B2 (en) 2016-06-30 2020-02-18 Exxonmobil Chemical Patents Inc. Polymers produced via use of quinolinyldiamido transition metal complexes and vinyl transfer agents
US10626200B2 (en) 2017-02-28 2020-04-21 Exxonmobil Chemical Patents Inc. Branched EPDM polymers produced via use of vinyl transfer agents and processes for production thereof
WO2018160278A1 (en) 2017-03-01 2018-09-07 Exxonmobil Chemical Patents Inc. Branched ethylene copolymers produced via use of vinyl transfer agents and processes for production thereof
CN106883496A (zh) * 2017-04-17 2017-06-23 扬州工业职业技术学院 一种c70富勒烯改性耐磨聚乙烯复合材料及其制备方法
US10683411B2 (en) * 2017-04-27 2020-06-16 Specialty Minerals (Michigan) Inc. Surface treated talc and polymer compositions for high temperature applications
CN107760143B (zh) * 2017-10-19 2019-11-05 深圳市冠为科技股份有限公司 一种超疏水层表面及其制造方法
CN110229494B (zh) * 2018-03-06 2021-02-26 中国科学院化学研究所 一种ppo纳米复合材料及其制备方法
CN108410052A (zh) * 2018-04-03 2018-08-17 科成精密模塑科技无锡有限公司 改性轻量化工程塑料及其制备方法
CN109577100B (zh) * 2018-12-18 2021-08-24 广州泽田餐饮用品实业有限公司 一种可光氧降解的聚乙烯淋膜纸及其制备方法与应用
AU2019100910A4 (en) 2019-08-15 2019-09-26 Avgol Ltd. High barrier nonwoven substrate and fluid management materials therefrom
US12281217B2 (en) 2019-11-21 2025-04-22 3M Innovative Properties Company Microstructured film comprising polyalkylene oxide block copolymer, compositions and methods
KR102636963B1 (ko) * 2023-07-03 2024-02-15 주식회사 제이두홀딩스 타이어용 코팅제 조성물

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338228A (en) * 1979-10-12 1982-07-06 Toa Nenryo Kogyo Kabushiki Kaisha Polyolefin composition containing (a) filler (b) nucleating agent and (c) heat deterioration inhibitor
US4481322A (en) * 1983-03-30 1984-11-06 Union Carbide Corporation Novel reinforcing additive and method of reinforcing thermoplastic polymer therewith
US4534799A (en) * 1984-09-05 1985-08-13 Technical Processing, Inc. Processing aids for natural and synthetic rubber
US4703082A (en) * 1981-08-27 1987-10-27 Union Carbide Corporation Integral additives and methods for making filled thermoplastics
US5851682A (en) * 1994-02-28 1998-12-22 Sumitomo Chemical Company, Limited Polyolefin resin composition and resin film
US5912292A (en) * 1993-02-10 1999-06-15 Fina Technology, Inc. Sodium benzoate as a nucleating agent for monoaxially oriented polypropylene film
US5939184A (en) * 1996-05-14 1999-08-17 Showa Denko K.K. Polyolefin-based composite material containing a stratiform silicate and production process therefor
US5973053A (en) * 1995-06-05 1999-10-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite clay material and method for producing the same, blend material and composite clay rubber using the same and production method thereof
US6087433A (en) * 1997-12-22 2000-07-11 Sumitomo Chemical Company, Ltd. Resin composition
US6150450A (en) * 1994-11-14 2000-11-21 Mitsubishi Plastics, Inc. Plastic compositions and plastic cards made thereof
US6238793B1 (en) * 1996-11-01 2001-05-29 E. I. Du Pont De Nemours And Company Method for production of a low density polyethylene-lamellar silicate composite material
US6268407B1 (en) * 1996-07-10 2001-07-31 Cabot Corporation Compositions and articles of manufacture
US6384121B1 (en) * 1998-12-07 2002-05-07 Eastman Chemical Company Polymeter/clay nanocomposite comprising a functionalized polymer or oligomer and a process for preparing same
US6465543B1 (en) * 1998-03-16 2002-10-15 The Dow Chemical Company Polyolefin nanocomposites
US20030060556A1 (en) * 1997-08-08 2003-03-27 Fischer Hartmut Rudolf Nanocomposite material
US20030162878A1 (en) * 2000-06-30 2003-08-28 Fischer Hartmut Rudolf Reinforced filter material
US20040110881A1 (en) * 2002-09-27 2004-06-10 Ferro Corporation Impact modified polyolefin compositions
US6770697B2 (en) * 2001-02-20 2004-08-03 Solvay Engineered Polymers High melt-strength polyolefin composites and methods for making and using same
US6841226B2 (en) * 2001-11-13 2005-01-11 Eastman Kodak Company Ethoxylated alcohol intercalated smectite materials and method
US6844389B2 (en) * 2001-12-20 2005-01-18 Equistar Chemicals, Lp Ethylene polymer compositions having improved melt strength
US6864308B2 (en) * 2002-06-13 2005-03-08 Basell Poliolefine Italia S.P.A. Method for making polyolefin nanocomposites

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017452A (en) * 1975-04-30 1977-04-12 Presto Products, Incorporated Polymer modified hydrophilic inorganic fillers for thermoplastic polymeric materials
JP3714648B2 (ja) * 1997-05-12 2005-11-09 三井化学株式会社 熱可塑性樹脂組成物の製造方法
FR2776540B1 (fr) * 1998-03-27 2000-06-02 Sidel Sa Recipient en matiere a effet barriere et procede et appareil pour sa fabrication
JP3296317B2 (ja) * 1999-02-24 2002-06-24 株式会社豊田中央研究所 高分子組成物の製造方法
EP1268656B1 (en) 1999-12-29 2005-05-25 Dow Global Technologies Inc. Thermoplastic olefin nanocomposite based on polypropylene and process for production thereof
WO2001085831A2 (en) 2000-05-05 2001-11-15 The Dow Chemical Company Functionalized polymer nanocomposites
KR100368608B1 (ko) * 2000-06-12 2003-01-24 주식회사 케이이씨 반도체소자 및 그 제조방법
US6767952B2 (en) * 2001-11-13 2004-07-27 Eastman Kodak Company Article utilizing block copolymer intercalated clay
US6767951B2 (en) * 2001-11-13 2004-07-27 Eastman Kodak Company Polyester nanocomposites

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338228A (en) * 1979-10-12 1982-07-06 Toa Nenryo Kogyo Kabushiki Kaisha Polyolefin composition containing (a) filler (b) nucleating agent and (c) heat deterioration inhibitor
US4703082A (en) * 1981-08-27 1987-10-27 Union Carbide Corporation Integral additives and methods for making filled thermoplastics
US4481322A (en) * 1983-03-30 1984-11-06 Union Carbide Corporation Novel reinforcing additive and method of reinforcing thermoplastic polymer therewith
US4534799A (en) * 1984-09-05 1985-08-13 Technical Processing, Inc. Processing aids for natural and synthetic rubber
US5912292A (en) * 1993-02-10 1999-06-15 Fina Technology, Inc. Sodium benzoate as a nucleating agent for monoaxially oriented polypropylene film
US5851682A (en) * 1994-02-28 1998-12-22 Sumitomo Chemical Company, Limited Polyolefin resin composition and resin film
US6150450A (en) * 1994-11-14 2000-11-21 Mitsubishi Plastics, Inc. Plastic compositions and plastic cards made thereof
US5973053A (en) * 1995-06-05 1999-10-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite clay material and method for producing the same, blend material and composite clay rubber using the same and production method thereof
US5939184A (en) * 1996-05-14 1999-08-17 Showa Denko K.K. Polyolefin-based composite material containing a stratiform silicate and production process therefor
US6268407B1 (en) * 1996-07-10 2001-07-31 Cabot Corporation Compositions and articles of manufacture
US6238793B1 (en) * 1996-11-01 2001-05-29 E. I. Du Pont De Nemours And Company Method for production of a low density polyethylene-lamellar silicate composite material
US20030060556A1 (en) * 1997-08-08 2003-03-27 Fischer Hartmut Rudolf Nanocomposite material
US6579927B1 (en) * 1997-08-08 2003-06-17 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Nanocomposite material
US6087433A (en) * 1997-12-22 2000-07-11 Sumitomo Chemical Company, Ltd. Resin composition
US6465543B1 (en) * 1998-03-16 2002-10-15 The Dow Chemical Company Polyolefin nanocomposites
US6384121B1 (en) * 1998-12-07 2002-05-07 Eastman Chemical Company Polymeter/clay nanocomposite comprising a functionalized polymer or oligomer and a process for preparing same
US6417262B1 (en) * 1998-12-07 2002-07-09 Eastman Chemical Company High barrier amorphous polyamide-clay nanocomposite and a process for preparing same
US20030162878A1 (en) * 2000-06-30 2003-08-28 Fischer Hartmut Rudolf Reinforced filter material
US6770697B2 (en) * 2001-02-20 2004-08-03 Solvay Engineered Polymers High melt-strength polyolefin composites and methods for making and using same
US6841226B2 (en) * 2001-11-13 2005-01-11 Eastman Kodak Company Ethoxylated alcohol intercalated smectite materials and method
US6844389B2 (en) * 2001-12-20 2005-01-18 Equistar Chemicals, Lp Ethylene polymer compositions having improved melt strength
US6864308B2 (en) * 2002-06-13 2005-03-08 Basell Poliolefine Italia S.P.A. Method for making polyolefin nanocomposites
US20040110881A1 (en) * 2002-09-27 2004-06-10 Ferro Corporation Impact modified polyolefin compositions

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060052511A1 (en) * 2004-09-08 2006-03-09 Fan Xiyun S Ethylene copolymer modified polypropylene and shaped articles
US7381767B2 (en) * 2004-09-08 2008-06-03 E. I. Du Pont De Nemours And Company Ethylene copolymer modified polypropylene and shaped articles
US8871851B2 (en) 2005-03-29 2014-10-28 Revolutionary Plastics, Llc Thermoplastic composition with fly ash material
US20110144243A1 (en) * 2005-03-29 2011-06-16 Revolutionary Plastics, Llc Thermoplastic composition with fly ash material
US20090297568A1 (en) * 2005-08-19 2009-12-03 Grah Michael D Intercalated layered silicate
US7763675B2 (en) 2006-04-03 2010-07-27 Polyone Corporation Nucleated polypropylene nanocomposites
US20090117393A1 (en) * 2006-04-03 2009-05-07 Polyone Corporation Nucleated polypropylene nanocomposites
US20080172981A1 (en) * 2007-01-22 2008-07-24 Crawford Industries Llc Non-organic composite lumber
WO2009027358A1 (en) * 2007-08-24 2009-03-05 Total Petrochemicals Research Feluy Resin compositions comprising polyolefins, poly(hydroxy carboxylic acid) and nanoclays
EP2028219A1 (en) * 2007-08-24 2009-02-25 Total Petrochemicals Research Feluy Resin compositions comprising polyolefins, poly(hydroxy carboxylic acid) and nanoclays.
KR101148804B1 (ko) 2007-08-24 2012-07-13 토탈 페트로케미칼스 리서치 펠루이 폴리올레핀, 폴리(히드록시 카르복실산) 및 나노클레이를 함유하는 수지 조성물
US20100304068A1 (en) * 2007-11-27 2010-12-02 Basell Poliolefine Italia S.R.L. Polyolefin nanocomposites materials
US10214625B2 (en) 2007-11-27 2019-02-26 Basell Poliolefine Italia S.R.L. Polyolefin nanocomosites materials
US9676920B2 (en) * 2007-11-27 2017-06-13 Basell Poliolefine Italia S.R.L. Polyolefin nanocomposites materials
US8834907B2 (en) * 2008-06-25 2014-09-16 Nanobiomatters, S.L. Active nanocomposite materials and production method thereof
US20110142899A1 (en) * 2008-06-25 2011-06-16 Nanobiomatters, S.L. Active nanocomposite materials and production method thereof
US8419405B2 (en) 2009-09-23 2013-04-16 Revolutionary Plastics, Llc System for forming a composition with an optimized filler
US8563629B2 (en) 2009-09-23 2013-10-22 Revolutionary Plastics, Llc Master batch method with optimized filler
US20110130501A1 (en) * 2009-09-23 2011-06-02 Revolutionary Plastics, Llc Master batch method with optimized filler
US20110071252A1 (en) * 2009-09-23 2011-03-24 Revolutionary Plastics, Llc System and method for forming a composition with an optimized filler
WO2012039795A1 (en) * 2010-05-31 2012-03-29 Revolutionary Plastics, Llc Master batch method with optimized filler
WO2013082024A1 (en) * 2011-11-29 2013-06-06 Revolutionary Plastics, Llc Low density high impact resistant composition and method of forming
US9605142B2 (en) 2011-11-29 2017-03-28 Revolutionary Plastics, Llc Low density high impact resistant composition and method of forming
US10414900B2 (en) 2013-12-17 2019-09-17 Byk Usa Inc. Pre-exfoliated layered material
US11441025B2 (en) * 2016-05-24 2022-09-13 Clariant International Ltd Release components to increase anti-adhesion properties of thermoplastic packaging material
CN114031888A (zh) * 2021-12-17 2022-02-11 宁波瑞隆新材料科技有限公司 一种高亮pmma、abs复合材料及其制备方法

Also Published As

Publication number Publication date
CN1711217A (zh) 2005-12-21
AU2003287983B2 (en) 2009-08-27
JP2006505641A (ja) 2006-02-16
US20100317786A1 (en) 2010-12-16
RU2005117963A (ru) 2006-01-20
TW200424249A (en) 2004-11-16
KR20050075767A (ko) 2005-07-21
RU2360933C2 (ru) 2009-07-10
TWI329120B (en) 2010-08-21
ATE500201T1 (de) 2011-03-15
KR101037996B1 (ko) 2011-05-31
BR0315303A (pt) 2005-08-16
US8080613B2 (en) 2011-12-20
AR041911A1 (es) 2005-06-01
EP1575873B1 (en) 2011-03-02
WO2004041721A1 (en) 2004-05-21
CN100393620C (zh) 2008-06-11
EP1575873A1 (en) 2005-09-21
DE60336262D1 (de) 2011-04-14
CA2503579A1 (en) 2004-05-21
AU2003287983A1 (en) 2004-06-07
ES2362422T3 (es) 2011-07-05

Similar Documents

Publication Publication Date Title
US8080613B2 (en) Process for the preparation of polyolefin nanocamposites
US7288585B2 (en) Acrylic dispersing agents in nanocomposites
US7723412B2 (en) Stabilization of thermoplastic nanocomposites
US7837899B2 (en) Dispersing agents in nanocomposites
US8110626B2 (en) Dispersing agents in composites
US8227541B2 (en) Additive mixtures
US20090298978A1 (en) Stabilized organic materials containing fillers
US7476713B2 (en) Polyolefin articles
US20150337114A1 (en) Additives for high-flow polymers
RU2800814C2 (ru) Зародышеобразователи, способы их получения и связанные полимерные композиции

Legal Events

Date Code Title Description
AS Assignment

Owner name: POLYMERS AUSTRALIA PTY. LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOAD, GRAEME;SIMON, GEORGE PHILIP;DEAN, KATHERINE MAREE;AND OTHERS;REEL/FRAME:019118/0171;SIGNING DATES FROM 20050411 TO 20050422

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION