US20060127681A1 - Method for coating metallic surfaces with a silane-rich composition - Google Patents
Method for coating metallic surfaces with a silane-rich composition Download PDFInfo
- Publication number
- US20060127681A1 US20060127681A1 US10/546,583 US54658305A US2006127681A1 US 20060127681 A1 US20060127681 A1 US 20060127681A1 US 54658305 A US54658305 A US 54658305A US 2006127681 A1 US2006127681 A1 US 2006127681A1
- Authority
- US
- United States
- Prior art keywords
- range
- silane
- film
- aqueous composition
- copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 169
- 238000000576 coating method Methods 0.000 title claims abstract description 99
- 229910000077 silane Inorganic materials 0.000 title claims abstract description 94
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 82
- 239000011248 coating agent Substances 0.000 title claims abstract description 75
- 239000013522 chelant Substances 0.000 claims abstract description 67
- 239000002245 particle Substances 0.000 claims abstract description 48
- 229910052751 metal Inorganic materials 0.000 claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 19
- 150000002484 inorganic compounds Chemical class 0.000 claims abstract description 19
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 19
- 230000008569 process Effects 0.000 claims description 74
- 239000003795 chemical substances by application Substances 0.000 claims description 68
- -1 chromium (VI) compound Chemical class 0.000 claims description 50
- 230000007797 corrosion Effects 0.000 claims description 43
- 238000005260 corrosion Methods 0.000 claims description 43
- 229920001577 copolymer Polymers 0.000 claims description 42
- 239000000057 synthetic resin Substances 0.000 claims description 42
- 229920003002 synthetic resin Polymers 0.000 claims description 42
- 239000007795 chemical reaction product Substances 0.000 claims description 33
- 239000002253 acid Substances 0.000 claims description 31
- 229920000642 polymer Polymers 0.000 claims description 31
- 239000004922 lacquer Substances 0.000 claims description 25
- 238000001035 drying Methods 0.000 claims description 23
- 150000004756 silanes Chemical class 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 229920002635 polyurethane Polymers 0.000 claims description 17
- 239000004814 polyurethane Substances 0.000 claims description 17
- 229910052719 titanium Inorganic materials 0.000 claims description 17
- 239000010936 titanium Substances 0.000 claims description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 16
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 16
- 238000004132 cross linking Methods 0.000 claims description 15
- 239000003112 inhibitor Substances 0.000 claims description 15
- 239000001993 wax Substances 0.000 claims description 15
- 239000000314 lubricant Substances 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 14
- 239000006185 dispersion Substances 0.000 claims description 13
- 229910052726 zirconium Inorganic materials 0.000 claims description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 229910052725 zinc Inorganic materials 0.000 claims description 10
- 239000011701 zinc Substances 0.000 claims description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 9
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 9
- 239000000853 adhesive Substances 0.000 claims description 9
- 230000001070 adhesive effect Effects 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 9
- 229920000728 polyester Polymers 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical class OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 8
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 8
- 229910000831 Steel Inorganic materials 0.000 claims description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 239000004411 aluminium Substances 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 150000001412 amines Chemical class 0.000 claims description 8
- 229910021529 ammonia Inorganic materials 0.000 claims description 8
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical class [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 claims description 8
- 150000002118 epoxides Chemical class 0.000 claims description 8
- 229920000620 organic polymer Polymers 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- 239000000049 pigment Substances 0.000 claims description 8
- 239000010959 steel Substances 0.000 claims description 8
- 150000007513 acids Chemical class 0.000 claims description 7
- 150000001735 carboxylic acids Chemical class 0.000 claims description 7
- 238000007598 dipping method Methods 0.000 claims description 7
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 6
- 239000005977 Ethylene Substances 0.000 claims description 6
- 229920000877 Melamine resin Polymers 0.000 claims description 6
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 claims description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical class CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 6
- WDJHALXBUFZDSR-UHFFFAOYSA-M acetoacetate Chemical compound CC(=O)CC([O-])=O WDJHALXBUFZDSR-UHFFFAOYSA-M 0.000 claims description 6
- 150000001298 alcohols Chemical class 0.000 claims description 6
- 125000005263 alkylenediamine group Chemical group 0.000 claims description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 6
- 229920002959 polymer blend Polymers 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 6
- 239000000080 wetting agent Substances 0.000 claims description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 5
- 125000003277 amino group Chemical group 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 239000013530 defoamer Substances 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229920006158 high molecular weight polymer Polymers 0.000 claims description 5
- 150000007522 mineralic acids Chemical class 0.000 claims description 5
- 229920000573 polyethylene Polymers 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 238000005507 spraying Methods 0.000 claims description 5
- 229920002554 vinyl polymer Polymers 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 4
- 239000002174 Styrene-butadiene Substances 0.000 claims description 4
- 239000007983 Tris buffer Substances 0.000 claims description 4
- 229920006243 acrylic copolymer Polymers 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 4
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 229920001940 conductive polymer Polymers 0.000 claims description 4
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 4
- 239000003431 cross linking reagent Substances 0.000 claims description 4
- XLJMAIOERFSOGZ-UHFFFAOYSA-N cyanic acid Chemical compound OC#N XLJMAIOERFSOGZ-UHFFFAOYSA-N 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- 150000004665 fatty acids Chemical class 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 238000006386 neutralization reaction Methods 0.000 claims description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 230000006641 stabilisation Effects 0.000 claims description 4
- 238000011105 stabilization Methods 0.000 claims description 4
- 239000011115 styrene butadiene Substances 0.000 claims description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 4
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 claims description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 3
- 125000005396 acrylic acid ester group Chemical group 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 230000001680 brushing effect Effects 0.000 claims description 3
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical class CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- 229960002887 deanol Drugs 0.000 claims description 3
- 239000011888 foil Substances 0.000 claims description 3
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- NWLSIXHRLQYIAE-UHFFFAOYSA-N oxiran-2-ylmethoxysilicon Chemical compound [Si]OCC1CO1 NWLSIXHRLQYIAE-UHFFFAOYSA-N 0.000 claims description 3
- 229920001225 polyester resin Polymers 0.000 claims description 3
- 239000004645 polyester resin Substances 0.000 claims description 3
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 229920001451 polypropylene glycol Polymers 0.000 claims description 3
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- IYMSIPPWHNIMGE-UHFFFAOYSA-N silylurea Chemical compound NC(=O)N[SiH3] IYMSIPPWHNIMGE-UHFFFAOYSA-N 0.000 claims description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid group Chemical group C(CCC(=O)O)(=O)O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 3
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical group O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 claims description 3
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 claims description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 claims description 2
- QWOVEJBDMKHZQK-UHFFFAOYSA-N 1,3,5-tris(3-trimethoxysilylpropyl)-1,3,5-triazinane-2,4,6-trione Chemical compound CO[Si](OC)(OC)CCCN1C(=O)N(CCC[Si](OC)(OC)OC)C(=O)N(CCC[Si](OC)(OC)OC)C1=O QWOVEJBDMKHZQK-UHFFFAOYSA-N 0.000 claims description 2
- JNIHETDSIZRHLI-UHFFFAOYSA-N 2-(2-sulfanylidene-3h-1,3-benzothiazol-4-yl)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)C1=CC=CC2=C1NC(=S)S2 JNIHETDSIZRHLI-UHFFFAOYSA-N 0.000 claims description 2
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 claims description 2
- WHKKNVAGWPTSRS-UHFFFAOYSA-N 2-dodecylnaphthalene-1-sulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(CCCCCCCCCCCC)=CC=C21 WHKKNVAGWPTSRS-UHFFFAOYSA-N 0.000 claims description 2
- RWLDCNACDPTRMY-UHFFFAOYSA-N 3-triethoxysilyl-n-(3-triethoxysilylpropyl)propan-1-amine Chemical compound CCO[Si](OCC)(OCC)CCCNCCC[Si](OCC)(OCC)OCC RWLDCNACDPTRMY-UHFFFAOYSA-N 0.000 claims description 2
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 claims description 2
- TZZGHGKTHXIOMN-UHFFFAOYSA-N 3-trimethoxysilyl-n-(3-trimethoxysilylpropyl)propan-1-amine Chemical compound CO[Si](OC)(OC)CCCNCCC[Si](OC)(OC)OC TZZGHGKTHXIOMN-UHFFFAOYSA-N 0.000 claims description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 claims description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 claims description 2
- NBDAHKQJXVLAID-UHFFFAOYSA-N 5-nitroisophthalic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC([N+]([O-])=O)=C1 NBDAHKQJXVLAID-UHFFFAOYSA-N 0.000 claims description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 2
- 239000004251 Ammonium lactate Substances 0.000 claims description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 229920001665 Poly-4-vinylphenol Polymers 0.000 claims description 2
- 229920000805 Polyaspartic acid Polymers 0.000 claims description 2
- 229920002873 Polyethylenimine Polymers 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 claims description 2
- MJOQJPYNENPSSS-XQHKEYJVSA-N [(3r,4s,5r,6s)-4,5,6-triacetyloxyoxan-3-yl] acetate Chemical compound CC(=O)O[C@@H]1CO[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O MJOQJPYNENPSSS-XQHKEYJVSA-N 0.000 claims description 2
- HXNDUMRFWWGNQX-UHFFFAOYSA-N [5,5-dimethyl-1-(2-methylpropanoyloxy)hexyl] 2-methylpropanoate Chemical class C(C(C)C)(=O)OC(CCCC(C)(C)C)OC(C(C)C)=O HXNDUMRFWWGNQX-UHFFFAOYSA-N 0.000 claims description 2
- NOZAQBYNLKNDRT-UHFFFAOYSA-N [diacetyloxy(ethenyl)silyl] acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)C=C NOZAQBYNLKNDRT-UHFFFAOYSA-N 0.000 claims description 2
- 150000004729 acetoacetic acid derivatives Chemical class 0.000 claims description 2
- 125000005595 acetylacetonate group Chemical group 0.000 claims description 2
- BTHCBXJLLCHNMS-UHFFFAOYSA-N acetyloxysilicon Chemical compound CC(=O)O[Si] BTHCBXJLLCHNMS-UHFFFAOYSA-N 0.000 claims description 2
- 150000001339 alkali metal compounds Chemical class 0.000 claims description 2
- 239000001099 ammonium carbonate Substances 0.000 claims description 2
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 2
- 229940059265 ammonium lactate Drugs 0.000 claims description 2
- 235000019286 ammonium lactate Nutrition 0.000 claims description 2
- 150000003863 ammonium salts Chemical class 0.000 claims description 2
- 150000001450 anions Chemical class 0.000 claims description 2
- RZOBLYBZQXQGFY-HSHFZTNMSA-N azanium;(2r)-2-hydroxypropanoate Chemical compound [NH4+].C[C@@H](O)C([O-])=O RZOBLYBZQXQGFY-HSHFZTNMSA-N 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims description 2
- 238000005452 bending Methods 0.000 claims description 2
- 230000003115 biocidal effect Effects 0.000 claims description 2
- 239000003139 biocide Substances 0.000 claims description 2
- 238000010538 cationic polymerization reaction Methods 0.000 claims description 2
- 150000001768 cations Chemical class 0.000 claims description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 2
- 150000001860 citric acid derivatives Chemical class 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- 239000012972 dimethylethanolamine Substances 0.000 claims description 2
- XRPZVNIXPWZPCA-UHFFFAOYSA-N ethenyl acetate;styrene Chemical compound CC(=O)OC=C.C=CC1=CC=CC=C1 XRPZVNIXPWZPCA-UHFFFAOYSA-N 0.000 claims description 2
- 150000002334 glycols Chemical class 0.000 claims description 2
- 239000000976 ink Substances 0.000 claims description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 claims description 2
- 238000005304 joining Methods 0.000 claims description 2
- 229940001447 lactate Drugs 0.000 claims description 2
- 150000003893 lactate salts Chemical class 0.000 claims description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 2
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 claims description 2
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 claims description 2
- VNRDAMBPFDPXSM-UHFFFAOYSA-N n'-[2-(3-triethoxysilylpropylamino)ethyl]ethane-1,2-diamine Chemical compound CCO[Si](OCC)(OCC)CCCNCCNCCN VNRDAMBPFDPXSM-UHFFFAOYSA-N 0.000 claims description 2
- NHBRUUFBSBSTHM-UHFFFAOYSA-N n'-[2-(3-trimethoxysilylpropylamino)ethyl]ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCNCCN NHBRUUFBSBSTHM-UHFFFAOYSA-N 0.000 claims description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 108010064470 polyaspartate Proteins 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 2
- 238000007639 printing Methods 0.000 claims description 2
- UXSZWPCJYFEYRW-UHFFFAOYSA-N propanoic acid;toluene Chemical compound CCC(O)=O.CC1=CC=CC=C1 UXSZWPCJYFEYRW-UHFFFAOYSA-N 0.000 claims description 2
- YUMCEGXGOHMYMM-UHFFFAOYSA-N silane 2-(3-triethoxysilylpropyl)butanedioic acid Chemical compound [SiH4].C(C)O[Si](CCCC(C(=O)O)CC(=O)O)(OCC)OCC YUMCEGXGOHMYMM-UHFFFAOYSA-N 0.000 claims description 2
- 238000010345 tape casting Methods 0.000 claims description 2
- 229920005992 thermoplastic resin Polymers 0.000 claims description 2
- 150000003573 thiols Chemical class 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052723 transition metal Inorganic materials 0.000 claims description 2
- 150000003624 transition metals Chemical class 0.000 claims description 2
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 claims description 2
- 125000005369 trialkoxysilyl group Chemical group 0.000 claims description 2
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 claims description 2
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 claims description 2
- UDUKMRHNZZLJRB-UHFFFAOYSA-N triethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OCC)(OCC)OCC)CCC2OC21 UDUKMRHNZZLJRB-UHFFFAOYSA-N 0.000 claims description 2
- QMBSEKLOGVDBLD-UHFFFAOYSA-N triethoxy-[2-(oxiran-2-yl)ethyl]silane Chemical compound CCO[Si](OCC)(OCC)CCC1CO1 QMBSEKLOGVDBLD-UHFFFAOYSA-N 0.000 claims description 2
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 claims description 2
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 claims description 2
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 claims description 2
- NVHGPBWXDPPIDQ-UHFFFAOYSA-N trimethoxy-[2-(oxiran-2-yl)ethyl]silane Chemical compound CO[Si](OC)(OC)CCC1CO1 NVHGPBWXDPPIDQ-UHFFFAOYSA-N 0.000 claims description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 claims description 2
- 229920001567 vinyl ester resin Polymers 0.000 claims description 2
- 238000009736 wetting Methods 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 150000003751 zinc Chemical class 0.000 claims description 2
- 150000002170 ethers Chemical class 0.000 claims 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 2
- 229920001223 polyethylene glycol Polymers 0.000 claims 2
- 235000013772 propylene glycol Nutrition 0.000 claims 2
- XELQIZNUGBUCFO-UHFFFAOYSA-N CO[Si](C)(CCCNCCN)OC.CCO[Si](C)(CCCNCCN)OCC Chemical compound CO[Si](C)(CCCNCCN)OC.CCO[Si](C)(CCCNCCN)OCC XELQIZNUGBUCFO-UHFFFAOYSA-N 0.000 claims 1
- 229920005682 EO-PO block copolymer Polymers 0.000 claims 1
- 239000002202 Polyethylene glycol Substances 0.000 claims 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 150000005218 dimethyl ethers Chemical class 0.000 claims 1
- 150000002009 diols Chemical class 0.000 claims 1
- 229920000570 polyether Polymers 0.000 claims 1
- 229920000151 polyglycol Polymers 0.000 claims 1
- 239000010695 polyglycol Substances 0.000 claims 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical class CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 claims 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical class OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 claims 1
- 239000010408 film Substances 0.000 description 62
- 239000010410 layer Substances 0.000 description 36
- 238000007792 addition Methods 0.000 description 22
- 239000012141 concentrate Substances 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 14
- 238000001723 curing Methods 0.000 description 13
- 229920001296 polysiloxane Polymers 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 229910052804 chromium Inorganic materials 0.000 description 8
- 239000011651 chromium Substances 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 230000009477 glass transition Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000005554 pickling Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 229940048053 acrylate Drugs 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 239000010954 inorganic particle Substances 0.000 description 6
- 229920001169 thermoplastic Polymers 0.000 description 6
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 5
- 239000010960 cold rolled steel Substances 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- 229940114077 acrylic acid Drugs 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XPBBUZJBQWWFFJ-UHFFFAOYSA-N fluorosilane Chemical compound [SiH3]F XPBBUZJBQWWFFJ-UHFFFAOYSA-N 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 150000002902 organometallic compounds Chemical class 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 239000012487 rinsing solution Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- 229910001335 Galvanized steel Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- AFUGDMXLOKWTFH-UHFFFAOYSA-N N[SiH]([SiH3])[SiH3] Chemical compound N[SiH]([SiH3])[SiH3] AFUGDMXLOKWTFH-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 229910052915 alkaline earth metal silicate Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 150000001845 chromium compounds Chemical class 0.000 description 2
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical compound [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000008397 galvanized steel Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- VAKIVKMUBMZANL-UHFFFAOYSA-N iron phosphide Chemical compound P.[Fe].[Fe].[Fe] VAKIVKMUBMZANL-UHFFFAOYSA-N 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229920006186 water-soluble synthetic resin Polymers 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- NJVOHKFLBKQLIZ-UHFFFAOYSA-N (2-ethenylphenyl) prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1C=C NJVOHKFLBKQLIZ-UHFFFAOYSA-N 0.000 description 1
- CUVLMZNMSPJDON-UHFFFAOYSA-N 1-(1-butoxypropan-2-yloxy)propan-2-ol Chemical compound CCCCOCC(C)OCC(C)O CUVLMZNMSPJDON-UHFFFAOYSA-N 0.000 description 1
- JKEHLQXXZMANPK-UHFFFAOYSA-N 1-[1-(1-propoxypropan-2-yloxy)propan-2-yloxy]propan-2-ol Chemical compound CCCOCC(C)OCC(C)OCC(C)O JKEHLQXXZMANPK-UHFFFAOYSA-N 0.000 description 1
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- IBLKWZIFZMJLFL-UHFFFAOYSA-N 1-phenoxypropan-2-ol Chemical compound CC(O)COC1=CC=CC=C1 IBLKWZIFZMJLFL-UHFFFAOYSA-N 0.000 description 1
- GZMAAYIALGURDQ-UHFFFAOYSA-N 2-(2-hexoxyethoxy)ethanol Chemical compound CCCCCCOCCOCCO GZMAAYIALGURDQ-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- XYVAYAJYLWYJJN-UHFFFAOYSA-N 2-(2-propoxypropoxy)propan-1-ol Chemical compound CCCOC(C)COC(C)CO XYVAYAJYLWYJJN-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- JDSQBDGCMUXRBM-UHFFFAOYSA-N 2-[2-(2-butoxypropoxy)propoxy]propan-1-ol Chemical compound CCCCOC(C)COC(C)COC(C)CO JDSQBDGCMUXRBM-UHFFFAOYSA-N 0.000 description 1
- WAEVWDZKMBQDEJ-UHFFFAOYSA-N 2-[2-(2-methoxypropoxy)propoxy]propan-1-ol Chemical compound COC(C)COC(C)COC(C)CO WAEVWDZKMBQDEJ-UHFFFAOYSA-N 0.000 description 1
- UPGSWASWQBLSKZ-UHFFFAOYSA-N 2-hexoxyethanol Chemical compound CCCCCCOCCO UPGSWASWQBLSKZ-UHFFFAOYSA-N 0.000 description 1
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 1
- MZWXWSVCNSPBLH-UHFFFAOYSA-N 3-(3-aminopropyl-methoxy-methylsilyl)oxypropan-1-amine Chemical compound NCCC[Si](C)(OC)OCCCN MZWXWSVCNSPBLH-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- LDMRLRNXHLPZJN-UHFFFAOYSA-N 3-propoxypropan-1-ol Chemical compound CCCOCCCO LDMRLRNXHLPZJN-UHFFFAOYSA-N 0.000 description 1
- OEEUWZITKKSXAZ-UHFFFAOYSA-N 4-(4-methylphenyl)-4-oxobutanoic acid Chemical compound CC1=CC=C(C(=O)CCC(O)=O)C=C1 OEEUWZITKKSXAZ-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910016943 AlZn Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 239000005952 Aluminium phosphide Substances 0.000 description 1
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004716 Ethylene/acrylic acid copolymer Substances 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- PPNXXZIBFHTHDM-UHFFFAOYSA-N aluminium phosphide Chemical compound P#[Al] PPNXXZIBFHTHDM-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000013011 aqueous formulation Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000004532 chromating Methods 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- FIRQYUPQXNPTKO-UHFFFAOYSA-N ctk0i2755 Chemical compound N[SiH2]N FIRQYUPQXNPTKO-UHFFFAOYSA-N 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229920006226 ethylene-acrylic acid Polymers 0.000 description 1
- 150000002222 fluorine compounds Chemical group 0.000 description 1
- UBGXLEFOIVWVRP-UHFFFAOYSA-N fluoro(triphenyl)silane Chemical compound C=1C=CC=CC=1[Si](C=1C=CC=CC=1)(F)C1=CC=CC=C1 UBGXLEFOIVWVRP-UHFFFAOYSA-N 0.000 description 1
- MEEWSBNOBXBASQ-UHFFFAOYSA-M fluoromethanesulfonate Chemical compound [O-]S(=O)(=O)[CH]F MEEWSBNOBXBASQ-UHFFFAOYSA-M 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 229910000311 lanthanide oxide Inorganic materials 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 150000002780 morpholines Chemical class 0.000 description 1
- YLBPOJLDZXHVRR-UHFFFAOYSA-N n'-[3-[diethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CCO[Si](C)(OCC)CCCNCCN YLBPOJLDZXHVRR-UHFFFAOYSA-N 0.000 description 1
- YOYLLRBMGQRFTN-SMCOLXIQSA-N norbuprenorphine Chemical compound C([C@@H](NCC1)[C@]23CC[C@]4([C@H](C3)C(C)(O)C(C)(C)C)OC)C3=CC=C(O)C5=C3[C@@]21[C@H]4O5 YOYLLRBMGQRFTN-SMCOLXIQSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000909 polytetrahydrofuran Polymers 0.000 description 1
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000008237 rinsing water Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000004819 silanols Chemical class 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- KIEOKOFEPABQKJ-UHFFFAOYSA-N sodium dichromate Chemical compound [Na+].[Na+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KIEOKOFEPABQKJ-UHFFFAOYSA-N 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- DXIGZHYPWYIZLM-UHFFFAOYSA-J tetrafluorozirconium;dihydrofluoride Chemical compound F.F.F[Zr](F)(F)F DXIGZHYPWYIZLM-UHFFFAOYSA-J 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical class O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000012866 water-soluble synthetic resin Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/06—Polyurethanes from polyesters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/63—Additives non-macromolecular organic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/50—Treatment of iron or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/53—Treatment of zinc or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/60—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/68—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
- C23C22/74—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/82—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/82—After-treatment
- C23C22/83—Chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0091—Complexes with metal-heteroatom-bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5435—Silicon-containing compounds containing oxygen containing oxygen in a ring
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2222/00—Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
- C23C2222/20—Use of solutions containing silanes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31663—As siloxane, silicone or silane
Definitions
- the invention relates to a process for coating metallic surfaces with an aqueous composition containing silane and metal chelate and optionally organic film-forming agent.
- the invention furthermore relates to corresponding aqueous compositions and to the use of the substrates coated by the process according to the invention.
- silanes in aqueous compositions for the preparation of siloxane-rich corrosion protection coatings is known in principle. These coatings have proved themselves, but the processes for coating with an aqueous composition containing predominantly silane are in some cases difficult to use. This coating is not always formed with optimal properties. Furthermore, there may be problems in being able to characterize adequately the very thin transparent silane coatings on the metal substrate and defects thereof with the naked eye or with optical aids. The corrosion protection and the lacquer adhesion of the siloxane-rich coatings formed are very often, but not always, high and in some cases not sufficiently high for particular uses even with suitable application.
- silane-containing aqueous compositions a small or large added amount of at least one component chosen from the group consisting of monomers, oligomers and polymers has moreover proved appropriate.
- the nature and amount of the silane addition is sometimes of decisive importance for success.
- the added amounts of silane for this purpose are conventionally comparatively low—usually only up to 5 wt. %—and then act as a “coupling agent”, where the adhesion-promoting action, in particular between the metallic substrate and lacquer and optionally between the pigment and organic lacquer constituents, should prevail, but in some cases also a low crosslinking action may occur to a minor extent.
- Silane additions are predominantly added to thermosetting resin systems.
- Resin mixtures in which resins are blended with inorganic acids in order also to achieve in this manner a pickling attack and therefore a better contact of the resin layer directly with the metallic surface are moreover also known.
- These compositions have the disadvantage that because of the pickling attack during the contact between the treatment liquid (dispersion) and the substrate, contamination occurs. This leads to concentration of metals in the treatment liquid and as a result to a permanent change in the chemical composition of the treatment liquid, as a result of which the corrosion protection is significantly impaired.
- the pickling attack these metals are dissolved out of the metallic surface of the substrates to be treated.
- Another disadvantage is that the surfaces can discolour to a dark colour, under certain circumstances to dark grey to anthracite-coloured, specifically in the case of aluminium or aluminium-containing alloys.
- the dark-discoloured metal surfaces cannot be employed for decorative uses since the discoloration itself is undesirable for aesthetic reasons.
- the dark coloration is visible with varying intensity, depending on the thickness of the layer applied. This effect, called darkening, should as far as possible be avoided.
- DE-A-198 14 605 describes a sealing composition for metallic surfaces which contains, in addition to at least one solvent, at least one silane derivative and colloidal silica or/and colloidal silicate.
- the content of silane(s) is 20 wt. % (about 200 g/l) and that of silica sol or silicate in the range from 10 to 40 wt. %.
- DE-A1-41 38 218 is a solution containing organofunctional polysiloxane and titanic acid esters and/or titanium chelate for use as an after-dipping agent for chromated or passivated zinc-containing layers on steel components.
- U.S. Pat. No. 5,053,081 relates to a process for coating a metallic surface, which has already been pretreated e.g. with a phosphate layer, with an after-rinsing solution based on a content of 3-aminopropyltriethoxysilane and, in comparison with this, a significantly lower content of titanium chelate prepared with tetraalkyl titanate, beta-diketone and alkanolamine.
- DE-A1-101 49 148 describes aqueous coating compositions based on organic film-forming agent, fine inorganic particles and lubricant or/and organic corrosion inhibitor, which, in spite of the absence of chromium compounds, produced outstanding results of corrosion resistance, adhesive strength and shapability, inter alia on Galvalume® steel sheets, but nevertheless still showed an inadequate corrosion resistance of an organic film of about 1 ⁇ m layer thickness on hot-galvanized, electrolytically galvanized, Galvalume®-coated or Galfan®-coated metallic strips, that is to say on metallic surfaces which are difficult to protect against corrosion.
- the compositions, their constituents and the properties of the raw materials and coatings of this publication are expressly included in this Application.
- the object of the invention is to overcome the disadvantages of the prior art, and in particular to propose a process for coating metallic surfaces which is suitable both for coating the surfaces of metallic bodies, e.g. by dipping or spraying, and for high coating speeds such as are used for metallic strips, which can be used largely or completely without chromium(VI) compounds and which as far as possible can be employed easily.
- the object is in particular to increase the corrosion resistance of chromate-free organic coatings of less than 10 ⁇ m, and in particular of less than 3 ⁇ m dry film thickness.
- the object is achieved with a process for coating a metallic surface, in particular of aluminium, iron, copper, magnesium, nickel, titanium, tin, zinc or alloys containing aluminium, iron, copper, magnesium, nickel, titanium, tin or/and zinc, with an aqueous composition, which can be largely or completely free from chromium(VI) compounds, for pretreatment before a further coating or for treatment in which the body to be coated optionally—especially a strip, a strip section or a component—is shaped after the coating, which is characterized in that the composition contains, in addition to water,
- the object is moreover achieved with an aqueous composition for pretreatment of a metallic surface before a further coating or for treatment of that surface, which is characterized in that the composition contains, in addition to water,
- the amounts ratio of a) to b), in each case including the reaction products formed therefrom, is preferably in the range from 0.1:1 to 10:1, particularly preferably in the amounts ratio of 0.2:1 to 8:1, very particularly preferably in the amounts ratio of 0.3:1 to 7:1, in particular about 0.4:1, 0.6:1, 0.8:1, 1:1, 1.2:1, 1.6:1, 2:1, 3:1, 4:1, 5:1 or 6:1.
- amounts of silane(s) and chelate(s), in each case including the reaction products formed therefrom are particularly preferred, very particularly preferably in each case independently of one another amounts of 0.08 to 4 wt. %, in particular about in each case independently of one another amounts of 0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 2.5, 3 or 3.5 wt. %.
- amounts of silane(s) and chelate(s), in each case including the reaction products formed therefrom, independently of one another of 0.2 to 15 wt. %, based on the solids content, are particularly preferred, very particularly preferably in each case independently of one another amounts of 0.3 to 11 wt. %, in particular about in each case independently of one another amounts of 0.5, 0.8, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 or 10.5 wt. %.
- At least one silane is chosen which is compatible with water, i.e. that the at least one silane and, where appropriate, its hydrolysis and condensation products are miscible with the components of the aqueous composition without problems and are stable for several weeks, and that it allows formation of a defect-free wet film and dry film which, in particular, is closed, uniform and free from craters.
- at least one silane is chosen which renders possible a high corrosion resistance, in particular in combination with the at least one chelate chosen.
- At least one chelate is chosen that is stable for a duration of several weeks in aqueous dispersions in the presence of the other components of the aqueous composition and which renders possible a high corrosion resistance. It is furthermore advantageous if both the at least one silane and the at least one chelate on the one hand can bond chemically to the intended metallic surface which is to be brought into contact therewith and optionally can also bond chemically to the lacquer subsequently to be applied.
- the at least one metal chelate is, in particular, one of Al, B, Ca, Fe, Hf, La, Mg, Mn, Si, Ti, Y, Zn, Zr or/and at least one lanthanide, such as Ce, or such as a Ce-containing lanthanide mixture, particularly preferably chosen from the group consisting of Al, Hf, Mn, Si, Ti, Y and Zr.
- the concentrates of the aqueous compositions containing predominantly silane and chelate and of the part components as the starting substance for polymer-containing compositions preferably have a water content in the range from 20 to 85 wt. %, in particular 30 to 80 wt. %.
- the concentrates preferably contain the at least one silane, including the reaction products formed therefrom, in a content in the range from 1 to 60 wt. %, particularly preferably in the range from 3 to 45 wt. %, very particularly preferably in the range from 6 to 45 wt. %, above all in the range from 8 to 40 to 35 or to 32 wt. %, in particular of about 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 or 32.5 wt.
- the at least one chelate, optionally including the reaction products formed therefrom in the range from 1 to 50 wt. %, particularly preferably in the range from 2 to 40 wt. %, very particularly preferably in the range from 3 to 30 wt. %, above all in the range from 5 to 25 wt. %, in particular about 7.5, 10, 12, 14, 16, 18, 20 or 22.5 wt. %.
- the bath compositions of the aqueous compositions containing predominantly silane and chelate preferably have a water content in the range from 80 to 99.9 wt. %, preferably in the range from 90 to 99.8 wt. %, particularly preferably in the range from 94 to 99.7 wt. %, above all in the range from 96 to 99.6 wt. %, in particular of about 95, 95.5, 96, 96.5, 97, 97.5, 97.9, 98.2, 98.5, 98.8, 99.1 or 99.4 wt. %.
- the bath compositions preferably contain the at least one silane, including the reaction products formed therefrom, in a content in the range from 0.01 to 10 wt. %, particularly preferably in the range from 0.05 to 7 wt. %, very particularly preferably in the range from 0.1 to 5 wt. %, above all in the range from 0.2 to 4 wt. %, in particular of about 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 or 3.8 wt.
- the at least one chelate, including the reaction products possibly formed therefrom in the range from 0.01 to 10 wt. %, particularly preferably in the range from 0.05 to 7 wt. %, very particularly preferably in the range from 0.1 to 5 wt. %, above all in the range from 0.2 to 4 wt. %, in particular of about 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 or 3.8 wt. %.
- This composition particularly preferably substantially contains water, in each case at least one silane and/or reaction products thereof, at least one chelate, where appropriate including the reaction products formed therefrom, and optionally contents of substances chosen from the group consisting of alcohols, acids, such as carboxylic and fatty acids, such as acetic acid, and/or mineral acids, and other substances which influence the pH, such as ammonia, and additives and impurities.
- the total content of further compounds, including additives, in addition to silane and chelate is usually up to 20 wt. % of the solids content of silane and chelate, preferably up to 15 wt. %, particularly preferably up to 10 wt. %, very particularly preferably up to 5 wt. %, above all up to 1 or 2 wt. %.
- the ratio of the at least one silane, including the reaction products formed therefrom, to the at least one chelate, optionally including the reaction products formed therefrom can preferably be in the range from 0.8:1 to 1.2:1, it has surprisingly become clear that this ratio can also be, in particular, in the range from 0.2:1 to 0.5:1 or 2:1 to 5:1, since in certain situations there may be an optimum there.
- the pH of this bath composition can be, in particular, in the range from 3 to 9.5, preferably in the range from 3.5 to 9, in particular in the range from 4 to 8.8.
- a weak acid or of a dilute strong acid or an acid mixture can be added.
- at least one acid such as carboxylic or fatty acids, such as acetic acid, or/and mineral acids, and other substances which influence the pH, such as ammonia, can be used.
- the bath composition can in some cases be adjusted down to pH values of about 3.5 by addition of acid if the chemical system tolerates the pH chosen and remains stable. However, if the acid is added only for neutralization, no or virtually no pickling attack takes place.
- a solvent, such as an alcohol, can preferably also be added to stabilize the silane.
- the coatings formed with these bath compositions typically have a layer thickness in the range from 0.01 to 1 ⁇ m or to 0.6 ⁇ m, usually 0.015 to 0.25 ⁇ m.
- the addition of the at least one silane a) offers the advantage that adhesion bridges are formed between the substrate and the dried protective film and to lacquer layers or/and coatings of plastic possibly subsequently applied, as a result of which an improved lacquer adhesion is also achieved.
- a further advantage is that suitable silanes/siloxanes generate crosslinkings like adhesion bridges within the dried protective film, which considerably improve the strength and/or the flexibility of the coating composite and the adhesion to the substrate, as a result of which an improved adhesion is achieved in many lacquer systems.
- the aqueous composition which contains predominantly chelate and silane or predominantly synthetic resin and in addition chelate and silane preferably contains in each case at least one acyloxysilane, one alkoxysilane, one silane with at least one amine group, such as an aminoalkylsilane, one silane with at least one succinic acid group or/and succinic acid anhydride group, one bis-silyl-silane, one silane with at least one epoxide group, such as a glycidoxysilane, one (meth)acrylato-silane, one multi-silyl-silane, one ureidosilane, one vinylsilane or/and at least one silanol or/and at least one siloxane of a composition corresponding chemically to the abovementioned silanes.
- the reaction products of the silanes are known in principle in such systems and are therefore not mentioned individually. They are therefore also not referred to further in the following, but are included under the
- the composition can contain e.g. at least one silane mixed with a content of at least one alcohol, such as ethanol, methanol or/and propanol, of up to 8 wt. %, based on the silane content, preferably up to 5 wt. %, particularly preferably up to 1 wt. %, very particularly preferably up to 0.5 wt. %.
- the mixture can contain e.g. at least one silane chosen from at least one amino-silane, such as e.g. bis-amino-silane, without or with at least one alkoxy-silane, such as e.g.
- silanes/siloxanes which have a chain length in the range from 2 to 5 C atoms and contain a functional group which is suitable for reaction with polymers are preferred in particular.
- the aqueous composition preferably contains at least one silane chosen from the group consisting of
- the aqueous composition preferably contains at least one silane chosen from the group consisting of
- silanes contained in the aqueous composition are monomers, oligomers, polymers, copolymers or/and reaction products with further components on the basis of hydrolysis reactions, condensation reactions or/and further reactions. The reactions take place above all in the solution, during drying or optionally curing of the coating.
- silane is used here for silanes, silanols, siloxanes, polysiloxanes and reaction products and derivatives thereof, which are often “silane” mixtures. Because of the often very complex chemical reactions which occur here, and the very expensive analyses and working, the particular further silanes or other reaction products cannot be described.
- this content may contain only fluorine-containing silanes, or at least, instead of fluorine-free silanes, at least one fluorine-containing silane.
- the aqueous composition preferably then contains at least one silane chosen from the fluorine-containing silanes: from in each case at least one acyloxysilane, one alkoxysilane, one silane having at least one amino group, such as an aminoalkylsilane, one silane having at least one succinic acid group or/and succinic acid anhydride group, one bis-silyl-silane, a silane having at least one epoxide group, such as a glycidoxysilane, one (meth)acrylato-silane, one multi-silyl-silane, one ureidosilane, one vinylsilane or/and at least one silanol or/and at least one siloxane or polysiloxane of a composition which corresponds chemically to the abovementioned silanes, which in each case contains at least one group having one or having at least one fluorine atom.
- silane chosen from the fluorine-containing silanes
- the aqueous composition then contains at least one fluoroalkoxyalkylsilane, at least one silane having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 fluorine atoms per silane, at least one perfluorinated silane, at least one mono-fluorosilane, at least one fluorosilane based on ethoxysilane or/and based on methoxysilane or/and at least one fluorosilane having at least one functional group, such e.g. an amino group, in particular as a cocondensate, such as e.g.
- composition particularly preferably then contains at least one fluorine-containing silane which contains at least two amino groups and at least one optionally fluorinated ethyl or/and at least one optionally fluorinated methyl group.
- the content of the at least one silane, including the reaction products formed therefrom, in the aqueous composition is preferably 0.1 to 80 g/l, in particular 0.2 to 50 g/l, particularly preferably 0.3 to 35 g/l, very particularly preferably 0.5 to 20 g/l, above all 1 to 10 g/l.
- the bath compositions which have a relatively low content of or are free from film-forming agent contain the silanes, including the reaction products optionally formed therefrom with other components, in a content in the range from 0.01 to 10 wt. %, particularly preferably in the range from 0.05 to 7 wt. %, very particularly preferably in the range from 0.1 to 5 wt. %, above all in the range from 0.2 to 4 wt.
- % in particular of about 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 or 3.8 wt. %, and the at least one chelate, including the reaction products optionally formed therefrom, in the range from 0.01 to 10 wt. %, particularly preferably in the range from 0.05 to 7 wt. %, very particularly preferably in the range from 0.1 to 5 wt. %, above all in the range from 0.2 to 4 wt.
- % in particular of about 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 or 3.8 wt. %.
- the content of the at least one metal chelate b), optionally including the reaction products formed therefrom, in the aqueous composition is preferably 0.05 to 80 g/l, in particular 0.1 to 50 g/l.
- the at least one metal chelate is preferably chosen from chelate complexes based on acetylacetonates, acetoacetates, acetonates, alkylenediamines, amines, lactates, carboxylic acids, citrates or/and glycols.
- the at least one metal chelate is preferably based on
- metal chelates serve in particular to stabilize the organometallic compound in water and to bond to the metallic surface or to the lacquer or to a corresponding coating applied. They are particularly suitable if they have only a low reactivity in the aqueous composition and if they are at least partly decomposed within the process conditions used and the metal ions for the bonding or/and chemical reaction are liberated. If they are too reactive, the organometallic compounds react prematurely with other chemical compounds, such as silanes.
- the chelates are hydrophilic, stable to hydrolysis, stable to water or/and form stable hydrolysates.
- a silane or a chelate is chosen which is compatible with water and moreover with the organic film-forming agent chosen and which has the same properties as mentioned before for the silane or chelate.
- the amounts ratio of a) to b), in each case including the reaction products formed therefrom is in the range from 0.1:1 to 10:1, particularly preferably in the amounts ratio of 0.2:1 to 8:1, very particularly preferably in the amounts ratio of 0.3:1 to 7:1, in particular about 0.4:1, 0.6:1, 0.8:1, 1:1, 1.2:1, 1.6:1, 2:1, 3:1, 4:1, 5:1 or 6:1.
- amounts of silane(s) and chelate(s), in each case including the reaction products formed therefrom are contained independently of one another in the range from 0.05 to 5 wt. %, based on the wet film, very particularly preferably in each case independently of one another amounts of 0.08 to 4 wt. %, in particular about in each case independently of one another amounts of 0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 2.5, 3 or 3.5 wt. %.
- amounts of silane(s) and chelate(s), in each case including the reaction products formed therefrom are contained independently of one another in the range from 0.2 to 15 wt. %, based on the dry substance content, very particularly preferably in each case independently of one another amounts of 0.3 to 11 wt. %, in particular about in each case independently of one another amounts of 0.5, 0.8, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 or 10.5 wt. %.
- an amounts ratio of components [a)+b)]:c), in each case including the reaction products formed therefrom and based on the wet film, of 2:70 to 20:70 is particularly preferred, very particularly preferably in an amounts ratio of 3.5:70 to 17:70, in particular about 5:70, 6:70, 7:70, 8:70, 9:70, 10:70, 11:70, 12:70 and 14:70. It may be preferable here for either component a) to component b), or vice versa, to assume values of the content which are higher by the factor 1.2 to 4 than that of the other component.
- the amounts ratio of components [a)+b)]:c), in each case including the reaction products formed therefrom and based on the wet film can be particularly preferably in the range from ⁇ 0.2:7 and up to 20:7, very particularly preferably in the amounts ratio of ⁇ 0.5:7 and up to 12:7 or of ⁇ 1:7 and up to 8:7, in particular about 0.4:7, 0.6:7, 0.8:7, 1.2:7, 1.5:7, 2:7, 3:7, 4:7, 5:7, 6:7, 7:7, 9:7, 10:7, 11:7, 13:7, 14:7 and 16:7. It may be preferable here for either component a) to component b) or vice versa to assume content values which are higher than the other component by a factor of 1.2 to 4.
- component a including the reaction products formed therefrom and based on the solids content, are particularly preferably in the range from 0.4 to 10 wt. %, very particularly preferably in the range from 0.8 to 8 wt. %, in particular about 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3, 3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.5, 6, 6.5, 7 or 7.5 wt. %.
- component b including the reaction products formed therefrom and based on the solids content, are particularly preferably in the range from 0.3 to 10 wt. %, very particularly preferably in the range from 0.8 to 8 wt. %, in particular about 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3, 3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.5, 6, 6.5, 7 or 7.5 wt. %.
- the contents of component c), based on the solids content are particularly preferably in the range from 10 to 95 wt. %, very particularly preferably in the range from 30 to 90 wt. %, in particular about 35, 40, 45, 50, 55, 60, 63, 66, 69, 72, 75, 78, 81, 84 or 87 wt. %.
- the contents of component d)—at least one long-chain alcohol—based on the solids content are particularly preferably in the range from 0.01 to 2 wt. %, very particularly preferably in the range from 0.1 to 1 wt. %, in particular about 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.30, 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.55, 0.60, 0.65, 0.7, 0.75, 0.8, 0.9 or 0.95 wt. %.
- the content of organic film-forming agent c), based on the solids content of the composition is 10 to 45 wt. %, preferably 10 to 40 wt. %, particularly preferably 10 to 35 wt. %, in particular 10 to 30, to 25 or to 20 wt. %.
- the aqueous composition which can serve as a bath composition or/and as a concentrate, preferably contains the organic film-forming agent c) in a content of 0.1 to 980 g/l, particularly preferably in a range from 2 to 600 g/l, very particularly preferably 50 to 550 g/l, in particular 150 to 450 g/l.
- the organic film-forming agent is added, particularly preferably 10 to 60 parts, very particularly preferably 15 to 45 parts, per 100 parts by weight of water.
- the aqueous composition which can serve as a bath composition or/and as a concentrate, preferably contains the organic film-forming agent c) in a content of ⁇ 0.01 and up to 98 g/l, particularly preferably in a range from ⁇ 0.1 and up to 60 g/l, very particularly preferably from ⁇ 0.5 and up to 50 g/l, in particular from ⁇ 2 and up to 45 g/l.
- the highest contents of organic film-forming agent can occur in particular in UV-curing systems without or in systems with only low volatile contents, such as organic solvents or/and residual monomers.
- Coatings which are predominantly or solely film-formed during drying or optionally cured in part thermo-physically are particularly preferred for the process according to the invention.
- copolymers preferably also includes block copolymers and graft copolymers.
- the organic film-forming agent preferably contains at least a proportion of at least one polymer or/and at least one copolymer with an acid number in the range from 3 to 120, particularly preferably in the range from 3 to 80, very particularly preferably in the range from 4 to 60.
- the organic film-forming agent preferably contains at least one proportion of at least one polymer or/and at least one copolymer with a minimum film-forming temperature MFT in the range from ⁇ 10 to +99° C., particularly preferably in the range from 0 to 90° C., in particular from 5° C.; it is very particularly advantageous if the organic film-forming agent contains at least two in particular thermoplastic polymers or/and copolymers at least in the initial stage—since the thermoplastic constituents can at least partly lose or reduce their thermoplastic properties during the further treatment and reaction—which—where a minimum film-forming temperature can be stated—have a minimum film-forming temperature in the range from 5 to 95° C., in particular of at least 10° C., where at least one of these polymers or/and copolymers, compared with at least a second of these polymers or/and copolymers, A) has a minimum film-forming temperature which differs from that of the other component by at least 20° C., B) has a glass transition temperature which differs
- one of these at least two components has a film-forming temperature in the range from 10 to 40° C. and the other a film-forming temperature in the range from 45 to 85° C.
- Long-chain alcohols can help here to lower the glass transition temperatures temporarily and optionally also to match them somewhat to one another. After application, the long-chain alcohols can escape and then leave behind a film of higher glass transition temperature than during the application. These dried films are then not too flexible and too tacky.
- the glass transition temperatures and the melting points of these synthetic resins are often about in the region of the film-forming temperature, that is to say usually in the range from 0 to 110° C.
- a mixture of organic film-forming agents in which at least some of the film-forming agents have a glass transition temperature T g of substantially the same or/and a similar T g can be employed. It is particularly preferable here for at least some of the organic film-forming agents to have a glass transition temperature T g in the range from 10 to 70° C., very particularly preferably in the range from 15 to 65° C., in particular in the range from 20 to 60° C.
- the organic film-forming agent then preferably contains at least a proportion of at least one polymer or/and at least one copolymer having a minimum film-forming temperature MFT in the range from ⁇ 10 to +99° C., particularly preferably in the range from 0 to 90° C., in particular from 5° C. or from 10° C. It is particularly preferable here for at least two, if not all, of the organic film-forming agents to have a minimum film-forming temperature in one of these temperature ranges—if a minimum film-forming temperature can be stated.
- the organic film-forming agent is preferably formed from at least one component in the form of in each case at least one solution, dispersion, emulsion, microemulsion and/or suspension which is added to the aqueous composition.
- dispersion here also includes the sub-terms emulsion, solution, microemulsion and suspension.
- the acid number of the synthetic resins is preferably 3 to 100, particularly preferably 3 to 60 or 4 to 50.
- copolymers with an acid number in the range from 3 to 50 are added to the aqueous composition.
- the components of the organic film-forming agent which are to be added are optionally already partly neutralized.
- the organic film-forming agent can preferably contain a proportion of at least one copolymer with an acid number in the range from 3 to 80, in particular to the extent of at least 50 wt. % of the synthetic resins added.
- the acid number it is usually not necessary to stabilize a film-forming agent cationically, anionically or/and sterically. At a low acid number, however, such a stabilization is often necessary. It is then advantageous to employ already (partly) stabilized synthetic resins or mixtures thereof.
- the aqueous composition preferably contains at least one synthetic resin, such as organic polymer, copolymer or/and mixture thereof, in particular a synthetic resin based on acrylate, ethylene, polyester, polyurethane, silicone polyester, epoxide, phenol, styrene, melamine-formaldehyde, urea-formaldehyde or/and vinyl.
- synthetic resin such as organic polymer, copolymer or/and mixture thereof, in particular a synthetic resin based on acrylate, ethylene, polyester, polyurethane, silicone polyester, epoxide, phenol, styrene, melamine-formaldehyde, urea-formaldehyde or/and vinyl.
- the organic film-forming agent can preferably be a synthetic resin mixture of at least one polymer or/and at least one copolymer, which in each case independently of one another contains a proportion of synthetic resin based on acrylate, epoxide, ethylene, urea-formaldehyde, phenol, polyester, polyurethane, styrene, styrene-butadiene or/and vinyl.
- This can also be here a cationically, anionically or/and sterically stabilized synthetic resin or polymer or/and dispersion thereof or even solution thereof.
- acrylate in the context of this Application includes acrylic acid ester, polyacrylic acid, methacrylic acid ester and methacrylate.
- the organic film-forming agent can preferably contain at least one component based on
- the organic film-forming agent can also preferably contain as the synthetic resin a content of organic polymer, copolymer or/and mixtures thereof based on polyethyleneimine, polyvinyl alcohol, polyvinylphenol, polyvinylpyrrolidone or/and polyaspartic acid, in particular copolymers with a phosphorus-containing vinyl compound.
- a conductive polymer is preferably also added to the aqueous composition.
- At least 30 wt. % of the organic film-forming agent added can contain thermoplastic resins from which films can be formed, particularly preferably to the extent of at least 50 wt. %, very particularly preferably to the extent of at least 70 wt. %, above all to the extent of at least 90 or to the extent of at least 95 wt. %.
- the organic film-forming agent can also contain contents, in certain circumstances residual contents, of in each case at least one monomer, oligomer, emulsifier, further additive for dispersions, one curing agent, photoinitiator or/and one cationically polymerisable substance.
- the content of monomer, oligomer, emulsifier and further additive for dispersions is usually less than 5 wt. %, often less than 2 wt. %, possibly less than 1 wt. %.
- the composition of curing agents and correspondingly crosslinkable substances then optionally also added and the corresponding measures for this are known in principle.
- the molecular weights of the synthetic resins added can preferably be in the range of at least 1,000 u, particularly preferably of at least 5,000 u, very particularly preferably from 20,000 to 200,000 u.
- the individual thermoplastic components of the organic film-forming agent which are added to the aqueous composition preferably have molecular weights in the range from 20,000 to 200,000 u, in particular in the range from 50,000 to 150,000 u.
- the organic film-forming agent can preferably contain at least 40 wt. % of high-molecular-weight polymers, particularly preferably at least 55 wt. %, very particularly preferably at least 70 wt. %, above all at least 85 wt. %, in particular at least 95 wt. %. In particular, if at least 85 wt.
- the organic film-forming agent comprises high-molecular-weight polymers, it is usually not necessary to add curing agents, such as isocyanates, or photoinitiators, such as benzophenones, for thermal or free-radical crosslinking, and correspondingly crosslinkable synthetic resins in order to achieve the outstanding properties of the coating according to the invention, since it is then possible to form, by the film formation, a closed, solid, high-quality film without carrying out crosslinking.
- curing agents such as isocyanates, or photoinitiators, such as benzophenones
- the organic microparticles add on to one another and compact to form a closed pore-free film, if the choice of polymers and film-forming auxiliary is suitable and the process is operated under suitable conditions.
- the expert is familiar in principle with these classes of substance and working conditions.
- no substantially organic, chromate-free coating with a layer thickness of less than 4 ⁇ m dry film thickness has hitherto been disclosed for the coating on metallic strips of such high lacquer adhesion and corrosion resistance which predominantly contains polymers which have undergone film formation.
- the coating according to the invention is at least equivalent to a chromate-containing organic coating.
- the final drying of such films can take many days, while substantial drying can already be completed in a few seconds. Curing here can, under certain circumstances, take several weeks until the final drying and curing state is achieved if no thermal or free-radical crosslinking occurs here. If required, the curing can additionally be accelerated or intensified, as a result of crosslinking, by irradiation, e.g. with UV radiation, or by heating, or/and also to a small extent by addition of and reaction with e.g. compounds containing free NCO groups with the hydroxyl groups of the polymers containing hydroxyl groups.
- the coating is preferably largely or completely cured by drying and film formation.
- the coating can be hardened or cured partly by drying and film formation and partly by actinic radiation, cationic polymerization or/and thermal crosslinking.
- at least one photoinitiator or/and at least one curing agent and correspondingly crosslinkable resin are optionally added to the aqueous composition.
- the pH of the organic film-forming agent in an aqueous formulation is usually in the range from 0.5 to 12.
- the pH of the aqueous composition which contains predominantly synthetic resins and also silane and chelate as solids contents is preferably in the range from 1 to 6 or 6 to 10.5—depending on whether the procedure takes place in the acid or rather basic range, particularly preferably in the range from 6.5 to 9.5, very particularly preferably in the range from 7 to 9.2.
- the organic film-forming agent preferably contains only water-soluble synthetic resins, in particular those which are stable in solutions with pH values of ⁇ 9, or/and the organic film-forming agent contains at least one synthetic resin which contains hydroxyl groups.
- the organic film-forming agent can also be of a composition such that it contains—optionally only—water-soluble synthetic resin, in particular one which is stable in solutions with pH values of ⁇ 5.
- the acid groups of the synthetic resins are or/and will be neutralized with ammonia, with amines or alkanolamines, such as e.g. morpholine, dimethylethanolamine, diethylethanolamine or triethanolamine, or/and with alkali metal compounds, such as e.g. sodium hydroxide.
- amines or alkanolamines such as e.g. morpholine, dimethylethanolamine, diethylethanolamine or triethanolamine
- alkali metal compounds such as e.g. sodium hydroxide
- Film formation is understood as meaning film formation from a material with a high organic content, such as a polymer dispersion, during which above all polymer particles are converted into a uniform film, preferably at room temperature or slightly elevated temperature. Fusion of the comparatively large polymer particles is often referred to here. Film formation takes place here from an aqueous medium during drying and optionally with plasticizing of the polymer particles by the remaining film-forming auxiliary. The film formation can be improved by the use of thermoplastic polymers or copolymers or/and by addition of substances which serve as temporary plasticizers. Film-forming auxiliaries act as specific solvents which soften the surface of the polymer particles and thus render possible fusion thereof.
- a material with a high organic content such as a polymer dispersion
- plasticizers on the one hand remain in the aqueous composition for a sufficiently long period of time to be able to act on the polymer particles for a long period of time and then evaporate and thus escape from the film. It is furthermore advantageous if a residual water content is also present for a sufficiently long period of time during the drying process.
- a transparent film is formed, but no milky-white or even pulverulent film, which is an indication of an impaired film formation.
- the temperature of the wet film applied to a surface must be above the minimum film temperature (MFT), since only then are the polymer particles soft enough to coalesce.
- MFT minimum film temperature
- film-forming auxiliaries which are particularly advantageous are so-called long-chain alcohols, in particular those having 4 to 20 C atoms, such as a butanediol, a butyl glycol, a butyl diglycol, an ethylene glycol ether, such as ethylene glycol monobutyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethyl glycol propyl ether, ethylene glycol hexyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol hexyl ether, or a polypropylene glycol ether, such as propylene glycol monomethyl ether, di
- the aqueous composition can contain at least one component e) chosen from the group consisting of
- a finely divided powder, a dispersion or a suspension such as e.g. a carbonate, oxide, silicate or sulfate, in particular colloidal or/and amorphous particles, is added as the inorganic compound in particle form e 1 ).
- Particles based on at least one compound of aluminium, barium, cerium, calcium, lanthanum, silicon, titanium, yttrium, zinc or/and zirconium are preferably added as the inorganic compound in particle form.
- Particles based on aluminium oxide, barium sulfate, cerium dioxide, silicon dioxide, silicate, titanium oxide, yttrium oxide, zinc oxide or/and zirconium oxide are preferably added as the inorganic compound in particle form.
- particles with an average particle size in the range from 6 to 200 nm are used as the inorganic compound in particle form, particularly preferably in the range from 7 to 150 nm, very particularly preferably in the range from 8 to 90 nm, even more preferably in the range from 8 to 60 nm, above all preferably in the range from 10 to 25 nm.
- These particles can also be in the form of a gel or sol.
- the particles can be stabilized e.g. under alkaline conditions, in order to achieve a better dispersion.
- An addition of boron for dispersing of the inorganic compound in particle form was not necessary and also has not been used in the examples. It is preferable for larger particles to have a rather platelet-shaped or longitudinal grain form.
- the aqueous composition which can serve as a bath composition or/and as a concentrate, preferably contains the at least one inorganic compound in particle form in a content of 0.1 to 500 g/l, particularly preferably in a range from 10 to 200 g/l, very particularly preferably 30 to 100 g/l, above all in the range from 3 to 60 g/l.
- 0.1 to 50 parts of the at least one inorganic compound in particle form particularly preferably 0.5 to 20 parts, very particularly preferably 0.8 to 10 parts, are added per 100 parts by weight of water.
- the inorganic compounds in particle form those which maintain the transparency of the coating according to the invention, that is to say are colourless or white, such as e.g. aluminium oxide, barium sulfate, silicate, silicon dioxide, colloidal silicon dioxide, zinc oxide or/and zirconium oxide, are preferred in particular in order to maintain the visual character of the metallic surface visibly as far as possible without falsification.
- Particles with a relatively high or high electrical conductivity which are optionally also added, such as those of iron oxide, iron phosphide, tungsten, zinc and zinc alloy, can also be chosen for use for welding so that they have an average particle size such that they optionally project somewhat more out of the layer according to the invention.
- the ratio of the contents of organic film-forming agent to contents of inorganic compounds in particle form in the aqueous composition can vary within wide ranges; in particular, it can be ⁇ 25:1.
- this ratio is in a range from ⁇ 0.05:1 and up to 15:1, particularly preferably in a range from ⁇ 0.2:1 and up to 12:1, very particularly preferably in a range from ⁇ 0.5:1 and up to 10:1, in particular in a range from ⁇ 1:1 and up to 8:1.
- the ratio of the contents of at least one silane to contents of inorganic compounds in particle form in the aqueous composition can likewise vary within wide limits; in particular, it can be ⁇ 25:1.
- This ratio is preferably in a range from ⁇ 0.01:1 and up to 15:1, particularly preferably in a range from ⁇ 0.05:1 and up to 8:1, very particularly preferably in a range from ⁇ 0.08:1 and up to 4:1, in particular in a range from ⁇ 0.1:1 and up to 2:1.
- At least one wax chosen from the group consisting of paraffins, polyethylenes and polypropylenes is used as the lubricant e 2 ), in particular an oxidized wax, the content of waxes in the aqueous composition preferably being in the range from 0.01 to 5 wt. %, particularly preferably in the range from 0.02 to 3.5 wt. %, very particularly preferably in the range from 0.05 to 2 wt. %.
- the melting point of the wax employed as a lubricant is in the range from 40 to 165° C., particularly preferably in the range from 50 to 160° C., in particular in the range from 120 to 150° C.
- a lubricant with a melting point in the range from 120 to 165° C. a lubricant with a melting point in the range from 45 to 95° C. or with a glass transition temperature in the range from ⁇ 20 to +60° C., in particular in amounts of 2 to 30 wt. %, preferably 5 to 20 wt. % of the total solids content.
- the latter can also advantageously be employed by itself.
- the aqueous composition preferably contains the at least one lubricant, which optionally can also simultaneously be a shaping agent, in a content in the range from 0.1 to 25 g/l and particularly preferably in a content in the range from 1 to 15 g/l.
- a wax content is usually only advantageous if the coating according to the invention is a treatment layer, since the wax content in a pretreatment layer can be a disadvantage during lacquering.
- a lubricant or/and shaping agent can be added to reduce the coefficient of friction of the coating, in particular during shaping. Paraffin, polyethylene and oxidized polyethylene, inter alia, are recommended for this.
- At least one wax together with a polymer mixture containing ethylene and acrylic acid or/and a copolymer, such as ethylene/acrylic-acid copolymer, is employed as the lubricant, optionally at least one further synthetic resin being added, in particular in an amounts ratio of wax to the copolymer containing ethylene and acrylic acid of 0.02:1 to 2:1, particularly preferably 0.05:1 to 1:1, very particularly preferably 0.1:1 to 0.5:1.
- the ratio of the contents of organic film-forming agent to contents of lubricant in the aqueous composition can vary within wide ranges; in particular it can be ⁇ 2:1. Preferably, this ratio is in a range from 3:1 to 50:1, particularly preferably in a range from 10:1 to 20:1.
- the aqueous composition preferably contains at least one organic corrosion inhibitor e 3 ), in particular based on amine(s), preferably at least one alkanolamine—preferably a long-chain alkanolamine, at least one TPA-amine complex, such as acid adduct-4-oxo-4-p-tolyl butyrate-4-ethylmorpholine, at least one zinc salt of aminocarboxylate, of 5-nitro-isophthalic acid or of cyanic acid, at least one polymeric ammonium salt with fatty acid, at least one metal salt of a sulfonic acid, such as dodecyl-naphthalenesulfonic acid, at least one amino and transition metal complex of toluenepropionic acid, 2-mercapto-benzothiazolyl-succinic acid or at least one of its amino salts, at least one conductive polymer or/and at least one thiol, it being possible for the content of organic corrosion inhibitors in the aqueous composition preferably
- the at least one organic corrosion inhibitor is preferably not readily volatile at room temperature. It may furthermore be advantageous if it is readily soluble in water or/and readily dispersible in water, in particular to the extent of more than 20 g/l.
- Compounds which are particularly preferred are, inter alia, alkylaminoethanols, such as dimethylaminoethanol, and complexes based on a TPA-amine, such as N-ethylmorpholine complex with 4-methyl- ⁇ -oxo-benzenebutanoic acid. This corrosion inhibitor can be added in order to effect or to intensify still further a relatively powerful corrosion inhibition.
- the addition of the at least one organic corrosion inhibitor is usually necessary only for metallic surfaces which are very difficult to protect, such as bright steel surfaces, because of the very high corrosion-inhibiting action of the compositions according to the invention. It is advantageous if non-galvanized steel surfaces, in particular cold-rolled steel (CRS), are to be coated.
- CRS cold-rolled steel
- the ratio of the contents of organic film-forming agent to contents of at least one organic corrosion inhibitor in the aqueous composition can vary within wide ranges; in particular it can be ⁇ 500:1. This ratio is preferably in a range from 5:1 to 400:1, particularly preferably in a range from 10:1 to 100:1.
- the aqueous composition preferably contains 0.1 to 80 g/l of the at least one anticorrosion pigment e 4 ).
- these include, in particular, various silicates, based on aluminium silicates, alumo-silicates, alumo-alkaline earth metal silicates and alkaline earth metal silicates.
- the anticorrosion pigments preferably have an average particle diameter, measured on a scanning electron microscope, in the range from 0.01 to 0.5 ⁇ m diameter, in particular in the range from 0.02 to 0.3 ⁇ m.
- the various types of anticorrosion pigments are known in principle. However, an addition of at least one of these pigments does not seem to be necessary in principle, but renders alternative embodiment variants possible.
- the agents for neutralization and/or steric stabilization of the acid groups of the synthetic resins with an acid number in particular in the range from 5 to 50 e 5 ) can be, inter alia, slowly volatilizing alkanolamines and hydroxides, such as sodium hydroxide solution and potassium hydroxide solution, but preferably rapidly volatilizing alkanolamines, ammonia and compounds based on morpholine and alkanolamines. They have the effect that the neutralized synthetic resins become water-miscible or, at an acid number from about 150, are also water-soluble.
- At least one organic solvent e 6 can optionally also be added in the process according to the invention.
- At least one water-miscible or/and water-soluble alcohol, one glycol ether or N-methylpyrrolidone or/and water can be used as the organic solvent for the organic polymers, and in the case of the use of a solvent mixture, in particular a mixture of at least one long-chain alcohol, such as e.g. propylene glycol, one ester-alcohol, one glycol ether or/and butanediol with water.
- a solvent mixture in particular a mixture of at least one long-chain alcohol, such as e.g. propylene glycol, one ester-alcohol, one glycol ether or/and butanediol with water.
- the content thereof is preferably 0.1 to 10 wt. %, in particular 0.25 to 5 wt. %, very particularly preferably
- wetting agent e 7 it is furthermore advantageous to add at least one wetting agent e 7 ) in order to be able to apply the wet film uniformly in the area extent and in the layer thickness as well as densely and without defects.
- wetting agents are suitable in principle for this, preferably acrylates, silanes, polysiloxanes, long-chain alcohols, which reduce the surface tension of the aqueous composition.
- the coatings according to the invention can be largely or completely free not only from chromium(VI) compounds but also from chromium(III) compounds without thereby losing quality. Although it is not normally intended in the context of the invention to add environmentally hazardous chromium compounds e 8 ), such as, in particular, those of Cr 6+ , in rare cases of use this can nevertheless be provided at the request of the customer.
- the aqueous composition which is preferably free or largely free from chromium(VI) compounds, has only a chromium content of up to 0.05 wt. % on chromium-free metallic surfaces and a chromium content of up to 0.2 wt. % on chromium-containing metallic surfaces; chromium contents occurring in the bath can be dissolved out of the metallic surface by pickling attack, can originate in traces from impurity contents or can arrive carried in from previous baths or from tanks and pipelines.
- no chromium is consciously added to the aqueous composition.
- the process according to the invention can also advantageously be employed with a content of at least one chromium-containing compound if the corrosion protection is to be retained in a wide range and with a high reliability, in particular on damage to the protective layer which can be caused by mechanical stresses during transportation, storage and assembly of the substrates treated on the substrate surface with the treatment liquid according to the invention.
- Sodium bichromate, potassium bichromate or/and ammonium bichromate, for example, can then be added.
- the content of chromium(VI) compounds is then preferably 0.01 to 100 g/l, particularly preferably 0.1 to 30 g/l.
- the aqueous composition can also contain at least one basic crosslinking agent based on titanium, hafnium or/and zirconium as the cation or/and based on carbonate or ammonium carbonate as the anion, the content of such crosslinking agents in the aqueous composition preferably being in the range from 0.01 to 3 wt. %, particularly preferably in the range from 0.02 to 1.8 wt. %, very particularly preferably in the range from 0.05 to 1 wt. %.
- the aqueous composition contains at least one additive, in particular at least one chosen from the group consisting of at least one biocide, at least one defoamer or/and at least one wetting agent.
- no acids in particular no inorganic acids or/and organic carboxylic acids, are added to the aqueous composition—under certain circumstances with the exception of the traces of acids contained hidden in the raw materials.
- it is free or largely free from inorganic acids or/and organic carboxylic acids, above all free from inorganic acids.
- the aqueous composition according to the invention is preferably free from additions of free fluoride, complex fluoride, such as e.g. hexafluorotitanic acid or hexafluorozirconic acid, or/and fluoride bonded in other ways.
- free fluoride complex fluoride, such as e.g. hexafluorotitanic acid or hexafluorozirconic acid, or/and fluoride bonded in other ways.
- the aqueous composition is free or largely free from heavy metals.
- contents of cadmium, nickel, cobalt or/and copper should be kept extremely low and should not be added.
- the pickling attack is usually so low that no steel-refining agents, such as e.g. chromium or nickel, can be dissolved out of a steel surface.
- compositions according to the invention substantially contain, inter alia, at least one copolymer, e.g. based on acrylic-polyester-polyurethane, styrene, styrene-acrylate or/and ethylene-acrylate, as a film-forming agent, at least one silane, at least one chelate, at least one film-forming auxiliary based on a long-chain alcohol, at least one inorganic compound in particle form, in particular based on aluminium oxide, aluminium phosphide, iron oxide, iron phosphide, mica, lanthanide oxide(s), e.g.
- a defoamer based on cerium oxide, molybdenum sulfide, graphite, carbon black, silicate, silicon dioxide, colloidal silicon dioxide, zinc oxide or/and zirconium oxide, optionally at least one lubricant, such as wax, optionally at least one wetting agent, such as polysiloxanes, optionally at least one organic corrosion inhibitor and optionally further additives, such as, inter alia, a defoamer.
- the metallic surface is preferably in a freshly produced, clean or in a cleaned state.
- cleaning metallic surface here means a non-cleaned metallic, e.g. freshly galvanized, surface on which no cleaning is necessary, or a freshly cleaned surface.
- the aqueous composition is applied directly to the metallic surface without applying a pretreatment composition beforehand.
- at least one pretreatment layer e.g. based on an alkali metal phosphating, a zinc-containing phosphating, a pretreatment containing rare earths, such as cerium, and/or at least one silane beforehand.
- aqueous compositions which contain most or almost all of the constituents of the bath composition but as a rule not the at least one organic compound in particle form, which is preferably kept separately and added separately, are preferably used.
- Reaction and drying accelerators such as e.g. the morpholine salt of paratoluenesulfonic acid, can also advantageously be added separately.
- the concentrate and the topping-up solution preferably have a concentration which is concentrated five times to ten times, in respect of the individual constituents, as greatly as the bath composition. In some cases, however, the “concentrate” can also be used directly as the bath composition, optionally after a small dilution by e.g. 5 to 30%.
- the aqueous composition can preferably be applied to the metallic surface at a temperature in the range from 5 to 50° C., particularly preferably in the range from 10 to 40° C., very particularly preferably in the range from 18 to 25° C., or at 30 to 95° C.
- the metallic surface can preferably be kept at temperatures in the range from 5 to 60° C. during application of the coating, particularly preferably in the range from 10 to 55° C., very particularly preferably in the range from 18 to 25° C., or under certain circumstances also at 50 to 120° C.
- the coated metallic surface can preferably be dried at a temperature in the range from 20 to 400° C.
- the dwell time needed for drying is substantially inversely proportional to the drying temperature: e.g. for strip-like material 1 to 3 s at 100° C. or 1 to 20 s at 250° C., depending on the chemical composition of the synthetic resins or polymers, or 30 min at 20° C., while polyester resins with free hydroxyl groups in combination with melamine-formaldehyde resins cannot be dried at temperatures below 120° C.
- coated shaped components inter alia depending on the wall thickness, must be dried for significantly longer. Drying equipment based on circulating air, induction, infra-red or/and microwaves are particularly suitable for the drying.
- the coated strips can preferably be wound up to a coil, optionally after cooling to a temperature in the range from 40 to 70° C.
- the aqueous composition can preferably be applied by rolling on, flooding, knife-coating on, spraying, misting, brushing or dipping and optionally by subsequent squeezing off with a roller.
- the layer thickness of the coating according to the invention is preferably in the range from 0.1 to 6 ⁇ m, particularly preferably in the range from 0.2 to 5 ⁇ m, very particularly preferably in the range from 0.25 to 4 ⁇ m, in particular in the range from 0.3 to 2.5 ⁇ m.
- the coating properties of pendulum hardness and flexibility are usually only of importance for coatings rich in organic polymer/copolymer.
- the T-bend test is predominantly of importance if the coating according to the invention is also provided afterwards with at least one lacquer or with at least one lacquer-like coating.
- the dried and optionally also cured film preferably has a pendulum hardness of 30 to 190 s, preferably 50 to 180 s, measured with a König pendulum hardness tester in accordance with DIN 53157.
- the König pendulum hardness is preferably in the range from 60 to 150 s, particularly preferably in the range from 80 to 120 s.
- Values of the pendulum hardness in the range from 100 to 150 s often occur in UV-crosslinkable coatings, while values of the pendulum hardness in the range from 40 to 80 s may occur in the coatings which are not UV-crosslinkable or are based e.g. on polymer dispersions which do not or scarcely crosslink chemically.
- the layers produced according to the invention are to be tested only on test specimens with chemically the same but sufficiently thick layers, but not on thin coatings in the range up to 10 ⁇ m thickness.
- the dried and optionally also cured film preferably has a flexibility such that on bending over a conical mandrel in a mandrel flex test substantially according to DIN ISO 6860 for a mandrel of 3.2 mm to 38 mm diameter—but without tearing the test area—no cracks longer than 2 mm are formed that are detectable during subsequent wetting with copper sulfate by a change in colour as a result of deposition of copper on the cracked-open metallic surface.
- the term “substantially” here means that thicker films are conventionally characterized, and for this reason a copper sulfate test also follows here, which can reveal the defects which otherwise under certain circumstances are not visible.
- the area proportions of the detached area in the T-bend test on shaped components (metal sheets) coated according to the invention and then with coil coating lacquer are preferably only up to 8%, particularly preferably up to 5%, very particularly preferably up to 2%, but the best values are at approximately 0%, so that then usually only cracks occur.
- a coil coating lacquer based on silicone polyester can preferably be employed for this, in particular for comparative tests in tests typical for coated coils.
- At least one coating of printing ink, foil, lacquer, lacquer-like material, powder coating, adhesive or/and adhesive carrier can preferably be applied to the dried and optionally also cured film.
- At least one coating of lacquer, polymer, paint, functional coatings of plastic, adhesive or/and adhesive carrier such as e.g. a self-adhesive film
- a self-adhesive film can be applied to the partly or completely dried or cured film, in particular a wet lacquer, a powder coating, a coating of plastic, an adhesive, inter alia for foil coating.
- the metal components coated according to the invention with the aqueous composition, in particular strips or strip sections, can be shaped, lacquered, coated with polymers, such as e.g. PVC, printed, glued, hot-soldered, welded or/and joined to one another or to other elements by clinching or other joining techniques. These processes are known in principle for coating of metallic strip for architectural uses.
- lacquering or coating of another type is first carried out, and then shaping. If the coating according to the invention is lacquered or coated with plastic, solder or weld connections usually cannot be established without the coatings being removed at least locally, unless, for electrical welding, a high content of conductive particles or/and conductive polymer is incorporated into the film according to the invention and the subsequent coating is exceptionally thin.
- the substrates coated according to the invention can preferably be used as wire, strip, sheet metal or a component for a wire coil, a braided wire, a steel strip, a metal sheet, a lining, a screen, a vehicle body or a component of a vehicle body, a component of a vehicle, trailer, mobile home or missile, a cover, a housing, a lamp, a light, a traffic light element, a piece of furniture or furniture element, an element of a domestic appliance, a frame, a profile, a shaped component of complicated geometry, a crash barrier, heater or fence element, a bumper, a component of or with at least one tube or/and a profile, a window, door or bicycle frame or an item of hardware, such as a screw, nut, flange, spring, or a spectacle frame.
- the process according to the invention is an alternative to on the one hand the chromate-rich acid-free and on the other hand acid-containing processes mentioned, in particular in the field of surface pretreatment of metal strip before lacquering, and compared with these gives comparably good results in respect of corrosion protection and lacquer adhesion.
- the process according to the invention for treatment of metal surfaces cleaned in the conventional manner but without subsequent after-treatment, such as rinsing with water or a suitable after-rinsing solution.
- the process according to the invention is particularly suitable for application of the treatment solution by means of squeeze-off rollers or by means of a so-called roll coater, it being possible for the treatment solution to be dried directly after the application without further intermediate process steps (Dry in Place technology).
- the process is simplified considerably e.g. compared with conventional spraying or dipping processes, in particular those with subsequent rinsing operations, such as e.g.
- the polymeric, optionally chromate-free coating according to the invention without prior application of an additional pretreatment layer, so that an outstanding permanent protection of the metallic surfaces, and in particular on AlSi, ZnAl, such as Galfan®, AlZn, such as Galvalume®, ZnFe, ZnNi, such as Galvanneal® and other Zn alloys as metallic coatings or Al and Zn coatings, is possible, which can be achieved by application of a polymer-containing coating.
- the coating according to the invention has also proved particularly suitable for metallic surfaces which are highly susceptible to corrosion, such as those of iron and steel alloys, in particular on cold-rolled steel, it then being advantageous to add at least one corrosion inhibitor to the aqueous composition. Flash rust formation during drying of the treatment liquid on cold-rolled steel (CRS) can be suppressed by this means.
- a less expensive and more environment-friendly corrosion protection which also does not require an expensive UV curing but can be cured adequately solely with drying and film formation and optionally additionally with the “usual chemical” curing, which is often called “thermal crosslinking”, can thus be achieved. In some cases, however, it may be of interest to obtain a harder coating quickly in a particular process step. It can then be advantageous if at least one photoinitiator is added and at least one UV-curable polymer component is chosen in order to achieve a partial crosslinking on the basis of actinic radiation, in particular UV radiation.
- the content of so-called UV crosslinking here can be 0 to 50% of the total possible curing, preferably 10 to 40%.
- the polymeric and largely or completely chromate-free coating according to the invention furthermore has the advantage that—especially at a layer thickness in the range from 0.5 to 3 ⁇ m—it is transparent and light-coloured, so that the metallic character and the typical structure e.g. of a galvanized or a Galvalume® surface can still be seen accurately and unchanged or virtually unchanged through the coating. Furthermore, such thin coatings can also be welded without problems.
- the polymeric coating according to the invention moreover is very readily shapable, so that it can be adjusted such that after the coating, drying and optionally curing and optionally also in the long term it is in a relatively plastic and not in a hard, brittle state.
- the polymer-containing coating according to the invention can be readily over-lacquered with most lacquers or plastics.
- the polymer-containing coating according to the invention can be after-lacquered or coated with plastic, such as PVC, by application processes such as e.g. powder coating, wet lacquering, flooding, rolling, brushing or dipping.
- the cured coatings produced by this means which are applied to the polymer-containing coating according to the invention, it often also being possible to apply two or three layers of lacquer or plastic, usually have a total layer thickness in the range from 5 to 1,500 ⁇ m.
- the polymeric coating according to the invention can also be foamed on the reverse without problems, e.g. with polyurethane insulating foam, for the production of 2-sheet sandwich elements, or can readily be glued with the conventional construction adhesives such as are employed e.g. in vehicle construction.
- the coatings according to the invention can be employed above all as primer layers. They are outstandingly suitable without, but also with, at least one previously applied pretreatment layer.
- This pretreatment layer can then be, inter alia, a coating based on phosphate, in particular ZnMnNi phosphate, or based on phosphonate, silane or/and a mixture based on a fluoride complex, corrosion inhibitor, phosphate, polymer or/and finely divided particles.
- Pretreatment layers or primer layers which, together with the subsequently applied lacquer, resulted in a coating system equivalent to the best chromium-containing coating systems are achieved with the coatings according to the invention.
- the process according to the invention furthermore has the advantage over the processes described and/or practised to date that on an aluminium-rich substrate or on a substrate coated with an aluminium-containing alloy—in particular a substrate of steel—it caused no darkening of the substrate surface and also no milky-white matting of the substrate surface and can therefore be employed for decoration of buildings or/and building components without additional colouring lacquering.
- the aesthetics of the metal surface remain unchanged.
- the coatings according to the invention are exceptionally inexpensive, environment-friendly and readily usable on a large industrial scale.
- the adhesion-promoting action of the silanes and of their reaction products, in particular between the metallic substrate and lacquer and optionally between pigment and organic lacquer constituents, should also prevail in the compositions such as are described here in the embodiment examples, or even occur by itself, as long as polymers and chelate are not simultaneously present. It had not been expected that at high contents of high-molecular-weight polymers and copolymers, without the presence of low-molecular-weight organic contents, a significant improvement in the film properties would be achieved by the addition of chelate.
- the high-molecular-weight polymers and copolymers are possibly crosslinked by the presence of chelate, which is particularly advantageous in particular for those film-forming systems which have no contents of curing agent and photoinitiator. Exposure to relatively high temperatures, such as are otherwise used for thermal crosslinking, and free-radical irradiation, which are an additional expensive process step, can be avoided by this means.
- aqueous concentrates For preparation of aqueous concentrates, at least one partly hydrolysed silane was aged for at least two weeks and optionally also thereby hydrolysed. Thereafter, a metal chelate according to table 1 was added. The concentrates were then diluted with water, and an agent which adapts the pH, such as ammonia, was optionally added in order to obtain ready-to-use treatment liquids. In each case 3 metal sheets of hot-galvanized steel or of Galvalume® steel sheet were then brought into contact by rolling on and drying on the corresponding treatment liquid at 25° C. The metal sheets treated in this way were dried here at 90° C. PMT and then tested for their corrosion protection.
- Examples E 1 to E 8, including comparison example CE 4, show the influence of the addition of chelate or of chelate and polymer mixture.
- examples E 9 to E 12 and E 13 to E 17 the amounts of silane and chelate were increased and at the same time the addition of inorganic particles was reduced, these two series differing by different amounts of polymer mixture added.
- the layer thicknesses were varied in examples E 9 and E 18 to E 20. TABLE 1 Compositions based on chelate and silane and in some cases also inorganic particles, data in wt. % for concentrates and g/l for the treatment baths Examples/comparison example E 1 E 2 E 3 CE 4 E 5 E 6 E 7 E 8 E 9 E 10 Concentrates Organofunct.
- silane A 15 15 15 30 — 15 15 3.3 1.7 5.1 Organofunct. silane B — — — — 15 — — — — — Titanium chelate D 17.5 17.5 17.5 — — — — 3.9 2 5.9 Zirconium chelate E — — — — 17.5 — — — — — Zirconium chelate F — — — — — 17.5 — — — Titanium chelate G — — — — — — 17.5 — — — SiO 2 particles ⁇ 0.2 ⁇ m — — — — — — — 11 13 9 Ethanol/methanol not added, may be formed Ammonia small amounts added to adjust the pH to 8.3 Polymer mixture — — — — — — — 7 7 7 Water 67.5 67.5 67.5 70.0 67.5 67.5 67.5 74.8 76.3 73 Total 100 100 100 100 100 100 100 100 100 100
- silane A 7.5 11.6 2 1.2 3.3 5.1 7.8 1.7 1.7 1.7 Organofunct. silane B — — — — — — — — — Titanium chelate D 8.8 13.7 3.1 1.3 3.9 5.9 9.1 2 2 2 2 Zirconium chelate E — — — — — — — — — — Zirconium chelate F — — — — — — — — — — Titanium chelate G — — — — — — — — — — — — — SiO 2 particles ⁇ 0.2 ⁇ m 6 — 7 9 6 4 — 13 13 13 13 13 Ethanol/methanol not added, may be formed Ammonia small amounts added to adjust the pH to 8.3 Polymer mixture 7 7 4.5 4.5 4.5 4.5 4.5 7 7 7 Water 70.7 67.7 83.4 84 82.3 80.5 78.6 76.3 76.3 76.3 Total
- the film formed here was transparent, uniform and closed.
- the films formed showed no coloration and showed no darkening of the underlying metallic surface. This is particularly advantageous in order to be able to see structure, gloss and colour of the metallic surface practically unchanged through the coating.
- the combination of chelate and silane already resulted in a very clear improvement in the corrosion protection at very low layer thicknesses compared with a composition which is free from organometallic compounds.
- Further examples moreover showed that in particular a higher addition of inorganic particles, in this case based on SiO 2 having an average particle size in the range from 10 to 20 nm, made a further additional contribution to the improvement in corrosion resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Chemical Treatment Of Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Laminated Bodies (AREA)
Abstract
The invention relates to a method for coating a metallic surface with an aqueous composition for pretreating before applying another coating or for treating said metallic surface. In addition to water, the composition contains: a) at least one hydrolyzable or at least partially hydrolyzed silane; b) at least one metal chelate, if necessary, also; c) at least one organic film former; d) at least one long-chain alcohol that serves as a film forming aid and/or; e) at least one inorganic compound in particle form. The unsoiled, scoured, cleaned and/or pretreated metallic surface is brought into contact with the aqueous composition and a film is formed on the metallic surface, is subsequently dried, compacted in part or completely by film formation and, if necessary, additionally hardened. The dried and, if necessary, additionally hardened film has a layer thickness ranging from 0.01 to 10 μm. The invention also relates to corresponding aqueous compositions.
Description
- The invention relates to a process for coating metallic surfaces with an aqueous composition containing silane and metal chelate and optionally organic film-forming agent. The invention furthermore relates to corresponding aqueous compositions and to the use of the substrates coated by the process according to the invention.
- The processes most frequently employed hitherto on metals, in particular metal strip, for surface treatment or pretreatment before lacquering are based on the use of chromium(III) or/and chromium(VI) compounds together with various additives. Because of the toxicological and ecological risks which such processes involve, and moreover because of the foreseeable legal restrictions in respect of the use of chromate-containing processes, alternatives to these processes have already been sought for a relatively long time in all fields of metal surface treatment.
- The use of silanes in aqueous compositions for the preparation of siloxane-rich corrosion protection coatings is known in principle. These coatings have proved themselves, but the processes for coating with an aqueous composition containing predominantly silane are in some cases difficult to use. This coating is not always formed with optimal properties. Furthermore, there may be problems in being able to characterize adequately the very thin transparent silane coatings on the metal substrate and defects thereof with the naked eye or with optical aids. The corrosion protection and the lacquer adhesion of the siloxane-rich coatings formed are very often, but not always, high and in some cases not sufficiently high for particular uses even with suitable application.
- In designing silane-containing aqueous compositions, a small or large added amount of at least one component chosen from the group consisting of monomers, oligomers and polymers has moreover proved appropriate. In such compositions the nature and amount of the silane addition is sometimes of decisive importance for success. However, the added amounts of silane for this purpose are conventionally comparatively low—usually only up to 5 wt. %—and then act as a “coupling agent”, where the adhesion-promoting action, in particular between the metallic substrate and lacquer and optionally between the pigment and organic lacquer constituents, should prevail, but in some cases also a low crosslinking action may occur to a minor extent. Silane additions are predominantly added to thermosetting resin systems.
- Resin mixtures in which resins are blended with inorganic acids in order also to achieve in this manner a pickling attack and therefore a better contact of the resin layer directly with the metallic surface are moreover also known. These compositions have the disadvantage that because of the pickling attack during the contact between the treatment liquid (dispersion) and the substrate, contamination occurs. This leads to concentration of metals in the treatment liquid and as a result to a permanent change in the chemical composition of the treatment liquid, as a result of which the corrosion protection is significantly impaired. By the pickling attack, these metals are dissolved out of the metallic surface of the substrates to be treated.
- Another disadvantage is that the surfaces can discolour to a dark colour, under certain circumstances to dark grey to anthracite-coloured, specifically in the case of aluminium or aluminium-containing alloys. The dark-discoloured metal surfaces cannot be employed for decorative uses since the discoloration itself is undesirable for aesthetic reasons. The dark coloration is visible with varying intensity, depending on the thickness of the layer applied. This effect, called darkening, should as far as possible be avoided.
- DE-A-198 14 605 describes a sealing composition for metallic surfaces which contains, in addition to at least one solvent, at least one silane derivative and colloidal silica or/and colloidal silicate. In the examples, the content of silane(s) is 20 wt. % (about 200 g/l) and that of silica sol or silicate in the range from 10 to 40 wt. %. A suggested addition of wax to reduce the coefficient of friction or of organic binder as a wetting agent, such as e.g. polypropylene, polyethylene, polyethylene oxide or modified polysiloxane, or for other reasons not mentioned with binders not mentioned in more detail, was not employed in the examples. The examples mention no polymeric substances beyond the silanes.
- The doctrine of DE-A1-41 38 218 is a solution containing organofunctional polysiloxane and titanic acid esters and/or titanium chelate for use as an after-dipping agent for chromated or passivated zinc-containing layers on steel components.
- U.S. Pat. No. 5,053,081 relates to a process for coating a metallic surface, which has already been pretreated e.g. with a phosphate layer, with an after-rinsing solution based on a content of 3-aminopropyltriethoxysilane and, in comparison with this, a significantly lower content of titanium chelate prepared with tetraalkyl titanate, beta-diketone and alkanolamine.
- DE-A1-101 49 148 describes aqueous coating compositions based on organic film-forming agent, fine inorganic particles and lubricant or/and organic corrosion inhibitor, which, in spite of the absence of chromium compounds, produced outstanding results of corrosion resistance, adhesive strength and shapability, inter alia on Galvalume® steel sheets, but nevertheless still showed an inadequate corrosion resistance of an organic film of about 1 μm layer thickness on hot-galvanized, electrolytically galvanized, Galvalume®-coated or Galfan®-coated metallic strips, that is to say on metallic surfaces which are difficult to protect against corrosion. The compositions, their constituents and the properties of the raw materials and coatings of this publication are expressly included in this Application.
- The object of the invention is to overcome the disadvantages of the prior art, and in particular to propose a process for coating metallic surfaces which is suitable both for coating the surfaces of metallic bodies, e.g. by dipping or spraying, and for high coating speeds such as are used for metallic strips, which can be used largely or completely without chromium(VI) compounds and which as far as possible can be employed easily. The object is in particular to increase the corrosion resistance of chromate-free organic coatings of less than 10 μm, and in particular of less than 3 μm dry film thickness.
- It has been found, surprisingly, that the addition of at least one chelate, in particular a titanium and/or zirconium chelate, to a silane-containing aqueous composition significantly improves the corrosion resistance and also the lacquer adhesion of the film formed therefrom. The addition of an organic corrosion inhibitor can usually also be omitted here—except in the case of coating of bright steel.
- It has furthermore been found, surprisingly, that it was possible also to improve the corrosion resistance of the film formed from the aqueous composition containing at least one silane but no organic polymer very significantly if at least one chelate, in particular a titanium or/and zirconium chelate, is also added.
- The object is achieved with a process for coating a metallic surface, in particular of aluminium, iron, copper, magnesium, nickel, titanium, tin, zinc or alloys containing aluminium, iron, copper, magnesium, nickel, titanium, tin or/and zinc, with an aqueous composition, which can be largely or completely free from chromium(VI) compounds, for pretreatment before a further coating or for treatment in which the body to be coated optionally—especially a strip, a strip section or a component—is shaped after the coating, which is characterized in that the composition contains, in addition to water,
-
- a) at least one hydrolysable and/or at least partly hydrolysed silane and
- b) at least one metal chelate,
wherein the clean, pickled, cleaned or/and pretreated metallic surface is brought into contact with the aqueous composition and a film is formed on the metallic surface, which is then dried and optionally is additionally cured,
wherein the dried and optionally also cured film has a layer thickness in the range from 0.01 to 10 μm, determined by detachment of a defined area of the cured film and weighing or by determination of the silicon content of the coating e.g. with x-ray fluorescence analysis and corresponding conversion.
- The object is moreover achieved with an aqueous composition for pretreatment of a metallic surface before a further coating or for treatment of that surface, which is characterized in that the composition contains, in addition to water,
-
- a) at least one hydrolysable or/and at least partly hydrolysed silane and
- b) at least one metal chelate,
wherein the amounts ratio of a) to b), in each case including the reaction products formed therefrom, is preferably in the range from 0.1:1 to 10:1.
- The amounts ratio of a) to b), in each case including the reaction products formed therefrom, is preferably in the range from 0.1:1 to 10:1, particularly preferably in the amounts ratio of 0.2:1 to 8:1, very particularly preferably in the amounts ratio of 0.3:1 to 7:1, in particular about 0.4:1, 0.6:1, 0.8:1, 1:1, 1.2:1, 1.6:1, 2:1, 3:1, 4:1, 5:1 or 6:1.
- In each case amounts of silane(s) and chelate(s), in each case including the reaction products formed therefrom, independently of one another of 0.05 to 5 wt. %, based on the wet film, are particularly preferred, very particularly preferably in each case independently of one another amounts of 0.08 to 4 wt. %, in particular about in each case independently of one another amounts of 0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 2.5, 3 or 3.5 wt. %.
- In each case amounts of silane(s) and chelate(s), in each case including the reaction products formed therefrom, independently of one another of 0.2 to 15 wt. %, based on the solids content, are particularly preferred, very particularly preferably in each case independently of one another amounts of 0.3 to 11 wt. %, in particular about in each case independently of one another amounts of 0.5, 0.8, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 or 10.5 wt. %.
- Preferably, at least one silane is chosen which is compatible with water, i.e. that the at least one silane and, where appropriate, its hydrolysis and condensation products are miscible with the components of the aqueous composition without problems and are stable for several weeks, and that it allows formation of a defect-free wet film and dry film which, in particular, is closed, uniform and free from craters. In particular, at least one silane is chosen which renders possible a high corrosion resistance, in particular in combination with the at least one chelate chosen.
- Preferably, at least one chelate is chosen that is stable for a duration of several weeks in aqueous dispersions in the presence of the other components of the aqueous composition and which renders possible a high corrosion resistance. It is furthermore advantageous if both the at least one silane and the at least one chelate on the one hand can bond chemically to the intended metallic surface which is to be brought into contact therewith and optionally can also bond chemically to the lacquer subsequently to be applied. The at least one metal chelate is, in particular, one of Al, B, Ca, Fe, Hf, La, Mg, Mn, Si, Ti, Y, Zn, Zr or/and at least one lanthanide, such as Ce, or such as a Ce-containing lanthanide mixture, particularly preferably chosen from the group consisting of Al, Hf, Mn, Si, Ti, Y and Zr.
- The concentrates of the aqueous compositions containing predominantly silane and chelate and of the part components as the starting substance for polymer-containing compositions preferably have a water content in the range from 20 to 85 wt. %, in particular 30 to 80 wt. %. The concentrates preferably contain the at least one silane, including the reaction products formed therefrom, in a content in the range from 1 to 60 wt. %, particularly preferably in the range from 3 to 45 wt. %, very particularly preferably in the range from 6 to 45 wt. %, above all in the range from 8 to 40 to 35 or to 32 wt. %, in particular of about 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 or 32.5 wt. %, and the at least one chelate, optionally including the reaction products formed therefrom, in the range from 1 to 50 wt. %, particularly preferably in the range from 2 to 40 wt. %, very particularly preferably in the range from 3 to 30 wt. %, above all in the range from 5 to 25 wt. %, in particular about 7.5, 10, 12, 14, 16, 18, 20 or 22.5 wt. %.
- The bath compositions of the aqueous compositions containing predominantly silane and chelate preferably have a water content in the range from 80 to 99.9 wt. %, preferably in the range from 90 to 99.8 wt. %, particularly preferably in the range from 94 to 99.7 wt. %, above all in the range from 96 to 99.6 wt. %, in particular of about 95, 95.5, 96, 96.5, 97, 97.5, 97.9, 98.2, 98.5, 98.8, 99.1 or 99.4 wt. %.
- The bath compositions preferably contain the at least one silane, including the reaction products formed therefrom, in a content in the range from 0.01 to 10 wt. %, particularly preferably in the range from 0.05 to 7 wt. %, very particularly preferably in the range from 0.1 to 5 wt. %, above all in the range from 0.2 to 4 wt. %, in particular of about 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 or 3.8 wt. %, and the at least one chelate, including the reaction products possibly formed therefrom, in the range from 0.01 to 10 wt. %, particularly preferably in the range from 0.05 to 7 wt. %, very particularly preferably in the range from 0.1 to 5 wt. %, above all in the range from 0.2 to 4 wt. %, in particular of about 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 or 3.8 wt. %.
- The contents of the at least one silane and of the at least one chelate, in each case including the reaction products formed therefrom, in particular those of titanium, hafnium or/and zirconium, preferably make up at least 20 wt. %, in particular at least 30 wt. %, particularly preferably at least 40 wt. %, very particularly preferably at least 50 wt. %, above all in each case at least 60, 70, 80, 90, 94, 95, 96, 97, 98 or 99 wt. % of the solids contents of this composition. This composition particularly preferably substantially contains water, in each case at least one silane and/or reaction products thereof, at least one chelate, where appropriate including the reaction products formed therefrom, and optionally contents of substances chosen from the group consisting of alcohols, acids, such as carboxylic and fatty acids, such as acetic acid, and/or mineral acids, and other substances which influence the pH, such as ammonia, and additives and impurities. The total content of further compounds, including additives, in addition to silane and chelate is usually up to 20 wt. % of the solids content of silane and chelate, preferably up to 15 wt. %, particularly preferably up to 10 wt. %, very particularly preferably up to 5 wt. %, above all up to 1 or 2 wt. %.
- Although the ratio of the at least one silane, including the reaction products formed therefrom, to the at least one chelate, optionally including the reaction products formed therefrom, can preferably be in the range from 0.8:1 to 1.2:1, it has surprisingly become clear that this ratio can also be, in particular, in the range from 0.2:1 to 0.5:1 or 2:1 to 5:1, since in certain situations there may be an optimum there.
- The pH of this bath composition can be, in particular, in the range from 3 to 9.5, preferably in the range from 3.5 to 9, in particular in the range from 4 to 8.8. To adjust the pH, inter alia, an addition of a weak acid or of a dilute strong acid or an acid mixture can be added. In particular, at least one acid, such as carboxylic or fatty acids, such as acetic acid, or/and mineral acids, and other substances which influence the pH, such as ammonia, can be used. The bath composition can in some cases be adjusted down to pH values of about 3.5 by addition of acid if the chemical system tolerates the pH chosen and remains stable. However, if the acid is added only for neutralization, no or virtually no pickling attack takes place. A solvent, such as an alcohol, can preferably also be added to stabilize the silane.
- The coatings formed with these bath compositions typically have a layer thickness in the range from 0.01 to 1 μm or to 0.6 μm, usually 0.015 to 0.25 μm.
- The addition of the at least one silane a) offers the advantage that adhesion bridges are formed between the substrate and the dried protective film and to lacquer layers or/and coatings of plastic possibly subsequently applied, as a result of which an improved lacquer adhesion is also achieved. A further advantage is that suitable silanes/siloxanes generate crosslinkings like adhesion bridges within the dried protective film, which considerably improve the strength and/or the flexibility of the coating composite and the adhesion to the substrate, as a result of which an improved adhesion is achieved in many lacquer systems.
- The aqueous composition which contains predominantly chelate and silane or predominantly synthetic resin and in addition chelate and silane preferably contains in each case at least one acyloxysilane, one alkoxysilane, one silane with at least one amine group, such as an aminoalkylsilane, one silane with at least one succinic acid group or/and succinic acid anhydride group, one bis-silyl-silane, one silane with at least one epoxide group, such as a glycidoxysilane, one (meth)acrylato-silane, one multi-silyl-silane, one ureidosilane, one vinylsilane or/and at least one silanol or/and at least one siloxane of a composition corresponding chemically to the abovementioned silanes. The reaction products of the silanes are known in principle in such systems and are therefore not mentioned individually. They are therefore also not referred to further in the following, but are included under the term “silane(s)”.
- The composition can contain e.g. at least one silane mixed with a content of at least one alcohol, such as ethanol, methanol or/and propanol, of up to 8 wt. %, based on the silane content, preferably up to 5 wt. %, particularly preferably up to 1 wt. %, very particularly preferably up to 0.5 wt. %. In particular, the mixture can contain e.g. at least one silane chosen from at least one amino-silane, such as e.g. bis-amino-silane, without or with at least one alkoxy-silane, such as e.g. trialkoxy-silyl-propyl-tetrasulfane, or at least one vinylsilane and at least one bis-silyl-aminosilane or at least one bis-silyl-polysulfur-silane and/or at least one bis-silyl-aminosilane or at least one aminosilane and at least one multi-silyl-functional silane. Those silanes/siloxanes which have a chain length in the range from 2 to 5 C atoms and contain a functional group which is suitable for reaction with polymers are preferred in particular.
- The aqueous composition preferably contains at least one silane chosen from the group consisting of
- glycidoxyalkyltrialkoxysilane,
- methacryloxyalkyltrialkoxysilane,
- (trialkoxysilyl)alkyl-succinic acid-silane,
- aminoalkylaminoalkylalkyldialkoxysilane,
- (epoxycycloalkyl)alkyltrialkoxysilane,
- bis-(trialkoxysilylalkyl)amine,
- bis-(trialkoxysilyl)ethane,
- (epoxyalkyl)trialkoxysilane,
- aminoalkyltrialkoxysilane,
- ureidoalkyltrialkoxysilane,
- N-(trialkoxysilylalkyl)alkylenediamine,
- N-(aminoalkyl)aminoalkyltrialkoxysilane,
- N-(trialkoxysilylalkyl)dialkylenetriamine,
- poly(aminoalkyl)alkyldialkoxysilane,
- tris(trialkoxysilyl)alkyl isocyanurate,
- ureidoalkyltrialkoxysilane and
- acetoxysilane.
- The aqueous composition preferably contains at least one silane chosen from the group consisting of
- 3-glycidoxypropyltriethoxysilane,
- 3-glycidoxypropyltrimethoxysilane,
- 3-methacryloxypropyltriethoxysilane,
- 3-methacryloxypropyltrimethoxysilane,
- 3-(triethoxysilyl)propyl-succinic acid-silane,
- aminoethylaminopropylmethyldiethoxysilane,
- aminoethylaminopropylmethyldimethoxysilane,
- beta-(3,4-epoxycyclohexyl)ethyltriethoxysilane,
- beta-(3,4-epoxycyclohexyl)ethyltrimethoxysilane,
- beta-(3,4-epoxycyclohexyl)methyltriethoxysilane,
- beta-(3,4-epoxycyclohexyl)methyltrimethoxysilane,
- gamma-(3,4-epoxycyclohexyl)propyltriethoxysilane,
- gamma-(3,4-epoxycyclohexyl)propyltrimethoxysilane,
- bis(triethoxysilylpropyl)amine,
- bis(trimethoxysilylpropyl)amine,
- (3,4-epoxybutyl)triethoxysilane,
- (3,4-epoxybutyl)trimethoxysilane,
- gamma-aminopropyltriethoxysilane,
- gamma-aminopropyltrimethoxysilane,
- gamma-ureidopropyltrialkoxysilane,
- N-(3-(trimethoxysilyl)propyl)ethylenediamine,
- N-beta-(aminoethyl)-gamma-aminopropyltriethoxysilane,
- N-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane,
- N-(gamma-triethoxysilylpropyl)diethylenetriamine,
- N-(gamma-trimethoxysilylpropyl)diethylenetriamine,
- N-(gamma-triethoxysilylpropyl)dimethylenetriamine,
- N-(gamma-trimethoxysilylpropyl)dimethylenetriamine,
- poly(aminoalkyl)ethyldialkoxysilane,
- poly(aminoalkyl)methyldialkoxysilane,
- tris (3-(triethoxysilyl)propyl) isocyanurate,
- tris(3-(trimethoxysilyl)propyl) isocyanurate and
- vinyltriacetoxysilane.
- The silanes contained in the aqueous composition (concentrate or bath) are monomers, oligomers, polymers, copolymers or/and reaction products with further components on the basis of hydrolysis reactions, condensation reactions or/and further reactions. The reactions take place above all in the solution, during drying or optionally curing of the coating. In the context of this Application, the term “silane” is used here for silanes, silanols, siloxanes, polysiloxanes and reaction products and derivatives thereof, which are often “silane” mixtures. Because of the often very complex chemical reactions which occur here, and the very expensive analyses and working, the particular further silanes or other reaction products cannot be described.
- Instead of a content of at least one fluorine-free silane in the content of silanes, however, this content may contain only fluorine-containing silanes, or at least, instead of fluorine-free silanes, at least one fluorine-containing silane.
- The aqueous composition preferably then contains at least one silane chosen from the fluorine-containing silanes: from in each case at least one acyloxysilane, one alkoxysilane, one silane having at least one amino group, such as an aminoalkylsilane, one silane having at least one succinic acid group or/and succinic acid anhydride group, one bis-silyl-silane, a silane having at least one epoxide group, such as a glycidoxysilane, one (meth)acrylato-silane, one multi-silyl-silane, one ureidosilane, one vinylsilane or/and at least one silanol or/and at least one siloxane or polysiloxane of a composition which corresponds chemically to the abovementioned silanes, which in each case contains at least one group having one or having at least one fluorine atom.
- In particular, the aqueous composition then contains at least one fluoroalkoxyalkylsilane, at least one silane having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 fluorine atoms per silane, at least one perfluorinated silane, at least one mono-fluorosilane, at least one fluorosilane based on ethoxysilane or/and based on methoxysilane or/and at least one fluorosilane having at least one functional group, such e.g. an amino group, in particular as a cocondensate, such as e.g.
- a fluoroalkyldialkoxysilane,
- a fluoroaminoalkylpropyltrialkoxysilane,
- a fluoromethanesulfonate,
- a fluoropropylalkyldialkoxysilane,
- a triphenylfluorosilane, a trialkoxyfluorosilane,
- a trialkylfluorosilane or/and
- a tridecafluorooctyltrialkoxysilane.
- The composition particularly preferably then contains at least one fluorine-containing silane which contains at least two amino groups and at least one optionally fluorinated ethyl or/and at least one optionally fluorinated methyl group.
- The content of the at least one silane, including the reaction products formed therefrom, in the aqueous composition is preferably 0.1 to 80 g/l, in particular 0.2 to 50 g/l, particularly preferably 0.3 to 35 g/l, very particularly preferably 0.5 to 20 g/l, above all 1 to 10 g/l.
- Preferably, the bath compositions which have a relatively low content of or are free from film-forming agent contain the silanes, including the reaction products optionally formed therefrom with other components, in a content in the range from 0.01 to 10 wt. %, particularly preferably in the range from 0.05 to 7 wt. %, very particularly preferably in the range from 0.1 to 5 wt. %, above all in the range from 0.2 to 4 wt. %, in particular of about 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 or 3.8 wt. %, and the at least one chelate, including the reaction products optionally formed therefrom, in the range from 0.01 to 10 wt. %, particularly preferably in the range from 0.05 to 7 wt. %, very particularly preferably in the range from 0.1 to 5 wt. %, above all in the range from 0.2 to 4 wt. %, in particular of about 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 or 3.8 wt. %.
- The content of the at least one metal chelate b), optionally including the reaction products formed therefrom, in the aqueous composition is preferably 0.05 to 80 g/l, in particular 0.1 to 50 g/l.
- The at least one metal chelate is preferably chosen from chelate complexes based on acetylacetonates, acetoacetates, acetonates, alkylenediamines, amines, lactates, carboxylic acids, citrates or/and glycols.
- The at least one metal chelate is preferably based on
-
- acetylacetonate,
- alkali metal lactate,
- alkanolamine,
- alkyl acetoacetate,
- alkylenediamine tetraacetate,
- ammonium lactate,
- citrate,
- dialkyl citrate,
- dialkyl ester-citrate,
- dialkylenetriamine,
- diisoalkoxybisalkyl acetoacetate,
- diisopropoxybisalkyl acetoacetate,
- di-n-alkoxy-bisalkyl acetoacetate,
- hydroxyalkylenediamine triacetate,
- trialkanolamine or/and
- trialkylenetetramine.
- These metal chelates serve in particular to stabilize the organometallic compound in water and to bond to the metallic surface or to the lacquer or to a corresponding coating applied. They are particularly suitable if they have only a low reactivity in the aqueous composition and if they are at least partly decomposed within the process conditions used and the metal ions for the bonding or/and chemical reaction are liberated. If they are too reactive, the organometallic compounds react prematurely with other chemical compounds, such as silanes. Preferably, the chelates are hydrophilic, stable to hydrolysis, stable to water or/and form stable hydrolysates. Preferably, a silane or a chelate is chosen which is compatible with water and moreover with the organic film-forming agent chosen and which has the same properties as mentioned before for the silane or chelate.
- Preferably, the amounts ratio of a) to b), in each case including the reaction products formed therefrom, is in the range from 0.1:1 to 10:1, particularly preferably in the amounts ratio of 0.2:1 to 8:1, very particularly preferably in the amounts ratio of 0.3:1 to 7:1, in particular about 0.4:1, 0.6:1, 0.8:1, 1:1, 1.2:1, 1.6:1, 2:1, 3:1, 4:1, 5:1 or 6:1.
- Particularly preferably, in each case amounts of silane(s) and chelate(s), in each case including the reaction products formed therefrom, are contained independently of one another in the range from 0.05 to 5 wt. %, based on the wet film, very particularly preferably in each case independently of one another amounts of 0.08 to 4 wt. %, in particular about in each case independently of one another amounts of 0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 2.5, 3 or 3.5 wt. %.
- Particularly preferably, in each case amounts of silane(s) and chelate(s), in each case including the reaction products formed therefrom, are contained independently of one another in the range from 0.2 to 15 wt. %, based on the dry substance content, very particularly preferably in each case independently of one another amounts of 0.3 to 11 wt. %, in particular about in each case independently of one another amounts of 0.5, 0.8, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 or 10.5 wt. %.
- In particular, in the compositions having a comparatively high film-forming agent content, an amounts ratio of components [a)+b)]:c), in each case including the reaction products formed therefrom and based on the wet film, of 2:70 to 20:70 is particularly preferred, very particularly preferably in an amounts ratio of 3.5:70 to 17:70, in particular about 5:70, 6:70, 7:70, 8:70, 9:70, 10:70, 11:70, 12:70 and 14:70. It may be preferable here for either component a) to component b), or vice versa, to assume values of the content which are higher by the factor 1.2 to 4 than that of the other component. An amounts ratio of components [a)+b)]:c), in each case including the reaction products formed therefrom and based on the solids content, of 2:70 to 20:70 is particularly preferred, very particularly preferably in an amounts ratio of 3.5:70 to 17:70, in particular about 5:70, 6:70, 7:70, 8:70, 9:70, 10:70, 11:70, 12:70 and 14:70.
- In particular, in the compositions having a relatively low film-forming agent content, however, the amounts ratio of components [a)+b)]:c), in each case including the reaction products formed therefrom and based on the wet film, can be particularly preferably in the range from ≧0.2:7 and up to 20:7, very particularly preferably in the amounts ratio of ≧0.5:7 and up to 12:7 or of ≧1:7 and up to 8:7, in particular about 0.4:7, 0.6:7, 0.8:7, 1.2:7, 1.5:7, 2:7, 3:7, 4:7, 5:7, 6:7, 7:7, 9:7, 10:7, 11:7, 13:7, 14:7 and 16:7. It may be preferable here for either component a) to component b) or vice versa to assume content values which are higher than the other component by a factor of 1.2 to 4.
- The contents of component a), including the reaction products formed therefrom and based on the solids content, are particularly preferably in the range from 0.4 to 10 wt. %, very particularly preferably in the range from 0.8 to 8 wt. %, in particular about 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3, 3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.5, 6, 6.5, 7 or 7.5 wt. %.
- The contents of component b), including the reaction products formed therefrom and based on the solids content, are particularly preferably in the range from 0.3 to 10 wt. %, very particularly preferably in the range from 0.8 to 8 wt. %, in particular about 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3, 3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.5, 6, 6.5, 7 or 7.5 wt. %.
- In particular, in the compositions having a comparatively high film-forming agent content, the contents of component c), based on the solids content, are particularly preferably in the range from 10 to 95 wt. %, very particularly preferably in the range from 30 to 90 wt. %, in particular about 35, 40, 45, 50, 55, 60, 63, 66, 69, 72, 75, 78, 81, 84 or 87 wt. %.
- In particular, in the compositions having a comparatively high film-forming agent content, the contents of component d)—at least one long-chain alcohol—based on the solids content, are particularly preferably in the range from 0.01 to 2 wt. %, very particularly preferably in the range from 0.1 to 1 wt. %, in particular about 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.30, 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.55, 0.60, 0.65, 0.7, 0.75, 0.8, 0.9 or 0.95 wt. %.
- In particular, the content of organic film-forming agent c), based on the solids content of the composition, is 10 to 45 wt. %, preferably 10 to 40 wt. %, particularly preferably 10 to 35 wt. %, in particular 10 to 30, to 25 or to 20 wt. %. The aqueous composition, which can serve as a bath composition or/and as a concentrate, preferably contains the organic film-forming agent c) in a content of 0.1 to 980 g/l, particularly preferably in a range from 2 to 600 g/l, very particularly preferably 50 to 550 g/l, in particular 150 to 450 g/l. Preferably, 2 to 100 parts of the organic film-forming agent are added, particularly preferably 10 to 60 parts, very particularly preferably 15 to 45 parts, per 100 parts by weight of water. In particular, in the case of the compositions having a relatively low film-forming agent content, however, the aqueous composition, which can serve as a bath composition or/and as a concentrate, preferably contains the organic film-forming agent c) in a content of ≧0.01 and up to 98 g/l, particularly preferably in a range from ≧0.1 and up to 60 g/l, very particularly preferably from ≧0.5 and up to 50 g/l, in particular from ≧2 and up to 45 g/l.
- Under certain circumstances, the highest contents of organic film-forming agent can occur in particular in UV-curing systems without or in systems with only low volatile contents, such as organic solvents or/and residual monomers. Coatings which are predominantly or solely film-formed during drying or optionally cured in part thermo-physically are particularly preferred for the process according to the invention. In the context of this Application, the term copolymers preferably also includes block copolymers and graft copolymers.
- The organic film-forming agent preferably contains at least a proportion of at least one polymer or/and at least one copolymer with an acid number in the range from 3 to 120, particularly preferably in the range from 3 to 80, very particularly preferably in the range from 4 to 60.
- The organic film-forming agent preferably contains at least one proportion of at least one polymer or/and at least one copolymer with a minimum film-forming temperature MFT in the range from −10 to +99° C., particularly preferably in the range from 0 to 90° C., in particular from 5° C.; it is very particularly advantageous if the organic film-forming agent contains at least two in particular thermoplastic polymers or/and copolymers at least in the initial stage—since the thermoplastic constituents can at least partly lose or reduce their thermoplastic properties during the further treatment and reaction—which—where a minimum film-forming temperature can be stated—have a minimum film-forming temperature in the range from 5 to 95° C., in particular of at least 10° C., where at least one of these polymers or/and copolymers, compared with at least a second of these polymers or/and copolymers, A) has a minimum film-forming temperature which differs from that of the other component by at least 20° C., B) has a glass transition temperature which differs from that of the other component by at least 20° C., or/and C) has a melting point which differs from that of the other component by at least 20° C. Preferably, one of these at least two components has a film-forming temperature in the range from 10 to 40° C. and the other a film-forming temperature in the range from 45 to 85° C. Long-chain alcohols can help here to lower the glass transition temperatures temporarily and optionally also to match them somewhat to one another. After application, the long-chain alcohols can escape and then leave behind a film of higher glass transition temperature than during the application. These dried films are then not too flexible and too tacky. The glass transition temperatures and the melting points of these synthetic resins are often about in the region of the film-forming temperature, that is to say usually in the range from 0 to 110° C.
- In another preferred embodiment, a mixture of organic film-forming agents in which at least some of the film-forming agents have a glass transition temperature Tg of substantially the same or/and a similar Tg can be employed. It is particularly preferable here for at least some of the organic film-forming agents to have a glass transition temperature Tg in the range from 10 to 70° C., very particularly preferably in the range from 15 to 65° C., in particular in the range from 20 to 60° C. The organic film-forming agent then preferably contains at least a proportion of at least one polymer or/and at least one copolymer having a minimum film-forming temperature MFT in the range from −10 to +99° C., particularly preferably in the range from 0 to 90° C., in particular from 5° C. or from 10° C. It is particularly preferable here for at least two, if not all, of the organic film-forming agents to have a minimum film-forming temperature in one of these temperature ranges—if a minimum film-forming temperature can be stated.
- It is particularly advantageous if all the organic film-forming agents form a film during drying. It is particularly preferable if synthetic resins which have thermoplastic properties to the extent of at least 80 wt. %, in particular to the extent of at least 90 wt. %, are added to the aqueous composition.
- The organic film-forming agent is preferably formed from at least one component in the form of in each case at least one solution, dispersion, emulsion, microemulsion and/or suspension which is added to the aqueous composition. The term dispersion here also includes the sub-terms emulsion, solution, microemulsion and suspension.
- The acid number of the synthetic resins is preferably 3 to 100, particularly preferably 3 to 60 or 4 to 50. In particular, copolymers with an acid number in the range from 3 to 50 are added to the aqueous composition. The components of the organic film-forming agent which are to be added are optionally already partly neutralized. The organic film-forming agent can preferably contain a proportion of at least one copolymer with an acid number in the range from 3 to 80, in particular to the extent of at least 50 wt. % of the synthetic resins added. In a high range of the acid number it is usually not necessary to stabilize a film-forming agent cationically, anionically or/and sterically. At a low acid number, however, such a stabilization is often necessary. It is then advantageous to employ already (partly) stabilized synthetic resins or mixtures thereof.
- The aqueous composition preferably contains at least one synthetic resin, such as organic polymer, copolymer or/and mixture thereof, in particular a synthetic resin based on acrylate, ethylene, polyester, polyurethane, silicone polyester, epoxide, phenol, styrene, melamine-formaldehyde, urea-formaldehyde or/and vinyl. The organic film-forming agent can preferably be a synthetic resin mixture of at least one polymer or/and at least one copolymer, which in each case independently of one another contains a proportion of synthetic resin based on acrylate, epoxide, ethylene, urea-formaldehyde, phenol, polyester, polyurethane, styrene, styrene-butadiene or/and vinyl. This can also be here a cationically, anionically or/and sterically stabilized synthetic resin or polymer or/and dispersion thereof or even solution thereof. The term acrylate in the context of this Application includes acrylic acid ester, polyacrylic acid, methacrylic acid ester and methacrylate.
- The organic film-forming agent can preferably contain at least one component based on
-
- acrylic-polyester-polyurethane copolymer,
- acrylic-polyester-polyurethane-styrene
- copolymer,
- acrylic acid ester,
- acrylic acid ester-methacrylic acid ester,
- optionally with free acids or/and
- acrylonitrile,
- ethylene-acrylic mixture,
- ethylene-acrylic copolymer,
- ethylene-acrylic-polyester copolymer,
- ethylene-acrylic-polyurethane copolymer,
- ethylene-acrylic-polyester-polyurethane copolymer
- ethylene-acrylic-polyester-polyurethane-styrene copolymer,
- ethylene-acrylic-styrene copolymer
- polyester resins with free carboxyl groups combined with melamine-formaldehyde resins,
- a synthetic resin mixture or/and copolymer based on acrylate and styrene,
- a synthetic resin mixture or/and copolymer based on styrene-butadiene,
- a synthetic resin mixture or/and copolymer of acrylate and epoxide,
- based on an acrylic-modified polyester containing carboxyl groups together with melamine-formaldehyde and ethylene-acrylic copolymer,
- polycarbonate-polyurethane,
- polyester-polyurethane,
- styrene,
- styrene-vinyl acetate,
- vinyl acetate,
- vinyl ester or/and
- vinyl ether.
- However, the organic film-forming agent can also preferably contain as the synthetic resin a content of organic polymer, copolymer or/and mixtures thereof based on polyethyleneimine, polyvinyl alcohol, polyvinylphenol, polyvinylpyrrolidone or/and polyaspartic acid, in particular copolymers with a phosphorus-containing vinyl compound. A conductive polymer is preferably also added to the aqueous composition.
- A synthetic resin based on acrylate or based on ethylene-acrylic acid with a melting point in the range from 60 to 95° C. or a synthetic resin with a melting point in the range from 20 to 160° C., in particular in the range from 60 to 120° C., is very particularly preferred.
- Preferably, at least 30 wt. % of the organic film-forming agent added can contain thermoplastic resins from which films can be formed, particularly preferably to the extent of at least 50 wt. %, very particularly preferably to the extent of at least 70 wt. %, above all to the extent of at least 90 or to the extent of at least 95 wt. %. In addition, the organic film-forming agent can also contain contents, in certain circumstances residual contents, of in each case at least one monomer, oligomer, emulsifier, further additive for dispersions, one curing agent, photoinitiator or/and one cationically polymerisable substance. The content of monomer, oligomer, emulsifier and further additive for dispersions is usually less than 5 wt. %, often less than 2 wt. %, possibly less than 1 wt. %. The composition of curing agents and correspondingly crosslinkable substances then optionally also added and the corresponding measures for this are known in principle.
- The molecular weights of the synthetic resins added can preferably be in the range of at least 1,000 u, particularly preferably of at least 5,000 u, very particularly preferably from 20,000 to 200,000 u. The individual thermoplastic components of the organic film-forming agent which are added to the aqueous composition preferably have molecular weights in the range from 20,000 to 200,000 u, in particular in the range from 50,000 to 150,000 u.
- The organic film-forming agent can preferably contain at least 40 wt. % of high-molecular-weight polymers, particularly preferably at least 55 wt. %, very particularly preferably at least 70 wt. %, above all at least 85 wt. %, in particular at least 95 wt. %. In particular, if at least 85 wt. % of the organic film-forming agent comprises high-molecular-weight polymers, it is usually not necessary to add curing agents, such as isocyanates, or photoinitiators, such as benzophenones, for thermal or free-radical crosslinking, and correspondingly crosslinkable synthetic resins in order to achieve the outstanding properties of the coating according to the invention, since it is then possible to form, by the film formation, a closed, solid, high-quality film without carrying out crosslinking.
- During film formation, which takes place in particular during drying, the organic microparticles add on to one another and compact to form a closed pore-free film, if the choice of polymers and film-forming auxiliary is suitable and the process is operated under suitable conditions. The expert is familiar in principle with these classes of substance and working conditions. The fact that this film can have exceptionally high-quality properties, in spite of such a low layer thickness, preferably in the range from 0.5 to 3 μm, is demonstrated by the embodiment examples. To the knowledge of the Applicant, no substantially organic, chromate-free coating with a layer thickness of less than 4 μm dry film thickness has hitherto been disclosed for the coating on metallic strips of such high lacquer adhesion and corrosion resistance which predominantly contains polymers which have undergone film formation. The coating according to the invention is at least equivalent to a chromate-containing organic coating.
- The final drying of such films can take many days, while substantial drying can already be completed in a few seconds. Curing here can, under certain circumstances, take several weeks until the final drying and curing state is achieved if no thermal or free-radical crosslinking occurs here. If required, the curing can additionally be accelerated or intensified, as a result of crosslinking, by irradiation, e.g. with UV radiation, or by heating, or/and also to a small extent by addition of and reaction with e.g. compounds containing free NCO groups with the hydroxyl groups of the polymers containing hydroxyl groups.
- The coating is preferably largely or completely cured by drying and film formation. Alternatively, however, the coating can be hardened or cured partly by drying and film formation and partly by actinic radiation, cationic polymerization or/and thermal crosslinking. In this case, at least one photoinitiator or/and at least one curing agent and correspondingly crosslinkable resin are optionally added to the aqueous composition.
- The pH of the organic film-forming agent in an aqueous formulation, without addition of further compounds, is usually in the range from 0.5 to 12. The pH of the aqueous composition which contains predominantly synthetic resins and also silane and chelate as solids contents is preferably in the range from 1 to 6 or 6 to 10.5—depending on whether the procedure takes place in the acid or rather basic range, particularly preferably in the range from 6.5 to 9.5, very particularly preferably in the range from 7 to 9.2.
- In one embodiment variant, the organic film-forming agent preferably contains only water-soluble synthetic resins, in particular those which are stable in solutions with pH values of ≦9, or/and the organic film-forming agent contains at least one synthetic resin which contains hydroxyl groups. However, if the pH should have fallen due to storage of the synthetic resins or mixtures, it may be helpful to bring the pH, especially that of the dispersion which is otherwise ready-to-use, back into a more alkaline range e.g. by addition of sodium hydroxide solution. The organic film-forming agent can also be of a composition such that it contains—optionally only—water-soluble synthetic resin, in particular one which is stable in solutions with pH values of ≦5.
- Preferably, the acid groups of the synthetic resins are or/and will be neutralized with ammonia, with amines or alkanolamines, such as e.g. morpholine, dimethylethanolamine, diethylethanolamine or triethanolamine, or/and with alkali metal compounds, such as e.g. sodium hydroxide. These additives then act as a stabilizer.
- Film formation is understood as meaning film formation from a material with a high organic content, such as a polymer dispersion, during which above all polymer particles are converted into a uniform film, preferably at room temperature or slightly elevated temperature. Fusion of the comparatively large polymer particles is often referred to here. Film formation takes place here from an aqueous medium during drying and optionally with plasticizing of the polymer particles by the remaining film-forming auxiliary. The film formation can be improved by the use of thermoplastic polymers or copolymers or/and by addition of substances which serve as temporary plasticizers. Film-forming auxiliaries act as specific solvents which soften the surface of the polymer particles and thus render possible fusion thereof. It is advantageous here if these plasticizers on the one hand remain in the aqueous composition for a sufficiently long period of time to be able to act on the polymer particles for a long period of time and then evaporate and thus escape from the film. It is furthermore advantageous if a residual water content is also present for a sufficiently long period of time during the drying process. In a suitable film formation, a transparent film is formed, but no milky-white or even pulverulent film, which is an indication of an impaired film formation. For film formation which is as perfect as possible, the temperature of the wet film applied to a surface must be above the minimum film temperature (MFT), since only then are the polymer particles soft enough to coalesce. It is particularly advantageous here if these plasticizers do not or virtually do not modify the pH of the aqueous composition. The choice of suitable film-forming auxiliary is not easy here, a mixture of at least two film-forming auxiliaries often being necessary. Film-forming auxiliaries which are particularly advantageous are so-called long-chain alcohols, in particular those having 4 to 20 C atoms, such as a butanediol, a butyl glycol, a butyl diglycol, an ethylene glycol ether, such as ethylene glycol monobutyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethyl glycol propyl ether, ethylene glycol hexyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol hexyl ether, or a polypropylene glycol ether, such as propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monobutyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether, tripropylene glycol monopropyl ether, propylene glycol phenyl ether, trimethylpentanediol diisobutyrate, a polytetrahydrofuran, a polyether-polyol or/and a polyester-polyol. In contrast to film formation, temperatures of at least 120° C. are conventionally required for crosslinking for thermosetting organic coatings.
- In the processes according to the invention relating to compositions which contain predominantly chelate and silane or predominantly synthetic resin and in addition chelate and silane, the aqueous composition can contain at least one component e) chosen from the group consisting of
-
- e1) at least one inorganic compound in particle form with an average particle diameter, measured on a scanning electron microscope, in the range from 0.005 to 0.3 μm diameter,
- e2) at least one lubricant,
- e3) at least one organic corrosion inhibitor,
- e4) at least one anticorrosion pigment,
- e5) at least one agent for neutralization or/and for steric stabilization of the synthetic resins,
- e6) at least one organic solvent,
- e7) at least one siloxane and
- e8) at least one chromium(VI) compound.
- Preferably, a finely divided powder, a dispersion or a suspension, such as e.g. a carbonate, oxide, silicate or sulfate, in particular colloidal or/and amorphous particles, is added as the inorganic compound in particle form e1). Particles based on at least one compound of aluminium, barium, cerium, calcium, lanthanum, silicon, titanium, yttrium, zinc or/and zirconium are preferably added as the inorganic compound in particle form. Particles based on aluminium oxide, barium sulfate, cerium dioxide, silicon dioxide, silicate, titanium oxide, yttrium oxide, zinc oxide or/and zirconium oxide are preferably added as the inorganic compound in particle form.
- Preferably, particles with an average particle size in the range from 6 to 200 nm are used as the inorganic compound in particle form, particularly preferably in the range from 7 to 150 nm, very particularly preferably in the range from 8 to 90 nm, even more preferably in the range from 8 to 60 nm, above all preferably in the range from 10 to 25 nm. These particles can also be in the form of a gel or sol. The particles can be stabilized e.g. under alkaline conditions, in order to achieve a better dispersion. An addition of boron for dispersing of the inorganic compound in particle form was not necessary and also has not been used in the examples. It is preferable for larger particles to have a rather platelet-shaped or longitudinal grain form.
- The aqueous composition, which can serve as a bath composition or/and as a concentrate, preferably contains the at least one inorganic compound in particle form in a content of 0.1 to 500 g/l, particularly preferably in a range from 10 to 200 g/l, very particularly preferably 30 to 100 g/l, above all in the range from 3 to 60 g/l. Preferably, 0.1 to 50 parts of the at least one inorganic compound in particle form, particularly preferably 0.5 to 20 parts, very particularly preferably 0.8 to 10 parts, are added per 100 parts by weight of water. Among the inorganic compounds in particle form, those which maintain the transparency of the coating according to the invention, that is to say are colourless or white, such as e.g. aluminium oxide, barium sulfate, silicate, silicon dioxide, colloidal silicon dioxide, zinc oxide or/and zirconium oxide, are preferred in particular in order to maintain the visual character of the metallic surface visibly as far as possible without falsification.
- Particles with a relatively high or high electrical conductivity, which are optionally also added, such as those of iron oxide, iron phosphide, tungsten, zinc and zinc alloy, can also be chosen for use for welding so that they have an average particle size such that they optionally project somewhat more out of the layer according to the invention.
- The ratio of the contents of organic film-forming agent to contents of inorganic compounds in particle form in the aqueous composition can vary within wide ranges; in particular, it can be ≦25:1. Preferably, this ratio is in a range from ≧0.05:1 and up to 15:1, particularly preferably in a range from ≧0.2:1 and up to 12:1, very particularly preferably in a range from ≧0.5:1 and up to 10:1, in particular in a range from ≧1:1 and up to 8:1.
- The ratio of the contents of at least one silane to contents of inorganic compounds in particle form in the aqueous composition can likewise vary within wide limits; in particular, it can be ≦25:1. This ratio is preferably in a range from ≧0.01:1 and up to 15:1, particularly preferably in a range from ≧0.05:1 and up to 8:1, very particularly preferably in a range from ≧0.08:1 and up to 4:1, in particular in a range from ≧0.1:1 and up to 2:1.
- Preferably, at least one wax chosen from the group consisting of paraffins, polyethylenes and polypropylenes is used as the lubricant e2), in particular an oxidized wax, the content of waxes in the aqueous composition preferably being in the range from 0.01 to 5 wt. %, particularly preferably in the range from 0.02 to 3.5 wt. %, very particularly preferably in the range from 0.05 to 2 wt. %. Preferably, the melting point of the wax employed as a lubricant is in the range from 40 to 165° C., particularly preferably in the range from 50 to 160° C., in particular in the range from 120 to 150° C. It is particularly advantageous to add, in addition to a lubricant with a melting point in the range from 120 to 165° C., a lubricant with a melting point in the range from 45 to 95° C. or with a glass transition temperature in the range from −20 to +60° C., in particular in amounts of 2 to 30 wt. %, preferably 5 to 20 wt. % of the total solids content. However, the latter can also advantageously be employed by itself.
- It is particularly advantageous to employ the wax as an aqueous or as a cationically, anionically or/and sterically stabilized dispersion, because it can then easily be kept in homogeneous distribution in the aqueous composition. The aqueous composition preferably contains the at least one lubricant, which optionally can also simultaneously be a shaping agent, in a content in the range from 0.1 to 25 g/l and particularly preferably in a content in the range from 1 to 15 g/l. However, a wax content is usually only advantageous if the coating according to the invention is a treatment layer, since the wax content in a pretreatment layer can be a disadvantage during lacquering. A lubricant or/and shaping agent can be added to reduce the coefficient of friction of the coating, in particular during shaping. Paraffin, polyethylene and oxidized polyethylene, inter alia, are recommended for this.
- Preferably, at least one wax together with a polymer mixture containing ethylene and acrylic acid or/and a copolymer, such as ethylene/acrylic-acid copolymer, is employed as the lubricant, optionally at least one further synthetic resin being added, in particular in an amounts ratio of wax to the copolymer containing ethylene and acrylic acid of 0.02:1 to 2:1, particularly preferably 0.05:1 to 1:1, very particularly preferably 0.1:1 to 0.5:1.
- The ratio of the contents of organic film-forming agent to contents of lubricant in the aqueous composition (bath composition) can vary within wide ranges; in particular it can be ≧2:1. Preferably, this ratio is in a range from 3:1 to 50:1, particularly preferably in a range from 10:1 to 20:1.
- The aqueous composition preferably contains at least one organic corrosion inhibitor e3), in particular based on amine(s), preferably at least one alkanolamine—preferably a long-chain alkanolamine, at least one TPA-amine complex, such as acid adduct-4-oxo-4-p-tolyl butyrate-4-ethylmorpholine, at least one zinc salt of aminocarboxylate, of 5-nitro-isophthalic acid or of cyanic acid, at least one polymeric ammonium salt with fatty acid, at least one metal salt of a sulfonic acid, such as dodecyl-naphthalenesulfonic acid, at least one amino and transition metal complex of toluenepropionic acid, 2-mercapto-benzothiazolyl-succinic acid or at least one of its amino salts, at least one conductive polymer or/and at least one thiol, it being possible for the content of organic corrosion inhibitors in the aqueous composition preferably to be in the range from 0.01 to 5 wt. %, particularly preferably in the range from 0.02 to 3 wt. %, very particularly preferably in the range from 0.05 to 1.5 wt. %.
- The at least one organic corrosion inhibitor is preferably not readily volatile at room temperature. It may furthermore be advantageous if it is readily soluble in water or/and readily dispersible in water, in particular to the extent of more than 20 g/l. Compounds which are particularly preferred are, inter alia, alkylaminoethanols, such as dimethylaminoethanol, and complexes based on a TPA-amine, such as N-ethylmorpholine complex with 4-methyl-γ-oxo-benzenebutanoic acid. This corrosion inhibitor can be added in order to effect or to intensify still further a relatively powerful corrosion inhibition. The addition of the at least one organic corrosion inhibitor is usually necessary only for metallic surfaces which are very difficult to protect, such as bright steel surfaces, because of the very high corrosion-inhibiting action of the compositions according to the invention. It is advantageous if non-galvanized steel surfaces, in particular cold-rolled steel (CRS), are to be coated.
- The ratio of the contents of organic film-forming agent to contents of at least one organic corrosion inhibitor in the aqueous composition (bath composition) can vary within wide ranges; in particular it can be ≦500:1. This ratio is preferably in a range from 5:1 to 400:1, particularly preferably in a range from 10:1 to 100:1.
- The aqueous composition preferably contains 0.1 to 80 g/l of the at least one anticorrosion pigment e4). These include, in particular, various silicates, based on aluminium silicates, alumo-silicates, alumo-alkaline earth metal silicates and alkaline earth metal silicates. The anticorrosion pigments preferably have an average particle diameter, measured on a scanning electron microscope, in the range from 0.01 to 0.5 μm diameter, in particular in the range from 0.02 to 0.3 μm. The various types of anticorrosion pigments are known in principle. However, an addition of at least one of these pigments does not seem to be necessary in principle, but renders alternative embodiment variants possible.
- The agents for neutralization and/or steric stabilization of the acid groups of the synthetic resins with an acid number in particular in the range from 5 to 50 e5) can be, inter alia, slowly volatilizing alkanolamines and hydroxides, such as sodium hydroxide solution and potassium hydroxide solution, but preferably rapidly volatilizing alkanolamines, ammonia and compounds based on morpholine and alkanolamines. They have the effect that the neutralized synthetic resins become water-miscible or, at an acid number from about 150, are also water-soluble.
- At least one organic solvent e6) can optionally also be added in the process according to the invention. At least one water-miscible or/and water-soluble alcohol, one glycol ether or N-methylpyrrolidone or/and water can be used as the organic solvent for the organic polymers, and in the case of the use of a solvent mixture, in particular a mixture of at least one long-chain alcohol, such as e.g. propylene glycol, one ester-alcohol, one glycol ether or/and butanediol with water. Preferably, however, in many cases only water is added, without any organic solvent. If an organic solvent is used, the content thereof is preferably 0.1 to 10 wt. %, in particular 0.25 to 5 wt. %, very particularly preferably 0.4 to 3 wt. %. For strip production it is preferable rather to employ only water and almost no or no organic solvent, possibly apart from small amounts of alcohol.
- It is furthermore advantageous to add at least one wetting agent e7) in order to be able to apply the wet film uniformly in the area extent and in the layer thickness as well as densely and without defects. Many wetting agents are suitable in principle for this, preferably acrylates, silanes, polysiloxanes, long-chain alcohols, which reduce the surface tension of the aqueous composition.
- The coatings according to the invention can be largely or completely free not only from chromium(VI) compounds but also from chromium(III) compounds without thereby losing quality. Although it is not normally intended in the context of the invention to add environmentally hazardous chromium compounds e8), such as, in particular, those of Cr6+, in rare cases of use this can nevertheless be provided at the request of the customer. The aqueous composition, which is preferably free or largely free from chromium(VI) compounds, has only a chromium content of up to 0.05 wt. % on chromium-free metallic surfaces and a chromium content of up to 0.2 wt. % on chromium-containing metallic surfaces; chromium contents occurring in the bath can be dissolved out of the metallic surface by pickling attack, can originate in traces from impurity contents or can arrive carried in from previous baths or from tanks and pipelines.
- Preferably, no chromium is consciously added to the aqueous composition.
- However, the process according to the invention can also advantageously be employed with a content of at least one chromium-containing compound if the corrosion protection is to be retained in a wide range and with a high reliability, in particular on damage to the protective layer which can be caused by mechanical stresses during transportation, storage and assembly of the substrates treated on the substrate surface with the treatment liquid according to the invention. Sodium bichromate, potassium bichromate or/and ammonium bichromate, for example, can then be added. The content of chromium(VI) compounds is then preferably 0.01 to 100 g/l, particularly preferably 0.1 to 30 g/l.
- Preferably, the aqueous composition can also contain at least one basic crosslinking agent based on titanium, hafnium or/and zirconium as the cation or/and based on carbonate or ammonium carbonate as the anion, the content of such crosslinking agents in the aqueous composition preferably being in the range from 0.01 to 3 wt. %, particularly preferably in the range from 0.02 to 1.8 wt. %, very particularly preferably in the range from 0.05 to 1 wt. %.
- Preferably, the aqueous composition contains at least one additive, in particular at least one chosen from the group consisting of at least one biocide, at least one defoamer or/and at least one wetting agent.
- Preferably, no acids, in particular no inorganic acids or/and organic carboxylic acids, are added to the aqueous composition—under certain circumstances with the exception of the traces of acids contained hidden in the raw materials. In particular, it is free or largely free from inorganic acids or/and organic carboxylic acids, above all free from inorganic acids.
- The aqueous composition according to the invention is preferably free from additions of free fluoride, complex fluoride, such as e.g. hexafluorotitanic acid or hexafluorozirconic acid, or/and fluoride bonded in other ways.
- Preferably, the aqueous composition is free or largely free from heavy metals. In particular, contents of cadmium, nickel, cobalt or/and copper should be kept extremely low and should not be added. However, for the compositions according to the invention the pickling attack is usually so low that no steel-refining agents, such as e.g. chromium or nickel, can be dissolved out of a steel surface.
- Particularly advantageous compositions according to the invention substantially contain, inter alia, at least one copolymer, e.g. based on acrylic-polyester-polyurethane, styrene, styrene-acrylate or/and ethylene-acrylate, as a film-forming agent, at least one silane, at least one chelate, at least one film-forming auxiliary based on a long-chain alcohol, at least one inorganic compound in particle form, in particular based on aluminium oxide, aluminium phosphide, iron oxide, iron phosphide, mica, lanthanide oxide(s), e.g. based on cerium oxide, molybdenum sulfide, graphite, carbon black, silicate, silicon dioxide, colloidal silicon dioxide, zinc oxide or/and zirconium oxide, optionally at least one lubricant, such as wax, optionally at least one wetting agent, such as polysiloxanes, optionally at least one organic corrosion inhibitor and optionally further additives, such as, inter alia, a defoamer.
- The metallic surface is preferably in a freshly produced, clean or in a cleaned state. The term “clean metallic surface” here means a non-cleaned metallic, e.g. freshly galvanized, surface on which no cleaning is necessary, or a freshly cleaned surface.
- Preferably, the aqueous composition is applied directly to the metallic surface without applying a pretreatment composition beforehand. For some uses it may nevertheless be advantageous to apply at least one pretreatment layer, e.g. based on an alkali metal phosphating, a zinc-containing phosphating, a pretreatment containing rare earths, such as cerium, and/or at least one silane beforehand.
- To prepare the bath composition from a concentrate primarily by dilution with water or for a topping-up solution for adjusting the bath composition during relatively long operation of a bath, aqueous compositions which contain most or almost all of the constituents of the bath composition but as a rule not the at least one organic compound in particle form, which is preferably kept separately and added separately, are preferably used. Reaction and drying accelerators, such as e.g. the morpholine salt of paratoluenesulfonic acid, can also advantageously be added separately. The concentrate and the topping-up solution preferably have a concentration which is concentrated five times to ten times, in respect of the individual constituents, as greatly as the bath composition. In some cases, however, the “concentrate” can also be used directly as the bath composition, optionally after a small dilution by e.g. 5 to 30%.
- In the process according to the invention, the aqueous composition can preferably be applied to the metallic surface at a temperature in the range from 5 to 50° C., particularly preferably in the range from 10 to 40° C., very particularly preferably in the range from 18 to 25° C., or at 30 to 95° C. In the process according to the invention, the metallic surface can preferably be kept at temperatures in the range from 5 to 60° C. during application of the coating, particularly preferably in the range from 10 to 55° C., very particularly preferably in the range from 18 to 25° C., or under certain circumstances also at 50 to 120° C. In the process according to the invention, the coated metallic surface can preferably be dried at a temperature in the range from 20 to 400° C. for the circulating air temperature, preferably in the range from 40 to 120° C., or in the range from 140 to 350° C., very particularly preferably at 60 to 100° C. or at 160 to 300° C. for the PMT (peak metal temperature)—depending on the chemical composition of the organic film-forming agent. The dwell time needed for drying is substantially inversely proportional to the drying temperature: e.g. for strip-like material 1 to 3 s at 100° C. or 1 to 20 s at 250° C., depending on the chemical composition of the synthetic resins or polymers, or 30 min at 20° C., while polyester resins with free hydroxyl groups in combination with melamine-formaldehyde resins cannot be dried at temperatures below 120° C. On the other hand, coated shaped components, inter alia depending on the wall thickness, must be dried for significantly longer. Drying equipment based on circulating air, induction, infra-red or/and microwaves are particularly suitable for the drying. In the process according to the invention, the coated strips can preferably be wound up to a coil, optionally after cooling to a temperature in the range from 40 to 70° C.
- In the process according to the invention, the aqueous composition can preferably be applied by rolling on, flooding, knife-coating on, spraying, misting, brushing or dipping and optionally by subsequent squeezing off with a roller.
- The layer thickness of the coating according to the invention is preferably in the range from 0.1 to 6 μm, particularly preferably in the range from 0.2 to 5 μm, very particularly preferably in the range from 0.25 to 4 μm, in particular in the range from 0.3 to 2.5 μm.
- The coating properties of pendulum hardness and flexibility are usually only of importance for coatings rich in organic polymer/copolymer. The T-bend test is predominantly of importance if the coating according to the invention is also provided afterwards with at least one lacquer or with at least one lacquer-like coating.
- The dried and optionally also cured film preferably has a pendulum hardness of 30 to 190 s, preferably 50 to 180 s, measured with a König pendulum hardness tester in accordance with DIN 53157. However, in some cases the König pendulum hardness is preferably in the range from 60 to 150 s, particularly preferably in the range from 80 to 120 s. Values of the pendulum hardness in the range from 100 to 150 s often occur in UV-crosslinkable coatings, while values of the pendulum hardness in the range from 40 to 80 s may occur in the coatings which are not UV-crosslinkable or are based e.g. on polymer dispersions which do not or scarcely crosslink chemically. The layers produced according to the invention are to be tested only on test specimens with chemically the same but sufficiently thick layers, but not on thin coatings in the range up to 10 μm thickness.
- The dried and optionally also cured film preferably has a flexibility such that on bending over a conical mandrel in a mandrel flex test substantially according to DIN ISO 6860 for a mandrel of 3.2 mm to 38 mm diameter—but without tearing the test area—no cracks longer than 2 mm are formed that are detectable during subsequent wetting with copper sulfate by a change in colour as a result of deposition of copper on the cracked-open metallic surface. The term “substantially” here means that thicker films are conventionally characterized, and for this reason a copper sulfate test also follows here, which can reveal the defects which otherwise under certain circumstances are not visible. Demonstration of the flexibility by using the mandrel flex test and subsequent dipping of the regions shaped in this manner in a copper sulfate solution to detect defects provides a reproducible test result and has the advantage that no expensive corrosion tests, e.g. lasting 240 h, which in some cases, depending on the chemical composition and roughness of the metallic surface, can lead to different results which therefore can be compared with one another to only a limited extent, are necessary for this. In the case of baser metallic surfaces, such as aluminium alloys, for this test it is necessary first to clean the metallic surface once by pickling before the coating, in order substantially to remove the oxide layer.
- The area proportions of the detached area in the T-bend test on shaped components (metal sheets) coated according to the invention and then with coil coating lacquer are preferably only up to 8%, particularly preferably up to 5%, very particularly preferably up to 2%, but the best values are at approximately 0%, so that then usually only cracks occur. A coil coating lacquer based on silicone polyester can preferably be employed for this, in particular for comparative tests in tests typical for coated coils. The absence of cracking or the size of the cracks here, however, also depends largely on the nature of the lacquer employed.
- In the process according to the invention, in each case at least one coating of printing ink, foil, lacquer, lacquer-like material, powder coating, adhesive or/and adhesive carrier can preferably be applied to the dried and optionally also cured film.
- In each case at least one coating of lacquer, polymer, paint, functional coatings of plastic, adhesive or/and adhesive carrier, such as e.g. a self-adhesive film, can be applied to the partly or completely dried or cured film, in particular a wet lacquer, a powder coating, a coating of plastic, an adhesive, inter alia for foil coating. The metal components coated according to the invention with the aqueous composition, in particular strips or strip sections, can be shaped, lacquered, coated with polymers, such as e.g. PVC, printed, glued, hot-soldered, welded or/and joined to one another or to other elements by clinching or other joining techniques. These processes are known in principle for coating of metallic strip for architectural uses. As a rule, lacquering or coating of another type is first carried out, and then shaping. If the coating according to the invention is lacquered or coated with plastic, solder or weld connections usually cannot be established without the coatings being removed at least locally, unless, for electrical welding, a high content of conductive particles or/and conductive polymer is incorporated into the film according to the invention and the subsequent coating is exceptionally thin.
- The substrates coated according to the invention can preferably be used as wire, strip, sheet metal or a component for a wire coil, a braided wire, a steel strip, a metal sheet, a lining, a screen, a vehicle body or a component of a vehicle body, a component of a vehicle, trailer, mobile home or missile, a cover, a housing, a lamp, a light, a traffic light element, a piece of furniture or furniture element, an element of a domestic appliance, a frame, a profile, a shaped component of complicated geometry, a crash barrier, heater or fence element, a bumper, a component of or with at least one tube or/and a profile, a window, door or bicycle frame or an item of hardware, such as a screw, nut, flange, spring, or a spectacle frame.
- The process according to the invention is an alternative to on the one hand the chromate-rich acid-free and on the other hand acid-containing processes mentioned, in particular in the field of surface pretreatment of metal strip before lacquering, and compared with these gives comparably good results in respect of corrosion protection and lacquer adhesion.
- It is moreover possible to employ the process according to the invention for treatment of metal surfaces cleaned in the conventional manner but without subsequent after-treatment, such as rinsing with water or a suitable after-rinsing solution. The process according to the invention is particularly suitable for application of the treatment solution by means of squeeze-off rollers or by means of a so-called roll coater, it being possible for the treatment solution to be dried directly after the application without further intermediate process steps (Dry in Place technology). By this means, the process is simplified considerably e.g. compared with conventional spraying or dipping processes, in particular those with subsequent rinsing operations, such as e.g. a chromating or zinc phosphating, and only very small amounts of rinsing water for cleaning the unit after the end of work are produced, since no rinsing process after the application is necessary, which also represents an advantage compared with the already established chromium-free processes which operate by the spraying process with after-rinsing solutions. These rinsing waters can be added again to a new batch of the bath composition.
- It is easily possible here to employ the polymeric, optionally chromate-free coating according to the invention without prior application of an additional pretreatment layer, so that an outstanding permanent protection of the metallic surfaces, and in particular on AlSi, ZnAl, such as Galfan®, AlZn, such as Galvalume®, ZnFe, ZnNi, such as Galvanneal® and other Zn alloys as metallic coatings or Al and Zn coatings, is possible, which can be achieved by application of a polymer-containing coating. Moreover, the coating according to the invention has also proved particularly suitable for metallic surfaces which are highly susceptible to corrosion, such as those of iron and steel alloys, in particular on cold-rolled steel, it then being advantageous to add at least one corrosion inhibitor to the aqueous composition. Flash rust formation during drying of the treatment liquid on cold-rolled steel (CRS) can be suppressed by this means.
- A less expensive and more environment-friendly corrosion protection which also does not require an expensive UV curing but can be cured adequately solely with drying and film formation and optionally additionally with the “usual chemical” curing, which is often called “thermal crosslinking”, can thus be achieved. In some cases, however, it may be of interest to obtain a harder coating quickly in a particular process step. It can then be advantageous if at least one photoinitiator is added and at least one UV-curable polymer component is chosen in order to achieve a partial crosslinking on the basis of actinic radiation, in particular UV radiation. The coating according to the invention can then be cured partly by actinic radiation and partly by drying and film formation or by thermal crosslinking. This can be of importance in particular during application to fast-running belt lines or for the first crosslinking (=curing). The content of so-called UV crosslinking here can be 0 to 50% of the total possible curing, preferably 10 to 40%.
- The polymeric and largely or completely chromate-free coating according to the invention furthermore has the advantage that—especially at a layer thickness in the range from 0.5 to 3 μm—it is transparent and light-coloured, so that the metallic character and the typical structure e.g. of a galvanized or a Galvalume® surface can still be seen accurately and unchanged or virtually unchanged through the coating. Furthermore, such thin coatings can also be welded without problems.
- The polymeric coating according to the invention moreover is very readily shapable, so that it can be adjusted such that after the coating, drying and optionally curing and optionally also in the long term it is in a relatively plastic and not in a hard, brittle state.
- The polymer-containing coating according to the invention can be readily over-lacquered with most lacquers or plastics. The polymer-containing coating according to the invention can be after-lacquered or coated with plastic, such as PVC, by application processes such as e.g. powder coating, wet lacquering, flooding, rolling, brushing or dipping. The cured coatings produced by this means which are applied to the polymer-containing coating according to the invention, it often also being possible to apply two or three layers of lacquer or plastic, usually have a total layer thickness in the range from 5 to 1,500 μm.
- The polymeric coating according to the invention can also be foamed on the reverse without problems, e.g. with polyurethane insulating foam, for the production of 2-sheet sandwich elements, or can readily be glued with the conventional construction adhesives such as are employed e.g. in vehicle construction.
- The coatings according to the invention can be employed above all as primer layers. They are outstandingly suitable without, but also with, at least one previously applied pretreatment layer. This pretreatment layer can then be, inter alia, a coating based on phosphate, in particular ZnMnNi phosphate, or based on phosphonate, silane or/and a mixture based on a fluoride complex, corrosion inhibitor, phosphate, polymer or/and finely divided particles.
- Pretreatment layers or primer layers which, together with the subsequently applied lacquer, resulted in a coating system equivalent to the best chromium-containing coating systems are achieved with the coatings according to the invention.
- The process according to the invention furthermore has the advantage over the processes described and/or practised to date that on an aluminium-rich substrate or on a substrate coated with an aluminium-containing alloy—in particular a substrate of steel—it caused no darkening of the substrate surface and also no milky-white matting of the substrate surface and can therefore be employed for decoration of buildings or/and building components without additional colouring lacquering. The aesthetics of the metal surface remain unchanged.
- The coatings according to the invention are exceptionally inexpensive, environment-friendly and readily usable on a large industrial scale.
- It was surprising that in spite of a layer thickness of only approx. 0.5 to 2 μm, it was possible to produce an exceptionally high-quality chromium-free film with a synthetic resin coating according to the invention.
- It was very surprising that by the addition of metal chelate to the aqueous composition it was possible to achieve a significant increase in the corrosion protection and also lacquer adhesion of the film formed therefrom—both in the case of aqueous compositions that contain predominantly chelate and silane and in the case of those that contain predominantly synthetic resin and in addition chelate and silane.
- The adhesion-promoting action of the silanes and of their reaction products, in particular between the metallic substrate and lacquer and optionally between pigment and organic lacquer constituents, should also prevail in the compositions such as are described here in the embodiment examples, or even occur by itself, as long as polymers and chelate are not simultaneously present. It had not been expected that at high contents of high-molecular-weight polymers and copolymers, without the presence of low-molecular-weight organic contents, a significant improvement in the film properties would be achieved by the addition of chelate. The high-molecular-weight polymers and copolymers are possibly crosslinked by the presence of chelate, which is particularly advantageous in particular for those film-forming systems which have no contents of curing agent and photoinitiator. Exposure to relatively high temperatures, such as are otherwise used for thermal crosslinking, and free-radical irradiation, which are an additional expensive process step, can be avoided by this means.
- The examples described below are intended to explain the subject matter of the invention in more detail.
- A) Compositions Substantially Based on Chelate and Silane:
- For preparation of aqueous concentrates, at least one partly hydrolysed silane was aged for at least two weeks and optionally also thereby hydrolysed. Thereafter, a metal chelate according to table 1 was added. The concentrates were then diluted with water, and an agent which adapts the pH, such as ammonia, was optionally added in order to obtain ready-to-use treatment liquids. In each case 3 metal sheets of hot-galvanized steel or of Galvalume® steel sheet were then brought into contact by rolling on and drying on the corresponding treatment liquid at 25° C. The metal sheets treated in this way were dried here at 90° C. PMT and then tested for their corrosion protection.
- Examples E 1 to E 8, including comparison example CE 4, show the influence of the addition of chelate or of chelate and polymer mixture. In examples E 9 to E 12 and E 13 to E 17, the amounts of silane and chelate were increased and at the same time the addition of inorganic particles was reduced, these two series differing by different amounts of polymer mixture added. Finally, the layer thicknesses were varied in examples E 9 and E 18 to E 20.
TABLE 1 Compositions based on chelate and silane and in some cases also inorganic particles, data in wt. % for concentrates and g/l for the treatment baths Examples/comparison example E 1 E 2 E 3 CE 4 E 5 E 6 E 7 E 8 E 9 E 10 Concentrates Organofunct. silane A 15 15 15 30 — 15 15 3.3 1.7 5.1 Organofunct. silane B — — — — 15 — — — — — Titanium chelate D 17.5 17.5 17.5 — — — — 3.9 2 5.9 Zirconium chelate E — — — — 17.5 — — — — — Zirconium chelate F — — — — — 17.5 — — — — Titanium chelate G — — — — — — 17.5 — — — SiO2 particles <0.2 μm — — — — — — — 11 13 9 Ethanol/methanol not added, may be formed Ammonia small amounts added to adjust the pH to 8.3 Polymer mixture — — — — — — — 7 7 7 Water 67.5 67.5 67.5 70.0 67.5 67.5 67.5 74.8 76.3 73 Total 100 100 100 100 100 100 100 100 100 100 Batches for the treatment baths Concentrate 10 20 30 20 20 20 20 53 53 53 Water 90 80 70 80 80 80 80 47 47 47 Treatment baths Water 968 936 904 936 936 936 936 866.6 874.5 857.0 Organometal comp. 17 34 51 — 34 34 34 20.7 10.6 31.3 Silane 15 30 45 64 30 30 30 17.5 9.0 27.0 Acrylic-polyester- — — — — — — — 15 15 15 polyurethane copolymer Styrene-acrylate copolymer — — — — — — — 16.7 16.7 16.7 Colloidal SiO2 — — — — — — — 58.3 68.9 47.7 Polysiloxane — — — — — — — 1 1 1 Defoamer — — — — — — — 1 1 1 Long-chain alcohol — — — — — — — 3.3 3.3 3.3 pH 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 Film properties Layer weight, g/m2 0.2 0.4 0.6 0.2 0.4 0.4 0.4 0.8 0.8 0.8 Salt spray test 48 h 10 <2 0 30 <2 <2 <2 0 0 0 ASTM B117-73: 96 h 20 10 <2 60 10 10 10 0 0 0 Area of corrosion in 120 h 40 20 5 90 20 20 20 <2 0 <2 % after 240 h 60 40 10 100 40 40 40 10 0 10 360 h 100 60 30 100 60 60 60 20 <2 30 Examples/comparison example E 11 E 12 E 13 E 14 E 15 E 16 E 17 E 18 E 19 E 20 Concentrates Organofunct. silane A 7.5 11.6 2 1.2 3.3 5.1 7.8 1.7 1.7 1.7 Organofunct. silane B — — — — — — — — — — Titanium chelate D 8.8 13.7 3.1 1.3 3.9 5.9 9.1 2 2 2 Zirconium chelate E — — — — — — — — — — Zirconium chelate F — — — — — — — — — — Titanium chelate G — — — — — — — — — — SiO2 particles <0.2 μm 6 — 7 9 6 4 — 13 13 13 Ethanol/methanol not added, may be formed Ammonia small amounts added to adjust the pH to 8.3 Polymer mixture 7 7 4.5 4.5 4.5 4.5 4.5 7 7 7 Water 70.7 67.7 83.4 84 82.3 80.5 78.6 76.3 76.3 76.3 Total 100 100 100 100 100 100 100 100 100 100 Batches for the treatment baths Concentrate 53 53 53 53 53 53 53 40 27 13 Water 47 47 47 47 47 47 47 60 73 87 Treatment baths Water 844.8 828.9 912.2 915.3 906.3 896.8 886.7 905.1 936.1 969.3 Organometal comp. 46.6 72.6 16.4 6.9 20.7 31.3 48.2 8.0 5.4 2.6 Silane 39.8 61.5 10.6 6.4 17.5 27.0 41.3 6.8 4.6 2.2 Acrylic-polyester- 15 15 9.7 9.7 9.7 9.7 9.7 11.4 7.7 3.7 polyurethane copolymer Styrene-acrylate copolymer 16.7 16.7 10.7 10.7 10.7 10.7 10.7 12.6 8.4 4.1 Colloidal SiO2 31.8 — 37.1 47.7 31.8 21.2 — 52 35.1 16.9 Polysiloxane 1 1 0.6 0.6 0.6 0.6 0.6 0.8 0.5 0.2 Defoamer 1 1 0.6 0.6 0.6 0.6 0.6 0.8 0.5 0.2 Long-chain alcohol 3.3 3.3 2.1 2.1 2.1 2.1 2.1 2.5 1.7 0.8 pH 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 Film properties Layer weight, g/m2 0.8 0.8 0.5 0.5 0.5 0.5 0.5 0.6 0.4 0.2 Salt spray test 48 h 20 30 0 0 0 30 40 0 0 0 ASTM B117-73: 96 h 30 40 0 0 0 40 60 0 0 <2 Area of corrosion in 120 h 50 60 0 0 0 50 80 0 <2 5 % after 240 h 70 80 10 <2 10 70 100 <2 5 10 360 h 100 100 20 5 30 100 100 5 10 30 - The film formed here was transparent, uniform and closed. The films formed showed no coloration and showed no darkening of the underlying metallic surface. This is particularly advantageous in order to be able to see structure, gloss and colour of the metallic surface practically unchanged through the coating. The combination of chelate and silane already resulted in a very clear improvement in the corrosion protection at very low layer thicknesses compared with a composition which is free from organometallic compounds. Further examples moreover showed that in particular a higher addition of inorganic particles, in this case based on SiO2 having an average particle size in the range from 10 to 20 nm, made a further additional contribution to the improvement in corrosion resistance. It was surprising here that beyond small additions of such particles, an increase in the content of inorganic particles also rendered possible a clear increase in corrosion protection. Astonishingly, in spite of the sometimes high content of inorganic particles, a closed and nevertheless flexible film which was resistant to mechanical influences was possible after the coating had formed a film. The layer weight approximately divided by 1.1 gives the layer thickness in μm. The area proportions of the corrosion were estimated visually. Due to the comparatively low contents of synthetic resin(s), this thin film has rather the properties of a passivation instead of a thin organic coating, which can be shaped. The film of example 9 about 0.75 μm thin is indeed thicker than a typical chromate-rich inorganic passivation, but shows at least the same good corrosion resistance and furthermore, in contrast to the chromate-rich layer, can readily be shaped.
Claims (42)
1-43. (canceled)
44. A process for coating a metallic surface with an aqueous composition, which can be largely or completely free from chromium (VI) compounds, for pretreatment before a further coating or for treatment, comprising contacting the clean, pickled, cleaned or/and pretreated metallic surface with the aqueous composition and forming a film on the metallic surface; and
drying and optionally curing the film;
wherein the dried and optionally also cured film has a layer thickness in the range from 0.01 to 10 μm
wherein the aqueous composition comprises water and
a) at least one hydrolyzable or/and at least partly hydrolyzed silane;
b) at least one metal chelate;
c) at least one organic film-forming agent which contains at least one water-soluble or water-dispersed organic polymer or/and copolymer with an acid number in the range from 3 to 250, wherein the content of organic film-forming agent, based on the solids content, is from 10 to 45 wt. %; and
d) optionally at least one long-chain alcohol as a film-forming auxiliary.
45. The process according to claim 44 , wherein the aqueous composition further comprises at least one component e) selected from the group consisting of e1) at least one inorganic compound in particle form with an average particle diameter, measured on a scanning electron microscope, in the range from 0.005 to 0.3 μm diameter,
e2) at least one lubricant,
e3) at least one organic corrosion inhibitor,
e4) at least one anticorrosion pigment,
e5) at least one agent for neutralization or/and for steric stabilization of the synthetic resins,
e6) at least one organic solvent,
e7) at least one siloxane and
e8) at least one chromium (VI) compound.
46. The process according claim 44 , wherein the organic film-forming agent is a synthetic resin mixture of at least one polymer or/and at least one copolymer which contains a content of synthetic resin based on acrylate, epoxide, ethylene, urea-formaldehyde, phenol, polyester, polyurethane, styrene, styrene-butadiene or/and vinyl.
47. The process claim 44 , wherein the organic film-forming agent also contains as a synthetic resin a content of organic polymer, copolymer or/and mixtures thereof based on polyethyleneimine, polyvinyl alcohol, polyvinylphenol, polyvinylpyrrolidone or/and polyaspartic acid, in particular copolymers with a phosphorus-containing vinyl compound.
48. The process claim 44 , wherein the organic film-forming agent contains a content of at least one copolymer with an acid number in the range from 3 to 80, in particular to the extent of at least 50 wt. % of the synthetic resins added.
49. The process claim 44 , wherein the organic film-forming agent contains at least one component based on
acrylic-polyester-polyurethane copolymer,
acrylic-polyester-polyurethane-styrene copolymer,
acrylic acid ester,
acrylic acid ester-methacrylic acid ester, optionally with free acids or/and acrylonitrile,
ethylene-acrylic mixture,
ethylene-acrylic copolymer,
ethylene-acrylic-polyester copolymer,
ethylene-acrylic-polyurethane copolymer,
ethylene-acrylic-polyester-polyurethane copolymer,
ethylene-acrylic-polyester-polyurethane-styrene copolymer,
ethylene-acrylic-styrene copolymer,
polyester resins with free carboxyl groups combined with melamine-formaldehyde resins,
a synthetic resin mixture or/and copolymer based on acrylate and styrene,
a synthetic resin mixture or/and copolymer based on styrene-butadiene,
a synthetic resin mixture or/and copolymer of acrylate and epoxide,
based on an acrylic-modified polyester containing carboxyl groups together with melamine-formaldehyde and ethylene-acrylic copolymer,
polycarbonate-polyurethane,
polyester-polyurethane,
styrene,
styrene-vinyl acetate,
vinyl acetate, vinyl ester or/and
vinyl ether.
50. The process claim 44 , wherein at least 30 wt. % of the organic film-forming agent added consists of film-formable thermoplastic resins.
51. The process claim 44 , wherein the molecular weights of the synthetic resins added are in the range of at least 1,000 u.
52. The process claim 44 , wherein the organic film-forming agents added comprise at least 40 wt. % of high molecular-weight polymers.
53. The process claim 44 , wherein the acid groups of the synthetic resins are stabilized with ammonia, with amines, such as morpholine, dimethylethanolamine, diethylethanolamine or triethanolamine, or/and with alkali metal compounds, such as e.g. sodium hydroxide.
54. The process claim 44 , wherein the aqueous composition contains 0.1 to 980 g/l of the organic film-forming agent.
55. The process claim 44 , wherein the aqueous composition contains in each case at least one acyloxysilane, one alkoxysilane, one silane with at least one amino group, such as an aminoalkylsilane, one silane with at least one succinic acid group or/and succinic acid anhydride group, one bis-silyl-silane, one silane with at least one epoxide group, such as a glycidoxysilane, one (meth)acrylato-silane, one multi-silyl-silane, one ureidosilane, one vinylsilane or/and at least one silanol or/and at least one siloxane of a composition which corresponds chemically to that of the abovementioned silanes.
56. The process claim 44 , wherein the composition contains at least one silane selected from the group consisting of
glycidoxyalkyltrialkoxysilane,
methacryloxyalkyltrialkoxysilane,
(trialkoxysilyl)alkyl-succinic acid-silane,
aminoalkylaminoalkylalkyldialkoxysilane,
(epoxycycloalkyl)alkyltrialkoxysilane,
bis-(trialkoxysilylalkyl)amine,
bis-(trialkoxysilyl)ethane,
(epoxyalkyl)trialkoxysilane,
aminoalkyltrialkoxysilane,
ureidoalkyltrialkoxysilane,
N-(trialkoxysilylalkyl)alkylenediamine,
N-(aminoalkyl)aminoalkyltrialkoxysilane,
N-(trialkoxysilylalkyl)dialkylenetriamine,
poly(aminoalkyl)alkyldialkoxysilane,
tris(trialkoxysilyl)alkyl isocyanurate,
ureidoalkyltrialkoxysilane and
acetoxysilane.
57. The process claim 44 , wherein the composition contains at least one silane selected from the group consisting of
3-glycidoxypropyltriethoxysilane,
3-glycidoxypropyltrimethoxysilane,
3-methacryloxypropyltriethoxysilane,
3-methacryloxypropyltrimethoxysilane,
3-(triethoxysilyl)propyl-succinic acid-silane,
aminoethylaminopropylmethyldiethoxysilane
aminoethylaminopropylmethyldimethoxysilane,
beta-(3,4-epoxycyclohexyl)ethyltriethoxysilane,
beta-(3,4-epoxycyclohexyl)ethyltrimethoxysilane,
beta-(3,4-epoxycyclohexyl)methyltriethoxysilane,
beta-(3,4-epoxycyclohexyl)methyltrimethoxysilane,
gamma-(3,4-epoxycyclohexyl)propyltriethoxysilane,
gamma-(3,4-epoxycyclohexyl)propyltrimethoxysilane,
bis(triethoxysilylpropyl)amine,
bis(trimethoxysilylpropyl)amine,
(3,4-epoxybutyl)triethoxysilane,
(3,4-epoxybutyl)trimethoxysilane,
gamma-aminopropyltriethoxysilane,
gamma-aminopropyltrimethoxysilane,
gamma-ureidopropyltrialkoxysilane,
N-(3-(trimethoxysilyl)propyl)ethylenediamine,
N-beta-(aminoethyl)-gamma-aminopropyltri-ethoxy-silane,
N-beta-(aminoethyl)-gamma-aminopropyltrimethoxysilane,
N-(gamma-triethoxysilylpropyl)diethylenetriamine,
N-(gamma-trimethoxysilylpropyl)diethylenetriamine,
N-(gamma-triethoxysilylpropyl)dimethylene-triamine,
N-(gamma-trimethoxysilylpropyl)dimethylene-triamine,
poly(amino alkyl)ethyldialkoxysilane,
poly(aminoalkyl)methyldialkoxysilane,
tris(3-(triethoxysilyl)propyl) isocyanurate
tris(3-(trimethoxysilyl)propyl) isocyanurate and
vinyltriacetoxysilane.
58. The process claim 44 , wherein the content of the at least one silane in the aqueous composition, including the reaction products formed therefrom, is preferably 0.1 to 50 g/l.
59. The process claim 44 , wherein the at least one metal chelate is selected from chelate complexes based on acetylacetonates, acetoacetates, acetonates, alkylenediamines, amines, lactates, carboxylic acids, citrates or/and glycols, the content of the at least one chelate in the aqueous composition, including the reaction products possibly formed therefrom, preferably being 0.1 to 80 g/l.
60. The process claim 44 , wherein the at least one metal chelate is selected on the basis of
acetylacetonate,
alkali metal lactate,
alkanolamine,
alkyl acetoacetate,
alkylenediamine tetraacetate,
ammonium lactate,
citrate,
dialkyl citrate,
dialkyl ester-citrate,
dialkylenetriamine,
diisoalkoxybisalkyl acetoacetate,
diisopropoxybisalkyl acetoacetate,
di-n-alkoxy-bisalkyl acetoacetate,
hydroxyalkylenediamine triacetate,
trialkanolamine or/and
trialkylenetetramine.
61. The process claim 44 , wherein a finely divided powder, a dispersion or a suspension, such as e.g. a carbonate, oxide, silicate or sulfate, in particular colloidal or/and amorphous particles, is added as inorganic compound in particle form.
62. The process claim 44 , wherein particles based on at least one compound of aluminium, barium, cerium, calcium, lanthanum, silicon, titanium, yttrium, zinc or/and zirconium are added as the inorganic compound in particle form.
63. The process claim 44 , wherein particles based on aluminium oxide, barium sulfate, cerium dioxide, silicon dioxide, silicate, titanium oxide, yttrium oxide, zinc oxide or/and zirconium oxide are added as the inorganic compound in particle form.
64. The process claim 44 , wherein the aqueous composition contains 0.1 to 500 g/l of the at least one inorganic compound in particle form.
65. The process claim 44 , wherein the aqueous composition contains at least one organic corrosion inhibitor, in particular based on amine(s), preferably at least one alkanolamine—preferably a long-chain alkanolamine, at least one TPA-amine complex, such as acid adduct-4-oxo-4-p-tolyl butyrate-4-ethylmorpholine, at least one alkylaminoethanol, at least one zinc salt of aminocarboxylate, of 5-nitro-isophthalic acid or of cyanic acid, at least one polymeric amino salt with fatty acid, at least one metal salt of a sulfonic acid, such as dodecylnaphthalenesulfonic acid, at least one amino and transition metal complex of toluenepropionic acid, 2-mercapto-benzothiazolyl-succinic acid or at least one of its ammonium salts, at least one conductive polymer or/and at least one thiol, the content of organic corrosion inhibitors in the aqueous composition preferably being in the range from 0.01 to 5 wt. %.
66. The process claim 44 , wherein the aqueous composition contains at least one basic crosslinking agent based on titanium, hafnium or/and zirconium as the cation or/and based on carbonate or ammonium carbonate as the anion, the content of such crosslinking agents in the aqueous composition preferably being in the range from 0.01 to 3 wt. %.
67. The process claim 44 , wherein no inorganic acids or/and organic carboxylic acids are added to the aqueous composition.
68. The process claim 44 , wherein at least one long-chain alcohol selected from the group consisting of diols, such as block copolymers of ethylene oxide and propylene oxide, butanediols, propanediols or/and decanediols, butyl glycols, butyl diglycols, esteralcohols, ethylene glycols, ethylene glycol ethers, glycol ethers, such as di- and triethylene glycols with their mono- and diethers and dimethyl ethers, polyethers, polyethylene glycols, polyethylene glycol ethers, polyglycols, polypropylene glycols, propylene glycols, propylene glycol ethers, polypropylene glycol ethers, glycol ethers, trimethylpentanediol diisobutyrates and derivatives thereof, is used as the film-forming auxiliary, the content of long-chain alcohols in the aqueous composition preferably being in the range from 0.01 to 10 wt. %.
69. The process claim 44 , wherein at least one wax selected from the group consisting of paraffins, polyethylenes and polypropylenes, in particular an oxidized wax, is used as the lubricant, the content of waxes in the aqueous composition preferably being in the range from 0.01 to 5 wt. %.
70. The process claim 44 , wherein at least one wax together with a polymer mixture or/and copolymer comprising ethylene and acrylic acid is employed as the lubricant.
71. The process claim 44 , wherein the coating is cured partly by drying and film formation and partly by actinic radiation, cationic polymerization or/and thermal crosslinking.
72. The process claim 44 , wherein the aqueous composition contains at least one additive, in particular at least one selected from the group consisting of at least one biocide, at least one defoamer or/and at least one wetting agent.
73. The process claim 44 , wherein the aqueous composition is applied to the metallic surface at a temperature in the range from 5 to 50° C.
74. The process claim 44 , wherein the metallic surface is kept at temperatures in the range from 5 to 60° C. during application of the coating.
75. The process claim 44 , wherein the coated metallic surface is dried at a temperature in the range from 20 to 400° C. for the circulating air temperature.
76. The process claim 44 , wherein the coated strips are wound up to a coil, optionally after cooling to a temperature in the range from 40 to 70° C.
77. The process claim 44 , wherein the aqueous composition is applied by rolling on, flooding, knife-coating on, spraying, misting, brushing or dipping and optionally by subsequent squeezing off with a roller.
78. The process claim 44 , wherein the dried and optionally also cured film has a pendulum hardness of 30 to 190 s, measured with a König pendulum hardness tester in accordance with DIN 53157.
79. The process claim 44 , wherein the dried and optionally also cured film has a flexibility such that on bending over a conical mandrel in a mandrel flex test substantially in accordance with DIN ISO 6860 for a mandrel of 3.2 mm to 38 mm diameter—but without tearing the test area—no cracks longer than 2 mm that are detectable on subsequent wetting with copper sulfate by a change in color due to deposition of copper on the torn-open metallic surface are formed.
80. The process claim 44 , wherein in each case at least one coating of printing ink, foil, lacquer, lacquer-like material, powder coating, adhesive or/and adhesive carrier is applied to the dried and optionally also cured film.
81. The process claim 44 , wherein the coated metal components, strips or strip sections are shaped, lacquered, coated with polymers, such as e.g. PVC, printed, glued, hot-soldered, welded or/and joined to one another or to other elements by clinching or other joining techniques.
82. An aqueous composition for pretreatment of a metallic surface before a further coating or for treatment of that surface, wherein the composition comprises water and
a) at least one hydrolysable or/and at least partly hydrolyzed silane,
b) at least one metal chelate,
c) at least one organic film-forming agent which contains at least one water-soluble or waterdispersed organic polymer or/and copolymer with an acid number in the range from 3 to 250, the content of organic film-forming agent, based on the solids content, being 10 to 45 wt. %, and
d) optionally at least one long-chain alcohol as a film-forming auxiliary,
wherein the amounts ratio of a) to b), in each case including the reaction products formed therefrom, is preferably in the range from 0.1:1 to 10:1.
83. The aqueous composition according to claim 82 , wherein the composition also contains at least one inorganic compound in particle form.
84. A substrate coated by the process according to claim 44 , wherein the substrate is a wire, strip, sheet metal or a component for a wire coil, a wire braid, a steel strip, a metal sheet, a lining, a screen, a vehicle body or a component of a vehicle body, a component of a vehicle, trailer, mobile home or missile, a cover, a housing, a lamp, a light, a traffic light element, a piece of furniture or furniture element, an element of a domestic appliance, a frame, a profile, a shaped component of complicated geometry, a crash barrier, heater or fence element, a bumper, a component of or with at least one tube or/and a profile, a window, door or bicycle frame or an item of hardware, such as a screw, nut, flange, spring, or a spectacle frame.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/857,722 US20110039115A1 (en) | 2003-02-25 | 2010-08-17 | Process for coating metallic surfaces with a silane-rich composition |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10308237.9 | 2003-02-25 | ||
DE10308237.9A DE10308237B4 (en) | 2003-02-25 | 2003-02-25 | Process for coating metallic surfaces, associated composition and their use |
DE10332744.4 | 2003-07-17 | ||
DE10332744.4A DE10332744B4 (en) | 2003-07-17 | 2003-07-17 | Process for coating metallic surfaces, use of the process-coated substrates and aqueous composition for treating a metallic surface |
PCT/EP2004/001828 WO2004076717A1 (en) | 2003-02-25 | 2004-02-25 | Method for coating metallic surfaces with a silane-rich composition |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/857,722 Continuation US20110039115A1 (en) | 2003-02-25 | 2010-08-17 | Process for coating metallic surfaces with a silane-rich composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060127681A1 true US20060127681A1 (en) | 2006-06-15 |
Family
ID=32928840
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/546,583 Abandoned US20060127681A1 (en) | 2003-02-25 | 2004-02-25 | Method for coating metallic surfaces with a silane-rich composition |
US10/546,624 Abandoned US20060193988A1 (en) | 2003-02-25 | 2004-02-25 | Method for coating metallic surfaces with a mixture containing at least two silanes |
US10/546,582 Expired - Fee Related US9175170B2 (en) | 2003-02-25 | 2004-02-25 | Method for coating metallic surfaces with a composition that is rich in polymers |
US12/857,722 Abandoned US20110039115A1 (en) | 2003-02-25 | 2010-08-17 | Process for coating metallic surfaces with a silane-rich composition |
US12/958,009 Expired - Fee Related US8932679B2 (en) | 2003-02-25 | 2010-12-01 | Method for coating metallic surfaces with a mixture containing at least two silanes |
US14/834,912 Abandoned US20150361274A1 (en) | 2003-02-25 | 2015-08-25 | Method for coating metallic surfaces with a composition that is rich in polymers |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/546,624 Abandoned US20060193988A1 (en) | 2003-02-25 | 2004-02-25 | Method for coating metallic surfaces with a mixture containing at least two silanes |
US10/546,582 Expired - Fee Related US9175170B2 (en) | 2003-02-25 | 2004-02-25 | Method for coating metallic surfaces with a composition that is rich in polymers |
US12/857,722 Abandoned US20110039115A1 (en) | 2003-02-25 | 2010-08-17 | Process for coating metallic surfaces with a silane-rich composition |
US12/958,009 Expired - Fee Related US8932679B2 (en) | 2003-02-25 | 2010-12-01 | Method for coating metallic surfaces with a mixture containing at least two silanes |
US14/834,912 Abandoned US20150361274A1 (en) | 2003-02-25 | 2015-08-25 | Method for coating metallic surfaces with a composition that is rich in polymers |
Country Status (11)
Country | Link |
---|---|
US (6) | US20060127681A1 (en) |
EP (3) | EP1599615B1 (en) |
JP (3) | JP4537377B2 (en) |
CN (1) | CN101705484A (en) |
AT (3) | ATE553163T1 (en) |
AU (2) | AU2004215240C1 (en) |
CA (2) | CA2517057C (en) |
ES (2) | ES2385982T3 (en) |
MX (2) | MXPA05009075A (en) |
RU (1) | RU2357003C2 (en) |
WO (3) | WO2004076717A1 (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050233134A1 (en) * | 2004-04-16 | 2005-10-20 | Nippon Steel & Sumikin Stainless Steel Corporation | Surface-treated metal, method for producing the same, exhaust component for two-wheeled vehicle or four-wheeled vehicle, and interior and exterior component for domestic appliance |
US20060228470A1 (en) * | 2005-04-07 | 2006-10-12 | General Electric Company | No-rinse pretreatment methods and compositions |
US20060233958A1 (en) * | 2005-03-23 | 2006-10-19 | Shin-Etsu Chemical Co., Ltd. | Non-chromate aqueous metal surface treating composition, surface-treated steel, painted steel, steel surface treatment method, and painted steel preparing method |
US20070048550A1 (en) * | 2005-08-26 | 2007-03-01 | Millero Edward R | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20070193978A1 (en) * | 2006-02-17 | 2007-08-23 | Samsung Electronics Co., Ltd. | Methods for forming banks and organic thin film transistors comprising such banks |
US20070298174A1 (en) * | 2004-11-10 | 2007-12-27 | Thoma Kolberg | Method For Coating Metallic Surfaces With An Aqueous Composition |
US20080050598A1 (en) * | 2005-01-21 | 2008-02-28 | Bateman Stuart A | Activation method using modifying agent |
EP1918418A1 (en) * | 2006-10-27 | 2008-05-07 | Corus UK Limited | Method of coating a substrate |
US20080138615A1 (en) * | 2005-04-04 | 2008-06-12 | Thomas Kolberg | Method for Coating Metallic Surfaces with an Aqueous Composition and Said Composition |
US20080171211A1 (en) * | 2004-08-03 | 2008-07-17 | Chemetall Gmbh | Method For Protecting A Metal Surface By Means Of A Corrosion-Inhibiting Coating |
US20090035577A1 (en) * | 2005-08-19 | 2009-02-05 | Nippon Paint Co. Ltd. | Surface-conditioning composition, method for production thereof, and surface conditioning method |
WO2009046270A1 (en) * | 2007-10-06 | 2009-04-09 | E. I. Du Pont De Nemours And Company | Electrodepositable composition |
US20100062200A1 (en) * | 2007-03-09 | 2010-03-11 | Heribert Domes | Method for coating metal surfaces using an aqueous compound having polymers, the aqueous compound, and use of the coated substrates |
US20100075172A1 (en) * | 2006-04-19 | 2010-03-25 | Ropal Ag | Process for producing a corrosion-protected and high-gloss substrate |
US20100139525A1 (en) * | 2004-11-10 | 2010-06-10 | Thomas Kolberg | Process for coating metallic surfaces with a multicomponent aqueous composition |
US20100178351A1 (en) * | 2009-01-09 | 2010-07-15 | Shin-Etsu Chemical Co., Ltd | Hydrophilized substrate, dispersion, and making method |
US20110129609A1 (en) * | 2004-02-11 | 2011-06-02 | Nof Metal Coatings Europe | Anticorrosion coating composition in aqueous dispersion comprising an organic titanate and/or zirconate |
US20110152926A1 (en) * | 2009-12-18 | 2011-06-23 | Robert Vetrecin | Needle coating formulation having lubricity and durability |
US20110160387A1 (en) * | 2008-09-25 | 2011-06-30 | E.I. Du Pont De Nemours And Company | Electrodepositable composition |
US8409661B2 (en) | 2004-11-10 | 2013-04-02 | Chemetall Gmbh | Process for producing a repair coating on a coated metallic surface |
US8557343B2 (en) | 2004-03-19 | 2013-10-15 | The Boeing Company | Activation method |
US20140017409A1 (en) * | 2011-03-30 | 2014-01-16 | Mahindra & Mahindra Limited | Corrosion resistance passivation formulation and process of preparation thereof |
CN104818472A (en) * | 2015-04-10 | 2015-08-05 | 蚌埠市时代电子有限公司 | Ferrous metal surface treatment agent |
CN104818477A (en) * | 2015-04-10 | 2015-08-05 | 蚌埠市时代电子有限公司 | Antibacterial anticorrosive metal surface treatment agent |
CN104818475A (en) * | 2015-04-10 | 2015-08-05 | 蚌埠市时代电子有限公司 | Lubricating metal surface treatment agent |
CN104818479A (en) * | 2015-04-10 | 2015-08-05 | 蚌埠市时代电子有限公司 | Copper and copper alloy dedicated metal surface treatment agent |
CN104818471A (en) * | 2015-04-10 | 2015-08-05 | 蚌埠市时代电子有限公司 | Sericin rare-earth metal surface treatment agent |
CN104818470A (en) * | 2015-04-10 | 2015-08-05 | 蚌埠市时代电子有限公司 | Organic amine corrosion inhibition metal surface treatment agent |
CN104831285A (en) * | 2015-04-10 | 2015-08-12 | 蚌埠市时代电子有限公司 | Multifunctional metal surface treatment agent |
US11066750B2 (en) * | 2007-08-27 | 2021-07-20 | Momentive Performance Materials Inc. | Metal corrosion inhibition |
US20220185556A1 (en) * | 2020-12-11 | 2022-06-16 | Sonoco Development Inc. | Sustainable barrer containers and methods |
Families Citing this family (169)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MXPA05000879A (en) | 2002-07-24 | 2005-10-19 | Univ Cincinnati | Superprimer. |
MXPA05009075A (en) * | 2003-02-25 | 2005-10-19 | Chemetall Gmbh | Method for coating metallic surfaces with a composition that is rich in polymers. |
JP3968595B2 (en) * | 2004-11-05 | 2007-08-29 | 船井電機株式会社 | Set-top box connected to IEEE 1394 serial bus and controller device connected to IEEE 1394 serial bus |
JP4683581B2 (en) * | 2005-02-02 | 2011-05-18 | 日本パーカライジング株式会社 | Water-based metal material surface treatment agent, surface treatment method and surface treatment metal material |
RU2378416C2 (en) * | 2005-02-02 | 2010-01-10 | Нихон Паркирайзинг Ко., Лтд. | Aquatic facility for surface treatment of metallic material, treatment method of surface and surface-treated metallic material |
US7695771B2 (en) * | 2005-04-14 | 2010-04-13 | Chemetall Gmbh | Process for forming a well visible non-chromate conversion coating for magnesium and magnesium alloys |
WO2007013761A1 (en) * | 2005-07-25 | 2007-02-01 | Posco | Pre-sealed steel sheet with improved anti- corrosion and weldability and preparing method thereof |
US7745010B2 (en) * | 2005-08-26 | 2010-06-29 | Prc Desoto International, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20070254159A1 (en) * | 2005-08-26 | 2007-11-01 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US8231970B2 (en) * | 2005-08-26 | 2012-07-31 | Ppg Industries Ohio, Inc | Coating compositions exhibiting corrosion resistance properties and related coated substrates |
US20070088111A1 (en) * | 2005-08-26 | 2007-04-19 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
EP1788042A3 (en) * | 2005-09-29 | 2009-09-09 | Mustafa Keddo | Marine antifouling paint composition |
KR101307825B1 (en) * | 2005-10-26 | 2013-09-12 | 다우 코닝 리미티드 | Mixed silanes |
DE102006002224A1 (en) * | 2006-01-16 | 2007-07-19 | Schaeffler Kg | Arrangement for protecting a substrate against corrosion, method for its production and pulley |
JP5213308B2 (en) * | 2006-03-08 | 2013-06-19 | 日本ペイント株式会社 | Metal surface treatment agent |
US7772332B2 (en) * | 2006-04-20 | 2010-08-10 | Kaneka Corporation | Curable composition |
US8106229B2 (en) * | 2006-05-30 | 2012-01-31 | Nalco Company | Organically modifid silica and use thereof |
JP5000199B2 (en) * | 2006-05-30 | 2012-08-15 | 学校法人日本大学 | Manufacturing method of hard film |
JP5401316B2 (en) * | 2006-09-29 | 2014-01-29 | モメンティブ パフォーマンス マテリアルズ インコーポレイテッド | Composition stable for storage of hydrolyzable organofunctional silane moieties and / or complete condensates |
CN100551982C (en) * | 2006-12-14 | 2009-10-21 | 自贡市斯纳防锈蚀技术有限公司 | Douple-component water-thinned epoxy zinc-rich silane metal paint |
JP4945432B2 (en) | 2006-12-28 | 2012-06-06 | 富士フイルム株式会社 | Preparation method of lithographic printing plate |
US7878054B2 (en) * | 2007-02-28 | 2011-02-01 | The Boeing Company | Barrier coatings for polymeric substrates |
DE102008007261A1 (en) | 2007-08-28 | 2009-03-05 | Evonik Degussa Gmbh | Aqueous silane systems based on bis (trialkoxysilylalkyl) amines |
US7795538B2 (en) * | 2007-11-06 | 2010-09-14 | Honeywell International Inc. | Flexible insulated wires for use in high temperatures and methods of manufacturing |
CN101925660A (en) * | 2007-11-26 | 2010-12-22 | 都柏林技术学院知识产权公司 | Organosilane coating compositions and application thereof |
JP5319929B2 (en) * | 2008-02-08 | 2013-10-16 | マツモトファインケミカル株式会社 | Aqueous surface treatment composition |
US20100015339A1 (en) * | 2008-03-07 | 2010-01-21 | Evonik Degussa Gmbh | Silane-containing corrosion protection coatings |
US20090242081A1 (en) * | 2008-03-26 | 2009-10-01 | Richard Bauer | Aluminum Treatment Composition |
JP5528677B2 (en) | 2008-03-31 | 2014-06-25 | 富士フイルム株式会社 | Polymerizable composition, light-shielding color filter for solid-state image sensor, solid-state image sensor, and method for producing light-shielding color filter for solid-state image sensor |
JP2010156945A (en) | 2008-08-22 | 2010-07-15 | Fujifilm Corp | Method for producing lithographic printing plate |
JP5364513B2 (en) | 2008-09-12 | 2013-12-11 | 富士フイルム株式会社 | Developer for lithographic printing plate precursor and method for producing lithographic printing plate |
AU2009297598A1 (en) | 2008-09-24 | 2010-04-01 | Fujifilm Corporation | Process for producing lithographic printing plate |
JP5340102B2 (en) | 2008-10-03 | 2013-11-13 | 富士フイルム株式会社 | Dispersion composition, polymerizable composition, light-shielding color filter, solid-state imaging device, liquid crystal display device, wafer level lens, and imaging unit |
EP2177574B2 (en) * | 2008-10-16 | 2016-03-02 | Nanogate AG | Silanes Blend |
US20120021358A1 (en) | 2008-11-26 | 2012-01-26 | Fujifilm Corporation | Process for making lithographic printing plate, developer for lithographic printing plate precursor, and replenisher for lithographic printing plate precursor development |
EP2204698B1 (en) | 2009-01-06 | 2018-08-08 | FUJIFILM Corporation | Plate surface treatment agent for lithographic printing plate and method for treating lithographic printing plate |
JP2010180330A (en) | 2009-02-05 | 2010-08-19 | Fujifilm Corp | Non-aqueous ink, ink set, method for recording image, device for recording image, and recorded matter |
JP5349097B2 (en) | 2009-03-19 | 2013-11-20 | 富士フイルム株式会社 | Ink composition, inkjet recording method, printed matter, and method for producing molded printed matter |
JP2010243517A (en) | 2009-03-31 | 2010-10-28 | Fujifilm Corp | Lithographic printing plate precursor and method for manufacturing lithographic printing plate |
JP5383289B2 (en) | 2009-03-31 | 2014-01-08 | 富士フイルム株式会社 | Ink composition, ink composition for inkjet, inkjet recording method, and printed matter by inkjet method |
WO2011005743A1 (en) | 2009-07-07 | 2011-01-13 | Ak Steel Properties, Inc. | Polymer coated metallic substrate and method for making |
DE102010030115A1 (en) | 2009-08-11 | 2011-02-17 | Evonik Degussa Gmbh | Glycidyloxyalkylalkoxysilane-based aqueous silane systems for blank corrosion protection and corrosion protection of metals |
WO2011037005A1 (en) | 2009-09-24 | 2011-03-31 | 富士フイルム株式会社 | Lithographic printing original plate |
JP5554531B2 (en) * | 2009-09-24 | 2014-07-23 | 関西ペイント株式会社 | How to paint metal materials |
US10907071B2 (en) * | 2009-10-13 | 2021-02-02 | Axalta Coating Systems IP Co. LLC | Organosilane condensate coating composition |
EP2339401B1 (en) | 2009-12-28 | 2016-02-17 | Fujifilm Corporation | Method of preparing lithographic printing plate |
JP5588887B2 (en) | 2010-01-29 | 2014-09-10 | 富士フイルム株式会社 | Preparation method of lithographic printing plate |
JP5525873B2 (en) | 2010-03-15 | 2014-06-18 | 富士フイルム株式会社 | Preparation method of lithographic printing plate |
JP2011221522A (en) | 2010-03-26 | 2011-11-04 | Fujifilm Corp | Method for manufacturing lithograph printing plate |
JP5572576B2 (en) | 2010-04-30 | 2014-08-13 | 富士フイルム株式会社 | Planographic printing plate precursor and plate making method |
JP5182535B2 (en) * | 2010-05-28 | 2013-04-17 | 信越化学工業株式会社 | Water-based siloxane coating composition and method for producing the same, surface treatment agent, surface-treated steel material, and coated steel material |
US8852848B2 (en) * | 2010-07-28 | 2014-10-07 | Z Electronic Materials USA Corp. | Composition for coating over a photoresist pattern |
MX355473B (en) * | 2010-09-10 | 2018-04-19 | Chemetall Gmbh Star | Method for coating metallic surfaces with a polymer-containing coating agent, the coating agent and use thereof. |
US9034473B2 (en) * | 2010-10-05 | 2015-05-19 | Basf Se | Method for passivating a metallic surface with a basic composition |
CN102030919B (en) * | 2010-11-12 | 2012-02-08 | 杭州中富彩新材料科技有限公司 | Environmental-friendly surface polymer modified water-borne coloring agent and preparation method thereof |
DE102011084183A1 (en) | 2011-03-25 | 2012-09-27 | Evonik Degussa Gmbh | Aqueous silane-based anti-corrosive formulation |
JP2012233243A (en) * | 2011-05-09 | 2012-11-29 | Nippon Paint Co Ltd | Chemical conversion treatment agent for surface treatment of metal substrate, and surface treatment method of metal substrate using same |
RU2534231C2 (en) * | 2011-07-19 | 2014-11-27 | Иван Соломонович Пятов | Method of obtaining protective coating on surface of metal product, operating under conditions of highly aggressive medium, higher temperatures and abrasive impact |
FR2981366B1 (en) * | 2011-10-14 | 2014-10-17 | Univ Toulouse 3 Paul Sabatier | METHOD FOR THE ANTICORROSIVE TREATMENT OF A SOLID METAL SUBSTRATE AND A TREATED SOLID METAL SUBSTRATE WHICH CAN BE OBTAINED BY SUCH A METHOD |
DE102012219296A1 (en) * | 2011-10-24 | 2013-04-25 | Chemetall Gmbh | Process for coating metallic surfaces with an aqueous composition of many components |
US8980387B2 (en) * | 2011-10-27 | 2015-03-17 | General Electric Company | Method of coating a surface and article incorporating coated surface |
KR101143529B1 (en) | 2011-12-09 | 2012-05-09 | 이현용 | Manufacturing method of furniture having metal portion coated with functional particle layer |
US10144830B2 (en) | 2011-12-19 | 2018-12-04 | Hewlett-Packard Development Company, L.P. | Pretreatment fluids with ammonium metal chelate cross-linker for printing media |
US9505024B2 (en) | 2011-12-19 | 2016-11-29 | Hewlett-Packard Development Company, L.P. | Method of producing a printed image on a pre-treated, low-porous or non-porous medium |
JP5463346B2 (en) | 2011-12-26 | 2014-04-09 | 富士フイルム株式会社 | Planographic printing plate making method |
WO2013162513A1 (en) * | 2012-04-24 | 2013-10-31 | Hewlett-Packard Development Company, L.P. | Inkjet ink |
RU2532245C2 (en) * | 2012-06-29 | 2014-10-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (НИТУ "МИСиС") | Method of applying polyphenylene sulphide-based coating on metal substrate |
WO2014034828A1 (en) * | 2012-09-03 | 2014-03-06 | 三井化学株式会社 | Composition for rust prevention and aqueous dispersion containing same |
CN102876093B (en) * | 2012-10-15 | 2016-04-06 | 北京赛科康仑环保科技有限公司 | A kind of composite metal coated, Its Preparation Method And Use |
US9273215B2 (en) * | 2012-10-30 | 2016-03-01 | Rohm And Haas Electronic Materials Llc | Adhesion promoter |
CN102978594B (en) * | 2012-11-12 | 2014-12-03 | 岑添祥 | Silane forming agent and preparation method thereof |
CN102993960A (en) * | 2012-12-17 | 2013-03-27 | 青岛汉河药业有限公司 | Rare-earth anticorrosion process for metal surfaces |
CN103060791B (en) * | 2012-12-18 | 2016-06-08 | 芜湖恒坤汽车部件有限公司 | A kind of Metal surface silane treatment agent containing tetraisopropyl titanate and preparation method thereof |
CN103031551B (en) * | 2012-12-18 | 2016-05-11 | 合肥中澜新材料科技有限公司 | A kind of metal surface silane finish that contains ethylenediamine tetramethylene fork Alendronate and preparation method thereof |
CN103060787B (en) * | 2012-12-18 | 2016-03-02 | 安徽六方重联机械股份有限公司 | A kind of Metal surface silane treatment agent containing diethanolamine and preparation method thereof |
JP2013129846A (en) * | 2013-03-08 | 2013-07-04 | Matsumoto Fine Chemical Co Ltd | Aqueous surface treating composition |
CN105008471B (en) * | 2013-03-08 | 2017-08-15 | 中国涂料株式会社 | The anti-corrosion method of anticorrosive coating composition, anticorrosion film and base material |
MX2015011952A (en) | 2013-03-15 | 2016-04-07 | Akzo Nobel Coatings Int Bv | Hybrid water dispersions, (poly)ethylene (meth)acrylic acid copolymer composite latex emulsions, hybrid (poly)ethylene (meth)acrylic acid organosilane composite latex emulsions, and coating compositions formed therefrom. |
JP5860830B2 (en) * | 2013-03-27 | 2016-02-16 | モメンティブ パフォーマンス マテリアルズ インコーポレイテッド | Composition stable for storage of hydrolyzable organofunctional silane moieties and / or complete condensates |
CN103254763A (en) * | 2013-04-08 | 2013-08-21 | 马鞍山拓锐金属表面技术有限公司 | Polysilane water-based metal surface treatment agent and preparation method thereof |
US9506159B2 (en) | 2013-05-15 | 2016-11-29 | Srg Global, Inc. | Organometallic adhesion promoters for paint-over-chrome plated polymers |
PL3019563T3 (en) * | 2013-07-10 | 2023-04-03 | Chemetall Gmbh | Method for coating metal surfaces of substrates and objects coated in accordance with said method |
DE102013109801B4 (en) * | 2013-09-09 | 2020-07-09 | Thyssenkrupp Rasselstein Gmbh | Tinplate coated with a polymer coating and process for its production |
US20150080282A1 (en) * | 2013-09-17 | 2015-03-19 | General Electric Company | Cleansing and film-forming washes for turbine compressors |
JP6607848B2 (en) * | 2013-10-01 | 2019-11-20 | タータ スチール リミテッド | Chromium-free water-based coatings for treating galvannealed or galvanized steel surfaces |
US20150125610A1 (en) * | 2013-11-01 | 2015-05-07 | Bulk Chemicals, Inc. | Process and seal treatment for improving corrosion resistance and paint adhesion of metal surfaces |
WO2015070933A1 (en) | 2013-11-18 | 2015-05-21 | Basf Coatings Gmbh | Method for coating metal substrates with a conversion layer and a sol-gel layer |
RU2545302C1 (en) * | 2013-11-28 | 2015-03-27 | Закрытое акционерное общество "Научно-производственное предприятие "Спектр" | Anticorrosion coating composition |
ES2921449T3 (en) * | 2014-01-23 | 2022-08-25 | Chemetall Gmbh | Method for coating metal surfaces, said coated substrate and its use |
WO2015112966A1 (en) * | 2014-01-24 | 2015-07-30 | Packaging Service Co., Inc. | Low voc adhesion pretreating and paint additive compositions, pretreating and paint compositions therefrom and methods of making and using same |
AP2016009463A0 (en) * | 2014-02-28 | 2016-09-30 | Tata Steel Uk Ltd | Method for producing a siloxane coated metal substrate and a siloxane coated metal substrate produced thereby |
JP5592579B2 (en) * | 2014-03-07 | 2014-09-17 | 関西ペイント株式会社 | How to paint metal materials |
JP6625998B2 (en) * | 2014-03-18 | 2019-12-25 | スリーエム イノベイティブ プロパティズ カンパニー | Treated article and method of making same |
US20150354403A1 (en) * | 2014-06-05 | 2015-12-10 | General Electric Company | Off-line wash systems and methods for a gas turbine engine |
KR20160001799A (en) * | 2014-06-26 | 2016-01-07 | 삼성디스플레이 주식회사 | Display device and manufacturing method thereof |
JP6242010B2 (en) * | 2014-07-14 | 2017-12-06 | 関西ペイント株式会社 | Aqueous metal surface treatment composition |
KR101468466B1 (en) * | 2014-07-14 | 2014-12-03 | 주식회사 유성하이테크 | Eco-friendly coating material composition and construction method for surface protection of steel structure and concrete structure using the same |
JP5710058B1 (en) * | 2014-08-05 | 2015-04-30 | 日新製鋼株式会社 | Painted steel sheet and exterior building materials |
US20160076458A1 (en) * | 2014-09-12 | 2016-03-17 | General Electric Company | System and method for providing a film treatment to a surface using cooling devices |
EP3198055A4 (en) * | 2014-09-22 | 2018-05-02 | Henkel AG & Co. KGaA | Alkaline cerium-based coating composition for metal surface pre-treatment |
JP6023776B2 (en) | 2014-11-07 | 2016-11-09 | 日新製鋼株式会社 | Manufacturing method of painted metal strip |
RU2579066C1 (en) * | 2014-11-19 | 2016-03-27 | Владимир Леонидович Плеханов | Hydrophobic coating composition |
US11085125B2 (en) * | 2014-12-02 | 2021-08-10 | Oceanit Laboratories, Inc. | Controlled method for applying coating materials to complex heat transfer surfaces |
US10052655B2 (en) * | 2014-12-17 | 2018-08-21 | Whirlpool Corporation | Transparent tinted coating for appliance exterior panels to allow for tinted surface patterns and a process for application of coating |
WO2016120670A1 (en) * | 2015-01-30 | 2016-08-04 | Arcelormittal | Method for the production of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve compatibility with an adhesive |
WO2016120671A1 (en) | 2015-01-30 | 2016-08-04 | Arcelormittal | Method for the production of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve tribological properties |
WO2016120669A1 (en) * | 2015-01-30 | 2016-08-04 | Arcelormittal | Method for the production of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve corrosion resistance |
GB201502250D0 (en) * | 2015-02-11 | 2015-03-25 | Tioxide Europe Ltd | Coated product |
JP6777377B2 (en) * | 2015-03-31 | 2020-10-28 | 日本表面化学株式会社 | Water-soluble coating agent composition |
CN104928662A (en) * | 2015-04-10 | 2015-09-23 | 蚌埠市时代电子有限公司 | Environment-friendly non-toxic metal surface treatment agent |
CN104962923A (en) * | 2015-04-10 | 2015-10-07 | 蚌埠市时代电子有限公司 | High-efficiency cooling metal surface conditioning agent |
EP3283668B1 (en) | 2015-04-15 | 2019-10-16 | Henkel AG & Co. KGaA | Thin corrosion protective coatings incorporating polyamidoamine polymers |
KR101592147B1 (en) * | 2015-08-19 | 2016-02-04 | 이대석 | A method manufacturing an oxide layer of an aluminium substrate |
WO2017042201A1 (en) * | 2015-09-07 | 2017-03-16 | Ikea Supply Ag | A sliding screen sliding system |
SI3346874T1 (en) | 2015-09-07 | 2019-12-31 | Ikea Supply Ag | A drawer, and a drawer sliding system for such drawer |
RU2705802C2 (en) * | 2015-09-07 | 2019-11-12 | Икея Сапплай Аг | Sofa bed and sliding system for such sofa bed |
WO2017044032A1 (en) | 2015-09-07 | 2017-03-16 | Ikea Supply Ag | Low friction slide member |
ES2769043T3 (en) | 2015-09-07 | 2020-06-24 | Ikea Supply Ag | Extending table |
KR101792240B1 (en) * | 2015-09-18 | 2017-10-31 | 주식회사 포스코 | Composition for surface-treating a single-side-plated steel sheet, surface-treated steel sheet using the same composition, and the method for surface-treatent sheet using the sam composition |
CN108026406B (en) | 2015-09-23 | 2021-03-09 | 3M创新有限公司 | Silane containing compositions and methods of making treated articles |
KR101752306B1 (en) | 2015-10-07 | 2017-06-30 | (주)켐옵틱스 | Adhesive composition for uv-crosslinkable interface and surface modification method of substrate using thereof |
ES2806640T3 (en) * | 2015-10-30 | 2021-02-18 | Sun Chemical Corp | Water-based coating compositions |
EP3178884B1 (en) | 2015-12-08 | 2018-02-07 | Evonik Degussa GmbH | Aqueous [3- (2,3-dihydroxyprop-1-oxy) propyl] silanololigomer containing composition, method for their preparation and their use |
FR3047491B1 (en) * | 2016-02-09 | 2018-01-19 | Safran | DEVELOPMENT OF SOL-GEL ANTI-CORROSION TREATMENT |
JP6621694B2 (en) * | 2016-03-25 | 2019-12-18 | 株式会社神戸製鋼所 | Surface-treated steel sheet for bonding polyolefin resin and composite member using the same |
JP6640638B2 (en) * | 2016-03-31 | 2020-02-05 | 株式会社神戸製鋼所 | Chemical treatment metal plate |
CN106120344B (en) * | 2016-06-24 | 2017-11-28 | 国网湖南省电力公司带电作业中心 | Surface treating composition and non-conductive fibre, yarn, rope and preparation method thereof |
CN106191843A (en) * | 2016-07-11 | 2016-12-07 | 张卫东 | A kind of seeder surface process water-based antirust adding nano barium sulfate and preparation method thereof |
CN106048583A (en) * | 2016-07-11 | 2016-10-26 | 张卫东 | Antibacterial and insect-repelling water-based antirust agent for surface treatment of seeder and preparation method for antibacterial and insect-repelling water-based antirust agent |
CN106048582A (en) * | 2016-07-11 | 2016-10-26 | 张卫东 | Novel chitosan-containing water-based antirust agent for surface treatment of seeder and preparation method for novel chitosan-containing water-based antirust agent |
CN106048572A (en) * | 2016-07-11 | 2016-10-26 | 张卫东 | Anti-freezing water-based antirust agent for surface treatment of seeder and preparation method for anti-freezing water-based antirust agent |
EP3269986A1 (en) * | 2016-07-15 | 2018-01-17 | HILTI Aktiengesellschaft | Expansion dowel with zinc alloy coating |
CN106245016A (en) * | 2016-07-28 | 2016-12-21 | 安徽吉思特智能装备有限公司 | Lithotrite surface process water-based antirust that a kind of coatability is good and preparation method thereof |
CN106048578A (en) * | 2016-07-28 | 2016-10-26 | 安徽吉思特智能装备有限公司 | Nanometer-aluminum-oxide-added water-based antirusting agent for surface treatment of high-temperature-resistant stone crusher and preparation method of antirusting agent |
CN106086858A (en) * | 2016-07-28 | 2016-11-09 | 安徽吉思特智能装备有限公司 | A kind of lithotrite surface process water-based antirust adding nano silicon and preparation method thereof |
CN106118454A (en) * | 2016-07-28 | 2016-11-16 | 安徽吉思特智能装备有限公司 | Lithotrite surface process water-based antirust that a kind of weatherability is good and preparation method thereof |
KR101692929B1 (en) * | 2016-08-24 | 2017-01-04 | 서번산업엔지니어링주식회사 | Corrosion resistant coating composition of air conditioning system |
US11186730B2 (en) * | 2016-11-30 | 2021-11-30 | Akzo Nobel Coatings International B.V. | Chromium-free coating composition with anti-corrosive effect for metallic substrates |
CN106798952B (en) * | 2017-02-13 | 2019-12-10 | 先健科技(深圳)有限公司 | absorbable iron-based internal fracture fixation material |
SE540785C2 (en) | 2017-03-03 | 2018-11-13 | Ikea Supply Ag | A furniture rotary system having reduced friction, and a piece of furniture comprising such system |
SE540465C2 (en) * | 2017-03-03 | 2018-09-18 | Ikea Supply Ag | Furniture lubricant comprising a C10 to C28 alkane and a triglyceride |
CN110546303A (en) * | 2017-03-30 | 2019-12-06 | 塔塔钢铁艾默伊登有限责任公司 | aqueous acidic composition for treating metal surfaces, treatment method using such a composition and use of the treated metal surfaces |
EP3398998A1 (en) | 2017-05-03 | 2018-11-07 | Evonik Degussa GmbH | Aqueous brine-gel compound as storage-stable precursor for zinc-rich primers |
JP6787493B2 (en) * | 2017-07-21 | 2020-11-18 | Dic株式会社 | Compositions and printing inks |
BR112020001405B1 (en) | 2017-07-26 | 2023-12-19 | Chemetall Gmbh | AQUEOUS COATING COMPOSITION, PROCESSES FOR PRODUCING AN AQUEOUS COATING COMPOSITION AND FOR COATING THE METAL ION RELEASE SURFACE OF A SUBSTRATE, AND, COATING. |
US11939490B2 (en) * | 2017-07-31 | 2024-03-26 | Momentive Performance Materials Inc. | Curable surface-protective coating composition, processes for its preparation and application to a metallic substrate and resulting coated metallic substrate |
WO2019224286A1 (en) * | 2018-05-24 | 2019-11-28 | Atotech Deutschland Gmbh | Anti-fingerprint coatings |
DE102018209553A1 (en) | 2018-06-14 | 2019-12-19 | Voestalpine Stahl Gmbh | METHOD FOR PRODUCING LACQUER-COATED ELECTRIC TAPES AND LACQUER-COATED ELECTRIC TAPE |
CN113039250B (en) * | 2018-06-25 | 2022-11-29 | Ddp特种电子材料美国有限责任公司 | Primer composition |
JP7101066B2 (en) * | 2018-07-10 | 2022-07-14 | 日本ペイント・サーフケミカルズ株式会社 | Chromium-free metal surface treatment agents, metal surface treatment methods, and metal substrates |
CN114453217B (en) * | 2018-07-30 | 2024-08-23 | Posco公司 | Insulating coating composition for electrical steel sheet and electrical steel sheet having insulating coating |
BR112021004249A2 (en) | 2018-09-07 | 2021-05-18 | Chemetall Gmbh | method for treating at least one surface of a substrate, acidic aqueous composition, masterbatch, use of acidic aqueous composition, and substrate |
GB2581513A (en) * | 2019-02-21 | 2020-08-26 | Kastus Tech Dac | Nanostructured hybrid sol-gel coatings for metal surface protection |
CN109985782A (en) * | 2019-04-10 | 2019-07-09 | 贵州钢绳股份有限公司 | A method of antirust treatment is carried out in drawing block inner wall using cold galvanizing technique |
CN109929325A (en) * | 2019-04-11 | 2019-06-25 | 惠州市嘉淇涂料有限公司 | A kind of aluminum-pinch silk-screen water-based ink |
KR102060594B1 (en) | 2019-05-27 | 2019-12-30 | 황이순 | Water proof painting composition and painting method |
TWI738082B (en) * | 2019-10-09 | 2021-09-01 | 才將科技股份有限公司 | A adhesive for connecting metals and resins, adhesive layer and their application thereof |
TWI705083B (en) | 2019-11-13 | 2020-09-21 | 南亞塑膠工業股份有限公司 | Curing agent composition and curing agent coating formula thereof |
KR102329418B1 (en) * | 2019-12-03 | 2021-11-22 | 주식회사 포스코 | Composition for surface treating of steel sheet, steel sheet using the same, and manufacturing method of the same |
KR102329503B1 (en) * | 2019-12-03 | 2021-11-19 | 주식회사 포스코 | Composition for surface treating of steel sheet, steel sheet using the same, and manufacturing method of the same |
KR102307916B1 (en) * | 2019-12-05 | 2021-09-30 | 주식회사 포스코 | Coating composition for hot dip galvanized steel sheet having excellent corrosion resistant and surface color, hot dip galvanized steel sheet prepared by using the coating composition and method for preparing the surface treated hot dip galvanized steel sheet |
DE102019134136B3 (en) * | 2019-12-12 | 2021-04-29 | Voestalpine Stahl Gmbh | METHOD OF MANUFACTURING COATED ELECTRICAL TAPES AND COATED ELECTRICAL TAPE |
WO2021249879A1 (en) * | 2020-06-10 | 2021-12-16 | Chemetall Gmbh | Phosphonate-free, aqueous pickling compositions and their use |
CN112853337A (en) * | 2021-01-11 | 2021-05-28 | 厦门腾兴隆化工有限公司 | Silane treating agent and preparation method thereof |
JP7560188B2 (en) | 2021-06-17 | 2024-10-02 | 日本ペイント・サーフケミカルズ株式会社 | Manufacturing method for surface-treated metal parts and aqueous surface treatment agent for processed and molded metal parts |
JP7338943B1 (en) | 2022-03-14 | 2023-09-05 | 昭和飛行機工業株式会社 | Corrosion-resistant treatment method for aluminum foil for honeycomb core |
CN114773937A (en) * | 2022-06-22 | 2022-07-22 | 太原科技大学 | Phosphating-free plate based on endless rolling process and preparation method thereof |
US20240279564A1 (en) * | 2023-02-14 | 2024-08-22 | Actnano, Inc. | Compositions for reducing friction or stiction of a surface, methods and articles comprising the same |
EP4442771A1 (en) * | 2023-04-05 | 2024-10-09 | Papadopoulos Nikolaos-Xafakis Sotirios G.P. | Antifouling and antistatic coatings through automated application |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4063016A (en) * | 1975-12-15 | 1977-12-13 | University Of Delaware | Chitin complexes with alcohols and carbonyl compounds |
US4112151A (en) * | 1976-01-09 | 1978-09-05 | Monarch Marking Systems, Inc. | Impregnating porous articles |
US4959180A (en) * | 1989-02-03 | 1990-09-25 | The United States Of America As Represented By The United States Department Of Energy | Colloidal polyaniline |
US4986886A (en) * | 1990-05-30 | 1991-01-22 | Drexel University | Polymerization of thiophene and its derivatives |
US5053081A (en) * | 1990-04-02 | 1991-10-01 | Oakite Products, Inc. | Composition and method for treatment of conversion coated metal surfaces with an aqueous solution of 3-aminopropyltriethoxy silane and titanium chelate |
US5174867A (en) * | 1983-03-07 | 1992-12-29 | Herbert Naarmann | Preparation of electrically conductive, finely divided pyrrole polymers |
US5451431A (en) * | 1993-11-16 | 1995-09-19 | Betz Laboratories, Inc. | Composition and process for treating metal surfaces |
US5482655A (en) * | 1992-06-17 | 1996-01-09 | Ciba-Geigy Corporation | Electrically conductive thermoplastic polymer formulations and the use thereof |
US5593731A (en) * | 1994-03-30 | 1997-01-14 | Kansai Paint Company Limited | Aqueous curable resin compositions |
US5885711A (en) * | 1994-03-31 | 1999-03-23 | France Telecom | Electrically conductive polymer compositions, production process and coated substrates |
US5905109A (en) * | 1996-08-14 | 1999-05-18 | Jsr Corporation | Water-type dispersion composition |
US6054514A (en) * | 1997-05-20 | 2000-04-25 | Americhem, Inc. | Additives for enhancing corrosion protection of metals |
US6132645A (en) * | 1992-08-14 | 2000-10-17 | Eeonyx Corporation | Electrically conductive compositions of carbon particles and methods for their production |
US6203854B1 (en) * | 1997-09-17 | 2001-03-20 | Brent International Plc | Methods of and compositions for preventing corrosion of metal substrates |
US20010031811A1 (en) * | 1993-12-13 | 2001-10-18 | Huawen Li | Durable coating composition, process for producing durable, antireflective coatings, and coated articles |
US20010031416A1 (en) * | 2000-03-16 | 2001-10-18 | Everaars Marcel Dialma | Toner coated with conductive polymer |
US6482274B2 (en) * | 2000-02-29 | 2002-11-19 | Nippon Paint Co., Ltd. | Nonchromate metallic surface treating agent for PCM use, method for PCM surface treatment, and treated PCM steel panel |
US6596835B1 (en) * | 1999-02-05 | 2003-07-22 | Chemetall, Plc | Method of treating metals using amino silanes and multi-silyl-functional silanes in admixture |
US20030185990A1 (en) * | 2000-09-25 | 2003-10-02 | Klaus Bittner | Method for pretreating and coating metal surfaces prior to forming, with a paint-like coating and use of substrates so coated |
US6649273B2 (en) * | 2000-10-06 | 2003-11-18 | E. I. Du Pont De Nemours And Company | Emulsion and coated product thereof |
US20040022950A1 (en) * | 2000-10-11 | 2004-02-05 | Christian Jung | Method for coating metal surfaces with an aqueous, polymer-containing composition, said aqueous composition and the use of the coated substrates |
US6942899B2 (en) * | 2002-07-08 | 2005-09-13 | The Boeing Company | Coating for inhibiting oxidation of a substrate |
US20080171211A1 (en) * | 2004-08-03 | 2008-07-17 | Chemetall Gmbh | Method For Protecting A Metal Surface By Means Of A Corrosion-Inhibiting Coating |
Family Cites Families (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4311738A (en) * | 1980-05-27 | 1982-01-19 | Dow Corning Corporation | Method for rendering non-ferrous metals corrosion resistant |
JPS5721451A (en) * | 1980-07-15 | 1982-02-04 | Kansai Paint Co Ltd | Alkyd resin-containing emulsion composition |
DE3151115A1 (en) * | 1980-12-24 | 1982-09-02 | Nippon Kokan K.K., Tokyo | Surface-coated strip steel of good corrosion resistance, paintability and corrosion resistance after application of paint |
JPS57190003A (en) * | 1981-05-18 | 1982-11-22 | Asahi Chem Ind Co Ltd | Wholly porous activated gel |
US4457790A (en) * | 1983-05-09 | 1984-07-03 | Parker Chemical Company | Treatment of metal with group IV B metal ion and derivative of polyalkenylphenol |
US4659394A (en) * | 1983-08-31 | 1987-04-21 | Nippon Kokan Kabushiki Kaisha | Process for preparation of highly anticorrosive surface-treated steel plate |
JPH01104783A (en) * | 1987-07-23 | 1989-04-21 | Nisshin Steel Co Ltd | Production of surface treated steel sheet having superior resistance to corrosion and leaving of fingerprint |
US5246507A (en) * | 1988-01-04 | 1993-09-21 | Kao Corporation | Metal surface treatment and aqueous solution therefor |
JP2617544B2 (en) * | 1988-11-14 | 1997-06-04 | 三菱重工業株式会社 | Gas-liquid contact method |
JPH04110476A (en) * | 1990-08-30 | 1992-04-10 | Kobe Steel Ltd | Production of electrical steel sheet with insulating coating film having superior adhesion and insulating property even after strain relief annealing |
US5108793A (en) * | 1990-12-24 | 1992-04-28 | Armco Steel Company, L.P. | Steel sheet with enhanced corrosion resistance having a silane treated silicate coating |
DE4138218C2 (en) * | 1991-11-21 | 1994-08-04 | Doerken Ewald Ag | Use of post-dipping agents for the post-treatment of chromated or passivated galvanizing layers |
TW278096B (en) * | 1992-09-24 | 1996-06-11 | Dsm Nv | |
US5531820A (en) * | 1993-08-13 | 1996-07-02 | Brent America, Inc. | Composition and method for treatment of phosphated metal surfaces |
JPH08170046A (en) * | 1994-02-17 | 1996-07-02 | Nippon Paint Co Ltd | Aqueous coating composition |
US6068711A (en) * | 1994-10-07 | 2000-05-30 | Mcmaster University | Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements |
JP3196621B2 (en) * | 1995-04-20 | 2001-08-06 | 信越化学工業株式会社 | Water-soluble surface treatment agent |
US5711996A (en) * | 1995-09-28 | 1998-01-27 | Man-Gill Chemical Company | Aqueous coating compositions and coated metal surfaces |
US6051670A (en) * | 1995-12-20 | 2000-04-18 | Phillips Petroleum Company | Compositions and processes for treating subterranean formations |
JPH09296121A (en) * | 1996-05-02 | 1997-11-18 | Nippon Parkerizing Co Ltd | Aqueous agent for surface hydrophilization treatment of metallic material and surface-treating method |
US5700523A (en) * | 1996-06-03 | 1997-12-23 | Bulk Chemicals, Inc. | Method for treating metal surfaces using a silicate solution and a silane solution |
US6235916B1 (en) * | 1996-12-24 | 2001-05-22 | University Of Southern Mississippi | Internally plasticizing and crosslinkable monomers and applications thereof |
US5968417A (en) * | 1997-03-03 | 1999-10-19 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Conducting compositions of matter |
JP3898302B2 (en) * | 1997-10-03 | 2007-03-28 | 日本パーカライジング株式会社 | Surface treatment agent composition for metal material and treatment method |
US6328874B1 (en) * | 1998-01-05 | 2001-12-11 | Mcdonnell Douglas Corporation | Anodically formed intrinsically conductive polymer-aluminum oxide composite as a coating on aluminum |
DE19814605A1 (en) * | 1998-04-01 | 1999-10-07 | Kunz Gmbh | Means for sealing metallic substrates, in particular of zinc or zinc alloys |
TWI221861B (en) * | 1998-04-22 | 2004-10-11 | Toyo Boseki | Agent for treating metallic surface, surface-treated metal material and coated metal material |
USH1967H1 (en) * | 1998-07-02 | 2001-06-05 | Kimberly-Clark Worldwide, Inc. | Methods for improving the adhesion and/or colorfastness of ink jet inks with respect to substrates applied thereto |
GB9824223D0 (en) * | 1998-11-05 | 1998-12-30 | British Aerospace | Adhesive bonding process for aluminium and/or aluminium alloy |
JP3817944B2 (en) * | 1998-12-18 | 2006-09-06 | Jfeスチール株式会社 | Resin composition and resin-coated galvanized steel sheet |
JP2000192252A (en) * | 1998-12-24 | 2000-07-11 | Nisshin Steel Co Ltd | Surface treating solution for plated steel sheet and treatment therefor |
DE19913242C2 (en) * | 1999-03-24 | 2001-09-27 | Electro Chem Eng Gmbh | Chemically passivated article made of magnesium or its alloys, method of manufacture and its use |
US20040029395A1 (en) * | 2002-08-12 | 2004-02-12 | Peng Zhang | Process solutions containing acetylenic diol surfactants |
US7344607B2 (en) * | 1999-07-08 | 2008-03-18 | Ge Betz, Inc. | Non-chromate conversion coating treatment for metals |
US6623791B2 (en) * | 1999-07-30 | 2003-09-23 | Ppg Industries Ohio, Inc. | Coating compositions having improved adhesion, coated substrates and methods related thereto |
WO2001031083A1 (en) * | 1999-10-22 | 2001-05-03 | Kawasaki Steel Corporation | Composition for metal surface treatment and surface treated metallic material |
JP2001201611A (en) * | 2000-01-21 | 2001-07-27 | Hitachi Ltd | Optically functional sheet and surface light source using the same as well as image display device |
JP3857866B2 (en) * | 2000-02-29 | 2006-12-13 | 日本ペイント株式会社 | Non-chromate metal surface treatment agent, surface treatment method and treated painted steel |
JP2001240977A (en) * | 2000-02-29 | 2001-09-04 | Nippon Paint Co Ltd | Metallic surface treatment method |
JP3787262B2 (en) | 2000-04-27 | 2006-06-21 | 大日本塗料株式会社 | Water-based paint composition |
JP3851106B2 (en) * | 2000-05-11 | 2006-11-29 | 日本パーカライジング株式会社 | Metal surface treatment agent, metal surface treatment method and surface treatment metal material |
CA2345929C (en) * | 2000-05-15 | 2008-08-26 | Nippon Paint Co., Ltd. | Metal surface-treating method |
EP1285032B1 (en) | 2000-05-19 | 2005-08-31 | E.I. Du Pont De Nemours And Company | Emulsion and water-repellent composition |
JP5062936B2 (en) * | 2000-05-25 | 2012-10-31 | 旭化成ケミカルズ株式会社 | Block copolymer and composition thereof |
WO2002024820A2 (en) * | 2000-09-25 | 2002-03-28 | Chemetall Gmbh | Method for coating metallic surfaces and use of substrates coated in such a way or coatings produced in such a way |
AU1500902A (en) * | 2000-10-11 | 2002-04-22 | Chemetall Gmbh | Method for coating metallic surfaces with an aqueous composition, the aqueous composition and use of the coated substrates |
AU2001295609B8 (en) * | 2000-10-11 | 2007-05-10 | Chemetall Gmbh | Method for pretreating and/or coating metallic surfaces with a paint-like coating prior to forming and use of substrates coated in this way |
JP2002129110A (en) * | 2000-10-31 | 2002-05-09 | Asahi Glass Co Ltd | Water-based coating composition |
AT409965B (en) * | 2000-11-15 | 2002-12-27 | Solutia Austria Gmbh | AQUEOUS BINDERS BASED ON EPOXY RESINS |
JP5124893B2 (en) * | 2001-01-31 | 2013-01-23 | 旭硝子株式会社 | Water-based paint composition |
JP4822378B2 (en) * | 2001-02-06 | 2011-11-24 | 株式会社ブリヂストン | Film forming apparatus and film forming method |
JP2002256154A (en) * | 2001-03-02 | 2002-09-11 | Shinto Fine Co Ltd | Emulsion resin composition having good film-formability |
DE10110834B4 (en) * | 2001-03-06 | 2005-03-10 | Chemetall Gmbh | Process for coating metallic surfaces and use of the substrates coated in this way |
DE10110833B4 (en) * | 2001-03-06 | 2005-03-24 | Chemetall Gmbh | Process for applying a phosphate coating and use of the thus phosphated metal parts |
WO2002072682A1 (en) * | 2001-03-08 | 2002-09-19 | The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations | Conductive polymer-inorganic hybrid composites |
WO2002090619A2 (en) * | 2001-03-16 | 2002-11-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Addition product, production and use thereof as corrosion inhibitor |
WO2002103727A1 (en) * | 2001-06-15 | 2002-12-27 | Showa Denko K.K. | Formed substrate used for solid electrolytic capacitor, production method thereof and solid electrolytic capacitor using the substrate |
JP4078044B2 (en) * | 2001-06-26 | 2008-04-23 | 日本パーカライジング株式会社 | Metal surface treatment agent, surface treatment method of metal material, and surface treatment metal material |
JP4834195B2 (en) * | 2001-07-09 | 2011-12-14 | 関西ペイント株式会社 | Metal surface treatment composition |
ATE312884T1 (en) * | 2001-10-22 | 2005-12-15 | Henkel Kgaa | SURFACE COATED AL/ZN STEEL SHEETS AND SURFACE COATING AGENTS |
US6805756B2 (en) * | 2002-05-22 | 2004-10-19 | Ppg Industries Ohio, Inc. | Universal aqueous coating compositions for pretreating metal surfaces |
DE10258291A1 (en) * | 2002-12-13 | 2004-07-08 | Henkel Kgaa | Process for coating metal substrates with a free-radically polymerizable coating agent and coated substrates |
TW200417419A (en) * | 2002-12-24 | 2004-09-16 | Nippon Paint Co Ltd | Chemical conversion coating agent and surface-treated metal |
US7510612B2 (en) * | 2002-12-24 | 2009-03-31 | Nippon Paint Co., Ltd. | Chemical conversion coating agent and surface-treated metal |
ATE412790T1 (en) * | 2002-12-24 | 2008-11-15 | Chemetall Gmbh | CHEMICAL CONVERSION COATING AND COATED METAL SURFACES |
US7070586B2 (en) * | 2003-01-17 | 2006-07-04 | Applied Medical Resources Corporation | Surgical access apparatus and method |
MXPA05009075A (en) * | 2003-02-25 | 2005-10-19 | Chemetall Gmbh | Method for coating metallic surfaces with a composition that is rich in polymers. |
US6875514B2 (en) * | 2003-03-21 | 2005-04-05 | E. I. Du Pont De Nemours And Company | Coating composition containing polytrimethylene ether diol useful as a primer composition |
US7033673B2 (en) * | 2003-07-25 | 2006-04-25 | Analytical Services & Materials, Inc. | Erosion-resistant silicone coatings for protection of fluid-handling parts |
RU2418885C9 (en) * | 2004-11-10 | 2012-07-20 | Шеметалл Гмбх | Method of applying coating on metal surface by treating with aqueous composition, aqueous composition and use of coated metal substrates |
US20060099332A1 (en) * | 2004-11-10 | 2006-05-11 | Mats Eriksson | Process for producing a repair coating on a coated metallic surface |
US20080138615A1 (en) * | 2005-04-04 | 2008-06-12 | Thomas Kolberg | Method for Coating Metallic Surfaces with an Aqueous Composition and Said Composition |
-
2004
- 2004-02-25 MX MXPA05009075A patent/MXPA05009075A/en active IP Right Grant
- 2004-02-25 ES ES04714305T patent/ES2385982T3/en not_active Expired - Lifetime
- 2004-02-25 EP EP20040714305 patent/EP1599615B1/en not_active Expired - Lifetime
- 2004-02-25 AT AT04714294T patent/ATE553163T1/en active
- 2004-02-25 US US10/546,583 patent/US20060127681A1/en not_active Abandoned
- 2004-02-25 US US10/546,624 patent/US20060193988A1/en not_active Abandoned
- 2004-02-25 WO PCT/EP2004/001828 patent/WO2004076717A1/en active Application Filing
- 2004-02-25 AU AU2004215240A patent/AU2004215240C1/en not_active Expired
- 2004-02-25 JP JP2006501943A patent/JP4537377B2/en not_active Expired - Fee Related
- 2004-02-25 JP JP2006501944A patent/JP4518419B2/en not_active Expired - Fee Related
- 2004-02-25 AU AU2004215696A patent/AU2004215696B2/en not_active Expired
- 2004-02-25 AT AT04714306T patent/ATE557069T1/en active
- 2004-02-25 MX MXPA05009076A patent/MXPA05009076A/en active IP Right Grant
- 2004-02-25 RU RU2005129537A patent/RU2357003C2/en not_active IP Right Cessation
- 2004-02-25 JP JP2006501942A patent/JP5032111B2/en not_active Expired - Fee Related
- 2004-02-25 ES ES04714306T patent/ES2387805T3/en not_active Expired - Lifetime
- 2004-02-25 CA CA 2517057 patent/CA2517057C/en not_active Expired - Lifetime
- 2004-02-25 CA CA 2517059 patent/CA2517059C/en not_active Expired - Lifetime
- 2004-02-25 WO PCT/EP2004/001830 patent/WO2004076718A1/en active Application Filing
- 2004-02-25 CN CN200910211527A patent/CN101705484A/en active Pending
- 2004-02-25 EP EP20040714294 patent/EP1599616B1/en not_active Revoked
- 2004-02-25 AT AT04714305T patent/ATE553229T1/en active
- 2004-02-25 EP EP20040714306 patent/EP1599551B1/en not_active Expired - Lifetime
- 2004-02-25 US US10/546,582 patent/US9175170B2/en not_active Expired - Fee Related
- 2004-02-25 WO PCT/EP2004/001829 patent/WO2004076568A1/en active Application Filing
-
2010
- 2010-08-17 US US12/857,722 patent/US20110039115A1/en not_active Abandoned
- 2010-12-01 US US12/958,009 patent/US8932679B2/en not_active Expired - Fee Related
-
2015
- 2015-08-25 US US14/834,912 patent/US20150361274A1/en not_active Abandoned
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4063016A (en) * | 1975-12-15 | 1977-12-13 | University Of Delaware | Chitin complexes with alcohols and carbonyl compounds |
US4112151A (en) * | 1976-01-09 | 1978-09-05 | Monarch Marking Systems, Inc. | Impregnating porous articles |
US5174867A (en) * | 1983-03-07 | 1992-12-29 | Herbert Naarmann | Preparation of electrically conductive, finely divided pyrrole polymers |
US4959180A (en) * | 1989-02-03 | 1990-09-25 | The United States Of America As Represented By The United States Department Of Energy | Colloidal polyaniline |
US5053081A (en) * | 1990-04-02 | 1991-10-01 | Oakite Products, Inc. | Composition and method for treatment of conversion coated metal surfaces with an aqueous solution of 3-aminopropyltriethoxy silane and titanium chelate |
US4986886A (en) * | 1990-05-30 | 1991-01-22 | Drexel University | Polymerization of thiophene and its derivatives |
US5482655A (en) * | 1992-06-17 | 1996-01-09 | Ciba-Geigy Corporation | Electrically conductive thermoplastic polymer formulations and the use thereof |
US6132645A (en) * | 1992-08-14 | 2000-10-17 | Eeonyx Corporation | Electrically conductive compositions of carbon particles and methods for their production |
US5451431A (en) * | 1993-11-16 | 1995-09-19 | Betz Laboratories, Inc. | Composition and process for treating metal surfaces |
US20010031811A1 (en) * | 1993-12-13 | 2001-10-18 | Huawen Li | Durable coating composition, process for producing durable, antireflective coatings, and coated articles |
US5593731A (en) * | 1994-03-30 | 1997-01-14 | Kansai Paint Company Limited | Aqueous curable resin compositions |
US5885711A (en) * | 1994-03-31 | 1999-03-23 | France Telecom | Electrically conductive polymer compositions, production process and coated substrates |
US5905109A (en) * | 1996-08-14 | 1999-05-18 | Jsr Corporation | Water-type dispersion composition |
US6054514A (en) * | 1997-05-20 | 2000-04-25 | Americhem, Inc. | Additives for enhancing corrosion protection of metals |
US6203854B1 (en) * | 1997-09-17 | 2001-03-20 | Brent International Plc | Methods of and compositions for preventing corrosion of metal substrates |
US6596835B1 (en) * | 1999-02-05 | 2003-07-22 | Chemetall, Plc | Method of treating metals using amino silanes and multi-silyl-functional silanes in admixture |
US6482274B2 (en) * | 2000-02-29 | 2002-11-19 | Nippon Paint Co., Ltd. | Nonchromate metallic surface treating agent for PCM use, method for PCM surface treatment, and treated PCM steel panel |
US20010031416A1 (en) * | 2000-03-16 | 2001-10-18 | Everaars Marcel Dialma | Toner coated with conductive polymer |
US20030185990A1 (en) * | 2000-09-25 | 2003-10-02 | Klaus Bittner | Method for pretreating and coating metal surfaces prior to forming, with a paint-like coating and use of substrates so coated |
US6649273B2 (en) * | 2000-10-06 | 2003-11-18 | E. I. Du Pont De Nemours And Company | Emulsion and coated product thereof |
US20040022950A1 (en) * | 2000-10-11 | 2004-02-05 | Christian Jung | Method for coating metal surfaces with an aqueous, polymer-containing composition, said aqueous composition and the use of the coated substrates |
US6875479B2 (en) * | 2000-10-11 | 2005-04-05 | Chemetall Gmbh | Method for coating metal surfaces with an aqueous, polymer-containing composition, said aqueous composition and the use of the coated substrates |
US6942899B2 (en) * | 2002-07-08 | 2005-09-13 | The Boeing Company | Coating for inhibiting oxidation of a substrate |
US20080171211A1 (en) * | 2004-08-03 | 2008-07-17 | Chemetall Gmbh | Method For Protecting A Metal Surface By Means Of A Corrosion-Inhibiting Coating |
US20080175992A1 (en) * | 2004-08-03 | 2008-07-24 | Chemetall Gmbh | Process For Coating Fine Particles With Conductive Polymers |
US20080305341A1 (en) * | 2004-08-03 | 2008-12-11 | Waldfried Plieth | Process for Coating Metallic Surfaces With an Anti-Corrosive Coating |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9150733B2 (en) | 2004-02-11 | 2015-10-06 | Nof Metal Coatings Europe | Anticorrosion coating composition in aqueous dispersion comprising an organic titanate and/or zirconate |
US8628827B2 (en) * | 2004-02-11 | 2014-01-14 | Nof Metal Coatings Europe | Anticorrosion coating composition in aqueous dispersion comprising an organic titanate and/or zirconate |
US20110129609A1 (en) * | 2004-02-11 | 2011-06-02 | Nof Metal Coatings Europe | Anticorrosion coating composition in aqueous dispersion comprising an organic titanate and/or zirconate |
US8557343B2 (en) | 2004-03-19 | 2013-10-15 | The Boeing Company | Activation method |
US8043708B2 (en) * | 2004-04-16 | 2011-10-25 | Nippon Steel & Sumikin Stainless Steel Corporation | Surface-treated metal, method for producing the same, exhaust component for two-wheeled vehicle or four-wheeled vehicle, and interior and exterior component for domestic appliance |
US20050233134A1 (en) * | 2004-04-16 | 2005-10-20 | Nippon Steel & Sumikin Stainless Steel Corporation | Surface-treated metal, method for producing the same, exhaust component for two-wheeled vehicle or four-wheeled vehicle, and interior and exterior component for domestic appliance |
US20080171211A1 (en) * | 2004-08-03 | 2008-07-17 | Chemetall Gmbh | Method For Protecting A Metal Surface By Means Of A Corrosion-Inhibiting Coating |
US20080305341A1 (en) * | 2004-08-03 | 2008-12-11 | Waldfried Plieth | Process for Coating Metallic Surfaces With an Anti-Corrosive Coating |
US20080175992A1 (en) * | 2004-08-03 | 2008-07-24 | Chemetall Gmbh | Process For Coating Fine Particles With Conductive Polymers |
US20110111235A1 (en) * | 2004-11-10 | 2011-05-12 | Thomas Kolberg | Process for coating metallic surfaces with a multicomponent aqueous composition |
US20100139525A1 (en) * | 2004-11-10 | 2010-06-10 | Thomas Kolberg | Process for coating metallic surfaces with a multicomponent aqueous composition |
US8807067B2 (en) | 2004-11-10 | 2014-08-19 | Chemetall Gmbh | Tool for the application of a repair coating to a metallic surface |
US8101014B2 (en) | 2004-11-10 | 2012-01-24 | Chemetall Gmbh | Process for coating metallic surfaces with a multicomponent aqueous composition |
US9879349B2 (en) | 2004-11-10 | 2018-01-30 | Chemetall Gmbh | Method for coating metallic surfaces with an aqueous composition |
US11142655B2 (en) | 2004-11-10 | 2021-10-12 | Chemetall Gmbh | Process for coating metallic surfaces with a multicomponent aqueous composition |
US9327315B2 (en) | 2004-11-10 | 2016-05-03 | Chemetall Gmbh | Process for producing a repair coating on a coated metallic surface |
US20070298174A1 (en) * | 2004-11-10 | 2007-12-27 | Thoma Kolberg | Method For Coating Metallic Surfaces With An Aqueous Composition |
US9254507B2 (en) | 2004-11-10 | 2016-02-09 | Chemetall Gmbh | Process for producing a repair coating on a coated metallic surface |
US8182874B2 (en) | 2004-11-10 | 2012-05-22 | Chemetall Gmbh | Method for coating metallic surfaces with an aqueous composition |
US8409661B2 (en) | 2004-11-10 | 2013-04-02 | Chemetall Gmbh | Process for producing a repair coating on a coated metallic surface |
US10888896B2 (en) | 2005-01-21 | 2021-01-12 | The Boeing Company | Activation method using modifying agent |
US9909020B2 (en) | 2005-01-21 | 2018-03-06 | The Boeing Company | Activation method using modifying agent |
US20080050598A1 (en) * | 2005-01-21 | 2008-02-28 | Bateman Stuart A | Activation method using modifying agent |
US20060233958A1 (en) * | 2005-03-23 | 2006-10-19 | Shin-Etsu Chemical Co., Ltd. | Non-chromate aqueous metal surface treating composition, surface-treated steel, painted steel, steel surface treatment method, and painted steel preparing method |
US7638172B2 (en) | 2005-03-23 | 2009-12-29 | Shin-Etsu Chemical Co., Ltd. | Non-chromate aqueous metal surface treating composition, surface-treated steel, painted steel, steel surface treatment method, and painted steel preparing method |
US8784991B2 (en) | 2005-04-04 | 2014-07-22 | Chemetall Gmbh | Process for coating metallic surfaces with an aqueous composition, and this composition |
US20110189488A1 (en) * | 2005-04-04 | 2011-08-04 | Thomas Kolberg | Process for coating metallic surfaces with an aqueous composition, and this composition |
US20080138615A1 (en) * | 2005-04-04 | 2008-06-12 | Thomas Kolberg | Method for Coating Metallic Surfaces with an Aqueous Composition and Said Composition |
US20070090329A1 (en) * | 2005-04-07 | 2007-04-26 | Su Shiu-Chin Cindy H | Storage stable composition of partial and/or complete condensate of hydrolyzable organofunctional silane |
US8609755B2 (en) | 2005-04-07 | 2013-12-17 | Momentive Perfomance Materials Inc. | Storage stable composition of partial and/or complete condensate of hydrolyzable organofunctional silane |
US20060228470A1 (en) * | 2005-04-07 | 2006-10-12 | General Electric Company | No-rinse pretreatment methods and compositions |
US10041176B2 (en) | 2005-04-07 | 2018-08-07 | Momentive Performance Materials Inc. | No-rinse pretreatment methods and compositions |
US8119239B2 (en) * | 2005-08-19 | 2012-02-21 | Nippon Paint Co., Ltd. | Surface-conditioning composition comprising metal phosphate particles, metal alkoxide and stabilizer, and method of production thereof |
US20090035577A1 (en) * | 2005-08-19 | 2009-02-05 | Nippon Paint Co. Ltd. | Surface-conditioning composition, method for production thereof, and surface conditioning method |
US20070048550A1 (en) * | 2005-08-26 | 2007-03-01 | Millero Edward R | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US20070193978A1 (en) * | 2006-02-17 | 2007-08-23 | Samsung Electronics Co., Ltd. | Methods for forming banks and organic thin film transistors comprising such banks |
US8614441B2 (en) | 2006-02-17 | 2013-12-24 | Samsung Electronics Co., Ltd. | Methods for forming banks and organic thin film transistors comprising such banks |
US8476103B2 (en) | 2006-02-17 | 2013-07-02 | Samsung Electronics Co., Ltd. | Methods of fabricating organic thin film transistors |
US8323875B2 (en) * | 2006-02-17 | 2012-12-04 | Samsung Electronics Co., Ltd. | Methods for forming banks and organic thin film transistors comprising such banks |
US8993119B2 (en) | 2006-04-19 | 2015-03-31 | Ropal Europe Ag | Process for producing a corrosion-protected and high-gloss substrate |
US20100075172A1 (en) * | 2006-04-19 | 2010-03-25 | Ropal Ag | Process for producing a corrosion-protected and high-gloss substrate |
EP1918418A1 (en) * | 2006-10-27 | 2008-05-07 | Corus UK Limited | Method of coating a substrate |
US20100062200A1 (en) * | 2007-03-09 | 2010-03-11 | Heribert Domes | Method for coating metal surfaces using an aqueous compound having polymers, the aqueous compound, and use of the coated substrates |
US8936836B2 (en) * | 2007-03-09 | 2015-01-20 | Chemetall Gmbh | Method for coating metal surfaces using an aqueous compound having polymers, the aqueous compound, and use of the coated substrates |
US11066750B2 (en) * | 2007-08-27 | 2021-07-20 | Momentive Performance Materials Inc. | Metal corrosion inhibition |
WO2009046270A1 (en) * | 2007-10-06 | 2009-04-09 | E. I. Du Pont De Nemours And Company | Electrodepositable composition |
US20110162973A1 (en) * | 2007-10-06 | 2011-07-07 | E. I. Du Pont De Nemours And Company | Electrodepositable composition |
US8362139B2 (en) | 2007-10-06 | 2013-01-29 | E I Du Pont De Nemours And Company | Electrodepositable composition |
US20110160387A1 (en) * | 2008-09-25 | 2011-06-30 | E.I. Du Pont De Nemours And Company | Electrodepositable composition |
US20100178351A1 (en) * | 2009-01-09 | 2010-07-15 | Shin-Etsu Chemical Co., Ltd | Hydrophilized substrate, dispersion, and making method |
US8865247B2 (en) * | 2009-12-18 | 2014-10-21 | Ethicon, Inc. | Needle coating formulation having lubricity and durability |
US20110152926A1 (en) * | 2009-12-18 | 2011-06-23 | Robert Vetrecin | Needle coating formulation having lubricity and durability |
US20140017409A1 (en) * | 2011-03-30 | 2014-01-16 | Mahindra & Mahindra Limited | Corrosion resistance passivation formulation and process of preparation thereof |
CN104831285A (en) * | 2015-04-10 | 2015-08-12 | 蚌埠市时代电子有限公司 | Multifunctional metal surface treatment agent |
CN104818470A (en) * | 2015-04-10 | 2015-08-05 | 蚌埠市时代电子有限公司 | Organic amine corrosion inhibition metal surface treatment agent |
CN104818471A (en) * | 2015-04-10 | 2015-08-05 | 蚌埠市时代电子有限公司 | Sericin rare-earth metal surface treatment agent |
CN104818479A (en) * | 2015-04-10 | 2015-08-05 | 蚌埠市时代电子有限公司 | Copper and copper alloy dedicated metal surface treatment agent |
CN104818475A (en) * | 2015-04-10 | 2015-08-05 | 蚌埠市时代电子有限公司 | Lubricating metal surface treatment agent |
CN104818477A (en) * | 2015-04-10 | 2015-08-05 | 蚌埠市时代电子有限公司 | Antibacterial anticorrosive metal surface treatment agent |
CN104818472A (en) * | 2015-04-10 | 2015-08-05 | 蚌埠市时代电子有限公司 | Ferrous metal surface treatment agent |
US20220185556A1 (en) * | 2020-12-11 | 2022-06-16 | Sonoco Development Inc. | Sustainable barrer containers and methods |
US11884466B2 (en) * | 2020-12-11 | 2024-01-30 | Sonoco Development, Inc. | Sustainable barrer containers and methods |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2517057C (en) | Process for coating metallic surfaces with a silane-rich composition | |
DE10308237B4 (en) | Process for coating metallic surfaces, associated composition and their use | |
AU2002215009B2 (en) | Method for coating metallic surfaces with an aqueous composition, the aqueous composition and use of the coated substrates | |
CA2426081C (en) | Method for pretreating and/or coating metallic surfaces with a paint-like coating prior to forming and use of substrates coated in this way | |
US20060093755A1 (en) | Method for pretreating and coating metal surfaces, prior to forming, with a paint-like coating and use of the substrates thus coated | |
CA2680242A1 (en) | Process for coating metallic surfaces with an aqueous, polymer-containing composition, the aqueous composition and use of the coated substrates | |
DE10332744A1 (en) | Metal (pre)treatment, used for wire, strip, sheet or part, including tube, profile or small part, uses aqueous composition containing water-soluble, hydrolysable or/and (partly) hydrolyzed fluorine-free silane and fluorosilane compounds | |
ZA200302123B (en) | Method for pretreating and coating metal surfaces, prior to forming, with a paint-like coating and use of substrates so coated. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CHEMETALL GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOMES, HERIBERT;SCHNEIDER, JULIA;REEL/FRAME:016964/0597 Effective date: 20050928 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |