US20060148996A1 - Low refractive index fluoropolymer compositions having improved coating and durability properties - Google Patents

Low refractive index fluoropolymer compositions having improved coating and durability properties Download PDF

Info

Publication number
US20060148996A1
US20060148996A1 US11/026,614 US2661404A US2006148996A1 US 20060148996 A1 US20060148996 A1 US 20060148996A1 US 2661404 A US2661404 A US 2661404A US 2006148996 A1 US2006148996 A1 US 2006148996A1
Authority
US
United States
Prior art keywords
refractive index
low refractive
unsaturation
index material
fluoropolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/026,614
Other languages
English (en)
Inventor
William Coggio
Thomas Klun
George Moore
Naiyong Jing
Chuntao Cao
Sharon Wang
Patricia Savu
Lan Liu
Joan Noyola
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US11/026,614 priority Critical patent/US20060148996A1/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOYOLA, JOAN M., LIU, LAN H., CAO, CHUNTAO, SAVU, PATRICIA M., WANG, SHARON, MOORE, GEORGE G. I., COGGIO, WILLIAM D., JING, NAIYONG, KLUN, THOMAS P.
Priority to EP05854679A priority patent/EP1831729A1/en
Priority to CN200580045439A priority patent/CN100593124C/zh
Priority to KR1020077014936A priority patent/KR101247058B1/ko
Priority to PCT/US2005/046010 priority patent/WO2006073785A1/en
Priority to JP2007549462A priority patent/JP2008527414A/ja
Priority to MYPI20056254A priority patent/MY139527A/en
Priority to TW094147351A priority patent/TW200630396A/zh
Publication of US20060148996A1 publication Critical patent/US20060148996A1/en
Priority to US11/972,034 priority patent/US7473462B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer

Definitions

  • the present invention relates to antireflection films and more specifically to low refractive index fluoropolymer compositions for use in antireflection films.
  • AR films Antireflective polymer films
  • New applications are being developed for low reflective films applied to substrates of articles used in the computer, television, appliance, mobile phone, aerospace and automotive industries.
  • AR films are preferably constructed of alternating high and low refractive index (“RI”) polymer layers of the correct optical thickness.
  • RI refractive index
  • This thickness is on the order of one-quarter of the wavelength of the light to be reflected.
  • the human eye is most sensitive to light around 550 nm. Therefore it is desirable to design the low and high index coating thicknesses in a manner which minimizes the amount of reflected light in this optical range.
  • Desirable product features in AR films for use on optical goods are a low percentage of reflected light (e.g. 1.5% or lower) and durability to scratches and abrasions. These features are obtained in AR constructions by maximizing the delta RI between the polymer layers while maintaining or improving other critical material properties such as low coefficient of friction, high hardness and strong adhesion between the polymer layers. In addition to these types of performance features, it is necessary to process these materials by an economically favorable manufacturing process. Although inorganic materials, such as indium tin oxide (“ITO”), possess both high index and hardness, they are difficult and expensive to process into continuous films. Often times these materials require vacuum or chemical vapor deposition techniques.
  • ITO indium tin oxide
  • metalized surfaces often reflect blue light and therefore optical substrates with such materials are slightly colored and therefore have compromised viewing cosmetics.
  • new polymeric materials based on polycarbonate or polyesters can be used. However these materials do not have as high of refractive index as metalized surfaces and therefore there is a need for improved low refractive index materials with improved durability.
  • Such materials can be used in conjunction with high index polymers to maximize the delta refractive index between the layers and minimize the amount of reflected light.
  • fluorine containing materials have an inherently low refractive index and are therefore useful in AR films.
  • Fluoropolymers provide additional advantages over conventional hydrocarbon-based materials such as relatively high chemical inertness (in terms of acid and base resistance), dirt and stain resistance (due to low surface energy) low moisture absorption, and resistance to weather and solar conditions.
  • fluoropolymers tend to have relatively low hardness and poor abrasion and wear resistance properties compared to hydrocarbon polymers such as polymethylmethacrylate (“PMMA”).
  • the refractive index of fluorinated polymer coatings is generally dependent upon the volume percentage of fluorine contained within the coating layer. Increased fluorine content in the layers typically decreases the refractive index of the coating.
  • AR coatings using fluoropolymers and fluorine containing materials can be found in the invention of Fung and Ko (U.S. Pat. No. 5,846,650), Savu (U.S. Pat. No. 5,148,511), Choi et al (U.S. Pat. No. 6,379,788), and Suzuki (U.S. Pat. No. 6,343,865), which are herein incorporated by reference.
  • low refractive index coating In order to decrease the refractive index, an increase in fluorine content of the low index coating composition tends to decrease the surface energy of the polymer, which in turn can result in poor coating and optical cosmetic properties. Furthermore, low surface energy polymers can reduce the interfacial adhesion between the low refractive index layer and a high refractive index layer. A loss in interfacial adhesion between these layers will compromise the AR film durability.
  • the present invention provides a composition and method for forming a low refractive index layer for use in an antireflective film that addresses these issues. Further, the present invention provides an optical device having such a low refractive index layer as a portion of its antireflective film.
  • the low refractive index fluoropolymer compositions of the AR films described in this invention are derived from an interpenetrating polymer network or semi-interpenetrating polymer network which comprises a reactive fluoroplastic and/or a fluoroelastomer (i.e. the functional fluoropolymer phase) blended with multi-functional acrylates (i.e. the acrylate phase) such as trimethylolpropane triacrylate (TMPTA) and optionally additional fluorinated mono-functional acrylates or multi-functional fluorinated acrylates which can be coated and cured by ultraviolet light or by thermal means.
  • TMPTA trimethylolpropane triacrylate
  • TMPTA trimethylolpropane triacrylate
  • an acrylate crosslinker provides a composition with both low refractive index and improved adhesion to high index polymer substrates such as polyethylene terephthalate (“PET”) or hard coated PET films.
  • the coating mixture describe herein comprises a reactive high molecular weight fluoropolymers which can participate in the crosslinking reactions between the monomeric multi-functional acrylates. This enhances the crosslinkability of the fluoropolymer phase to the forming polyacrylate phase and produces a co-crosslinked, interpenetrating or semi-interpenetrating polymer network with enhanced interfacial contact between the high index layer and the low index layer and thereby improved durability and low refractive index.
  • improvements in the mechanical strength and scratch resistance of the low refractive index compositions can be enhanced through the incorporation of surface functionalized nanoparticles into the fluoropolymer compositions. Providing functionality to the nanoparticles further enhances the interactions between the fluoropolymers and such functionalized particles.
  • FIG. 1 is perspective view of an article having an optical display
  • FIG. 2 is a sectional view of the article of FIG. 1 taken along line 2 - 2 illustrating an antireflection film having a low refractive index layer formed in accordance with a preferred embodiment of the present invention.
  • polymer will be understood to include polymers, copolymers (e.g. polymers using two or more different monomers), oligomers and combinations thereof, as well as polymers, oligomers, or copolymers that are useful to form the interpenetrating polymer network (“IPN”) or semi-interpenetrating polymer network (“semi-IPN”).
  • IPN interpenetrating polymer network
  • Si-IPN semi-interpenetrating polymer network
  • IPN refers to a broad class of polymer blends in which one polymer is mixed or polymerized in the presence of another polymer or monomer mixture.
  • the polymers can form a variety of molecular phases consisting of co-crosslinked phases, thermoplastic (crystalline phases), mechanically cross-linked phases, e.g. by means of chain entanglement or co-crosslinked networks in which the two different polymer phases have chemical crosslinking between the polymer phases.
  • semi-IPN refers specifically to a blended polymer network where only one component of the polymer mixture is covalently crosslinked to itself.
  • co-crosslinked IPN or co-crosslinked semi-IPN, refers to the special case where both polymer networks can react in such a manner to form a co-crosslinked polymer blend. Specific descriptions can be found in such references as IPNs Around the World - Science and Engineering, by Kim and Sperling Eds, Wiley Science, 1997 Chapter 1.
  • low refractive index shall generally mean a material, when applied as a layer to a substrate, forms a coating layer having a refractive index of less than about 1.5, and more preferably less than about 1.45, and most preferably less than about 1.42.
  • high refractive index shall generally mean a material, when applied as a layer to a substrate, forms a coating layer having a refractive index of greater than about 1.6.
  • the low refractive index layer is formed having a refractive index less than a high refractive index layer.
  • coating layers wherein the low refractive index layer having a refractive index slightly greater than about 1.5, when coupled with a high refractive index layer having a refractive index slightly less than about 1.6, wherein the refractive index of the low refractive index layer is less than the refractive index of the high refractive index layer, are also specifically contemplated and encompassed by the present invention.
  • ceramer is a composition having inorganic oxide particles, e.g. silica, of nanometer dimensions dispersed in a binder matrix.
  • the phrase “ceramer composition” is meant to indicate a ceramer formulation in accordance with the present invention that has not been at least partially cured with radiation energy, and thus is a flowing, coatable liquid.
  • the phrase “ceramer composite” or “coating layer” is meant to indicate a ceramer formulation in accordance with the present invention that has been at least partially cured with radiation energy, so that it is a substantially non-flowing solid.
  • free-radically polymerizable refers to the ability of monomers, oligomers, polymers or the like to participate in crosslinking reactions upon exposure to a suitable source of curing energy.
  • the present invention is directed to antireflection materials used as a portion of optical displays (“displays”).
  • the displays include various illuminated and non-illuminated displays panels wherein a combination of low surface energy (e.g. anti-soiling, stain resistant, oil and/or water repellency) and durability (e.g. abrasion resistance) is desired while maintaining optical clarity.
  • the antireflection material functions to decrease glare and decrease transmission loss while improving durability and optical clarity.
  • Such displays include multi-character and especially multi-line multi-character displays such as liquid crystal displays (“LCDs”), plasma displays, front and rear projection displays, cathode ray tubes (“CRTs”), signage, as well as single-character or binary displays such as light emitting tubes (“LEDs”), signal lamps and switches.
  • LCDs liquid crystal displays
  • CRTs cathode ray tubes
  • LEDs light emitting tubes
  • the light transmissive (i.e. exposed surface) substrate of such display panels may be referred to as a “lens.”
  • the invention is particularly useful for displays having a viewing surface that is susceptible to damage.
  • the coating composition, and reactive product thereof, as well as the protective articles of the invention can be employed in a variety of portable and non-portable information display articles.
  • These articles include, but are not limited by, PDAs, LCD-TV's (both edge-lit and direct-lit), cell phones (including combination PDA/cell phones), touch sensitive screens, wrist watches, car navigation systems, global positioning systems, depth finders, calculators, electronic books, CD and DVD players, projection televisions screens, computer monitors, notebook computer displays, instrument gauges, instrument panel covers, signage such as graphic displays and the like.
  • These devices can have planar viewing faces, or non-planar viewing faces such as slightly curved faces.
  • FIG. 1 a perspective view of an article (here a computer monitor 10 ) is illustrated according to one preferred embodiment as having an optical display 12 coupled within a housing 14 .
  • the optical display 12 is a substantially transparent material having optically enhancing properties through which a user can view text, graphics or other displayed information.
  • the optical display 12 includes an antireflection film 18 coupled (coated) to an optical substrate 16 .
  • the antireflection film 18 has at least one layer of a high refractive index layer 22 and a low refractive index layer 20 coupled together such that the low refractive index layer 22 being positioned to be exposed to the atmosphere while the high refractive index layer 22 is positioned between the substrate 16 and low refractive index layer 20 .
  • the antireflection material 18 may be applied directly to the substrate 16 , or alternatively applied to a release layer of a transferable antireflection film and subsequently transferred from the release layer to the substrate using a heat press or photoradiation application technique.
  • the high refractive index layer 22 is a conventional carbon-based polymeric composition having a mono and multifunctional acrylate crosslinking system.
  • Zirconium dioxide (“ZrO 2 ”) and titanium dioxide (“TiO 2 ”) are desirable particles for use in high index refractive layers 22 .
  • the particle size of the high index inorganic particles is preferably less than about 50 nm in order that it is sufficiently transparent.
  • the surface particles are modified with organic moieties designed to allow further crosslinking of the particle within the polymer network and allows adequate dispersion of the particles in the high refractive index polymer matrix.
  • the low refractive index layer 20 may be coupled directly to the substrate 16 , or hardcoated substrate, without the high refractive index layer 22 .
  • the low refractive index coating composition of the present invention is applied as a wet layer to either to the high refractive index coating layer 22 or directly to the polymeric substrate 16 by standard techniques.
  • the wet layer is then photoreacted to form a layer 20 having a fluoropolymer phase covalently crosslinked to an acrylate phase to form a co-crosslinked, interpenetrating or semi-interpenetrating polymer network.
  • the crosslinking of the fluoropolymer phase with the acrylate phase enhances the durability of the low refractive index layer by increasing the interfacial adhesion of the layer to both the high refractive index layer and/or to a PET film.
  • Fluoropolymer materials used in the low index coating may be described by broadly categorizing them into one of two basic classes.
  • a first class includes those amorphous fluoropolymers comprising interpolymerized units derived from vinylidene fluoride (VDF) and hexafluoropropylene (HFP) and optionally tetrafluoroethylene (TFE) monomers. Examples of such are commercially available from 3M Company as DyneonTM Fluoroelastomer FC 2145 and FT 2430. Additional amorphous fluoropolymers contemplated by this invention are, for example, VDF-chlorotrifluoroethylene copolymers.
  • VDF-chlorotrifluoroethylene copolymer is commercially known as Kel-FTM 3700, available from 3M Company.
  • amorphous fluoropolymers are materials that contain essentially no crystallinity or possess no significant melting point as determined for example by differential scanning caloriometry (DSC).
  • DSC differential scanning caloriometry
  • a copolymer is defined as a polymeric material resulting from the simultaneous polymerization of two or more dissimilar monomers and a homopolymer is a polymeric material resulting from the polymerization of a single monomer.
  • the second significant class of fluoropolymers useful in this invention are those homo and copolymers based on fluorinated monomers such as TFE or VDF which do contain a crystalline melting point such as polyvinylidene fluoride (PVDF, available commercially from 3M company as DyneonTM PVDF, or more preferable thermoplastic copolymers of TFE such as those based on the crystalline microstructure of TFE-HFP-VDF. Examples of such polymers are those available from 3M under the trade name DyneonTM Fluoroplastics THVTM 200.
  • the preferred fluoropolymers are copolymers formed from the constituent monomers known as tetrafluoroethylene (“TFE”), hexafluoropropylene (“HFP”), and vinylidene fluoride (“VdF,” “VF2,”).
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • VdF vinylidene fluoride
  • VF2 vinylidene fluoride
  • the preferred fluoropolymer consists of at least two of the constituent monomers (HFP and VDF), and more preferably all three of the constituents monomers in varying molar amounts.
  • Additional monomers not depicted above but also useful in the present invention include perfluorovinyl ether monomers of the general structure: CF 2 ⁇ CF—OR f , wherein R f can be a branched or linear perfluoroalkyl radical of 1-8 carbons and can itself contain additional heteroatoms such as oxygen.
  • R f can be a branched or linear perfluoroalkyl radical of 1-8 carbons and can itself contain additional heteroatoms such as oxygen.
  • Specific examples are perfluoromethyl vinyl ether, perfluoropropyl vinyl ether, and perfluoro(3-methoxy-propyl) vinyl ether. Additional examples incorporated by reference herein are found in WO00/12754 to Worm, assigned to 3M, and U.S. Pat. No. 5,214,100
  • THV crystalline copolymers with all three constituent monomers
  • FKM amorphous copolymers consisting of VDF-HFP and optionally TFE
  • FKM elastomers as denoted in ASTM D 1418.
  • THV and FKM elastomers have the general formula (4): wherein x, y and z are expressed as molar percentages.
  • THV fluorothermoplastics materials
  • x is greater than zero and the molar amount of y is typically less than about 15 molar percent.
  • DyneonTM Fluorothermoplastic THVTM 220 a mixture that is manufactured by Dyneon LLC, of Saint Paul Minn.
  • THVTM 200 is most preferred since it is readily soluble in common organic solvents such as MEK and this facilitates coating and processing, however this is a choice born out of preferred coating behavior and not a limitation of the material used a low refractive index coating.
  • PVDF-containing fluoroplastic materials having very low molar levels of HFP are also contemplated by the present invention and are sold under the trade name DyneonTM PVDF 6010 or 3100, available from Dyneon LLC, of St. Paul, Minn.; and KynarTM 740, 2800, 9301, available from Elf Atochem North America Inc.
  • other fluoroplastic materials are specifically contemplated wherein x is zero and wherein y is between about 0 and 18 percent.
  • the microstructure can also contain additional non-fluorinated monomers such as ethylene, propylene, and butylene. Examples of such microstructures having non-fluorinated monomers commercially available include DyneonTM ETFE and THE fluoroplastics.
  • x can be zero so long as the molar percentage of y is sufficiently high (typically greater than about 18 molar percent) to render the microstructure amorphous.
  • Dyneon LLC St. Paul Minn.
  • DyneonTM Fluoroelastomer FC 2145 One example of a commercially available elastomeric compound of this type is available from Dyneon LLC, St. Paul Minn., under the trade name DyneonTM Fluoroelastomer FC 2145.
  • Additional fluoroelastomeric compositions useful in the present invention exist where x is greater than zero. Such materials are often referred to as elastomeric TFE containing terpolymers.
  • elastomeric TFE containing terpolymers One example of a commercially available elastomeric compound of this type is available from Dyneon LLC, St. Paul, Minn., and is sold under the trade name DyneonTM Fluoroelastomer FT 2430.
  • propylene-containing fluoroelastomers are a class useful in this invention.
  • propylene-containing fluoroelastomers known as base resistant elastomers (“BRE”) and are commercially available from Dyneon under the trade name DyneonTM BRE 7200. available from 3M Company of St. Paul, Minn.
  • BRE base resistant elastomers
  • TFE-propylene copolymers can also be used and are commercially available under the tradename AflafTM, available from Asahi Glass Company of Charlotte, N.C.
  • these polymer compositions further comprise reactive functionality such as halogen containing cure site monomers (“CSM”) and/or halogenated endgroups, which are interpolymerized into the polymer microstructure using numerous techniques known in the art.
  • CSM halogen containing cure site monomers
  • halogenated endgroups provide reactivity towards the acrylate crosslinking units to tie all components together in the interpenetrating polymer network.
  • Useful halogen containing monomers are well known in the art and typical examples are found in U.S. Pat. No. 4,214,060 to maschiner et al., European Patent No. EP398241 to Moore, and European Patent No. EP407937B1 to Vincenzo et al.
  • halogen cure sites can be introduced into the polymer microstructure via the judicious use of halogenated chain transfer agents which produce fluoropolymer chain ends that contain reactive halogen endgroups.
  • chain transfer agents are well known in the literature and typical examples are Br—CF 2 CF 2 —Br, CF 2 Br 2 , CF 2 I 2 , CH 2 I 2 , typical examples are found in U.S. Pat. No. 4,000,356 to Weisgerber.
  • halogen is incorporated into the polymer microstructure by means of a CSM or CTA agent or both is not particularly relevant as both result in a fluoropolymer which is more reactive towards UV crosslinking and coreaction with other components of the IPN such as the acrylates.
  • a bromo-containing fluoroelastomer such as DyneonTM E-15472 or E-18402 commercially available from Dyneon LLC of Saint Paul, Minn., may be used in conjunction with, or in place of, THV or FKM as the fluoropolymer.
  • the fluoropolymer is dissolved in an organic solvent, such as THF, treated with hindered bases such as a triethyl amine or DBU (1-8 diazobicyclo[5.4.0]undec-7-ene) that introduces unsaturation into the polymer backbone via the dehydrofluorination (“DHF”) of a vinylidene fluoride component of the fluoropolymer.
  • organic solvent such as THF
  • DBU diazobicyclo[5.4.0]undec-7-ene
  • DHF dehydrofluorination
  • Useful concentrations of DBU to effectively DHF the polymer for use in this invention are limited by the tendency of dehydrofluorinated polymers to undergo gelation (i.e. become insoluble upon drying) at high levels of unsaturation.
  • preferable ranges of DBU are in the range of 0.01-0.5 g DBU/g-polymer, and more preferably 0.02-0.1 g DBU/g-polymer, with the amount of DBU primarily dependent upon the VDF weight percent content of the fluoropolymer, in order to achieve a small amount of unsaturation.
  • THV 200 which has a VdF molar percentage of about 50%
  • a preferred amount of unsaturation is between about 0.5 and 26 mole percent, with a more preferred amount being between about 1 and 6 mole percent.
  • FT 2430 which has a VDF molar percentage of about 59%
  • a preferred amount of unsaturation is between about 0.6 and 29 mole percent, with a more preferred amount being between about 1.2 and 6 mole percent.
  • the fluoropolymer can be dehydrofluorinated in the latex form in the method described in Coggio et al, U.S. Pat. No. 5,733,981, which is herein incorporated by reference.
  • a general reaction scheme (5) for illustrative purposes, is shown below wherein a vinylidene fluoride component of the fluoropolymer (FP) is dehydrofluorinated in the presence of DBU as follows:
  • the fluoropolymer is dissolved in an organic solvent, such as THF, treated with hindered bases such as a triethyl amine or DBU (1-8 diazobicyclo[5.4.0]undec-7-ene) that introduces unsaturation into the polymer backbone via the dehydrofluorination of a vinylidene fluoride component of the fluoropolymer.
  • organic solvent such as THF
  • DBU diazobicyclo[5.4.0]undec-7-ene
  • Useful concentrations of DBU to effectively DHF the polymer for use in this invention are in the range of 0.01-0.5 g DBU/g-polymer. More preferably 0.02-0.1 g DUB/g-polymer.
  • the fluoropolymer can be dehydrofluorinated in the latex form in the method described in Coggio et al, U.S. Pat. No. 5,733,981, which is herein incorporated by reference.
  • a general reaction scheme (5) for illustrative purposes, is shown below wherein a vinylidene fluoride component of the fluoropolymer (FP) is dehydrofluorinated in the presence of DBU as follows: FP—CH2-CH2-FP+DBU ⁇ FP—CH ⁇ CF—FP+HP (5)
  • the preferred reaction site of dehydrofluorination is substantially between HFP-VDF-HFP triads, HFP-VDF diads or TFE-VDF-TFE triads.
  • the precise location of the dehydroflourination is not critical, and essentially results in the same structural formation of unsaturation in the fluoropolymer backbone. This unsaturation is susceptible to a free radical or nucleophilic crosslinking reaction, which allows further bonding, and improved adhesion of the low index refractive layer 20 to the high refractive index layer 22 .
  • Dehydrofluorination as a means to improve crosslinking and adhesion between fluoropolymers and other substrates has been shown in other applications, such as in making fuel line barrier hoses for gas powered vehicles, as described in U.S. Pat. Nos. 6,080,487; 6,346,328; and 6,270,901; all assigned to 3M, or Dyneon LLC, of Saint Paul, Minn., and are herein incorporated by reference.
  • a fluoropolymer could be formed having both halogen containing cure site monomers and a degree of unsaturation introduced via a dehydrofluorination reaction into the same fluoropolymer backbone or in a blend of the two fluoropolymer backbones (one with the halogen containing sites, one with the degree of unsaturation).
  • the mechanical durability of the resultant low refractive index layers 16 can be further enhanced by the introduction of surface modified inorganic particles to the composition.
  • the inorganic particles preferably have a substantially monodisperse size distribution or a polymodal distribution obtained by blending two or more substantially monodisperse distributions.
  • the inorganic particles can be introduced having a range of particle sizes obtained by grinding the particles to a desired size range.
  • the inorganic oxide particles are typically non-aggregated (substantially discrete), as aggregation can result in precipitation of the inorganic oxide particles or gelation.
  • the inorganic oxide particles are typically colloidal in size, having an average particle diameter of 5 nanometers to 100 nanometers. These size ranges facilitate dispersion of the inorganic oxide particles into the binder resin and provide ceramers with desirable surface properties and optical clarity.
  • the average particle size of the inorganic oxide particles can be measured using transmission electron microscopy to count the number of inorganic oxide particles of a given diameter.
  • Inorganic oxide particles include colloidal silica, colloidal titania, colloidal alumina, colloidal zirconia, colloidal vanadia, colloidal chromia, colloidal iron oxide, colloidal antimony oxide, colloidal tin oxide, and mixtures thereof. Most preferably, the particles are formed of silicon dioxide (SiO 2 ).
  • the surface particles are modified with organic moieties designed to enhance the polymer-particle interaction and co-reactivity between the fluoropolymer, acrylate and particles phases.
  • Such functionalities include mercaptan, vinyl, bromo, iodo acrylate and others believed to enhance the interaction between the inorganic particles and low index fluoropolymers, especially those containing bromo or iodo cure site monomers.
  • Other additional examples of surface agents contemplated by this invention include but are not limited to 3-methacryloxypropyltrimethoxy silane (A174, available from OSI Specialty Chemicals), and vinyl trialkoxysilanes such as trimethoxy and triethoxysilane and hexamethyldisilizane.
  • the fluoropolymer backbone formed under any of these four approaches is hereinafter referred to as the functional fluoropolymer phase.
  • the low refractive index composition also consists of an acrylate phase.
  • the acrylate phase consists of one or more crosslinking agents that react (i.e. covalently bond) with the fluoropolymer phase to form a co-crosslinked interpenetrating polymer network, or fluoropolymer matrix.
  • Useful crosslinking agents for use in the acrylate phase include, for example, poly (meth)acryl monomers selected from the group consisting of (a) di(meth)acryl containing compounds such as 1,3-butylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol monoacrylate monomethacrylate, ethylene glycol diacrylate, alkoxylated aliphatic diacrylate, alkoxylated cyclohexane dimethanol diacrylate, alkoxylated hexanediol diacrylate, alkoxylated neopentyl glycol diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, cyclohexanedimethanol diacrylate, diethylene glycol diacrylate,
  • Such compounds are widely available from vendors such as, for example, Sartomer Company, Exton, Pennsylvania; UCB Chemicals Corporation, Smyrna, Ga.; and Aldrich Chemical Company, Milwaukee, Wis.
  • Additional useful (meth)acrylate materials include hydantoin moiety-containing poly(meth)acrylates, for example, as described in U.S. Pat. No. 4,262,072 (Wendling et al.).
  • a preferred crosslinking agent comprises at least three (meth)acrylate functional groups.
  • Preferred commercially available crosslinking agents include those available from Sartomer Company, Exton, Pa. such as trimethylolpropane triacrylate (TMPTA) available under the trade designation “SR351”, pentaerythritol tri/tetraacrylate (PETA) available under the trade designation “SR 295, SR444” or “SR494” dipentaerythritol penta/hexa acrylate available as SR 399LV.
  • acrylates useful in the present invention includes fluorinated acrylates exemplified by perfluoropolyether acrylates that are based on monofunctional acrylate and/or multifunctional acrylate derivatives of hexafluoropropylene oxide (“HFPO”).
  • HFPO hexafluoropropylene oxide
  • the HFPO acrylates are useful as either a component to render the film surface soil resistant and easy to clean.
  • the multifunctional HFPO acrylates provide the additional benefit of crosslinking and further enhance the durability of the film.
  • HFPO- refers to the end group C 3 F 7 O—(CF(CF 3 )CF 2 O) a CF(CF 3 )C(O)— wherein “a” averages about 6.3, with an average molecular weight of 1,211 g/mol, and which can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore, et al.), the disclosure of which is incorporated herein by reference, with purification by fractional distillation.
  • fluorochemical acrylates can be used to enhance the IPN formation between the hydrocarbon acrylate phase and the low index fluoropolymer phase.
  • fluorochemical acrylates can be used to enhance the IPN formation between the hydrocarbon acrylate phase and the low index fluoropolymer phase.
  • fluorochemical acrylates can be used to enhance the IPN formation between the hydrocarbon acrylate phase and the low index fluoropolymer phase.
  • Such examples are perfluorocyclohexyl acrylate as described in U.S. Pat. No. 5,148,511 to Savu et al., or 2,2,3,3,4,4,5,5, octafluoro dihydropentyl acrylate or methacrylate, each available from Oakwood Products of West Columbia, S.C.
  • halogen or mercapto containing initiators or chain transfer agents to incorporate functional endgroups such as chlorine, bromine, iodine, or —SH into the methacrylate polymer composition.
  • functional endgroups such as chlorine, bromine, iodine, or —SH
  • These functional endgroups react with the fluoropolymer matrix under ultraviolet light to form further co-crosslinking between the fluoropolymer phase and the acrylate phase.
  • the fluoropolymer under any of the three approaches above is first dissolved in a compatible organic solvent.
  • the compatible organic solvent that is preferably utilized is methyl ethyl ketone (“MEK”).
  • MEK methyl ethyl ketone
  • other organic solvents may also be utilized, as well as mixtures of compatible organic solvents, and still fall within the spirit of the present invention.
  • other organic solvents contemplated include acetone, cyclohexanone, methyl isobutyl ketone (“MIBK”), methyl amyl ketone (“MAK”), tetrahydrofuran (“THF”), methyl acetate, isopropyl alcohol (“IPA”), or mixtures thereof, may also be utilized.
  • the acrylate phase is introduced to the dissolved fluoropolymer.
  • the entire mixture is diluted further to about 1-10% solids, and more preferably between about 2 and 5% solids, with additional organic solvent or other solvents, depending upon the blend of solvents and desired application technique and conditions.
  • the polymerizable compositions according of the present invention may further comprise at least one free-radical thermal initiator and/or photoinitiator.
  • an initiator and/or photoinitiator typically, it comprises less than about 10 percent by weight, more typically less than about 5 percent of the polymerizable composition, based on the total weight of the polymerizable composition.
  • Free-radical curing techniques are well known in the art and include, for example, thermal curing methods as well as radiation curing methods such as electron beam or ultraviolet radiation. Further details concerning free radical thermal and photopolymerization techniques may be found in, for example, U.S. Pat. No. 4,654,233 (Grant, et al.); U.S. Pat. No. 4,855,184 (Klun, et al.); and U.S. Pat. No. 6,224,949 (Wright, et al.).
  • Useful free-radical thermal initiators include, for example, azo, peroxide, persulfate, and redox initiators, and combinations thereof.
  • Useful free-radical photoinitiators include, for example, those known as useful in the UV cure of acrylate polymers. Such initiators include benzophenone and its derivatives; benzoin, benzyldimethyl ketal (available as “KB-1” from Sartomer), alpha-methylbenzoin, alpha-phenylbenzoin, alpha-allylbenzoin, alpha-benzylbenzoin; benzoin ethers such as benzil dimethyl ketal (commercially available under the trade designation “IRGACURE 651” from Ciba Specialty Chemicals Corporation of Tarrytown, N.Y.), benzoin methyl ether, benzoin ethyl ether, benzoin n-butyl ether; acetophenone and its derivatives such as 2-hydroxy-2-methyl-1-phenyl-1-propanone (commercially available under the trade designation “DAROCUR 1173” from Ciba Specialty Chemicals Corporation) and 1-hydroxycyclohexyl pheny
  • sensitizers such as 2-isopropyl thioxanthone, commercially available from First Chemical Corporation, Pascagoula, Miss., may be used in conjunction with photoinitiator(s) such as “IRGACURE 369”.
  • additives may be added to the final composition. These include but are not limited to resinous flow aids, photostabilizers, high boiling point solvents, and other compatibilizers well known to those of skill in the art.
  • the diluted low refractive index solution comprising the fluoropolymer and acrylate phases is then applied to the high refractive index layer 18 or directly to the substrate (or hardcoated substrate) using conventional film application techniques.
  • Thin films can be applied using a variety of techniques, including dip coating, forward and reverse roll coating, wire wound rod coating, and die coating.
  • Die coaters include knife coaters, slot coaters, slide coaters, fluid bearing coaters, slide curtain coaters, drop die curtain coaters, and extrusion coaters among others. Many types of die coaters are described in the literature such as by Edward Cohen and Edgar Gutoff, Modern Coating and Drying Technology, VCH Publishers, NY 1992, ISBN 3-527-28246-7 and Gutoff and Cohen, Coating and Drying Defects: Troubleshooting Operating Problems, Wiley Interscience, NY ISBN 0-471-59810-0.
  • a die coater generally refers to an apparatus that utilizes a first die block and a second die block to form a manifold cavity and a die slot.
  • the coating fluid under pressure, flows through the manifold cavity and out the coating slot to form a ribbon of coating material.
  • Coatings can be applied as a single layer or as two or more superimposed layers. Although it is usually convenient for the substrate to be in the form of a continuous web, the substrate may also be formed to a succession of discrete sheets.
  • the wet film is dried in an oven to remove the solvent and then subjected to ultraviolet radiation using an H-bulb or other lamp at a desired wavelength, preferably in an inert atmosphere (less than 50 parts per million oxygen).
  • the reaction mechanism causes the multifunctional component of the acrylate phase to covalently crosslink with the fluoropolymer phase. Further, the crosslinking causes the fluoropolymer phase and acrylate phase to substantially entangle, therein forming an interpenetrating polymer network, or IPN.
  • the resultant film thus constitutes a co-crosslinked interpenetrating polymer network having a desired thickness in the range of about 75-130 nanometers. As one of ordinary skill recognizes, this film thickness may vary depending upon the desired light reflectance/absorbency characteristics in conjunction with the desired durability characteristics.
  • the present invention thus provides many advantages over the prior art.
  • the improvements to this composition are that the polymer composition is a blend of hydrocarbon with a fluoropolymer and therefore a reduction in the refractive index is anticipated.
  • the introduction of unsaturation or cure site monomers to the fluoropolymer backbone which can further react under ultraviolet radiation allow for further co-crosslinking and improved compatibility over a simple physical mixture.
  • the incorporation of surface modified inorganic particles can covalently bond to the fluoropolymer and acrylate backbone, and therefore provide a tougher and more homogeneous polymer/particle network.
  • low refractive index samples contained 2.0% by weight, based on solids, of Duracure 1173 as a photoinitiator unless noted otherwise.
  • the low index solution were then coated on a hardcoated PET film and cured by UV irradiation in a nitrogen inerted chamber. The atmosphere of the cure chamber was monitored to maintain at least ⁇ 50 ppm O 2 .
  • the hardcoat is formed by coating a curable liquid ceramer composition onto a substrate, in this case primed PET, and curing the composition in situ to form a hardened film.
  • Suitable coating methods include those previously described for application of the fluorochemical surface layer. Further, details concerning hardcoats can be found in U.S. Pat. No. 6,132,861 (Kang et al. '861), U.S. Pat. No. 6,238,798 (Kang et al. '798), U.S. Pat. No. 6,245,833 (Kang et al. '833) and U.S. Pat. No. 6,299,799 (Craig et al. '799).
  • PET film polyethylene terephthalate (PET) film obtained from e.i. DuPont de Nemours and Company, Wilmington, Del. under the trade designation “Melinex 618”, and having a thickness of 5.0 mils and a primed surface.
  • a hardcoat composition that was substantially the same as Example 3 of U.S. Pat. No. 6,299,799 was coated onto the primed surface and cured in a UV chamber having less than 50 parts per million (ppm) oxygen.
  • the UV chamber was equipped with a 600 watt H-type bulb from Fusion UV systems of Gaithersburg Maryland, operating at full power.
  • the hard coat was applied to the PET film with a metered, precision die coating process.
  • the hard coat was diluted in IPA to 30 weight percent solids and coated onto the 5-mil PET backing to achieve a dry thickness of 5 microns.
  • a flow meter was used to monitor and set the flow rate of the material from a pressurized container. The flow rate was adjusted by changing the air pressure inside the sealed container which forces liquid out through a tube, through a filter, the flow meter and then through the die.
  • the dried and cured film was wound on a take up roll and used as the input backing for the coating solutions described below.
  • the low index coating solutions were coated onto the PET hardcoat layer (S1) using a precision, metered die coater. For this step, a syringe pump was used to meter the solution into the die. The solutions were diluted to a concentration of 3% to 5% solids as indicated in Tables 4A and 4B and coated onto the PET hardcoat (S1) layer to achieve a dry thickness of 100 nm.
  • the material was dried in a conventional air flotation oven and then sent through the UV chamber having less than 50 ppm oxygen.
  • the UV chamber was equipped with a 600 watt H-type bulb from Fusion UV systems, Gaithersburg Md., operating at full power.
  • the cheesecloth was obtained from Summers Optical, EMS Packaging, A subdivision of EMS Acquisition Corp., Hatsfield, Pa. under the trade designation “Mil Spec CCC-c-440 Product # S12905”. The cheesecloth was folded into 12 layers. The data are reported as the number of wipes and weight in grams needed to visibly scratch the film's surface. The data are reported in Tables 4A and 4B below.
  • Linear Scratch testing Scratch resistance of the coated films was accomplished by means of mechanical apparatus which can accelerate a diamond-graphite stylus across the surface of the film.
  • the stylus has a diameter of 750 um and a 160° cone angle at the tip.
  • the Linear Scratch Apparatus Model 4138 is available from Anorad Products, Hauppauge, N.Y.
  • the diamond tipped styli are available from Graff Diamond Products Limited, Brampton, Ontario, Canada.
  • the styli are accelerated across the surface of the film at 20 ft/min (6.7 m/min) for 4 inches (10.2 cm).
  • the holder is equipped with a known weight applied normal to the surface of the film.
  • the film is tested until failure or until the maximum weight for the apparatus of 750 g was reached. If a scratch was noted on the surface it was further evaluated by means of optical microscope (AxiotronTM Microscope with Axio-ImagerTM, available from Zeiss of Goetting, Germany) with a video interface (available from Optronics-Terra Universal of Anaheim, Calif.). The optical power was set at 10 ⁇ and the nature of the damage was noted as: 1) no scratch (“NS”); 2) slight scratch (“SS”); 3) partial delamination (“PD”); and 4) full delamination (“FD”). Thus, for example, a sample that tests “FD-50g” achieved full delamination using a 50-gram weight.
  • Sand Test In this abrasion test, a circular piece of film is subjected to sand abrasion by means of an oscillating laboratory shaker, (Model DS 500E Orbital shaker available from VWR of W. Chester, Pa.). The percent change in reflection (“ ⁇ % R”) is used to determine the overall loss of the AR coating. Therefore, values reported with lower ⁇ % R exhibited improved sand abrasion resistance.
  • the procedure for performing the sand test is achieved by first die cutting a coated film to a diameter of 90 mm. The middle of the film is marked on the uncoated side of the film with a 25 mm diameter circle to identify the “optical zone” where the before and after % R measurements will be made.
  • the % R in this “optical zone” is measured at 550 nm by means of a Perkin-Elmer Lamda 900 UV-Vis-NIR spectrometer in the reflection mode.
  • the film was placed coated side up in the lid of a 16 oz glass jar. (The jars are straight-sided, clear glass jars model WS-216922 available from Valu-BulkTM Wheaton Glass Bottles Millville, N.J.).
  • the sand was Ottawa Sand Standard, 20-30 mesh, and conforms to ASTM Standard C-190 T-132 and was obtained from VWR of W. Chester, Pa.
  • the jar is placed in the shaker upside-down and secured into the oscillating shaker so the sand is in contact with the coated side of the film.
  • the test assembly is oscillated for 15 min 25 sec at 250 rpm's. (Note, the 25 seconds allows the shaker to ramp up to the full 250 rpm's.) After this test time, the film is removed from the lid. The coated surface is wiped with a soft cloth dampened with 2-propanol and the percent reflection is measured at 550 nm in the same optical zone as before.
  • DyneonTM THVTM 220 Fluoroplastic (20 MFI, ASTM D 1238) is available as either a 30% solids latex grade under the trade name of DyneonTM THVTM 220D Fluoroplastic dispersion, or as a pellet grade under the trade name of DyneonTM THVTM 220G. Both are available from Dyneon LLC of St. Paul, Minn. In the case of DyneonTM THVTM 220D, a coagulation step is necessary to isolate the polymer as a solid resin. The process for this is described below.
  • the solid THV 220 resin derived from THV 220D latex can be obtained by freeze coagulation. In a typical procedure, 1-L of latex was placed in a plastic container and allowed to freeze at ⁇ 18° C. for 16 hrs. The solids were allowed to thaw and the coagulated polymer was separated from the water phase by simple filtration. The solid polymer was than further divided into smaller pieces and washed 3-times with about 2 liters of hot water while being agitated. The polymer was collected and dried at 70-80° C. for 16 hours.
  • DyneonTM FT 2430 Fluoroelastomer is a 70% wt F elastomer terpolymer available from Dyneon LLC of St. Paul, Minn. and was used as received.
  • Trimethylolpropane triacrylate SR 351 (“TMPTA”) and Di-Pentaerythritol tri acrylate (SR 399LV) were obtained from Sartomer Company of Exton, Pa. and used as received.
  • KB-1 benzyl dimethyl ketal UV photoinitiator was obtained from Sartomer Company, Exton, Pa. and was used as received.
  • Oligomeric hexafluoropropylene oxide methyl ester (HFPO—C(O)OCH 3 ,) can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore et al.).
  • the broad product distribution of oligomers obtained from this preparation can be fractionated according to the method described in U.S. patent application Ser. No. 10/331,816, filed Dec. 30, 2002. This step yields the higher molecular weight distribution of oligomers used in this description wherein the number average degree of polymerization is about 6.3, and with an average molecular weight of 1,211 g/mol.
  • THV 220 or FT 2430 Fluoropolymer can be dehydrofluorinated by essentially the same method.
  • a 3-neck round bottom reaction flask was equipped with a condenser, a N 2 inlet adaptor and a mechanical stirrer.
  • THVTM 220G or materials obtained by freeze coagulation of THVTM 220D, see above
  • 50 g of the polymer was charged to the flask and dissolved in 400 ml of dry tetrahydrofuran (THF, OminSolv-HPLC grade).
  • 1,8 diazo bicycle [5.4.0] undec-7-ene (1.0 g, DBU available from Aldrich Chemicals) was added to the polymer solution. Upon addition of the DBU the reaction mixture immediately turned light orange in color. The reaction was allowed to proceed at room temperature for about 16 hours.
  • the polymer solution was purified by the slow addition of it into 600 ml of stirred deionized water made acidic by the addition of about 20 ml of 15 weight percent HCl. The light orange polymer could be easily collected from the coagulation flask, rinsed with ethanol (about 50 ml), pressed, semi-dried and redissolved in ThF.
  • the polymer solution was again precipitated as described above, collected, rinsed with ethanol (about 50 ml.) and pressed semi-dry, and then redissolved in THF and precipitated as above and further dried in an air oven at about 75-90° C. for 16 hours.
  • the polymers are herein named D-THV or D-FKM, to denote the polymers have been dehydrofluorinated.
  • Methyl t-butyl ether (MTBE, 200 ml) was added to the reaction mixture and the organic phase was extracted twice with water/HCl (about 5%) to remove unreacted amine and methanol. The MTBE layer was dried with MgSO 4 . The MTBE was removed under reduced pressure to yield a clear, viscous liquid.
  • NMR Nuclear magnetic resonance spectroscopy
  • IR infrared spectroscopy
  • HFPO-AE-OH 600 g was combined with ethyl acetate (600 g) and triethylamine (57.9 g) in a 3-neck round bottom flask that was fitted with a mechanical stirrer, a reflux condenser, addition funnel, and a hose adapter that was connected to a source of nitrogen gas.
  • the mixture was stirred under a nitrogen atmosphere and was heated to 40° C.
  • Acryloyl chloride (51.75 g) was added dropwise to the flask from the addition funnel over about 30 minutes. The mixture was stirred at 40° C. overnight.
  • the mixture was then allowed to cool to room temperature, diluted with 300 mL of 2N aqueous HCl and transferred to a separatory funnel.
  • silica nanoparticles were surface modified with 34-wt % methacryloxyl propyl trimethoxysilane and 66 wt % of 3-(N-Methylperfluoro-butanesulfonamido)propyltrimethoxysilane using the method described below.
  • a one-liter flask equipped with a dropping funnel, temperature controller, paddle stirrer, and distilling head was charged with 250 g of Nalco 2327 (20 nm ammonium stabilized colloidal silica sol, 41% solids; Nalco, Naperville, Ill.).
  • Dowanol PM methoxyisopropanol, 250 g
  • 3-methacryloxypropyltrimethoxysilane 7.45 g, A174 OSI Specialties Chemical
  • the product on cooling was an opalescent viscous liquid, 471.6 g (theoretical % solids 24.4; experimentally found percent solids 24.2%.
  • This particle dispersion in Dowanol was used to charge the particles to the coating solutions as described in Examples 15 and 16 of Tables 4A and 4B. For this reason, a small portion of the coating solvent mixture in these examples acknowledges the present of Dowanol PM.
  • sample 1 did not undergo significant photocrosslinking, while samples 3 and 5 did undergo ultraviolet radiation induced photocrosslinking. Also, the slight gelation of sample 2 is attributed to the homopolymerization of the TMPTA, and not to co-crosslinking. Further, the addition of the multifunctional acrylate in samples 4 and 6 showed significantly more photocrosslinking do to the formation of the co-crosslinked IPN, as witness by the gelation observed within the respective vials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
US11/026,614 2004-12-30 2004-12-30 Low refractive index fluoropolymer compositions having improved coating and durability properties Abandoned US20060148996A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US11/026,614 US20060148996A1 (en) 2004-12-30 2004-12-30 Low refractive index fluoropolymer compositions having improved coating and durability properties
JP2007549462A JP2008527414A (ja) 2004-12-30 2005-12-19 改良されたコーティングおよび耐久性性質を有する低屈折率フルオロポリマー組成物
PCT/US2005/046010 WO2006073785A1 (en) 2004-12-30 2005-12-19 Low refractive index fluoropolymer compositions having improved coating and durability properties
CN200580045439A CN100593124C (zh) 2004-12-30 2005-12-19 涂敷性能和耐久性得到提高的低折射率含氟聚合物组合物
KR1020077014936A KR101247058B1 (ko) 2004-12-30 2005-12-19 개선된 피복 및 내구성 특성을 갖는 저굴절률 플루오로중합체 조성물
EP05854679A EP1831729A1 (en) 2004-12-30 2005-12-19 Low refractive index fluoropolymer compositions having improved coating and durability properties
MYPI20056254A MY139527A (en) 2004-12-30 2005-12-29 Low refractive index fluoropolymer compositions having improved coating and durability properties
TW094147351A TW200630396A (en) 2004-12-30 2005-12-29 Low refractive index fluoropolymer compositions having improved coating and durability properties
US11/972,034 US7473462B2 (en) 2004-12-30 2008-01-10 Low refractive index fluoropolymer compositions having improved coating and durability properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/026,614 US20060148996A1 (en) 2004-12-30 2004-12-30 Low refractive index fluoropolymer compositions having improved coating and durability properties

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/972,034 Continuation US7473462B2 (en) 2004-12-30 2008-01-10 Low refractive index fluoropolymer compositions having improved coating and durability properties

Publications (1)

Publication Number Publication Date
US20060148996A1 true US20060148996A1 (en) 2006-07-06

Family

ID=36206136

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/026,614 Abandoned US20060148996A1 (en) 2004-12-30 2004-12-30 Low refractive index fluoropolymer compositions having improved coating and durability properties
US11/972,034 Expired - Fee Related US7473462B2 (en) 2004-12-30 2008-01-10 Low refractive index fluoropolymer compositions having improved coating and durability properties

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/972,034 Expired - Fee Related US7473462B2 (en) 2004-12-30 2008-01-10 Low refractive index fluoropolymer compositions having improved coating and durability properties

Country Status (8)

Country Link
US (2) US20060148996A1 (ko)
EP (1) EP1831729A1 (ko)
JP (1) JP2008527414A (ko)
KR (1) KR101247058B1 (ko)
CN (1) CN100593124C (ko)
MY (1) MY139527A (ko)
TW (1) TW200630396A (ko)
WO (1) WO2006073785A1 (ko)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050182199A1 (en) * 2000-12-06 2005-08-18 Naiyong Jing Fluoropolymer coating compositions with multifunctional fluoroalkyl crosslinkers for anti-reflective polymer films
US20070289497A1 (en) * 2004-09-27 2007-12-20 Fujifilm Corporation Coating Composition, Optical Film, Anti-reflection Film, Polarizing Plate, and Display Unit Using Them
US7323514B2 (en) 2004-12-30 2008-01-29 3M Innovative Properties Company Low refractive index fluoropolymer coating compositions for use in antireflective polymer films
US20100003501A1 (en) * 2008-07-01 2010-01-07 Liu Lan H Flexible high refractive index hardcoat
US20100015516A1 (en) * 2008-07-21 2010-01-21 Junwei Jiang Cathode compositions for lithium-ion electrochemical cells
US20100252106A1 (en) * 2009-04-01 2010-10-07 Industrial Technology Research Institute Anti-reflective and light-trapping solar module package structure
EP2274394A2 (en) * 2008-04-21 2011-01-19 LG Chem, Ltd. Pressure-sensitive adhesive compositions, polarizers and liquid crystal displays comprising the same
WO2011017039A2 (en) 2009-08-03 2011-02-10 3M Innovative Properties Company Antireflective transparent emi shielding optical filter
US9028123B2 (en) 2010-04-16 2015-05-12 Flex Lighting Ii, Llc Display illumination device with a film-based lightguide having stacked incident surfaces
WO2015108834A1 (en) * 2014-01-15 2015-07-23 3M Innovative Properties Company Hardcoats comprising alkoxylated multi(meth)acrylate monomers and surface treated nanoparticles
US9110200B2 (en) 2010-04-16 2015-08-18 Flex Lighting Ii, Llc Illumination device comprising a film-based lightguide
US9221990B2 (en) 2012-11-14 2015-12-29 3M Innovative Properties Company Fluoropolymer coatings suitable for films of photovoltaic modules
WO2018057557A1 (en) * 2016-09-21 2018-03-29 Honeywell International Inc. Anti-reflective coatings and methods for optical lenses
US9976045B2 (en) 2013-11-07 2018-05-22 3M Innovative Properties Company Fluoropolymer coatings comprising aziridine compounds
US10526503B2 (en) 2013-11-07 2020-01-07 3M Innovative Properties Company Fluoropolymer coatings comprising aziridine compounds and non-fluorinated polymer

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060216524A1 (en) * 2005-03-23 2006-09-28 3M Innovative Properties Company Perfluoropolyether urethane additives having (meth)acryl groups and hard coats
US7629051B2 (en) * 2005-06-01 2009-12-08 Fujifilm Corporation Optical film containing fluorinated photopolymerization initiator, antireflective film, polarizing plate and image display unit including same
US7553543B2 (en) * 2005-12-16 2009-06-30 E. I. Du Pont De Nemours And Company Composite structure having a fluoroelastomeric anti-reflective coating with non-fluorinated cross-linking
US7615283B2 (en) * 2006-06-13 2009-11-10 3M Innovative Properties Company Fluoro(meth)acrylate polymer composition suitable for low index layer of antireflective film
DE102008047965A1 (de) * 2008-09-18 2010-03-25 Tesa Se Haftklebeband für Solar Panels
CN102804061A (zh) * 2009-05-08 2012-11-28 惠普开发有限公司 作为疏水性涂层的功能化全氟聚醚材料
US8564310B2 (en) 2009-08-18 2013-10-22 3M Innovative Properties Company Capacitive oil quality monitoring sensor with fluorinated barrier coating
KR101439581B1 (ko) 2010-07-22 2014-09-11 주식회사 엘지화학 표면층 및 이의 제조방법
US10011734B2 (en) * 2012-02-25 2018-07-03 Mitsubishi Chemical Corporation Coated film
CN103351777B (zh) * 2013-06-18 2016-04-06 上海本朴科技发展有限公司 纳米防污防指纹的涂层组合物及其制备方法
US10213993B2 (en) 2013-12-19 2019-02-26 3M Innovative Properties Company Multilayer composite article
WO2015200003A1 (en) 2014-06-23 2015-12-30 3M Innovative Properties Company Silicon-containing polymer and method of making a silicon-containing polymer
WO2016094280A1 (en) 2014-12-08 2016-06-16 3M Innovative Properties Company Acrylic polyvinyl acetal films, composition, and heat bondable articles
CN108430766B (zh) 2015-12-22 2020-11-10 3M创新有限公司 包括结构化层的丙烯酸类膜
JP7036507B2 (ja) 2015-12-22 2022-03-15 スリーエム イノベイティブ プロパティズ カンパニー アクリルポリビニルアセタールグラフィックフィルム
EP3393798B1 (en) 2015-12-22 2021-10-20 3M Innovative Properties Company Films comprising a (meth)acrylic polymer and polyvinyl acetal polymer having a layer of an adhesive composition disposed thereon
JP2019502574A (ja) 2015-12-22 2019-01-31 スリーエム イノベイティブ プロパティズ カンパニー 第2の層を備えたアクリルポリビニルアセタールフィルム
JP6913506B2 (ja) * 2017-05-16 2021-08-04 株式会社クレハ 塩化ビニリデン系樹脂フィルム及び塩化ビニリデン系樹脂組成物
US20200255709A1 (en) * 2017-10-17 2020-08-13 Ares Materials Inc. Optically clear adhesives using semi-interpenetrating polymer networks
US11794452B2 (en) 2017-11-16 2023-10-24 Argotec, LLC Thermoplastic polymer film with interpenetrating polymer network
US11407898B2 (en) 2017-12-13 2022-08-09 3M Innovative Properties Company Curable fluorinated silsequioxane compositions
CN112379131A (zh) * 2020-11-02 2021-02-19 中国科学技术大学 一种杂化波导及光学显微镜探针的制备方法、光学显微镜探针

Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250808A (en) * 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
US3676192A (en) * 1970-04-06 1972-07-11 Ppg Industries Inc Crosslinked polyvinyl chloride or polyvinylidene fluoride film
US3833368A (en) * 1972-12-04 1974-09-03 Polaroid Corp Photographic products incorporating anti-reflection coatings
US3894118A (en) * 1974-01-21 1975-07-08 Itt Crosslinking agents for fluorocarbon polymers
US4000356A (en) * 1972-06-19 1976-12-28 Dynamit Nobel Aktiengesellschaft Process for the preparation of thermoplastically workable fluoro-olefin polymers
US4214060A (en) * 1975-03-27 1980-07-22 E. I. Du Pont De Nemours And Company Fluoropolymer composition
US4262072A (en) * 1979-06-25 1981-04-14 Minnesota Mining And Manufacturing Company Poly(ethylenically unsaturated alkoxy) heterocyclic protective coatings
US4654233A (en) * 1984-11-21 1987-03-31 Minnesota Mining And Manufacturing Company Radiation-curable thermoplastic coating
US4803147A (en) * 1987-11-24 1989-02-07 Hoechst Celanese Corporation Photosensitive polyimide polymer compositions
US4855184A (en) * 1988-02-02 1989-08-08 Minnesota Mining And Manufacturing Company Radiation-curable protective coating composition
US5148511A (en) * 1991-11-04 1992-09-15 Minnesota Mining And Manufacturing Company Low refractive index plastics for optical fiber cladding
US5214100A (en) * 1990-02-27 1993-05-25 Bayer Aktiengesellschaft Use of certain phenolic resins for reinforcing rubber vulcanizates
US5476717A (en) * 1991-08-22 1995-12-19 Commissariat A L'energie Atomique Material having antireflection, hydrophobic and abrasion resistance properties and process for depositing an antireflection, hydrophobic and abrasion resistant coating on a substrate
US5733981A (en) * 1996-08-26 1998-03-31 Minnesota Mining And Manufacturing Company Aqueous dehydrofluorination method
US5846650A (en) * 1996-05-10 1998-12-08 Minnesota Mining And Manufacturing Company Anti-reflective, abrasion resistant, anti-fogging coated articles and methods
US6080487A (en) * 1996-08-26 2000-06-27 3M Innovative Properties Company Method of improving adhesion between a fluoropolymer and a substrate
US6132861A (en) * 1998-05-04 2000-10-17 3M Innovatives Properties Company Retroreflective articles including a cured ceramer composite coating having a combination of excellent abrasion, dew and stain resistant characteristics
US6224949B1 (en) * 1998-06-11 2001-05-01 3M Innovative Properties Company Free radical polymerization method
US6238798B1 (en) * 1999-02-22 2001-05-29 3M Innovative Properties Company Ceramer composition and composite comprising free radically curable fluorochemical component
US6245833B1 (en) * 1998-05-04 2001-06-12 3M Innovative Properties Ceramer composition incorporating fluoro/silane component and having abrasion and stain resistant characteristics
US6254973B1 (en) * 1996-02-14 2001-07-03 Nof Corporation Fluorine-containing polyfunctional (meth) acrylate, fluorine containing monomer composition, low refractivity material, and reflection reducing film
US6270901B1 (en) * 1997-12-19 2001-08-07 Dyneon Llc Compositions for bonding fluoroplastics
US6299799B1 (en) * 1999-05-27 2001-10-09 3M Innovative Properties Company Ceramer compositions and antistatic abrasion resistant ceramers made therefrom
US20010033934A1 (en) * 1998-06-10 2001-10-25 Cpfilms Inc. Low reflective films
US20010050741A1 (en) * 2000-02-28 2001-12-13 Hirohisa Hokazono Antireflection film, sheet polarizer and liquid crystal display device
US6343865B1 (en) * 1998-02-17 2002-02-05 Dai Nippon Printing Co., Ltd. Non-glare film, polarizing device and display device
US6346328B1 (en) * 1998-07-30 2002-02-12 Dyneon Llc Composite articles including a fluoropolymer
US6346300B1 (en) * 1998-01-21 2002-02-12 Dupont Dow Elastomers L.L.C. UV curable elastomer composition
US6379788B2 (en) * 1998-02-19 2002-04-30 3M Innovative Properties Company Antireflection film
US6429249B1 (en) * 2000-06-30 2002-08-06 Nexpress Solutions Llc Fluorocarbon thermoplastic random copolymer composition
US6464822B1 (en) * 1998-02-19 2002-10-15 3M Innovative Properties Company Antireflection film
US20020197481A1 (en) * 2001-05-21 2002-12-26 Naiyong Jing Fluoropolymer bonding
US20030077454A1 (en) * 2001-05-21 2003-04-24 Naiyong Jing Fluoropolymer bonding composition and method
US6572693B1 (en) * 1999-10-28 2003-06-03 3M Innovative Properties Company Aesthetic dental materials
US20030120008A1 (en) * 2001-04-13 2003-06-26 Tatsuhiko Obayashi Fluorine-containing copolymer, composition for forming a film, anti-reflection film, and image display device
US6630407B2 (en) * 2001-03-30 2003-10-07 Lam Research Corporation Plasma etching of organic antireflective coating
US6680357B1 (en) * 1999-07-14 2004-01-20 Atofina Chemicals, Inc. Crosslinkable aqueous fluoropolymer based dispersions
US20040019176A1 (en) * 2000-08-29 2004-01-29 Takayuki Araki Curable fluoropolymer, curable resin composition containing the same, and antireflection film
US6734227B2 (en) * 2001-09-24 2004-05-11 3M Innovative Properties Company Optical elements comprising a fluoropolymer surface treatment
US20040114248A1 (en) * 2001-04-10 2004-06-17 Hirohisa Hokazono Antireflection film, polarizing plate, and apparatus for displaying an image
US20040124396A1 (en) * 2002-12-30 2004-07-01 Flynn Richard M. Fluorinated polyether compositions
US20040196558A1 (en) * 2003-04-03 2004-10-07 Hiroshi Takahashi Anti-glare film
US20050038187A1 (en) * 2001-12-21 2005-02-17 Hiroyuki Mano Fluoropolymer containing ethylenically unsaturated groups, and curable resin compositions and antireflection coatings, made by using the same
US20050038137A1 (en) * 2001-09-04 2005-02-17 Toshio Yoshihara Coating composition, coating formed therefrom, anti-reflection coating, anti-reflection film, and image display device
US20050136252A1 (en) * 2003-12-23 2005-06-23 Chisholm Bret J. UV curable coating compositions and uses thereof
US20050182199A1 (en) * 2000-12-06 2005-08-18 Naiyong Jing Fluoropolymer coating compositions with multifunctional fluoroalkyl crosslinkers for anti-reflective polymer films
US20050250921A1 (en) * 2004-05-07 2005-11-10 3M Innovative Properties Company Polymerizable compositions, methods of making the same, and composite articles therefrom
US20060147177A1 (en) * 2004-12-30 2006-07-06 Naiyong Jing Fluoropolymer coating compositions with olefinic silanes for anti-reflective polymer films
US20060147723A1 (en) * 2004-12-30 2006-07-06 Naiyong Jing Low refractive index fluoropolymer coating compositions for use in antireflective polymer films

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3417263A1 (de) 1984-05-10 1985-11-14 Bayer Ag, 5090 Leverkusen Strahlenhaertbare, farbton- und kreidungsstabile lacke und ihre verwendung
US4697026A (en) * 1986-01-06 1987-09-29 Dow Corning Corporation Acryl functional silicone compounds
CA1296458C (en) 1986-02-27 1992-02-25 Yutaka Hashimoto Fluorine-containing resin composition having low refractive index
US4873140A (en) 1988-04-27 1989-10-10 Minnesota Mining And Manufacturing Company Articles having low adhesion articles having coatings thereon
JPH02115234A (ja) * 1988-10-26 1990-04-27 Tdk Corp 架橋ポリフッ化ビニリデンの製造方法
US4973633A (en) 1989-05-15 1990-11-27 E. I. Du Pont De Nemours And Company Peroxide-curable fluoroelastomers having bromine an iodine curesites and the preparation thereof
IT1235545B (it) 1989-07-10 1992-09-09 Ausimont Srl Fluoroelastomeri dotati di migliore processabilita' e procedimento di preparazione
JPH03157440A (ja) 1989-11-14 1991-07-05 Daikin Ind Ltd 塗料用組成物
WO1991009069A1 (en) 1989-12-11 1991-06-27 Sumitomo Electric Industries, Ltd. Photocurable resin composition and plastic-clad optical fiber using the same
US5170192A (en) * 1990-11-29 1992-12-08 Pilkington Visioncare, Inc. Oxygen permeable bifocal contact lenses and their manufacture
WO1993021010A1 (en) * 1992-04-15 1993-10-28 Soane Technologies, Inc. Lenses with high impact resistance and high scratch resistance
JPH0693210A (ja) * 1992-04-30 1994-04-05 Minnesota Mining & Mfg Co <3M> 耐汚染性保護コーティング組成物
JPH08501585A (ja) 1992-09-18 1996-02-20 ミネソタ マイニング アンド マニュファクチャリング カンパニー フルオロケミカル ポリマー系
TW363976B (en) * 1996-06-10 1999-07-11 Nof Corp Fluoride-containing polyfunctional (meth)acrylates, compositions comprising the same, materials with low refractivity and reflection-reduction film
JP3387392B2 (ja) 1997-10-24 2003-03-17 ダイキン工業株式会社 含フッ素系重合体水性分散組成物
US6271326B1 (en) * 1998-04-30 2001-08-07 Jsr Corporation Olefin polymer, process for manufacturing the same, curable resin composition, and antireflection coating
EP0984070A1 (en) 1998-08-31 2000-03-08 Boehringer Ingelheim International GmbH Method for identifying substances for the treatment of disorders associated with c-Jun-mediated apoptosis
US6893245B2 (en) 2001-02-20 2005-05-17 Q2100, Inc. Apparatus for preparing an eyeglass lens having a computer system controller
JP2003025510A (ja) 2001-07-16 2003-01-29 Shin Etsu Chem Co Ltd 反射防止性及び耐擦傷性を有する多層積層体
JP4187487B2 (ja) 2001-09-04 2008-11-26 大日本印刷株式会社 コーティング組成物、その塗膜、反射防止膜、反射防止フィルム、及び、画像表示装置
WO2005103175A1 (en) 2004-04-22 2005-11-03 Jsr Corporation Low refractive index coating composition
US7101618B2 (en) * 2004-05-07 2006-09-05 3M Innovative Properties Company Article comprising fluorochemical surface layer

Patent Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250808A (en) * 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
US3676192A (en) * 1970-04-06 1972-07-11 Ppg Industries Inc Crosslinked polyvinyl chloride or polyvinylidene fluoride film
US4000356A (en) * 1972-06-19 1976-12-28 Dynamit Nobel Aktiengesellschaft Process for the preparation of thermoplastically workable fluoro-olefin polymers
US3833368A (en) * 1972-12-04 1974-09-03 Polaroid Corp Photographic products incorporating anti-reflection coatings
US3894118A (en) * 1974-01-21 1975-07-08 Itt Crosslinking agents for fluorocarbon polymers
US4214060A (en) * 1975-03-27 1980-07-22 E. I. Du Pont De Nemours And Company Fluoropolymer composition
US4262072A (en) * 1979-06-25 1981-04-14 Minnesota Mining And Manufacturing Company Poly(ethylenically unsaturated alkoxy) heterocyclic protective coatings
US4654233A (en) * 1984-11-21 1987-03-31 Minnesota Mining And Manufacturing Company Radiation-curable thermoplastic coating
US4803147A (en) * 1987-11-24 1989-02-07 Hoechst Celanese Corporation Photosensitive polyimide polymer compositions
US4855184A (en) * 1988-02-02 1989-08-08 Minnesota Mining And Manufacturing Company Radiation-curable protective coating composition
US5214100A (en) * 1990-02-27 1993-05-25 Bayer Aktiengesellschaft Use of certain phenolic resins for reinforcing rubber vulcanizates
US5476717A (en) * 1991-08-22 1995-12-19 Commissariat A L'energie Atomique Material having antireflection, hydrophobic and abrasion resistance properties and process for depositing an antireflection, hydrophobic and abrasion resistant coating on a substrate
US5148511A (en) * 1991-11-04 1992-09-15 Minnesota Mining And Manufacturing Company Low refractive index plastics for optical fiber cladding
US6254973B1 (en) * 1996-02-14 2001-07-03 Nof Corporation Fluorine-containing polyfunctional (meth) acrylate, fluorine containing monomer composition, low refractivity material, and reflection reducing film
US5846650A (en) * 1996-05-10 1998-12-08 Minnesota Mining And Manufacturing Company Anti-reflective, abrasion resistant, anti-fogging coated articles and methods
US5733981A (en) * 1996-08-26 1998-03-31 Minnesota Mining And Manufacturing Company Aqueous dehydrofluorination method
US6080487A (en) * 1996-08-26 2000-06-27 3M Innovative Properties Company Method of improving adhesion between a fluoropolymer and a substrate
US6270901B1 (en) * 1997-12-19 2001-08-07 Dyneon Llc Compositions for bonding fluoroplastics
US6346300B1 (en) * 1998-01-21 2002-02-12 Dupont Dow Elastomers L.L.C. UV curable elastomer composition
US6343865B1 (en) * 1998-02-17 2002-02-05 Dai Nippon Printing Co., Ltd. Non-glare film, polarizing device and display device
US6464822B1 (en) * 1998-02-19 2002-10-15 3M Innovative Properties Company Antireflection film
US6379788B2 (en) * 1998-02-19 2002-04-30 3M Innovative Properties Company Antireflection film
US6245833B1 (en) * 1998-05-04 2001-06-12 3M Innovative Properties Ceramer composition incorporating fluoro/silane component and having abrasion and stain resistant characteristics
US6132861A (en) * 1998-05-04 2000-10-17 3M Innovatives Properties Company Retroreflective articles including a cured ceramer composite coating having a combination of excellent abrasion, dew and stain resistant characteristics
US20010033934A1 (en) * 1998-06-10 2001-10-25 Cpfilms Inc. Low reflective films
US6224949B1 (en) * 1998-06-11 2001-05-01 3M Innovative Properties Company Free radical polymerization method
US6346328B1 (en) * 1998-07-30 2002-02-12 Dyneon Llc Composite articles including a fluoropolymer
US6238798B1 (en) * 1999-02-22 2001-05-29 3M Innovative Properties Company Ceramer composition and composite comprising free radically curable fluorochemical component
US6497961B2 (en) * 1999-02-22 2002-12-24 3M Innovative Properties Company Ceramer composition and composite comprising free radically curable fluorochemical component
US20020001710A1 (en) * 1999-02-22 2002-01-03 Soonkun Kang Ceramer composition and composite comprising free radically curable fluorochemical component
US6299799B1 (en) * 1999-05-27 2001-10-09 3M Innovative Properties Company Ceramer compositions and antistatic abrasion resistant ceramers made therefrom
US6680357B1 (en) * 1999-07-14 2004-01-20 Atofina Chemicals, Inc. Crosslinkable aqueous fluoropolymer based dispersions
US6572693B1 (en) * 1999-10-28 2003-06-03 3M Innovative Properties Company Aesthetic dental materials
US20010050741A1 (en) * 2000-02-28 2001-12-13 Hirohisa Hokazono Antireflection film, sheet polarizer and liquid crystal display device
US6429249B1 (en) * 2000-06-30 2002-08-06 Nexpress Solutions Llc Fluorocarbon thermoplastic random copolymer composition
US20040019176A1 (en) * 2000-08-29 2004-01-29 Takayuki Araki Curable fluoropolymer, curable resin composition containing the same, and antireflection film
US20050182199A1 (en) * 2000-12-06 2005-08-18 Naiyong Jing Fluoropolymer coating compositions with multifunctional fluoroalkyl crosslinkers for anti-reflective polymer films
US6630407B2 (en) * 2001-03-30 2003-10-07 Lam Research Corporation Plasma etching of organic antireflective coating
US20040114248A1 (en) * 2001-04-10 2004-06-17 Hirohisa Hokazono Antireflection film, polarizing plate, and apparatus for displaying an image
US6794469B2 (en) * 2001-04-13 2004-09-21 Fuji Photo Film Co., Ltd. Fluorine-containing copolymer, composition for forming a film, anti-reflection film, and image display device
US20030120008A1 (en) * 2001-04-13 2003-06-26 Tatsuhiko Obayashi Fluorine-containing copolymer, composition for forming a film, anti-reflection film, and image display device
US20020197481A1 (en) * 2001-05-21 2002-12-26 Naiyong Jing Fluoropolymer bonding
US6753087B2 (en) * 2001-05-21 2004-06-22 3M Innovative Properties Company Fluoropolymer bonding
US20030077454A1 (en) * 2001-05-21 2003-04-24 Naiyong Jing Fluoropolymer bonding composition and method
US6685793B2 (en) * 2001-05-21 2004-02-03 3M Innovative Properties Company Fluoropolymer bonding composition and method
US20050038137A1 (en) * 2001-09-04 2005-02-17 Toshio Yoshihara Coating composition, coating formed therefrom, anti-reflection coating, anti-reflection film, and image display device
US6734227B2 (en) * 2001-09-24 2004-05-11 3M Innovative Properties Company Optical elements comprising a fluoropolymer surface treatment
US20050038187A1 (en) * 2001-12-21 2005-02-17 Hiroyuki Mano Fluoropolymer containing ethylenically unsaturated groups, and curable resin compositions and antireflection coatings, made by using the same
US20040124396A1 (en) * 2002-12-30 2004-07-01 Flynn Richard M. Fluorinated polyether compositions
US20040196558A1 (en) * 2003-04-03 2004-10-07 Hiroshi Takahashi Anti-glare film
US20050136252A1 (en) * 2003-12-23 2005-06-23 Chisholm Bret J. UV curable coating compositions and uses thereof
US20050250921A1 (en) * 2004-05-07 2005-11-10 3M Innovative Properties Company Polymerizable compositions, methods of making the same, and composite articles therefrom
US20060147177A1 (en) * 2004-12-30 2006-07-06 Naiyong Jing Fluoropolymer coating compositions with olefinic silanes for anti-reflective polymer films
US20060147723A1 (en) * 2004-12-30 2006-07-06 Naiyong Jing Low refractive index fluoropolymer coating compositions for use in antireflective polymer films

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351471B2 (en) * 2000-12-06 2008-04-01 3M Innovative Properties Company Fluoropolymer coating compositions with multifunctional fluoroalkyl crosslinkers for anti-reflective polymer films
US20050182199A1 (en) * 2000-12-06 2005-08-18 Naiyong Jing Fluoropolymer coating compositions with multifunctional fluoroalkyl crosslinkers for anti-reflective polymer films
US7906207B2 (en) * 2004-09-27 2011-03-15 Fujifilm Corporation Coating composition, optical film, anti-reflection film, polarizing plate, and display unit using them
US20070289497A1 (en) * 2004-09-27 2007-12-20 Fujifilm Corporation Coating Composition, Optical Film, Anti-reflection Film, Polarizing Plate, and Display Unit Using Them
US7323514B2 (en) 2004-12-30 2008-01-29 3M Innovative Properties Company Low refractive index fluoropolymer coating compositions for use in antireflective polymer films
EP2274394A2 (en) * 2008-04-21 2011-01-19 LG Chem, Ltd. Pressure-sensitive adhesive compositions, polarizers and liquid crystal displays comprising the same
EP2274394A4 (en) * 2008-04-21 2011-10-12 Lg Chemical Ltd Pressure-sensitive adhesive compositions, polarizers and liquid crystal displays therewith
US20100003501A1 (en) * 2008-07-01 2010-01-07 Liu Lan H Flexible high refractive index hardcoat
US8343622B2 (en) 2008-07-01 2013-01-01 3M Innovative Properties Company Flexible high refractive index hardcoat
US20100015516A1 (en) * 2008-07-21 2010-01-21 Junwei Jiang Cathode compositions for lithium-ion electrochemical cells
US8153301B2 (en) 2008-07-21 2012-04-10 3M Innovative Properties Company Cathode compositions for lithium-ion electrochemical cells
US20100252106A1 (en) * 2009-04-01 2010-10-07 Industrial Technology Research Institute Anti-reflective and light-trapping solar module package structure
WO2011017039A2 (en) 2009-08-03 2011-02-10 3M Innovative Properties Company Antireflective transparent emi shielding optical filter
US9110200B2 (en) 2010-04-16 2015-08-18 Flex Lighting Ii, Llc Illumination device comprising a film-based lightguide
US9028123B2 (en) 2010-04-16 2015-05-12 Flex Lighting Ii, Llc Display illumination device with a film-based lightguide having stacked incident surfaces
US9221990B2 (en) 2012-11-14 2015-12-29 3M Innovative Properties Company Fluoropolymer coatings suitable for films of photovoltaic modules
US9562168B2 (en) 2012-11-14 2017-02-07 3M Innovative Properties Company Fluoropolymer coatings suitable for films of photovoltaic modules
US9976045B2 (en) 2013-11-07 2018-05-22 3M Innovative Properties Company Fluoropolymer coatings comprising aziridine compounds
US10208223B2 (en) 2013-11-07 2019-02-19 3M Innovative Properties Company Fluoropolymer coatings comprising aziridine compounds
US10526503B2 (en) 2013-11-07 2020-01-07 3M Innovative Properties Company Fluoropolymer coatings comprising aziridine compounds and non-fluorinated polymer
US11292934B2 (en) 2013-11-07 2022-04-05 3M Innovative Properties Company Fluoropolymer coatings comprising aziridine compounds and non-fluorinated polymer
WO2015108834A1 (en) * 2014-01-15 2015-07-23 3M Innovative Properties Company Hardcoats comprising alkoxylated multi(meth)acrylate monomers and surface treated nanoparticles
WO2018057557A1 (en) * 2016-09-21 2018-03-29 Honeywell International Inc. Anti-reflective coatings and methods for optical lenses

Also Published As

Publication number Publication date
KR101247058B1 (ko) 2013-03-25
WO2006073785A1 (en) 2006-07-13
CN101095066A (zh) 2007-12-26
KR20070086811A (ko) 2007-08-27
EP1831729A1 (en) 2007-09-12
US20080107907A1 (en) 2008-05-08
TW200630396A (en) 2006-09-01
JP2008527414A (ja) 2008-07-24
US7473462B2 (en) 2009-01-06
CN100593124C (zh) 2010-03-03
MY139527A (en) 2009-10-30

Similar Documents

Publication Publication Date Title
US7473462B2 (en) Low refractive index fluoropolymer compositions having improved coating and durability properties
US7575847B2 (en) Low refractive index composition comprising fluoropolyether urethane compound
US7351471B2 (en) Fluoropolymer coating compositions with multifunctional fluoroalkyl crosslinkers for anti-reflective polymer films
US7323514B2 (en) Low refractive index fluoropolymer coating compositions for use in antireflective polymer films
KR101375897B1 (ko) 내구성 반사방지 필름
JP5584207B2 (ja) 可撓性高屈折率ハードコート
EP1831288B1 (en) Fluoropolymer nanoparticle coating composition
US20070286992A1 (en) Low refractive index composition comprising fluoropolyether urethane compound
US20060147177A1 (en) Fluoropolymer coating compositions with olefinic silanes for anti-reflective polymer films
US8343624B2 (en) Durable antireflective film
EP2044471A1 (en) Fluoro(meth)acrylate polymer composition suitable for low index layer of antireflective film
US20100173093A1 (en) Fluoro(meth)acrylate polymer composition suitable for low index layer of antireflective film
JP4375335B2 (ja) 硬化性表面改質剤およびそれを用いた硬化性表面改質用組成物
WO2016160252A1 (en) Microstructured optical film comprising low refractive index layer disposed on base film substrate

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COGGIO, WILLIAM D.;KLUN, THOMAS P.;MOORE, GEORGE G. I.;AND OTHERS;REEL/FRAME:016272/0032;SIGNING DATES FROM 20050317 TO 20050519

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE