JP4834195B2 - Metal surface treatment composition - Google Patents

Metal surface treatment composition Download PDF

Info

Publication number
JP4834195B2
JP4834195B2 JP2001207235A JP2001207235A JP4834195B2 JP 4834195 B2 JP4834195 B2 JP 4834195B2 JP 2001207235 A JP2001207235 A JP 2001207235A JP 2001207235 A JP2001207235 A JP 2001207235A JP 4834195 B2 JP4834195 B2 JP 4834195B2
Authority
JP
Japan
Prior art keywords
weight
compound
parts
surface treatment
metal surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001207235A
Other languages
Japanese (ja)
Other versions
JP2003027254A (en
Inventor
正博 村田
多佳士 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2001207235A priority Critical patent/JP4834195B2/en
Priority to CN 02141165 priority patent/CN1239649C/en
Priority to TW91115063A priority patent/TWI226385B/en
Publication of JP2003027254A publication Critical patent/JP2003027254A/en
Application granted granted Critical
Publication of JP4834195B2 publication Critical patent/JP4834195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、従来のクロム酸塩処理及びりん酸塩処理に替わる、加工性、耐食性、上塗塗装性等に優れた皮膜を得ることのできる無公害型の金属表面処理組成物に関し、また、該金属表面処理組成物を塗布した、特に、家電、建材、自動車等の分野で利用される表面処理亜鉛系メッキ鋼板に関する。
【0002】
【従来の技術およびその課題】
従来、金属表面の耐食性を向上させるためクロム酸塩処理及びリン酸塩処理が一般に行われている。しかしながら近年クロムの毒性が社会問題になっている。クロム酸塩を使用する表面処理方法は、処理工程でのクロム酸塩ヒュ−ムの飛散の問題、排水処理設備に多大な費用を要すること、さらには化成処理皮膜からクロム酸の溶出による問題などがある。また6価クロム化合物は、IARC(International Agency for Research on Cancer Review)を初めとして多くの公的機関が人体に対する発癌性物質に指定しており、極めて有害な物質である。
【0003】
またリン酸塩処理では、リン酸亜鉛系、リン酸鉄系の表面処理が通常行われているが、耐食性を付与する目的でリン酸塩処理後、通常クロム酸によるリンス処理を行うためクロム処理の問題とともにリン酸塩処理剤中の反応促進剤、金属イオンなどの排水処理、被処理金属からの金属イオンの溶出によるスラッジ処理などの問題がある。
【0004】
クロム酸塩及びリン酸塩処理以外の表面処理として、例えば冷延鋼板や亜鉛メッキ鋼板に、亜硝酸ナトリウム、硼酸ナトリウム、イミダゾ−ル、芳香族カルボン酸、界面活性剤等を単独もしくはこれらを組合わせて使用して処理することが行われているが、いずれも冷水中や大気中での防錆効果はあるものの高温多湿の雰囲気に暴露された場合の防錆力が劣り、特に亜鉛メッキ鋼板に処理した場合にはその効果が劣っている。
【0005】
従来、防錆剤としてピラゾ−ル化合物が知られている(特公昭43−11531号、特公昭44−25446号公報参照)。さらにこれに気化性防錆剤、例えばシクロヘキシルアンモニウムナイトライトやジイソプロピルアンモニウムナイトライトなどの有機亜硝酸塩を添加した水溶性防錆剤が知られている(特公昭44−33132号公報参照)。さらにピラゾ−ル化合物とスベリン酸、アゼライン酸、アジピン酸、セバチン酸、ブラシリン酸等の1種又は2種以上の脂肪族ジカルボン酸との混合物の水溶液をアンモニア水、アミン等でpH7〜8に調整後、これに水溶性樹脂及び界面活性剤を加えて使用することも知られている(特公昭61−44592号公報参照)。
【0006】
上記のようなクロム酸塩及びリン酸塩処理以外の表面処理がなされたものは、表面処理剤を塗布乾燥後アルカリ処理を行なうと、防錆力が著しく低下してしまう傾向にある。
【0007】
本発明の目的は、クロム酸塩処理及びリン酸塩処理に匹敵する防錆力を持つ無公害型の表面処理組成物を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意検討した結果、カルボキシル基含有ウレタン樹脂にシリカ粒子、アジリジニル基又はオキサゾリン基含有化合物、バナジン酸化合物及びジルコニウム化合物を含有する塗液を金属板に塗布して乾燥した皮膜が、従来のクロム酸塩処理と同等の耐食性と上塗塗装性を示すことを見出し、本発明を完成するに至った。
【0009】
即ち本発明は、(A)樹脂酸価5〜50のカルボキシル基含有ウレタン樹脂100重量部に対し、(B)シリカ粒子 1〜100重量部、(C)アジリジニル基又はオキサゾリン基含有化合物 1〜100重量部、(D)バナジン酸化合物0.5〜30重量部、及び(E)ジルコニウム化合物 0.5〜30重量部を含有することを特徴とする金属表面処理組成物、樹脂酸価5〜50のカルボキシル基含有ウレタン樹脂(A)100重量部とシリカ粒子(B)1〜100重量部とをアルコキシシラン化合物の存在化水中で反応させてなる有機複合シリケート(F)に対し、(C)アジリジニル基又はオキサゾリン基含有化合物 1〜100重量部、(D)バナジン酸化合物 0.5〜30重量部、及び(E)ジルコニウム化合物 0.5〜30重量部を含有することを特徴とする金属表面処理組成物、及びこの組成物を塗布してなる表面処理鋼板に関する。
【0010】
【発明の実施の形態】
本発明の金属表面処理組成物は、カルボキシル基含有ウレタン樹脂(A)、シリカ粒子(B)、アジリジニル基又はオキサゾリン基含有化合物(C)、バナジン酸化合物(D)及びジルコニウム化合物(E)を含有してなるもの、又は、樹脂酸価5〜50のカルボキシル基含有ウレタン樹脂(A)とシリカ粒子(B)とをアルコキシシラン化合物の存在化、水中で反応させてなる有機複合シリケート(F)に対し、アジリジニル基又はオキサゾリン基含有化合物(C)、バナジン酸化合物(D)及びジルコニウム化合物(E)を添加してなるものである。
【0011】
カルボキシル基含有ウレタン樹脂(A)
本発明の金属表面処理組成物の(A)成分であるカルボキシル基含有ウレタン樹脂は、カルボキシル基を含有するウレタン樹脂であり、水中に安定に分散できるものであれば特に制限はなく、該カルボキシル基の一部又は全部が中和剤で中和されていてもよい。カルボキシル基含有ウレタン樹脂の合成方法は従来公知のものを用いればよく、例えば、ジオールとジイソシアネートからなるプレポリマーに、ジアミノフェニルカルボン酸を反応させる方法、ジオールとジイソシアネートからなるプレポリマーに、ジメチロールプロピオン酸等のポリヒドロキシカルボン酸を反応させる方法、カルボキシル基を含有したポリエステルポリオール、アクリルポリオールなどのカルボキシル基含有ポリオール樹脂とポリソシアネートとを反応させる方法などを挙げることができ、必要に応じてカルボキシル基の一部又は全部を中和剤にて中和し、水に分散する。さらに、水に分散したウレタン樹脂にジオール、ジアミン等の鎖延長剤を加えて高分子化させる方法もあり、液安定性を増すことができる。また、カチオン系、アニオン系及びノニオン系の乳化剤を用いてカルボキシル基含有ウレタン樹脂を強制乳化させる方法を用いてもよいが、一般に乳化剤は得られる塗膜の耐水性を低下させるため、水分散化を助ける補助手段として用いることが好ましい。
【0012】
上記ポリウレタン系樹脂の合成に使用できるポリイソシアネートとしては、例えばヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートの如き脂肪族ジイソシアネート類;水素添加キシリレンジイソシアネート、イソホロンジイソシアネートの如き環状脂肪族ジイソシアネート類;トリレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネートの如き芳香族ジイソシアネート類;トリフェニルメタン−4,4′,4″−トリイソシアネート、1,3,5−トリイソシアナトベンゼン、2,4,6−トリイソシアナトトルエン、4,4′−ジメチルジフェニルメタン−2,2′,5,5′−テトライソシアネートなどの3個以上のイソシアネ−ト基を有するポリイソシアネート化合物の如き有機ポリイソシアネートそれ自体、またはこれらの各有機ポリイソシアネートと多価アルコール、低分子量ポリエステル樹脂もしくは水等との付加物、あるいは上記した各有機ポリイソシアネート同志の環化重合体、更にはイソシアネート・ビウレット体等を挙げることができる。
【0013】
上記ポリウレタン系樹脂の合成に使用できるポリオールとしては、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチレングリコール、テトラエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,4−ブタンジオール、1,3−ブタンジオール、2,3−ブタンジオール、1,2−ブタンジオール、3−メチル−1,2−ブタンジオール、1,2−ペンタンジオール、1,5−ペンタンジオール、1,4−ペンタンジオール、2,4−ペンタンジオール、2,3−ジメチルトリメチレングリコール、テトラメチレングリコール、3−メチル−4,3−ペンタンジオール、3−メチル−4,5−ペンタンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、1,6−ヘキサンジオール、1,5−ヘキサンジオール、1,4−ヘキサンジオール、2,5−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ネオペンチルグリコール、ヒドロキシピヴァリン酸ネオペンチルグリコールエステルなどのグリコール類;これらのグリコール類にε−カプロラクトンなどのラクトン類を付加したポリラクトンジオール、ビス(ヒドロキシエチル)テレフタレートなどのポリエステルジオール類;ビスフェノールAのアルキレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールなどのポリエーテルジオール類などが挙げられる。
上記カルボキシル基含有ポリウレタン系樹脂の市販品としては、スーパーフレックス90、同110、同130、同420、同600、同F−8239D(以上、第1工業製薬社製)、Bayhydrol D270、同LS2056、同LS2235(以上、住友バイエルウレタン社製)、アデカボンタイターHUX−232、同HUX−240、同HUV−260、同HUX−320、同HUX−350、同HUX−380、同HUX−381、同HUX−380A、同HUX−386、同HUX−401、同HUX−670(以上、旭電化工業社製)などが挙げられる。
【0014】
上記中和剤としては、例えば、水酸化リチウム、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物;アンモニア、モルホリン、トリエチルアミン及びジメチルエタノ−ルアミンなどが挙げられ、特にアンモニア及び低級アミンが好適である。
【0015】
シリカ粒子(B)
本発明の金属表面処理組成物における(B)成分であるシリカ粒子は、密着性、耐食性の向上に寄与するものであり、粒径が5〜100nm、好ましくは5〜50nmのシリカ粒子であり、気相法シリカ、粉砕シリカ、水分散性コロイダルシリカなど、いずれのシリカ粒子であってもよい。水分散性コロイダルシリカの市販品としては、例えば、スノ−ッテクスN、スノ−ッテクスC、スノ−ッテクスO(いずれも日産化学社製)等が挙げられ、その他のシリカ粒子の市販品としては、例えば、AEROSIL200V、同R−811(日本アエロジル社製)等が挙げられる。
【0016】
シリカ粒子(B)の添加量はカルボキシル基含有ウレタン樹脂(A)100重量部に対し1〜100重量部、好ましくは5〜50重量部の範囲内が防錆効果、造膜性、貯蔵性などの点から適している。
【0017】
有機複合シリケート(F)
本発明の金属表面処理組成物において、カルボキシル基含有ウレタン樹脂(A)とシリカ粒子(B)はそのまま使用することができるが、(A)と(B)とを水中にてアルコキシシラン化合物の存在下で反応させてなる有機複合シリケート(F)をかわりに使用することもできる。
【0018】
上記アルコキシシラン化合物としては、ジビニルジメトキシシラン、ジビニルジ−β−メトキシエトキシシラン、ジ(γ−グリシドキシプロピル)ジメトキシシラン、N−β(アミノエチル)γ−プロピルメチルジメトキシシラン、などのジアルコキシシラン;ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシランなどのトリアルコキシシランなどを挙げることができる。これらのうち特にトリアルコキシシランを好適に使用することができる。
【0019】
アルコキシシラン化合物は、カルボキシル基含有ウレタン樹脂(A)とシリカ粒子(B)との複合化反応における触媒として機能するとともに、両者の架橋剤として重要な役割を果たすものである。アルコキシシラン化合物は、カルボキシル基含有ウレタン樹脂(A)とシリカ粒子(B)との固形分の合計100重量部に対して、通常、0.5〜10重量部の配合割合で使用される。
【0020】
有機複合シリケートを製造するには、例えば、カルボキシル基含有ウレタン樹脂(A)とシリカ粒子(B)との水性分散液にアルコキシシラン化合物を撹拌、混合する。この混合液を常温下で熟成することによって得ることができるが、この混合液を50℃以上、沸点以下の温度、好ましくは50〜90℃の温度で、0.5〜5時間程度加熱することによって好適に行うことができる。
【0021】
アジリジニル基又はオキサゾリン基含有化合物(C)
本発明の金属表面処理組成物における(C)成分であるアジリジニル基又はオキサゾリン基含有化合物は、金属表面処理組成物を基材に塗布、加熱乾燥する時点でウレタン樹脂(A)中のカルボキシル基と反応することにより、得られる皮膜中の残存カルボキシル基量を減じることができるため、防錆力を著しく向上させることができる。
【0022】
上記アジリジニル基含有化合物としては、例えば、ケミタイトPZ−33、同DZ−22(以上、日本触媒社製)などが挙げられる。
【0023】
上記オキサゾリン基含有化合物としては、例えば、エポクロスWS−500、同WS−700、同K−1010E、同K−1020E、同K−1030E、同K−2010E、同K−2020E、同K−2030E(以上、日本触媒社製)などが挙げられる。
【0024】
また、アジリジニル基含有化合物とオキサゾリン基含有化合物とを併用することもできる。
【0025】
カルボキシル基含有ウレタン樹脂(A)100重量部に対し、アジリジニル基又はオキサゾリン基含有化合物(C)の配合量は1〜100重量部、好ましくは2〜50重量部の範囲内が防錆効果の点で適している。
【0026】
バナジン酸化合物(D)
カルボキシル基含有ウレタン樹脂(A)の系にバナジン酸化合物を配合することにより、バナジン酸イオンが金属表面を不動態化し、被塗物の溶出を抑え、耐食性を向上させることができる。
【0027】
上記バナジン酸化合物としては、例えば、バナジン酸アンモニウム、バナジン酸ナトリウム、バナジン酸カリウム、無水バナジン酸などが挙げられるが、特にバナジン酸アンモニウムを使用することが、耐食性の点から好ましい。
【0028】
カルボキシル基含有ウレタン樹脂(A)100重量部に対し、バナジン酸化合物(D)の配合量は0.5〜30重量部、好ましくは1〜20重量部の範囲内が耐食性の点で適している。
【0029】
ジルコニウム化合物(E)
カルボキシル基含有ウレタン樹脂(A)の系にジルコニウム化合物(E)を配合することにより、金属表面を不動態化し、耐食性を向上させるが、さらにジルコニウム化合物(E)はバナジン酸化合物(D)の溶出を抑制する働きがあり、バナジン酸化合物(D)とジルコニウム化合物(E)を併用することで耐食性を著しく向上させることができる。
【0030】
上記ジルコニウム化合物としては、例えば、酸化ジルコニウム、水酸化ジルコニウム、硝酸ジルコニウム、酢酸ジルコニウム、炭酸ジルコニウムアンモン、ジルコニウム弗化水素酸、ジルコニウム弗化アンモニウム、ジルコニウム弗化ナトリウム、ジルコニウム弗化カリウム、ジルコニウム弗化リチウム、ジルコニウム弗化珪素などが挙げられるが、中でもジルコニウム弗化アンモニウムが貯蔵性などの点で好ましい。
【0031】
カルボキシル基含有ウレタン樹脂(A)100重量部に対し、ジルコニウム化合物(E)の配合量は0.5〜30重量部、好ましくは1〜20重量部の範囲内が耐食性の点で適している。
【0032】
また、上記バナジン酸化合物(D)及びジルコニウム化合物(E)にさらにピロリン酸ナトリウム、トリポリリン酸ナトリウム、テトラリン酸ナトリウム、メタリン酸、メタリン酸アンモニウム、ヘキサメタリン酸ナトリウムなどのリン酸系化合物を組み合わせることにより、さらに耐食性を向上させることができる。
【0033】
カルボキシル基含有ウレタン樹脂(A)100重量部に対し、リン酸系化合物の配合量は0.5〜30重量部、好ましくは1〜20重量部の範囲内が耐食性の点で適している。
【0034】
また、本発明組成物には必要に応じてカルボキシル基含有ウレタン樹脂以外の水性樹脂、例えば、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、カルボキシル基を含有しないウレタン樹脂などを添加することができる。これらの樹脂は、界面活性剤による乳化分散型、自己乳化型、水溶性型などいずれの形態のものであってもよい。
【0035】
本発明組成物には、さらに必要に応じて、チタンキレ−トなどのキレ−ト化剤;1,2,4−トリアゾ−ル、2−アリルチオ尿素、メラミン樹脂、尿素樹脂、ブロック化したポリイソシアネ−ト化合物などの架橋剤;アミン化合物などの中和剤;反応促進剤、増粘剤、消泡剤、有機溶剤などを適宜含有することができる。
【0036】
本発明組成物は、金属板に塗布することができ、特に亜鉛系メッキ鋼板に塗布して皮膜形成することによって耐食性及び上塗塗装性の優れた表面処理亜鉛系メッキ鋼板を得ることができる。
【0037】
上記亜鉛系メッキ鋼板としては、溶融亜鉛メッキ鋼板、電気亜鉛メッキ鋼板、鉄−亜鉛合金メッキ鋼板、ニッケル−亜鉛合金メッキ鋼板、アルミニウム−亜鉛合金メッキ鋼板(例えば「ガルバリウム」、「ガルファン」という商品名のメッキ鋼板)など、及びこれらの亜鉛系メッキ鋼板にリン酸亜鉛処理、クロメ−ト処理などの化成処理を施してなる化成処理亜鉛系メッキ鋼板などを挙げることができる。
【0038】
亜鉛系メッキ鋼板への本発明組成物の塗布量は、乾燥皮膜重量で0.2〜5g/m、好ましくは0.3〜2.5g/mの範囲内であることが耐食性の観点から適している。
【0039】
本発明組成物を亜鉛系メッキ鋼板に塗布し皮膜形成する場合、本発明組成物を水などの希釈剤で粘度を塗布量に応じて、例えば5〜20センチポイズ(cps)の範囲に適宜調整後、ロ−ルコ−タ塗装、スプレ−塗装、ディッピング塗装、ハケ塗り等の公知の方法により所定の皮膜重量となるように塗装した後、通常、雰囲気温度120〜330℃で10〜100秒間乾燥させればよい。このときの鋼板の最高到達温度(PMT、Peak Metal Temperature)は70〜150℃、好ましくは80〜130℃の範囲であることがカルボキシル基含有ウレタン樹脂(A)とアジリジニル基又はオキサゾリン基含有化合物とを有効に反応させるために適している。
【0040】
上記のようにして皮膜形成した亜鉛系メッキ鋼板の皮膜上へ、さらに上層皮膜を形成することができる。この上層皮膜形成性組成物は、目的に応じて適宜選定すればよく種々の皮膜形成性組成物を使用することができる。この皮膜形成性組成物としては、例えば、従来公知の防錆鋼板用途、耐指紋鋼板用途、潤滑鋼板用途、着色塗膜形成用途などに用いられる皮膜形成性組成物を挙げることができる。
【0041】
【実施例】
以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。なお、以下、「部」及び「%」はいずれも重量基準によるものとする。
【0042】
有機複合シリケートの製造
製造例1
固形分が20%になるよう脱イオン水で希釈したアデカボンタイターHUX232(旭電化工業社製、カルボキシル基含有ウレタン樹脂、酸価10〜15)320gをフラスコ中に仕込み、攪拌しながらスノーテックスN(日産化学工業社製、シリカ粒子、固形分20%)80gを徐々に滴下し、次いでビニルトリス(β−メトキシエトキシ)シラン1gを滴下混合した後、80℃で2時間反応させることにより固形分20%の有機複合シリケートを得た。
【0043】
金属表面処理組成物の作成
実施例1〜21及び比較例1〜11
後記表1に示す配合に従って混合、攪拌し各金属表面処理組成物を得た。なお、表1に示す配合は固形分重量配合である。
【0044】
試験塗板の作成
板厚0.6mm、メッキ付着量20g/mの電気亜鉛メッキ鋼板について、日本シービーケミカル社製のアルカリ脱脂剤[CC−561B](珪酸ソーダ3号相当品)を濃度2%の水分散液とし、液温65℃で69秒間スプレーして亜鉛メッキ鋼板表面を脱脂後、液温50℃のお湯で20秒間スプレーして湯洗を行なった。アルカリ脱脂した鋼板について上記実施例および比較例で作成した金属表面処理組成物を乾燥皮膜重量で0.8〜1g/mとなるよう塗布し、雰囲気温度290℃で10秒間(鋼板の最高到達温度110℃)乾燥して、各試験塗板を得た。
【0045】
各試験塗板について耐食性及び上塗り付着性を試験するとともに、金属表面処理組成物の貯蔵安定性について試験を行なった。試験方法及び評価基準について下記に示す。また、得られた結果について後記表1に示す。
【0046】
試験方法
耐食性:上記試験塗板及び試験塗板をアルカリ処理した塗板について、端面部及び裏面部をシールして、塩水噴霧試験(JIS Z−2371)に120時間供し、試験板表面の白錆発生状態を評価した。該アルカリ処理は試験塗板作成時の脱脂処理と同様、濃度2%の日本シービーケミカル社製のアルカリ脱脂剤[CC−561B](珪酸ソーダ3号相当品)水分散液を、液温65℃で69秒間スプレーして亜鉛メッキ鋼板表面を脱脂し、液温50℃のお湯で20秒間スプレーして湯洗を行なったものである。
◎:白錆の発生1%未満、
○:白錆の発生1%以上、5%未満
△:白錆の発生5%以上、20%未満
×:白錆の発生20%以上。
【0047】
上塗り付着性:上記試験塗板上に関西ペイント社製の熱硬化型アクリル樹脂系白色塗料[アミラック#1000ホワイト]を乾燥膜厚が30μmとなるように塗装し、130℃で20分間焼付けた。得られた上塗り塗装板、及び該上塗り塗装板を沸水で2時間煮沸処理した塗板について、JIS K−5400 8.5.2(1990)に準じて塗膜に1mm×1mmのゴバン目100個を作り、その表面に粘着セロハンテ−プを貼着し、急激に剥した後、剥離したゴバン目塗膜の数より以下の基準に従って評価した。
◎:上塗り皮膜の剥離が認められない、
○:1〜2個の上塗り塗膜の剥離が認められる、
△:3〜10個の上塗り塗膜の剥離が認められる、
×:11個以上の上塗り塗膜の剥離が認められる。
【0048】
貯蔵安定性:実施例及び比較例で得られた各金属表面処理組成物について、20℃と40℃の恒温室に各々2週間貯蔵し、貯蔵後の粘度変化について以下の基準で評価した。
◎:粘度変化がほとんど認められない、
○:わずかに粘度変化が認められるが、塗装に問題がない、
△:粘度変化が認められ、塗装に支障をきたす、
×:粘度変化が甚大で、塗装できない。
【0049】
【表1】

Figure 0004834195
【0050】
【表2】
Figure 0004834195
【0051】
表1における各註は下記の意味を有する。
※1:アデカボンタイターHUX232;旭電化工業社製、カルボキシル基含有ウレタン樹脂、酸価10〜15。
※2:アデカボンタイターHUX320;旭電化工業社製、カルボキシル基含有ウレタン樹脂、酸価10〜15。
※3:スーパーフレックス130;第1工業製薬社製、カルボキシル基含有ウレタン樹脂、酸価10〜15。
※4:アデカレジンEM−107;旭電化工業社製、水性エポキシ樹脂、酸価0。
※5:ポリゾールAP2666;昭和高分子社製、水性アクリル樹脂、酸価20〜30。
※6:スノーテックスN;日産化学社製、シリカ粒子。
※7:スノーテックスQ;日産化学社製、シリカ粒子。
※8:スノーテックスA;日産化学社製、シリカ粒子。
※9:ケミタイトPZ−33;日本触媒社製、アジリジニル基含有化合物、アジリジニル基当量150。
※10:ケミタイトDZ−22;日本触媒社製、アジリジニル基含有化合物、アジリジニル基当量170。
※11:エポクロスWS−500;日本触媒社製、オキサゾリン基含有化合物、オキサゾリン基当量220。
※12:エポクロスK−1030E;日本触媒社製、オキサゾリン基含有化合物、オキサゾリン基当量1100。
※13:エポクロスK−2030E;日本触媒社製、オキサゾリン基含有化合物、オキサゾリン基当量550。
【0052】
【発明の効果】
本発明組成物から得られる皮膜は、亜鉛系メッキ鋼板への密着性に優れており、6価クロム化合物を含有しなくても耐食性に優れている。従って、労働環境及び衛生上有害な6価クロム化合物を含有しないノンクロム表面処理剤として十分対応できるものである。
【0053】
さらに、本発明組成物から得られる皮膜を形成した亜鉛系メッキ鋼板の皮膜上へ、種々の目的に応じて上層皮膜形成性組成物を塗装し上層皮膜を形成することにより、耐食性、密着性に優れ、上記目的に応じた複層表面処理亜鉛系メッキ鋼板を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pollution-free metal surface treatment composition capable of obtaining a film excellent in processability, corrosion resistance, top coatability, etc., in place of conventional chromate treatment and phosphate treatment, The present invention relates to a surface-treated galvanized steel sheet coated with a metal surface treatment composition, and particularly used in the fields of home appliances, building materials, automobiles and the like.
[0002]
[Prior art and problems]
Conventionally, chromate treatment and phosphate treatment are generally performed to improve the corrosion resistance of metal surfaces. However, in recent years, the toxicity of chromium has become a social problem. The surface treatment method using chromate is a problem of scattering of chromate fume in the treatment process, a large amount of cost for wastewater treatment equipment, and further problems due to elution of chromic acid from the chemical conversion treatment film, etc. There is. Hexavalent chromium compounds are extremely harmful substances as many public institutions, including IARC (International Agency for Research on Cancer Review), have designated as carcinogenic substances for the human body.
[0003]
Also, in phosphate treatment, zinc phosphate and iron phosphate surface treatments are usually performed, but in order to provide corrosion resistance, chrome treatment is usually performed after phosphating for rinsing with chromic acid. In addition to the above problems, there are problems such as a reaction accelerator in the phosphate treatment agent, wastewater treatment of metal ions, and sludge treatment by elution of metal ions from the metal to be treated.
[0004]
As surface treatments other than the chromate and phosphate treatments, for example, cold-rolled steel sheets and galvanized steel sheets may be used alone or in combination with sodium nitrite, sodium borate, imidazole, aromatic carboxylic acid, surfactant, etc. Although they are used together and processed, both have rust prevention effect in cold water and air, but have poor rust prevention power when exposed to high temperature and humidity atmosphere, especially galvanized steel sheet The effect is inferior when processed to 1.
[0005]
Conventionally, pyrazole compounds have been known as rust inhibitors (see Japanese Patent Publication Nos. 43-11531 and 44-25446). Further, a water-soluble rust preventive agent to which an organic nitrite such as cyclohexyl ammonium nitrite or diisopropyl ammonium nitrite is added is known (see Japanese Patent Publication No. 44-33132). Furthermore, an aqueous solution of a mixture of a pyrazole compound and one or more aliphatic dicarboxylic acids such as suberic acid, azelaic acid, adipic acid, sebacic acid, and brassic acid is adjusted to pH 7-8 with aqueous ammonia, amine, etc. Later, it is also known to add a water-soluble resin and a surfactant to this (see Japanese Patent Publication No. 61-44592).
[0006]
Those subjected to surface treatments other than the chromate and phosphate treatments as described above have a tendency that the rust preventive power is remarkably lowered when the surface treatment agent is applied and dried and then subjected to alkali treatment.
[0007]
An object of the present invention is to provide a pollution-free surface treatment composition having a rust-preventing ability comparable to chromate treatment and phosphate treatment.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors applied a coating solution containing silica particles, aziridinyl group or oxazoline group-containing compound, vanadic acid compound and zirconium compound to a carboxyl group-containing urethane resin on a metal plate. Thus, the dried film was found to exhibit the same corrosion resistance and top coatability as the conventional chromate treatment, and the present invention was completed.
[0009]
That is, the present invention relates to (B) 1 to 100 parts by weight of (B) silica particles, (C) aziridinyl group or oxazoline group-containing compound to 100 parts by weight of (A) carboxyl group-containing urethane resin having a resin acid value of 5 to 50. A metal surface treatment composition comprising 5 parts by weight, (D) 0.5 to 30 parts by weight of a vanadic acid compound, and (E) 0.5 to 30 parts by weight of a zirconium compound, and a resin acid value of 5 to 50 The organic compound silicate (F) obtained by reacting 100 parts by weight of the carboxyl group-containing urethane resin (A) and 1 to 100 parts by weight of the silica particles (B) in the presence of the alkoxysilane compound in water, (C) aziridinyl Group or oxazoline group-containing compound 1 to 100 parts by weight, (D) vanadate compound 0.5 to 30 parts by weight, and (E) zirconium compound 0.5 to 30 parts by weight Metal surface treatment composition characterized in that it contains, and to a surface treated steel sheet obtained by coating the composition.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The metal surface treatment composition of the present invention contains a carboxyl group-containing urethane resin (A), silica particles (B), an aziridinyl group or oxazoline group-containing compound (C), a vanadate compound (D), and a zirconium compound (E). Or an organic composite silicate (F) obtained by reacting a carboxyl group-containing urethane resin (A) having a resin acid value of 5 to 50 and silica particles (B) in the presence of an alkoxysilane compound and in water. On the other hand, an aziridinyl group or oxazoline group-containing compound (C), a vanadic acid compound (D) and a zirconium compound (E) are added.
[0011]
Carboxyl group-containing urethane resin (A)
The carboxyl group-containing urethane resin as the component (A) of the metal surface treatment composition of the present invention is a urethane resin containing a carboxyl group, and is not particularly limited as long as it can be stably dispersed in water. A part or all of may be neutralized with a neutralizing agent. The synthesis method of the carboxyl group-containing urethane resin may be a conventionally known one, for example, a method of reacting a prepolymer composed of diol and diisocyanate with diaminophenylcarboxylic acid, a prepolymer composed of diol and diisocyanate, and dimethylolpropion. Examples include a method of reacting a polyhydroxycarboxylic acid such as an acid, a polyester polyol containing a carboxyl group, a method of reacting a carboxyl group-containing polyol resin such as an acrylic polyol and a polysocyanate. A part or all of the group is neutralized with a neutralizing agent and dispersed in water. Furthermore, there is also a method of polymerizing a urethane resin dispersed in water by adding a chain extender such as diol or diamine to increase the liquid stability. In addition, a method of forcibly emulsifying a carboxyl group-containing urethane resin using a cationic, anionic or nonionic emulsifier may be used, but in general, an emulsifier reduces water resistance of the resulting coating film, so that it is dispersed in water. It is preferably used as an auxiliary means for assisting.
[0012]
Examples of polyisocyanates that can be used for the synthesis of the polyurethane resin include aliphatic diisocyanates such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate; cyclic aliphatic diisocyanates such as hydrogenated xylylene diisocyanate and isophorone diisocyanate; Aromatic diisocyanates such as 4,4'-diphenylmethane diisocyanate; triphenylmethane-4,4 ', 4 "-triisocyanate, 1,3,5-triisocyanatobenzene, 2,4,6-triisocyanatotoluene Organic polyisocyanates such as polyisocyanate compounds having three or more isocyanate groups, such as 4,4'-dimethyldiphenylmethane-2,2 ', 5,5'-tetraisocyanate Anate itself, or an adduct of each of these organic polyisocyanates with a polyhydric alcohol, a low molecular weight polyester resin or water, or a cyclized polymer of each of the above organic polyisocyanates, and further an isocyanate / biuret, etc. Can be mentioned.
[0013]
Examples of the polyol that can be used for the synthesis of the polyurethane resin include ethylene glycol, propylene glycol, diethylene glycol, trimethylene glycol, tetraethylene glycol, triethylene glycol, dipropylene glycol, 1,4-butanediol, and 1,3-butane. Diol, 2,3-butanediol, 1,2-butanediol, 3-methyl-1,2-butanediol, 1,2-pentanediol, 1,5-pentanediol, 1,4-pentanediol, 2, 4-pentanediol, 2,3-dimethyltrimethylene glycol, tetramethylene glycol, 3-methyl-4,3-pentanediol, 3-methyl-4,5-pentanediol, 2,2,4-trimethyl-1, 3-pentanediol, 1,6-he Glycols such as sundiol, 1,5-hexanediol, 1,4-hexanediol, 2,5-hexanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, and hydroxypivalic acid neopentyl glycol ester; Polylactone diols obtained by adding lactones such as ε-caprolactone to these glycols, polyester diols such as bis (hydroxyethyl) terephthalate; alkylene oxide adducts of bisphenol A, polyethylene glycol, polypropylene glycol, polybutylene glycol, etc. And polyether diols.
Commercially available products of the carboxyl group-containing polyurethane resins include Superflex 90, 110, 130, 420, 600, F-8239D (above, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Bayhydrol D270, LS2056, LS2235 (manufactured by Sumitomo Bayer Urethane Co., Ltd.), Adekabon titer HUX-232, HUX-240, HUV-260, HUX-320, HUX-350, HUX-380, HUX-380, HUX-381, HUX-380A, HUX-386, HUX-401, HUX-670 (manufactured by Asahi Denka Kogyo Co., Ltd.) and the like.
[0014]
Examples of the neutralizing agent include alkali metal hydroxides such as lithium hydroxide, potassium hydroxide, and sodium hydroxide; ammonia, morpholine, triethylamine, dimethylethanolamine, and the like, and ammonia and lower amines are particularly preferable. It is.
[0015]
Silica particles (B)
The silica particles that are the component (B) in the metal surface treatment composition of the present invention contribute to improvement of adhesion and corrosion resistance, and are silica particles having a particle size of 5 to 100 nm, preferably 5 to 50 nm. Any silica particles such as vapor-phase process silica, pulverized silica, and water-dispersible colloidal silica may be used. Examples of commercially available water-dispersible colloidal silica include SNONOTEX N, SNOTTEX C, and SNOTTEX O (all manufactured by NISSAN CHEMICAL CO., LTD.). For example, AEROSIL200V, R-811 (manufactured by Nippon Aerosil Co., Ltd.) and the like can be mentioned.
[0016]
The addition amount of the silica particles (B) is 1 to 100 parts by weight, preferably 5 to 50 parts by weight with respect to 100 parts by weight of the carboxyl group-containing urethane resin (A). It is suitable in terms of
[0017]
Organic composite silicate (F)
In the metal surface treatment composition of the present invention, the carboxyl group-containing urethane resin (A) and the silica particles (B) can be used as they are, but (A) and (B) are present in water in the presence of an alkoxysilane compound. An organic composite silicate (F) obtained by reacting below can be used instead.
[0018]
Examples of the alkoxysilane compound include dialkoxysilanes such as divinyldimethoxysilane, divinyldi-β-methoxyethoxysilane, di (γ-glycidoxypropyl) dimethoxysilane, and N-β (aminoethyl) γ-propylmethyldimethoxysilane. Vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-acryloyloxypropyltrimethoxysilane, β- (3,4- Examples include trialkoxysilanes such as epoxycyclohexyl) ethyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, and γ-aminopropyltriethoxysilane. Of these, trialkoxysilane can be particularly preferably used.
[0019]
The alkoxysilane compound functions as a catalyst in the complexing reaction between the carboxyl group-containing urethane resin (A) and the silica particles (B) and plays an important role as a crosslinking agent for both. The alkoxysilane compound is usually used at a blending ratio of 0.5 to 10 parts by weight with respect to a total of 100 parts by weight of the solid content of the carboxyl group-containing urethane resin (A) and the silica particles (B).
[0020]
In order to produce an organic composite silicate, for example, an alkoxysilane compound is stirred and mixed in an aqueous dispersion of a carboxyl group-containing urethane resin (A) and silica particles (B). The mixture can be obtained by aging at room temperature, but the mixture is heated at a temperature of 50 ° C. or higher and a boiling point or lower, preferably 50 to 90 ° C. for about 0.5 to 5 hours. Can be suitably performed.
[0021]
Aziridinyl group or oxazoline group-containing compound (C)
The aziridinyl group or oxazoline group-containing compound that is the component (C) in the metal surface treatment composition of the present invention is formed by applying the metal surface treatment composition to a substrate and heating and drying the carboxyl group in the urethane resin (A). By reacting, the amount of residual carboxyl groups in the resulting film can be reduced, so that the rust prevention power can be remarkably improved.
[0022]
Examples of the aziridinyl group-containing compound include Chemitite PZ-33 and DZ-22 (manufactured by Nippon Shokubai Co., Ltd.).
[0023]
Examples of the oxazoline group-containing compound include Epocross WS-500, WS-700, K-1010E, K-1020E, K-1030E, K-2010E, K-2020E, K-2030E ( As mentioned above, Nippon Shokubai Co., Ltd.) can be mentioned.
[0024]
An aziridinyl group-containing compound and an oxazoline group-containing compound can also be used in combination.
[0025]
The amount of the aziridinyl group or oxazoline group-containing compound (C) is 1 to 100 parts by weight, preferably 2 to 50 parts by weight, based on 100 parts by weight of the carboxyl group-containing urethane resin (A). Suitable for.
[0026]
Vanadic acid compound (D)
By blending a vanadic acid compound into the carboxyl group-containing urethane resin (A), vanadate ions passivate the metal surface, suppress elution of the object to be coated, and improve corrosion resistance.
[0027]
Examples of the vanadic acid compound include ammonium vanadate, sodium vanadate, potassium vanadate, and anhydrous vanadic acid, and it is particularly preferable to use ammonium vanadate from the viewpoint of corrosion resistance.
[0028]
The amount of the vanadic acid compound (D) is 0.5 to 30 parts by weight, preferably 1 to 20 parts by weight based on 100 parts by weight of the carboxyl group-containing urethane resin (A) in terms of corrosion resistance. .
[0029]
Zirconium compound (E)
By compounding the zirconium compound (E) with the carboxyl group-containing urethane resin (A), the metal surface is passivated and the corrosion resistance is improved, but the zirconium compound (E) is further eluted from the vanadic acid compound (D). Corrosion resistance can be remarkably improved by using the vanadic acid compound (D) and the zirconium compound (E) in combination.
[0030]
Examples of the zirconium compound include zirconium oxide, zirconium hydroxide, zirconium nitrate, zirconium acetate, zirconium carbonate ammonium, zirconium hydrofluoric acid, zirconium ammonium fluoride, zirconium zirconium fluoride, zirconium potassium fluoride, zirconium lithium fluoride. Zirconium silicon fluoride, and the like. Among them, zirconium ammonium fluoride is preferable from the viewpoint of storability.
[0031]
The amount of zirconium compound (E) is 0.5 to 30 parts by weight, preferably 1 to 20 parts by weight based on 100 parts by weight of the carboxyl group-containing urethane resin (A) in terms of corrosion resistance.
[0032]
Further, by combining the vanadic acid compound (D) and the zirconium compound (E) with a phosphoric acid compound such as sodium pyrophosphate, sodium tripolyphosphate, sodium tetraphosphate, metaphosphoric acid, ammonium metaphosphate, sodium hexametaphosphate, Furthermore, corrosion resistance can be improved.
[0033]
The blending amount of the phosphoric acid compound with respect to 100 parts by weight of the carboxyl group-containing urethane resin (A) is 0.5 to 30 parts by weight, preferably 1 to 20 parts by weight in terms of corrosion resistance.
[0034]
Moreover, aqueous resin other than a carboxyl group-containing urethane resin, for example, an acrylic resin, an epoxy resin, a polyester resin, a urethane resin not containing a carboxyl group, and the like can be added to the composition of the present invention as necessary. These resins may be in any form such as an emulsion-dispersed type using a surfactant, a self-emulsifying type, and a water-soluble type.
[0035]
In the composition of the present invention, if necessary, a chelating agent such as titanium chelate; 1,2,4-triazole, 2-allylthiourea, melamine resin, urea resin, blocked polyisocyanate A crosslinking agent such as a compound; a neutralizing agent such as an amine compound; a reaction accelerator, a thickener, an antifoaming agent, an organic solvent, and the like can be appropriately contained.
[0036]
The composition of the present invention can be applied to a metal plate, and in particular, a surface-treated zinc-based plated steel sheet having excellent corrosion resistance and top coatability can be obtained by coating on a zinc-based plated steel sheet to form a film.
[0037]
Examples of the galvanized steel sheet include hot dip galvanized steel sheet, electrogalvanized steel sheet, iron-zinc alloy plated steel sheet, nickel-zinc alloy plated steel sheet, and aluminum-zinc alloy plated steel sheet (for example, “Galvalium”, “Gulfan”). And zinc-plated steel sheets obtained by subjecting these zinc-plated steel sheets to chemical conversion treatment such as zinc phosphate treatment and chromate treatment.
[0038]
The coating amount of the composition of the present invention to zinc-plated steel sheet, dry film weight at 0.2-5 g / m 2, preferably in view of corrosion resistance in the range of 0.3~2.5g / m 2 Suitable from
[0039]
When the composition of the present invention is applied to a galvanized steel sheet to form a film, the viscosity of the composition of the present invention is appropriately adjusted to a range of, for example, 5 to 20 centipoise (cps) with a diluent such as water depending on the coating amount. After coating to a predetermined film weight by a known method such as roll coater coating, spray coating, dipping coating or brush coating, it is usually dried at an ambient temperature of 120 to 330 ° C. for 10 to 100 seconds. Just do it. The maximum reached temperature (PMT, Peak Metal Temperature) of the steel plate at this time is in the range of 70 to 150 ° C., preferably 80 to 130 ° C., and the carboxyl group-containing urethane resin (A) and the aziridinyl group or oxazoline group-containing compound It is suitable for reacting effectively.
[0040]
An upper layer film can be further formed on the film of the zinc-based plated steel sheet formed as described above. The upper layer film-forming composition may be appropriately selected according to the purpose, and various film-forming compositions can be used. Examples of the film-forming composition include film-forming compositions used for conventionally known rust-proof steel sheet applications, fingerprint-resistant steel sheet applications, lubricating steel sheet applications, colored coating film formation applications, and the like.
[0041]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Hereinafter, both “parts” and “%” are based on weight.
[0042]
Production of organic composite silicate Production Example 1
Adekabon titer HUX232 (manufactured by Asahi Denka Kogyo Co., Ltd., carboxyl group-containing urethane resin, acid value 10-15) diluted with deionized water to a solid content of 20% was charged into the flask and Snowtex N was stirred. 80 g of Nissan Chemical Industries, Ltd. (silica particles, solid content 20%) was gradually added dropwise, then 1 g of vinyltris (β-methoxyethoxy) silane was added dropwise, and then reacted at 80 ° C. for 2 hours to obtain a solid content of 20 % Organic composite silicate was obtained.
[0043]
Preparation of metal surface treatment compositions Examples 1-21 and Comparative Examples 1-11
Each metal surface treatment composition was obtained by mixing and stirring according to the formulation shown in Table 1 below. In addition, the mixing | blending shown in Table 1 is a solid content weight mixing | blending.
[0044]
Preparation of test coating plate For electrogalvanized steel sheet with a plate thickness of 0.6 mm and a coating weight of 20 g / m 2 , an alkaline degreasing agent [CC-561B] (corresponding to sodium silicate 3) manufactured by Nippon CB Chemical Co., Ltd. Was sprayed at a liquid temperature of 65 ° C. for 69 seconds to degrease the surface of the galvanized steel sheet, and then sprayed with hot water at a liquid temperature of 50 ° C. for 20 seconds to perform hot water washing. The metal surface treatment compositions prepared in the above examples and comparative examples were applied to the alkaline degreased steel sheet so that the dry film weight was 0.8 to 1 g / m 2, and the atmosphere temperature was 290 ° C. for 10 seconds (the maximum achievement of the steel sheet). Each test coated plate was obtained by drying at a temperature of 110 ° C.
[0045]
Each test coated plate was tested for corrosion resistance and topcoat adhesion, and tested for the storage stability of the metal surface treatment composition. The test method and evaluation criteria are shown below. The obtained results are shown in Table 1 below.
[0046]
Test method Corrosion resistance: The test plate and the test plate coated with alkali were subjected to a salt spray test (JIS Z-2371) for 120 hours after sealing the end surface and the back surface, and the test plate surface was white. The state of rust generation was evaluated. The alkali treatment is similar to the degreasing treatment at the time of preparation of the test coating plate. An alkaline degreasing agent [CC-561B] (equivalent to sodium silicate No. 3) aqueous dispersion made by Nippon Seabee Chemical Co., with a concentration of 2% is used at a liquid temperature of 65 ° C. The surface of the galvanized steel sheet was degreased by spraying for 69 seconds and sprayed with hot water having a liquid temperature of 50 ° C. for 20 seconds to perform hot water washing.
A: Generation of white rust is less than 1%,
○: Generation of white rust 1% or more, less than 5% Δ: Generation of white rust 5% or more, less than 20% ×: Generation of white rust 20% or more.
[0047]
Top coat adhesion: A thermosetting acrylic resin-based white paint [Amirac # 1000 White] manufactured by Kansai Paint Co., Ltd. was applied on the test coating plate so as to have a dry film thickness of 30 μm and baked at 130 ° C. for 20 minutes. About the obtained top coat board and the coat board which boiled this top coat board with boiling water for 2 hours, according to JIS K-5400 8.5.2 (1990), 100 pieces of 1 mm x 1 mm govan eyes are applied to the coating film. The adhesive cellophane tape was attached to the surface, peeled off rapidly, and then evaluated according to the following criteria from the number of peeled gobang eyes coatings.
A: No peeling of the top coat film is observed,
○: Peeling of one or two top coat films is observed,
(Triangle | delta): Peeling of 3-10 top coat films is recognized,
X: Peeling of 11 or more top coat films is observed.
[0048]
Storage stability: Each metal surface treatment composition obtained in Examples and Comparative Examples was stored in a thermostatic chamber at 20 ° C. and 40 ° C. for 2 weeks, and the viscosity change after storage was evaluated according to the following criteria.
A: Viscosity change is hardly recognized,
○: A slight change in viscosity is observed, but there is no problem in painting.
△: Viscosity change is observed, which hinders painting.
X: Viscosity change is enormous and cannot be painted.
[0049]
[Table 1]
Figure 0004834195
[0050]
[Table 2]
Figure 0004834195
[0051]
Each bag in Table 1 has the following meaning.
* 1: Adekabon titer HUX232; manufactured by Asahi Denka Kogyo Co., Ltd., carboxyl group-containing urethane resin, acid value 10-15.
* 2: Adekabon titer HUX320; manufactured by Asahi Denka Kogyo Co., Ltd., carboxyl group-containing urethane resin, acid value of 10-15.
* 3: Superflex 130; manufactured by Daiichi Kogyo Seiyaku Co., Ltd., carboxyl group-containing urethane resin, acid value 10-15.
* 4: Adeka Resin EM-107; manufactured by Asahi Denka Kogyo Co., Ltd., water-based epoxy resin, acid value 0.
* 5: Polysol AP2666; manufactured by Showa Polymer Co., Ltd., water-based acrylic resin, acid value 20-30.
* 6: Snowtex N; manufactured by Nissan Chemical Co., Ltd., silica particles.
* 7: Snowtex Q; manufactured by Nissan Chemical Co., Ltd., silica particles.
* 8: Snowtex A; manufactured by Nissan Chemical Co., Ltd., silica particles.
* 9: Chemitite PZ-33; manufactured by Nippon Shokubai Co., Ltd., aziridinyl group-containing compound, aziridinyl group equivalent 150.
* 10: Chemitite DZ-22; manufactured by Nippon Shokubai Co., Ltd., aziridinyl group-containing compound, aziridinyl group equivalent 170.
* 11: Epocross WS-500; manufactured by Nippon Shokubai Co., Ltd., oxazoline group-containing compound, oxazoline group equivalent 220.
* 12: Epocros K-1030E; manufactured by Nippon Shokubai Co., Ltd., oxazoline group-containing compound, oxazoline group equivalent 1100.
* 13: Epocross K-2030E; manufactured by Nippon Shokubai Co., Ltd., oxazoline group-containing compound, oxazoline group equivalent 550.
[0052]
【The invention's effect】
The film obtained from the composition of the present invention is excellent in adhesion to a zinc-based plated steel sheet and excellent in corrosion resistance even if it does not contain a hexavalent chromium compound. Therefore, it can sufficiently cope with a non-chromium surface treatment agent that does not contain a hexavalent chromium compound harmful to the working environment and hygiene.
[0053]
Furthermore, by coating the upper layer film-forming composition on the film of the zinc-based plated steel sheet on which the film obtained from the composition of the present invention is formed and forming the upper layer film according to various purposes, the corrosion resistance and adhesion are improved. A multi-layer surface-treated galvanized steel sheet excellent in accordance with the above purpose can be obtained.

Claims (5)

(A)樹脂酸価5〜50のカルボキシル基含有ウレタン樹脂100重量部に対し、
(B)シリカ粒子 1〜100重量部、
(C)アジリジニル基又はオキサゾリン基含有化合物 1〜100重量部、
(D)バナジン酸化合物 0.5〜30重量部、及び
(E)ジルコニウム化合物 0.5〜30重量部
を含有することを特徴とする金属表面処理組成物。
(A) With respect to 100 parts by weight of a carboxyl group-containing urethane resin having a resin acid value of 5 to 50,
(B) 1 to 100 parts by weight of silica particles,
(C) aziridinyl group or oxazoline group-containing compound 1 to 100 parts by weight,
(D) 0.5-30 weight part of vanadic acid compounds and (E) zirconium compound 0.5-30 weight part are contained, The metal surface treatment composition characterized by the above-mentioned.
樹脂酸価5〜50のカルボキシル基含有ウレタン樹脂(A)100重量部とシリカ粒子(B)1〜100重量部とをアルコキシシラン化合物の存在化水中で反応させてなる有機複合シリケート(F)に対し、
(C)アジリジニル基又はオキサゾリン基含有化合物 1〜100重量部、
(D)バナジン酸化合物 0.5〜30重量部、及び
(E)ジルコニウム化合物 0.5〜30重量部
を含有することを特徴とする金属表面処理組成物。
An organic composite silicate (F) formed by reacting 100 parts by weight of a carboxyl group-containing urethane resin (A) having a resin acid value of 5 to 50 and 1 to 100 parts by weight of silica particles (B) in water containing an alkoxysilane compound. In contrast,
(C) aziridinyl group or oxazoline group-containing compound 1 to 100 parts by weight,
(D) 0.5-30 weight part of vanadic acid compounds and (E) zirconium compound 0.5-30 weight part are contained, The metal surface treatment composition characterized by the above-mentioned.
バナジン酸化合物がバナジン酸アンモニウムである請求項1又は2記載の金属表面処理組成物。The metal surface treatment composition according to claim 1 or 2, wherein the vanadate compound is ammonium vanadate. ジルコニウム化合物がジルコニウム弗化アンモニウムである請求項1〜3のいずれか1項に記載の金属表面処理組成物。The metal surface treatment composition according to any one of claims 1 to 3, wherein the zirconium compound is zirconium ammonium fluoride. 請求項1〜4のいずれか1項に記載の金属表面処理組成物を乾燥皮膜重量0.2〜5.0g/mとなるように亜鉛系メッキ鋼板上に塗布し、鋼板の最高到達温度が70〜150℃になるようにして焼付けたものである表面処理亜鉛系メッキ鋼板。The metal surface treatment composition according to any one of claims 1 to 4 is applied onto a galvanized steel sheet so as to have a dry film weight of 0.2 to 5.0 g / m 2, and the highest temperature reached by the steel sheet Is a surface-treated zinc-based plated steel sheet that is baked to a temperature of 70 to 150 ° C.
JP2001207235A 2001-07-09 2001-07-09 Metal surface treatment composition Expired - Lifetime JP4834195B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001207235A JP4834195B2 (en) 2001-07-09 2001-07-09 Metal surface treatment composition
CN 02141165 CN1239649C (en) 2001-07-09 2002-07-08 Metal surface processing composition
TW91115063A TWI226385B (en) 2001-07-09 2002-07-08 A surface-treated composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001207235A JP4834195B2 (en) 2001-07-09 2001-07-09 Metal surface treatment composition

Publications (2)

Publication Number Publication Date
JP2003027254A JP2003027254A (en) 2003-01-29
JP4834195B2 true JP4834195B2 (en) 2011-12-14

Family

ID=19043249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001207235A Expired - Lifetime JP4834195B2 (en) 2001-07-09 2001-07-09 Metal surface treatment composition

Country Status (3)

Country Link
JP (1) JP4834195B2 (en)
CN (1) CN1239649C (en)
TW (1) TWI226385B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175170B2 (en) * 2003-02-25 2015-11-03 Chemetall Gmbh Method for coating metallic surfaces with a composition that is rich in polymers
DE10349728A1 (en) 2003-10-23 2005-05-25 Basf Ag Essentially chromium-free process for passivating metallic surfaces of Zn, Zn alloys, Al or Al alloys
CN100366801C (en) * 2005-08-30 2008-02-06 江阴长发耐指纹钢板有限公司 Surface treatment method for environment-friendly chromium-free zirconium-containing electro-galvanized fingerprint resistant steel sheet
JP5055822B2 (en) * 2006-04-27 2012-10-24 住友金属工業株式会社 Painted steel sheet with excellent coating adhesion
EP2034050B1 (en) * 2006-06-15 2012-02-15 Nippon Steel Corporation Coated steel sheet
JP4323530B2 (en) * 2007-03-12 2009-09-02 関西ペイント株式会社 Coating composition with excellent corrosion resistance
JP5089316B2 (en) * 2007-10-02 2012-12-05 日本ペイント株式会社 Metal surface treatment composition, aluminum metal surface treatment method using this composition, and aluminum metal surface treatment substrate produced using this method
US20110212332A1 (en) 2008-05-22 2011-09-01 Dic Corporation Aqueous hybrid resin composition, coating preparation containing the same, and laminate therewith
JP4488118B2 (en) * 2008-09-09 2010-06-23 Dic株式会社 Metal coating agent
JP4488123B1 (en) * 2009-01-30 2010-06-23 Dic株式会社 Coating agent for plastic substrate and laminate using the same
JP5413666B2 (en) * 2009-11-20 2014-02-12 Dic株式会社 Composite resin composition, primer coating agent containing the same, and laminate
JP2011105906A (en) * 2009-11-20 2011-06-02 Dic Corp Composite resin composition and coating agent containing the same
CN102079923B (en) * 2009-11-26 2013-04-24 宝山钢铁股份有限公司 Environmental friendly chromium-free insulating paint
JP5631239B2 (en) * 2010-09-30 2014-11-26 日新製鋼株式会社 Chemical conversion Al-plated steel sheet and method for producing the same
JP5936881B2 (en) * 2012-02-29 2016-06-22 日新製鋼株式会社 Painted stainless steel plate and cylinder head gasket for automobile engine using the same
CN106637044B (en) * 2016-12-09 2020-02-04 成都布雷德科技有限公司 Method for preparing alloy ceramic composite coating by plasma spray welding and plasma spray welding gun
AU2018373094B2 (en) * 2017-11-22 2020-10-22 Dic Graphics Corporation Aqueous liquid ink and printed article
CN109504201A (en) * 2018-10-29 2019-03-22 河北晨阳工贸集团有限公司 A kind of acrylic-amino baking vanish and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073180A (en) * 1998-08-31 2000-03-07 Nippon Parkerizing Co Ltd Water-based surface treating agent for metal material and surface treated metal material
JP2000239690A (en) * 1998-12-25 2000-09-05 Nippon Parkerizing Co Ltd Water-based metal surface treating composition for forming lubricating film excellent in scratch resistance
JP2000248369A (en) * 1998-12-29 2000-09-12 Nippon Steel Corp Non-chromium type surface treated metallic sheet
JP2000218230A (en) * 1999-01-29 2000-08-08 Nippon Steel Corp Surface treatment of galvanized steel sheet

Also Published As

Publication number Publication date
TWI226385B (en) 2005-01-11
CN1239649C (en) 2006-02-01
CN1396226A (en) 2003-02-12
JP2003027254A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
JP4834195B2 (en) Metal surface treatment composition
KR100347449B1 (en) Surface treated steel sheet having excellent corrosion resistance and method for producing the same
JP5183586B2 (en) Water-based paint surface treatment agent also used as a primer, surface-treated metal material, and pre-coated metal material
KR101471948B1 (en) Zinc-based metal coated steel sheet
KR100805428B1 (en) Surface-treated steel sheet with excellent corrosion resistance and method for manufacturing same
TWI392766B (en) Process for coating metallic surfaces with an aqueous composition, and this composition
JP6127198B2 (en) Metal surface treatment liquid, method for producing surface treated metal material, surface treated metal material
TWI394864B (en) Metal surface treatment composition, and surface-treated metal material with metal surface treatment film obtained from the metal surface treatment composition
JP5086040B2 (en) Metal surface treatment composition
CA2454208A1 (en) Chemical conversion coating agent and surface-treated metal
US20090068480A1 (en) Method for coating metal substrates with a radically polymerizable coating agent and coated substrates
JP3977756B2 (en) Surface-treated steel sheet excellent in white rust resistance and method for producing the same
US7476445B2 (en) Surface-treated metal sheet
JPWO2015152187A1 (en) Metal surface treatment agent for galvanized steel, coating method and coated steel
TWI572743B (en) Application of coating pretreating agent and coating type coating method for coating type coating
JP3968955B2 (en) Organic coated steel plate with excellent corrosion resistance
JP5652999B2 (en) Metal surface treatment composition and surface-treated metal material having a metal surface treatment layer obtained from the metal surface treatment composition
JP2975331B2 (en) Metal surface treatment composition and galvanized steel sheet having a coating formed by the composition
JP7230356B2 (en) Surface-treated steel sheet and method for producing surface-treated steel sheet
KR20140037788A (en) Process for depositing rinsable silsesquioxane films on metals
JP2007009232A (en) Surface-treated steel sheet and manufacturing method therefor
JP3381647B2 (en) Organic coated steel sheet with excellent corrosion resistance
JPH09221595A (en) Metal surface treatment composition and galvanized steel sheet with film formed by treating therewith
JP5461115B2 (en) High corrosion resistance surface-treated steel sheet
JP3412538B2 (en) Organic coated steel sheet with excellent corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110923

R150 Certificate of patent or registration of utility model

Ref document number: 4834195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term