US20070051116A1 - Device for loss-free cryogen cooling of a cryostat configuration - Google Patents

Device for loss-free cryogen cooling of a cryostat configuration Download PDF

Info

Publication number
US20070051116A1
US20070051116A1 US11/171,429 US17142905A US2007051116A1 US 20070051116 A1 US20070051116 A1 US 20070051116A1 US 17142905 A US17142905 A US 17142905A US 2007051116 A1 US2007051116 A1 US 2007051116A1
Authority
US
United States
Prior art keywords
cooling device
heat
cryostat
cold
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/171,429
Other languages
English (en)
Inventor
Agnes Glemot
Dietrich Vogel
Daniel Eckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Biospin SAS
Original Assignee
Bruker Biospin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker Biospin SAS filed Critical Bruker Biospin SAS
Assigned to BRUKER BIOSPIN AG reassignment BRUKER BIOSPIN AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ECKERT, DANIEL, GLEMOT, AGNES, VOGEL, DIETRICH
Publication of US20070051116A1 publication Critical patent/US20070051116A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages

Definitions

  • the invention concerns a cooling device for re-liquefying cryogenic gases, comprising an outer jacket which delimits a vacuum chamber, and a cryocooler cold head installed therein, which has at least two cold stages and is at least partially surrounded by a radiation shield.
  • a cooling device for re-liquefying cryogenic gases, comprising an outer jacket which delimits a vacuum chamber, and a cryocooler cold head installed therein, which has at least two cold stages and is at least partially surrounded by a radiation shield.
  • EP0905436, EP0905524, WO03036207, WO03036190 U.S. Pat. No. 5,966,944, U.S. Pat. No. 5,563,566, U.S. Pat. No. 5,613,367, U.S. Pat. No. 5,782,095, U.S. Pat. No. 2002/000283, US2003/230089 e.g. describe cooling of a superconducting magnet system with no or little cryogen loss using a cryocool
  • the e.g. two-stage cold head of the cryocooler is usually installed in a separate sleeve assembly which is under vacuum (described e.g. in U.S. Pat. No. 5,613,367) or directly in the vacuum chamber of a cryostat (described e.g. in U.S. Pat. No. 5,563,566) such that the first cold stage of the cold head is rigidly connected to a radiation shield and the second cold stage is connected in a heat-conducting manner to the helium container either directly, or via a fixed thermal bridge, wherein the helium container holds the superconducting magnet in liquid helium.
  • the cold head can be inserted into a neck tube which connects the outer vacuum sleeve of the cryostat to the helium container and is correspondingly filled with helium gas as described e.g. in US2002/0002830A1.
  • the first cold stage of the two-stage cold head is in fixed thermal contact with a radiation shield and the second cold stage is freely suspended in the helium atmosphere to directly liquefy evaporating helium.
  • magnetic regenerator materials are usually used in the regenerator of the second stage of the cold head of cryocoolers such as pulse tube coolers or Gifford-McMahon coolers, and the regenerator may be relatively close to the magnetic center of the NMR magnet system. In consequence thereof, the regenerator must generally be shielded to prevent disturbance of the magnetic field at the location of the NMR sample and to prevent the function of the regenerator from being impaired.
  • an unstable state occurs when the cryocooler fails, and the temperatures of cryostat components such as e.g. the radiation shield continuously change until a new balanced state is reached. In a magnet system for high-resolution nuclear magnetic resonance (NMR) spectroscopy, this can preclude NMR measurements, since the shim state of the magnet constantly changes or, in the worst case, the magnet runs dry and quenches.
  • NMR nuclear magnetic resonance
  • One method for preventing some of these disadvantages while still realizing a partially loss-free cryogen system entails use of a device cooled by a cryocooler which can be used for re-liquefying one single evaporated cryogen.
  • the magnet In a hitherto common cryostat arrangement for e.g. a superconducting magnet system, the magnet is usually installed into a container filled with liquid helium at 4.2 K.
  • the helium container is generally surrounded by a boil-off-gas-cooled radiation shield and a further shield cooled with liquid nitrogen, such that the external heat input onto the helium container is minimized. Due to passive cooling by the evaporating cryogens, liquid helium and nitrogen must be refilled at certain intervals.
  • JP11257770 and JP2000283578 propose inserting a heat-transferring device in the form of a heat tube into the existing neck or suspension tubes of a nitrogen container of a cryostat configuration, the heat tube being connected to the cold head of a cryocooler to re-liquefy evaporating nitrogen (see also Advances of Cryogenic Engineering, 45, 41-48).
  • the liquefier is thereby directly flanged onto the cold head of the one-stage pulse tube cooler and consists of a thin tube in which the nitrogen vapor rises, is liquefied on a cold surface which is in contact with the cold head, and runs downwards along the tube wall.
  • This very thin tube is surrounded by a vacuum sleeve in its upper region and can be directly inserted into a nitrogen neck tube or suspension tube to prevent or reduce evaporation of the nitrogen and nitrogen losses.
  • the helium losses are not addressed, since only the nitrogen is re-liquefied.
  • the cold head of the cryocooler is in an outer jacket which delimits a vacuum chamber.
  • parts of the cold head are usually surrounded by a radiation shield which is in contact with a cold stage (not the coldest stage) to ensure good insulation of the cold head against thermal radiation in the low temperature region.
  • cryostat configurations which are used, in particular, for magnet systems in high-resolution nuclear magnetic resonance (NMR) spectroscopy have more than one cryogen.
  • an additional radiation shield is e.g. provided which is cooled with liquid nitrogen.
  • this object is achieved in that at least two cold stages of the cold head of the cryocooler are each individually connected in a heat-conducting manner to a heat-transferring device which can be inserted into the neck or suspension tubes of a cryostat for keeping at least two different cryogenic liquids.
  • a cooling device of this type offers the following advantages: Existing cryostat configurations, and in particular those which contain superconducting magnets can be retrofitted without (or with only minor) adjustments, to permit operation with no or little cryogen loss requiring only little extra hardware even if several cryogens are used.
  • the cryostat must not be re-engineered.
  • the additional heat input into the cryostat produced by the device is small and can be predicted quite precisely when properly engineered.
  • the heat-transferring devices in which the cryogens are liquefied are designed such that they can be introduced in a contact-free manner into the neck or suspension tubes of the cryostat configuration.
  • the evaporating gas is liquefied in a thermodynamically effective manner, since the vapor is not overheated and therefore need not be cooled down to the liquefying temperature.
  • the cryocooler cold head is placed at such a distance from the magnetic center of a superconducting magnet arrangement in the cryostat that disturbances on the magnet arrangement caused by the magnetic regenerator material are less severe than if the cold head were directly integrated into the cryostat.
  • the function of the cryocooler is also less impaired by the magnetic field of the magnet arrangement. If the cryocooler fails or must be switched off for maintenance work, the cryostat configuration still functions, e.g. for cooling a superconducting magnet arrangement. This ensures high operational reliability.
  • the user can freely select the mode of operation (conventional or without cryogen loss).
  • At least one of the heat-transferring devices has a cavity which is connected to an open line, in particular a conduit.
  • the cryogen which evaporates from the liquid tank of the cryostat is guided through the conduit to the cavity at the cold stage, where it is liquefied.
  • the condensed matter then flows back through the conduit into the liquid tank of the cryostat.
  • This heat-transferring device functions like conventional heat engineering heat pipes.
  • At least one of the heat-transferring devices comprises a metallic connection with excellent heat transferring properties, at the end of which the cryogen evaporated from the liquid tank of the cryostat is liquefied and subsequently flows back into the liquid bath of the liquid tank of the cryostat.
  • the other end of this connection is flanged to a cold stage of the cold head of the cryocooler.
  • a metallic connection with excellent heat conducting properties may e.g. be flanged to the first cold stage of a two-stage cold head, while the second cold stage is connected to a conduit.
  • the cryocooler is advantageously a pulse tube cooler, since pulse tube coolers operate with extremely low vibration. Moreover, pulse tube coolers also provide reliable operation and require little maintenance.
  • the cooling device may also be operated with a Gifford McMahon cooler.
  • a Gifford McMahon cooler One disadvantage of this cryocooler compared to a pulse tube cooler are increased vibrations. This disadvantage can be overcome if soft sealing elements are provided between the cryocooler and the cryostat configuration, as is described below.
  • At least one connecting line which is open at both sides, is provided to connect the cold head of the cryocooler to at least one neck or suspension tube of the liquid tank containing the cryogen of lowest-boiling temperature and into which no heat-transferring device is inserted, wherein the line is in thermal contact with at least two cold stages of the cold head and may also contact a regenerator tube above the coldest cold stage, wherein the line terminates in the cavity mounted to the cold head after thermal contact with the coldest cold stage, or is guided along the metallic connection into the liquid tank.
  • the gas in the line is cooled at the cold head of the cryocooler and liquefied at the coldest cold stage such that a flow is generated in the line through the neck or suspension tubes to the cooling device due to the resulting suction.
  • the gas flow cools the neck or suspension tubes thereby ideally completely compensating for the heat input via the neck or suspension tubes. This circulating flow for the cooling neck or suspension tubes further reduces heat input into the cryostat.
  • a valve and/or a pump is provided in the connecting line between the neck or suspension tubes and the cold head to control the gas flow.
  • the gas flow can be reduced or the optimum gas flow can be adjusted as required if e.g. the suction effect at the cold head is so large that the gas flow becomes greater than required for optimum cooling of the suspension or neck tubes.
  • helium can be liquefied at the coldest cold stage of the cold head at a temperature of 4.2 K or less to provide a plurality of possible applications in the region of low temperature.
  • the helium loss and the refilling processes can be reduced or loss-free operation can be obtained if the cooling capacity of the cryocooler is sufficiently large.
  • nitrogen can be liquefied at 77 K or less at a cold stage of the cryocooler cold head.
  • the nitrogen loss can be reduced or eliminated during operation if the cooling capacity of the cryocooler is sufficiently large.
  • a cold stage of the cold head which is not the coldest, is connected in a heat-conducting manner to the radiation shield which, at least partially, surrounds the cold head. In this manner, the radiative heat input onto the colder components of the cold head is substantially reduced.
  • the heat-transferring device comes to rest at least partially within the outer jacket of the cooling device, i.e. within the vacuum chamber. This is relevant in particular for that part of the heat-transferring device which is connected to the cold head of the cryocooler. This part of the heat-transferring device is thereby excellently insulated against heat conduction towards the outside.
  • the heat-transferring device is surrounded at least partially by a first tube in the region outside of the outer jacket.
  • This tube thermally insulates the heat-transferring device. It may but must not have a constant diameter along its entire length. It may be more favorable in view of construction to select the smallest possible diameter for one part of the tube, and a larger diameter for the rest.
  • the first tube which surrounds the heat-transferring device is open at one end, and that end is connected to the vacuum chamber of the outer jacket, while the other end is connected to the conduit or the metallic connection of the heat-transferring device in a gas-tight manner. If the vacuum chamber of the cooling device of this embodiment is evacuated, the part of the heat-transferring device surrounded by the first tube is also under vacuum. The heat-transferring device is then excellently insulated in this region against thermal conduction towards the outside.
  • the first tube surrounding the heat-transferring device is connected at both ends to the conduit or the metallic connection of the heat-transferring device in a gas-tight manner, and evacuated via a separate connection.
  • the interior of the tube can thereby be evacuated and the part of the heat-transferring device, which is surrounded by the tube can be excellently insulated against thermal conduction towards the outside.
  • the conduit or the metallic connection of the heat-transferring device can advantageously at least partially surround a further second tube which is connected in a heat-conducting manner to the radiation shield.
  • This tube is disposed within the first tube to provide vacuum insulation, as described above. In this manner, the part of the heat-transferring device surrounded by the second tube is excellently insulated against thermal radiation towards the outside.
  • the above-described tubes surrounding the heat-transferring device are flexible, at least in sections, and are preferably designed as a bellows.
  • the heat-transferring device is designed to be flexible, at least in sections, in particular as a bellows or in the form of wires plaited into strands.
  • the heat-transferring device and the surrounding tubes are flexible to considerably facilitate installation thereof into the neck or suspension tubes of a cryostat configuration.
  • the heat-transferring device and the surrounding tubes can be connected to and disconnected from each other at at least one location using a gas-tight coupling.
  • the coupling is designed such that the functionality of the heat-transferring device and the surrounding tubes is not impaired. This substantially, facilitates mounting of the cooling device to a cryostat configuration.
  • the cooling device can be mounted to the cryostat for keeping cryogenic liquids either at the neck, at the suspension tubes, or on the outer jacket of the cryostat configuration.
  • the cooling device may be mounted outside of the cryostat e.g. on the room ceiling or on a separate stand. In this case, the cryostat configuration does not have to bear the weight of the cooling device. This can increase the mechanical stability of the cryostat configuration.
  • a soft connecting element which does not transmit vibrations is advantageously provided as a seal between the cooling device and the cryostat. This ensures that—in particular for high-resolution NMR methods—none or only little disturbing vibrations of the cooling device are transferred to the cryostat configuration.
  • Another possibility is mounting electric heaters to the cold stages of the cold head of the cryocooler.
  • the heaters can be adjusted such that the cryocooler exactly compensates for the heat input into the different containers of the cryostat configuration.
  • the cooling device serves to cool a superconducting magnet arrangement, in particular, a superconducting magnet arrangement which is part of a nuclear magnetic resonance apparatus, in particular, a magnetic resonance imaging (MRI) or nuclear magnetic resonance spectroscopy (NMR) apparatus.
  • MRI magnetic resonance imaging
  • NMR nuclear magnetic resonance spectroscopy
  • An electric heater can also be introduced into the liquid tank of a cryostat configuration provided with the inventive cooling device via a neck or suspension tube of at least one liquid tank.
  • the pressure in the liquid containers can thereby be kept at a constant level above the surrounding pressure. It is, however, also feasible to control the power of the cryocooler via its operating frequency and/or the fill amount of working gas in the cryocooler.
  • FIG. 1 shows a cryostat configuration with two liquid tanks for cryogenic liquids
  • FIG. 2 a shows an inventive cooling device with heat-transferring devices having a cavity
  • FIG. 2 b shows an inventive cooling device with heat-transferring devices comprising a metallic connection with excellent heat-transferring properties
  • FIG. 3 shows a cooling device installed in a cryostat according to FIG. 2 a;
  • FIG. 4 shows a cooling device according to the present invention which is installed in a cryostat, with a connecting line which connects the cold head of the cryocooler to a suspension tube of a liquid tank;
  • FIG. 5 a shows a cooling device in accordance with the present invention, which is mounted on the cryostat;
  • FIG. 5 b shows a cooling device in accordance with the present invention which is mounted to the room ceiling
  • FIG. 5 c shows a cooling device in accordance with the invention which is mounted to a stand.
  • FIG. 1 is a schematic illustration of a cryostat 1 with a magnet arrangement 5 as commonly used for MR applications.
  • the cryostat 1 comprises a liquid tank 2 a filled with helium which is connected via suspension tubes 3 a to an outer jacket 4 of the cryostat 1 and contains a magnet arrangement 5 .
  • a further liquid tank 2 b is disposed about the liquid tank 2 a, which contains nitrogen and is connected via the suspension tubes 3 b to the outer jacket 4 of the cryostat 1 .
  • the liquid tank 2 b with nitrogen is in thermal contact with the suspension tubes 3 a.
  • a boil-off-gas-cooled radiation shield 6 is disposed between the two liquid tanks 2 a, 2 b and is also in thermal contact with the suspension tubes 3 a.
  • FIG. 2 a shows an embodiment of an inventive cooling device 7 .
  • the cooling device comprises an outer jacket 8 which delimits a vacuum chamber 9 , and a cold head 10 of a cryocooler disposed therein which comprises at least two cold stages 11 , 12 and is at least partially surrounded by a radiation shield 13 .
  • the cold stages 11 , 12 of the cold head 10 are each connected in a heat-conducting manner to a heat-transferring device 14 a, 14 b.
  • the heat-transferring devices 14 a, 14 b each have a cavity 15 a, 15 b, wherein each cavity 15 a, 15 b is connected to a respective conduit 16 a, 16 b.
  • FIG. 2 b shows an alternative embodiment of the inventive cooling device 7 , wherein the heat-transferring devices 14 a, 14 b comprise connections 17 a, 17 b with excellent heat conducting properties.
  • These connections may be e.g. in the form of cold fingers which are generally designed as metal rods.
  • Such a metal rod should have a maximum cross-sectional surface to ensure minimum temperature differences along the rod.
  • the conduits 16 a, 16 b can be inserted into the suspension tubes 3 a, 3 b of the liquid tanks 2 a, 2 b of a cryostat 1 .
  • FIG. 3 shows an inventive cooling device 7 in the installed state.
  • the conduits 16 a, 16 b are located in the cryogen vapor above the liquid surface of the cryogens 18 a, 18 b disposed in the liquid tanks 2 a, 2 b.
  • the heat-transferring devices 14 a, 14 b are each connected in a heat-conducting manner to a cold stage 11 , 12 of the cryocooler ( FIGS. 2 a, 2 b and 3 ).
  • the cryogens 18 a, 18 b evaporated from the liquid tanks 2 a, 2 b of the cryostat 1 are guided through the conduits 16 a, 16 b into the cavity 15 a, 15 b on the respective cold stage 12 , 11 where the cryogens 18 a, 18 b are condensed and are thereby liquefied and subsequently flow back through the conduits 16 a, 16 b into the liquid tanks 2 a, 2 b of the cryostat 1 .
  • the helium vapor can also be liquefied at the end of a metallic connection 17 a, 17 b which is in contact with the cold head 10 and has excellent heat conducting properties ( FIG. 2 b ).
  • the cryogen 18 b with higher boiling temperature from the liquid tank 2 b is thereby liquefied on the first cold stage 11 of the cold head 10 while the cryogen 18 a with a lower boiling temperature is liquefied at the second, colder cold stage 12 of the cold head 10 .
  • the invention also comprises cooling devices with a multi-stage cold head 10 such that, in principle, any number of cryogens, corresponding to the number of the cold stages of the cold head 10 , can be liquefied.
  • the heat-transferring devices 14 a, 14 b are surrounded by a first tube 19 a, 19 b to insulate them from thermal input, the first tube being connected to the vacuum chamber 9 of the outer jacket 8 of the cooling device 7 and can be evacuated together with the vacuum chamber 9 ( FIGS. 2 a, 2 b ).
  • a second tube 20 is disposed within the first tube 19 a which is connected in a heat-conducting manner to the radiation shield 13 .
  • the diameter of the first tube 19 b varies along its length in FIGS. 2 a, 2 b and FIG. 3 .
  • a bellows provides a flexible connection between the first tube 19 b and the outer jacket 8 of the cooling device 7 .
  • a bellows may also be interposed between the first tube 19 a and the outer jacket 8 and in a section of the second tube 20 .
  • the metallic connection 17 a, 17 b shown in FIG. 2 b can be made flexible through flexible connecting elements 21 a, 21 b (such as e.g. wire plaited into strands).
  • additional heaters can be mounted to the cold stages 11 , 12 of the cold head 10 of the cryocooler.
  • the pressure in the liquid tanks 2 a, 2 b for the cryogens 18 a, 18 b can be kept constant using heaters 22 a, 22 b which are disposed in the liquid tanks 2 a, 2 b and which are e.g. inserted via remaining free neck or suspension tubes 3 c, 3 d.
  • FIG. 4 shows an advantageous variant of the inventive cooling device, wherein a free neck or suspension tube 3 c of the cryostat 1 is connected, via a line 23 which is open on both sides, after thermal contact with the cold stages 11 , 12 of the cold head 10 , to the cavity 15 a and therefore also to the liquid tank 2 a.
  • a connection of this type can also be realized with several free neck or suspension tubes 3 c.
  • the lines from the suspension tubes 3 c are initially combined into one line 23 .
  • This line 23 is then guided through the outer jacket 8 of the cooling device 7 which contains the cold head 10 and is thermally contacted using the heat exchanger 24 b, 24 a with at least two cold stages 11 , 12 of the cold head 10 and possibly also with the regenerator tube 25 above the coldest cold stage 12 e.g. by wrapping it around the regenerator tube 25 .
  • the line 23 terminates in the cavity 15 a mounted to the cold head 10 or is guided along the metallic connection 17 a into the liquid tank 2 a for the cryogen 18 a (helium).
  • the gas in the line 23 is cooled by the cold head 10 and liquefied at the coldest cold stage 12 , thereby generating a flow in the line 23 through the suspension tube 3 c towards the cooling device 7 due to the resulting suction.
  • the heated gas flow cools the suspension tube 3 c, whereby in the ideal case, the heat input is completely compensated or at least reduced via the suspension tube 3 c.
  • the overall cooling capacity of the cryocooler slightly decreases due to the additional load.
  • the gain due to the reduced heat input is larger than the loss in cooling power. In particular for systems with massive neck or suspension tubes 3 c, a cryocooler with lower power can thereby be used.
  • the heat-transferring devices 14 a, 14 b may be made from two or more parts, which permits separation thereof using gas-tight couplings (not shown). This facilitates installation and-disassembly.
  • the line 23 has a valve 26 and a pump 27 to control the gas flow through the line 23 and thereby adjust an optimum gas flow.
  • the line 23 may be provided with such a device (valve 26 or pump 27 ) or such devices can be completely omitted.
  • heaters 22 a, 22 b are provided in the liquid tank 2 a, 2 b. For reasons of clarity, the connections are omitted in FIG. 4 .
  • FIGS. 5 a through 5 c show various possibilities for fixing the cooling device 7 .
  • the vacuum container which contains the cold head 10 of the cryocooler can either be directly mounted on the outer jacket 4 of the cryostat 1 as shown in FIG. 5 a or externally e.g. on the room ceiling 28 ( FIG. 5 b ) or on a separate-stand 29 ( FIG. 5 c ).
  • a seal 30 must be used for mounting onto the cryostat 1 .
  • further sealing elements 31 a, 31 b are used between the vacuum chamber 9 and the outer jacket 4 of the cryostat 1 with the consequence that no or only minimum vibrations of the cryocooler are transferred to the cryostat 1 .
  • the cooling device 7 is used for cooling a cryostat configuration which contains a superconducting magnet arrangement 5 , in particular, if the superconducting magnet arrangement 5 is part of a nuclear magnetic resonance apparatus, in particular magnetic resonance imaging (MRI) or magnetic resonance spectroscopy (Nuclear Magnetic Resonance, NMR).
  • MRI magnetic resonance imaging
  • NMR Magnetic resonance spectroscopy
  • a cooling device which permits retrofitting to existing cryostat configurations, and in particular such configurations which contain superconducting magnets without (or with only minor) adjustments to permit, in a straightforward manner, operation with no or little cryogen loss even if several cryogens are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
US11/171,429 2004-07-30 2005-07-01 Device for loss-free cryogen cooling of a cryostat configuration Abandoned US20070051116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004037173.3 2004-07-30
DE102004037173A DE102004037173B3 (de) 2004-07-30 2004-07-30 Vorrichtung zur kryogenverlustfreien Kühlung einer Kryostatanordnung

Publications (1)

Publication Number Publication Date
US20070051116A1 true US20070051116A1 (en) 2007-03-08

Family

ID=35404600

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/171,429 Abandoned US20070051116A1 (en) 2004-07-30 2005-07-01 Device for loss-free cryogen cooling of a cryostat configuration

Country Status (4)

Country Link
US (1) US20070051116A1 (de)
EP (1) EP1628089B1 (de)
JP (1) JP2006046896A (de)
DE (1) DE102004037173B3 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090301129A1 (en) * 2008-06-08 2009-12-10 Wang Nmr Inc. Helium and nitrogen reliquefying apparatus
US20110039707A1 (en) * 2005-11-18 2011-02-17 Magnex Scientific Limited Superconducting magnet systems
CN102299022A (zh) * 2011-08-16 2011-12-28 南京丰盛超导技术有限公司 制冷机直接冷却超导磁体机械式热开关
US20120011859A1 (en) * 2010-06-09 2012-01-19 Quantum Design, Inc. Gas-flow cryostat for dynamic temperature regulation using a fluid level sensor
CN102869933A (zh) * 2010-05-04 2013-01-09 皇家飞利浦电子股份有限公司 用于装运和储存低温装置的改进方法和设备
US8598881B2 (en) 2011-01-11 2013-12-03 General Electric Company Magnetic resonance imaging system with thermal reservoir and method for cooling
CN103697647A (zh) * 2012-09-28 2014-04-02 中国科学院物理研究所 一种真空低温恒温器
US20140123681A1 (en) * 2007-04-02 2014-05-08 General Electric Company Method and apparatus to hyperpolarize materials for enhanced mr techniques
US20150007586A1 (en) * 2013-07-03 2015-01-08 Bruker Biospin Ag Method for reconfiguring a cryostat configuration for recirculation cooling
CN104795198A (zh) * 2014-01-21 2015-07-22 西门子(深圳)磁共振有限公司 一种磁共振成像系统的冷却装置、方法和磁共振成像系统
US20150348689A1 (en) * 2013-01-06 2015-12-03 Institute Of Electrical Engineering, Chinese Academy Of Sciences Superconducting Magnet System for Head Imaging
CN108657667A (zh) * 2018-07-06 2018-10-16 宁波健信核磁技术有限公司 一种超导冷磁体运输集装箱
US10352501B2 (en) 2015-07-01 2019-07-16 Bruker Biospin Gmbh Cryostat with active neck tube cooling by a second cryogen
CN112133514A (zh) * 2019-06-25 2020-12-25 布鲁克瑞士股份公司 具有弹簧弹性的、导热的连接元件的低温恒温器组件
US20210293475A1 (en) * 2020-03-23 2021-09-23 Ricoh Company, Ltd. Helium circulation system, cryogenic refrigeration method, and biomagnetism measuring apparatus
US11327062B2 (en) 2017-12-20 2022-05-10 Bilfinger Noell Gmbh Device for examining an atmosphere and use of the device
CN114556498A (zh) * 2019-11-01 2022-05-27 日本超导体技术公司 低温恒温器用氦再冷凝装置
US11913714B2 (en) 2021-11-02 2024-02-27 Anyon Systems Inc. Dilution refrigerator with continuous flow helium liquefier

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116042A (ja) * 2004-10-21 2006-05-11 Iwatani Industrial Gases Corp 超電導磁石システムでの冷却装置
JP4814630B2 (ja) * 2005-12-21 2011-11-16 三菱電機株式会社 超電導電磁石装置
JP4736047B2 (ja) * 2006-04-04 2011-07-27 学校法人金沢工業大学 冷却システム
DE102007013350B4 (de) * 2007-03-16 2013-01-31 Bruker Biospin Ag Stromzuführung mit Hochtemperatursupraleitern für supraleitende Magnete in einem Kryostaten
JP4855990B2 (ja) * 2007-03-29 2012-01-18 株式会社東芝 再凝縮装置、その取り付け方法およびそれを用いた超電導磁石
JP5728172B2 (ja) * 2010-06-16 2015-06-03 株式会社神戸製鋼所 再凝縮装置及びこれを備えたnmr分析装置
DE102011078608B4 (de) * 2011-07-04 2023-06-22 Bruker Switzerland Ag Kryostatanordnung
KR101334321B1 (ko) 2012-05-15 2013-11-28 현대중공업 주식회사 복사 차단막이 설치된 극저온 냉동기
KR101447525B1 (ko) 2013-11-06 2014-10-15 한국기초과학지원연구원 재활용 가스의 보냉 포집기, 재활용 가스의 액화기 및 이를 이용한 재활용 가스의 회수장치
JP5839734B2 (ja) * 2013-12-26 2016-01-06 大陽日酸株式会社 低温液化ガスの蒸発ガス再液化装置
CN113903541B (zh) * 2021-11-04 2022-06-28 中国原子能科学研究院 一种基于小型制冷机的大型高温超导磁体系统和温控方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894403A (en) * 1973-06-08 1975-07-15 Air Prod & Chem Vibration-free refrigeration transfer
US4223540A (en) * 1979-03-02 1980-09-23 Air Products And Chemicals, Inc. Dewar and removable refrigerator for maintaining liquefied gas inventory
US4502296A (en) * 1983-04-15 1985-03-05 Hitachi, Ltd. Cryostat
US5327733A (en) * 1993-03-08 1994-07-12 University Of Cincinnati Substantially vibration-free shroud and mounting system for sample cooling and low temperature spectroscopy
US5563566A (en) * 1995-11-13 1996-10-08 General Electric Company Cryogen-cooled open MRI superconductive magnet
US5613367A (en) * 1995-12-28 1997-03-25 General Electric Company Cryogen recondensing superconducting magnet
US5701744A (en) * 1996-10-31 1997-12-30 General Electric Company Magnetic resonance imager with helium recondensing
US5744959A (en) * 1995-12-22 1998-04-28 Spectrospin Ag NMR measurement apparatus with pulse tube cooler
US5782095A (en) * 1997-09-18 1998-07-21 General Electric Company Cryogen recondensing superconducting magnet
US5966944A (en) * 1997-04-09 1999-10-19 Aisin Seiki Kabushiki Kaisha Superconducting magnet system outfitted with cooling apparatus
US20020000283A1 (en) * 2000-03-17 2002-01-03 Jun Nakano Transcribing method
US20020002830A1 (en) * 2000-07-08 2002-01-10 Bruker Analytik Gmbh Circulating cryostat
US6378312B1 (en) * 2000-05-25 2002-04-30 Cryomech Inc. Pulse-tube cryorefrigeration apparatus using an integrated buffer volume
US20030230089A1 (en) * 2002-06-14 2003-12-18 Bruker Biospin Gmbh Cryostat configuration with improved properties

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138363A (ja) * 1984-07-31 1986-02-24 株式会社日立製作所 ヘリウム冷凍装置
JPS6266067A (ja) * 1985-09-18 1987-03-25 株式会社日立製作所 ヘリウム冷却装置
IT1198238B (it) * 1986-12-23 1988-12-21 Zambon Spa Composti ad attivita' antibiotica
JPS63207958A (ja) * 1987-02-23 1988-08-29 Toshiba Corp 冷凍機
JPS63210572A (ja) * 1987-02-26 1988-09-01 Toshiba Corp 極低温冷凍機
IT1278167B1 (it) 1995-01-25 1997-11-17 Matec Srl Gruppo di taglio e aspirazione del filo per macchina per la lavorazione di calze e calzini a piu' cadute
GB2329701B (en) * 1997-09-30 2001-09-19 Oxford Magnet Tech Load bearing means in nmr cryostat systems
GB2330194B (en) * 1997-09-30 2002-05-15 Oxford Magnet Tech A cryogenic pulse tube refrigerator
US5936499A (en) * 1998-02-18 1999-08-10 General Electric Company Pressure control system for zero boiloff superconducting magnet
JP3358053B2 (ja) * 1998-03-13 2002-12-16 住友重機械工業株式会社 液体窒素再凝縮装置
US6038867A (en) * 1998-07-31 2000-03-21 General Electric Company Wide multilayer insulating blankets for zero boiloff superconducting magnet
JP3416559B2 (ja) * 1999-03-30 2003-06-16 住友重機械工業株式会社 液化ガス貯蔵装置、再液化装置、及び液化窒素の再液化方法
US20030005095A1 (en) 2001-06-29 2003-01-02 Fee John A. Method and system for programmable submarine network configuration plans to enable diverse service level agreements in telecommunication networks
GB0125188D0 (en) * 2001-10-19 2001-12-12 Oxford Magnet Tech A pulse tube refrigerator sleeve
GB0125189D0 (en) * 2001-10-19 2001-12-12 Oxford Magnet Tech A pulse tube refrigerator

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894403A (en) * 1973-06-08 1975-07-15 Air Prod & Chem Vibration-free refrigeration transfer
US4223540A (en) * 1979-03-02 1980-09-23 Air Products And Chemicals, Inc. Dewar and removable refrigerator for maintaining liquefied gas inventory
US4502296A (en) * 1983-04-15 1985-03-05 Hitachi, Ltd. Cryostat
US5327733A (en) * 1993-03-08 1994-07-12 University Of Cincinnati Substantially vibration-free shroud and mounting system for sample cooling and low temperature spectroscopy
US5563566A (en) * 1995-11-13 1996-10-08 General Electric Company Cryogen-cooled open MRI superconductive magnet
US5744959A (en) * 1995-12-22 1998-04-28 Spectrospin Ag NMR measurement apparatus with pulse tube cooler
US5613367A (en) * 1995-12-28 1997-03-25 General Electric Company Cryogen recondensing superconducting magnet
US5701744A (en) * 1996-10-31 1997-12-30 General Electric Company Magnetic resonance imager with helium recondensing
US5966944A (en) * 1997-04-09 1999-10-19 Aisin Seiki Kabushiki Kaisha Superconducting magnet system outfitted with cooling apparatus
US5782095A (en) * 1997-09-18 1998-07-21 General Electric Company Cryogen recondensing superconducting magnet
US20020000283A1 (en) * 2000-03-17 2002-01-03 Jun Nakano Transcribing method
US6378312B1 (en) * 2000-05-25 2002-04-30 Cryomech Inc. Pulse-tube cryorefrigeration apparatus using an integrated buffer volume
US20020002830A1 (en) * 2000-07-08 2002-01-10 Bruker Analytik Gmbh Circulating cryostat
US20030230089A1 (en) * 2002-06-14 2003-12-18 Bruker Biospin Gmbh Cryostat configuration with improved properties
US6804968B2 (en) * 2002-06-14 2004-10-19 Bruker Biospin Gmbh Cryostat configuration with improved properties

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110039707A1 (en) * 2005-11-18 2011-02-17 Magnex Scientific Limited Superconducting magnet systems
US20140123681A1 (en) * 2007-04-02 2014-05-08 General Electric Company Method and apparatus to hyperpolarize materials for enhanced mr techniques
US20090301129A1 (en) * 2008-06-08 2009-12-10 Wang Nmr Inc. Helium and nitrogen reliquefying apparatus
CN102869933A (zh) * 2010-05-04 2013-01-09 皇家飞利浦电子股份有限公司 用于装运和储存低温装置的改进方法和设备
US10577175B2 (en) 2010-05-04 2020-03-03 Koninklijke Philips N.V. Method and apparatus for shipping and storage of cryogenic devices
US20120011859A1 (en) * 2010-06-09 2012-01-19 Quantum Design, Inc. Gas-flow cryostat for dynamic temperature regulation using a fluid level sensor
US9618257B2 (en) * 2010-06-09 2017-04-11 Quantum Design International, Inc. Gas-flow cryostat for dynamic temperature regulation using a fluid level sensor
US8598881B2 (en) 2011-01-11 2013-12-03 General Electric Company Magnetic resonance imaging system with thermal reservoir and method for cooling
CN102299022A (zh) * 2011-08-16 2011-12-28 南京丰盛超导技术有限公司 制冷机直接冷却超导磁体机械式热开关
CN103697647A (zh) * 2012-09-28 2014-04-02 中国科学院物理研究所 一种真空低温恒温器
US9666344B2 (en) * 2013-01-06 2017-05-30 Institute Of Electrical Engineering, Chinese Academy Of Sciences Superconducting magnet system for head imaging
US20150348689A1 (en) * 2013-01-06 2015-12-03 Institute Of Electrical Engineering, Chinese Academy Of Sciences Superconducting Magnet System for Head Imaging
US9494344B2 (en) * 2013-07-03 2016-11-15 Bruker Biospin Ag Method for reconfiguring a cryostat configuration for recirculation cooling
US20150007586A1 (en) * 2013-07-03 2015-01-08 Bruker Biospin Ag Method for reconfiguring a cryostat configuration for recirculation cooling
WO2015110389A1 (en) * 2014-01-21 2015-07-30 Siemens Plc Cooling device and method for a magnetic resonance imaging system
CN104795198A (zh) * 2014-01-21 2015-07-22 西门子(深圳)磁共振有限公司 一种磁共振成像系统的冷却装置、方法和磁共振成像系统
US10352501B2 (en) 2015-07-01 2019-07-16 Bruker Biospin Gmbh Cryostat with active neck tube cooling by a second cryogen
US11327062B2 (en) 2017-12-20 2022-05-10 Bilfinger Noell Gmbh Device for examining an atmosphere and use of the device
CN108657667A (zh) * 2018-07-06 2018-10-16 宁波健信核磁技术有限公司 一种超导冷磁体运输集装箱
CN112133514A (zh) * 2019-06-25 2020-12-25 布鲁克瑞士股份公司 具有弹簧弹性的、导热的连接元件的低温恒温器组件
US11810711B2 (en) 2019-06-25 2023-11-07 Bruker Switzerland Ag Cryostat assembly having a resilient, heat-conducting connection element
CN114556498A (zh) * 2019-11-01 2022-05-27 日本超导体技术公司 低温恒温器用氦再冷凝装置
US11828513B2 (en) 2019-11-01 2023-11-28 Japan Superconductor Technology Inc. Apparatus for recondensing helium for cryostat
US20210293475A1 (en) * 2020-03-23 2021-09-23 Ricoh Company, Ltd. Helium circulation system, cryogenic refrigeration method, and biomagnetism measuring apparatus
US11913714B2 (en) 2021-11-02 2024-02-27 Anyon Systems Inc. Dilution refrigerator with continuous flow helium liquefier

Also Published As

Publication number Publication date
EP1628089A3 (de) 2009-03-25
JP2006046896A (ja) 2006-02-16
DE102004037173B3 (de) 2005-12-15
EP1628089A2 (de) 2006-02-22
EP1628089B1 (de) 2012-05-23

Similar Documents

Publication Publication Date Title
US20070051116A1 (en) Device for loss-free cryogen cooling of a cryostat configuration
JP3996935B2 (ja) クライオスタット構造
JP4031121B2 (ja) クライオスタット装置
US20070089432A1 (en) Cryostat configuration with cryocooler
US7474099B2 (en) NMR apparatus with commonly cooled probe head and cryogenic container and method for the operation thereof
US6389821B2 (en) Circulating cryostat
US5782095A (en) Cryogen recondensing superconducting magnet
US7430871B2 (en) NMR spectrometer with a common refrigerator for cooling an NMR probe head and cryostat
US5744959A (en) NMR measurement apparatus with pulse tube cooler
US5586437A (en) MRI cryostat cooled by open and closed cycle refrigeration systems
JP4417247B2 (ja) 超伝導磁石と冷凍ユニットとを備えたmri装置
US20130008187A1 (en) Cryostat configuration
US20170284725A1 (en) Cryostat with a first and a second helium tank, which are separated from one another in a liquid-tight manner at least in a lower part
US20070051115A1 (en) Cryostat configuration with cryocooler and gas gap heat transfer device
JPH11151225A (ja) Mri(磁気共鳴映像)またはnmr(核磁気共鳴)システム
GB2542667A (en) Method and device for precooling a cryostat
US20030230089A1 (en) Cryostat configuration with improved properties
US4680936A (en) Cryogenic magnet systems
US20090301129A1 (en) Helium and nitrogen reliquefying apparatus
US11828513B2 (en) Apparatus for recondensing helium for cryostat
EP0905435A2 (de) Lasttragende Mittel für Kryostatsystemen
US11977139B2 (en) Accelerated cooldown of low-cryogen magnetic resonance imaging (MRI) magnets
GB2463659A (en) Method and Apparatus for Improved Cooling of a Cryostat Thermal Shield

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRUKER BIOSPIN AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLEMOT, AGNES;VOGEL, DIETRICH;ECKERT, DANIEL;REEL/FRAME:016753/0183;SIGNING DATES FROM 20050509 TO 20050517

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION