US20060160913A1 - Flexible polyurethane foam and process for its production - Google Patents

Flexible polyurethane foam and process for its production Download PDF

Info

Publication number
US20060160913A1
US20060160913A1 US11/375,012 US37501206A US2006160913A1 US 20060160913 A1 US20060160913 A1 US 20060160913A1 US 37501206 A US37501206 A US 37501206A US 2006160913 A1 US2006160913 A1 US 2006160913A1
Authority
US
United States
Prior art keywords
polyol
polyurethane foam
flexible polyurethane
molecular weight
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/375,012
Other languages
English (en)
Inventor
Takayuki Sasaki
Shigeo Hatano
Yoshinori Toyota
Katsuji Kuribayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Assigned to ASAHI GLASS COMPANY, LIMITED reassignment ASAHI GLASS COMPANY, LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TOYOTA, YOSHINORI, HATANO, SHIGEO, KURIBAYASHI, KATSUJI, SASAKI, TAKAYUKI
Publication of US20060160913A1 publication Critical patent/US20060160913A1/en
Priority to US12/210,509 priority Critical patent/US7588121B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4072Mixtures of compounds of group C08G18/63 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/632Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers onto polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material

Definitions

  • the present invention relates to a flexible polyurethane foam having good sound absorbing properties over a wide range of from low frequency to medium frequency and a process for its production.
  • a polyurethane foam has excellent sound absorbing properties, and when it is used as a soundproofing material for automobiles, it is unnecessary to use it in combination with a thermoplastic base material as required heretofore. Further, it shows excellent soundproofing performance when used alone, and thus it is effective for weight reduction of automobiles.
  • a soundproofing material for the purpose of sound absorption or sound insulation is mounted at a dashboard portion partitioning a vehicle interior from an engine room of an automobile to take a measure to prevent intrusion of vibration or noise from the engine room into the vehicle interior.
  • a soundproofing material one having a sound insulator such as a rubber, polypropylene sheet or vinyl chloride sheet integrated on a sound absorbing material made of a porous material such as polyester fiber or flexible polyurethane foam (hereinafter referred to also as a flexible foam), has been used.
  • a flexible foam has a merit in that it can be produced inexpensively as compared with a polyester fiber and thus has been used as a sound absorbing material.
  • Patent Document 1 discloses a flexible foam having specific levels of air flowability and hardness, and a process for its production.
  • Patent Document 2 discloses a process for producing a flexible foam which is light in weight and excellent in the soundproofing performance.
  • a conventional flexible foam has been inadequate in the sound-absorbing performance in a low frequency region by itself and thus has had a problem that it is necessary to take a measure to improve the sound insulating property, for example, by bonding to the flexible foam a thermoplastic material such as a rubber containing a polyolefin as the main component.
  • a thermoplastic material such as a rubber containing a polyolefin as the main component.
  • Patent Document 3 proposes a soundproofing material made of a flexible foam alone, which shows excellent sound absorbing performance in a range of from a medium frequency to high frequency (at least 2,000 Hz), but it has had a problem that the sound absorbing performance is inadequate in a low frequency region of at most 1,000 Hz, particularly at most 500 Hz.
  • Patent Document 1 JP-B-7-59389
  • Patent Document 2 JP-A-5-209036
  • Patent Document 3 JP-A-10-121597
  • the present invention provides a process for producing a flexible polyurethane foam having improved the low frequency sound absorbing performance which used to be inadequate. Particularly, it provides a process for producing a flexible polyurethane foam which is a flexible foam having good sound absorbing performance over a wide range of from low frequency to medium frequency and which can be used as a soundproofing material for automobiles without being used in combination with another material.
  • the present invention provides the following:
  • a process for producing a flexible polyurethane foam which comprises foaming a starting material composition (E) comprising a high molecular weight polyoxyalkylene polyol (A), an organic polyisocyanate compound (B), a blowing agent (C) and a catalyst (D) in a closed mold, characterized in that at least a part of the high molecular weight polyoxyalkylene polyol (A) is a polyoxyalkylene polyol (p) having at least two hydroxyl groups on the average and having a molecular weight (Mc) per hydroxyl group of from 1,800 to 2,800 and a total unsaturation value (USV) of at most 0.08 meq/g, and that the air flowability of a flexible polyurethane foam obtained by foaming the starting material composition (E) in a thickness of 26 mm, is at most 0.085 m 3 /min; a soundproofing flexible polyurethane foam to be obtained by such a process; and a flexible polyurethane foam for an interior
  • the flexible polyurethane foam obtained by the present invention shows improved sound absorbing performance in a low frequency region in the vicinity of 500 Hz and thus is suitable as a soundproofing material for buildings or vehicles.
  • the flexible polyurethane foam according to the present invention is useful by itself as a soundproofing material for automobiles and thus is effective also for the weight reduction of automobiles.
  • a high molecular weight polyoxyalkylene polyol (A) (hereinafter referred to simply as the polyol (A)) is used.
  • the polyol (A) in the present invention is preferably one obtained by ring opening addition polymerization of an alkylene oxide in the presence of an initiator and a catalyst, and it is preferred that the average number of hydroxyl groups is at least 2, and the molecular weight (Mc) per hydroxyl group is at least 500.
  • the polyol (A) preferably has a molecular weight (Mc) per hydroxyl group of from 500 to 5,000, more preferably from 800 to 2,800, particularly preferably from 850 to 2,500.
  • the polyol (A) may be a mixture of high molecular weight polyoxyalkylene polyols having molecular weights (Mc) per hydroxyl group of at least 500, and in such a case, the average of the molecular weights (Mc) per hydroxyl group is preferably from 500 to 5,000, more preferably from 800 to 2,800, particularly preferably from 850 to 2,500.
  • the average of the molecular weights (Mc) per hydroxyl group is smaller than 500, curing of the flexible foam tends to be inadequate, whereby shrinkage is likely to take place, such being undesirable. If it exceeds 5,000, the elasticity of the foam tends to be inadequate.
  • a polyoxyalkylene polyol having a molecular weight per hydroxyl group of less than 500 may be used, but such a polyoxyalkylene polyol is classified in the after-mentioned crosslinking agent in the present invention.
  • the polyol (A) is a polyol having at least two hydroxyl groups on the average.
  • the polyol (A) may be a single use of one type or a mixture of at least two types, or may be a polyol produced by using such a mixture as an initiator, as will be described hereinafter.
  • the average number of hydroxyl groups is preferably from 2 to 8, more preferably from 2 to 4, further preferably from 2.2 to 3.9, most preferably from 2.4 to 3.7.
  • the foam tends to be too soft, and the compression set tends to deteriorate, and if the average number of hydroxyl groups exceeds 8, the foam tends to be hard, whereby the mechanical properties such as elongation, of the foam, tend to deteriorate, or the soundproofing performance tends to be impaired.
  • the number of hydroxyl groups of the polyol (A) is the same as the number of hydroxyl groups in the initiator used for its production.
  • the initiator to be used the production of the polyol (A) a compound having from 2 to 8 active hydrogen atoms, is preferred.
  • a bi- to octa-hydric alcohol, a polyhydric phenol or an amine is preferred.
  • a polyhydric alcohol such as ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, dipropylene glycol, glycerol, trimethylolpropane, pentaerythritol, diglycerol, meso-erythritol, methyl glucoside, glucose, dextrose, sorbitol or sucrose, a polyhydric phenol such as bisphenol A, pyrogallol or hydroquinone, or an amine, such as a polyamine such as ethylenediamine, diethylenediamine, diaminodiphenylmethane, hexamethylenediamine or propylenediamine, or a condensed compound obtainable by a condensation reaction of such a polyamine with a phenol resin or a novolak resin, may be mentioned.
  • a polyhydric phenol such as bisphenol A, pyrogallol or hydroquinone
  • a compound which is a polyether polyol having a low molecular weight obtained by ring opening addition polymerization of a small amount of an alkylene oxide to the above-mentioned polyhydric alcohol, polyhydric phenol or amine and which has a molecular weight per hydroxyl group of from about 200 to 500, preferably from 200 to 350, may also be used.
  • Such a compound preferably has a molecular weight of at most 1,200.
  • a compound having from 2 to 4 active hydrogen atoms is more preferred, and a bi- to tetra-hydric alcohol or a bi- to tetra-hydric low molecular weight polyether polyol is preferred.
  • a polyol produced by using a tri- or higher hydric alcohol or low molecular weight polyether polyol as an initiator is preferred, since it is thereby possible to take a balance of the soundproofing properties, foaming stability and physical properties of the flexible foam, and it is preferred to employ such a polyol as at least a part of the polyol (A).
  • These initiators may be used in combination as a mixture of two or more of them.
  • the alkylene oxide may, for example, be ethylene oxide, propylene oxide, butylene oxide or styrene oxide, and a combination of ethylene oxide and propylene oxide is preferred.
  • ethylene oxide and propylene oxide are to be combined, it is possible to employ a method wherein after ring opening addition polymerization of propylene oxide, ethylene oxide is ring-opening addition polymerized to form oxyethylene block chains at the terminals, a method (hereinafter referred to as random addition) wherein a mixture of propylene oxide and ethylene oxide is ring-opening addition polymerized to form oxypropylene/oxyethylene random polymerized chains, a method wherein ethylene oxide is block ring-opening addition polymerized to the interior of the molecular chain, or a method wherein after random addition, ethylene oxide is ring-opening addition polymerized to form oxypropylene/oxyethylene random polymerized chains in the interior of the molecule and oxyethylene block chains at the terminals.
  • polyoxyethylene block chains at the terminals, as at least a part of the polyol (A).
  • block chains may be used for from 50 to 100 mass % of the polyol (A).
  • an ordinary one may be employed.
  • potassium hydroxide, sodium hydroxide, cesium hydroxide, a phosphazenium compound, a boron trifluoride compound or a composite metal cyanide complex may, for example, be employed.
  • cesium hydroxide or a composite metal cyanide complex it is preferred to use cesium hydroxide or a composite metal cyanide complex, whereby a polyol having a low unsaturated degree can be produced, and by using it a flexible foam having proper air flowability can be produced.
  • the polyol (A) may contain fine polymer particles dispersed in the polyol.
  • Fine polymer particles are ones is having fine polymer particles stably dispersed in a base polyol as a dispersing medium, and such fine polymer particles may be an addition polymerization type polymer or a polycondensation type polymer.
  • it may be an addition polymerization type polymer such as a homopolymer or copolymer of acrylonitrile, styrene, an alkyl methacrylate, an alkyl acrylate or other vinyl monomer, or a polycondensation type polymer such as a polyester, a polyurea, a polyurethane or a melamine resin.
  • acrylonitrile, styrene or a copolymer thereof is preferred.
  • the content of the fine polymer particles is preferably from 0.1 to 10 mass %, more preferably from 1 to 10 mass %, in the polyol (A).
  • the amount of the fine polymer particles is not required to be particularly large, and if it is too much, there will be no trouble other than the economical disadvantage. Further, the presence of the fine polymer particles in the polyol (A) is not essential, but the presence is effective for the improvement of the hardness, air flowability and other physical properties of the foam. Accordingly, the fine polymer particles are preferably present in an amount of at least 1 mass %, particularly at least 3 mass %.
  • the method for dispersing the fine polymer particles may be a method of dispersing the fine polymer particles by using the polyol (A) as the base polyol, or a method wherein one having the fine polymer particles dispersed by using a part of the polyol (A) as the base polyol, is prepared and mixed with another polyol, and any other method may be employed.
  • the amount of the polyol (A) or the after-mentioned polyol (p) is calculated based on the mass excluding the fine polymer particles.
  • the polyol (A) is a polyoxyalkylene polyol (p) (hereinafter referred to also as the polyol (p)).
  • the polyol (p) is a polyoxyalkylene polyol having at least two hydroxyl groups on the average and having a molecular weight (Mc) per hydroxyl group of from 1,800 to 2,800 and a total unsaturation value (USV) of at most 0.08 meq/g, among the above-mentioned polyols (A).
  • the molecular weight (Mc) per hydroxyl group of the polyol (p) is from 1,800 to 2,800, preferably from 1,850 to 2,500. If the molecular weight (Mc) per hydroxyl group is smaller than 1,800, the hardness of the flexible foam tends to be inadequate, and shrinkage is likely to take place, such being undesirable. If the above molecular weight exceeds 2,800, the elasticity of the foam tends to be inadequate.
  • the polyoxyalkylene polyol (p) has a total unsaturation value of at most 0.08 meq/g. If the total unsaturation value exceeds 0.08 meq/g, the air flowability of the flexible foam is likely to exceed 0.085 m 3 /min, and the sound absorbing performance tends to be poor, such being undesirable.
  • the total unsaturation value is more preferably at most 0.06 meq/g, further preferably at most 0.05 meq/g, most preferably at most 0.04 meq/g.
  • the catalyst for ring opening addition polymerization of an alkylene oxide it is preferred to employ cesium hydroxide or a composite metal cyanide complex, particularly preferably a composite metal cyanide complex, as the catalyst for ring opening addition polymerization of an alkylene oxide.
  • a composite metal cyanide complex catalyst a known catalyst may be used.
  • a complex containing zinc hexacyanocobaltate as the main component, is preferred, and one having an ether and/or alcohol as an organic ligand is further preferred.
  • the organic ligand monoethylene glycol mono-tert-butyl ether or tert-butyl alcohol or glyme (ethylene glycol dimethyl ether) may, for example, be preferred.
  • the average number of hydroxyl groups in the polyol (p) is at least 2.
  • the polyol (p) is a single use of one type or a mixture of polyols having molecular weights (Mc) per hydroxyl group of from 1,800 to 2,800 and total unsaturation values (USV) of at most 0.08 meq/g. Otherwise, it may be one produced by using such a mixture as an initiator.
  • the average number of hydroxyl groups is preferably from 2 to 8, more preferably from 2 to 4, further preferably from 2.2 to 3.9, most preferably from 2.4 to 3.7.
  • the foam tends to be soft, whereby the compression set tends to deteriorate, and if the number of hydroxyl groups exceeds 8, the foam tends to be hard, the mechanical properties such as elongation of the foam tend to deteriorate, or the soundproofing performance tends to be impaired.
  • polyol (p) is preferably one having polyoxyethylene block chains at the terminals, particularly preferably one having from 5 to 25 mass % of such block chains.
  • the proportion of the polyol (p) in the polyol (A) is preferably from 5 to 100 mass %.
  • the proportion of the polyol (p) is preferably from 8 to 100 mass %, most preferably from 8 to 70 mass %.
  • the proportion of the polyol (p) in the polyol (A) is calculated based on the mass excluding the fine polymer particles.
  • polyol (A) in addition to the polyol (A), other high molecular weight polyol such as a polyester polyol may be used.
  • the amount of such other polyol is preferably at most 20 parts by mass, more preferably at most 10 parts by mass, per 100 parts by mass of the polyol (A). It is particularly preferred that no such other polyol is substantially used.
  • the organic polyisocyanate compound (B) to be used in the present invention is not particularly limited, and it may, for example, be a polyisocyanate of an aromatic type, an alicyclic type or an aliphatic type, having at least two isocyanate groups; a modified polyisocyanate obtainable by modifying such a polyisocyanate; or a mixture of two or more of such polyisocyanates.
  • a polyisocyanate such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylenepolyphenyl isocyanate (so-called crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI) or hexamethylene diisocyanate (HMDI), or a prepolymer modified product, an isocyanurate modified product, an urea modified product or a carbodiimide modified product of such a polyisocyanate may be mentioned.
  • TDI, MDI, crude MDI or a modified product thereof is preferred.
  • the amount of the organic polyisocyanate compound is usually represented by an isocyanate index ((isocyanate equivalent)/(total equivalent of all active hydrogen in the polyol, the crosslinking agent, water, etc.) ⁇ 100), and the amount of the polyisocyanate compound to be used in the present invention is preferably from 50 to 110, more preferably from 55 to 95, by the isocyanate index.
  • the blowing agent (C) is not particularly limited, but it is preferred to use at least one blowing agent selected from water and an inert gas.
  • the inert gas air, nitrogen or carbon dioxide may specifically be mentioned.
  • the blowing agent it is particularly preferred to use water.
  • the amount of such a blowing agent is not particularly limited, but in a case where water is to be used, it is preferably at most 10 parts by mass per 100 parts by mass of the polyol (A) (in a case where high molecular weight polyol is used in addition to the polyol (A), the total of the polyol (A) and such other high molecular weight polyol).
  • Other blowing agents may also be used in proper amounts depending upon the demand for e.g. foaming magnification.
  • a catalyst (D) is used.
  • a catalyst (D) an amine compound or an organic metal compound may, for example, be mentioned.
  • a tertiary amine catalyst having a molecular weight of at most 500 and having a hydroxyl group in its molecule, is preferred. If the molecular weight exceeds 500, the reactivity of the hydroxyl group in the molecule with the organic polyisocyanate tends to deteriorate, such being undesirable.
  • the tertiary amine catalyst having a molecular weight of at most 500 and having a hydroxyl group in its molecule may specifically be N,N-dimethylaminoethoxyethoxyethanol, N,N-dimethylamino-6-hexanol, N,N-dimethylaminoethoxyethanol, a compound having 2 mol of ethylene oxide added to N,N-dimethylaminoethoxyethanol, or 5-(N,N-dimethyl)amino-3-methyl-1-pentanol, but it is not limited thereto.
  • tertiary amine catalysts may also be used, such as triethylene diamine, bis(2-dimethylaminoethyl)ether and N,N,N′,N′-tetramethylhexamethylenediamine.
  • the amount of the catalyst to be used is preferably from 0.1 to 5 parts by mass per 100 parts by mass of the polyol (A) (when a high molecular weight polyol is used in addition to the polyol (A), the total amount of the polyol (A) and such other high molecular weight polyol). If the amount is more or less than this range, the reaction for curing of the isocyanate group with the active hydrogen group tends to be inadequate.
  • the amount is particularly preferably from 0.5 to 3.0 parts by mass.
  • an organic metal compound may also be used as the catalyst.
  • an organic metal compound an organic tin compound, an organic bismuth compound, an organic lead compound or an organic zinc compound may, for example, be mentioned.
  • the amount of such an organic metal compound to be used is preferably less than 1.0 part by mass, particularly preferably from 0.005 to 1.0 part by mass, per 100 parts by mass of the polyol (A) (when other high molecular weight polyol is used in addition to the polyol (A), the total amount of the polyol (A) and such other high molecular weight polyol).
  • a crosslinking agent may be used.
  • a compound having at least two active hydrogen-containing groups selected from hydroxyl groups, primary amino groups and secondary amino groups is preferred.
  • the number of active hydrogen-containing groups is preferably from 2 to 8.
  • the molecular weight per active hydrogen-containing group of the crosslinking agent is preferably from 30 to less than 500, more preferably from 30 to 200. Two or more crosslinking agents may be used in combination.
  • a crosslinking agent specifically, a compound such as ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, dipropylene glycol, glycerol, trimethylolpropane, pentaerythritol, diglycerol, monoethanolamine, diethanolamine, triethanolamine, bisphenol A, ethylenediamine, 3,5-diethyl-2,4(or 2,6)-diaminotoluene (DETDA), 2-chloro-p-phenylenediamine (CPA), 3,5-bis(methylthio)-2,4(or 2,6)-diaminotoluene, 1-trifluoromethyl-3,5-diaminobenzene, 1-trifluoromethyl-4-chloro-3,5-diaminobenzene, 2,4-toluenediamine, 2,6-
  • a low molecular weight polyoxyalkylene polyol may also be used.
  • the crosslinking agent is used preferably in an amount of from 0.1 to 20 parts by mass, particularly preferably from 0.5 to 10 parts by mass, per 100 parts by mass of the polyol (A).
  • a foam stabilizer is used in many cases to form good foams.
  • a foam stabilizer a silicone foam stabilizer or a fluorinated compound type foam stabilizer may, for example, be mentioned.
  • various known additives and adjuvants may be used as the case requires, such as an emulsifier, an aging preventive agent such as an antioxidant or an ultraviolet absorber, a filler such as calcium carbonate or barium sulfate, a plasticizer, a colorant, a flame retardant, an anti-fungus agent and a cell opener.
  • the present invention is directed to a process for producing a flexible polyurethane foam, which comprises foaming a starting material composition (E) comprising a high molecular weight polyoxyalkylene polyol (A), an organic polyisocyanate compound (B), a blowing agent (C) and a catalyst (D) in a closed mold, and is characterized in that the air flowability of a flexible polyurethane foam obtained by foaming the starting material composition (E) in a thickness of 26 mm, is at most 0.085 m 3 /min.
  • the flexible polyurethane foam obtained by foaming in a thickness of 26 mm will be referred to also as the 26 mm thick test sample. This sample is obtained by foaming by means of a closed mold having a thickness of 26 mm.
  • the air flowability is a numerical value measured by the method in accordance with JIS K6400 method B (1997).
  • the starting material composition (E) which, when formed into the 26 mm thick test sample, has an air flowability of at most 0.085 m 3 /min, it is possible to obtain a flexible polyurethane foam which is excellent in the sound absorbing performance in a low frequency region which used to be inadequate by a conventional flexible polyurethane foam alone, without impairing the sound absorbing performance in the medium frequency region which used to be good.
  • the air flowability when it is formed into the 26 mm thick test sample is preferably at most 0.030 m 3 /min, more preferably at most 0.025 m 3 /min.
  • the sound absorption characteristic at 500 Hz is preferably at least 0.3, and the sound absorption characteristic at 2,000 Hz is preferably at least 0.55.
  • the sound absorption characteristics can be measured by the method in accordance with JIS A1405 method (1963). If the sound absorption characteristic at 500 Hz is smaller than 0.3, the sound absorbing performance in the low frequency region tends to be inadequate, and as a sound-insulating material for an automobile, it will be obliged to use it in combination with another material. If the sound absorption characteristic at 2,000 Hz is smaller than 0.55, the sound absorbing performance in the medium frequency region tends to be inadequate, whereby it tends to be poor in the performance as a soundproofing material, particularly as a soundproofing material for automobiles.
  • the sound absorption characteristic at 500 Hz is at least 0.35, particularly preferably at least 0.4.
  • the sound absorption characteristic at 2,000 Hz is preferably at least 0.57, particularly preferably at least 0.6.
  • the F-type hardness of the flexible foam of the present invention is preferably at most 80.
  • the F-type hardness is at most 80, a good soundproofing effect can be obtained, and if the F-type hardness is more than 80, the soundproofing effect tends to be poor, such being undesirable.
  • the F-type hardness is preferably at least 40.
  • the foam density of the flexible polyurethane foam of the present invention is preferably at most 120 kg/m 3 and is preferably from 60 to 120 kg/m 3 . If the foam density exceeds this range, the mass of the flexible foam becomes large, such being not acceptable for weight reduction of automobiles in recent years, and if it is less than the range, the soundproofing effect tends to be low, such being undesirable.
  • the foam density is particularly preferably from 80 to 100 kg/m 3 .
  • the rebound resilience is preferably from 30 to 50%. If the rebound resilience exceeds this range, the energy attenuation of the foam tends to be low, and the acoustic characteristics tend to deteriorate, such being undesirable.
  • Molding of the flexible foam in the process of the present invention is carried out preferably by a method is wherein using a low pressure foaming machine or a high pressure foaming machine, the starting material composition (E) is injected directly into a closed mold (i.e. a reaction injection molding method) or a method wherein the starting material composition is injected into a mold, which is then closed.
  • a closed mold i.e. a reaction injection molding method
  • the high pressure foaming machine is preferably one wherein usually two liquids will be mixed.
  • the organic polyisocyanate compound is used as one of the two liquids, and a mixture of all starting materials other than the organic polyisocyanate compound (which is usually called a polyol system liquid) is used as the other liquid.
  • the catalyst or the foam stabilizer (which is usually employed as dispersed or dissolved in a part of the high molecular weight polyol) and the blowing agent may be made to be a separate component, so that the reactive mixture for injection is constituted by a total of at least three components.
  • the flexible foam of the present invention is produced usually by a cold curing method, but may be produced by a method other than the cold curing method, such as a method including a heating step.
  • the molecular weight (Mc) per hydroxyl group, the number of hydroxyl groups, the content of oxyethylene (EO) groups (unit: mass %) and the total unsaturation value (USV) (unit: meq/g), of each of polyols (p-1) to (p-2) and (A-1) to (A-5) and the polymerization catalysts used in Examples and Comparative Examples, are shown in Table 1.
  • KOH represents a potassium hydroxide catalyst
  • CsOH a cesium hydroxide catalyst
  • DMC a zinc hexacyano cobaltate/monoethylene glycol mono-t-butyl ether complex catalyst.
  • Polyol (p-1) was produced by subjecting PO to ring opening addition polymerization in the presence of DMC using, as an initiator a compound having a molecular weight of 1,000 obtained by ring-opening addition polymerization of propylene oxide (PO) to glycerol, and then subjecting EO to ring opening addition polymerization by means of KOH.
  • Polyol (p-2) was produced by subjecting PO to ring opening addition polymerization in the presence of CsOH by using glycerol as an initiator, and then subjecting EO to ring opening addition polymerization.
  • Polyol (A-1) or (A-5) was produced by subjecting PO to ring opening addition polymerization in the presence of KOH by using glycerol as an initiator, and then subjecting EO to ring opening addition polymerization.
  • Polyol (A-2) was produced by subjecting PO to ring opening addition polymerization in the presence of KOH by using a mixture of glycerol and sucrose as an initiator, and then, subjecting EO to ring opening addition polymerization.
  • Polyol (A-3) was produced by subjecting a mixture of PO and EO to ring opening addition polymerization in the presence of KOH by using glycerol as an initiator.
  • Polyol (A-4) was produced by subjecting PO to ring opening addition polymerization in the presence of KOH by using glycerol as an initiator. Further, other starting materials are shown in Table 2. TABLE 1 Number Content Identifi- of of EO Polymeri- cation of hydroxyl groups USV zation polyol Mc groups (mass %) (meq/g) catalyst (p-1) 2333 3 16 0.015 DMC (p-2) 2000 3 16 0.039 CsOH (A-1) 1633 3 15 0.06 KOH (A-2) 1600 4.75 15 0.06 KOH (A-3) 1170 3 67 0.006 KOH (A-4) 1000 3 0 0.05 KOH (A-5) 2337 3 14 0.10 KOH
  • NCO groups 39.7 mass % (tradename: Coronate 1025, manufactured by Nippon Polyurethane Industry Co., Ltd.) Polyisocyanate Modified MDI. Content of NCO groups: 28.9 (B-2) mass % (tradename: Coronate 1120, manufactured by Nippon Polyurethane Industry Co., Ltd.) Crosslinking Polyoxypropylene polyol having an average agent (E-1) number of hydroxyl groups being 4.7 and a hydroxyl value of 450 mgKOH/g (content of EO groups: 0 mass %) Crosslinking Glycerol agent (E-2) Crosslinking Triethanolamine agent (E-3)
  • the upper and lower mold temperature of an aluminum mold of 400 mm ⁇ 400 mm ⁇ 26 mm in height was raised to 60° C.
  • a mixture of all starting materials other than the organic polyisocyanate compound (the polyol system liquid) and the organic polyisocyanate compound liquid were, respectively, adjusted to liquid temperatures of 25 ⁇ 1° C.
  • a prescribed amount of the organic polyisocyanate compound liquid was added to the polyol system liquid, and the mixture was stirred and mixed for 5 seconds by a high speed mixer (3,000 rpm) and injected at room temperature into a mold and sealed and then foamed and cured to produce a flexible polyurethane foam.
  • the foam density (unit: kg/m 3 ) and the air flowability (unit: m 3 /min) were measured by the methods in accordance with JIS K6400 Method B (1997), and the vertical entry sound absorption characteristic was measured by the method in accordance with JIS A1405 method (1963) by means of an apparatus: vertical entry sound absorption measuring tube model No. 4206, manufactured by Bruel & Kjaer, an analysis software: Winzac, manufactured by Nittobo Acoustic Engineering Co., Ltd., a power amplifier: A100a, manufactured by YAMAHA CORPORATION, and a microphone amplifier: Model No. 2691, manufactured by Bruel & Kjaer.
  • the flexible foams obtained in Examples 1 to 8 show good sound absorbing performance, and particularly, the sound absorbing performance at 500 Hz (in a low frequency region) is good. Further, they show proper values with respect to the foam density and the F-type hardness. Whereas, Examples 9 to 11 tend to be inferior in the sound absorbing performance in the low frequency region.
  • the flexible polyurethane foam obtained by the present invention has improved sound absorbing properties in the low frequency region in the vicinity of 500 Hz and thus is suitable as a soundproofing material for buildings or vehicles. It is particularly useful as a soundproofing material for vehicles such as automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Polyurethanes Or Polyureas (AREA)
US11/375,012 2003-09-19 2006-03-15 Flexible polyurethane foam and process for its production Abandoned US20060160913A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/210,509 US7588121B2 (en) 2003-09-19 2008-09-15 Flexible polyurethane foam and process for its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003327588 2003-09-19
JP2003-0327588 2003-09-19
PCT/JP2004/013668 WO2005028535A1 (fr) 2003-09-19 2004-09-17 Mousse de polyurethane souple et processus de production de cette mousse

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013668 Continuation WO2005028535A1 (fr) 2003-09-19 2004-09-17 Mousse de polyurethane souple et processus de production de cette mousse

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/210,509 Continuation US7588121B2 (en) 2003-09-19 2008-09-15 Flexible polyurethane foam and process for its production

Publications (1)

Publication Number Publication Date
US20060160913A1 true US20060160913A1 (en) 2006-07-20

Family

ID=34372874

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/375,012 Abandoned US20060160913A1 (en) 2003-09-19 2006-03-15 Flexible polyurethane foam and process for its production
US12/210,509 Expired - Fee Related US7588121B2 (en) 2003-09-19 2008-09-15 Flexible polyurethane foam and process for its production

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/210,509 Expired - Fee Related US7588121B2 (en) 2003-09-19 2008-09-15 Flexible polyurethane foam and process for its production

Country Status (6)

Country Link
US (2) US20060160913A1 (fr)
EP (1) EP1666514A4 (fr)
KR (1) KR101115276B1 (fr)
CN (1) CN100509902C (fr)
TW (1) TW200516093A (fr)
WO (1) WO2005028535A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070219284A1 (en) * 2004-11-24 2007-09-20 Asahi Glass Co., Ltd. Flexible polyurethane foam, process for its production, and seat for automobile
US20070299153A1 (en) * 2006-06-23 2007-12-27 Hager Stanley L Viscoelastic foams with slower recovery and improved tear
US20080081846A1 (en) * 2005-05-25 2008-04-03 Asahi Glass Co., Ltd. Flexible polyurethane foam, process for its production, and seat for automobile using the flexible polyurethane foam
US20080081847A1 (en) * 2005-05-25 2008-04-03 Asahi Glass Company, Limited Flexible polyurethane foam, process for its production, and seat for automobile using the flexible polyurethane foam
US20080085945A1 (en) * 2005-08-05 2008-04-10 Asahi Glass Company, Limited Flexible polyurethane foam, process for its production, and seat for automobile
US20080114088A1 (en) * 2005-04-21 2008-05-15 Asahi Glass Company, Limited Low resilience flexible polyurethane foam and process for its production
US20080176970A1 (en) * 2005-05-25 2008-07-24 Asahi Glass Company, Limited Flexible polyurethane foam, process for its production, and seat for automobile using the flexible polyurethane foam
US20090062416A1 (en) * 2006-02-28 2009-03-05 Asahi Glass Co., Ltd. Flexible polyurethane foam and process for its production
US20090239964A1 (en) * 2006-09-27 2009-09-24 Asahi Glass Company, Limited Process for producing flexible polyurethane foam
US20100179240A1 (en) * 2007-09-28 2010-07-15 Asahi Glass Company, Limited Process for producing flexible polyurethane foam, process for producing hot press molded product, and hot press molded product
US8242184B2 (en) 2007-09-18 2012-08-14 Asahi Glass Company, Limited Process for producing flexible polyurethane foam
US8299138B2 (en) 2004-11-18 2012-10-30 Asahi Glass Company, Limited Process for producing flexible polyurethane foam
US8357730B2 (en) 2006-10-25 2013-01-22 Asahi Glass Company, Limited Process for producing flexible polyurethane foam
US20160075846A1 (en) * 2014-09-17 2016-03-17 Evonik Degussa Gmbh Production of viscoelastic polyurethane systems using block polymers having bonded siloxane blocks as cell openers
US20220242997A1 (en) * 2019-06-05 2022-08-04 Basf Se A reactive composition for polyurethane foam and use thereof in automobile parts

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224715B2 (ja) 2007-04-27 2013-07-03 三井化学株式会社 制振吸音材、およびその製造方法
KR101914020B1 (ko) * 2010-09-07 2018-10-31 다우 글로벌 테크놀로지스 엘엘씨 낮은 영구 압축 변형률 및 높은 공기 유동의 mdi 점탄성 폴리우레탄 발포체 제조 방법
KR101795111B1 (ko) * 2010-10-01 2017-11-07 다우 글로벌 테크놀로지스 엘엘씨 저밀도 고탄성 가요성 폴리우레탄 폼의 제조 방법
KR101356402B1 (ko) 2010-11-30 2014-01-28 한국타이어 주식회사 폴리우레탄 폼 및 이를 포함하는 공기입 타이어
CN103897131B (zh) * 2012-12-30 2016-05-04 上海新安汽车隔音毡有限公司 一种汽车发动机舱用耐高温防火吸音减震零件的制备方法
CN104031235B (zh) 2013-03-05 2016-07-13 万华化学(北京)有限公司 一种粘弹性聚氨酯吸音泡沫的制备方法
CN104119489A (zh) * 2013-12-23 2014-10-29 上海新安汽车隔音毡有限公司 一种汽车高压燃油泵用减震隔音罩的制造方法
JP6529072B2 (ja) * 2015-03-20 2019-06-12 株式会社イノアックコーポレーション 軟質ポリウレタンフォーム
US10077012B2 (en) * 2016-11-15 2018-09-18 Ford Global Technologies, Llc Localized silicone heat shielding for extension dash panels
KR101985111B1 (ko) * 2017-12-14 2019-05-31 서울시립대학교 산학협력단 폴리우레탄 조성물, 이를 포함하는 흡음재 및 폴리우레탄 폼의 제조방법
CN109438692A (zh) * 2018-10-12 2019-03-08 中国石油化工股份有限公司 一种磷腈聚醚的合成方法
US20210230346A1 (en) * 2020-01-27 2021-07-29 Toyo Quality One Corporation Sound absorbing urethane foam
KR102336423B1 (ko) * 2020-05-20 2021-12-07 병 국 박 난연성이 우수한 배관 커버재 및 이의 제조방법
CN115894888A (zh) * 2022-12-06 2023-04-04 万华化学(烟台)容威聚氨酯有限公司 一种含氟苯胺基聚醚多元醇及其制备方法和聚氨酯硬质泡沫

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093380A (en) * 1988-10-25 1992-03-03 Asahi Glass Company, Ltd. Polyurethane flexible foam and method for its production
US5420170A (en) * 1989-12-21 1995-05-30 Basf Aktiengesellschaft Preparation of flexible, soft polyurethane foams having viscoelastic, structure-borne soundproofing properties, and polyoxyalkylene-polyol mixtures which can be used for this purpose
US6291538B1 (en) * 1998-12-24 2001-09-18 Kao Corporation Process for preparing polyurethane foam
US20010031797A1 (en) * 2000-02-17 2001-10-18 Goro Kuwamura Microcellular polyurethane elastomer, and method of producing the same
US6313060B1 (en) * 1998-07-10 2001-11-06 Asahi Glass Company, Limited Catalyst for ring-opening polymerization of alkylene oxide, method for preparation thereof and use thereof
US6653362B2 (en) * 2000-04-14 2003-11-25 Asahi Glass Company, Limited Process for producing flexible polyurethane foam
US6734219B2 (en) * 2001-11-30 2004-05-11 Asahi Glass Company, Limited Flexible polyurethane foam and method for its production
US6756415B2 (en) * 2001-11-29 2004-06-29 Asahi Glass Company, Limited Flexible polyurethane foam and method for its production
US6759448B2 (en) * 2001-08-06 2004-07-06 Asahi Glass Company, Limited Flexible polyurethane foam, its production method and material system for its production
US6815467B2 (en) * 2001-07-18 2004-11-09 Asahi Glass Company, Limited Methods for producing a polyol and a polymer dispersed polyol
US20040229970A1 (en) * 2001-12-21 2004-11-18 Asahi Glass Company Limited Low-resilience flexible polyurethane foam and process for producing the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998121A (ja) * 1982-11-27 1984-06-06 Bridgestone Corp 制振材料
US5266143A (en) * 1987-02-10 1993-11-30 C.S.P. Centro Studi E Prototipi S.R.L. Soundproofing panels for automobile applications and manufacturing processes therefor
JPH05209036A (ja) 1991-08-29 1993-08-20 Honda Motor Co Ltd ポリウレタンフォームの製造方法
US6291638B1 (en) * 1993-05-26 2001-09-18 Laboratori Balducci S.P.A. Hepatotropic conjugates of antiviral drugs carriers thereof and pharmaceutical compositions containing them
JPH0759389A (ja) 1993-08-13 1995-03-03 Toshiba Corp モータ間欠駆動制御方式及び装置
JPH08176258A (ja) * 1994-10-24 1996-07-09 Asahi Glass Co Ltd 高弾性ポリウレタンフォームの製造方法
JP3680339B2 (ja) * 1995-02-28 2005-08-10 旭硝子株式会社 高弾性ポリウレタンフォームの製造方法
JPH10121597A (ja) 1996-10-22 1998-05-12 Nissan Motor Co Ltd 吸音体及びこれを用いた車両
DE19944762A1 (de) * 1999-09-17 2001-03-22 Basf Ag Verfahren zur Herstellung von Blockweichschaumpolyolen
JP4529300B2 (ja) * 2001-03-07 2010-08-25 旭硝子株式会社 軟質ポリウレタンフォームの製造方法
JP2002322230A (ja) * 2001-04-23 2002-11-08 Asahi Glass Co Ltd 軟質ポリウレタンフォームの製造方法及びポリオール組成物
TWI385189B (zh) * 2003-11-26 2013-02-11 Asahi Glass Co Ltd 軟質聚胺基甲酸酯泡沫,其製造方法,及使用其之汽車用座墊
WO2006054657A1 (fr) * 2004-11-18 2006-05-26 Asahi Glass Company, Limited Procédé servant à produire une mousse de polyuréthane flexible
KR101243417B1 (ko) * 2004-11-24 2013-03-13 아사히 가라스 가부시키가이샤 연질 폴리우레탄 폼, 그 제조 방법, 및 자동차용 시트
EP1889861A4 (fr) * 2005-04-21 2012-03-28 Asahi Glass Co Ltd Mousse tendre de polyurethane de faible resilience et son procede de production
EP1884529A4 (fr) * 2005-05-25 2011-10-12 Asahi Glass Co Ltd Mousse souple en polyurethanne, son procede de fabrication, et siege d'automobile utilisant cette mousse souple en polyurethanne
CN101180336B (zh) * 2005-05-25 2011-07-20 旭硝子株式会社 软质聚氨酯泡沫塑料及其制造方法、利用该软质聚氨酯泡沫塑料的汽车用座垫
EP1884530A4 (fr) * 2005-05-25 2011-11-16 Asahi Glass Co Ltd Mousse tendre de polyurethanne, son procede de fabrication, et feuille utilisant une mousse tendre de polyurethanne de ce type pour une utilisation en automobile
WO2007018129A1 (fr) * 2005-08-05 2007-02-15 Asahi Glass Company, Limited Mousse flexible de polyuréthane, son procédé de production et feuille pour automobile

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093380A (en) * 1988-10-25 1992-03-03 Asahi Glass Company, Ltd. Polyurethane flexible foam and method for its production
US5420170A (en) * 1989-12-21 1995-05-30 Basf Aktiengesellschaft Preparation of flexible, soft polyurethane foams having viscoelastic, structure-borne soundproofing properties, and polyoxyalkylene-polyol mixtures which can be used for this purpose
US6313060B1 (en) * 1998-07-10 2001-11-06 Asahi Glass Company, Limited Catalyst for ring-opening polymerization of alkylene oxide, method for preparation thereof and use thereof
US6291538B1 (en) * 1998-12-24 2001-09-18 Kao Corporation Process for preparing polyurethane foam
US20010031797A1 (en) * 2000-02-17 2001-10-18 Goro Kuwamura Microcellular polyurethane elastomer, and method of producing the same
US6653362B2 (en) * 2000-04-14 2003-11-25 Asahi Glass Company, Limited Process for producing flexible polyurethane foam
US6815467B2 (en) * 2001-07-18 2004-11-09 Asahi Glass Company, Limited Methods for producing a polyol and a polymer dispersed polyol
US6759448B2 (en) * 2001-08-06 2004-07-06 Asahi Glass Company, Limited Flexible polyurethane foam, its production method and material system for its production
US6756415B2 (en) * 2001-11-29 2004-06-29 Asahi Glass Company, Limited Flexible polyurethane foam and method for its production
US6734219B2 (en) * 2001-11-30 2004-05-11 Asahi Glass Company, Limited Flexible polyurethane foam and method for its production
US20040152797A1 (en) * 2001-11-30 2004-08-05 Asahi Glass Company, Limited Flexible polyurethane foam and method for its production
US20040229970A1 (en) * 2001-12-21 2004-11-18 Asahi Glass Company Limited Low-resilience flexible polyurethane foam and process for producing the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299138B2 (en) 2004-11-18 2012-10-30 Asahi Glass Company, Limited Process for producing flexible polyurethane foam
US20070219284A1 (en) * 2004-11-24 2007-09-20 Asahi Glass Co., Ltd. Flexible polyurethane foam, process for its production, and seat for automobile
US8324289B2 (en) 2004-11-24 2012-12-04 Asahi Glass Company, Limited Flexible polyurethane foam, process for its production, and seat for automobile
US20080114088A1 (en) * 2005-04-21 2008-05-15 Asahi Glass Company, Limited Low resilience flexible polyurethane foam and process for its production
US8541479B2 (en) 2005-04-21 2013-09-24 Asahi Glass Company, Limited Low resilience flexible polyurethane foam and process for its production
US20080081846A1 (en) * 2005-05-25 2008-04-03 Asahi Glass Co., Ltd. Flexible polyurethane foam, process for its production, and seat for automobile using the flexible polyurethane foam
US20080081847A1 (en) * 2005-05-25 2008-04-03 Asahi Glass Company, Limited Flexible polyurethane foam, process for its production, and seat for automobile using the flexible polyurethane foam
US20080176970A1 (en) * 2005-05-25 2008-07-24 Asahi Glass Company, Limited Flexible polyurethane foam, process for its production, and seat for automobile using the flexible polyurethane foam
US7635724B2 (en) 2005-05-25 2009-12-22 Asahi Glass Company, Limited Flexible polyurethane foam, process for its production, and seat for automobile using the flexible polyurethane foam
US7759403B2 (en) 2005-05-25 2010-07-20 Asahi Glass Company, Limited Flexible polyurethane foam, process for its production, and seat for automobile using the flexible polyurethane foam
US7825166B2 (en) 2005-05-25 2010-11-02 Asahi Glass Company, Limited Flexible polyurethane foam, process for its production, and seat for automobile using the flexible polyurethane foam
US20080085945A1 (en) * 2005-08-05 2008-04-10 Asahi Glass Company, Limited Flexible polyurethane foam, process for its production, and seat for automobile
US20090062416A1 (en) * 2006-02-28 2009-03-05 Asahi Glass Co., Ltd. Flexible polyurethane foam and process for its production
US8487015B2 (en) 2006-02-28 2013-07-16 Asahi Glass Company, Limited Flexible polyurethane foam and process for its production
US20070299153A1 (en) * 2006-06-23 2007-12-27 Hager Stanley L Viscoelastic foams with slower recovery and improved tear
US20090239964A1 (en) * 2006-09-27 2009-09-24 Asahi Glass Company, Limited Process for producing flexible polyurethane foam
US8357730B2 (en) 2006-10-25 2013-01-22 Asahi Glass Company, Limited Process for producing flexible polyurethane foam
US8242184B2 (en) 2007-09-18 2012-08-14 Asahi Glass Company, Limited Process for producing flexible polyurethane foam
US8268906B2 (en) 2007-09-28 2012-09-18 Asahi Glass Company, Limited Process for producing flexible polyurethane foam, process for producing hot press molded product, and hot press molded product
US20100179240A1 (en) * 2007-09-28 2010-07-15 Asahi Glass Company, Limited Process for producing flexible polyurethane foam, process for producing hot press molded product, and hot press molded product
US20160075846A1 (en) * 2014-09-17 2016-03-17 Evonik Degussa Gmbh Production of viscoelastic polyurethane systems using block polymers having bonded siloxane blocks as cell openers
US10189965B2 (en) * 2014-09-17 2019-01-29 Evonik Degussa Gmbh Production of viscoelastic polyurethane systems using block polymers having bonded siloxane blocks as cell openers
US20220242997A1 (en) * 2019-06-05 2022-08-04 Basf Se A reactive composition for polyurethane foam and use thereof in automobile parts

Also Published As

Publication number Publication date
KR101115276B1 (ko) 2012-03-05
US7588121B2 (en) 2009-09-15
WO2005028535A1 (fr) 2005-03-31
US20090008595A1 (en) 2009-01-08
TW200516093A (en) 2005-05-16
CN100509902C (zh) 2009-07-08
EP1666514A4 (fr) 2009-04-22
KR20060059957A (ko) 2006-06-02
CN1849351A (zh) 2006-10-18
EP1666514A1 (fr) 2006-06-07
TWI361810B (fr) 2012-04-11

Similar Documents

Publication Publication Date Title
US7588121B2 (en) Flexible polyurethane foam and process for its production
US6815467B2 (en) Methods for producing a polyol and a polymer dispersed polyol
US20080085945A1 (en) Flexible polyurethane foam, process for its production, and seat for automobile
US8299138B2 (en) Process for producing flexible polyurethane foam
US7388037B2 (en) Low-resilience flexible polyurethane foam and process for producing the same
EP1273605B1 (fr) Procede de production de mousse de polyurethane flexible
EP1316571B1 (fr) Mousse de polyuréthane flexible et procédé pour sa préparation
US6759448B2 (en) Flexible polyurethane foam, its production method and material system for its production
EP1884530A1 (fr) Mousse tendre de polyurethanne, son procede de fabrication, et feuille utilisant une mousse tendre de polyurethanne de ce type pour une utilisation en automobile
EP1688448A1 (fr) Mousse polyurethanne souple, son procede de production, et feuille de vehicule automobile la contenant
JP4058954B2 (ja) 軟質ポリウレタンフォーム
JP4617793B2 (ja) 自動車内装材用の防音材
JP2002256049A (ja) 軟質ポリウレタンフォームの製造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASAHI GLASS COMPANY, LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SASAKI, TAKAYUKI;HATANO, SHIGEO;TOYOTA, YOSHINORI;AND OTHERS;REEL/FRAME:017688/0958;SIGNING DATES FROM 20060126 TO 20060127

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION