US20060225855A1 - Method for the cationisation of legume starches, cationic starches thus obtained applications thereof - Google Patents
Method for the cationisation of legume starches, cationic starches thus obtained applications thereof Download PDFInfo
- Publication number
- US20060225855A1 US20060225855A1 US10/555,288 US55528805A US2006225855A1 US 20060225855 A1 US20060225855 A1 US 20060225855A1 US 55528805 A US55528805 A US 55528805A US 2006225855 A1 US2006225855 A1 US 2006225855A1
- Authority
- US
- United States
- Prior art keywords
- starch
- legume
- paper
- derived
- cationic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920002472 Starch Polymers 0.000 title claims abstract description 212
- 235000019698 starch Nutrition 0.000 title claims abstract description 206
- 125000002091 cationic group Chemical group 0.000 title claims abstract description 153
- 235000021374 legumes Nutrition 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 45
- 239000008107 starch Substances 0.000 claims abstract description 154
- 239000000203 mixture Substances 0.000 claims abstract description 53
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 55
- 239000003795 chemical substances by application Substances 0.000 claims description 44
- 239000000123 paper Substances 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 38
- 238000006243 chemical reaction Methods 0.000 claims description 34
- 229910052757 nitrogen Inorganic materials 0.000 claims description 29
- 239000000654 additive Substances 0.000 claims description 24
- 230000000996 additive effect Effects 0.000 claims description 23
- 238000004513 sizing Methods 0.000 claims description 22
- 239000003153 chemical reaction reagent Substances 0.000 claims description 17
- 230000014759 maintenance of location Effects 0.000 claims description 17
- 125000000129 anionic group Chemical group 0.000 claims description 15
- 235000013339 cereals Nutrition 0.000 claims description 15
- 238000002360 preparation method Methods 0.000 claims description 15
- 229920006320 anionic starch Polymers 0.000 claims description 14
- 239000011111 cardboard Substances 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 230000002452 interceptive effect Effects 0.000 claims description 8
- 230000000717 retained effect Effects 0.000 claims description 8
- 239000000975 dye Substances 0.000 claims description 7
- 229920001059 synthetic polymer Polymers 0.000 claims description 7
- 230000007062 hydrolysis Effects 0.000 claims description 4
- 238000006460 hydrolysis reaction Methods 0.000 claims description 4
- 230000002209 hydrophobic effect Effects 0.000 claims description 4
- 150000003512 tertiary amines Chemical class 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 52
- 240000004713 Pisum sativum Species 0.000 description 52
- 229920002261 Corn starch Polymers 0.000 description 17
- 229920000856 Amylose Polymers 0.000 description 14
- 238000006467 substitution reaction Methods 0.000 description 14
- 229940099112 cornstarch Drugs 0.000 description 13
- 239000000839 emulsion Substances 0.000 description 13
- 229920001592 potato starch Polymers 0.000 description 13
- 239000008120 corn starch Substances 0.000 description 12
- 230000000875 corresponding effect Effects 0.000 description 12
- 239000000945 filler Substances 0.000 description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000007787 solid Substances 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 230000006399 behavior Effects 0.000 description 7
- 239000001913 cellulose Substances 0.000 description 7
- 229920002678 cellulose Polymers 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 239000011436 cob Substances 0.000 description 6
- 238000010411 cooking Methods 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000012736 aqueous medium Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000011256 inorganic filler Substances 0.000 description 5
- 229910003475 inorganic filler Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229920002401 polyacrylamide Polymers 0.000 description 4
- 239000012429 reaction media Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 150000008065 acid anhydrides Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 102000004139 alpha-Amylases Human genes 0.000 description 2
- 108090000637 alpha-Amylases Proteins 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000009172 bursting Effects 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- -1 glycidyl-trimethylammonium halides Chemical class 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 235000011837 pasties Nutrition 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- UGTZMIPZNRIWHX-UHFFFAOYSA-K sodium trimetaphosphate Chemical compound [Na+].[Na+].[Na+].[O-]P1(=O)OP([O-])(=O)OP([O-])(=O)O1 UGTZMIPZNRIWHX-UHFFFAOYSA-K 0.000 description 2
- LTVDFSLWFKLJDQ-UHFFFAOYSA-N α-tocopherolquinone Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)(O)CCC1=C(C)C(=O)C(C)=C(C)C1=O LTVDFSLWFKLJDQ-UHFFFAOYSA-N 0.000 description 2
- CSPHGSFZFWKVDL-UHFFFAOYSA-M (3-chloro-2-hydroxypropyl)-trimethylazanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC(O)CCl CSPHGSFZFWKVDL-UHFFFAOYSA-M 0.000 description 1
- RAGSWDIQBBZLLL-UHFFFAOYSA-N 2-chloroethyl(diethyl)azanium;chloride Chemical compound Cl.CCN(CC)CCCl RAGSWDIQBBZLLL-UHFFFAOYSA-N 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 0 C.C.CO.[1*][N+]([2*])([3*])CC.[1*][N+]([2*])([3*])CC1CO1 Chemical compound C.C.CO.[1*][N+]([2*])([3*])CC.[1*][N+]([2*])([3*])CC1CO1 0.000 description 1
- 108010025880 Cyclomaltodextrin glucanotransferase Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 description 1
- 244000043158 Lens esculenta Species 0.000 description 1
- 241000219745 Lupinus Species 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000016639 Syzygium aromaticum Nutrition 0.000 description 1
- 244000223014 Syzygium aromaticum Species 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 235000002098 Vicia faba var. major Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000012612 commercial material Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 244000013123 dwarf bean Species 0.000 description 1
- 235000005489 dwarf bean Nutrition 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- CCGKOQOJPYTBIH-UHFFFAOYSA-N ethenone Chemical compound C=C=O CCGKOQOJPYTBIH-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003311 flocculating effect Effects 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000003944 halohydrins Chemical class 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002561 ketenes Chemical class 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 238000010613 succinylation reaction Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B31/00—Preparation of derivatives of starch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B31/00—Preparation of derivatives of starch
- C08B31/08—Ethers
- C08B31/12—Ethers having alkyl or cycloalkyl radicals substituted by heteroatoms, e.g. hydroxyalkyl or carboxyalkyl starch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B31/00—Preparation of derivatives of starch
- C08B31/08—Ethers
- C08B31/12—Ethers having alkyl or cycloalkyl radicals substituted by heteroatoms, e.g. hydroxyalkyl or carboxyalkyl starch
- C08B31/125—Ethers having alkyl or cycloalkyl radicals substituted by heteroatoms, e.g. hydroxyalkyl or carboxyalkyl starch having a substituent containing at least one nitrogen atom, e.g. cationic starch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L3/00—Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
- C08L3/04—Starch derivatives, e.g. crosslinked derivatives
- C08L3/08—Ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J103/00—Adhesives based on starch, amylose or amylopectin or on their derivatives or degradation products
- C09J103/04—Starch derivatives
- C09J103/08—Ethers
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/21—Macromolecular organic compounds of natural origin; Derivatives thereof
- D21H17/24—Polysaccharides
- D21H17/28—Starch
- D21H17/29—Starch cationic
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/06—Paper forming aids
- D21H21/10—Retention agents or drainage improvers
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/16—Sizing or water-repelling agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/18—Reinforcing agents
Definitions
- the subject of the present invention is a method for the cationization of a legume starch in the absence of any organic solvent.
- the present invention also relates-to the uses of said legume-derived cationic starches, in particular in the paper industry, in the field known to persons skilled in the art as the wet end of the paper-making machine.
- Papilionaceae for the purposes of the present invention, is understood to mean more particularly the Papilionaceae family, of which the most important representatives are the haricot bean, pea, lentil, broad bean, alfalfa, clove and lupine.
- legume starch for the purposes of the invention, is understood to mean the starches extracted from legumes, in particular from the pea, having a high starch content, in particular greater than 90% (dry/dry), accompanied by a generally low colloidal matter and fibrous residue content, for example of less than 1% (dry/dry).
- the starch content is preferably greater than 95%, more preferably greater than 98% (dry/dry).
- the protein content is low, that is less than 1%, preferably less than 0.5%, and more particularly between 0.1 and 0.35% (dry/dry).
- starches in particular from hybrid corn, have been developed which are rich in amylose or in amylopectin. Their cationic derivatives generate identical problems, in addition to their generally high cost.
- the cationization of potato starch is technically more satisfactory.
- the reaction yields are substantially higher and make it possible to reduce the quantity of reaction residues and to more easily increase the degrees of substitution.
- a first disadvantage in their use may lie in that sols of cationic potato starch require, unlike cereal starches, an addition to the fibrous suspension as close to the headbox as possible.
- starch Other sources of starch may be envisaged, such as rice and cassava. They are still, most often, difficult to obtain and/or of irregular quality.
- European patent EP 0 139 597 describes bulk paper additives made from mixtures of at least one cationic cereal starch and at least one cationic tuber starch. Surprisingly and unexpectedly, these are capable of exhibiting synergies, in particular in terms of physical and retention characteristics.
- a cationic starch should find its justification in the improvement of at least one group of characteristics of interest relating to:
- the sizing agent used remains the major factor in the quality of paper sizing, whether in general this involves an agent which is reactive with cellulose or not.
- the efficacy of said sizing agent is however particularly dependent on the quality of the composition generally marketed in the form of a dispersion, its keeping qualities over time and the stability and efficacy of the emulsion in the form in which it is added to the fibrous suspension.
- the cationic starches may also be combined, for example, with optical brighteners or with dyes in order to improve the efficacy and the yield thereof, with synthetic polymers such as polyacrylamides or polyvinylamines, in particular in the context of the development of advantageous synergies.
- cationic starches which have been optionally hydrolyzed and which may thereby have relatively low weight-average molecular masses, generally having from average to high degrees of substitution (or nitrogen levels), in the form of solid, liquid or pasty compositions, for example in the form of a free-flowing powder, an emulsion or a colloidal solution, have become commonly used as secondary additive for paper-making or as additive for the treatment of water for industrial use.
- second additive for paper-making is understood to mean any additive other than a conventional main bulk additive, useful as an agent for reducing interfering substances, in particular of an anionic nature, contained in water circuits and/or retained on the equipment for paper-making processes.
- additive for treating water for industrial use is understood to mean in particular any composition which is useful in particular as an agent for clarifying and/or purifying water derived from human or industrial activities or intended for said activities, such as for example water intended for use as foodstuff for humans or animals, waste from the textile and leather industries, the paper and cardboard industries, the ore extraction industries, and the food and slaughter industries.
- those from the legume starches, in particular from peas are capable of satisfying the main requirements and may be considered as being easily accessible, under good, in particular economical, conditions.
- European patent EP 0 620 121 describes the very particular use of pea starch in carbonless auto-copy papers.
- the starch is used in the granular state. It is optionally crosslinked in order to ensure this state, but in any case there is no need for cationic starches.
- Cationization in the dry phase is also rejected because of the heterogeneity which it is. said to bring about because of a reportedly limited conversion at the surface of the granules.
- the method according to the present invention consists in a method for the cationization of a legume-derived starch, consisting of the reaction of the starch, in a granular or gelatinized form, with a cationic reagent, characterized in that the reaction is carried out in the sole presence of water, and in the complete absence of any other solvent compound, under conditions such that the ratio R of the quantity of water to the quantity of legume-derived starch is between 1/1000 and 10/1.
- the expression “quantity of legume-derived starch” is understood to mean the weight of legume-derived starch initially used for the cationization reaction, in particular before any optional step of suspension or gelatinization. This weight comprises the weight of water intrinsically contained in this initial starch. This weight of water represents less than 20%, generally from 5 to 18%, and most often from 10 to 15% of the initial starch weight used.
- the expression “quantity of water” is understood to mean the weight of all the water added to the initial starch for its cationization, without taking into account the water intrinsically contained in said starch. This water may be added according to multiple variants, all at once or in several portions, concomitantly or not, to any of the other components of the resulting reaction medium. This quantity of water comprises the water optionally used to:
- the method according to the invention is, more interestingly still, characterized in that the cationization reaction is carried out in the presence of limited quantities of water, corresponding to a ratio R of between 1/1000 and 1/2.
- a method according to the invention is characterized in that the cationization reaction is carried out in a so-called dry phase, that is in the presence of quantities of water considered to be very small, corresponding to a ratio R of between 1/1000 and 1/5. This ratio may be in particular between 1/500 and 1/10.
- the reaction of the starch with a cationic reagent is carried out in the presence of an alkaline agent.
- the reaction of the starch with a cationic reagent of the cationization method of the invention is carried out at a pH equal to or greater than 8, preferably greater than 10.
- the method according to the invention is advantageously characterized in that the cationic reagent is a tertiary amine or a quaternary ammonium salt.
- the method according to the invention makes it possible to prepare a legume-derived cationic starch, characterized in that it has a nitrogen level of between 0.1 and 4%, preferably between 0.3 and 2%.
- the method according to the invention provides a legume-derived cationic starch having a relatively high nitrogen level, that is between 0.4 and 1.8%, preferably between 0.5 and 1.5%.
- a cationic legume-derived starch having a nitrogen level at least equal to 0.5%, in particular of between 0.5 and 1.5%, constitutes a novel industrial product.
- Such a starch, and more generally any legume-derived cationic starch according to the present invention is useful in particular, in its soluble form, as an additive in the preparation of compositions of sizing agents used in paper-making, which are reactive with cellulose, such as alkenylsuccinic acid anhydrides (ASA) and alkylketene dimers (AKD), or not.
- ASA alkenylsuccinic acid anhydrides
- ALD alkylketene dimers
- compositions containing optical brighteners, dyes and/or synthetic polymers in particular polyacrylamides or polyvinylamines.
- agents in particular anionic starches as described for example in European patent EP 0 282 415 or in international patent application WO 00/75425, filed by the applicant, as an agent for the retention of fine fibers and of fillers, in particular inorganic fillers, or as a dewatering agent and/or for improving the physical characteristics of papers.
- aqueous starchy composition containing at least one solubilized, legume-derived cationic starch, said cationic starch preferably having a weight-average molecular mass of less than 50 million daltons, preferably less than 5 million daltons, obtained by a hydrolysis treatment carried out before, during and/or after its cationization, preferably after its cationization.
- Said starchy composition, in particular aqueous starchy composition, thus obtained is then useful as an agent for reducing interfering substances contained in water circuits and/or retained on process equipment, in particular for paper-making.
- the legume-, in particular pea-, derived cationic starch is of interest in any method for the manufacture of paper, characterized in that it uses said cationic starch (or any starchy composition containing it) in the preparation circuits and/or the circuits of the wet end of a paper-making machine, in particular via a sizing composition, a composition containing at least one agent selected from optical brighteners, dyes and synthetic polymers, in particular polyacrylamides and polyvinylamines, a composition useful as an agent for reducing interfering substances contained in water circuits and/or retained on process equipment, in particular paper-making equipment, and/or directly inside the cellulosic paste suspension, in the form of a dilute aqueous paste, as an agent for retaining fines and fillers, in particular inorganic fillers, for dewatering and/or for improving the physical characteristics of paper.
- a sizing composition a composition containing at least one agent selected from optical brighteners, dyes and synthetic polymers, in particular polyacryl
- any folding cardboard or paper obtained by any method involving, in these various respects, a legume-derived cationic starch according to the invention (or any starchy composition containing it) and capable of containing said cationic starch.
- amylose content of the legume starch is greater than 30%.
- the cationization reaction of legume starch consists in introducing a cationic group into the starch and is carried out by chemical reaction, by condensing a cationic reagent with a hydroxyl group of the starch.
- the cationization reaction may be carried out in a manner known per se, with the aid of cationic reagents as described for example in “Starch Chemistry and Technology”—Vol. II—Chapter XVI—R. L. WHISTLER and E. F. PASCHALL—Academic Press (1967).
- the reaction may be carried out in an aqueous phase, the starch being provided in general in granular or gelatinized form, the temperature, time and catalysis conditions being well known to any person skilled in the art.
- reaction may be carried out in a dry phase, in the same granular or gelatinized forms.
- the cationization reaction is carried out on a starch in granular form, in an alkaline medium and with nitrogenous reagents based on tertiary amines or quaternary ammonium salts.
- the cationic reagent is in the epoxy form or the chloro form corresponding respectively to the following formulae: corresponding to tertiary or quaternary derivatives depending on whether one of the substituents of the nitrogen atom is hydrogen or not, said substituents being, insofar as they are not a hydrogen atom, preferably identical and selected from methyl or ethyl radicals, X being Cl, Br or I and X being Cl, Br or I.
- the cationic reagent corresponds to one of the two formulae reproduced above in which R 1 , R 2 and R 3 are additionally preferably identical and selected from methyl and ethyl radicals, it being possible for one of the substituents R 1 , R 2 or R 3 to be a hydrogen atom.
- 2-dialkylaminochloroethane hydrochlorides such as 2-diethylaminochloroethane hydrochloride or glycidyl-trimethylammonium halides and their halohydrins, such as N-(3-chloro-2-hydroxypropyl)trimethylammonium chloride, the latter reagent being preferred.
- the amounts of reagent used are then selected such that the resulting cationic starches have the desired nitrogen level.
- the legume-derived cationic starches thus obtained have good capacity for dissolution by any continuous or batch, thermal or thermomechanical means, in particular using live steam, and/or by chemical means, in particular by means of an alkaline agent.
- Legume-, in particular pea-, derived cationic starches whose amylose content is between 30 and 60% are more particularly preferred.
- amylose levels and to the degrees of substitution it is possible to suggest, for example, taking into account the ease of supply of legume, in particular pea, starches, to preferably combine a high amylose level, which is a factor in the increase in the gelatinization point, in particular under alkaline conditions, and a high DS, which is a factor involved in its reduction.
- the cationic products in accordance with the invention or obtained according to the method of the invention may be amphoteric starches, that is to say starches which may have, in addition to the cationic groups which are the main subject of the invention, anionic groups, in particular phosphated groups, that are natural and/or supplied, sulfonated groups, carboxymethylated groups, sulfated groups, succinylated, in particular sulfo-succinylated, groups, as recommended in particular in European patent EP 282 415, in the name of the applicant.
- hydrophobic anionic groups in particular by esterification with a dicarboxylic acid anhydride, in particular, that is branched, as is described in European patent EP 742 316, or that is modified by n-alkenylsuccinylation, in particular by n-octenyl-succinylation or n-dodecylsuccinylation, as described in European patent EP 786 476, both in the name of the applicant.
- crosslinking by any means known to a person skilled in the art, is a parameter of choice for ensuring that the cationization reaction proceeds without any risk of gelatinization or even of a more limited but potentially harmful manifestation such as a mere swelling of the starch.
- the applicant company in fact considers that the cationic legume starches according to the present invention, including those whose nitrogen level is at least equal to 0.5%, and which are additionally crosslinked, also constitute novel industrial products that are particularly of interest in the paper-making sector.
- the crosslinking step may have been carried out beforehand, simultaneously and/or after the cationization step.
- cationic starches on a paper-making machine, under the usual conditions for adding a dilute paste, either at a point close to the headbox, but also for. incorporation further upstream of the circuit or for spraying, alone or in combination with other agents, in particular anionic starches as described for example in European patent EP 0 282 415 or International patent application WO 00/75425, filed by the applicant, good retention of the fine fibers and of the fillers, in particular inorganic fillers, is noted accompanied by good dewatering indicated in particular by efficient machine speeds.
- LR tensile strength
- Mullen Index bursting strength
- tear strength or the stiffness are, without any other variation, capable of satisfying persons skilled in the art, in particular compared with other cationic cereal or tuber starches.
- optical properties such as for example the whiteness and the opacity
- surface properties such as the smoothness or the roughness
- printability for the optical properties.
- the quantities of cationic starch according to the invention that are introduced into the circuits for preparation and/or of the wet end of a paper-making machine, either into the suspension of cellulosic paste, in the form of a dilute aqueous paste, as an agent for the retention of fines and of fillers, in particular inorganic fillers, for dewatering and/or for improving the physical characteristics of the paper, are determined according to the characteristics sought or favored by persons skilled in the art compared in particular with the cellulosic paste used, the aqueous medium and its environment.
- crosslinked or noncrosslinked cationic legume starches according to the invention may, if desired, be combined with cereal- and/or tuber-derived starches, in particular with crosslinked or noncrosslinked cereal- and/or tuber-derived cationic starches intended for the paper-making sector.
- This combination may be made in particular through starchy compositions consisting of mixtures provided in any forms (solid, pasty or liquid) and combining, in any proportions, at least one cationic legume-derived starch according to the invention and at least one, preferably cationic, cereal- or tuber-derived starch.
- the cationic legume-derived starch in accordance with the invention may be combined with an anionic starch, said anionic starch being derived from cereals, tubers and/or legumes.
- This combination may be in the form described in European patent EP 282 415 by which said cationic starch, on the one hand, and said anionic starch, on the other hand, are introduced into the fibrous composition, at two or more points of the paper-making plant, separately from each other.
- novel starchy compositions containing at least one legume-derived cationic starch in accordance with the invention and at least one anionic starch, said anionic starch being preferably derived from cereals, tubers and/or legumes.
- Example 11 shows the benefit of compositions comprising 75% of a cationic, in particular crosslinked, pea starch, and 25% of an anionic corn starch, in particular in terms of dewatering and physical characteristics.
- Example 12 demonstrates the excellent properties presented by a composition containing a cationic pea starch and an anionic pea starch, in proportions identical to the preceding ones.
- the anionic pea starch may be advantageously succinylated or sulfosuccinylated, this being with a degree of substitution (DS) of between 0.01 and 1, in particular between 0.02 and 0.50.
- the applicant company considers, in this regard, that numerous anionic legume starches are novel products. That is in particular the case for the sulfosuccinylated derivatives.
- Example 15 aims to demonstrate that the proportions can be significantly varied. For a 55/45 ratio, the efficiencies remain completely satisfactory.
- the anionic starch may, apart from being derived from various botanical sources, contain various groups selected from phosphated groups that are natural and/or supplied, sulfonated groups, carboxymethylated groups, sulfated groups, succinylated groups, especially that are sulfosuccinylated, and hydrophobic groups, especially esters of a dicarboxylic acid, in particular that is branched, or that are n-alkenylsuccinylated, especially n-octenylsuccinylated or n-dodecyl-succinylated.
- the cationic starches according to the invention are particularly suitable for the production of emulsions or dispersions of all sorts of sizing agents, whether they are reactive with cellulose, such as in particular ketene dimers or ketene multimers, acid anhydrides, in particular succinic anhydrides, organic isocyanates; or nonreactive such as rosins or derivatives thereof, fatty acids and derivatives thereof, acidic resins, esters or amides thereof, waxes and derivatives thereof, and the various mixtures of agents.
- cellulose such as in particular ketene dimers or ketene multimers, acid anhydrides, in particular succinic anhydrides, organic isocyanates; or nonreactive such as rosins or derivatives thereof, fatty acids and derivatives thereof, acidic resins, esters or amides thereof, waxes and derivatives thereof, and the various mixtures of agents.
- the behavior of the cationic starches according to the invention for this use is remarkable, in terms of stability of the pastes at the concentrations used, of efficiencies during the emulsification or dispersion of said sizing agents, of stability of said emulsions or dispersions in concentrated form, suitable for storage, for some of them, or in dilute form, suitable for use for the great majority.
- the cationic starches according to the invention are particularly suitable for the preparation of compositions containing at least one agent chosen from optical brighteners, dyes and synthetic polymers such as for example polyacrylamides and polyvinylamines.
- the cationic starches according to the invention could be suitable for the production of particular compositions such as those designated in the present invention as “secondary additive for paper-making” which is useful as agent for reducing interfering substances, in particular of anionic nature, which are contained in water circuits and/or retained on paper-making process equipment or as “additive for the treatment of water for industrial use”, which is useful for the clarification and/or purification of water derived from human or industrial activities or intended for said activities.
- secondary additive for paper-making which is useful as agent for reducing interfering substances, in particular of anionic nature, which are contained in water circuits and/or retained on paper-making process equipment or as “additive for the treatment of water for industrial use”, which is useful for the clarification and/or purification of water derived from human or industrial activities or intended for said activities.
- the hydrolysis treatment performed may advantageously consist of an acid hydrolysis, in particular with hydrochloric acid, or more advantageously still of an enzymatic hydrolysis, with at least one enzyme chosen in particular from amylases, in particular ⁇ -amylases, and transferases, in particular cyclodextrin glycosyltransferases and branching enzymes.
- legume-derived cationic starches may be useful, for example, as flocculating, viscosity-promoting, rheology-modifying, agglomerating or encapsulating agents, in other fields of application such as those of the chemical or detergent industries, hydraulic binders, facing products such as plaster and coatings, extraction of ores, drilling, labeling, cosmetics, paints and varnish, inks, adhesive compositions in general or thermoplastic materials.
- a pea starch is available whose amylose content is 36.7% and the intrinsic water content is about 12%. Starting with this initial starch, an aqueous slurry containing 35% dry matter content is prepared which is brought to a temperature of 39° C.
- the preparation is then brought into an alkaline medium with 2.7% of dry sodium hydroxide relative to the initial starch, added in the form of a solution at 35 g/l.
- a starting reaction medium which has a ratio R as defined above of the order of about 2.35/1.
- the reaction is maintained for 15 hours.
- the medium is filtered and dried.
- a cationic pea starch which has a fixed nitrogen level of 0.43%, corresponding to a degree of substitution (DS) of 0.052.
- a 50% citric acid solution is then spread over the reaction mixture, at the outlet of the maturation unit, in an amount of 1.2% of said solution expressed relative to the commercial material.
- a cationic pea starch which has a fixed nitrogen level of 0.39%, corresponding to a degree of substitution (DS) of 0.047.
- a cationic starch according to the invention was prepared from a pea starch having an amylose content of 36.7% and called AP1, for a nitrogen level of 0.44%.
- a second one was prepared from a pea starch of the same amylose content but, furthermore, crosslinked with 30 parts per million (30 ppm) of sodium trimeta-phosphate, and called APR1, for an identical, fixed nitrogen level of 0.44%.
- a cationic corn starch AM1 a crosslinked, 50/50 cationic mixture of corn starch and potato starch AMPR1, two potato starches of different cationicities FP1 and FP2, having a fixed nitrogen level of 0.63%, 0.55%, 0.37% and 0.65%, respectively.
- Pastes are prepared in a “Jet-Cooker”, that is continuously, for 1 minute at 120° C., and such that their final dry solids content is 2%.
- the method makes it possible to estimate the stability of the pastes to cooling by evaluating their temperature for conversion from a true solution to a gel, corresponding to the retrogradation temperature, by monitoring the elastic and viscous moduli.
- the cationic pea starch pastes have a remarkable stability to cooling.
- Pastes are again prepared as performed in example 3, that is in a “Jet-Cooker”, for a final dry matter content of 2%.
- the “CARRI-MED CSL 2 500” rheometer is again used in coaxial geometries 13.83/15 mm.
- Pastes are prepared in a “Jet-Cooker”, that is continuously, for 1 minute at 120° C., but the final dry solids content is now 4%.
- emulsions are prepared in a laboratory in a “Bol CENCO” at a speed of 20 000 revolutions per minute (rpm), for 5 minutes at 50° C., with a C18 alkenyl succinic acid anhydride, in a cationic starch/ASA ratio R1equal to 0.4.
- the emulsions obtained are diluted 10 fold with a paste of the same cationic starch so that, in particular, the cationic starch/ASA ratio R2 is equal to 0.8 and their stability is observed.
- the dilute emulsions obtained in the preceding example 5 are used, for internal sizing of a paper, in a supply consisting of 80% bleached kraft pulp and 20% coated broke, in an amount of 0.25% dry matter relative to the dry pulp.
- the suspension thus obtained then receives 30% calcium carbonate calculated relative to the dry pulp, and then 0.6% of the same bulk cationic starch.
- the cationic pea starches show particularly advantageous efficiencies from these points of view.
- the aim in this case, is to study the influence of long contacts when the cationic starches are introduced at a point situated upstream of the circuit.
- the cooking conditions of example 3 are repeated and the AP1 and AMPR1 products are directly compared when they are introduced into a pulp consisting of 52% of resinous pulp and 48% of foliage pulp, which has received in addition 61% of broke expressed relative to the resinous+foliage combination.
- the dose envisaged is 1.2% of dry cationic starch relative to the whole pulp.
- the contact time between the pulp and the cationic starch is 6 minutes, according to a sequence during which the shearings are intense.
- the cationic pea starch significantly improves the internal cohesion, in particular compared with the effect of a cationic mixture of corn starch and potato starch (50/50).
- this aspect combined with the shearing straight capacity, would be capable of leading to a very good dispersion of the cationic starch and of strengthening the interfiber linkage potential.
- the principle of the long contact time is only partially preserved, by considering two points of addition of cationic pea starch according to the invention, one upstream (0.6%), for a contact time of 5 minutes, the other at the inlet of the headbox (0.3%), compared with a cationic corn starch and, as in example 7, with a cationic mixture of corn starch and potato starch.
- the cationic pea starch is used for the preparation of an emulsion with alkenylsuccinic acid anhydride in a manner similar to that used in example 5.
- the cationic pea starch added to the bulk provides, all other conditions being equal, compared with prior art products, a better hydrophobic character and increases the resistance of the paper to delamination.
- compositions of example 8 are used.
- measurements of dewatering are performed on the suspensions of pulp having received a paste of a cationic starch according to the invention or a paste of cationic starch according to the prior art.
- 0.6% + 0.3% of cationic Dewatering time starch (in seconds) FP1 10.6 AMPR1 10.17 AP1 9.93 APR1 7.8
- the dewatering time decreases substantially with the use of cationic starch according to the invention, compared with cationic products of the prior art.
- APR1 cationic crosslinked pea starch
- a cationic pea starch having a nitrogen level of 0.55% and obtained from a reaction mixture whose ratio R was adjusted to about 2/1,
- a cationic pea starch having a nitrogen level of 0.63% and obtained from a reaction mixture whose ratio R was adjusted to about 1/15.
- Various cationization reactions are performed on native pea starches, collected from a batch having an amylose content of 35.3%, according to the so-called dry procedure disclosed in example 2. Some of them are in addition subsequently crosslinked with sodium trimetaphosphate (TMPNa).
- TMPNa sodium trimetaphosphate
- HI-CAT®1286A a cationic potato starch marketed by the applicant company, of a combination of 75 parts of cationic starch per 25 parts of VECTOR®A080, a corn starch with an anionic character marketed by the applicant company.
- the aim is easily achieved with the sample having the reference 076, that is corresponding to the cationic pea starch which was subjected to the highest degree of crosslinking.
- a mixture (C 5 ) of cationic pea starch and of anionic pea starch (75/25) is subjected to the same pair HI-CAT®1286A/VECTOR®A080.
- the pea starch slurry containing 34% dry solids content and at 25° C. is placed in a slightly oxidizing medium and regulated at pH 6.5 with sodium hydroxide. It receives 4.7% anhydrous monosodium phosphate (dry/dry).
- the slurry is filtered and then readjusted to 36.5% on solids. 6.3% of sodium sulfate is added to it (dry/dry). The pH is adjusted to 8.0. 20% of commercial sodium bisulfite is then supplied, calculated relative to the dry starch and left in contact for 10 hours.
- the internal cohesion and, in particular, the burst factor reach very satisfactory values.
- the comparative data, in the wet end of the machine, are the following: Total Retention of retention the fillers Dewatering (in %) (in %) (Akribi) HI-CAT ®5283A 83.1 70.4 15.7 Ref. 076 82.9 71.9 16.1 Ref. 073 82.7 71.5 15.2
- the cationic, in particular crosslinked, pea starch makes it possible to obtain, for similar operating conditions, better physical characteristics.
- the high level of introduction (3.5%) is beneficial to the burst factor of the paper.
- a novel cationic pea starch is prepared as defined in example 11, that is ref. 078: 0.8% of nitrogen—crosslinked with 80 ppm of TMPNa.
- mixtures are prepared as described in example 11 but this time in a ratio corresponding to 55% of cationic starch per 45% of anionic starch.
- D 3 exhibits unacceptable dewatering efficiencies
- the other mixtures tested have similar behaviors, in particular D 2 and D′ 2 prepared exclusively from pea starch derivatives.
- the pair D 1 combining cationic pea starch and anionic corn starch, confers physical properties which are all the more advantageous since they can be compared with a remarkable behavior on a machine.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Paper (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/718,251 US8911593B2 (en) | 2003-05-12 | 2010-03-05 | Method for the cationisation of legume starches, cationic starches thus obtained applications thereof |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0305714A FR2854898B1 (fr) | 2003-05-12 | 2003-05-12 | Procede de cationisation d'amidons issus de legumineuses, amidons cationiques ainsi obtenus et leurs applications |
| FR03/05714 | 2003-05-12 | ||
| PCT/FR2004/001143 WO2004101623A2 (fr) | 2003-05-12 | 2004-05-11 | Procede de cationisation d’amidons issus de legumineuses, amidons cationiques ainsi obtenus et leurs applications |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/718,251 Division US8911593B2 (en) | 2003-05-12 | 2010-03-05 | Method for the cationisation of legume starches, cationic starches thus obtained applications thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060225855A1 true US20060225855A1 (en) | 2006-10-12 |
Family
ID=33306310
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/555,288 Abandoned US20060225855A1 (en) | 2003-05-12 | 2004-05-11 | Method for the cationisation of legume starches, cationic starches thus obtained applications thereof |
| US12/718,251 Expired - Lifetime US8911593B2 (en) | 2003-05-12 | 2010-03-05 | Method for the cationisation of legume starches, cationic starches thus obtained applications thereof |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/718,251 Expired - Lifetime US8911593B2 (en) | 2003-05-12 | 2010-03-05 | Method for the cationisation of legume starches, cationic starches thus obtained applications thereof |
Country Status (11)
| Country | Link |
|---|---|
| US (2) | US20060225855A1 (cg-RX-API-DMAC7.html) |
| EP (1) | EP1622944B1 (cg-RX-API-DMAC7.html) |
| JP (2) | JP2007500274A (cg-RX-API-DMAC7.html) |
| KR (1) | KR101099937B1 (cg-RX-API-DMAC7.html) |
| CN (1) | CN100491402C (cg-RX-API-DMAC7.html) |
| CA (1) | CA2524481C (cg-RX-API-DMAC7.html) |
| EA (1) | EA012064B1 (cg-RX-API-DMAC7.html) |
| ES (1) | ES2433040T3 (cg-RX-API-DMAC7.html) |
| FR (1) | FR2854898B1 (cg-RX-API-DMAC7.html) |
| WO (1) | WO2004101623A2 (cg-RX-API-DMAC7.html) |
| ZA (1) | ZA200509055B (cg-RX-API-DMAC7.html) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070169903A1 (en) * | 2006-01-25 | 2007-07-26 | Covarrubias Rosa M | Papermaking processes using coagulants and optical brighteners |
| US20100058953A1 (en) * | 2006-12-04 | 2010-03-11 | Roquette Freres | Use of a leguminous starch derivative for coating paper or folding carton and coating composition containing same |
| US20100282425A1 (en) * | 2006-04-24 | 2010-11-11 | Asko Karppi | Cationic polysaccharide, its preparation and use |
| US20110082290A1 (en) * | 2009-10-07 | 2011-04-07 | Akzo Nobel Chemicals International B.V. | Superhydrophilic amphiphilic copolymers and processes for making the same |
| US20110081309A1 (en) * | 2009-10-07 | 2011-04-07 | Fevola Michael J | Compositions comprising a superhydrophilic amphiphilic copolymer and a micellar thickener |
| WO2012076163A2 (en) | 2010-12-10 | 2012-06-14 | Cargill, Incorporated | Improved starch composition for use in paper manufacture |
| WO2015006272A1 (en) * | 2013-07-10 | 2015-01-15 | Ecolab Usa Inc. | Enhancement of sheet dewatering using soy flour or soy protein |
| US9114154B2 (en) | 2009-10-07 | 2015-08-25 | Johnson & Johnson Consumer Inc. | Compositions comprising superhydrophilic amphiphilic copolymers and methods of use thereof |
| US10323158B2 (en) | 2011-11-18 | 2019-06-18 | Roquettes Freres | Coating slips based on partially soluble dextrins of high molecular weight |
| CN111234041A (zh) * | 2020-02-27 | 2020-06-05 | 安徽工程大学 | 一种酸解-交联-磺化复合变性淀粉浆料及其制备方法 |
Families Citing this family (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ATE543837T1 (de) * | 2007-08-02 | 2012-02-15 | Hercules Inc | Modifizierte vinylaminhaltige polymere als zusätze bei der papierherstellung |
| CN101407553B (zh) * | 2008-11-20 | 2010-09-22 | 广西大学 | 一种歧化松香胺基季铵型阳离子木薯淀粉的微波合成方法 |
| EP2199462A1 (en) * | 2008-12-18 | 2010-06-23 | Coöperatie Avebe U.A. | A process for making paper |
| CN101509211B (zh) * | 2009-03-13 | 2011-05-04 | 东莞市汇美淀粉科技有限公司 | 一种阳离子涂布淀粉制备方法 |
| WO2010119000A2 (en) * | 2009-04-15 | 2010-10-21 | Akzo Nobel Chemicals International B.V. | Deposition from surfactant systems |
| CN101949108B (zh) * | 2010-10-29 | 2013-04-24 | 天津市奥东化工有限公司 | 聚乙烯亚胺改性akd施胶剂及其制备方法 |
| CN101967772B (zh) * | 2010-10-29 | 2013-04-24 | 天津市奥东化工有限公司 | Akd交联型乳化剂的制备方法 |
| CN102276743B (zh) * | 2011-07-09 | 2013-06-19 | 大连理工大学 | 阴离子聚糖衍生物 |
| CN102535247B (zh) * | 2011-11-15 | 2015-10-21 | 青岛科技大学 | 高取代度阳离子淀粉改性akd的制备方法 |
| FR2998563B1 (fr) * | 2012-11-28 | 2014-12-19 | Roquette Freres | Procede d'epaississement ou de deshydratation de boues |
| CN103205230B (zh) * | 2013-05-08 | 2014-10-29 | 南京林业大学 | 一种利用苜蓿草粉制备生物质胶黏剂的制作方法 |
| CA2954198C (en) * | 2014-07-07 | 2017-09-19 | Roquette Italia S.P.A. | A polymer based on a maltodextrin for encapsulating organic compounds |
| CN105131137B (zh) * | 2015-08-03 | 2017-08-25 | 海南金海浆纸业有限公司 | 阳离子淀粉及其制备方法、由阳离子淀粉制备的造纸增强剂及其制备方法 |
| KR101940925B1 (ko) * | 2017-10-27 | 2019-01-21 | 경희대학교 산학협력단 | 무정형 입자 양성화 전분의 제조방법 |
| WO2019163965A1 (ja) * | 2018-02-22 | 2019-08-29 | 三和澱粉工業株式会社 | 飲食品利用に適した食物繊維高含有澱粉 |
| WO2021257948A1 (en) * | 2020-06-18 | 2021-12-23 | Archer Daniels Midland Company | Low cellulosic non-wood fiber products and methods of making the same |
| CN113980446B (zh) * | 2021-12-23 | 2022-04-26 | 北京禾易和科技有限公司 | 一种复合改性淀粉基环保材料、制备方法及应用 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3422087A (en) * | 1965-03-08 | 1969-01-14 | Philip D Caesar | Process for forming cationic polysaccharide ethers and product |
| US5122231A (en) * | 1990-06-08 | 1992-06-16 | Cargill, Incorporated | Cationic cross-linked starch for wet-end use in papermaking |
| US20020139501A1 (en) * | 1999-10-19 | 2002-10-03 | Weyerhaeuser Company | Granular polysaccharide having enhanced surface charge |
| US20020170693A1 (en) * | 2001-03-13 | 2002-11-21 | Merrette Michele M. | Starches for use in papermaking |
| US20040112559A1 (en) * | 2000-06-13 | 2004-06-17 | Du Bourg Regis Merle | Paper-making or non paper-making use of a starchy composition containing a selected cationic starchy material |
| US6841039B1 (en) * | 1999-06-04 | 2005-01-11 | Roquette Freres | Composition and method for the production of planar structures, especially structures made of paper or cardboard |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3017295A (en) * | 1958-07-08 | 1962-01-16 | Albemarle Paper Mfg Company | Coated paper and paperboard and process for making same |
| US3996060A (en) * | 1974-06-10 | 1976-12-07 | A. E. Staley Manufacturing Company | Stilt material for pressure sensitive microencapsulated coatings |
| US3996061A (en) * | 1974-06-10 | 1976-12-07 | A. E. Staley Manufacturing Company | Stilt material for pressure sensitive microencapsulated coatings |
| US4127563A (en) * | 1977-06-29 | 1978-11-28 | The United States Of America As Represented By The Secretary Of Agriculture | Low pH preparation of cationic starches and flours |
| FR2434821A1 (fr) | 1978-08-31 | 1980-03-28 | Roquette Freres | Procede de cationisation de l'amidon, nouveaux amidons cationises ainsi obtenus et leurs applications |
| DE2949886A1 (de) * | 1979-12-12 | 1981-06-19 | Degussa Ag, 6000 Frankfurt | Verfahren zur herstellung kationischer staerkeaether |
| US4281109A (en) * | 1980-03-03 | 1981-07-28 | National Starch And Chemical Corporation | Pollution-free cationization of starch |
| FR2557166B1 (fr) | 1983-10-27 | 1986-07-04 | Roquette Freres | Additif cationique de masse pour la fabrication du papier comprenant un melange d'au moins un amidon de cereale et d'au moins un amidon de tubercule cationique et son procede de fabrication |
| FR2612213B1 (fr) | 1987-03-13 | 1989-06-30 | Roquette Freres | Procede de fabrication du papier |
| EP0620121A3 (en) | 1993-04-15 | 1995-11-15 | Minnesota Mining & Mfg | Vegetable starch as a spacing material for carbon-free papers used in an offset printing press and in copiers / duplicators. |
| CA2132685A1 (en) * | 1994-09-22 | 1996-03-23 | Robert T. Tyler | An aqueous alcoholic alkaline process for cationization of normal, waxy and high amylose starches from legume, cereal, tuber and root |
| NL1001218C2 (nl) | 1995-09-15 | 1997-03-20 | Roermond Papier Bv | Papier en karton omvattende eiwitmateriaal. |
| BR9910991B1 (pt) | 1998-06-10 | 2009-01-13 | processo para fabricar papel, papel, e, uso de um amido aniânico. | |
| JP2001115121A (ja) * | 1999-10-18 | 2001-04-24 | Shikishima Starch Kk | 層間接着剤およびそれを用いた抄紙方法 |
| EP1103655A1 (en) | 1999-11-25 | 2001-05-30 | Coöperatieve Verkoop- en Productievereniging van Aardappelmeel en Derivaten 'AVEBE' B.A. | A process for making paper |
| AU2001257144B2 (en) * | 2000-08-10 | 2005-12-01 | Cargill Incorporated | Use of starch compositions in papermaking |
| WO2002074814A1 (en) * | 2001-03-16 | 2002-09-26 | National Starch And Chemical Investment Holding Corporation | Batch cookable modified high amylose starches and their use in paper sizing applications |
-
2003
- 2003-05-12 FR FR0305714A patent/FR2854898B1/fr not_active Expired - Fee Related
-
2004
- 2004-05-11 ES ES04742699T patent/ES2433040T3/es not_active Expired - Lifetime
- 2004-05-11 US US10/555,288 patent/US20060225855A1/en not_active Abandoned
- 2004-05-11 EA EA200501782A patent/EA012064B1/ru active IP Right Revival
- 2004-05-11 ZA ZA200509055A patent/ZA200509055B/en unknown
- 2004-05-11 EP EP04742699.4A patent/EP1622944B1/fr not_active Expired - Lifetime
- 2004-05-11 CN CNB2004800131498A patent/CN100491402C/zh not_active Expired - Fee Related
- 2004-05-11 CA CA2524481A patent/CA2524481C/fr not_active Expired - Fee Related
- 2004-05-11 JP JP2006530345A patent/JP2007500274A/ja not_active Withdrawn
- 2004-05-11 KR KR1020057021502A patent/KR101099937B1/ko not_active Expired - Fee Related
- 2004-05-11 WO PCT/FR2004/001143 patent/WO2004101623A2/fr not_active Ceased
-
2010
- 2010-03-05 US US12/718,251 patent/US8911593B2/en not_active Expired - Lifetime
-
2012
- 2012-03-30 JP JP2012080931A patent/JP2012126921A/ja active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3422087A (en) * | 1965-03-08 | 1969-01-14 | Philip D Caesar | Process for forming cationic polysaccharide ethers and product |
| US5122231A (en) * | 1990-06-08 | 1992-06-16 | Cargill, Incorporated | Cationic cross-linked starch for wet-end use in papermaking |
| US6841039B1 (en) * | 1999-06-04 | 2005-01-11 | Roquette Freres | Composition and method for the production of planar structures, especially structures made of paper or cardboard |
| US20020139501A1 (en) * | 1999-10-19 | 2002-10-03 | Weyerhaeuser Company | Granular polysaccharide having enhanced surface charge |
| US20040112559A1 (en) * | 2000-06-13 | 2004-06-17 | Du Bourg Regis Merle | Paper-making or non paper-making use of a starchy composition containing a selected cationic starchy material |
| US20020170693A1 (en) * | 2001-03-13 | 2002-11-21 | Merrette Michele M. | Starches for use in papermaking |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070169903A1 (en) * | 2006-01-25 | 2007-07-26 | Covarrubias Rosa M | Papermaking processes using coagulants and optical brighteners |
| US20100282425A1 (en) * | 2006-04-24 | 2010-11-11 | Asko Karppi | Cationic polysaccharide, its preparation and use |
| US8304533B2 (en) | 2006-04-24 | 2012-11-06 | BASF SE Ludwigshafen | Cationic polysaccharide, its preparation and use |
| US8216381B2 (en) | 2006-12-04 | 2012-07-10 | Roquette Freres | Use of a leguminous starch derivative for coating paper or folding carton and coating composition containing same |
| US20100058953A1 (en) * | 2006-12-04 | 2010-03-11 | Roquette Freres | Use of a leguminous starch derivative for coating paper or folding carton and coating composition containing same |
| US20110082290A1 (en) * | 2009-10-07 | 2011-04-07 | Akzo Nobel Chemicals International B.V. | Superhydrophilic amphiphilic copolymers and processes for making the same |
| US20110081309A1 (en) * | 2009-10-07 | 2011-04-07 | Fevola Michael J | Compositions comprising a superhydrophilic amphiphilic copolymer and a micellar thickener |
| US8399590B2 (en) * | 2009-10-07 | 2013-03-19 | Akzo Nobel Chemicals International B.V. | Superhydrophilic amphiphilic copolymers and processes for making the same |
| US9114154B2 (en) | 2009-10-07 | 2015-08-25 | Johnson & Johnson Consumer Inc. | Compositions comprising superhydrophilic amphiphilic copolymers and methods of use thereof |
| US9243074B2 (en) | 2009-10-07 | 2016-01-26 | Akzo Nobel Chemicals International B.V. | Superhydrophilic amphiphilic copolymers and processes for making the same |
| US11173106B2 (en) | 2009-10-07 | 2021-11-16 | Johnson & Johnson Consumer Inc. | Compositions comprising a superhydrophilic amphiphilic copolymer and a micellar thickener |
| WO2012076163A2 (en) | 2010-12-10 | 2012-06-14 | Cargill, Incorporated | Improved starch composition for use in paper manufacture |
| US10323158B2 (en) | 2011-11-18 | 2019-06-18 | Roquettes Freres | Coating slips based on partially soluble dextrins of high molecular weight |
| WO2015006272A1 (en) * | 2013-07-10 | 2015-01-15 | Ecolab Usa Inc. | Enhancement of sheet dewatering using soy flour or soy protein |
| CN111234041A (zh) * | 2020-02-27 | 2020-06-05 | 安徽工程大学 | 一种酸解-交联-磺化复合变性淀粉浆料及其制备方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2004101623A3 (fr) | 2005-05-12 |
| EA200501782A1 (ru) | 2006-04-28 |
| CA2524481C (fr) | 2013-09-17 |
| KR101099937B1 (ko) | 2011-12-28 |
| EA012064B1 (ru) | 2009-08-28 |
| US20100155338A1 (en) | 2010-06-24 |
| KR20060009925A (ko) | 2006-02-01 |
| WO2004101623A2 (fr) | 2004-11-25 |
| FR2854898A1 (fr) | 2004-11-19 |
| ES2433040T3 (es) | 2013-12-09 |
| CN100491402C (zh) | 2009-05-27 |
| US8911593B2 (en) | 2014-12-16 |
| EP1622944A2 (fr) | 2006-02-08 |
| CN1788021A (zh) | 2006-06-14 |
| JP2012126921A (ja) | 2012-07-05 |
| EP1622944B1 (fr) | 2013-07-31 |
| FR2854898B1 (fr) | 2007-07-13 |
| JP2007500274A (ja) | 2007-01-11 |
| ZA200509055B (en) | 2007-03-28 |
| CA2524481A1 (fr) | 2004-11-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8911593B2 (en) | Method for the cationisation of legume starches, cationic starches thus obtained applications thereof | |
| CA2373555C (en) | Starches for use in papermaking | |
| US5368690A (en) | Method of papermaking using crosslinked cationic/amphoteric starches | |
| EP2192228B1 (en) | Use of cationic starch | |
| JP2008545825A (ja) | カチオン性架橋でんぷん含有でんぷん組成物およびそれらの使用 | |
| CN102257216B (zh) | 用于造纸的方法 | |
| WO2001038635A1 (en) | A process for making paper | |
| CN105940157A (zh) | 一种稳定化施胶制剂 | |
| NO152606B (no) | Analogifremgangsmaate til fremstilling av nye farmasoeytiske anvendbare 2-imidazolin-1-yl-urinstoff-og amidoforbindelser | |
| CA2550494C (en) | Paper comprising quaternary nitrogen containing cellulose ether | |
| WO2000015669A1 (en) | New cationic starch, its preparation and use | |
| RU2351609C2 (ru) | Катионные поперечно-сшитые воскообразные крахмальные продукты, способ получения крахмальных продуктов и применение в бумажных продуктах | |
| Ilindra et al. | Utilization of starch in paper industry |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ROQUETTE FRERES, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LADRET, MARIKA;DOBROGOSZCZ, EDMOND;GOMBERT, HERVE;AND OTHERS;REEL/FRAME:022294/0482 Effective date: 20051011 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |