US20060144684A1 - Distillation apparatus and method of transporting the same - Google Patents

Distillation apparatus and method of transporting the same Download PDF

Info

Publication number
US20060144684A1
US20060144684A1 US10/545,493 US54549304A US2006144684A1 US 20060144684 A1 US20060144684 A1 US 20060144684A1 US 54549304 A US54549304 A US 54549304A US 2006144684 A1 US2006144684 A1 US 2006144684A1
Authority
US
United States
Prior art keywords
column
distillation
wall
insulation structure
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/545,493
Other languages
English (en)
Inventor
Stephen Gibbon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of US20060144684A1 publication Critical patent/US20060144684A1/en
Assigned to AIR PRODUCTS AND CHEMICALS, INC. reassignment AIR PRODUCTS AND CHEMICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GIBBON, STE JOHN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04945Details of internal structure; insulation and housing of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box

Definitions

  • the present invention relates to a distillation column in combination with an insulation structure or container.
  • the invention is primarily concerned with large distillation columns, for example columns having a diameter of about 3.5 m (about 11 ft) or more, and is of particular application to cryogenic distillation columns.
  • the invention could also be employed with other separation columns such as hydrocarbon gas separation columns.
  • apparatus comprising a distillation column and an insulation structure or container.
  • a cryogenic unit e.g. an air separation unit
  • an insulating containment enclosure e.g. an air separation unit
  • the apparatus is designed to contain cryogenic liquid leaking from the cryogenic unit and is particularly suitable for off shore applications.
  • the maximum size of a cryogenic air distillation column is limited by a number of factors.
  • One such factor is the ability of the final column to be transported by road.
  • cryogenic air distillation columns e.g. those having a diameter of 3 m (10 ft) or less
  • the combination is usually transported horizontally by road on the back of a lorry having a low load platform.
  • Such columns are usually transported on specially designed “transport saddle” structures with the insulation structure in place around the column.
  • One advantage of such an arrangement is that the column is delivered to site with the insulation structure, together with the necessary pipe work within the cold box, already in place.
  • the column and insulation structure combination is simply hoisted into position on site.
  • An insulation material, usually perlite is added to the cavity between the column and the inner wall of the insulation structure and the pipe work within the cold box is then connected to the pipe work of the remaining parts of the plant.
  • One advantage of shipping a conventional distillation column within the insulation structure is that the quality of the construction can be controlled to a greater degree. Cryogenic air separation units may be required almost anywhere. Most locations have airborne contaminants such as dirt and/or grease and, in some locations, these contaminants will include corrosive contaminants, for example, salt (if the location is near the sea) or sand (if the location is in a desert). Transportation of a fully assembled column within the insulation structure means that the internal components of the column are not exposed to any airborne contaminants on site.
  • Transport saddles have to be supported by shipping beams which form part of the insulation structure.
  • a further disadvantage is that the saddles impose significant local stresses in the wall of the distillation column to the extent that it is often necessary to thicken up the distillation column wall in the vicinity of the saddles.
  • a column having a diameter of about 6 m (about 20 ft) is about the largest diameter column that can be transported by road fully assembled but, at present, it cannot transported within its insulation structure. This is because the saddles and shipping beams provided within the cold box would make the column and cold box combination too tall, even when provided on its side, to travel under all but the highest bridges. Therefore, the conventional proposal is to transport large columns to site, either as an assembled column (without the cold box) or as column parts. The column would then be erected on site and the insulation structure erected around the column.
  • U.S. Pat. No. B-6,202,305 discloses a method of constructing air distillation apparatus comprising an interior column provided within an exterior framework.
  • the method has particular application to apparatus comprising a column that is so large, e.g. having a height as much as 60 metres, that it has usually to be transported separately from the framework and constructed on site.
  • the method comprises constructing modules in which a section of the column is pulled into and joined to a corresponding section of the framework and in which the modules are joined together on site.
  • screw jacks are used to support and position a column section within a corresponding framework section in a module. The screw jacks are placed between a belt provided on and around the column section and a cross member of a face of the framework section.
  • U.S. Pat. No. A-4,116,150 discloses a container for the storage or transportation of cryogenic liquids.
  • the container has corner supports that react against tension loads on the walls of the container when the container is loaded with cryogenic liquid.
  • DE-A-19737520 discloses a cryogenic air distillation installation comprising at least one rectifying column disposed within an insulating chamber.
  • the rectifying column is secured in the insulating chamber by means of rope shaped members provided between the exterior of the column and the interior of the insulating chamber.
  • the insulating chamber is cylindrical and the rope shaped members extend radially from a ring provided on and around the exterior of the column to the interior wall of the insulating chamber.
  • DE-A-19804438 discloses a steel construction for shaft and cavern construction.
  • the steel construction is particularly suitable for use in nuclear research and with magnet technology.
  • the steel construction consists of a cylindrical body surrounded by a number of coaxial polygonal support rings. Each support ring is formed of a number of segments and is spaced apart from a neighbouring support ring by integral support lugs. Support ribs are provided between the innermost support ring adjacent the corners of the polygonal ring and the cylindrical body.
  • apparatus comprising a distillation column and an insulation structure, characterised in that said column is supported within said structure from interior corners of said structure.
  • the column may be a hydrocarbon distillation column but, in preferred embodiments, the column is a cryogenic air distillation column.
  • One advantage of supporting a column within an insulation structure from interior corners of the structure is that, for an insulation structure of given dimensions, larger columns may be transported by road than would be possible if conventional (non-removable) saddles and shipping beams are employed to support the column. In this way, assembly of large columns can take place in a controlled environment thereby reducing the risk of contamination of the internal components.
  • the present invention is, therefore, suitable for use with large columns having a diameter of at least 3.5 m (11 ft) and is particularly suitable for use with columns having a diameter of about 5 m (about 16 ft) or about 6 m (about 20 ft).
  • the column of the present invention is usually supported using sets of radial supports provided between each corner of the insulation structure and the outer wall of the column.
  • the radial supports are typically made from material having low thermal conductivity giving low heat leak. Suitable materials include stainless steel.
  • Radial supports provided between each corner of the insulation structure and the column have an added advantage over saddles as they are suitable for use as seismic or wind supports once the column is erected on site whereas the saddles are only suitable for vertical or near vertical loading when the column is being transported.
  • more space within the insulation structure is available making it possible to run piping along the lower face of the insulating structure.
  • the number of sets of radial supports depends on the overall length of the column. Typically, two sets of radial supports are used although more could be used to reducing the bending stresses in the column.
  • bracing may be made from piping or from structural sections having, for example, channelled, angled, T- or I-cross sections. Such bracing structures would usually be left inside the column when the column is in use as it would be undesirable to open the column on site to remove the bracing structure. Therefore, the bracing structure is preferably made from a material that is suitable for exposure to the conditions inside the column during use. For a cryogenic distillation column, the bracing is typically made from the same material as the column. This material is usually selected from aluminium (or an aluminium alloy), stainless steel (various grades), 9% nickel steel or any other material suitable for cryogenic temperatures.
  • the use of internal bracing means that the thickness of the column wall is usually less than the thickness required to support the column both during transit and when erected on site, e.g. hoisted from the horizontal position to the vertical position, without an internal stiffening structure.
  • the thickness of the column wall is a function of operating pressure, design code, diameter of material of construction. These factors change from one plant to the next as is readily appreciated by the skilled person.
  • a method of transporting apparatus comprising a column and an insulation structure, said method comprising supporting said column within said structure from interior corners of said structure and transporting said apparatus.
  • the apparatus may have any or all of the features described above.
  • FIG. 1 is a representation of a radial cross-section of a conventional distillation column having a diameter of no more than 3 m (10 ft) in combination with an insulation structure;
  • FIG. 2 is a representation of an axial partial cross-section of the column and insulation structure combination depicted in FIG. 1 ;
  • FIG. 3 is a representation of a radial cross-section of a distillation column in combination with an insulation structure according to the present invention
  • FIG. 4 is a representation of an axial partial cross-section of the column and insulation structure combination depicted in FIG. 3 ;
  • FIG. 5 is a representation of a radial cross-section of a column of the present invention comprising a first internal stiffening structure
  • FIG. 6 is a representation of a radial cross-section of a column of the present invention comprising a second internal stiffening structure
  • FIG. 7 is a representation of a radial cross-section of a column of the present invention comprising a third internal stiffening structure.
  • a conventional cryogenic air distillation column 2 having a diameter of no more than 3 m (10 ft) is located within an insulation structure or “cold box” 4 .
  • the column 2 is supported on a transport saddles 6 and shipping beams 8 which take up space and make it difficult to run piping (not shown) to the lower surface of the cold box 4 .
  • the column 2 is supported by two saddles 6 .
  • Each saddle 6 is about 20% of the total length of the column 2 away from the nearest end of the column 2 respectively in order to reduce the bending stressing within the column 2 .
  • the saddles 6 impose significant local stresses in the distillation column wall such that it is often necessary to increase the thickness of the column wall in contact with the saddles.
  • a cryogenic distillation column 32 having a diameter of at least 3.5 m (11 ft), for example about 5 m (16 ft) or about 6 m (20 ft), is located within a cold box 34 .
  • the column 32 is supported by radial supports 36 provided between corner members 38 of the frame of the cold box 34 .
  • radial supports in this way allows a column having a larger-than-conventional diameter to be transported in a given size of cold box.
  • space is available between the lower surface of the cold box 34 and the column 32 in which piping (not shown) is located.
  • FIGS. 5 to 7 depict three arrangements of suitable internal stiffening structures.
  • the bracing is usually fabricated from tubular members or structural sections (e.g. channels, angles and T- or I-beams).
  • the column 52 in FIG. 5 is braced with internal radial supports 54 .
  • the column 62 in FIG. 6 is braced with internal supports 64 provided in a square arrangement.
  • the column 72 in FIG. 7 is braced with internal supports 74 arranged about the interior surface of the column wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
US10/545,493 2003-02-18 2004-02-12 Distillation apparatus and method of transporting the same Abandoned US20060144684A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0303750A GB2398516A (en) 2003-02-18 2003-02-18 Distillation column with a surrounding insulating support structure
GB0303750.4 2003-02-18
PCT/GB2004/000542 WO2004074603A1 (en) 2003-02-18 2004-02-12 Distillation apparatus and method of transporting the same

Publications (1)

Publication Number Publication Date
US20060144684A1 true US20060144684A1 (en) 2006-07-06

Family

ID=9953256

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/545,493 Abandoned US20060144684A1 (en) 2003-02-18 2004-02-12 Distillation apparatus and method of transporting the same

Country Status (9)

Country Link
US (1) US20060144684A1 (de)
EP (1) EP1595042B1 (de)
CN (1) CN1751163A (de)
AT (1) ATE339571T1 (de)
AU (1) AU2004213622B2 (de)
DE (1) DE602004002389T2 (de)
GB (1) GB2398516A (de)
WO (1) WO2004074603A1 (de)
ZA (1) ZA200507104B (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014899A1 (de) * 2006-08-04 2008-02-07 Linde Aktiengesellschaft Verfahren zur herstellung einer coldbox, coldbox und coldbox- paneel
FR2910343B1 (fr) * 2006-12-21 2010-11-05 Air Liquide Equipement industriel comportant un dispositif de protection des parties internes
CN110268215B (zh) * 2017-01-10 2021-09-03 乔治洛德方法研究和开发液化空气有限公司 用于通过蒸馏分离气态混合物的设备的封罩以及包括这种封罩的分离设备
WO2018140445A1 (en) * 2017-01-25 2018-08-02 Praxair Technology, Inc. Structual support assembly for cold box structures in an air separation unit
CN109455418A (zh) * 2018-12-17 2019-03-12 乔治洛德方法研究和开发液化空气有限公司 一种冷箱钢结构及预制和运输所述冷箱钢结构的方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2217169A (en) * 1937-11-29 1940-10-08 Leo M Harvey Machine for forming solid carbon dioxide
US2592974A (en) * 1949-07-01 1952-04-15 Gerard F Sulfrian Suspension liquid gas container
US3021027A (en) * 1958-10-08 1962-02-13 David R Claxton Means for supporting the inner member of a double-walled tank
US3115983A (en) * 1959-12-07 1963-12-31 Chicago Bridge & Iron Co Support system for cryogenic liquid storage tank
US3750413A (en) * 1968-10-15 1973-08-07 Hydrocarbon Research Inc Cryogenic apparatus assembly method
US4116150A (en) * 1976-03-09 1978-09-26 Mcdonnell Douglas Corporation Cryogenic insulation system
US4184609A (en) * 1978-08-22 1980-01-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Cryogenic container compound suspension strap
US4430032A (en) * 1981-09-22 1984-02-07 Portec, Inc. Pedestal container locking device
US4848103A (en) * 1987-04-02 1989-07-18 General Electric Company Radial cryostat suspension system
US5349827A (en) * 1992-06-17 1994-09-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the construction of a cryogenic unit for the separation of gas, cryogenic unit, subassembly and transportable assembly for the construction of such a unit
US5617742A (en) * 1996-04-30 1997-04-08 The Boc Group, Inc. Distillation apparatus
US6148637A (en) * 1998-02-06 2000-11-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Air-distillation plant and corresponding cold box
US6202305B1 (en) * 1997-10-14 2001-03-20 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of constructing a large elongate fluid-confining internal structure surrounded by an external structure
US6360545B1 (en) * 1998-06-16 2002-03-26 Air Products And Chemicals, Inc. Containment enclosure
US6711868B1 (en) * 1997-10-14 2004-03-30 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of producing a package of internal and external structures and of items of equipment, and method of on-site construction using such a package

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19737520A1 (de) * 1997-08-28 1999-03-04 Messer Griesheim Gmbh Anlage zur Tieftemperaturzerlegung von Luft
DE19804438A1 (de) * 1997-10-02 1999-04-22 Krc Umwelttechnik Gmbh Stahlkonstruktion, bestehend aus einem zylindrischen Körper, umgeben von Ringen, und Verfahren zur Montage und Demontage der Ringe
FR2771160B1 (fr) * 1997-11-17 2000-01-28 Air Liquide Unite de distillation cryogenique
FR2799822B1 (fr) * 1999-10-18 2002-03-29 Air Liquide Boite froide, installation de distillation d'air et procede de construction correspondants

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2217169A (en) * 1937-11-29 1940-10-08 Leo M Harvey Machine for forming solid carbon dioxide
US2592974A (en) * 1949-07-01 1952-04-15 Gerard F Sulfrian Suspension liquid gas container
US3021027A (en) * 1958-10-08 1962-02-13 David R Claxton Means for supporting the inner member of a double-walled tank
US3115983A (en) * 1959-12-07 1963-12-31 Chicago Bridge & Iron Co Support system for cryogenic liquid storage tank
US3750413A (en) * 1968-10-15 1973-08-07 Hydrocarbon Research Inc Cryogenic apparatus assembly method
US4116150A (en) * 1976-03-09 1978-09-26 Mcdonnell Douglas Corporation Cryogenic insulation system
US4184609A (en) * 1978-08-22 1980-01-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Cryogenic container compound suspension strap
US4430032A (en) * 1981-09-22 1984-02-07 Portec, Inc. Pedestal container locking device
US4848103A (en) * 1987-04-02 1989-07-18 General Electric Company Radial cryostat suspension system
US5349827A (en) * 1992-06-17 1994-09-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the construction of a cryogenic unit for the separation of gas, cryogenic unit, subassembly and transportable assembly for the construction of such a unit
US5617742A (en) * 1996-04-30 1997-04-08 The Boc Group, Inc. Distillation apparatus
US6202305B1 (en) * 1997-10-14 2001-03-20 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of constructing a large elongate fluid-confining internal structure surrounded by an external structure
US6711868B1 (en) * 1997-10-14 2004-03-30 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of producing a package of internal and external structures and of items of equipment, and method of on-site construction using such a package
US6148637A (en) * 1998-02-06 2000-11-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Air-distillation plant and corresponding cold box
US6360545B1 (en) * 1998-06-16 2002-03-26 Air Products And Chemicals, Inc. Containment enclosure

Also Published As

Publication number Publication date
ZA200507104B (en) 2006-11-29
GB0303750D0 (en) 2003-03-26
DE602004002389T2 (de) 2007-09-20
WO2004074603A1 (en) 2004-09-02
GB2398516A (en) 2004-08-25
ATE339571T1 (de) 2006-10-15
AU2004213622A1 (en) 2004-09-02
AU2004213622B2 (en) 2008-03-13
EP1595042A1 (de) 2005-11-16
DE602004002389D1 (de) 2006-10-26
EP1595042B1 (de) 2006-09-13
CN1751163A (zh) 2006-03-22

Similar Documents

Publication Publication Date Title
CN1088669C (zh) 船基气体运输系统
US9285164B2 (en) Cold box sheet metal jacket
CN110709660B (zh) 用于构造冷箱模块的方法和所得设备
US20080314908A1 (en) Tank For Storing of Fluid, Preferably For Fluids at Low Temperatures
US6378331B1 (en) Cold box for cryogenic distilling plant
US20070194051A1 (en) Cellular tanks for storage of fluid at low temperatures
US7748336B2 (en) Method and apparatus for off-hull manufacture and installation of a semi-membrane LNG tank
JP2021516298A (ja) モジュール式プロセスプラント構造システム
US7954339B2 (en) Apparatus for cryogenic air distillation
KR102306109B1 (ko) 단열 밀봉 탱크
EP1595042B1 (de) Destillationsvorrichtung und transportverfahren dafür
Hjorteset et al. Development of large-scale precast, prestressed concrete liquefied natural gas storage tanks.
US11428466B2 (en) Cold box steel structure and method for prefabricating and transporting same
JP2008101994A (ja) 使用済核燃料貯蔵方法及び使用済核燃料貯蔵施設
CN219589505U (zh) 一种槽型舱壁结构的蓄冷蓄热一体化装置
KR101485110B1 (ko) 액화천연가스 저장용기의 구조
KR20220170140A (ko) 발판 구조물용 해체장치 및 이를 이용한 발판 구조물의 해체방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: AIR PRODUCTS AND CHEMICALS, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GIBBON, STE JOHN;REEL/FRAME:018199/0064

Effective date: 20060110

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION