US20060051879A9 - Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions - Google Patents

Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions Download PDF

Info

Publication number
US20060051879A9
US20060051879A9 US10/760,085 US76008504A US2006051879A9 US 20060051879 A9 US20060051879 A9 US 20060051879A9 US 76008504 A US76008504 A US 76008504A US 2006051879 A9 US2006051879 A9 US 2006051879A9
Authority
US
United States
Prior art keywords
biomolecules
capture
compounds
straight
branched chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/760,085
Other languages
English (en)
Other versions
US20050042771A1 (en
Inventor
Hubert Koster
Daniel Little
Suhaib Siddiqi
Matthew Grealish
Subramanian Marappan
Chester Hassman
Ping Yip
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
caprotec bioanalytics GmbH
Original Assignee
HK Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HK Pharmaceuticals Inc filed Critical HK Pharmaceuticals Inc
Priority to US10/760,085 priority Critical patent/US20060051879A9/en
Assigned to HK PHARMACEUTICALS, INC. reassignment HK PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOSTER, HUBERT, LITTLE, DANIEL, SIDDIQI, SUHAIB, YIP, PING
Assigned to HK PHARMACEUTICALS, INC. reassignment HK PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HASSMAN III, CHESTER FREDERICK, MARAPPAN, SUBRAMANIAN
Assigned to HK PHARMACEUTICALS, INC. reassignment HK PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GREALISH, MATTHEW PETER
Publication of US20050042771A1 publication Critical patent/US20050042771A1/en
Publication of US20060051879A9 publication Critical patent/US20060051879A9/en
Assigned to HUBERT KOSTER reassignment HUBERT KOSTER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HK PHARMACEUTICALS, INC.
Assigned to CAPROTEC BIOANALYTICS GMBH reassignment CAPROTEC BIOANALYTICS GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOSTER, HUBERT
Priority to US12/660,511 priority patent/US9034798B2/en
Priority to US12/798,624 priority patent/US20100298168A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/36Oxygen or sulfur atoms
    • C07D207/402,5-Pyrrolidine-diones
    • C07D207/4042,5-Pyrrolidine-diones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. succinimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/46Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with hetero atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/60Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/68Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D211/72Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D211/78Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/48Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • C07D239/54Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • C07D239/54Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
    • C07D239/545Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals with other hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • C07D241/40Benzopyrazines
    • C07D241/44Benzopyrazines with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/06Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
    • C07D261/10Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D261/12Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/061,2,4-Oxadiazoles; Hydrogenated 1,2,4-oxadiazoles
    • C07D271/071,2,4-Oxadiazoles; Hydrogenated 1,2,4-oxadiazoles with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/14Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/16Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6842Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes

Definitions

  • the compounds and methods are useful for analyzing the proteome.
  • SNPs single nucleotide polymorphisms
  • an industrial scale e.g., MassARRAYTM and the MassARRAY® system, Sequenom, Inc., San Diego, Calif.
  • pooled samples to study the frequency of SNPs in populations of various gender, ethnicity, age and health condition.
  • the ultimate goal of these efforts is to understand the etiology of disease on the molecular level (e.g., based on genetic variances (pharmacogenomics)), to develop diagnostic assays and effective drugs with few or no side-effects.
  • Genomics has fallen short of the original expectation that this strategy could be used to stratify a population relative to a defined phenotype, including differences between normal and disease patient population or populations. Although single genetic markers have been found to be associated with or cause or predict a specific disease state, genomic information may not be sufficient to stratify individual populations by of the association of an SNP (or SNPs) with a given disease, drug side-effect or other target phenotype.
  • RNA messenger RNA
  • analyses using expression DNA chips e.g., GeneChipTM technology, Affymetrix, Inc., Santa Clara, Calif.; LifeArrayTM technology, Incyte Genomics, Inc., Palo Alto, Calif.
  • the metabolic activities in a cell are not performed by mRNA but rather by the translated proteins and subsequently posttranslationally modified products, such as the alkylated, glycosylated and phosphorylated products.
  • proteomics encompasses the study of individual proteins and how these proteins function within a biochemical pathway. Proteomics also includes the study of protein interactions, including how they form the architecture that constitutes living cells. In many human diseases such as cancer, Alzheimer's disease, diabetes as well as host responses to infectious diseases, the elucidation of the complex interactions between regulatory proteins, which can cause diseases, is a critical step to finding effective treatment. Often, SNPs and other nucleic acid mutations occur in genes whose products are such proteins as (1) growth related hormones, (2) membrane receptors for growth hormones, (3) components of the trans-membrane signal pathway and (4) DNA binding proteins that act on transcription and the inactivation of suppressor genes (e.g. p53) causing the onset of disease.
  • suppressor genes e.g. p53
  • Proteins form the important structural and functional machinery of the cell, and are the molecular entities with which nearly all of today's marketed drugs interact. Proteins are thus drug targets. Most pharma companies are investing heavily to extract truly promising drug targets from their sea of unvalidated targets derived from gene-based approaches. Typically the mechanism of action defining how drugs act upon their targets is poorly understood; for some marketed drugs the target is not even known. Furthermore, identifying “non-target” proteins with which the drug interacts to trigger side effects has been especially elusive. It is believed that side effects of many drugs could be diminished with a greater understanding of the mechanism of action involving their target and the non-target proteins.
  • Drug programs are discontinued for a variety of reasons (e.g., lack of efficacy compared to placebo), but about half of the terminations relate to clinical safety and toxicity.
  • reasons e.g., lack of efficacy compared to placebo
  • the developments of many ill-chosen lead drug compounds are halted late in clinical trials after many years and millions of dollars have been spent.
  • Compounding the financial problems caused by toxicity, the long duration of drug development also substantially reduces the length of patent protection.
  • capture compounds also referred to herein as capture agents
  • collections thereof for analysis of the proteome on an industrial level in a high-throughput format.
  • the methods, capture compounds and collections permit sorting of complex mixtures of biomolecules.
  • they permit identification of protein structures predicative or indicative of specific of phenotypes, such as disease states, thereby eliminating the need for random SNP analysis, expression profiling and protein analytical methods.
  • the capture compounds, collections and methods sort complex mixtures by providing a variety of different capture agents.
  • they can be used to identify structural “epitopes” that serve as markers for specific disease states, stratify individual populations relative to specific phenotypes, permit a detailed understanding of the proteins underlying molecular function, and provide targets for drug development. The increased understanding of target proteins permit the design of higher efficiency therapeutics.
  • the capture compounds, collections and methods provided herein also permit screening of biomolecules, including but not limited to receptor proteins and enzymes, which are drug targets and non-targets, as defined herein, that interact with pharmaceutical drugs under physiological conditions.
  • the screening of biomolecules provides increased understanding of the mechanism of action of the pharmaceutical drugs or drug fragments, metabolites or synthetic intermediates in the drug syntheses, thereby helping the design of more target specific drugs.
  • the methods also provide for identification of non-target biomolecules, such as proteins including but not limited to receptors and enzymes, that interact with pharmaceutical drugs, thereby causing side effects and other undesired therapeutic effects.
  • various attachments of the drugs or drug fragments, metabolites or synthetic intermediates in the drug syntheses to the capture compounds are used to determine which functionalities of the drugs or drug fragments, metabolites or synthetic intermediates in the drug syntheses interact with the target and non-target biomolecules.
  • the non-target functionalities are then eliminated from the drug, resulting in an improved drug that exhibits fewer side effects.
  • a drug is included in the capture compound, proteins that interact with the drug are isolated and identified, the proteins are related to function, and the drug is re-engineered to eliminate or reduce interactions with non-target proteins. The method may be repeated on the re-engineered drug, as desired.
  • Capture compounds, collections of the compounds and methods that use the compounds, singly or in collections thereof, provided herein are designed to capture, separate and analyze biomolecules, including, but not limited to, mixtures of biomolecules, including biopolymers and macromolecules, individual biomolecules, such as proteins, including individual or membrane proteins.
  • the capture and separation of biomolecules in the methods provided herein is based on the unique surface features of the biomolecules or mixtures thereof, including but not limited to chemically rective amino acid residues on the surface of a protein or a mixture of proteins.
  • the capture compounds provided herein are designed not to target any specific biomolecule, but to capture the biomolecules based on the reactive groups present on the surface of the biomolecules or mixtures thereof.
  • the collections of the compounds provided herein contain a plurality, generally at least two, three, typically at least 10, 50, 100, 1000 or more different capture compounds.
  • the compounds and collections are designed to permit probing of a mixture of biomolecules by virtue of interaction of the capture compounds in the collection with the components of the a mixture under conditions that preserve their three-dimensional configuration.
  • Each member of the collection is designed 1) to bind, either covalently or via some other chemical interaction with high binding affinity (k a ) such that the binding is irreversible or stable under conditions of mass spectrometric analysis to fewer than all, typically about 5 to 20 or more component biomolecules in a mixture, depending upon complexity and diversity of the mixture, under physiological conditions, including hydrophobic conditions, and 2) distinguish among biomolecules based upon topological features.
  • the capture compounds generally include a group, such as a single-stranded oligonucleotide or partially single-stranded oligonucleotide, that permits separation of each set of capture compounds.
  • the capture compounds and collections are used in a variety of methods, but are particularly designed for assessing biomolecules, such as biopolymers or components in mixtures from biological samples.
  • the collections are used in top-down unbiased methods that assess structural changes, including post-translational structural changes and, for example, are used to compare patterns, particularly post-translational protein patterns, in diseased versus healthy cells from primary cells generally from the same individual.
  • the cells that serve as the sources of biomolecules can be frozen into a selected metabolic state or synchronized to permit direct comparison and identification of phenotype-specific, such as disease-specific biomolecules, generally proteins.
  • a capture compound includes at a chemical reactivity group X (also referrred to herein as a function or a functionality), which effects the covalent or a high binding affinity (high k a ) binding, and least one of three other groups (also referred to herein as functions or funtionalities).
  • the other groups are selected from among a selectivity function Y that modulates the interaction of a biomolecule with the reactivity function, a sorting function Q for addressing the components of the collection, and a solubility function W that alters solubility of the capture compound, such as by increasing the solubility of the capture compound under selected conditions, such as various physiological conditions, including hydrophobic conditions of cell membranes.
  • a selectivity function Y that modulates the interaction of a biomolecule with the reactivity function
  • Q for addressing the components of the collection
  • W solubility function W that alters solubility of the capture compound, such as by increasing the solubility of the capture compound under selected conditions, such as various physiological conditions, including hydrophobic
  • the reactivity group includes groups that specifically react or interact with functionalities on the surface of a protein such as hydroxyl, amine, amide, sulfide and carboxylic acid groups, or that recognize specific surface areas, such as an antibody, a lectin or a receptor-specific ligand, or interacts with the active site of enzymes.
  • a protein such as hydroxyl, amine, amide, sulfide and carboxylic acid groups
  • specific surface areas such as an antibody, a lectin or a receptor-specific ligand, or interacts with the active site of enzymes.
  • Those skilled in the art can select from a library of functionalities to accomplish this interaction. While this interaction can be highly reaction-specific, these compounds can react multiple times within the same protein molecule depending on the number of surface-accessible functional groups. Modification of the reaction conditions allows the identification of surface accessible functional groups with differing reactivity, thereby permitting identification of one or more highly reactive sites used to separate an individual protein from a mixture. Available technologies do not separate species in
  • Selectivity functions include a variety of groups, as well as the geometric spacing of the second functionality, a single stranded unprotected or suitably protected oligonucleotide or oligonucleotide analog.
  • the selective functionality can be separate from the compound and include the solid or semi-solid support.
  • the selective functionality in this embodiment can be porosity, hydrophobicity, charge and other chemical properties of the material.
  • selectivity functions interact noncovalently with target proteins to alter the specificity or binding of the reactivity function.
  • Such functions include chemical groups and biomolecules that can sterically hinder proteins of specific size, hydrophilic compounds or proteins (e.g., PEG and trityls), hydrophobic compounds or proteins (e.g., polar aromatic, lipids, glycolipids, phosphotriester, oligosaccharides), positive or negatively charged groups, groups or biomolecules which create defined secondary or tertiary structure.
  • hydrophilic compounds or proteins e.g., PEG and trityls
  • hydrophobic compounds or proteins e.g., polar aromatic, lipids, glycolipids, phosphotriester, oligosaccharides
  • positive or negatively charged groups groups or biomolecules which create defined secondary or tertiary structure.
  • the capture compounds can also include a sorting function for separation or addressing of each capture compound according to its structure.
  • the sorting function for example, can be a single-stranded (or partially single-stranded) unprotected or suitably protected oligonucleotide or oligonucleotide analog, typically containing between at least about 5 and up to 25, 35, 50, 100 or any desired number of nucleotides (or analogs thereof) containing a sequence-permuted region and optionally flanking regions.
  • Each such block has a multitude of sequence permutations with or without flanking conserved regions, which is capable of hybridizing with a base-complementary single stranded nucleic acid molecule or a nucleic acid analog.
  • the sorting function can also be a label, such as a symbology, including a bar code, particularly a machine-readable bar code, a color coded-label, such as small colored bead that can be sorted by virtue of its color, a radio-frequency tag or other electronic label or a chemical label. Any functionality that permits sorting of each set of capture compounds to permit separate analysis of bound biomolecules is contemplated.
  • each biomolecule to be captured is derivatized with more than one capture compound provided herein, where each tagged compound provides an additional level of sorting capability.
  • each of the plurality of compounds that derivatize a single biomolecule is different, allowing for specific and efficient sorting of the biomolecule mixture (see, e.g., FIG. 3 ).
  • the capture compound also can be multifunctional containing other functionalities that can be used to reduce the complexity of biomolecule mixtures.
  • Some of the capture compounds include at least a reactivity function and a selectivity function.
  • These capture compounds optionally include sorting functionalities, which are one or more additional moieties that bind either covalently or noncovalently to a specific molecule to permit addressing of the compounds, such as by separation at discrete loci on a solid support, separation of the compounds on discrete loci.
  • These capture compounds also optionally include one or more solubility functions, which are moieties that influence the solubility of the resulting compound, to attenuate or alter the hydrophobicity/hydrophilicity of the compounds (solubility function).
  • Others of the capture compounds include at least two functional portions: a reactivity function and a sorting function.
  • the reactive group that specifically interacts with proteins or other biomolecules (reactivity function); and the other is an entity (sorting functions) that binds either covalently or noncovalently to a specific molecule(s).
  • This entity can be a nucleic acid portion or nucleic acid analog portion that includes a single-stranded region that can specifically hybridize to a complementary single-stranded oligonucleotide or analog thereof.
  • the capture compounds are provided as collections, generally as collections of sets of different compounds that differ in all functionalities.
  • the collection includes diverse capture compound members so that, for example, when they are arrayed, each locus of the array contains 0 to 100, generally, 5 to 50 and desirably 1 to 20, typically 5 to 20, different biomolecules at each locus in the array.
  • a collection of capture compounds is contacted with a biomolecule mixture and the bound molecules are assessed using, for example, mass spectrometry, followed by optional application of tagging, such as fluorescence tagging, after arraying to identify low abundance proteins.
  • tagging such as fluorescence tagging
  • a single capture compound is contacted with one or plurality of biomolecules, and the bound molecules are assessed.
  • the methods allow proteins to bind to the target molecules under physiological conditions while maintaining the correct secondary and tertiary conformation of the target.
  • the methods can be performed under physiological and other conditions that permit discovery of bioglogically important proteins, including membrane proteins, that are selected based upon a defined phenotype.
  • the oligonucleotide portion, or analog thereof, of these compounds is allowed to hybridize to a complementary strand of immobilized oligonucleotide(s), or analog(s) thereof, to allow separation, isolation and subsequent analysis of bound biomolecules, such as proteins, by, for example, mass spectrometry, such as matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, colorimetric, fluorescent or chemiluminescent tagging, or to allow for increased resolution by mass spectrometry, including MALDI-TOF mass spectrometry.
  • mass spectrometry such as matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, colorimetric, fluorescent or chemiluminescent tagging, or to allow for increased resolution by mass spectrometry, including MALDI-TOF mass spectrometry.
  • MALDI-TOF matrix assisted laser desorption ionization-time of flight
  • the collections of capture compounds can be used to generate compound arrays to capture target proteins or groups of related proteins that can mimic biological structures such as nuclear and mitochondrial transmembrane structures, artificial membranes or intact cell walls.
  • the compounds and compound arrays provided herein are capable of mimicking biological entities and biological surfaces, thereby allowing for capture of biomolecules, including but not limited to proteins, which would otherwise be difficult or impossible to capture, such as those found in transmembrane regions of a cell.
  • Samples for analysis include any biomolecules, particularly protein-containing samples, such as protein mixtures, including, but not limited to, natural and synthetic sources. Proteins can be prepared by translation from isolated chromosomes, genes, cDNA and genomic libraries. Proteins can be isolated from cells, and other sources. In certain embodiments, the capture compounds provided herein are designed to selectively capture different post-translational modifications of the same protein (i.e., phosphorylation patterns (e.g., oncogenes), glycosylation and other post-translational modifications).
  • phosphorylation patterns e.g., oncogenes
  • the collections of one or more member capture compounds are used to distinguish between or among different conformations of a protein and, for example, can be used for phenotypic identification, such as for diagnosis.
  • phenotypic identification such as for diagnosis.
  • the collections can distinguish between the disease-involved form of the protein from the normal protein and thereby diagnose the disease in a sample.
  • FIG. 1 shows the hybridization, separation and mass spectral analysis of a mixture of proteins.
  • FIG. 2 provides a schematic depiction of one embodiment of the apparatus provided herein.
  • FIG. 3 illustrates a protein tagged with four compounds provided herein, thereby allowing for specific sorting of the protein.
  • FIG. 4 shows the increased and specific hybridization resulting from use of two or more oligonucleotide tags.
  • FIG. 5 shows tagging of a single protein with two different oligonucleotides in one reaction.
  • FIG. 6 is a flow diagram of recombinant protein production.
  • FIG. 7 illustrates production of an adapted oligonucleotide dT primed cDNA library.
  • FIG. 8 shows production of an adapted sequence motif specific cDNA library.
  • FIG. 9 shows production of an adapted gene specific cDNA.
  • FIG. 10 illustrates purification of amplification products from a template library.
  • FIG. 11 shows an adapted oligonucleotide dT primed cDNA library as a universal template for the amplification of gene subpopulations.
  • FIG. 12 illustrates decrease of complexity during PCR amplification.
  • FIG. 13 shows the attachment of a bifunctional molecule to a solid surface.
  • FIG. 14 shows analysis of purified proteins from compound screening and antibody production.
  • FIG. 15 provides synthetic schemes for synthesis of exemplary capture reagents provided herein (see, e.g., Example 4).
  • FIG. 16 provides exemplary reactivity functions for use in the capture reagents provided herein.
  • FIG. 17 provides exemplary selectivity functions for use in the capture reagents provided herein.
  • FIG. 18 depicts exemplary points for regulation of metabolic control mechanisms for cell synchronization.
  • FIG. 19 depict cell separation and synchronization methods
  • FIG. 19 a depicts methods for separation of cells from blood from a single patient to separate them by phenotype
  • FIG. 19 b shows the results of flow cytometry separation of blood cells without labeling
  • FIG. 19 c shows an example in which synchronized cells in culture are sorted according to DNA content as a way to separate cells by phase of the cell cycle.
  • FIG. 20 shows a schematic of a biomolecule capture assay and results using exemplary capture compounds and proteins.
  • FIG. 21 shows exemplary selectivity functions for use in the capture compounds provided herein.
  • FIG. 22 shows mass spectrometric results of the reaction of hemoglobin with two of the capture compounds provided herein.
  • the more hydrophobic capture compound i.e., the capture compound with a more hydrophobic selectivity function, reacts with ⁇ -hemoglobin stoichiometrically and with ⁇ -hemoglobin, while the less hydrophobic capture compound reacts incompletely with ⁇ -hemoglobin and does not react with ⁇ -hemoglobin.
  • FIG. 23 shows exemplary capture compounds provided herein.
  • FIG. 24 shows mass spectrometric results of the reaction of a capture compound provided herein with a protein mixture obtained from U937 lymphoma blood cells.
  • the Figure shows selective capture of the indicated protein by the capture compound.
  • FIG. 25 shows mass spectrometric results of the reaction of a capture compound provided herein with Burkift's lymphoma cytosol. As shown in the Figure, the proteins labeled A-E are captured by the indicated capture compound.
  • FIG. 26 shows mass spectrometric results of the reaction of a capture compound provided herein with total cytosol from Burkitt's lymphoma lymphoblast as compared to healthy age and gender matched lymphoblast. Proteins A, B, C and E are found in both samples. Protein D is expressed only in the Burkitt's lymphoma sample. Proteins labeled (H) are expressed only in the healthy sample. As shown in the Figure, reaction of the Burkitt's lymphoma sample with a capture compound provided herein results in complete capture of protein D allowing for analysis and identification of the protein.
  • FIG. 27 shows exemplary features of the biased and unbiased selectivity groups in the selectivity function of the capture compounds.
  • FIG. 28 illustrates an exemplary protocol for protein identification using capture compounds.
  • FIG. 29 shows mass spectrometric results of the reaction of an capture compound with a trityl scaffold, biotin, NHS reactivity function, OH selectivity function with the cytosolic fraction of cell lines from a 5 year old male acute lymphocytic leukemia (sup B ALL) and an age/gender matched control (wil2).
  • the Figure shows that capture compound covalently captures many proteins which are similar in abundance. However a major protein is detected at ⁇ 22 kDa in the diseased cell line that is absent in the control. The protein is identified by tryptic digest and peptide database matching as HSP-27 (heat shock protein), which is implicated in other cancers in the literature.
  • HSP-27 heat shock protein
  • FIG. 30 illustrates a schematic diagram of the steps involved in protein capture and identification using a capture compound.
  • a capture compound is mixed with a sample containing a mixture of proteins. Proteins with an affinity for the selectivity function (e.g. drug) are allowed to come to equilibrium with the selectivity function.
  • the capture compound is then activated (for example, with h 98 ) forming a radical which is shortlived and covalently captures the proteins for which there was an affinity. Other proteins are not captured if the capture compound was not in very close proximity due to the equilibrium between selectivity function and protein.
  • the captured protein is isolated with biotin and identified using mass spectrometry.
  • FIG. 31 shows selective protein capture using capture compounds.
  • Capture compounds A and B containing sulfonamide interact with Carbonic Anhydrase.
  • its K d for CA II isoform is ⁇ 10 nM
  • for CA I is ⁇ 1 uM (both values independently confirmed using activity assay).
  • affinity and capture efficiency is highest for Carbonic II, lower for CA I, and negligible for other purified proteins tested.
  • FIG. 32 shows relative binding strengths of protein isoforms to a known ligand for capture compound B.
  • FIG. 33 shows isolation of Carbonic Anhydrase from complex protein mixtures using capture compound A.
  • CA II was doped into a FPLC purified protein mixture from the human kidney cell line HEK293.
  • the doped CAII was pulled out from all other proteins using avidin-coated (SoftLink) resin. Other proteins were discarded, yielding purified protein ready for further analysis.
  • SoftLink avidin-coated
  • FIG. 34 shows isolation of Carbonic Anhydrase from highly complex protein mixtures using capture compound A.
  • CA II was doped into the whole cytosolic extract from the human kidney cell line HEK293.
  • the doped CAII was pulled out from all other proteins using avidin-coated (SoftLink) resin. Other proteins were discarded, yielding purified protein ready for further analysis.
  • SoftLink avidin-coated
  • FIG. 35 shows capture and isolation of Carbonic Anhydrase from lysed red blood cells.
  • the top spectrum in the figure shows direct MALDI of lysed red blood cells (no purification) wherein signal for Hemoglobin, which is in huge excess over all other proteins, can be seen. Signals are seen for the alpha and beta chains, and also for non-specific dimers ( ⁇ 30 kiloDaltons).
  • Bottom spectrum in the figure is taken after capture compound A, containing a sulfonamide drug with an affinity for Carbonic Anhydrase, is mixed with the lysed red blood cells.
  • the capture compound covalently captures the Carbonic Anhydrase isoforms I and II.
  • FIG. 36 shows direct capture of Carbonic Anhydrase from red blood cells, without pre-lysis of the cells.
  • FIG. 37 shows capture of Carbonic Anhydrase from red blood cell lysate when unbiotinylated proteins including Carbonic Anhydrase are in huge excess.
  • FIG. 38 shows capture of proteins with lower affinities using very high concentrations of capture compound A.
  • an oligonucleotide means a linear sequence of up to about 20, about 50, or about 100, nucleotides joined by phosphodiester bonds. Above this length the term polynucleotide begins to be used.
  • an oligonucleotide analog means a linear sequence of up to about 20, about 50, or about 100, nucleotide analogs, or linear sequence of up to about 20, about 50, or about 100 nucleotides linked by a “backbone” bond other than a phosphodiester bond, for example, a phosphotriester bond, a phosphoramidate bond, a phophorothioate bond, a methylphosphonate diester bond, a thioester bond, or a peptide bond (peptide nucleic acid).
  • peptide nucleic acid refers to nucleic acid analogs in that the ribose-phosphate backbone is replaced by a backbone held together by amide bonds.
  • proteome means all the proteins present within a cell.
  • Biomolecule is any compound found in nature, or derivatives thereof.
  • Biomolecules include, but are not limited to oligonucleotides, oligonucleosides, proteins, peptides, amino acids, lipids, steroids, peptide nucleic acids (PNAs), oligosaccharides and monosaccharides.
  • MALDI-TOF refers to matrix assisted laser desorption ionization-time of flight mass spectrometry.
  • conditioned when used in reference to a protein thereof, means that the polypeptide is modified to decrease the laser energy required to volatilize the protein, to minimize the likelihood of fragmentation of the protein, or to increase the resolution of a mass spectrum of the protein or of the component amino acids.
  • Resolution of a mass spectrum of a protein can be increased by conditioning the protein prior to performing mass spectrometry. Conditioning can be performed at any stage prior to mass spectrometry and, in one embodiment, is performed while the protein is immobilized.
  • a protein can be conditioned, for example, by treating it with a cation exchange material or an anion exchange material, which can reduce the charge heterogeneity of the protein, thereby for eliminating peak broadening due to heterogeneity in the number of cations (or anions) bound to the various proteins in a population.
  • removal of all cations by ion exchange, except for H + and ammonium ions is performed.
  • an alkylating agent such as alkyliodide, iodoacetamide, iodoethanol, or 2,3epoxy-1-propanol
  • the formation of disulfide bonds for example, in a protein can be prevented.
  • charged amino acid side chains can be converted to uncharged derivatives employing trialkylsilyl chlorides.
  • the capture compounds contain protein and nucleic acid portions
  • conditioning suitable for one or both portions is also contemplated.
  • a prepurification to enrich the biomolecules to be analyzed and the removal of all cations, such as by ion exchange, except for H+ and ammonium, or other conditioning treatment to improve resolution is advantageous for analysis of the nucleic acid portion as well as the protein portion.
  • Conditioning of proteins is generally unnecessary because proteins are relatively stable under acidic, high energy conditions so that proteins do not require conditioning for mass spectrometric analyses.
  • cation exchange chromatography, as well as general washing and purification procedures that remove proteins and other reaction mixture components away from the protein can be used to increase the resolution of the spectrum resulting from mass spectrometric analysis of the protein.
  • capture efficiency is the peak area of the captured biomolecule/(peak area captured biomolecule+peak area uncaptured biomolecule) as measured by HPLC analysis.
  • matrix refers to the material with which the capture compound biomolecule conjugates are combined for MALDI mass spectrometric analysis.
  • Any matrix material such as solid acids, including 3-hydroxypicolinic acid, liquid matrices, such as glycerol, known to those of skill in the art for nucleic acid and/or protein analyses is contemplated. Since the compound biomolecule conjugates contain nucleic acid and protein a mixture (optimal for nucleic acids and proteins) of matrix molecules can be used.
  • macromolecule refers to any molecule having a molecular weight from the hundreds up to the millions.
  • Macromolecules include, but are not limited to, peptides, proteins, nucleotides, nucleic acids, carbohydrates, and other such molecules that are generally synthesized by biological organisms, but can be prepared synthetically or using recombinant molecular biology methods.
  • biopolymer is refers to a biological molecule, including macromolecules, composed of two or more monomeric subunits, or derivatives thereof, which are linked by a bond or a macromolecule.
  • a biopolymer can be, for example, a polynucleotide, a polypeptide, a carbohydrate, or a lipid, or derivatives or combinations thereof, for example, a nucleic acid molecule containing a peptide nucleic acid portion or a glycoprotein.
  • biomolecule includes biopolymers and macromolecules and all molecules that can be isolated from living organisms and viruses, including, but are not limited to, cells, tissues, prions, animals, plants, viruses, bacteria and other organsims.
  • a biological particle refers to a virus, such as a viral vector or viral capsid with or without packaged nucleic acid, phage, including a phage vector or phage capsid, with or without encapsulated nucleotide acid, a single cell, including eukaryotic and prokaryotic cells or fragments thereof, a liposome or micellar agent or other packaging particle, and other such biological materials.
  • virus such as a viral vector or viral capsid with or without packaged nucleic acid, phage, including a phage vector or phage capsid, with or without encapsulated nucleotide acid, a single cell, including eukaryotic and prokaryotic cells or fragments thereof, a liposome or micellar agent or other packaging particle, and other such biological materials.
  • biological particles include molecules that are not typically considered macromolecules because they are not generally synthesized, but are derived from cells and viruses.
  • a drug refers to any compound that is a candidate for use as a therapeutic or as a lead compound for designing a therapeutic or that is a known pharmaceutical.
  • Such compounds can be small molecules, including small organic molecules, peptides, peptide mimetics, antisense molecules, antibodies, fragments of antibodies or recombinant antibodies.
  • drugs that have specific binding properties so that they can be used as selectivity groups or can be used as for sorting of the capture compounds, either a sorting functionality that binds to a target on a support, or linked to a solid support, where the sorting functionality is the drug target.
  • a drug metabolite refers to any compound that is formed after transformation of a drug following its metabolism in the body that results in a different molecule that may be more or less active than the parent drug.
  • a drug fragment refers to a molecule that is a portion or moiety of a drug.
  • a drug synthetic intermediate is a compound that is used as an intermediate in the chemical synthesis of a drug.
  • a “drug target” is a biomolecule, such as a protein including but not limited to receptors and enzymes, that the drug is intended to interact with in vivo, thereby exerting the desired therapeutic effects.
  • a “drug non-target” is a biomolecule, such as a protein including but not limited to receptors and enzymes, that the drug is not intended to interact with in vivo.
  • the interaction of a drug with drug non-targets may result in undesired therapeutic effects such as side effects.
  • nucleic acid refers to single-stranded and/or double-stranded polynucleotides such as deoxyribonucleic acid (DNA), and ribonucleic acid (RNA) as well as analogs or derivatives of either RNA or DNA.
  • Nucleic acid molecules are linear polymers of nucleotides, linked by 3′,5′ phosphodiester linkages.
  • DNA deoxyribonucleic acid
  • the sugar group is deoxyribose and the bases of the nucleotides are adenine, guanine, thymine and cytosine.
  • RNA, ribonucleic acid has ribose as the sugar and uracil replaces thymine.
  • analogs of nucleic acids such as peptide nucleic acid (PNA), phosphorothioate DNA, and other such analogs and derivatives or combinations thereof.
  • polynucleotide refers to an oligomer or polymer containing at least two linked nucleotides or nucleotide derivatives, including a deoxyribonucleic acid (DNA), a ribonucleic acid (RNA), and a DNA or RNA derivative containing, for example, a nucleotide analog or a “backbone” bond other than a phosphodiester bond, for example, a phosphotriester bond, a phosphoramidate bond, a methylphosphonate diester bond, a phophorothioate bond, a thioester bond, or a peptide bond (peptide nucleic acid).
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • DNA or RNA derivative containing, for example, a nucleotide analog or a “backbone” bond other than a phosphodiester bond, for example, a phosphotriester bond, a phosphoramidate bond, a
  • oligonucleotide also is used herein essentially synonymously with “polynucleotide,” although those in the art recognize that oligonucleotides, for example, PCR primers, generally are less than about fifty to one hundred nucleotides in length.
  • Nucleotide analogs contained in a polynucleotide can be, for example, mass modified nucleotides, which allows for mass differentiation of polynucleotides; nucleotides containing a detectable label such as a fluorescent, radioactive, colorometric, luminescent or chemiluminescent label, which allows for detection of a polynucleotide; or nucleotides containing a reactive group such as biotin or a thiol group, which facilitates immobilization of a polynucleotide to a solid support.
  • a polynucleotide also can contain one or more backbone bonds that are selectively cleavable, for example, chemically, enzymatically or photolytically.
  • a polynucleotide can include one or more deoxyribonucleotides, followed by one or more ribonucleotides, which can be followed by one or more deoxyribonucleotides, such a sequence being cleavable at the ribonucleotide sequence by base hydrolysis.
  • a polynucleotide also can contain one or more bonds that are relatively resistant to cleavage, for example, a chimeric oligonucleotide primer, which can include nucleotides linked by peptide nucleic acid bonds and at least one nucleotide at the 3′ end, which is linked by a phosphodiester bond, or the like, and is capable of being extended by a polymerase.
  • Peptide nucleic acid sequences can be prepared using well known methods (see, for example, Weiler et al. (1997) Nucleic acids Res. 25:2792-2799).
  • a polynucleotide can be a portion of a larger nucleic acid molecule, for example, a portion of a gene, which can contain a polymorphic region, or a portion of an extragenic region of a chromosome, for example, a portion of a region of nucleotide repeats such as a short tandem repeat (STR) locus, a variable number of tandem repeats (VNTR) locus, a microsatellite locus or a minisatellite locus.
  • STR short tandem repeat
  • VNTR variable number of tandem repeats
  • a polynucleotide also can be single stranded or double stranded, including, for example, a DNA-RNA hybrid, or can be triple stranded or four stranded. Where the polynucleotide is double stranded DNA, it can be in an A, B, L or Z configuration, and a single polynucleotide can contain combinations of such configurations.
  • a “mass modification,” with respect to a biomolecule to be analyzed for mass spectrometry, refers to the inclusion of changes in consituent atoms or groups that change the molecular weight of the resulting molecule in defined increments detectable by mass spectrometric analysis. Mass modifications do not include radiolabels, such as isotope labels or or fluroescent gropus or other such tags normally used for detection by means other than mass spectrometry.
  • polypeptide means at least two amino acids, or amino acid derivatives, including mass modified amino acids and amino acid analogs, which are linked by a peptide bond and which can be a modified peptide bond.
  • a polypeptide can be translated from a polynucleotide, which can include at least a portion of a coding sequence or a portion of a nucleotide sequence that is not naturally translated due, for example, to it being located in a reading frame other than a coding frame, or it being an intron sequence, a 3′ or 5′ untranslated sequence, a regulatory sequence such as a promoter.
  • a polypeptide also can be chemically synthesized and can be modified by chemical or enzymatic methods following translation or chemical synthesis.
  • the terms “polypeptide,” “peptide” and “protein” are used essentially synonymously herein, although the skilled artisan recognizes that peptides generally contain fewer than about fifty to one hundred amino acid residues, and that proteins often are obtained from a natural source and can contain, for example, post-translational modifications.
  • a polypeptide can be posttranslationally modified by, for example, phosphorylation (phosphoproteins) or glycosylation (glycoproteins, proteoglycans), which can be performed in a cell or in a reaction in vitro.
  • conjugation refers to stable attachment, typically by virtue of a chemical interaction, including ionic and/or covalent attachment.
  • conjugation means include streptavidin- or avidin- to biotin interaction; hydrophobic interaction; magnetic interaction (e.g., using functionalized magnetic beads, such as DYNABEADS, which are streptavidin-coated magnetic beads sold by Dynal, Inc. Great Neck, N.Y.
  • polar interactions such as “wetting” associations between two polar surfaces or between oligo/polyethylene glycol
  • formation of a covalent bond such as an amide bond, disulfide bond, thioether bond, or via crosslinking agents; and via an acid-labile or photocleavable linker.
  • sample refers to a composition containing a material to be detected.
  • sample refers to anything which can contain an biomolecule.
  • the sample can be a biological sample, such as a biological fluid or a biological tissue obtained from any organism or a cell of or from an organism or a viral particle or portions thereof.
  • biological fluids include urine, blood, plasma, serum, saliva, semen, stool, sputum, cerebral spinal fluid, tears, mucus, sperm, amniotic fluid or the like.
  • Biological tissues are aggregates of cells, usually of a particular kind together with their intercellular substance that form one of the structural materials of a human, animal, plant, bacterial, fungal or viral structure, including connective, epithelium, muscle and nerve tissues. Examples of biological tissues also include organs, tumors, lymph nodes, arteries and individual cell(s).
  • samples include biological samples (e.g., any material obtained from a source originating from a living being (e.g., human, animal, plant, bacteria, fungi, protist, virus).
  • the biological sample can be in any form, including solid materials (e.g., tissue, cell pellets and biopsies, tissues from cadavers) and biological fluids (e.g., urine, blood, saliva, amniotic fluid and mouth wash (containing buccal cells)).
  • solid materials are mixed with a fluid.
  • the a sample for mass spectrometric analysis includes samples that contain a mixture of matrix used for mass spectrometric analyses and the capture compound/biomolecule complexes.
  • solid support means a non-gaseous, non-liquid material having a surface.
  • a solid support can be a flat surface constructed, for example, of glass, silicon, metal, plastic or a composite; or can be in the form of a bead such as a silica gel, a controlled pore glass, a magnetic or cellulose bead; or can be a pin, including an array of pins suitable for combinatorial synthesis or analysis.
  • a collection refers to combination of two or more members, generally 3, 5, 10, 50, 100, 500, 1000 or more members. In particular a collection refers to such combination of the capture compounds as provided herein.
  • an array refers to a collection of elements, such as the capture compounds, containing three or more members.
  • An addressable array is one in that the members of the array are identifiable, typically by position on a solid phase support but also by virtue of an identifier or detectable label. Hence, in general the members of an array are be immobilized to discrete identifiable loci on the surface of a solid phase.
  • a plurality of of the compounds are attached to a support, such as an array (i.e., a pattern of two or more) on the surface of a support, such as a silicon chip or other surface, generally through binding of the sorting functionality with a group or compound on the surface of the support.
  • Addressing can be achieved by labeling each each member electronically, such as with an radio-frequency (RF) tag, through the use of color coded beads or other such identifiable and color coded labels and through molecular weight.
  • RF radio-frequency
  • These labels for addressing serve as sorting functions “Q.”
  • the members of the array are immobilized to discrete identifiable loci on the surface of a solid phase or directly or indirectly linked to or otherwise associated with the identifiable label, such as affixed to a microsphere or other particulate support (herein referred to as beads) and suspended in solution or spread out on a surface.
  • substrate refers to an insoluble support onto which a sample and/or matrix is deposited.
  • Support can be fabricated from virtually any insoluble or solid material.
  • silica gel, glass e.g., controlled-pore glass (CPG)
  • nylon Wang resin
  • Merrifield resin dextran cross-linked with epichlorohydrin (e.g., Sephadex R )
  • agarose e.g., Sepharose R
  • cellulose e.g., magnetic beads, Dynabeads
  • a metal surface e.g., steel, gold, silver, aluminum, silicon and copper
  • a plastic material e.g., polyethylene, polypropylene, polyamide, polyester, polyvinylidenedifluoride (PVDF)
  • Exemplary substrate include, but are not limited to, beads (e.g., silica gel, controlled pore glass, magnetic, dextran cross-linked with epichlorohydrin (e.g., Sephadex R ), agarose (e.g.
  • the solid support is in any desired form, including, but not limited to, a bead, capillary, plate, membrane, wafer, comb, pin, a wafer with pits, an array of pits or nanoliter wells and other geometries and forms known to those of skill in the art.
  • Supports include flat surfaces designed to receive or link samples at discrete loci.
  • flat surfaces include those with hydrophobic regions surrounding hydrophilic loci for receiving, containing or binding a sample.
  • the supports can be particulate or can be in the form of a continuous surface, such as a microtiter dish or well, a glass slide, a silicon chip, a nitrocellulose sheet, nylon mesh, or other such materials.
  • a continuous surface such as a microtiter dish or well, a glass slide, a silicon chip, a nitrocellulose sheet, nylon mesh, or other such materials.
  • the particles typically have at least one dimension in the 510 mm range or smaller.
  • Such particles referred collectively herein as “beads”, are often, but not necessarily, spherical. Reference to “bead,” however, does not constrain the geometry of the matrix, which can be any shape, including random shapes, needles, fibers, and elongated. “Beads”, particularly microspheres that are sufficiently small to be used in the liquid phase, are also contemplated.
  • the “beads” can include additional components, such as magnetic or paramagnetic particles (see, e.g., Dyna beads (Dynal, Oslo, Norway)) for separation using magnets, as long as the additional components do not interfere with the methods and analyses herein.
  • additional components such as magnetic or paramagnetic particles (see, e.g., Dyna beads (Dynal, Oslo, Norway)) for separation using magnets, as long as the additional components do not interfere with the methods and analyses herein.
  • polymorphism refers to the coexistence of more than one form of a gene or portion thereof.
  • a portion of a gene of which there are at least two different forms, e.g., two different nucleotide sequences, is referred to as a “polymorphic region of a gene”.
  • a polymorphic region can be a single nucleotide, e.g., a single nucleotide polymorphism (SNP), the identity of which differs in different alleles.
  • SNP single nucleotide polymorphism
  • a polymorphic region also can be several nucleotides in length.
  • polymorphic gene refers to a gene having at least one polymorphic region.
  • allele which is used interchangeably herein with “allelic variant” refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for the gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene. Alleles of a specific gene can differ from each other in a single nucleotide, or several nucleotides, and can include substitutions, deletions, and insertions of nucleotides. An allele of a gene also can be a form of a gene containing a mutation.
  • allelic variants refers to an allele that is represented in the greatest frequency for a given population.
  • allelic variants refers to allelic variants.
  • association refers to coincidence with the development or manifestation of a disease, condition or phenotype. Association can be due to, but is not limited to, genes responsible for housekeeping functions whose alteration can provide the foundation for a variety of diseases and conditions, those that are part of a pathway that is involved in a specific disease, condition or phenotype and those that indirectly contribute to the manifestation of a disease, condition or phenotype.
  • the term “subject” refers to a living organism, such as a mammal, a plant, a fungi, an invertebrate, a fish, an insect, a pathogenic organism, such as a virus or a bacterium, and, includes humans and other mammals.
  • gene refers to a nucleic acid molecule containing an open reading frame and including at least one exon and (optionally) an intron sequence.
  • a gene can be either RNA or DNA. Genes can include regions preceding and following the coding region.
  • intron refers to a DNA fragment present in a given gene that is spliced out during mRNA maturation.
  • nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO: x refers to the nucleotide sequence of the complementary strand of a nucleic acid strand having SEQ ID NO: x.
  • complementary strand is used herein interchangeably with the term “complement”.
  • the complement of a nucleic acid strand can be the complement of a coding strand or the complement of a noncoding strand.
  • the complement of a nucleic acid having SEQ ID NO: x refers to the complementary strand of the strand having SEQ ID NO: x or to any nucleic acid having the nucleotide sequence of the complementary strand of SEQ ID NO: x.
  • the complement of this nucleic acid is a nucleic acid having a nucleotide sequence that is complementary to that of SEQ ID NO: x.
  • coding sequence refers to that portion of a gene that encodes a amino acids that constitute a polypeptide or protein.
  • sense strand refers to that strand of a double-stranded nucleic acid molecule that has the sequence of the mRNA that encodes the amino acid sequence encoded by the double-stranded nucleic acid molecule.
  • antisense strand refers to that strand of a double-stranded nucleic acid molecule that is the complement of the sequence of the mRNA that encodes the amino acid sequence encoded by the double-stranded nucleic acid molecule.
  • amino acids which occur in the various amino acid sequences appearing herein, are identified according to their well-known, three-letter or one-letter abbreviations.
  • the nucleotides, which occur in the various DNA fragments, are designated with the standard single-letter designations used routinely in the art (see, Table 1).
  • amino acid residue refers to an amino acid formed upon chemical digestion (hydrolysis) of a polypeptide at its peptide linkages.
  • the amino acid residues described herein are, in certain embodiments, in the “L” isomeric form. Residues in the “D” isomeric form can be substituted for any Lamino acid residue, as long as the a desired functional property is retained by the polypeptide.
  • NH 2 refers to the free amino group present at the amino terminus of a polypeptide.
  • COOH refers to the free carboxy group present at the carboxyl terminus of a polypeptide.
  • amino acid residue sequences represented herein by formulae have a left to right orientation in the conventional direction of aminoterminus to carboxylterminus.
  • amino acid residue is broadly defined to include the amino acids listed in the Table of Correspondence and modified and unusual amino acids, such as those referred to in 37 C.F.R. ⁇ ⁇ 1.821-1.822, and incorporated herein by reference.
  • a dash at the beginning or end of an amino acid residue sequence indicates a peptide bond to a further sequence of one or more amino acid residues or to an aminoterminal group such as NH 2 or to a carboxylterminal group such as COOH.
  • substitutions can be made in accordance with those set forth in TABLE 2 as follows: TABLE 2 Original Conservative residue substitution Ala (A) Gly; Ser Arg (R) Lys Asn (N) Gln; His Asp (D) Glu Cys (C) Ser Gln (Q) Asn Glu (E) Asp Gly (G) Ala; Pro His (H) Asn; Gln Ile (I) Leu; Val Leu (L) Ile; Val Lys (K) Arg; Gln Met (M) Leu; Tyr; Ile Phe (F) Met; Leu; Tyr Ser (S) Thr Thr (T) Ser Trp (W) Tyr Tyr (Y) Trp; Phe Val (V) Ile; Leu
  • Other substitutions are also permissible and can be determined empirically or in accord with known conservative substitutions.
  • a DNA or nucleic acid homolog refers to a nucleic acid that includes a preselected conserved nucleotide sequence, such as a sequence encoding a therapeutic polypeptide.
  • substantially homologous is meant having at least 80%, at least 90% or at least 95% homology therewith or a less percentage of homology or identity and conserved biological activity or function.
  • the terms “homology” and “identity” are often used interchangeably. In this regard, percent homology or identity can be determined, for example, by comparing sequence information using a GAP computer program.
  • the GAP program uses the alignment method of Needleman and Wunsch ( J. Mol. Biol. 48:443 (1970), as revised by Smith and Waterman ( Adv. Appl. Math. 2:482 (1981). Briefly, the GAP program defines similarity as the number of aligned symbols (e.g., nucleotides or amino acids) that are similar, divided by the total number of symbols in the shorter of the two sequences.
  • the default parameters for the GAP program can include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for nonidentities) and the weighted comparison matrix of Gribskov and Burgess, Nucl. Acids Res. 14:6745 (1986), as described by Schwartz and Dayhoff, eds., ATLAS OF PROTEIN SEQUENCE AND STRUCTURE , National Biomedical Research Foundation, pp. 353358 (1979); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.
  • nucleic acid molecules Whether any two nucleic acid molecules have nucleotide sequences that are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% “identical” can be determined using known computer algorithms such as the “FASTA” program, using for example, the default parameters as in Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85:2444 (1988). Alternatively the BLAST function of the National Center for Biotechnology Information database can be used to determine identity.
  • sequences are aligned so that the highest order match is obtained. “Identity” per se has an art-recognized meaning and can be calculated using published techniques. (See, e.g.: Computational Molecular Biology , Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects , Smith, D. W., ed., Academic Press, New York, 1993 ; Computer Analysis of Sequence Data, Part I , Griffin, A. M., and Griffin, H.
  • identity represents a comparison between a test and a reference polypeptide or polynucleotide.
  • a test polypeptide can be defined as any polypeptide that is 90% or more identical to a reference polypeptide.
  • the term at least “90% identical to” refers to percent identities from 90 to 99.99 relative to the reference polypeptides. Identity at a level of 90% or more is indicative of the fact that, assuming for exemplification purposes a test and reference polypeptide length of 100 amino acids are compared. No more than 10% (e.g., 10 out of 100) amino acids in the test polypeptide differs from that of the reference polypeptides. Similar comparisons can be made between a test and reference polynucleotides.
  • differences can be represented as point mutations randomly distributed over the entire length of an amino acid sequence or they can be clustered in one or more locations of varying length up to the maximum allowable, e.g., 10/100 amino acid difference (approximately 90% identity). Differences are defined as nucleic acid or amino acid substitutions, or deletions.
  • SSPE pH 7.4 phosphate-buffered, 0.18M NaCl.
  • Hybridizations are carried out in the same solution with the following modifications: 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 ig/ml salmon sperm DNA, 10% (wt/vol) dextran sulfate, and 520 ⁇ 10 6 cpm 32Plabeled probe is used. Filters are incubated in hybridization mixture for 1820 hours at 40° C., and then washed for 1.5 hours at 55° C. in a solution containing 2 ⁇ SSC, 25 mM Tris HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS. The wash solution is replaced with fresh solution and incubated an additional 1.5 hours at 60° C. Filters are blotted dry and exposed for autoradiography. If necessary, filters are washed for a third time at 6568° C. and reexposed to film. Other conditions of low stringency which can be used are well known in the art (e.g., as employed for cross-species hybridizations).
  • procedures using conditions of moderate stringency include, for example, but are not limited to, procedures using such conditions of moderate stringency are as follows: filters containing DNA are pretreated for 6 hours at 55° C. in a solution containing 6 ⁇ SSC, 5 ⁇ Denhart's solution, 0.5% SDS and 100 ig/ml denatured salmon sperm DNA. Hybridizations are carried out in the same solution and 520 ⁇ 10 6 cpm 32 Plabeled probe is used. Filters are incubated in hybridization mixture for 18-20 hours at 55° C., and then washed twice for 30 minutes at 60° C. in a solution containing 1 ⁇ SSC and 0.1% SDS. Filters are blotted dry and exposed for autoradiography. Other conditions of moderate stringency which can be used are well-known in the art. Washing of filters is done at 37° C. for 1 hour in a solution containing 2 ⁇ SSC, 0.1% SDS.
  • procedures using conditions of high stringency are as follows: Prehybridization of filters containing DNA is carried out for 8 hours to overnight at 65° C. in buffer composed of 6 ⁇ SSC, 50 mM Tris HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 ig/ml denatured salmon sperm DNA. Filters are hybridized for 48 hours at 65° C. in prehybridization mixture containing 100 ig/ml denatured salmon sperm DNA and 520 ⁇ 10 6 cpm of 32 Plabeled probe. Washing of filters is done at 37° C.
  • substantially identical or substantially homologous or similar varies with the context as understood by those skilled in the relevant art and generally means at least 60% or 70%, preferably means at least 80%, 85% or more preferably at least 90%, and most preferably at least 95% identity.
  • the compounds provided herein can contain chiral centers. Such chiral centers can be of either the (R) or (S) configuration, or can be a mixture thereof. Thus, the compounds provided herein can be enantiomerically pure, or be stereoisomeric or diastereomeric mixtures. In the case of amino acid residues, such residues can be of either the L- or D-form. In one embodiment, the configuration for naturally occurring amino acid residues is L.
  • substantially pure means sufficiently homogeneous to appear free of readily detectable impurities as determined by standard methods of analysis, such as thin layer chromatography (TLC), gel electrophoresis, high performance liquid chromatography (HPLC) and mass spectrometry (MS), used by those of skill in the art to assess such purity, or sufficiently pure such that further purification would not detectably alter the physical and chemical properties, such as enzymatic and biological activities, of the substance.
  • TLC thin layer chromatography
  • HPLC high performance liquid chromatography
  • MS mass spectrometry
  • a cleavable bond or moiety refers to a bond or moiety that is cleaved or cleavable under the specific conditions, such as chemically, enzymatically or photolytically. Where not specified herein, such bond is cleavable under conditions of MALDI-MS analysis, such as by a UV or IR laser.
  • a “selectively cleavable” moiety is a moiety that can be selectively cleaved without affecting or altering the composition of the other portions of the compound of interest.
  • a cleavable moiety L of the compounds provided herein is one that can be cleaved by chemical, enzymatic, photolytic, or other means without affecting or altering composition (e.g., the chemical composition) of the conjugated biomolecule, including a protein.
  • “Non-cleavable” moieties are those that cannot be selectively cleaved without affecting or altering the composition of the other portions of the compound of interest.
  • binding with high affinity refers to a binding that has an association constant k a of at least 10 9 and generally 10 10 , 10 11 liters/mole or greater) or a K eq of 10 9 , 10 10 , 10 11 , 10 12 or greater.
  • high affinity bonds formed by the reactivity groups are those that are stable to the laser (UV and IR) used in MALDI-MS analyses.
  • alkyl As used herein, “alkyl”, “alkenyl” and “alkynyl”, if not specified, contain from 1 to 20 carbons, or 1 to 16 carbons, and are straight or branched carbon chains. Alkenyl carbon chains are from 2 to 20 carbons, and, in certain embodiments, contain 1 to 8 double bonds. Alkenyl carbon chains of 1 to 16 carbons, in certain embodiments, contain 1 to 5 double bonds. Alkynyl carbon chains are from 2 to 20 carbons, and, in one embodiment, contain 1 to 8 triple bonds. Alkynyl carbon chains of 2 to 16 carbons, in certain embodiments, contain 1 to 5 triple bonds.
  • alkyl, alkenyl and alkynyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, isobutyl, n-butyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-penytyl and isohexyl.
  • the alkyl, alkenyl and alkynyl groups unless otherwise specified, can be optionally substituted, with one or more groups, including alkyl group substituents that can be the same or different.
  • lower alkyl As used herein, “lower alkyl”, “lower alkenyl”, and “lower alkynyl” refer to carbon chains having less than about 6 carbons.
  • alk(en)(yn)yl refers to an alkyl group containing at least one double bond and at least one triple bond.
  • an “alkyl group substituent” includes, but is not limited to, halo, haloalkyl, including halo lower alkyl, aryl, hydroxy, alkoxy, aryloxy, alkyloxy, alkylthio, arylthio, aralkyloxy, aralkylthio, carboxy alkoxycarbonyl, oxo and cycloalkyl.
  • aryl refers to aromatic groups containing from 5 to 20 carbon atoms and can be a mono-, multicyclic or fused ring system.
  • Aryl groups include, but are not limited to, phenyl, naphthyl, biphenyl, fluorenyl and others that can be unsubstituted or are substituted with one or more substituents.
  • aryl also refers to aryl-containing groups, including, but not limited to, aryloxy, arylthio, arylcarbonyl and arylamino groups.
  • an “aryl group substituent” includes, but is not limited to, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl optionally substituted with 1 or more, including 1 to 3, substituents selected from halo, halo alkyl and alkyl, aralkyl, heteroaralkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing 1 to 2 triple bonds, alk(en)(yn)yl groups, halo, pseudohalo, cyano, hydroxy, haloalkyl and polyhaloalkyl, including halo lower alkyl, especially trifluoromethyl, formyl, alkylcarbonyl, arylcarbonyl that is optionally substituted with 1 or more, including 1 to 3, substituents selected from halo, halo alkyl and alkyl, heteroarylcarbonyl, carboxy, alkoxycarbony
  • aralkyl refers to an alkyl group in that one of the hydrogen atoms of the alkyl is replaced by an aryl group.
  • heteroarylkyl refers to an alkyl group in that one of the hydrogen atoms of the alkyl is replaced by a heteroaryl group.
  • cycloalkyl refers to a saturated mono- or multicyclic ring system, in one embodiment, of 3 to 10 carbon atoms, or 3 to 6 carbon atoms; cycloalkenyl and cycloalkynyl refer to mono- or multicyclic ring systems that respectively include at least one double bond and at least one triple bond. Cycloalkenyl and cycloalkynyl groups can contain, in one embodiment, 3 to 10 carbon atoms, with cycloalkenyl groups, in other embodiments, containing 4 to 7 carbon atoms and cycloalkynyl groups, in other embodiments, containing 8 to 10 carbon atoms.
  • ring systems of the cycloalkyl, cycloalkenyl and cycloalkynyl groups can be composed of one ring or two or more rings that can be joined together in a fused, bridged or spiro-connected fashion, and can be optionally substituted with one or more alkyl group substituents.
  • Cycloalk(en)(yn)yl refers to a cycloalkyl group containing at least one double bond and at least one triple bond.
  • heteroaryl refers to a monocyclic or multicyclic ring system, in one embodiment of about 5 to about 15 members where one or more, or 1 to 3, of the atoms in the ring system is a heteroatom, which is, an element other than carbon, for example, nitrogen, oxygen and sulfur atoms.
  • the heteroaryl can be optionally substituted with one or more, including 1 to 3, aryl group substituents.
  • the heteroaryl group can be optionally fused to a benzene ring.
  • heteroaryl groups include, but are not limited to, pyrroles, porphyrines, furans, thiophenes, selenophenes, pyrazoles, imidazoles, triazoles, tetrazoles, oxazoles, oxadiazoles, thiazoles, thiadiazoles, indoles, carbazoles, benzofurans, benzothiophenes, indazoles, benzimidazoles, benzotriazoles, benzoxatriazoles, benzothiazoles, benzoselenozoles, benzothiadiazoles, benzoselenadiazoles, purines, pyridines, pyridazines, pyrimidines, pyrazines, pyrazines, triazines, quinolines, acridines, isoquinolines, cinnolines, phthalazines, quinazolines, quinoxalines, phenazines, pyr
  • heteroaryl also refers to heteroaryl-containing groups, including, but not limited to, heteroaryloxy, heteroarylthio, heteroarylcarbonyl and heteroarylamino.
  • heterocyclic refers to a monocyclic or multicyclic ring system, in one embodiment of 3 to 10 members, in another embodiment 4 to 7 members, including 5 to 6 members, where one or more, including 1 to 3 of the atoms in the ring system is a heteroatom, which is, an element other than carbon, for example, nitrogen, oxygen and sulfur atoms.
  • the heterocycle can be optionally substituted with one or more, or 1 to 3 aryl group substituents.
  • substituents of the heterocyclic group include hydroxy, amino, alkoxy containing 1 to 4 carbon atoms, halo lower alkyl, including trihalomethyl, such as trifluoromethyl, and halogen.
  • the term heterocycle can include reference to heteroaryl.
  • alkyl refers to saturated carbon chains that contain one or more carbons; the chains can be straight or branched or include cyclic portions or be cyclic.
  • haloalkyl can include one or more of the same or different halogens.
  • C 1-3 alkoxyphenyl can include one or more of the same or different alkoxy groups containing one, two or three carbons.
  • substituents such as carboxy or substituents represented by variables such as W are separately enclosed in parentheses, yet possess no subscript outside the parentheses indicating numerical value and that follow substituents not in parentheses, e.g., “C 1-4 alkyl(W)(carboxy)”, “W” and “carboxy” are each directly attached to C 1-4 alkyl.
  • halogen or “halide” refers to F, Cl, Br or 1.
  • pseudohalides are compounds that behave substantially similar to halides. Such compounds can be used in the same manner and treated in the same manner as halides (X, in that X is a halogen, such as Cl or Br).
  • Pseudohalides include, but are not limited to, cyanide, cyanate, isocyanate, thiocyanate, isothiocyanate, selenocyanate, trifluoromethoxy, and azide.
  • haloalkyl refers to a lower alkyl radical in that one or more of the hydrogen atoms are replaced by halogen including, but not limited to, chloromethyl, trifluoromethyl, 1 chloro2fluoroethyl and the like.
  • haloalkoxy refers to RO in that R is a haloalkyl group.
  • sulfinyl or “thionyl” refers to S(O).
  • sulfonyl or “sulfuryl” refers to S(O) 2 .
  • sulfo refers to S(O) 2 O.
  • Carboxy refers to a divalent radical, C(O)O.
  • aminocarbonyl refers to C(O)NH 2 .
  • alkylaminocarbonyl refers to C(O)NHR in that R is hydrogen or alkyl, including lower alkyl.
  • dialkylaminocarbonyl refers to C(O)NR′R in that R′ and R are independently selected from hydrogen or alkyl, including lower alkyl.
  • carboxamide refers to groups of formula NRCOR.
  • diarylaminocarbonyl refers to C(O)NRR′ in that R and R′ are independently selected from aryl, including lower aryl, such as phenyl.
  • aralkylaminocarbonyl refers to C(O)NRR′ in that one of R and R′ is aryl, including lower aryl, such as phenyl, and the other of R and R′ is alkyl, including lower alkyl.
  • arylaminocarbonyl refers to C(O)NHR in that R is aryl, including lower aryl, such as phenyl.
  • alkoxycarbonyl refers to C(O)OR in that R is alkyl, including lower alkyl.
  • aryloxycarbonyl refers to C(O)OR in that R is aryl, including lower aryl, such as phenyl.
  • alkoxy and “alkylthio” refer to RO and RS, in that R is alkyl, including lower alkyl.
  • aryloxy and “arylthio” refer to RO and RS, in that R is aryl, including lower aryl, such as phenyl.
  • alkylene refers to a straight, branched or cyclic, in one embodiment straight or branched, divalent aliphatic hydrocarbon group, in certain embodiments having from 1 to about 20 carbon atoms, in other embodiments 1 to 12 carbons, including lower alkylene.
  • the alkylene group is optionally substituted with one or more “alkyl group substituents.” There can be optionally inserted along the alkylene group one or more oxygen, sulphur or substituted or unsubstituted nitrogen atoms, where the nitrogen substituent is alkyl as previously described.
  • alkylene groups include methylene (CH 2 ), ethylene (CH 2 CH 2 ), propylene (—(CH 2 ) 3 ), cyclohexylene (C 6 H 10 ), methylenedioxy (OCH 2 O) and ethylenedioxy (O(CH 2 ) 2 O).
  • lower alkylene refers to alkylene groups having 1 to 6 carbons. In certain embodiments, alkylene groups are lower alkylene, including alkylene of 1 to 3 carbon atoms.
  • alkenylene refers to a straight, branched or cyclic, in one embodiment straight or branched, aliphatic hydrocarbon group, in certain embodiments having from 2 to about 20 carbon atoms and at least one double bond, in other embodiments 1 to 12 carbons, including lower alkenylene.
  • the alkenylene group is optionally substituted with one or more “alkyl group substituents.” There can be optionally inserted along the alkenylene group one or more oxygen, sulphur or substituted or unsubstituted nitrogen atoms, where the nitrogen substituent is alkyl as previously described.
  • Exemplary alkenylene groups include —CH ⁇ CH—CH ⁇ CH— and CH ⁇ CHCH 2 .
  • the term “lower alkenylene” refers to alkenylene groups having 2 to 6 carbons. In certain embodiments, alkenylene groups are lower alkenylene, including alkenylene of 3 to 4 carbon atoms.
  • alkynylene refers to a straight, branched or cyclic, in one embodiment straight or branched, divalent aliphatic hydrocarbon group, in certain embodiments having from 2 to about 20 carbon atoms and at least one triple bond, in other embodiments 1 to 12 carbons, including lower alkynylene.
  • the alkynylene group is optionally substituted with one or more “alkyl group substituents.” There can be optionally inserted along the alkynylene group one or more oxygen, sulphur or substituted or unsubstituted nitrogen atoms, where the nitrogen substituent is alkyl as previously described.
  • alkynylene groups include —C ⁇ C—C ⁇ C—, C ⁇ C and C ⁇ CCH 2 .
  • the term “lower alkynylene” refers to alkynylene groups having 2 to 6 carbons. In certain embodiments, alkynylene groups are lower alkynylene, including alkynylene of 3 to 4 carbon atoms.
  • alk(en)(yn)ylene refers to a straight, branched or cyclic, in one embodiment straight or branched, divalent aliphatic hydrocarbon group, in certain embodiments having from 2 to about 20 carbon atoms and at least one triple bond, and at least one double bond; in other embodiments 1 to 12 carbons, including lower alk(en)(yn)ylene.
  • the alk(en)(yn)ylene group is optionally substituted with one or more “alkyl group substituents.” There can be optionally inserted along the alkynylene group one or more oxygen, sulphur or substituted or unsubstituted nitrogen atoms, where the nitrogen substituent is alkyl as previously described.
  • alk(en)(yn)ylene groups include —C ⁇ C—(CH 2 ) n C ⁇ C—, where n is 1 or 2.
  • the term “lower alk(en)(yn)ylene” refers to alk(en)(yn)ylene groups having up to 6 carbons.
  • alk(en)(yn)ylene groups are lower alk(en)(yn)ylene, including alk(en)(yn)ylene of 4 carbon atoms.
  • arylene refers to a monocyclic or polycyclic, in one embodiment monocyclic, divalent aromatic group, in certain embodiments having from 5 to about 20 carbon atoms and at least one aromatic ring, in other embodiments 5 to 12 carbons, including lower arylene.
  • the arylene group is optionally substituted with one or more “alkyl group substituents.” There can be optionally inserted around the arylene group one or more oxygen, sulphur or substituted or unsubstituted nitrogen atoms, where the nitrogen substituent is alkyl as previously described.
  • Exemplary arylene groups include 1,2, 1,3- and 1,4-phenylene.
  • the term “lower arylene” refers to arylene groups having 5 or 6 carbons. In certain embodiments, arylene groups are lower arylene.
  • heteroarylene refers to a divalent monocyclic or multicyclic ring system, in one embodiment of about 5 to about 15 members where one or more, or 1 to 3 of the atoms in the ring system is a heteroatom, which is, an element other than carbon, for example, nitrogen, oxygen and sulfur atoms.
  • the heteroarylene group can be optionally substituted with one or more, or 1 to 3, aryl group substituents.
  • alkylidene refers to a divalent group, such as ⁇ CR′R′′, which is attached to one atom of another group, forming a double bond.
  • exemplary alkylidene groups are methylidene ( ⁇ CH 2 ) and ethylidene ( ⁇ CHCH 3 ).
  • aralkylidene refers to an alkylidene group in that either R′ or R′′ is and aryl group.
  • amido refers to the divalent group C(O)NH.
  • Thioamido refers to the divalent group C(S)NH.
  • Oxyamido refers to the divalent group OC(O)NH.
  • Thiaamido refers to the divalent group SC(O)NH.
  • Dithiaamido refers to the divalent group SC(S)NH.
  • Ureido refers to the divalent group HNC(O)NH.
  • Thioureido refers to the divalent group HNC(S)NH.
  • “semicarbazide” refers to NHC(O)NHNH. “Carbazate” refers to the divalent group OC(O)NHNH. “Isothiocarbazate” refers to the divalent group SC(O)NHNH. “Thiocarbazate” refers to the divalent group OC(S)NHNH. “Sulfonylhydrazide” refers to the group SO 2 NHNH. “Hydrazide” refers to the divalent group C(O)NHNH. “Azo” refers to the divalent group N ⁇ N. “Hydrazinyl” refers to the divalent group NHNH.
  • amino acid refers to á-amino acids that are racemic, or of either the D- or L-configuration.
  • the designation “d” preceding an amino acid designation refers to the D-isomer of the amino acid.
  • the designation “dl” preceding an amino acid designation refers to a mixture of the L- and D-isomers of the amino acid.
  • conformationally altered protein disease refers to diseases associated with a protein or polypeptide that has a disease-associated conformation.
  • the methods and collections provided herein permit detection of a conformer associated with a disease to be detected.
  • Diseases and associated proteins that exhibit two or more different conformations in which at least one conformation is a conformationally altered protein include, but are not limited to, amyloid diseases and other neurodegenerative diseases known to those of skill in the art and set forth below.
  • cell sorting refers to an assay in which cells are separated and recovered from suspension based upon properties measured in flow cytometry analysis. Most assays used for analysis can serve as the basis for sorting experiments, as long as gates and regions defining the subpopulation(s) to be sorted do not logically overlap. Maximum throughput rates are typically 5000 cells/second (18 ⁇ 10 6 cells/hour). The rate of collection of the separated population(s) depends primarily upon the condition of the cells and the percentage of reactivity.
  • Collections of capture compounds that selectively bind to biomolecules in samples such as biomoelcules, particularly, although not exclusively, a cell lysate or in vitro translated polypeptides from a cell lysate are provided.
  • Each capture compound in the collection can bind to specific groups or classes of biopolymers, and is designed to covalently or tightly (sufficient to sustain mass spectrometric analysis, for example) to a subset of all of the biomolecules in the sample.
  • a sample can contain 1000's of members, for example a cell lysate.
  • the collections of compounds permit sufficient selectivity so that, for example, about 10-20 of the components of the sample bind to each member of the collection. The exact number is a small enough number for routine analyses to identify them, generally in one step, such as by mass spectrometry.
  • the compounds provided herein are multifunctional synthetic small molecules that can select, covalently bind (“capture”) and isolate proteins based on their unique surface features.
  • the solubility of the compound may be modulated in the chemical synthesis process such that water soluble (cytosolic) or insoluble (membrane) protein mixtures may be analyzed.
  • the compound employs three critical functionalities: (1) a reactivity function; (2) a selectivity function; and (3) a sorting function.
  • the selectivity function interacts via non-covalent interactions with a protein e.g. in the active site of enzymes or ligand binding site of receptors (“Biased approach” for e.g. non-target identification), or at a surface affinity motif (SAM) outside of the binding site (“Unbiased approach” for e.g. target discovery).
  • a biased selectivity group enables isolation of specific proteins from complex mixtures.
  • the selectivity function is a drug (or metabolite thereof) known to cause side effects, attached in several different orientations to make different parts of the molecule accessible to proteins.
  • An unbiased selectivity function utilizes chemical features underlying affinity interactions with the protein surface.
  • the unbiased selectivity function tends to be less specific than the biased, since it is designed to interact with a a broader set of proteins.
  • Use of the unbiased capture compounds to screen for global protein profile differences between healthy and disease cells would require the development of a library of capture compounds which as a set interact with the majority of the proteins in the proteome. This approach enables monitoring of protein profile differences induced by the influence of a drug molecule, or discovering new potential drug targets or biomarkers based on the differences between healthy with disease cells.
  • the reactivity function covalently “captures” or binds to the selected protein. While the selectivity function serves as the bait, the reactivity function serves as the hook. A protein thus captured will be able to survive downstream purification and analytical processes.
  • Reactivity functions employed are chemically reactive with certain protein side chains (e.g. NHS forms bond with lysine amino function), or require an activation step (i.e.light) prior to forming covalent bond (e.g. photoactivated moiety such as azide which forms a nitrene radical).
  • the sorting (pull-out) function isolates the specific protein from its complex cellular environment using a solid support (e.g. magnetic bead, DNA chip), enabling subsequent structural and functional characterization.
  • a solid support e.g. magnetic bead, DNA chip
  • the analytical process ( FIG. 30 ) is simple and highly amenable to automation.
  • a protein mixture from the cells of interest is incubated with a capture compound in buffer conditions which retain the native structural features of the proteins.
  • the selectivity function reversibly interacts and comes to equilibrium with those proteins for which it has an affinity.
  • the reactivity function then forms a covalent bond irreversibly linking the compound to those proteins for which there was an affinity.
  • Our data indicates that the higher the affinity between the protein and the capture compound, the higher is the percentage covalently captured.
  • the covalently captured proteins are isolated onto a solid support and the uncaptured cellular components and proteins washed away. If the sorting function chosen is a biotin, then avidin or streptavidin beads are used as the solid support.
  • Mass spectrometry MS is used to detect the captured proteins.
  • MS is used for protein identification.
  • This initial mass spectrum provides the molecular weights of all proteins captured. The identity of each can then be determined by conventional means (e.g. digestion and analysis or peptide fragments and genome/proteome database searches).
  • Use of the capture compounds allows the researcher to further analyze and characterize the protein, since it is physically isolated from all others (e.g. mass spectrum identification, or x-ray crystallography after removal from beads).
  • the protein is washed from the solid support (e.g., if using avidin/streptavidin beads, treat the beads with biotin to displace captured proteins) or make use of an incorporated photocleavable linker, or enzymatically or chemically cleavable linker, thereby releasing the captured purified protein from the solid support.
  • the collections permit a top down holistic approach to analysis of the proteome, including post-translationally modified proteins, and other biomolecules. Protein and other biomolecule patterns are the starting point for analyses that use these collections; rather than nucleic acids and the genome (bottom up).
  • the collections can be used to assess the biomolecule components of a sample, such as a biological sample, to identify components specific to a particular phenotype, such as a disease state, to identify structural function, biochemical pathways and mechanisms of action.
  • the collections and methods of use permit an unbiased analysis of biomolecules, since the methods do not necessarily assess specific classes of targets, instead, changes in samples are detected or identified.
  • the collections permit the components of a complex mixture of biomolecules (i.e., a mixture of 50, 100, 500, 1000, 2000 and more) to be sorted into discrete loci containing reduced numbers, typically by 10%, 50% or greater reduction in complexity, or to about 1 to 50 different biomolecules per locus in an array, so that the components at each spot can be analyzed, such as by mass spectrometric analysis alone or in combination with other analyses.
  • a complex mixture of biomolecules i.e., a mixture of 50, 100, 500, 1000, 2000 and more
  • the collections can be used to detect structural changes, such as those from the post-translational processing of proteins, and can be used to detect changes in membrane proteins, which are involved in the most fundamental processes, such as signal transduction, ion channels, receptors for ligand interaction and cell-to-cell interactions.
  • membrane proteins which are involved in the most fundamental processes, such as signal transduction, ion channels, receptors for ligand interaction and cell-to-cell interactions.
  • the collections contain sets of member capture compounds.
  • members of each set differ in at least one functional group, and generally in two or three, from members of the other sets.
  • the compounds include a reactivity function, a selectivity function and a sorting function
  • each set differs in at least the sorting function, typically in at least in the sorting and selectivity function, and generally in all three functions.
  • the solubility functions if present, which are selected to permit assaying in a selected environment, can differ among the compounds, or can be the same among all sets.
  • the collections are contacted with a sample or partially purified or purified components thereof to effect binding of biomolecules to capture compounds in the collection.
  • the capture compounds can be in an addressable array, such as bound to a solid support prior to contacting, or can be arrayed after contacting with the sample.
  • the resulting array is optionally treated with a reagent that specifically cleaves the bound polymers, such as a protease, and is subjected to analysis, particularly mass spectrometric analysis to identify components of the bound biomolecules at each locus.
  • a molecular weight of a biomolecule, such as a protein or portion thereof of interest is determined, the biomolecule can be identified. Methods for identification include comparison of the molecular weights with databases, for example protein databases that include protease fragments and their molecular weights.
  • the capture compounds that include functional groups that confer reactivity, selective and separative properties, depending on the specificity of separation and analysis required (which depends on the complexity of the mixture to be analyzed). As more functional groups are added to the compounds, the compounds can exhibit increased selectivity and develop a signature for target molecules similar to an antigen (Ag) binding site on an antibody.
  • Ag antigen
  • the compounds provided herein include at least two functional groups (functions) selected from four types of functions: a reactivity function, which binds to biopolymers either covalently or with a high k a (generally greater than about 10 9 , 10 10 , 10 11 liters/mole and/or such that the binding is substantially irreversible or stable under conditions of mass spectrometric analyses, such as MALDI-MS conditions); a selectivity function, which by virtue of non-covalent interactions alters, generally increases, the specificity of the reactivity function; a sorting function, which permits the compounds to be addressed (arrayed or otherwise separated based according to the structure of the capture compound; and a solubility function, which when selected alters the solubility of the compounds depending upon the environment in which reactions are performed, permitting the conditions to simulate physiological conditions.
  • a reactivity function which binds to biopolymers either covalently or with a high k a (generally greater than about 10 9 , 10 10 , 10 11 liters
  • the reactivity function is the reactive group that specifically interacts, typically covalently or with high binding affinity (ka), with particular biomolecules, such as proteins, or portions thereof; and the other functionality, the selectivity functions, alters, typically increasing, the specificity of the reactivity function.
  • the reactive function covalently interacts with groups on a particular biomolecule, such as amine groups on the surface of a protein.
  • the reactivity function interacts with biomolecules to form a covalent bond or a non-covalent bond that is stable under conditions of analysis, generally with a k a of greater than 10 9 liters/mole or greater than 10 10 liters/mole.
  • Conditions of analysis include, but are not limited to, mass spectrophotometric analysis, such as matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry.
  • MALDI-TOF matrix assisted laser desorption ionization-time of flight
  • the selectivity function influences the types of biomolecules that can interact with the reactivity function through a non-covalent interaction.
  • the selectivity function alters the specificity for the particular groups, generally reducing the number of such groups with which the reactivity functions react.
  • a goal is to reduce the the number of proteins or biomolecules bound at a locus, so that the proteins can then be separated, such as by mass spectrometry.
  • the capture compounds provided herein are those that can, the compounds for use in the methods herein can be classified in at least two sets: one for reactions in aqueous solution (e.g., for reaction with hydrophilic biomolecules), and the other for reaction in organic solvents (e.g., chloroform)(e.g., for reaction with hydrophobic biomolecules).
  • aqueous solution e.g., for reaction with hydrophilic biomolecules
  • organic solvents e.g., chloroform
  • the compounds provided herein discriminate between hydrophilic and hydrophobic biomolecules, including, but not limited to, proteins, and allow for analysis of both classes of biomolecules.
  • Capture compounds also referred to as capture agents
  • the capture compounds include a core “Z” that presents one or more reactivity functions “X” and optionally at least a selectivity function “Y” and/or a sorting function “Q”, and also optionally one or more solubility functions “W.” Additionally, cleavable linkers and other functions are included in the molecules.
  • the particular manner in which the functions are presented on the core or scaffold is a matter of design choice, but are selected such that the resulting molecule has the property that it captures biomolecules, particularly proteins, with sufficient specificity and either covalently or with bonds of sufficient stability or affinity to permit analysis, such as by mass spectrometry, including MALDI mass spectrometric analysis, so that at least a portion of bound biomolecules remain bound (generally a binding affinity of 10 9 , 10 10 , 10 11 liters/mole or greater, or a K eq of 10 9 , 10 10 , 10 11 , 10 12 or greater).
  • the reactivity functionality is selected to be anything that forms such a covalent bond or a bond of high affinity that is stable under conditions of mass spectrometric analysis, particularly MALDI analysis.
  • the selectivity functionality Y is a group that “looks” at the topology of the protein around reactivity binding sites and functions to select particular groups on biolmolecules from among those with which a reactivity group can form a covalent bond (or high affinity bond).
  • a selectivity group can cause steric hindrance, or permit specific binding to an epitope, or anything in between. It can be a substrate for a drug, lipid, peptide. It selects the environment of the groups with which the reactivity function interacts.
  • the selectivity functionality Y can be one whereby a capture compound forms a covalent bond with a biomolecule in a mixture or interacts with high stability such that the affinity of binding of the capture compound to the biomolecule through the reactive functionality in the presence of the selectivity functionality is at least ten-fold or 100-fold greater than in the absence of the selectivity functionality.
  • Q is a sorting function that can be anything that provides a means for separating each set of capture compounds from the others, such as by arraying, and includes, groups such as biotin, generally a spacer, binding to an avidin on a surface (or vice versa) array, oligonucleotides for binding oligonucleotide arrays or any molecule that has a cognate binding partner to which it binds with sufficient affinitity to survive mass spectrometric analysis, such as MALDI-MS analysis, can be selected.
  • groups such as biotin, generally a spacer, binding to an avidin on a surface (or vice versa) array, oligonucleotides for binding oligonucleotide arrays or any molecule that has a cognate binding partner to which it binds with sufficient affinitity to survive mass spectrometric analysis, such as MALDI-MS analysis, can be selected.
  • groups such as biotin, generally a spacer, binding to an avidin on a
  • labeling means that can be sorted by virtue of the label, such as RF tags, fluroescent tags, color-coded tags or beads, bar-coded or other symbology labeled tags and other such labels can be used.
  • the capture compounds or the X, Y, Z, W functionalities can be on a surface that is attached to an RF tag or a colored tag. These can be readily sorted after reaction so that each set can be separately analyzed to identify bound biomolecules.
  • the collections can include capture compounds that have a variety of sorting groups.
  • the solubility function, W permits alteration in properties of the capture compound components of the collection.
  • W can be selected so that the capture compounds are soluble or not in a particular reaction medium or environment, such as a hydrophobic environment, thereby permitting reactions with membrane components.
  • the collections include sets of capture compounds, each of which set differs in Q and at least one or both X and Y.
  • the capture compounds are those with at least three functionalities: reactivity, sorting and solubility.
  • the sorting function can be selectively cleavable to permit its removal.
  • These compounds also can include a selectivity function to alter the range of binding of the reactivity function, which binds either covalently or with high affinity (ka greater than 109 to biomolecules, and optionally one or both of a sorting and solubility function.
  • Z is a moiety that is cleavable prior to or during analysis of the biomolecule, including mass spectral analysis, without altering the chemical structure of the biomolecule, including, but not limited to, a protein.
  • Z is a trifunctional moities containing three functionalities that are each capable of being derivatized selectively in the presence of the other two functionalities.
  • trifunctional moieties include but are not limited to trifunctionalized trityl groups and amino acids that possess a functionality on the side chain (e.g., tyrosine, cysteine, aspartic acid, glutamic acid, lysine, threonine, serine, etc.).
  • amino acids include natural and non-natural amino acids.
  • the methods provided herein include a step of mass spectral analysis of biomolecules, including proteins, which are displayed in an addressable format.
  • the compounds are then bound to an array of single oligonucleotides that include single-stranded portions (or portions that can be made single-stranded) that are complementary to the oligonucleotide portions, or oligonucleotide analog portions, (Q, the sorting function) of the capture compounds.
  • Z can be selected to be a group that is (i) stable to the reaction conditions required for reaction of the compounds provided herein with the biomolecule, such as a protein, (ii) stable to the conditions required for hybridization of the Q moiety with the single stranded oligonucleotides, and (iii) cleavable prior to or during analysis of the biomolecule.
  • Z with the linked functional groups can be designed so that with the Q, X, W and/or Y it dissolved into lipid bilayers of a cell membrane, thereby contacting internal portions of cell membrane proteins through the X and Y functions.
  • the support captures proteins, such as membrane proteins and organelle proteins, including proteins within cell membranes.
  • the capture compounds and functional group can be selected so that the resulting capture compounds function under selected physiological conditions.
  • the choice of Z, Q, X, W and/or Y allows for design of surfaces and supports that mimic cell membranes and other biological membranes.
  • a lipid bilayer such as as those used for forming liposomes and other micelles, can be provided on the surface of a support as a way of maintaining the structures of membrane proteins to make a lipid bilayer on the surface.
  • This can be employed where the support is the “Z” function and the other functions are linked thereto, or where the compounds are linked to a support through a Q group, such as by double-stranded oligonucleotides.
  • the resulting immobilized capture compounds can be coated with or dissolved in a lipid coating.
  • an organic film membrane is composed of a linear-dendritic diblock copolymer composed of polyamidoamine (PAMAM) dendrimer attached to one end of a linear polyethylene oxide (PEO) block.
  • PAMAM polyamidoamine
  • PEO linear polyethylene oxide
  • Z is a photocleavable group that is cleaved by a laser used in MALDI-TOF mass spectrometry.
  • Z is an acid labile group that is cleaved upon application of a matrix for mass spectrometric analysis to arrayed, such as hybridized compound-biomolecule conjugates, or by exposure to acids (e.g., trifluoroacetic or hydrochloric acids) in a vapor or liquid form, prior to analysis.
  • the matrix maintains the spacial integrity of the array, allowing for addressable analysis of the array.
  • the capture compounds for use in the methods provided herein have a Z moiety that is not cleavable under conditions used for analysis of biomolecules, including, but not limited to, mass spectrometry, such as matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry.
  • mass spectrometry such as matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry.
  • Capture compounds of these embodiments can be used, for example, in methods provided herein for identifying biomolecules in mixtures thereof, for determining biomolecule-biomolecule, including protein-protein, interactions, and for determining biomolecule-small molecule, including protein-drug or protein-drug candidate, interactions. In these embodiments, it is not necessary for the Z group to be cleaved for the analysis.
  • Z can be virtually any moiety that serves as a core to present the binding (the selectivity and reactivity functions) and the solubility and sorting functions.
  • a variety are exemplified herein, but others' may be substituted. The precise nature can be a matter of design choice in view of the disclosure herein and the skill of the skilled artisan
  • Z is a cleavable or non-cleavable multivalent or divalent group that contains, generally 50 or fewer, or less than 20 members, and is selected from straight or branched chain alkylene, straight or branched chain alkenylene, straight or branched chain alkynylene, straight or branched chain alkylenoxy, straight or branched chain alkylenthio, straight or branched chain alkylencarbonyl, straight or branched chain alkylenamino, cycloalkylene, cycloalkenylene, cycloalkynylene, cycloalkylenoxy, cycloalkylenthio, cycloalkylencarbonyl, cycloalkylenamino, heterocyclylene, arylene, arylenoxy, arylenthio, arylencarbonyl, arylenamino, heteroarylene, heteroarylenoxy, heteroarylenthio, heteroarylen
  • Z is a multivalent or divalent cleavable or non-cleavable group selected from straight or branched chain alkyl, straight or branched chain alkenyl, straight or branched chain alkynyl, (C(R 15 ) 2 ) d , O, S, (CH 2 ) d , (CH 2 ) d O, (CH 2 ) d S, >N(R 15 ), (S(O)u), (S(O) 2 ) w , >C(O), (C(O)) w , (C(S(O) u )) w , (C(O)O) w , (C(R 15 ) 2 ) d O, (C(R 15 ) 2 ) d S(O) u , O(C(R 15 ) 2 ) d , S(O) u (C(R 15 ) 2 ) d , (C(R 15 ) 2 ) ) d
  • Z is a cleavable or non-cleavable multivalent divalent group having any combination of the following groups: arylene, heteroarylene, cycloalkylene, >C(R 15 ) 2 , C(R 15 ) ⁇ C(R 15 ), >C ⁇ C(R 23 )(R 24 ), >C(R 23 )(R 24 ), C ⁇ C, O>S(A) u , >P(D) v (R 15 ), >P(D) v (ER 15 ), >N(R 15 ), >N + (R 23 )(R 24 ), >Si(R 15 ) 2 or >C(E); where u is 0, 1 or 2; v is 0, 1, 2 or 3; A is O or NR 15 ; D is S or O; and E is S, O or NR 15 ; that groups can be combined in any order;
  • the compounds are selected with the proviso that Z is cleavable prior to or during analysis, including mass spectral analysis, such as matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, of the biomolecule.
  • mass spectral analysis such as matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, of the biomolecule.
  • MALDI-TOF matrix assisted laser desorption ionization-time of flight
  • Z is at least a trivalent moiety selected from the divalent moieties disclosed herein absent at least one hydrogen.
  • the capture compounds in the collections provided herein include a core Z that has a variety of valencies. Among the capture compounds are those in which Z is at least trivalent. Also among the compounds in the collections are those where Z is divalent and linked to either a Q and an X, or a Q and a Y, or an X and a Y, or other combination of the functionalities provided herein.
  • Z is a cleavable multivalent or divalent moiety and has the formula: (S 1 ) t M(R 15 ) a (S 2 ) b L, where S 1 and S 2 are spacer moieties; t and b are each independently 0 or 1; M is a central moiety possessing two or more points of attachment (i.e., divalent or higher valency); in certain embodiments, two to six points of attachment (i.e., divalent to hexavalent), in other embodiments, 2, 3, 4 or 5 points of attachment (i.e., divalent, trivalent, tetravalent or pentavalent); R 15 is as described above; a is 0 to 4, in certain embodiments, 0, 1 or 2; and L is a bond that is cleavable prior to or during analysis, including mass spectral analysis, of a biomolecule without altering the chemical structure of the biomolecule, such as a protein.
  • M is alkylene, phenylene, biphenylene or a multivalent or divalent heterobifunctional trityl derivative. M is unsubstituted or is substituted with 1 to 4 groups, each independently selected from R 15 .
  • M is selected from (CH 2 ) r , (CH 2 O) r , (CH 2 CH 2 O) r , (NH(CH 2 ) r C( ⁇ O)) s , (NHCH(R 52 )C( ⁇ O)) r , (O(CH) r C( ⁇ O))S, where R 15 is as defined above; r and s are each independently an integer from 1 to 10; R 52 is the side chain of a natural or unnatural ⁇ -amino acid; and
  • M is straight or brached chain alkyl, straight or branched chain alkenyl, straight or branched chain alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, straight or branched chain aralkyl, straight or branched chain aralkenyl, straight or branched chain aralkynyl, straight or branched chain heteroaralkyl, straight or branched chain heteroaralkenyl, straight or branched chain heteroaralkynyl, straight or branched chain cycloalkylalkyl, straight or branched chain cycloalkylalkenyl, straight or branched chain cycloalkylalkynyl, straight or branched chain heterocyclylalkyl, straight or branched chain heterocyclylalkenyl or straight or branched chain heterocyclylalkynyl.
  • a spacer region S 1 and/or S 2 can be present on either or both sides of the central moiety M (linked to Z) of the compounds, for example, to reduce steric hindrance in reactions with the surface of large biomolecules and/or for facilitating sorting.
  • These can be any groups that provide for spacing, typically without altering desired functional properties of the capture compounds and/or capture compound/biomolecule complexes.
  • a spacer is optional.
  • steric hindrance also can enhance selectivity in conjunction with Y (or in the absence of a Y). This enhanced selectivity can be achieved either by the presence of a selectivity function, Y, that is attached to M or by the selection of the appropriate spacer molecules for S 1 and/or S2.
  • the spacer group is selected such that the selectivity fuction (e.g. a drug) reaches the binding pocket of a target or non-target protein.
  • Spacer groups may be hydrophobic (e.g.
  • PEGs or phosphodiesters or hydrophilic; their length may be varied to achieve efficient sorting or selectivity or capture; they may be rigid (e.g. trans olefins).
  • the spacer groups may be selected based on the properties (hydrophobic/hydrophilic, size, etc.) of the biomolecular mixture to be analyzed.
  • the reactivity of the cleavable bond L can be influenced by one or more substituted functionalities, for example, R 15 on M.
  • Electronic (e.g., mesomeric, inductive) and/or steric effects can be used to modulate the stability of the cleavable bond L.
  • M is a trityl derivative
  • the linkage to the biomolecule, including, but not limited to, a protein is in one embodiment a trityl ether bond.
  • the sensitivity of this bond to mild acids can be significantly enhanced by having as R 15 one or two electron donating groups, including, but not limited to, alkoxy groups, such as methoxy groups, in the para positions of the aryl rings.
  • R 15 one or two electron donating groups, including, but not limited to, alkoxy groups, such as methoxy groups, in the para positions of the aryl rings.
  • the trityl ether bond can be stabilized by the introduction of electron withdrawing groups, including, but not limited to, either halogen, including bromo and chloro, groups, nitro groups or ester moieties, in the para and/or ortho positions of the aromatic rings.
  • S 1 and S 2 are each independently selected from (CH 2 ) r , (CH 2 O), (CH 2 CH 2 O) r ,(NH(CH 2 ) r C( ⁇ O)) s , (NHCH(R 52 )C( ⁇ O)) s , where R 15 is selected as above; r and s are each independently an integer from 1 to 10; R 52 is the side chain of a natural ⁇ -amino acid; and y is an integer from 0 to 4. In one embodiment, y is 0 or 1.
  • R 15 is H, OH, OR 51 , SH, SR 51 , NH 2 , NHR 51 , NR 51 2 , F, Cl, Br, I, SO 3 H, PO 2 4 , CH 3 , CH 2 CH 3 , CH(CH 3 ) 2 or C(CH 3 ) 3 ; where R 51 is straight or branched chain alkyl, straight or branched chain alkenyl, straight or branched chain alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, straight or branched chain aralkyl, straight or branched chain aralkenyl, straight or branched chain aralkynyl, straight or branched chain heteroaralkyl, straight or branched chain heteroaralkenyl, straight or branched chain heteroaralkynyl, straight or branched chain cycloalkylalkyl, straight or branched chain cycloalkylalkyl, straight or branched chain cycl
  • the cleavable group L is cleaved either prior to or during analysis of the biomolecule, such as a protein.
  • the analysis can include mass spectral analysis, for example MALDI-TOF mass spectral analysis.
  • the cleavable group L is selected so that the group is stable during conjugation to a biomolecule, and sorting, such as hybridization of a single stranded oligonucleotide Q moiety to a complementary sequence, and washing of the hybrid; but is susceptable to cleavage under conditions of analysis of the biomolecule, including, but not limited to, mass spectral analysis, for example MALDI-TOF analysis.
  • the cleavable group L can be a disulfide moiety, created by reaction of the compounds where X ⁇ SH, with the thiol side chain of cysteine residues on the surface of biomolecules, including, but not limited to, proteins.
  • the resulting disulfide bond can be cleaved under various reducing conditions including, but not limited to, treatment with dithiothreitol and 2-mercaptoethanol.
  • L is a photocleavable group, which can be cleaved by a short treatment with UV light of the appropriate wave length either prior to or during mass spectrometry.
  • Photocleavable groups including those bonds that can be cleaved during MALDI-TOF mass spectrometry by the action of a laser beam, can be used.
  • a trityl ether or an ortho nitro substituted aralkyl, including benzyl, group are susceptible to laser induced bond cleavage during MALDI-TOF mass spectrometry.
  • Other useful photocleavable groups include, but are not limited to, o-nitrobenzyl, phenacyl, and nitrophenylsulfenyl groups.
  • photocleavable groups for use herein include those disclosed in International Patent Application Publication No. WO 98/20166.
  • the photocleavable groups have formula I: where R 20 is 107 Oalkylene; R 21 is selected from hydrogen, alkyl, aryl, alkoxycarbonyl, aryloxycarbonyl and carboxy; t is 0-3; and R 50 is alkyl, alkoxy, aryl or aryloxy.
  • Q is attached to R 20 through (S 1 ) t M(R 15 ) a (S 2 ) b ; and the biomolecule of interest is captured onto the R 21 CHO moiety via a reactive derivative of the oxygen (e.g., X).
  • the photocleavable groups have formula II: where R 20 is 107 Oalkylene or alkylene; R 21 is selected from hydrogen, alkyl, aryl, alkoxycarbonyl, aryloxycarbonyl and carboxy; and X 20 is hydrogen, alkyl or OR 21 .
  • Q is attached to R 20 through (S 1 ) t M(R 15 ) a (S 2 ) b ; and the biomolecule of interest is captured onto the R 21 CHO moiety via a reactive derivative of the oxygen (e.g., X).
  • R 20 is O(CH 2 ) 3 or methylene; R 21 is selected from hydrogen, methyl and carboxy; and X 20 is hydrogen, methyl or OR 21 . In another embodiment, R 21 is methyl; and X 20 is hydrogen. In certain embodiments, R 20 is methylene; R 21 is methyl; and X 20 is 3-(4,4′-dimethoxytrityloxy)propoxy.
  • the photocleavable groups have formula III: where R 2 is selected from 107 OalkyleneO and 107 Oalkylene, and is unsubstituted or substituted on the alkylene chain with one or more alkyl groups; c and e are each independently 0-4; and R 70 and R 71 are each independently alkyl, alkoxy, aryl or aryloxy. In certain embodiments, R 2 is ⁇ Oalkylene, and is substituted on the alkylene chain with a methyl group.
  • Q is attached to R 2 through (S 1 ) t M(R 15 ) a (S 2 ) b ; and the biomolecule of interest is captured onto the Ar 2 CHO moiety via a reactive derivative of the oxygen (e.g., X).
  • a reactive derivative of the oxygen e.g., X
  • R 2 is selected from 3O(CH 2 ) 3 O, 4O(CH 2 ) 4 , 3O(CH 2 ) 3 , 2OCH 2 CH 2 , OCH 2 ,
  • c and e are 0.
  • cleavable groups L include acid sensitive groups, where bond cleavage is promoted by formation of a cation upon exposure to mild to strong acids.
  • cleavage of the group L can be effected either prior to or during analysis, including mass spectrometric analysis, by the acidity of the matrix molecules, or by applying a short treatment of the array with an acid, such as the vapor of trifluoroacetic acid. Exposure of a trityl group to acetic or trifluoroacetic acid produces cleavage of the ether bond either before or during MALDI-TOF mass spectrometry.
  • the capture compound-biomolecule array can be treated by either chemical, including, but not limited to, cyanogen bromide, or enzymatic, including, but not limited to, in embodiments where the biomolecule is a protein, trypsin, chymotrypsin, an exopeptidase (e.g., aminopeptidase and carboxypeptidase) reagents to effect cleavage. For the latter, all but one peptide fragment will remain hybridized when digestion is quantitative. Partial digestion also can be of advantage to identify and characterize proteins following desorption from the array. The cleaved protein/peptide fragments are desorbed, analyzed, and characterized by their respective molecular weights.
  • chemical including, but not limited to, cyanogen bromide
  • enzymatic including, but not limited to, in embodiments where the biomolecule is a protein, trypsin, chymotrypsin, an exopeptidase (e.g., aminopeptidase and carboxypeptidas
  • L is selected from SS, OP( ⁇ O)(OR 51 )NH, OC( ⁇ O), where R 15 , R 51 and y are as defined above.
  • R 15 is H, OH, OR 51 , SH, SR 51 , NH 2 , NHR 51 , N(R 51 ) 2 , F, Cl, Br, I, SO 3 H, PO 2 4 , CH 3 , CH 2 CH 3 , CH(CH 3 ) 2 or C(CH 3 ) 3 ; where R 51 is straight or branched chain alkyl, straight or branched chain alkenyl, straight or branched chain alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, straight or branched chain aralkyl, straight or branched chain aralkenyl, straight or branched chain aralkynyl, straight or branched chain heteroaralkyl, straight or branched chain heteroaralkenyl
  • Z is a non-cleavable divalent moiety and has the formula: (S 1 ) t M(R 15 ) a (S 2 ) b ,
  • Z has a dendritic structure (i.e., Z is a multivalent dendrimer) that is linked to a plurality of Q and X moieties.
  • Z in certain embodiments, has about 4 up to about 6, about 8, about 10, about 20, about 40, about 60 or more points of attachment (i.e., Z is tetravalent up to hexavalent, octavalent, decavalent, didecavalent, tetradecavalent, hexadecavalent, etc.).
  • the dendritic moiety Z is based on a multivalent core M, as defined above. The number of points of attachment on M may vary from about 2 up to about 4, about 6, about 8, or more.
  • Z has the structure: where M is as defined above, and is linked to a plurality of Q, Y, W and X moieties.
  • Z has the structure: where M is as defined above, and is linked to a plurality of Q, Y, W and X moieties.
  • the dendritic Z moieties may optionally possess a pluratlity of spacer groups S 1 and/or S 2 , or for embodiments where Z is a cleavable linkage, a plurality of L groups.
  • the S 1 , S 2 and/or L moieties are attached to the end of the dendritic chain(s).
  • the density of the biopolymer to be analyzed, and thus signal intensity of the subsequent analysis, is increased relative to embodiments where Z is a divalent group.
  • c. Z is an Insoluble Support or a Substrate
  • Z can be an insoluble support or a substrate, such as a particulate solid support, such as a silicon or other “bead” or microsphere, or solid surface so that the surface presents the functional groups (X, Y, Q and, as needed W).
  • Z has bound to it one or a plurality of X moieties (typically, 1 to 100, generally 1 to 10) and optionally to at least one Q and/or Y moiety, and also optionally to one or more W moieties.
  • Z in these embodiments, can have tens up to hundreds, thousands, millions, or more functional moieties (groups) on its surface.
  • the capture compound can be a silicon particule or a agarose or other paricle with groups presented on it. As discussed below, it further can be coated with a hydrophobic material, such as lipid bilayers or other lipids that are used, for example to produce liposomes.
  • a hydrophobic material such as lipid bilayers or other lipids that are used, for example to produce liposomes.
  • the resulting particles with a hydrophobic surface and optional hydrophobic W groups are used in methods for probing cell membrane environments and other intracellular environments.
  • gentle lysis of cells can expose the intracellular compartments and organelles, and hydrophobic capture compounds, such as these, can be reacted with them, and the bound biomolecules assessed by, for example, mass spectrometry or further treated to release the contents of the compartments and organelles and reacted with the capture compounds or other capture compounds.
  • the insoluble support or substrate moiety Z can be based on a flat surface constructed, for example, of glass, silicon, metal, plastic or a composite or other suitable surface; or can be in the form of a “bead” or particle, such as a silica gel, a controlled pore glass, a magnetic or cellulose bead; or can be a pin, including an array of pins suitable for combinatorial synthesis or analysis.
  • Substrates can be fabricated from virtually any insoluble or solid material.
  • silica gel, glass e.g., controlled-pore glass (CPG)
  • nylon Wang resin, Merrifield resin
  • dextran cross-linked with epichlorohydrin e.g., Sephadex®
  • agarose e.g., Sepharose®
  • cellulose e.g., magnetic beads, Dynabeads
  • metal surface e.g., steel, gold, silver, aluminum, silicon and copper
  • plastic material e.g., polyethylene, polypropylene, polyamide, polyester, polyvinylidenedifluoride (PVDF)
  • Exemplary substrate include, but are not limited to, beads (e.g., silica gel, controlled pore glass, magnetic, dextran cross-linked with epichlorohydrin (e.g., Sephadex®), agarose (e.g., Sepharose®), cellulose, capillaries, flat supports such as glass fiber filters, glass surfaces, metal surfaces (steel, gold, silver, aluminum, copper and silicon), plastic materials including multi
  • the solid support is in any desired form, including, but not limited to, a bead, capillary, plate, membrane, wafer, comb, pin, a wafer with pits, an array of pits or nanoliter wells and other geometries and forms known to those of skill in the art.
  • Supports include flat surfaces designed to receive or link samples at discrete loci.
  • the solid supports or substrates Z are “beads” (i.e., particles, typically in the range of less than 200 ⁇ m or less than 50 ⁇ m in their largest dimension) including, but not limited to, polymeric, magnetic, colored, R f -tagged, and other such beads.
  • the beads can be made from hydrophobic materials, including, but not limited to, polystyrene, polyethylene, polypropylene or teflon, or hydrophilic materials, including, but not limited to, cellulose, dextran cross-linked with epichlorohydrin (e.g., Sephadex®), agarose (e.g., Sepharose®), polyacrylamide, silica gel and controlled pore glass beads or particles.
  • capture compounds can be reacted in liquid phase in suspension, and the spun down or other removed from the reaction medium, and the resulting complexes analyzed, such as by mass spectrometry. They can be sorted using the Q function to bind to distinct loci on a solid support, or they can include a label to permit addressing, such as an radio frequency tag or a colored label or bar code or other symbology imprinted thereon. These can be sorted according to the label, which serves as “Q” function, and then analyzed by mass spectrometry.
  • the insoluble support or substrate Z moieties optionally can possess spacer groups S 1 and/or S 2 , or for embodiments where Z is a cleavable linkage, L.
  • the S 1 , S 2 and/or L moieties are attached to the surface of the insoluble support or substrate.
  • the density of the biomolecule to be analyzed, and thus signal intensity of the subsequent analysis is increased relative to embodiments where Z is a divalent group.
  • an appropriate array of single stranded oligonucleotides or oligonucleotide analogs that are complementary to the single stranded oligonucleotide or oligonucleotide analog sorting functions Q will be employed in the methods provided herein.
  • Z includes a mass modifying tag.
  • the mass modifying tag is attached to the cleavable linker L.
  • the mass modified Z moiety has the formula: (S 1 ) t M(R 15 ) a (S 2 ) b LT, where S 1 , t, M, R 15 , a, S 2 , b and L are selected as above; and T is a mass modifying tag.
  • Mass modifying tags for use herein include, but are not limited to, groups of formula X 1 R 10 , where X 1 is a divalent group such as O, OC(O)(CH 2 ) y C(O)O, NHC(O), C(O)NH, NHC(O)(CH 2 ) y C(O)O, NHC(S)NH, OP(O-alkyl)O, OSO 2 O, OC(O)CH 2 S, S, NH and and R 10 is a divalent group including (CH 2 CH 2 O) z CH 2 CH 2 O, (CH 2 CH 2 O) z CH 2 CH 2 Oalkylene, alkylene, alkenylene, alkynylene, arylene, heteroarylene, (CH 2 ) z CH 2 O, (CH 2 ) z CH 2 Oalkylene, (CH 2 CH 2 NH) z CH 2 CH 2 NH, CH 2 CH(OH)CH 2 O, Si(R 12 )(R 13 ), CH
  • X 1 R 10 is selected from SS, S, (NH(CH 2 ) y NHC(O)(CH 2 )YC(O)) z NH(CH 2 ) y NHC(O)(CH 2 ) y C(O)O, (NH(CH 2 ) y C(O)) n NH(CH 2 ) y C(O)O, (NHCH(R 11 )C(O)) n NHCH(R 11 )C(O)O, and (O(CH 2 ) y C(O)) z NH(CH 2 ) y C(O)O.
  • the oligo/polyethylene glycols also can be monoalkylated by a lower alkyl such as methyl, ethyl, propyl, isopropyl, t-butyl and the like.
  • mass modifying tags include, but are not limited to CHF, CF 2 , Si(CH 3 ) 2 , Si(CH 3 )(C 2 H 5 ) and Si(C 2 H 5 ) 2 .
  • the mass modifying tags include homo- or heteropeptides.
  • R 15 and/or S 2 can be functionalized with X 1 R 10 H or X 1 R 10 alkyl, where X 1 and R 10 are defined as above, to serve as mass modifying tags.
  • Reactivity functions confer the ability on the compounds the ability to bind either covalently or with a high affinity (greater than 10 9 , generally greater than 10 10 or 10 10 liters/mole, typically greater than a monoclonal antibody, and typically stable to mass spectrometric analysis, such as MALDI-MS) to a biomolecule, particularly proteins, including functional groups thereon, which include post-translationally added groups.
  • a high affinity greater than 10 9 , generally greater than 10 10 or 10 10 liters/mole, typically greater than a monoclonal antibody, and typically stable to mass spectrometric analysis, such as MALDI-MS
  • mass spectrometric analysis such as MALDI-MS
  • binding is covalent or is of such affinity that it is stable under conditions of analysis, such as mass spectral, including MALDI-TOF, analysis.
  • Exemplary groups are set forth herein (see, e.g., FIG. 16 , and the discussion below).
  • Further groups include groups that are inert toward reaction with a biomolecule, such as a protein, until activated. Such groups include photoactivatable groups, including but not limited to, azide and diazirine groups.
  • an active ester e.g. NHS
  • the active ester is inert toward reaction with amine groups under these conditions, but will react upon raising the pH.
  • X is a moiety that binds to or interacts with the surface of a biomolecule, including, but not limited to, the surface of a protein; an amino acid side chain of a protein; or an active site of an enzyme (protein) or to functional groups of other biomolecule, including lipids and polysaccharides.
  • X is a group that reacts or interacts with functionalities on the surface of a protein to form covalent or non-covalent bonds with high affinity.
  • a wide selection of different functional groups are available for X to interact with a protein.
  • X can act either as a nucleophile or an electrophile to form covalent bonds upon reaction with the amino acid residues on the surface of a protein.
  • Exemplary reagents that bind covalently to amino acid side chains include, but are not limited to, protecting groups for hydroxyl, carboxyl, amino, amide, and thiol moieties, including, for example, those disclosed in T. W. Greene and P. G. M.
  • Hydroxyl protecting groups for use as X groups herein include, but are not limited to:
  • Carboxyl protecting groups for use as X groups herein include, but are not limited to:
  • Thiol protecting groups for use as X groups herein include, but are not limited to:
  • Amino protecting groups for use as X groups herein include, but are not limited to:
  • amino acid side chains such as hydroxyl (serine, threonine, tyrosine); amino (lysine, arginine, histadine, proline); amide (glutamine, asparagine); carboxylic acid (aspartic acid, glutamic acid); and sulfur derivatives (cysteine, methionine), and are readily adaptable for use in the capture compounds as the reactive moiety X.
  • amino acid side chains such as hydroxyl (serine, threonine, tyrosine); amino (lysine, arginine, histadine, proline); amide (glutamine, asparagine); carboxylic acid (aspartic acid, glutamic acid); and sulfur derivatives (cysteine, methionine), and are readily adaptable for use in the capture compounds as the reactive moiety X.
  • reagents that are known in natural product chemistry also can serve as a basis for X in forming covalent linkages.
  • X include protein purification dyes, such as acridine or methylene blue, which have a strong affinity for certain proteins.
  • X can act as an electron donor or an electron acceptor to form non-covalent bonds or a complex, such as a charge-transfer complex, with a biomolecule, including, but not limited to, a protein, such that the resulting bond has a high stability (i.e., stable under conditions of mass spectrometric analysis, such as MALDI-TOF, as defined above).
  • reagents include those that interact strongly and with high specificity with biomolecules, including, but not limited to, proteins, without forming covalent bonds through the interaction of complementary affinity surfaces.
  • binding pairs such as biotin and streptavidin, antibody and antigen, receptor and ligand, lectin and carbohydrate or other similar types of reagents are readily adaptable for use in these compounds as the reactive moiety X that will react with high affinity to biomolecules with surfaces similar to or identical to the other member of the binding pair.
  • moieties are selected so that the resulting conjugates (also referred to herein as complexes) have strong interactions that are sufficiently stable enough for suitable washing of the unbound biomolecules, including, but not limited to, proteins, out of the complexed biological mixtures.
  • the reactivity of X can be influenced by one or more selectivity functions Y on the core, i.e., M in the formula above, particularly where S 2 is not present.
  • the Y function is employed for electronic (e.g., mesomeric, inductive) and/or steric effects to modulate the reactivity of X and the stability of the resulting X-biomolecule linkage.
  • biomolecule mixtures including, but not limited to, protein mixtures, can react and be analyzed due to the modulation by Y, which changes the electronic or steric properties of X and, therefore, increases the selectivity of the reaction of X with the biomolecule.
  • X is an active ester, such as C( ⁇ O)OPhpNO 2 , C( ⁇ O)OC 6 F 5 or C( ⁇ O)O(Nsuccinimidyl), an active halo moiety, such as an ⁇ -halo ether or an ⁇ -halo carbonyl group, including, but not limited to, OCH 2 I, OCH 2 Br, OCH 2 Cl, C(O)CH 21 , C(O)CH 2 Br and C(O)CH 2 Cl; amino acid side chain-specific functional groups, such as maleimido (for cysteine), a metal complex, including gold or mercury complexes (for cysteine or methionine), an expoxide or isothiocyanate (for arginine or lysine); reagents that bind to active sites of enzymes, including, but not limited to, transition state analogs; antibodies, e.g., against phosphorylated peptides; antigens, such as a phage display library;
  • X is an N-hydroxysuccinimidyl ester, or is
  • X is a photoactivatable group.
  • the capture compound contains a selectivity function and is allowed to interact with a biomolecular mixture until, for example, equilibrium is reached.
  • the X group is then activated by exposure to the appropriate wavelength of light, whereby the X group then reacts with a surface group of the biomolecule to capture it.
  • the photoactivatable group is an arylazide, such as a phenylazide. Following exposure to light, the resulting nitrene will react with, e.g., the side chain of tyrosine to capture the protein.
  • the photoactivatable group is a diazirine group, such as 3-trifluoromethyldiazirine.
  • the reactivity functionality X is linked to the central core Z, via a spacer S.
  • a spacer can be any group that provides for spacing, typically without altering desired functional properties of the capture compounds and/or capture compound/biomolecule complexes.
  • the reactive functionality X linked with the spacer can be extended from the central core Z, to reach to the active sites on the surface of the biomolecule, such as proteins. Those of skill in the art in the light of the disclosure herein, can readily select suitable spacers.
  • S is selected from (CH 2 ) r , (CH 2 O), (CH 2 CH 2 O) r ,(NH(CH 2 ) r C( ⁇ O)) s , (O(CH) r C( ⁇ O)) s , —((CH 2 ) r1 —C(O)NH—(CH 2 ) r2 ) s — and —(C(O)NH—(CH 2 ) r ) s —, where r, r1, r2 and s are each independently and integer from 1 to 10.
  • the selectivity functions (“Y”) serves to modulate the reactivity function by reducing the number of groups to which the reactivity functions bind, such as by steric hindrance and other interactions. It is a group that modifies the steric and/or electronic (e.g., mesomeric, inductive effects) properties as well as the resulting affinities of the capture compound.
  • Selectivity functions include any functional groups that increase the selectivity of the reactivity group so that it binds to fewer different biomolecules than in the absence of the selectivity function or binds with greater affinity to biolmolecules than in its absence.
  • Y is allowed to be extensively varied depending on the goal to be achieved regarding steric hindrance and electronic factors as they relate to modulating the reactivity of the cleavable bond L, if present, and the reactive functionality X.
  • a reactivity function X can be selected to bind to amine groups on proteins; the selectivity function can be selected to ensure that only groups exposed on the surface can be accessed.
  • the selectivity function is such that the compounds bind to or react with (via the reactivity function) fewer different biomolecules when it is part of the molecule than when it is absent and/or the compounds bind with greater specificity and higher affinity
  • the selectivity function can be attached directly to a compound or can be attached via a linker, such as CH 2 CO 2 or CH 2 —O—(CH 2 ) n —O, where n is an integer from 1 to 12, or 1 to 6, or 2 to 4. See, e.g., FIG. 17 and FIG. 21 and the discussion below for exemplary selectivity functions.
  • the linker is chosen such that the selectivity function can reach the binding pocket of a target or non-target protein.
  • each Y is independently a group that modifies the affinity properites and/or steric and/or electronic (e.g., mesomeric, inductive effects) properties of the resulting capture compound.
  • Y in certain embodiments, is selected from ATP analogs and inhibitors; peptides and peptide analogs; polyethyleneglycol (PEG); activated esters of amino acids, isolated or within a peptide; cytochrome C; and hydrophilic trityl groups.
  • Y is a small molecule moiety, a natural product, a protein agonist or antagonist, a peptide or an antibody (see, e.g., FIG. 17 ).
  • Y is a hydrophilic compound or protein (e.g., PEG or trityl ether), a hydrophobic compound or protein (e.g., polar aromatics, lipids, glycolipids, phosphotriesters, oligosaccharides), a positive or negatively charged group, a small molecule, a pharmaceutical compound or a biomolecule that creates defined secondary or tertiary structures.
  • Y is an enzyme inhibitor, an enzyme agonist or antagonist, a pharmaceutical drug or drug fragment, a prodrug or drug metabolite that modifies the selectivity of the capture compounds or collections thereof, to interact with the biomolecules or mixtures thereof, including, but not limited to specific receptors, to form covalent or non-covalent bonds with high affinity.
  • the capture compounds/collections thereof have a selectivity function, which is a cox-2 inhibitor, and a mixture of biomolecules contains cox receptors among other biomolecules.
  • the selectivity function is selected from pharmaceutical drugs or drug fragments set forth below, where attachment of exemplary pharmaceutical drugs to a cental core is shown below.
  • the selectivity function is a drug, drug fragment, drug metabolite, or a drug synthetic intermediate.
  • the pharmaceutical drugs or drug fragments can be attached to the central core Z, in different orientations via different points of attachment, thereby modulating the selectivity of the capture compound.
  • the attachment of a drug/drug fragment to the central core can be carried out by methods known to a person with skill in the art. Attachment of some exemplary pharmaceutical drugs at various points, to the central core Z is set forth below.
  • the capture compounds provided herein include those where the selectivity function is a drug, drug fragment, drug metabolite or a prodrug.
  • the capture compounds also contain a reactivity function, as defined elsewhere herein.
  • the capture compounds also contain a sorting function, as defined elsewhere herein.
  • the capture compounds that contain drug, drug fragment, drug metabolite or prodrug selectivity functions contain an amino acid core.
  • the amino acid core may be an amino acid that does not have a functionality on the side chain for attachment of a third function.
  • Such amino acid cores include, but are not limited to, glycine, alanine, phenylalanine and leucine.
  • the capture compound contains a reactivity function and a selectivity function, which are attached to the amino and carboxy groups of the amino acid.
  • the amino acid core may be an amino acid that possesses a functionality on the side chain for attachment of a third function.
  • amino acid cores include, but are not limited to, serine, threonine, lysine, tyrosine and cysteine.
  • the capture compound contains a reactivity function, a sorting function and a selectivity function, which are attached to the amino, carboxy and side chain functional groups of the amino acid.
  • the core is tyrosine and the capture compounds have the formula: where “drug” refers to a drug, drug fragment, drug metabolite or prodrug.
  • the drug is LIPITOR® (atorvastatin calcium) and the capture compounds have the formulae:
  • the drug is CELEBREX® (celecoxib) and the capture compounds have the formulae:
  • the drug is VIOXX® (rofecoxib) and the capture compounds have the formulae:
  • the drug is BAYCOL® (cerivastatin sodium) and the capture compounds have the formula:
  • the drug is methotrexate and the capture compounds have the formulae:
  • Y is a group that is a component of a luminescent, including fluorescent, phosphorescent, chemiluminescent and bioluminescent system, or is a group that can be detected in a colorimetric assay; in certain embodiments, Y is a monovalent group selected from straight or branched chain alkyl, straight or branched chain alkenyl, straight or branched chain alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, heterocyclyl, straight or branched chain heterocyclylalkyl, straight or branched chain heterocyclylalkenyl, straight or branched chain heterocyclylalkynyl, aryl, straight or branched chain arylalkyl, straight or branched chain arylalkenyl, straight or branched chain arylalkynyl, heteroaryl, straight or branched chain heteroarylalkyl, straight or branched chain heteroarylalkyl
  • Fluorescent, colorimetric and phosphorescent groups are known to those of skill in the art (see, e.g., U.S. Pat. No. 6,274,337; Sapan et al. (1999) Biotechnol. Appl. Biochem. 29 (Pt. 2):99-108; Sittampalam et al. (1997) Curr. Opin. Chem. Biol. 1(3):384-91; Lakowicz, J. R., Principles of Fluorescence Spectroscopy, New York: Plenum Press (1983); Herman, B., Resonance Energy Transfer Microscopy, in: Fluorescence Microscopy of Living Cells in Culture, Part B, Methods in Cell Biology, vol. 30, ed. Taylor, D.
  • Fluorescent moieties include, but are not limited to, 1- and 2-aminonaphthalene, p,p′-diaminostilbenes, pyrenes, quaternary phenanthridine salts, 9-aminoacridines, p,p′-diaminobenzophenone imines, anthracenes, oxacarbocyanine, merocyanine, 3-aminoequilenin, perylene, bis-benzoxazole, bis-p-oxazolyl benzene, 1,2-benzophenazin, retinol, bis-3-aminopyridinium salts, hellebrigenin, tetracycline, sterophenol, benzimidazolylphenylamine, 2-oxo-3-chromen, indole, xanthen, 7-hydroxycoumarin, phenoxazine, calicylate, strophanthidin, porphyrins, triarylme
  • Fluorescent compounds that have functionalities for linking to a compound provided herein, or that can be modified to incorporate such functionalities include, e.g., dansyl chloride; fluoresceins such as 3,6-dihydroxy-9-phenylxanthhydrol; rhodamineisothiocyanate; N-phenyl 1-amino-8-sulfonatonaphthalene; N-phenyl 2-amino-6-sulfonatonaphthalene; 4-acetamido-4-isothiocyanato-stilbene-2,2′-disulfonic acid; pyrene-3-sulfonic acid; 2-toluidinonaphthalene-6-sulfonate; N-phenyl-N-methyl-2-aminoaphthalene-6-sulfonate; ethidium bromide; stebrine; auromine-0,2-(9′-anthroyl)palmitate; dansyl phosphatidylethanolamine;
  • fluorescent tags are commercially available from SIGMA chemical company (Saint Louis, Mo.), Molecular Probes, R&D systems (Minneapolis, Minn.), Pharmacia LKB Biotechnology. (Piscataway, N.J.), CLONTECH Laboratories, Inc. (Palo Alto, Calif.), Chem Genes Corp., Aldrich Chemical Company (Milwaukee, Wis.), Glen Research, Inc., GIBCO BRL Life Technologies, Inc. (Gaithersberg, Md.), Fluka Chemica-Biochemika Analytika (Fluka Chemie AG, Buchs, Switzerland), and Applied Biosystems (Foster City, Calif.) as well as other commercial sources known to one of skill in the art.
  • Chemiluminescent groups intended for use herein include any components of light generating systems that are catalyzed by a peroxidase and require superoxide anion (O) (and/or hydrogen peroxide (H 2 O 2 ))(see, e.g., Musiani et a. (1998) Histol. Histopathol. 13(1):243-8).
  • Lightgenerating systems include, but are not limited to, luminol, isoluminol, peroxyoxalate-fluorophore, acridinium ester, lucigenin, dioxetanes, oxalate esters, acridan, hemin, indoxyl esters including 3-O-indoxyl esters, naphthalene derivatives, such as 7-dimethylamino-naphthalene-1,2-dicarbonic acid hydrazide and cypridina luciferin analogs, including 2-methyl-6-[p-methoxyphenyl]-3,7-dihyroimidazo[1,2-à]pyrazin-3-one, 2methyl-6-phenyl-3,7-dihyroimidazo[1,2-á]pyrazin-3-one and 2-methyl-6-[p-[2-[sodium 3-carboxylato-4-(6-hydroxy-3-xanthenon-9-yl]phenyl
  • the chemiluminescent moieties intended for use herein include, but are not limited to, luminol, isoluminol, N-(4-aminobutyl)-N-ethyl isoluminol (ABEI), N-(4-aminobutyl)-N-methyl isoluminol (ABMI), which have the following structures and participate in the following reactions: where luminol is represented, when R is NH 2 and R 1 is H; isoluminol, when R is H and R 1 is NH 2 ; for ABEI ((6-[N-(4-aminobutyl)-N-ethylamino]-2,3-dihyrophthalazine-1-4-dione), when R is H and R 1 is C 2 H 5 —N—(CH 2 ) 4 NH 2 ; and for ABMI ((6-[N-(4-aminobutyl)-N-methylamin
  • Bioluminescent groups for use herein include luciferase/luciferin couples, including firefly [ Photinus pyralis] luciferase, the Aequorin system (i.e., the purified jellyfish photoprotein, aequorin). Many luciferases and substrates have been studied and well-characterized and are commercially available (e.g., firefly luciferase is available from Sigma, St.
  • bioluminescent systems include crustacean, such as Cyrpidina ( Vargula ), systems; insect bioluminescence generating systems including fireflies, click beetles, and other insect systems; bacterial systems; dinoflagellate bioluminescence generating systems; systems from molluscs, such as Latia and Pholas ; earthworms and other annelids; glow worms; marine polycheate worm systems; South American railway beetle; fish (i.e., those found in species of Aristostomias , such as A. scintillans (see, e.g., O'Day et al. (1974) Vision Res.
  • crustacean such as Cyrpidina ( Vargula )
  • insect bioluminescence generating systems including fireflies, click beetles, and other insect systems
  • bacterial systems including dinoflagellate bioluminescence generating systems
  • systems from molluscs such as Latia and Pholas
  • blue/green emmitters include cyclthone, myctophids, hatchet fish (agyropelecus), vinciguerria, howella, florenciella, and Chauliodus); and fluorescent proteins, including green (i.e., GFPs, including those from Renilla and from Ptilosarcus ), red and blue (i.e., BFPs, including those from Vibrio fischeri, Vibrio harveyi or Photobacterium phosphoreum ) fluorescent proteins (including Renilla mulleri luciferase, Gaussia species luciferase and Pleuromamma species luciferase) and phycobiliproteins.
  • GFPs green
  • red and blue i.e., BFPs, including those from Vibrio fischeri, Vibrio harveyi or Photobacterium phosphoreum
  • fluorescent proteins including Renilla mulleri luciferase, Gaussia species luci
  • Examplary selectivity functions include, but are not limited to, ligands that bind to receptors such as insulin and other receptors (see, e.g., the Table of ligands below); cyclodextrins; enzyme substrates; lipid structures; prostaglandins; antibiotics; steroids; therapeutic drugs; enzyme inhibitors; transition state analogs; specific peptides that bind to biomolecule surfaces, including glue peptides; lectins (e.g., mannose type, lactose type); peptide mimetics; statins; functionalities, such as dyes and other compounds and moieties employed for protein purification and affinity chromatraphy. See e.g., FIG.
  • peptide ligands SEQ Designation Sequence ID Adrenocortico- SYSMEHFRWG KPVGKKRRPV 1 tropic hormone KVYPNGAEDE SAEAFPLEF Adrenomedullin YRQSMNNFQG LRSFGCRFGT 2 CTVQKLAHQI YQFTDKDKDN VAPRSKISPQ GY Allatostatin APSGAQRLYGFGL 3 I-IV alpha MSH WGKPV(ac)SYSMEHFR 4 alpha-Bag Cell APRERFYSE 5 Peptide alpha-Neo- YGGFLRKYPK 6 endorphin Alytesin E*GRLGTQWAV GHLM-NH 2 7 Amylin KCNTATCATN RLANFLVHSS NNFGAILSST 8 NVGSNTY Angiotensin-1 DRVYIHPFHL 9 Angiotensin-2 DRVY
  • Y selections for Y are can be identified by those of skill in the art and include, for example, those disclosed in Techniques in Protein Chemistry, Vol. 1 (1989) T. Hugli ed. (Academic Press); Techniques in Protein Chemistry, Vol. 5 (1994) J. W. Crabb ed. (Academic Press); Lundblad Techniques in Protein Modification ( 1995) (CRC Press, Boca Raton, Fla.); Glazer et al. (1976) Chemical Modification of Proteins (North Holland (Amsterdam))(American Elsevier, New York); and Hermanson (1996) Bioconjugate Techniques (Academic Press, San Diego, Calif.).
  • the compounds provided herein can include a sorting function (“Q”), which permits the compounds to be addressed, such as by capture in a 2-D array.
  • the sorting function is selected to not interact with the biomolecules (e.g. target and non-target proteins) in the sample.
  • the sorting functions are “tags”, such as oligonucleotide tags, such that when the compounds are bathed over an array of complementary oligonucleotides linked to solid supports, such as beads, chips, under suitable binding conditions, the oligonucleotides hybridize.
  • the identity of the capture compound can be known by virtue of its position in the array.
  • sorting functions can be optically coded, including as color coded or bar coded beads that can be separated, or an electronically-tagged, such as by providing microreactor supports with electronic tags or bar coded supports (see, e.g., U.S. Pat. No. 6,025,129; U.S. Pat. No. 6,017,496; U.S. Pat. No. 5,972,639; U.S. Pat. No. 5,961,923; U.S. Pat. No. 5,925,562; U.S. Pat. No. 5,874,214; U.S. Pat. No. 5,751,629; U.S. Pat. No. 5,741,462), or chemical tags (see, e.g., U.S. Pat. No.
  • the sorting function is selected to permit physical arraying or other addressable separation method suitable for analysis, particularly mass spectrometric, including MALDI, analysis.
  • sorting fuctions for use in the compounds provided herein include biotin, (His) 6 , BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene), oligonucleotides, nucleosides, nucleotides, antibodies, immunotoxin conjugates, adhesive peptides, lectins, liposomes, PNA (peptide nucleic acid), activated dextrans and peptides.
  • biotin His 6
  • BODIPY 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene
  • oligonucleotides oligonucleotides, nucleosides, nucleotides, antibodies, immunotoxin conjugates, adhesive peptides, lectins, liposomes, PNA (peptide nucleic acid), activated dextrans and peptides.
  • the sorting function is an oligonucleotide, particularly, either a single-stranded or partially single-stranted oligonucleotide to permit hybridization to single-stranded regions on complementary oligonucleotides on solid supports.
  • Q is a single stranded unprotected or suitably protected oligonucleotide or oligonucleotide analog (e.g., PNA) of up to 50 building blocks, which is capable of hybridizing with a base-complementary single stranded nucleic acid molecule.
  • Q contains from about 5 up to about 10, 15, 25, 30, 35, 40, 45 or 50 building blocks.
  • Biomolecule mixtures including, but not limited to, protein mixtures, can have different hydrophobicities (solubility) than the compounds provided herein.
  • the reaction in order to achieve high reaction yields between the functionality X on the compounds provided herein and the protein surface, the reaction is performed in solution. In other embodiments, the reaction is performed at a solid/liquid or liquid/liquid interface.
  • the solubility properties of the compounds provided herein are dominated by the Q moiety. A change in the structure of Q can, in these embodiments, accommodate different solubilities.
  • Q can have natural phosphodiester linkages; if the bimolecular mixture is very hydrophobic (lipids, glycolipids, membrane proteins, lipoproteins), Q can have it's phosphodiester bonds protected as phosphotriesters, or alternatively, these bonds can be methylphosphonatediesters or peptide nucleic acids (PNAs). If the biomolecule mixture is of an intermediate hydrophobicity, solubility is achieved, e.g., with phosphothioate diester bonds. Intermediate solubility also can be attained by mixing phosphodiester with phosphotriester linkages.
  • 2D gel electrophoresis is useful only for analysis of water soluble proteins with the result that about 30 to 35% of all cellular proteins, such as those residing in the cell membrane, cannot be analyzed by this method. This is a severe limitation of 2D gel electrophoresis since many proteins, including, but not limited to, those involved in tissue specific cell-cell contacts, signal transduction, ion channels and receptors, are localized in the cell membrane.
  • the compounds after reaction or complexation of the compounds provided herein with a biomolecule, including, but not limited to, a protein, the compounds are brought into contact with a set of spatially resolved complementary sequences on a flat support, beads or microtiter plates under hybridization conditions.
  • Q is a monovalent oligonucleotide or oligonucleotide analog group that is at least partially single stranded or includes a region that can be single-stranded for hybridization to complementary oligonucleotides on a a support.
  • Q can have the formula: N 1 m B i N 2 n where N 1 and N 2 are regions of conserved sequences; B is a region of sequence permutations; m, i and n are the number of building blocks in N 1 , B and N 2 , respectively; and the sum of m, n and i is a number of units able to hybridize with a complementary nucleic acid sequence to form a stable hybrid.
  • the number of sequence permutations is equal to 4 i .
  • the sum of m, n and i is about 5 up to about 10, 15, 25, 30, 35, 40, 45 or 50.
  • m and n are each independently 0 to about 48, or are each independently about 1 to about 25, or about 1 to about 10 or 15, or about 1 to about 5.
  • i is about 2 to about 25, or is about 3 to about 12, or is about 3 to about 5, 6, 7 or 8.
  • the oligonucleotide portion, or oligonucleotide analog portion, of the compounds can be varied to allow optimal size for binding and sequence recognition.
  • the diversity of the sequence permutation region B can be relatively low if the biomolecule mixture, including, but not limited to, protein mixtures, is of low complexity. If the mixture is of high complexity, the sequence region B has to be of high diversity to afford sufficient resolving power to separate all the species.
  • the flanking conserved regions N 1 m and N 2 n need only be long enough to provide for efficient and stable hybrid formation.
  • N 1 m and N 2 n can be of the same length and same sequence, of the same length and different sequence or of different length and different sequence.
  • N 1 and/or N 2 are absent.
  • the oligonucleotide portion of the compounds, or oligonucleotide analog portion of the compounds has the formula N 1 m B i , or B i N 2 n , or B i .
  • B has a trinucleotide sequence embedded within a 11-mer oligonucleotide sequence, where the N 1 m and N 2 n tetranucleotide sequences provide flanking identical (conserved) regions.
  • This arrangement for N 1 m B i N 2 n affords 64 different compounds where each compound carries the same reactive functionality X.
  • B has a tetranucleotide sequence embedded within a 12-mer oligonucleotide sequence, where the N 1 m and N 2 n oligonucleotide sequences provide flanking but not identical octanucleotide sequences.
  • This arrangement for N 1 m B i N 2 n affords 256 different compounds where each carry the same reactive functionality X.
  • B has an octanucleotide sequence embedded within a 23-mer oligonucleotide sequence, where the N 1 m and N 2 n oligonucleotide sequences provide flanking but not identical octanucleotide sequences.
  • This arrangement for N 1 m B i N 2 n affords 65,536 different compounds where each carries the same reactive functionality X, and exceeds the estimated complexity of the human proteome (e.g., 30,000-35,000 different proteins).
  • use of a B with excess permutations for the complexity of the protein mixture, as the oligonucleotides with the best hybridization properties can be used for analysis to reduce mismatching.
  • the compounds provided herein can incude a solubility function, W, to confer desired solubility properties, such as solubility in hydrophobic environments or hydrophilic environments to permit probing of biomolecules in physiological environments, such as in membranes.
  • exemplary solubility functions for use in the compounds provided herein include polyethylene glycols, sulfates, polysulfates, phosphates, sulfonates, polysulfonates, carbohydrates, dextrin, polyphosphates, poly-carboxylic acids, triethanolamine, alcohols, water soluble polymers, salts of alkyl and aryl carboxylic acids and glycols.
  • Amphiphilic compounds such as quaternary ammonium salts (i.e., betain, choline, sphingomyelin, tetramethyl (or tetrabutyl) alkyl ammonium salts, cationic, ionic and neutral tensides may also be used as the solubility function W.
  • quaternary ammonium salts i.e., betain, choline, sphingomyelin, tetramethyl (or tetrabutyl) alkyl ammonium salts, cationic, ionic and neutral tensides may also be used as the solubility function W.
  • W also can be used to modulate the solubility of the compounds to achieve homogeneous solutions, if desired, when reacting with biomolecule mixtures, including, but not limited to, protein mixtures.
  • W is a sulfonate, a polar functionality that can be used to make the compounds more water-soluble.
  • W is a hydrophobic group, including lower alkyl, such as tert-butyl, tert-amyl, isoamyl, isopropyl, n-hexyl, sec-hexyl, isohexyl, n-butyl, sec-butyl, iso-butyl and n-amyl, or an aryl group, including phenyl or naphthyl.
  • lower alkyl such as tert-butyl, tert-amyl, isoamyl, isopropyl, n-hexyl, sec-hexyl, isohexyl, n-butyl, sec-butyl, iso-butyl and n-amyl
  • aryl group including phenyl or naphthyl.
  • capture compounds that exhibit the above-described properties. It is understood that these are exemplary only and that any compounds that can react covalently with a biomolecule or by other highly stable interaction that is stable to analytic conditions, such as those of mass spectrometric analysis, and that can sorted or otherwise identified are contemplated for use in the collections.
  • the compounds for use in the methods provided herein have formulae: QZX or Q-Z-Y, where Q is a sorting function that contains a single stranded unprotected or suitably protected oligonucleotide or oligonucleotide analog (e.g., peptide nucleic acid (PNA)) of up to 50 building blocks, which is capable of hybridizing with a base-complementary single-stranded nucleic acid molecule;
  • Q is a sorting function that contains a single stranded unprotected or suitably protected oligonucleotide or oligonucleotide analog (e.g., peptide nucleic acid (PNA)) of up to 50 building blocks, which is capable of hybridizing with a base-complementary single-stranded nucleic acid molecule;
  • PNA peptide nucleic acid
  • Y is a selectivity functional group that interacts with and/or reacts by imposing unique selectivity by introducing functionalities that interact noncovalently with target proteins.
  • the compounds for use in the methods provided herein have the formulae: or Q-Z-(X) m or Q-Z-(Y) n , where Q, Z, X and Y are as defined above; m is an integer from 1 to 100, in one embodiment 1 to 10, in another embodiment 1 to 3, 4 or 5; and n in an integer from 1 to 100, in one embodiment 1 to 10, in another embodiment 1 to 3, 4 or 5.
  • X is a pharmaceutical drug.
  • the compounds of these embodiments can be used in drug screening by capturing biomolecules, including but not limited to proteins, which bind to the pharmaceutical drug. Mutations in the biomolecules interfering with binding to the pharmaceutical drug are identified, thereby determining possible mechanisms of drug resistance. See, e.g., Hessler et al. (Nov. 9-11, 2001) Ninth Foresight Conference on Molecular Nanotechnology (Abstract)(http://www.foresight.org/Conferences/MNT9/Abstracts/Hessler/).
  • the compounds provided herein have the formula: N 1 m B i N 2 n (S 1 ) t M(R 15 ) a (S 2 ) b LX where N 1 , B, N 2 , S 1 , M, S 2 , L, X, m, i, n, t, a and b are as defined above.
  • the compounds for use in the methods provided herein include a mass modifying tag and have the formula: N 1 m B i N 2 n (S 1 ) t M(R 15 ) a (S 2 ) b LTX, where N 1 ,B, N 2 , S 1 , M, S 2 , L, T, X, m, i, n, t, a and b are as defined above.
  • the compounds for use in the methods provided herein include those of formulae: where L and M are each independently O, S or NR 3 ; X is a reactivity function, as described above; Y is a selectivity function, as described above; Q is a sorting function, as described above; and each R 3 is independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, or substituted or unsubstituted heteroaralkyl.
  • the capture compounds provided herein have the formula: where L, M, X, Y and Q are as defined above.
  • the capture compounds provided herein have the formula: where L, M, X, Y and Q are as defined above, n1, n2 and n3 are 0 to 5. In another embodiment, n1, n2 and n3 are selected with the proviso that n1, n2 and n3 are not all 0.
  • the capture compounds provided herein have the formula: where X, Y, Q and S 1 are as defined above.
  • the capture compounds provided herein have the formula: where Q, Y, X and S 1 are as defined above.
  • the capture compounds provided herein have the formula: where X, Y, Q and W are as defined above.
  • the capture compounds provided herein have the formula: where X, Y, Q and W are as defined above.
  • the capture compounds for use in the methods provided herein have the formulae: where X, Y, Q and W are selected as above; and R is substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, or substituted or unsubstituted aralkyl.
  • R is selected from cyclohexyl, cyclohexyl-(CH 2 ) n , isopropyl, and phenyl-(CH 2 ) n , where n is 1, 2 or 3.
  • R is optionally substituted with W.
  • the compounds for use in the methods provided herein include:
  • the capture compounds are designed by assessing the target biomolecules and reaction conditions. For example, if the target biomolecules are proteins, X functions suitable to effect covalent or binding to proteins with high affinity are selected. Y is selected according to the complexity of the target mixture and the desired specificity of binding by X. Q is selected according the number of divisions of the mixture that are desired; and W is selected based upon the environment of the biolmolecules that is probed. A variety of capture compounds are designed according to such criteria.
  • the capture compounds once designed can be synthesized by methods available to those of skill in the art. Preparation of exemplary capture compounds is described below. Any capture compound or similar capture compound can be synthesized according to a method discussed in general below or by minor modification of the methods by selecting appropriate starting materials or by methods known to those of skill in the art.
  • the capture compounds can prepared starting with the central moiety Z.
  • Z is (S 1 ) t M(R 15 ) a (S 2 ) b L.
  • the capture compounds can be prepared starting with an appropriately substituted (e.g., with one or more R 15 groups) M group.
  • M(R 15 ) a is optionally linked with S 1 and/or S 2 , followed by linkage to the cleavable linker L.
  • the L group is optionally linked to S 2 , followed by reaction with M(R 15 ) a , and optionally S 1 .
  • This Z group is then derivatized on its S 1 (or M(R 15 )a) terminus to have a functionality for coupling with an oligonucleotide or oligonucleotide analog Q (e.g., a phosphoramidite, H-phosphonate, or phosphoric triester group).
  • Q e.g., a phosphoramidite, H-phosphonate, or phosphoric triester group.
  • the Q group will generally be N-protected on the bases to avoid competing reactions upon introduction of the X moiety.
  • the Z group is reacted with a mixture of all possible permutations of an oligonucleotide or oligonucleotide Q (e.g., 4 i permutations where i is the number of nucleotides or nucleotide analogs in B).
  • the resulting QZ capture compound or capture compounds is(are) then derivatized through the L terminus to possess an X group for reaction with a biomolecule, such as a protein.
  • a biomolecule such as a protein.
  • the N-protecting groups on the Q moiety are then removed.
  • the N-protecting groups can be removed following reaction of the capture compound with a biomolecule, including a protein.
  • Q can be synthesized on Z, including embodiments where Z is an insoluble support or substrate, such as a bead.
  • Q is presynthesized by standard solid state techniques, then linked to M.
  • Q can be synthesized stepwise on the M moiety.
  • 1,4-di(hydroxymethyl)benzene i.e., M
  • M 1,4-di(hydroxymethyl)benzene
  • the remaining free alcohol is derivatized as the corresponding 2-cyano-ethyl-N,N-diisopropylphosphoramidite by reaction with 2-cyanoethyl-N,N-diisopropylchlorophosphoramidite.
  • Reaction of this amidite with an oligonucleotide, (i.e., Q) is followed by removal of the protecting group to provide the corresponding alcohol.
  • Reaction with, e.g., trichloromethyl chloroformate affords the illustrated chloroformate (i.e., X).
  • 2-nitro-5-hydroxybenzaldehyde i.e., a precursor of L
  • 2-nitro-5-hydroxybenzaldehyde i.e., a precursor of L
  • the alcohol is then protected, e.g., as the corresponding tert-butyldimethylsilyl ether.
  • Reaction of this compound with trimethylaluminum gives the corresponding benzyl alcohol, which is derivatized as its phosphoramidite using the procedure described above.
  • the amidite is reacted with an oligonucleotide (i.e., Q), followed by removal of the protecting group and derivatization of the resulting alcohol as the corresponding chloroformate (i.e., X).
  • the requisite phosphoramidite trityl ether is reacted with the oligonucleotide or oligonucleotide analog Q, followed by deprotection of the trityl ether and capture of a biomolecule, e.g., a protein, on the alcohol via a reactive derivative of the alcohol (X), as described above.
  • an acid labile linker e.g., a heterobifunctional trityl ether
  • the capture compounds provided herein are prepared by the method illustrated below. Briefly, reaction of cystine with a biotin-linker moiety results in derivatization of the amino functionality. Reaction of the resulting compound with N-hydroxysuccinimide and, e.g., dicyclohexylcarbodiimide (DCC) forms the corresponding di-NHS ester. Reduction of the disulfide bond followed by reaction with a drug-linker moiety forms 2 equivalents of the desired capture compound.
  • DCC dicyclohexylcarbodiimide
  • An exemplary photoactivatable capture compound may be prepared by the following method:
  • photoactivatable capture compounds may be prepared as follows:
  • the capture compounds provided herein can be used for the analysis, quantification, purification and/or identification of the components of biomolecule mixtures, including, but not limited to, protein mixtures. They can be used to screen libraries of small molecules to identify drug candidates, and they can be used to assess biomolecule-biomolecule interactions and to identify biomolecule complexes and intermediates, such as those in biochemical pathways and other biological intermediates.
  • FIG. 20 a depicts an exemplary capture assay in which capture compounds are bound to biomolecules and analyzed by MALDI-TOF MS.
  • Example 9 and FIGS. 20 b - f show results of exemplary assays using a variety of capture compounds and known proteins.
  • the collections provided herein have a wide variety of applications, including reducing the complexity of mixtures of molecules, particularly biomolecules, by contacting the collection with the mixtures to permit covalent binding of molecules in the mixtures.
  • the capture compounds can be arrayed by virtue of the sorting function either before, during or after the contacting. Following contacting and arraying the loci of the array each contain a subset of the molecules in the mixture. The array can then be analyzed, such as by using mass spectrometry.
  • proteins are isolated from biological fluids and/or tissues by cell lysis followed, for example, by either precipitation methods (e.g., ammonium sulfate) or enzymatic degradation of the nucleic acids and carbohydrates (if necessary) and the low molecular weight material is removed by molecular sieving. Proteins also can be obtained from expression libraries. Aliquots of the protein mixture are reacted with the collections of capture compounds, generally members of the collection have different functionalities, such as different reactivity and/or selectivity, to separate the mixture into separate protein families according to the selected reactivity of X or the reactivity function plus the selectivity function. The diversity (number of different) selected for the sorting function Q depends on the complexity of the target mixture of biomolecules, such as proteins.
  • B is selected of an appropriate length to provide for sufficient number loci in the resulting array so that ultimately each “spot” on the array has about 5 to 50 or so biomolecules bound to a particular capture compound.
  • all capture compounds with a particular “Q” are the same, so that each “spot” on the resulting array contains the same capture compounds.
  • a plurality of different capture compounds can have the same Q functionality.
  • an array encompasses not only 2-D arrays on solid supports but any collection that is addressable or in which members are identifiable, such as by tagging with colored beads or RF tags or chemical tags or symbologies on beads. “Spots” are loci on the array, collections where capture compounds are sorted accoding to their “Q” function are separated.
  • the analysis is conducted using the smallest possible number of reactions necessary to completely analyze the mixture.
  • selection of the diversity of Q and of the number of X and X/Y groups of different reactivity will be a function of the complexity of the biomolecule mixture to be analyzed.
  • Minimization of the diversity of B and the number of X and/or X/Y groups allows for complete analysis of the mixture with minimal complexity.
  • the separation of proteins from a complex mixture is achieved by virtue of the compound-protein products bound to different members of the collection.
  • the supernatant, which contains the capture compound-protein products is contacted with support bound or otherwise labeled or addressed recipient molecules, such as oligonucleotides on a support and allowed to bind, such as by hybridization to an array of complementary oligonucleotides.
  • a flat solid support that carries at spatially distinct locations, an array of oligonucleotides or oligonucleotide analogs that is complementary to the selected N 1 m B i N 2 n oligonucleotide or oligonucleotide analog, is hybridized to the capture compound-biomolecule products.
  • separation of the compound-protein products into an addressable array can be achieved by sorting into an array of microwell or microtiter plates, or other microcontainer arrays or by labeling with an identifiable tag.
  • the microwell or microtiter plates, or microcontainers can include single-stranded oligonucleotides or oligonucleotide analogs that are complementary to the oligonucleotide or oligonucleotide analog Q.
  • any excess compounds can be removed by adding a reagent designed to act as a “capturing agent.”
  • a reagent designed to act as a “capturing agent” For example, a biotinylated small molecule, which has a functionality identical or similar to that reacted with the selected X, is allowed to react with any excess compound. Exposure of this mixture to streptavidin bound to a magnetic bead, allows for removal of the excess of the compounds.
  • Hybridization of the compound-protein products to a complementary sequence is effected according to standard conditions (e.g., in the present of chaotropic salts to balance T m values of the various hybrids). Any non-hybridized material can be washed off and the hybridized material analyzed.
  • the methods herein use mixtures of the compounds provided herein that have permuted Q groups to achieve sorting of the biomolecules following reaction with the compounds.
  • Reaction of the subsets separately with an aliquot of the biomolecule mixture to be analyzed results in conjugate mixtures that can be aligned with, e.g., a microtiter plate format (e.g., 96, 384 1536, etc.). Analysis using these subsets of compound mixtures provides further sorting of the biomolecules prior to analysis.
  • a microtiter plate format e.g., 96, 384 1536, etc.
  • selective pooling of the products of different X moiety-containing reagents can be performed for combined analysis on a single assay (e.g., on a single chip).
  • FIG. 1 depicts an exemplary method for separation and analysis of a complex mixture of proteins by use of MALDI-TOF mass spectrometry.
  • Separation of the array is effected by hybridization of the Q portion of the array to a complementary sequence attached to a support, such as an oligonucleotide chip.
  • the proteins (P1 to P4) are then analyzed by MALDI-TOF mass spectrometry.
  • affinity chromatographic or affinity filtration methods can be applied to separate the compound-protein products from the protein mixture. If the proteins to be analyzed were fluorescently labeled prior to (or after) reaction with the compound but prior to hybridization, these labeled proteins also can be detected on the array. In this way the positions that carry a hybrid can be detected prior to scanning over the array with MALDI-TOF mass spectrometry and the time to analyze the array minimized.
  • Mass spectrometers of various kinds can be applied to analyze the proteins (e.g., linear or with reflection, with or without delayed extraction, with TOF, Q-TOFs or Fourier Transform analyzer with lasers of different wavelengths and xy sample stages).
  • Mass spectrometry formats for use herein, include, but are not limited to, matrix assisted laser desorption ionization (MALDI), continuous or pulsed electrospray (ES) ionization, ionspray, thermospray, or massive cluster impact mass spectrometry and a detection format such as linear time-of-flight (TOF), reflectron time-of-flight, single quadruple, multiple quadruple, single magnetic sector, multiple magnetic sector, Fourier transform, ion cyclotron resonance (ICR), ion trap, and combinations thereof such as MALDITOF spectrometry.
  • MALDITOF matrix assisted laser desorption ionization
  • ES electrospray
  • ionspray ionspray
  • thermospray thermospray
  • massive cluster impact mass spectrometry and a detection format such as linear time-of-flight (TOF), reflectron time-of-flight, single quadruple, multiple quadruple, single magnetic sector, multiple magnetic sector,
  • the samples dissolved in water or in a volatile buffer, are injected either continuously or discontinuously into an atmospheric pressure ionization interface (API) and then mass analyzed by a quadrupole.
  • API atmospheric pressure ionization interface
  • the generation of multiple ion peaks that can be obtained using ES mass spectrometry can increase the accuracy of the mass determination. Even more detailed information on the specific structure can be obtained using an MS/MS quadrupole configuration.
  • Methods for performing MALDI are known to those of skill in the art. Numerous methods for improving resolution are also known. For example, resolution in MALDI TOF mass spectrometry can be improved by reducing the number of high energy collisions during ion extraction (see, e.g., Juhasz et al. (1996) Analysis, Anal. Chem. 68:941946, see also, e.g., U.S. Pat. No. 5,777,325, U.S. Pat. No. 5,742,049, U.S. Pat. No. 5,654,545, U.S. Pat. No. 5,641,959, U.S. Pat. No. 5,654,545, U.S. Pat. No. 5,760,393 and U.S. Pat. No. 5,760,393 for descriptions of MALDI and delayed extraction protocols). Conditioning of molecules to be analyzed or of the capture-compound bound biomolecules prior to analysis also can be employed.
  • MALDI mass spectrometry In MALDI mass spectrometry (MALDI-MS), various mass analyzers can be used, e.g., magnetic sector/magnetic deflection instruments in single or triple quadrupole mode (MS/MS), Fourier transform and timeofflight (TOF), including orthogonal time-of-flight (O-TOF), configurations as is known in the art of mass spectrometry.
  • mass analyzers e.g., magnetic sector/magnetic deflection instruments in single or triple quadrupole mode (MS/MS), Fourier transform and timeofflight (TOF), including orthogonal time-of-flight (O-TOF), configurations as is known in the art of mass spectrometry.
  • TOF Fourier transform and timeofflight
  • OF orthogonal time-of-flight
  • Iontrap and reflectron configurations also can be employed.
  • MALDI-MS requires the biomolecule to be incorporated into a matrix. It has been performed on polypeptides and on nucleic acids mixed in a solid (i.e., crystalline) matrix. The matrix is selected so that it absorbs the laser radiation. In these methods, a laser, such as a UV or IR laser, is used to strike the biomolecule/matrix mixture, which is crystallized on a probe tip or other suitable support, thereby effecting desorption and ionization of the biomolecule. In addition, MALDI-MS has been performed on polypeptides, glycerol, and other liquids as a matrix.
  • a complex protein mixture can be selectively dissected, and in taking all data together, completely analyzed through the use of compounds with different functionalities X.
  • the proteins present in a mixture of biological origin can be detected because all proteins have reactive functionalities present on their surfaces. If at each position on the compound-protein array, there is the same protein cleavable under the same conditions as L or is added without covalent attachment to the solid support and serving as an internal molecular weight standard, the relative amount of each protein (or peptide if the protein array was enzymatically digested) can be determined.
  • This process allows for the detection of changes in expressed proteins when comparing tissues from healthy and disease individuals, or when comparing the same tissue under different physiological conditions (e.g., time dependent studies).
  • the process also allows for the detection of changes in expressed proteins when comparing different sections of tissues (e.g., tumors), which can be obtained, e.g., by laser bioposy.
  • Protein-protein interactions and protein-small molecule (e.g., drug) interactions can be studied by contacting the compound-protein array with a mixture of the molecules of interest.
  • a compound will be used that has no cleavable linkage L, or that has a linkage L that is stable under MALDI-TOF MS conditions.
  • Subsequent scanning of the array with the mass spectrometer demonstrates that hybridized proteins of the protein array have effectively interacted with the protein or small molecule mixtures of interest.
  • the compounds can contain a mass modifying tag.
  • the mass modifying tag is used to analyze the differences in structure (e.g., side chain modification such as phosphoylation or dephosphorylation) and/or expression levels of biomolecules, including proteins.
  • two compounds or two sets of compounds having identical permuted B moieties are used that only differ in the presence or absence of a mass modifying tag (or have two mass tags with appropriate mass differences).
  • One compound (or one set of compounds) is (are) reacted with “healthy” tissue and the mass modified compound(s) are reacted with the “disease” tissue under otherwise identical conditions.
  • the two reactions are pooled and analyzed in a duplex mode.
  • the mass differences will elucidate those proteins that are altered structurally or expressed in different quantity in the disease tissue.
  • Three or more mass modifying tags can be used in separate reactions and pooled for multiplex analysis to follow the differences during different stages of disease development (i.e., mass modifying tag 1 at time point 1, mass modifying tag 2 at time point 2 etc.), or, alternatively, to analyze different tissue sections of a disease tissue such as a tumor sample.
  • Selectivity in the reaction of the compounds provided herein with a biomolecule, such as a protein mixture also can be achieved by performing the reactions under kinetic control and by withdrawing aliquots at different time intervals.
  • different parallel reactions can be performed (for example, all differing in the B moiety of the Q group) and either performed with different stochiometric ratios or stopped at different time intervals and analyzed separately.
  • the immobilized compound-biomolecule conjugate can be viewed on the insoluble support prior to analysis. Viewing the conjugate provides information about where the conjugate has hybridized (such as for subsequent MALDI-TOF mass spectrometric analysis).
  • the quantity of a given protein from separate experiments e.g., healthy vs. disease, time point 1 vs. time point 2, etc.
  • the quantity of a given protein from separate experiments can be determined by using dyes that can be spectrophotometrically differentiated.
  • the methods are performed by tagging the biomolecules to be analyzed, including but not limited to proteins, with more than one, in one embodiment three to five, of the compounds provided herein.
  • Such compounds possess functionality designed to target smaller chemical features of the biomolecules rather than a macromolecular feature. See, e.g., FIG. 3 .
  • Such smaller chemical features include, but are not limted to, NH 2 , SH, SS (after capping SH, SS can be targeted by, e.g., gold), and OH.
  • the phenolic OH of tyrbsine is selectively captured using a diazo compound, such as an aryidiazonium salt.
  • the reaction can be performed in water.
  • a functionalized diazonium salt could be used where the functionality allows for subsequent capture of a compound provided herein, thereby providing a oligonucleotide-labelled biomolecule.
  • One such functionalized diazonium salt is:
  • a biomolecule modified with this reagent is then labelled with an oligonucleotide possessing a diene residue.
  • many reagent couples other that dienophile/diene can be used in these embodiments.
  • the reaction of the dienophile with the diene can be performed in the presence of many other functional groups, including N-hydroxysuccinimido-activated oligonucleotides reacting with an NH 2 group.
  • these two labelling specific reactions can be performed in one reaction. See, e.g., FIG. 5 .
  • the multiply-tagged biomolecules are hybridized on an array of antisense oligonucleotides, in one embodiment a chip containing an array of antisense oligonucleotides.
  • Such multiply-tagged biomolecules can be sorted with greater selectivity than singly tagged biomolecules. See, e.g., FIG. 4 .
  • organic solvents are added to the buffers to improve solubility.
  • the ratio of buffer:organic solvent is such that denaturation of the biomolecule does not occur.
  • the organic solvents used include, but are not limited to, acetonitrile, formamide and pyridine.
  • the ratio of buffer:organic solvent is about 4:1.
  • the collections of capture permit a top down holistic approach to analysis of the proteome and other biomolecules.
  • the collections and methods of use provide an unbiased way to analyze biomolecules, since the methods do not necessarily assess specific classes of targets, but rather detect or identify changes in the samples.
  • the changes identified include structural changes that are related to the primary sequences and modifications, including post-translational modifications.
  • the capture compounds can include a solubility function they can be designed for reaction in hydrophobic conditions, thereby permitting analysis of membrane-bound and membrane-associated molecules, particularly proteins.
  • proteome variation due to differences, such as gender, age, metabolic state, the complex mixtures of cells in target tissues and variations from cell cycle stage.
  • differences such as gender, age, metabolic state, the complex mixtures of cells in target tissues and variations from cell cycle stage.
  • homogeneity of the sample can be important.
  • cells, with different phenotypes, such as diseased versus healthy, from the same individual are compared.
  • differences in patterns of biomolecules can be attributed to the differences in the phenotype rather than from differences among individuals.
  • samples can be obtained from a single individual and cells with different phenotypes, such as healthy versus diseased and responders versus non-responders, are separated.
  • the cells can be synchronized or frozen into a metabolic state to further reduce background differences.
  • the collections of capture compounds can be used to identify phenotype-specific proteins or modifications thereof or other phenotype-specific biomolecules and patterns thereof. This can be achieved by comparing biomolecule samples from cells or tissues with one phenotype to the equivalent cells to biomolecule samples from cells or tissues with another phenotype. Phenotypes in cells from the same individual and cell type are compared. In particular, primary cells, primary cell culture and/or synchronized cells are compared. The patterns of binding of biomolecules from the cells to capture compound members of the collection can be identified and used as a signature or profile of a disease or healthy state or other phenotypes. The particular bound biomolecule, such as a protein, also can be identified and new disease-associated markers, such as particular proteins or structures thereof, can be identified.
  • Example 6 provides an exemplary embodiment in which cells are separated. See also FIG. 19 .
  • Phenotypes for comparison include, but are not limited to:
  • samples for each phenotype are obtained from the same organism, such as from the same mammal so that the cells are essentially matched and any variation should reflect variation due to the phenotype and not the source of the cells.
  • Samples can be obtained from primary cells (or tissues). In all instances, the samples can be obtained from the same individual either before exposure or treatment or from healthy non-diseased tissue in order to permit identification of phenotype-associated biomolecules.
  • Cells can be separated by any suitable method that permits identification of a particular phenotype and then separation of the cells based thereon. Any separation method, such as, for example, panning or negative panning (where unwanted cells are captured and the wanted cells remain in the supernatant) where the live cells are recovered can be used. These methods include, but are not limited to:
  • sorting criteria include, but are not limited to, membrane potential, ion flux, enzymatic activity, cell surface markers, disease markers, and other such criteria that permit separation of cells from an individual based on phenotype.
  • Laser Capture Microdissection uses a microscope platform combined with a low-energy IR laser to activate a plastic capture film onto selected cells of interest. The cells are then gently lifted from the surrounding tissue. This approach precludes any absorption of laser radiation by microdissected cells or surrounding tissue, thus ensuring the integrity of RNA, DNA, and protein prepared from the microdissected samples for downstream analysis.
  • Flow cytometry is a method, somewhat analogous to fluorescent microscopy, in which measurements are performed on particles (cells) in liquid suspension, which flow one at a time through a focused laser beam at rates up to several thousand particles per second. Light scattered and fluorescence emitted by the particles (cells) is collected, filtered, digitized and sent to a computer for analysis. Typically flow cytometry measures the binding of a fluorochrome-labeled probe to cells and the comparison of the resultant fluorescence to the background fluorescence of unstained cells.
  • Cells can be separated using a version of flow cytometry, flow sorting, in which the particles (cells) are separated and recovered from suspension based upon properties measured in flow. Cells that are recovered via flow sorting are viable and can be collected under sterile conditions. Typically, recovered subpopulations that are in excess of 99.5% pure (see FIGS. 19 a and 19 b ).
  • Flow cytometry allows cells to be distinguished using various parameters, including physical and/or chemical characteristics associated with cells or properties of cell-associated reagents or probes, any of which are measured by instrument sensors. Separation: Live v. Dead Forward and side scatter are used for preliminary identification and gating of cell populations. Scatter parameters are used to exclude debris, dead cells, and unwanted aggregates. In a peripheral blood or bone marrow sample, lymphocyte, monocyte and granulocyte populations can be defined, and separately gated and analyzed, on the basis of forward and side scatter. Cells that are recovered via flow sorting are viable and can be collected under sterile conditions. Typically recovered subpopulations are in excess of 99.5% pure.
  • sorting usually involve immunofluorescence assays, i.e., staining of cells with antibodies conjugated to fluorescent dyes in order to detect antigens.
  • sorting can be performed using GFP-reporter constructs in order to isolate pure populations of cells expressing a given gene/construct.
  • Fluorescent parameter measurement permits investigation of cell structures and functions based upon direct staining, reactions with fluorochrome labeled probes (e.g., antibodies), or expression of fluorescent proteins. Fluorescence signals can be measured as single or multiple parameters corresponding to different laser excitation and fluorescence emission wavelengths. When different fluorochromes are used simultaneously, signal spillover can occur between fluorescence channels. This is corrected through compensation. Certain combinations of fluorochromes cannot be used simultaneously; those of skill in the art can identify such combinations.
  • Immunofluorescence involves the staining of cells with antibodies conjugated to fluorescent dyes such as FITC (fluorescein), PE (phycoerythrin), APC (allophycocyanin), and PE-based tandem conjugates (R670, CyChrome and others.).
  • fluorescent dyes such as FITC (fluorescein), PE (phycoerythrin), APC (allophycocyanin), and PE-based tandem conjugates (R670, CyChrome and others.
  • Cell surface antigens are the usual targets of this assay, but antibodies can be directed at antigens or cytokines in the cytoplasm as well.
  • DNA staining is used primarily for cell cycle profiling, or as one method for measuring apoptosis.
  • Propidium iodide (PI) the most commonly used DNA stain, cannot enter live cells and can therefore be used for viability assays.
  • PI polypeptide-binding protein
  • cells must first be fixed in order for staining to take place (see protocol).
  • the relative quantity of PI-DNA staining corresponds to the proportion of cells in G0/G1, S, and G2/M phases, with lesser amounts of staining indicating apoptotic/necrotic cells.
  • PI staining can be performed simultaneously with certain fluorochromes, such as FITC and GFP, in assays to further characterize apoptosis or gene expression.
  • Gene Expression and Transfection can be measured indirectly by using a reporter gene in the construct.
  • Green Fluorescent Protein-type constructs EGFP, red and blue fluorescent proteins
  • ⁇ -galactosidase ⁇ -galactosidase
  • Mutants of GFP are now available that can be excited at common frequencies, but emit fluorescence at different wavelengths. This allows for measurement of co-transfection, as well as simultaneous detection of gene and antibody expression.
  • Appropriate negative (background) controls for experiments involving GFP-type constructs should be included. Controls include, for example, the same cell type, using the gene insert minus the GFP-type construct.
  • Annexin-V can be labeled with various fluorochromes in order to identify cells in early stages of apoptosis.
  • CFSE binds to cell membranes and is equally distributed when cells divide. The number of divisions cells undergo in a period of time can then be counted.
  • CFSE can be used in conjunction with certain fluorochromes for immunofluorescence. Calcium flux can be measured using Indo-1 markers. This can be combined with immunofluorescent staining.
  • Intercellular conjugation assays can be performed using combinations of dyes such as calcein or hydroethidine.
  • sorted or separated cells Once sorted or separated cells are obtained they can be cultured, and, can be synchronized or frozen into a particular metabolic state. This enhances the ability to identify phenotype-specific biomolecules.
  • Such cells can be separated by the above methods, including by flow cytometry. Further, cells in the same cell cycle, same metabolic state or other synchronized state can be separated into groups using flow cytometry (see, FIG. 19 c ).
  • Cell cycles can be synchronized or frozen by a variety of methods, including but are not limited to, cell chelation of critical ions, such as by removal of magnesium, zinc, manganese, cobal and/or other ions that perform specific functions by EDTA or otherchelators (see, e.g., EXAMPLES). Other methods include controlling various metabolic or biochemical pathways.
  • FIG. 18 depicts exemplary points of regulation of metabolic control mechanisms for cell synchronization. Examples of synchronizing or “freezing” Metabolic Control for synchronizing cells, include, but are not limited to, the following:
  • Important disease-associated markers and targets could be low abundancy proteins, that might not be detected by mass spectrometry.
  • a first capture compound display experiment can be performed.
  • the resulting array of captured proteins is reacted with a non-selective dye, such as a fluorescent dye, that will light up or render visible more proteins on the array.
  • the dye can provide a semi-quantitative estimate of the amount of a protein.
  • the number of different proteins detected by the dye can be determined and then compared the number detected by mass spectrometric analysis. If there are more proteins detected using the dye, the experiments can be repeated using a higher starting number of cells so that low abundance proteins can be detected and identified by the mass spectrometric analysis.
  • housekeeping proteins such as actin and other such proteins
  • Capture compounds or other purification compound selected or designed to capture or remove the high abundancy proteins or biomolecules from a mixture before using a collection to assess the components of the mixture. Once the high abundancy proteins are removed, low abundancy proteins have an effectively higher concentration and can be detected.
  • a cell lysate can be contacted with capture molecules that include a reactivity group such as biotin or other general reactivity function linked to a sorting group to remove such high abundancy proteins, and then use a suitable collection of capture compounds to identify lower abundancy compounds remaining in the lysate.
  • a reactivity group such as biotin or other general reactivity function linked to a sorting group to remove such high abundancy proteins
  • capture compounds can be designed, such as by appropriate selection of W, to interact with intact organelles before disrupting them in cells that have been gently lysed or otherwise treated to permit access to organelles and internal membranes. Then the captured organelles can be disrupted, such as one which can inlcude an artificial membrane, such as a lipid bilayer or micelle coating, to capture the organelle proteins and other biomolecules in an environment that retains their three-dimensional structure. These captured proteins can be analyzed. This permits the capture compounds to interact with the captured proteins and other biomolecules in their native tertiary structure.
  • the collections and/or members thereof can be used to detect or distinguish specific conformers of proteins. Hence, for example, if a particular conformation of a protein is associated with a disease (or healthy state) the collections or members thereof can detect one conformer or distinguish conformers based upon a pattern of binding to the capture compounds in a collection. Thus, the collections and/or members thereof can be used to detect conformationally altered protein diseases (or diseases of protein aggregation), where a disease-associated protein or polypeptide has a disease-associated conformation.
  • the methods and collections provided herein permit detection of a conformer associated with a disease to be detected. These diseases include, but are not limited to, amyloid diseases and neurodegenerative diseases.
  • AD Alzheimer's Disease
  • a ⁇ ⁇ 1- antichymotrypsin
  • tau non- A ⁇ component
  • presenellin 1 presenellin 2
  • apoE Prion diseases including but are not PrP Sc limited to, Creutzfeldt-Jakob disease, scrapie, bovine spongiform encephalopathy amyotrophic lateral sclerosis (ALS) superoxide dismutase (SOD) and neurofilament Pick's Disease Pick body Parkinson's disease á-synuclein in Lewy bodies Frontotemporal dementia tau in fibrils Diabetes Type II amylin Multiple myeloma IgGL-chain Plasma cell dyscrasias Familial amyloidotic polynueuropathy Transthyretin Medullary carcinoma of thyroid Procalcitonin Chronic renal failure â 2 -microgobulin Conges
  • the collections can be contacted with a mixture of the conformers and the members that bind or retain each form can be identified, and a pattern thus associated with each conformer.
  • those that bind to only one conformer, such as the conformer associated with disease can be identified, and sub-collections of one or more of such capture compounds can be used as a diagnostic reagent for the disease.
  • Biomolecules such as proteins are sorted using a covalent or noncovalent interaction with immobilized capture compounds. Collections, such as arrays of capture compounds bound to biomolecules, such as from cell lysates, then can be used to screen libraries or other mixtures of drug candidates or to further screen mixtures of biomolecules to see what binds to the bound biomolecules.
  • the capture biomolecule-biomolecule complexes or biomolecule-drug candidate complexes can be analyzed to identify biochemical pathways and also to identify targets with the candidate drug.
  • test compounds typically small molecules, including small organic molecules, peptides, peptide mimetics, antisense molecules or dsRNA, antibodies, fragments of antibodies, recombinant and sythetic antibodies and fragments thereof and other such compounds that can serve as drug candidates or lead compounds.
  • test compounds typically small molecules, including small organic molecules, peptides, peptide mimetics, antisense molecules or dsRNA, antibodies, fragments of antibodies, recombinant and sythetic antibodies and fragments thereof and other such compounds that can serve as drug candidates or lead compounds.
  • Bound small molecules are identified by mass spectrometry or other analytical methods.
  • Many pharmaceutical drugs have side effects that may arise from the interaction of the drugs, drug fragments, drug metabolites or prodrugs with drug non-target biomolecules under physiological conditions.
  • Cox-2 inhibitors such as Cox-2 inhibitors such as 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl] benzenesulfonamide, (Celebrex®) or 4-(4-(methylsulfonyl)phenyl)-3-phenyl-2(5H)-furanone (VIOXX®) have side effects that may be the result of interaction of the drug with non-target biomolecules.
  • Cox-2 inhibitors such as 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl] benzenesulfonamide, (Celebrex®) or 4-(4-(methylsulfonyl)phenyl)-3-phenyl-2(5H)-furanone (VIOXX®) have side effects that may be the result of interaction of the drug with non-target biomolecules.
  • the thaizolidinedione (TDZ) class of antidiabetic drugs are PPAR- ⁇ activators.
  • the PPAR- ⁇ protein is a receptor important in the regulation of genes involved in the metabolism of glucose and lipids. TDZs are prescribed to diabetic patients in whom blood sugar (glucose) is not properly metabolized.
  • TDZ's are known to also interact with PPAR- ⁇ , a protein with a similar structure involved in the synthetic pathway of triglycerides, known to be associated with cardiovascular disease.
  • the TDZ Rezulin was withdrawn from the market due to liver toxicity, and Actos and Avandia were recently reported in a Mayo Clinic study to have cardiovascular side effects.
  • Drug metabolites can also cause toxicity.
  • Cytochrome P450 family primarily located in the liver. These proteins work by attaching functional groups to the (usually lipophilic) drug molecules. These functional groups subsequently allow other enzymes to conjugate moieties (glucuronidation, sulfation, etc.) to the metabolites rendering them water-soluble and thus facilitating excretion.
  • Toxicity can occur if a polymorphic form of an enzyme involved in the metabolism malfunction, or a metabolite irreversibly inactivates a cytochrome p450 (suicide inhibition), compromising its excretion potentially leading to a toxic accumulation in the liver.
  • these metabolizing enzyme systems in e.g. kidneys, lung, or heart, similar drug toxicities can be observed in those organs.
  • the capture compounds/collections thereof provided herein can be used to identify the drug non-target biomolecules that interact with the pharmaceutical drugs/drug fragments, drug metabolites or prodrugs including but not limited to, receptors and enzymes.
  • the identification and characterization of the drug interacting proteins can also lead to unexpected alternative pharmacological benefits. It is not unlikely that drug targets in other unexpected biological pathways would be found, which allow the application of the drug to treat other diseases. A failed drug that might not be efficacious (or too toxic) for one disease could be turned into a blockbuster for another disease.
  • the capture compounds/collections thereof are designed to contain pharmaceutical drugs/drug fragments, drug metabolites or prodrugs as the selectivity function and suitable reactivity and sorting functionality.
  • the capture compound/collections thereof are allowed to interact with a mixture of drug target and non-target biomolecules, including but not limited to, receptor proteins.
  • the captured biomolecules are then analyzed to identify drug target and non-target biomolecules. Screening and identification of drug non-target biomolecules can help in understanding side effects of the pharmaceutical drugs and permit modification of the drug structure to eliminate or minimize the side effects while maintaining the efficacy.
  • Exemplary drug molecules that can be used in the methods and collections provided herein are set forth elsewhere herein, and include, but are not limited to,.LIPITOR® (atorvastatin calcium), CELEBREX® (celecoxib), VIOXX® (refecoxib) and BAYCOL® (cerivastatin sodium).
  • bioinformatics and functional genomic tools are available. These include in silico approaches (bioinformatics) including sequence alignment, pharmacophores, homology models and protein motif correlation; in vitro approaches including liver midrosomes metabolic pathways (e.g. P450), cDNA-expressed enzymes, signal pathways and back-mapping to yeast pathways, simulations and protein/protein interaction of pull-out proteins; in vivo approaches including native polymorphisms, knock-out/knock-in, flow cytometry, therapeutic activity of the drug (i.e.
  • the selectivity function of the capture compound is a drug molecule or one of its metabolites, attached in different chemically relevant orientations.
  • the proteins (target and non-targets) that interact with the drug and their respective putative function are identified, screening against all cell types potentially involved in the therapeutic or side-effect-related pathways.
  • NCE new chemical entity
  • Exemplary diseases that may be studies using these methods include:
  • the compounds and the methods described herein are designed to be placed into an integrated system that standardizes and automates the following process steps:
  • the compounds and the methods described herein are designed to be placed into an integrated system that standardizes and automates the following process steps:
  • the systems include the collections provided herein, optionally arrays of such collections, software for control of the processes of sample preparation and instrumental analyis and for analysis of the resulting data, and instrumentation, such as a mass spectrometer, for analysis of the biolmolecules.
  • the systems include other devices, such as a liquid chromatographic devices so that a protein mixture is at least partially separated. The eluate is collected in a continuous series of aliquots into, e.g., microtiter plates, and each aliquot reacted with a capture compound provided.
  • aliquots in each well can simultaneously react with one or more of the capture compounds provided herein that, for example each differ in X (i.e., amino, thiol, lectin specific functionality) with each having a specific and differentiating selectivity moiety Y and in the Q group.
  • Chromatography can be done in aqueous or in organic medium. The resulting reaction mixtures are pooled and analyzed directly. Alternatively, subsequent secondary reactions or molecular interaction studies are performed prior to analysis, including mass spectrometric analysis.
  • the systems provided herein can contain an assembly line, such as pipetting robots on xy stages and reagent supply/washing modules that are linked with a central separation device and a terminal mass spectrometer for analysis and data interpretation.
  • the systems can be programmed to perform process steps including (see, e.g., FIG. 2 ), for example:
  • the matrix After washing out the enzyme and the digestion products, the matrix is added.
  • the raw data generated from the analysis, such as mass spectrometry analysis, of the compound-protein species is processed by background subtraction, noise reduction, molecular weight calibration and peak refinement (e.g., peak integration).
  • the molecular weight values of the cleaved proteins or the digestion products are interpreted and compared with existing protein databases to determine whether the protein in question is known, and if so, what modifications are present (glycosylated or not glycosylated, phosphorylated or not phosphorylated, etc.).
  • the different sets of experiments belonging to one set of compounds are composed, compared and interpreted. For example, one set of experiments uses a set of compounds with one X moiety and different Q moieties.
  • This set of experiments provides data for a portion of the proteome, since not all proteins in the proteome will react with a given X moiety. Superposition of the data from this set of experiments with data from other sets of experiments with different X moieties provides data for the complete proteome.
  • N 1 and N 2 as identical tetramers
  • B as a trimer
  • N 1 and N 2 as non-identical tetramers
  • B as a tetramer
  • N 1 as a heptamer
  • N 2 as an octamer
  • B as an octamer
  • the protein mixtures can be selectively divided on the physical or biochemical separation techniques
  • Proteins can be isolated from cell culture or tissues according to methods well known to those of skill in the art.
  • the isolated proteins are purified using methods well known to those of skill in the art (e.g., TPAE, differential protein precipitation (precipitation by salts, pH, and ionic polymers), differential protein crystallization bulk fractionation, electrophoresis (PAGE, isoelectric focusing, capillary), and chromatography (immunoaffinity, HPLC, LC)).
  • TPAE differential protein precipitation
  • PAGE isoelectric focusing, capillary
  • chromatography immunoaffinity, HPLC, LC
  • Cultured cells or tissues are homogenized in a denaturing solution containing 4 M guanidine thiocyanate.
  • the homogenate is mixed sequentially with 2 M sodium acetate (pH 4), phenol, and finally chloroform/isoamyl alcohol or bromochloropropane.
  • the resulting mixture is centrifuged, yielding an upper aqueous phase containing total RNA.
  • the RNA pellet is dissolved in denaturing solution (containing 4 M guanidine thiocyanate), precipitated with isopropanol, and washed with 75% ethanol.
  • Cells are washed with ice-cold phosphate-buffered saline and kept on ice for all subsequent manipulations.
  • the pellet of harvested cells is resuspended in a lysis buffer containing the nonionic detergent Nonidet P-40. Lysis of the plasma membranes occurs almost immediately.
  • the intact nuclei are removed by a brief micro centrifuge spin, and sodium dodecyl sulfate is added to the cytoplasmic supernatant to denature protein. Protein is digested with protease and removed by extractions with phenol/chloroform and chloroform.
  • the cytoplasmic RNA is recovered by ethanol precipitation.
  • Messenger RNA is purified from total or cytoplasmic RNA preparation using standard procedures.
  • Poly(A) + RNA can be separated from total RNA by oligo (dT) binding to the Poly(A) tail of the mRNA.
  • Total RNA is denatured to expose the Poly(A) (polyadenylated) tails.
  • Poly(A)-containing RNA is then bound to magnetic beads coated with oligo(dT) and aspiring from the total or cytoplasmic RNA through magnetic forces.
  • the mRNA population can be further enriched for the presence of full-length molecules through the selection of a 5′-cap containing mRNA species.
  • primers can be used to synthesis full length or 5′-end containing cDNA libraries from the isolated mRNA.
  • FIG. 7 An example of the production of an adapted oligo dT primed cDNA library is provided in FIG. 7 .
  • FIG. 8 An example of the production of an adapted sequence motif specific cDNA library is provided in FIG. 8 .
  • the oligonucleotides used for the cDNA production can contain additional sequences, 1) protein tag specific sequences for easier purification of the recombinant proteins (6 ⁇ His), 2) restriction enzyme sites, 3) modified 5′-end for cDNA purification or DNA construction purposes ( FIG. 10 ).
  • the conversion of mRNA into double-stranded cDNA for insertion into a vector is carried out in two parts. First, intact mRNA hybridized to an oligonucleotide primer, is copied by reverse transcriptase and the products isolated by phenol extraction and ethanol precipitation. The RNA in the RNA-DNA hybrid is removed with RNase H as E. coli DNA polymerase I fills in the gaps. The second-strand fragments thus produced are ligated by E. coli DNA ligase. Second-strand synthesis is completed, residual RNA degraded, and cDNA made blunt with RNase H, RNase A, T4 DNA polymerase, and E. coli DNA ligase.
  • Adapter molecules can be ligated to both ends of the blunt ended double stranded cDNA or to only one end of the cDNA.
  • Site directed adapter ligation could be achieved through the use of 5′ modified oligonucleotides (for example biotinylated, aminated) during cDNA synthesis that prevents adapter ligation to the 3′ end of the cDNA.
  • the resulting cDNA molecules contain a 5′-end cDNA library comprised of the 5′ non-translated region, the translational start codon AUG coding for a methionine, followed by the coding region of the gene or genes.
  • the cDNA molecules are flanked by known DNA sequence on their 5′- and 3′-ends ( FIGS. 14, 15 and 16 ).
  • PCR Primers to the known 5′- and 3′-end sequences or known internal sequences can be synthesized and used for the amplification of either the complete library or specific subpopulations of cDNA using an extended 5′- or 3′-amplification primer in combination with the primer located on the opposite site of the cDNA molecules ( FIG. 11 ).
  • the sub-population primers contain two portions ( FIG. 12 ).
  • the 5′-part of the primer is complementary to the sequence of a known sequence, extending with its 3′-end into the unknown cDNA sequence. Since each nucleotide in the cDNA part of the library can have an adenosine, cytidine, guanosine or thymidine residue, 4 different nucleotides possibilities exist for each nucleotide position.
  • Four different amplification primers can be synthesized, each containing the same known sequence and extending by one nucleotide into the cDNA area of the library. The 4 primers only differ at their most 3′-nucleotide, being either A, C, G or T.
  • each nucleotide (A, C, G, T) is equally represented in a stretch of DNA
  • each one of the 4 amplification primers will amplify one quarter of the total genes represented in the cDNA library.
  • Extending the amplification primer sequence further and increasing the number of amplification primers the complexity of the amplification products can be further reduced.
  • Extending the sequence by 2 nucleotides requires the synthesis of 16 different primers decreasing the complexity by 16 fold, 3 nucleotides require 64 different primers and nucleotide extension requires n 4 different primers.
  • PCR amplification entails mixing template DNA, two appropriate oligonucleotide primers (5′- and 3′-end primers located in the known added sequences directed in complementary orientation), Taq or other thermostable DNA polymerases, deoxyribonucleoside triphosphates (dNTPs), and a buffer.
  • the PCR products are analyzed after cycling on DNA gels or through analysis on an ABI 377 using the genescan analysis software. These analysis methods allow the determination of the complexity of the amplified cDNA pool.
  • Each amplified cDNA library sub-population is cloned 5′ to 3′ in a bacterial ( E. coli , etc.) or eukaryotic (Baculovirus, yeast, mammalian) protein expression system.
  • the gene introduced with its own translational initiation signal and a 6 ⁇ His tag in all 3 frames.
  • the cDNA is restricted with two different, rare-cutting restriction enzymes (5′-end BglII and 3′-end Not I) and cloned in the 5′ to 3′ orientation in the Baculovirus transfer vector pVL1393 under the direct control of the polyhedra promoter.
  • Linearized Baculovirus DNA and recombinant transfer-vector DNA are cotransfected into susceptible Sf9 insect cells with calcium phosphate.
  • 10 ug of purified plasmid DNA is prepared.
  • An initial recombinant Baculovirus stock is prepared and Sf9 cells are infected for recombinant protein production.
  • the expressed recombinant proteins contain an affinity tag (an example is a 6 ⁇ His tag). They are purified on Ni-NTA agarose. Approximately 1 to 2 mg of 6 ⁇ His recombinant fusion protein is routinely obtained per liter of insect cell culture.
  • the purification tag can be removed from the recombinant proteins after the protein affinity purification step.
  • a purified protein preparation translated from a pool of cDNAs is injected intramuscularly, intradermally, or subcutaneously in the presence of adjuvant into an animal of the chosen species (rabbit).
  • Booster immunizations are started 4 to 8 weeks after the priming immunization and continued at 2- to 3-week intervals.
  • the polyclonal antiserum is purified using standards known to those skilled in the art.
  • the purified antibody batches can be used directly as protein capture reagents without modification. In this case the antibody batches from different animals have to be kept separate (each batch is one capture reagent).
  • Antibody Proteins are Isolated and Conjugated with Nucleic Acid Sequences that Correspond to the Original Antigen Preparation Resulting in the Antibody Capture Reagents
  • the glycosylated C H 2 domain of the polyclonal antibodies are conjugation to 5′ modified oligonucleotides using standard conjugation methods.
  • the resulting molecule has one protein capture moiety (antibody) and one nucleic acid moiety (oligonucleotide) ( FIG. 13 ).
  • the antibody batches after immunization of an animal with a reduced complexity protein pool are conjugated with the one oligonucleotide sequence.
  • Antibodies produced from multiple immunization events with different protein pools are conjugated to an oligonucleotide with a different sequence ( FIG. 13 ).
  • oligonucleotides bound to a solid support Two different methods have been developed for making oligonucleotides bound to a solid support: they can be synthesised in situ, or presynthesised and attached to the support. In either case, it is possible to use the support-bound oligonucleotides in a hybridization reaction with oligonucleotides in the liquid phase to form duplexes; the excess of oligonucleotide in solution can then be washed away.
  • the support can take the form of particles, for example, glass spheres, or magnetic beads. In this case the reactions could be carried out in tubes, or in the wells of a microtitre plate. Methods for synthesising oligonucleotides and for attaching presynthesised oligonucleotides to these materials are known (see, e.g., Stahl et al. (1988) Nucleic Acids Research 16(7):3025-3039).
  • Oligonucleotides of a defined sequence are synthesized on an amine-functionalized glass support.
  • An amine function was attached at discrete locations on the glass slide using a solution of 700 iI of H 2 N(CH 2 ) 3 Si(OCH 2 CH 3 ) 3 in 10 ml of 95% ethanol at room temperature for 3 hours.
  • the treated support is washed once with methanol and then once with ethyl ether.
  • the support was dried at room temperature and then baked at 110° C. for 15 hours. It was then washed with water, methanol and water, and then dried.
  • the glass slide was reacted for 30 minutes at room temperature with 250 mg (1 millimole) of phthallic anhydride in the presence of 2 ml of anhydrous pyridine and 61 mg of 4-dimethylaminopyridine.
  • the product was rinsed with methylene dichloride, ethyl alcohol and ether, and then dried.
  • the products on the slide were reacted with 330 mg of dicyclohexylcarbodiimide (DCC) for 30 minutes at room temperature.
  • the solution was decanted and replaced with a solution of 117 mg of 6-amino-1-hexanol in 2 ml of methylene dichloride and then left at room temperature for approximately 8 hours.
  • DCC dicyclohexylcarbodiimide
  • the amine-functionalized solid support was prepared for oligonucleotide synthesis by treatment with 400 mg of succinic anhydride and 244 mg of 4-dimethylaminopyridine in 3 ml of anhydrous pyridine for 18 hours at room temperature.
  • the solid support was treated with 2 ml of DMF containing 3 millimoles (330 mg) of DCC and 3 millimoles (420 mg) of p-nitrophenol at room temperature overnight.
  • the slide was washed with DMF, CH 3 CN, CH 2 Cl 2 and ethyl ether.
  • a solution of 2 millimoles (234 mg) of H 2 N(CH 2 ) 6 OH in 2 ml of DMF was reacted with the slide overnight.
  • the product of this reaction was a support,
  • the functionalized ester resulting from the preparation of the glass support was used for the synthesis of a oligonucleotide sequence.
  • Each nucleoside residue was added as a phosphoramidite according to known procedures (see, e.g., U.S. Pat. Nos. 4,725,677 and 5,198,540, and RE34,069, see, also Caruthers et al. U.S. Pat. No. 4,415,732).
  • the purified antibody batches can be either 1) directly attached to a solid surface, and incubated with protein samples, 2) incubated with the samples and subsequently bound to a solid support without using the capture compound or 3) the capture compound can be used to capture its corresponding protein in a sample and subsequently sort the captured proteins through specific nucleotide hybridization ( FIG. 14 ).
  • Antisense oliogonucleotide Capture Reagents are Immobilized in Discrete and Known Locations on a Solid Surface to Create an Antibody Capture Array 6. Preparation of Capture Array Surface
  • 5′-aminated oligonucleotides are synthesized using phosphoramidate chemistry and attached to N-oxysussinimide esters.
  • the attached oligonucleotide sequences are complementary to the sorting oligonucleotides of the bifunctional antibody molecules ( FIG. 13 ). Proteins are captured through nucleic acid hybridization of their sorting oligonucleotide to the complementary sequence attached to the solid surface oligonucleotide.
  • the bifunctional antibodies are incubated with the protein sample under conditions that allow the antibodies to bind to their corresponding antigen.
  • the bifunctional antibody molecule with the captured protein is added to the oligonucleotide prepared capture array. Under standard DNA annealing conditions that do not denature the antigen-antibody, binding the bifunctional antibody will hybridize with its nucleic acid moiety to the complementary oligonucleotide.
  • the attached proteins are analyzed using standard protein analysis methods, such as mass spectrometry.
  • the precipitated white solid was filtered and washed several times with CH 2 Cl 2 (4 ⁇ 100 mL). The combined CH 2 Cl 2 was removed under rotaevoporator and the solid obtained was slowly dissolved in 150 mL of thionyl chloride and refluxed for 3 h. The excess of SOCl 2 was evaporated to one-sixth the volume and poured in to 500 mL of dry ether cooled in ice bath and kept in the refrigerator overnight. The ether was removed and the precipitated hydrochloride was dissolved in 500 mL of cold water.
  • Method A In a 100 mL two neck round bottom flask placed with 550 mg (8 mM) of NaOEt in 20 mL of dry DMF was added 3-hydroxy benzophenone (1 g, 5 mM) under argon atmosphere. The reaction was stirred at room temperature for 10 min and added 2-bromoethoxy tetrahydropyran (1 g, 5 mM) dissolved in 5 mL of dry DMF by drop wise. The reaction mixture was heated at 60° C. for overnight, cooled and poured into ice water and extracted with CH 2 Cl 2 (2 ⁇ 50 mL). The combined solvent was dried over anhydrous Na 2 SO 4 and evaporated. The crude residue obtained was purified by silica gel column chromatography using hexane/EtOAc (9:1) mixture as an eluent. Yield: 680 mg (42%).
  • H460 lung cancer and SW480 colon cancer cells were synchronized in Go/G1 with simvastatin and lovastatin (HMG-COA reductase inhibitors), which can enrich a cancer cell population in Go/G1.
  • simvastatin and lovastatin HMG-COA reductase inhibitors
  • lovastatin HMG-COA reductase inhibitors
  • the SW480 cell line was cultured in Dulbecco's modified Eagle medium (DMEM), the H460 cell line (ATCC Manassas, Va.) was cultured in RPMI 1640, whereas the FK101 was cultured in serum-free medium (SFM) with 5% CO 2 at 37° C.
  • the cell culture media were supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, penicillin(100 U/ml) and streptomycin(100 U/ml).
  • H460 and SW480 cells enriched in G 1 phase were obtained after incubation with serum-free medium for 48 hours, or treatment with U026, lovastatin or simvastatin.
  • Cells in S phase were synchronized by incubating cells with medium containing no serum for 24 hours, followed by aphidicolin treatment (2 ug/ml) for 20 hours and release of cells from aphidicolin for 3 hours.
  • Cells arrested in G2/M phase were obtained by treatment with nocodazole (0.4-0.8 mg/ml) for 16-20 hours.
  • This example shows exemplary capture binding assays and the effects of selectivity functions on binding.
  • This example shows that changing selectivity can alter reactivity of the capture compound thereby providing a means to probe biomolecule structures and to permit sorting or diversity reduction using the collections.
  • the core group of the capture compounds is a trityl group and the reactive group is succinimide, which interacts with a primary amine.
  • Compound 1341 is a non-selective compound that has a reactivity group, but no selectivity group.
  • Compound 1343 (see FIG. 20 ) is exemplary of such compound where the selectivity goup is —OH. As the selectivity group changes there is a difference in reactivity on the target proteins (lysozyme, cytochrome C and ubiquitin).
  • HKC 1343, 1349, 1365; chemical structure of each compound is listed below the Compound name Three different capture compounds (designated HKC 1343, 1349, 1365; chemical structure of each compound is listed below the Compound name) were reacted individually with Lysozyme (Accession number P00698; FIG. 20 b ).
  • the capture experiments were analyzed using MALDI-TOF Mass Spectrometry. Binding was performed in 20 uL sample volumes with a 5 uM Lysozyme concentrations in 25 mM HEPES buffer solution, pH 7.0. The trityl-based capture compounds were added to the protein solution at a 10 uM concentration. The binding reaction was incubated at room temperature for 30 minutes. The reaction was quenched using 1 uL of a 100 mM TRIZMA base solution.
  • the capture compound-protein binding mixture was prepared for mass spectrometry by mixing a 1 uL aliquot of a binding reaction with 1 uL of a 10 mg/mL sinapinic acid in 30% aqueous acetonitrile. The sample was deposited as a 500 nL spot on the surface of the mass target plates and air-dried before mass spectrometric analysis.
  • the results of the mass spectrometry analysis which are shown in FIG. 20 b , demonstrate that addition of selectivity groups to compounds permits alterations in the binding specificity of capture compounds.
  • the capture compound-protein binding mixture was prepared for mass spectrometry analysis by mixing a 1 uL aliquot of the binding reaction with 1 uL of a 10 mg/mL sinapinic acid in 30% aqueous acetonitrile. The sample was deposited as a 500 nL spot on the surface of mass target plates and subsequently air-dried before mass spectrometric analyses.
  • the results of the mass spectrometry analysis demonstrate that addition of selectivity groups to compounds permits alterations in the binding specificity of capture compounds.
  • One of the exemplary capture compounds was incubated with a mixture of three different proteins (Ubiquitin, [P02248], Cytochrome C [P00006] and Lysozyme [P00698]) (see, FIG. 20 d ).
  • the capture experiment was analyzed using MALDI-TOF Mass Spectrometry.
  • the binding reactions were performed in a 20 uL sample volume with all three proteins at 5 uM concentrations in 25 mM HEPES buffer solution pH 7.0.
  • the trityl-based capture compound was added to the protein solution at a 25 uM concentration.
  • the binding reaction was incubated at room temperature for 30 minutes and the reaction quenched using 1 uL of a 100 mM TRIZMA base solution.
  • the capture compound-protein binding mixture was prepared for mass spectrometry by mixing a 1 uL aliquot of the binding reaction with 1 uL of 10 mg/mL sinapinic acid in 30% aqueous acetonitrile. The sample was deposited as a 500 nL spot on the surface of mass target plates and air-dried before mass spectral analysis.
  • the results of the mass spectrometry analysis which are shown in FIG. 20 d , demonstrate that a plurality of compounds bound to a single capture agent that is selective can be identified by mass spectrometric analysis.
  • HEC 1365 Another of the exemplary capture compounds (HKC 1365) was incubated with a mixture of three different proteins (Ubiquitin [PO 2248 ], Cytochrome C [P00006] and Lysozyme [P00698]; see FIG. 20 d ).
  • the capture experiment was analyzed using MALDI-TOF Mass Spectrometry.
  • the binding reactions were performed in a 20 uL sample volume with all three proteins at 5 uM concentrations in 25 mM HEPES buffer solution pH 7.0.
  • the trityl-based capture compound was added to the protein solution at a 15 uM concentration.
  • the binding reaction was incubated at room temperature for 30 minutes, and quenched using 1 uL of a 100 mM TRIZMA base solution.
  • the capture compound-protein binding mixture was prepared for mass spectrometry by mixing a 1 uL aliquot of the binding reaction with 1 uL of a 10 mg/mL sinapinic acid in 30% aqueous acetonitrile. The sample was deposited as a 500 nL spot on the surface of the mass target plates and air-dried before mass spectral analyses.
  • the results of the mass spectrometry analysis which are shown in FIG. 20 e , demonstrate that a plurality of compounds bound to a single capture agent that is selective can be identified by mass spectrometric analysis.
  • FIG. 20 f shows mass spectra for a time course reaction of cytochrome C with a non-specific compound (HKC 1341).
  • the succinamide reactive group shows specificity and reactivity with the lysines of cytochrome c.
  • the top spectrum shows no modification at time 0, the middle spectrum shows 1-9 modifications resulting from binding of HKC1341 after 30 minutes, and the bottom spectrum shows, after 24 hours, 17 and 18 modifications, which correspond to the number of lysines (18) in cytochrome c.
  • This example shows the selectivity of the capture compound reacting a mixture of capture compounds and a mixture of proteins
  • Capture compounds HKC 1343 and HKC 1365, stock solution is 1 mM in acetonitrile.
  • a protein dilution (mixture) is prepared in the reaction buffer at the concentration of 0.5, 2.5 and 3 iM, for ubiquitin, cytochrome c and lysozyme, respectively. 19.5 il is used for one capturing reaction. Each reaction is started by adding 0.5 il of 1 mM compound stock solution (final 25 iM). The reaction mixture is incubated at room temperature for 30 min before the reaction is stopped by the addition of 5 mM TRIZMA.
  • the first two tubes contain HKC 1343 and HKC 1365 individually, and a third one is started by adding compounds HKC 1343 and 1365 (final concentration 25 iM for each compound). After the reaction, 1 ⁇ l of each sample is mixed with equal volume of matrix and subjected to MALDI analysis. Statistic significance of the results is ensured by triplicate each reaction sample.
  • 2-(4-Bromophenyl)-4,4-dimethyl-1,3-oxazoline 1 was prepared as described in Example 4. To a stirred solution of 2-(4-bromophenyl)-4,4-dimethyl-1,3-oxazoline (1.5 g, 6 mM) in anhydrous THF (10 mL) at ⁇ 78° C. was added slowly n-BuLi (384 mg, 6 mM) in hexane over the period of 20 min. After that the reaction mixture was stirred at ⁇ 78° C. for another 30 min. To this stirred solution was added 3-hydroxybenzophenone (534 mg, 2.7 mM) dissolved in anhy.
  • Trityl amino acid 4,100 mg, 0.26 mM
  • Biotin-X-NHS 113 mg, 0.25 mM
  • DMF was removed under high vacuum and the residue obtained was passed through silica gel column using 50% CH 3 OH/CHCl 3 as a solvent.
  • Evaporation of the solvent yieded biotinlated trityl acid 5. (97.8%).
  • This example shows addition of of a biotin as a sorting function onto a capture compound.
  • HEK293 cellular fractions are FPLC fractionated and multiple fractions collected along the salt gradient.
  • Dissolve capture compound in 10 mM DMSO stock Make working stock of capture compound A in methanol. Make new stock every week and keep it on ice with aluminum foil to protect it from light.
  • Pierce spin columns (about 500 ul bed volume). It handles as little as 20 ⁇ l and up to 100 ⁇ l sample.
  • Soft-Link (avidin) resin Wash the resin 3 ⁇ 1 ml (for a 100 ⁇ l resin aliquot) in 20 mM Hepes, pH 7.2. Care should be taken to maintain the right solid/liquid ratio at the end of washing in order to be consistent in the amount of resin used in pull-down experiments.
  • Washing buffer for pull-down Hepes/NaCl/TX100/EDTA/DTT. Make the buffer stock with the first 4 components at the right concentration and pH first, then separately make 1 M DTT stock and freeze it down in small aliquots until use. Right before the washing procedures in the pull-down experiment (step H), thaw a DTT stock tube and add DTT stock at the required final. Each pull-down tube requires ⁇ 1 ml washing buffer).
  • SDS-PAGE is required for the sample
  • silver staining Invitrogen's Silver Quest Kit
  • half of the pull-down resin is eluted with SDS-PAGE sample buffer for this purpose
  • the substrate is a biotinylated compound
  • Thiazolidinediones (Glitazones): Troglitazone (RezulinTM) Rosiglitazone (AvandiaTM) and Pioglitazone (ActoSTM)
  • hypoglycemia Hypoglycemia was observed in relatively few glitazone-treated patients to date. Aggressive insulin dosing in combination with glitazone is associated with further reductions in HbAlc but with an increased risk of hypoglycemia.
  • the peroxisome proliferator-activated receptor- ⁇ (PPAR- ⁇ ): potential role for insulin resistance and ⁇ -cell function.
  • Thiazolidinediones are pharmacological compounds that reduce insulin resistance both in prediabetic as well as diabetic individuals.
  • Thiazolidinediones are ligands of the PPAR- ⁇ 2.
  • PPAR- ⁇ 2 is predominantly expressed in adipocytes, intestine, and macrophages. There is some evidence that a low level expression might also occur in muscle cells.
  • the PPAR- ⁇ receptor is a transcription factor that controls the expression of numerous genes. It is assumed that the effect of thiazolidinediones on insulin sensitivity is mediated through altered expression of PPAR- ⁇ 2-dependent genes.
  • Thiazolidinediones As discussed above, thiadolidinediones, as antidiabetic drugs, clearly show toxicity and undesirable side effects.
  • Thiazolidinediones (Glitazones): Troglitazone (RezulinTM) Rosiglitazone (AvandiaTM) and Pioglitazone (ActoSTM) will be attached to the “Capture Compound (CC).”
  • the CC-Thiazolidinediones will be incubated with kidney, liver, pancreatic, colonic epithelium and muscle cells.
  • Rezulin, Avandia and Actos should capture PPAR- ⁇ , PPAR- ⁇ as well as non-target proteins.
  • thiazolidinediones could be due to its interaction with PPAR- ⁇ and non-target proteins.
  • the ToxPro application of CCMS will be used to identify all proteins which bind to each drug, and their respective binding constants. After identifying non-target proteins with CCMS technology, the thiazolidinediones will be chemically re-engineered, through an iterative process, to prevent their binding to PPAR- ⁇ and non-target proteins while maintaining the interaction with the target protein PPAR- ⁇ .
  • Rezulin Capture Compound Structures I and II are incubated with kidney, liver, pancreatic, colon epithelium, and muscle cells.
  • the target protein PPAR- ⁇ as well as non-target protein PPAR- ⁇ and protein A, B and C are captured.
  • Avandia is attached to the capture compound as depicted below:
  • Avandia metabolizes to aromatic hydroxy metabolites. Therefore two possible metabolites are attached to the capture compound as depicted below:
  • Avandia and its metabolites attached to the Capture Compound are incubated with kidney, liver, pancreatic, colon epithelium, and muscle cells.
  • the target protein PPAR- ⁇ as well as non-target protein PPAR- ⁇ and protein A, B and C are captured.
  • Actos and its metabolites attached to the Capture Compound are incubated with kidney, liver, pancreatic, colon epithelium, and muscle cells.
  • the target protein PPAR- ⁇ as well as non-target protein PPAR- ⁇ and protein A, B and C are captured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Peptides Or Proteins (AREA)
  • Pyrrole Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
US10/760,085 2003-01-16 2004-01-16 Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions Abandoned US20060051879A9 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/760,085 US20060051879A9 (en) 2003-01-16 2004-01-16 Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
US12/660,511 US9034798B2 (en) 2003-01-16 2010-02-26 Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
US12/798,624 US20100298168A1 (en) 2003-01-16 2010-04-07 Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US44139803P 2003-01-16 2003-01-16
US10/760,085 US20060051879A9 (en) 2003-01-16 2004-01-16 Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/660,511 Continuation US9034798B2 (en) 2003-01-16 2010-02-26 Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
US12/798,624 Continuation US20100298168A1 (en) 2003-01-16 2010-04-07 Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions

Publications (2)

Publication Number Publication Date
US20050042771A1 US20050042771A1 (en) 2005-02-24
US20060051879A9 true US20060051879A9 (en) 2006-03-09

Family

ID=32771925

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/760,085 Abandoned US20060051879A9 (en) 2003-01-16 2004-01-16 Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
US12/660,511 Expired - Fee Related US9034798B2 (en) 2003-01-16 2010-02-26 Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
US12/798,624 Abandoned US20100298168A1 (en) 2003-01-16 2010-04-07 Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/660,511 Expired - Fee Related US9034798B2 (en) 2003-01-16 2010-02-26 Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
US12/798,624 Abandoned US20100298168A1 (en) 2003-01-16 2010-04-07 Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions

Country Status (12)

Country Link
US (3) US20060051879A9 (de)
EP (2) EP2259068B1 (de)
JP (2) JP4741458B2 (de)
AT (1) ATE489629T1 (de)
AU (1) AU2004206856B9 (de)
CA (2) CA2658334C (de)
DE (1) DE602004030212D1 (de)
DK (1) DK2259068T3 (de)
HK (1) HK1080946A1 (de)
IL (3) IL169437A (de)
SG (1) SG153699A1 (de)
WO (1) WO2004064972A2 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209255A1 (en) * 2002-03-11 2004-10-21 Hk Pharmaceuticals, Inc. Compounds and methods for analyzing the proteome
US20060210982A1 (en) * 2003-01-31 2006-09-21 Hiroshi Yanagawa Cleavable assigned molecules and screening method using the same
US20070043295A1 (en) * 2005-08-05 2007-02-22 Siemens Medical Solutions Usa, Inc. Contrast agent manipulation with medical ultrasound imaging
US20090321626A1 (en) * 2006-05-26 2009-12-31 Akos Vertes Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays
US20100200405A1 (en) * 2009-02-09 2010-08-12 Thomas Lenz Devices, systems and methods for separating magnetic particles
WO2010115141A2 (en) * 2009-04-02 2010-10-07 New York University System and uses for generating databases of protein secondary structures involved in inter-chain protein interactions
US20100323917A1 (en) * 2009-04-07 2010-12-23 Akos Vertes Tailored nanopost arrays (napa) for laser desorption ionization in mass spectrometry
US7858560B2 (en) 2001-07-16 2010-12-28 Caprotec Bioanalytics Gmbh Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
US9000361B2 (en) 2009-01-17 2015-04-07 The George Washington University Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2658334C (en) 2003-01-16 2012-07-10 Caprotec Bioanalytics Gmbh Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
EP1800136B1 (de) * 2004-10-15 2011-12-07 Danisco US Inc. Kompetitven differential screening
GB0515323D0 (en) * 2005-07-26 2005-08-31 Electrophoretics Ltd Mass labels
US7989160B2 (en) 2006-02-13 2011-08-02 Alethia Biotherapeutics Inc. Polynucleotides and polypeptide sequences involved in the process of bone remodeling
US8168181B2 (en) 2006-02-13 2012-05-01 Alethia Biotherapeutics, Inc. Methods of impairing osteoclast differentiation using antibodies that bind siglec-15
GB0916881D0 (en) * 2009-09-25 2009-11-11 Electrophoretics Ltd Mass labels
GB201014023D0 (en) 2010-08-20 2010-10-06 Ucl Business Plc Process for producing bioconjugates and products thereof
DE102010060498B4 (de) 2010-11-11 2013-04-18 Caprotec Bioanalytics Gmbh Isolierung und funktionale Identifizierung ganzer Zellen
DE102011050363A1 (de) 2011-05-13 2012-11-15 Caprotec Bioanalytics Gmbh Stufenweise aufbaubare Fängerverbindungen und Verfahren zur Proteinisolierung aus komplexen Gemischen
EP2812344A4 (de) 2012-02-07 2015-10-28 Vibrant Holdings Llc Substrate, peptidarrays und verfahren
EP2821489B1 (de) * 2012-03-02 2017-02-22 Japan Science And Technology Agency Verfahren zur herstellung funktioneller nucleinsäuremoleküle und nucleinsäurekombination zur verwendung in diesem verfahren
WO2013172942A1 (en) * 2012-05-18 2013-11-21 Purdue Research Foundation Methods for isolating proteins
ES2723885T3 (es) 2012-07-19 2019-09-03 Daiichi Sankyo Co Ltd Anticuerpos anti-Siglec-15
DE102012216346A1 (de) 2012-09-13 2014-03-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Markieren oder Immobilisieren einer Zielstruktur
US10006909B2 (en) 2012-09-28 2018-06-26 Vibrant Holdings, Llc Methods, systems, and arrays for biomolecular analysis
EP2913674A1 (de) 2014-02-28 2015-09-02 Caprotec Bioanalytics GmbH Stufenweise zusammengesetzte Capture Compounds mit spaltbarer Funktion und Verfahren zur Isolierung und/oder Charakterisierung von Biomolekülen oder Biomolekülfragmenten, insbesondere Proteinen oder Proteinfragmenten, von komplexen Mischungen
CN104483445B (zh) * 2014-12-03 2016-10-12 广东省食品药品检验所 一种噻唑烷二酮快速检测试剂盒及其检测方法
AU2016228516A1 (en) * 2015-03-12 2017-09-21 Vibrant Holdings, Llc Polypeptide arrays and methods of attaching polypeptides to an array
WO2017029194A1 (en) * 2015-08-14 2017-02-23 Johannes Kepler Universität Linz Regenerative biosensor
WO2018143357A1 (ja) * 2017-02-01 2018-08-09 国立大学法人浜松医科大学 標的物質と親和性の高い物質をスクリーニングする方法
US20200149034A1 (en) * 2017-03-17 2020-05-14 Hitgen Ltd. Methods and Compositions for Synthesis of Encoded Libraries
CN107102079A (zh) * 2017-04-26 2017-08-29 苏州海科医药技术有限公司 检测人血浆中阿托伐他汀及代谢物的液相色谱‑串联质谱方法及临床药动学研究的应用
CN108061777B (zh) * 2017-11-27 2020-05-08 浙江公正检验中心有限公司 减肥类保健食品中34种非法添加药物残留量的检测方法
WO2019126734A1 (en) * 2017-12-22 2019-06-27 Pacific Biosciences Of California, Inc. Modified biotin-binding proteins for immobilization
AU2019308231B2 (en) * 2018-07-16 2022-12-22 The Scripps Research Institute Opioid haptens, conjugates, vaccines, and methods of generating antibodies
CN109682912A (zh) * 2019-01-16 2019-04-26 徐州立兴佳正医药科技有限公司 一种液质联用测定血浆中塞来昔布浓度的方法
DE102019109771B4 (de) * 2019-04-12 2022-06-30 Bruker Daltonics GmbH & Co. KG Auswertung komplexer Massenspektrometrie-Daten von biologischen Proben
EP3990141A1 (de) * 2019-06-26 2022-05-04 Waters Technologies Corporation Beschichtungen mit immobilisierten affinitätsliganden und enzymen und deren verwendung in flüssigkeitschromatografietests
CN114112980B (zh) * 2022-01-24 2022-05-10 武汉宏韧生物医药股份有限公司 一种基于数据分析的药物组分检测方法与系统

Citations (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415732A (en) * 1981-03-27 1983-11-15 University Patents, Inc. Phosphoramidite compounds and processes
US4725677A (en) * 1983-08-18 1988-02-16 Biosyntech Gmbh Process for the preparation of oligonucleotides
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5198540A (en) * 1982-10-28 1993-03-30 Hubert Koster Process for the preparation of oligonucleotides in solution
US5252707A (en) * 1989-09-22 1993-10-12 Mitsui Toatsu Chemicals Incorporated Inositol derivative and method for preparing same
USRE34609E (en) * 1985-10-21 1994-05-17 Papst Licensing Gmbh Collectorless direct current motor, driver circuit for a drive and method of operating a collectorless direct current motor
US5410068A (en) * 1989-10-23 1995-04-25 Perseptive Biosystems, Inc. Succinimidyl trityl compounds and a process for preparing same
US5432018A (en) * 1990-06-20 1995-07-11 Affymax Technologies N.V. Peptide library and screening systems
US5512473A (en) * 1993-01-29 1996-04-30 Brent; Roger Max-interacting proteins and related molecules and methods
US5532379A (en) * 1995-05-05 1996-07-02 Pierce Chemical Company Biotin containing heterobifunctional cleavable compounds
US5547835A (en) * 1993-01-07 1996-08-20 Sequenom, Inc. DNA sequencing by mass spectrometry
US5547839A (en) * 1989-06-07 1996-08-20 Affymax Technologies N.V. Sequencing of surface immobilized polymers utilizing microflourescence detection
US5580721A (en) * 1990-09-24 1996-12-03 The General Hospital Corporation Assays for inhibitors of myc oncoprotein
US5580736A (en) * 1992-10-30 1996-12-03 The General Hospital Corporation Interaction trap system for isolating novel proteins
US5605798A (en) * 1993-01-07 1997-02-25 Sequenom, Inc. DNA diagnostic based on mass spectrometry
US5622824A (en) * 1993-03-19 1997-04-22 Sequenom, Inc. DNA sequencing by mass spectrometry via exonuclease degradation
US5641959A (en) * 1995-12-21 1997-06-24 Bruker-Franzen Analytik Gmbh Method for improved mass resolution with a TOF-LD source
US5654545A (en) * 1995-09-19 1997-08-05 Bruker-Franzen Analytik Gmbh Mass resolution in time-of-flight mass spectrometers with reflectors
US5695941A (en) * 1994-06-22 1997-12-09 The General Hospital Corporation Interaction trap systems for analysis of protein networks
US5741462A (en) * 1995-04-25 1998-04-21 Irori Remotely programmable matrices with memories
US5742049A (en) * 1995-12-21 1998-04-21 Bruker-Franzen Analytik Gmbh Method of improving mass resolution in time-of-flight mass spectrometry
US5751629A (en) * 1995-04-25 1998-05-12 Irori Remotely programmable matrices with memories
US5760393A (en) * 1995-05-19 1998-06-02 Perseptive Biosystems, Inc. Time-of-flight mass spectrometry analysis of biomolecules
US5777325A (en) * 1996-05-06 1998-07-07 Hewlett-Packard Company Device for time lag focusing time-of-flight mass spectrometry
US5807525A (en) * 1995-08-17 1998-09-15 Hybridon, Inc. Apparatus and process for multi stage solid phase synthesis of long chained organic molecules
US5874214A (en) * 1995-04-25 1999-02-23 Irori Remotely programmable matrices with memories
US5900481A (en) * 1996-11-06 1999-05-04 Sequenom, Inc. Bead linkers for immobilizing nucleic acids to solid supports
US5925562A (en) * 1995-04-25 1999-07-20 Irori Remotely programmable matrices with memories
US5928906A (en) * 1996-05-09 1999-07-27 Sequenom, Inc. Process for direct sequencing during template amplification
US5955280A (en) * 1995-04-11 1999-09-21 The General Hospital Corporation Reverse two-hybrid system
US5961923A (en) * 1995-04-25 1999-10-05 Irori Matrices with memories and uses thereof
US5972639A (en) * 1997-07-24 1999-10-26 Irori Fluorescence-based assays for measuring cell proliferation
US6017496A (en) * 1995-06-07 2000-01-25 Irori Matrices with memories and uses thereof
US6022688A (en) * 1996-05-13 2000-02-08 Sequenom, Inc. Method for dissociating biotin complexes
US6024925A (en) * 1997-01-23 2000-02-15 Sequenom, Inc. Systems and methods for preparing low volume analyte array elements
US6025129A (en) * 1995-04-25 2000-02-15 Irori Remotely programmable matrices with memories and uses thereof
US6074823A (en) * 1993-03-19 2000-06-13 Sequenom, Inc. DNA sequencing by mass spectrometry via exonuclease degradation
US6110687A (en) * 1996-10-29 2000-08-29 Polyprobe, Inc. Detection of antigens via oligonucleotide antibody conjugates
US6133436A (en) * 1996-11-06 2000-10-17 Sequenom, Inc. Beads bound to a solid support and to nucleic acids
US6140053A (en) * 1996-11-06 2000-10-31 Sequenom, Inc. DNA sequencing by mass spectrometry via exonuclease degradation
US6146854A (en) * 1995-08-31 2000-11-14 Sequenom, Inc. Filtration processes, kits and devices for isolating plasmids
US6168914B1 (en) * 1997-12-19 2001-01-02 Glaxo Wellcome Inc. System and method for solid-phase parallel synthesis of a combinatorial collection of compounds
US6194144B1 (en) * 1993-01-07 2001-02-27 Sequenom, Inc. DNA sequencing by mass spectrometry
US6207370B1 (en) * 1997-09-02 2001-03-27 Sequenom, Inc. Diagnostics based on mass spectrometric detection of translated target polypeptides
US6225061B1 (en) * 1999-03-10 2001-05-01 Sequenom, Inc. Systems and methods for performing reactions in an unsealed environment
US6268131B1 (en) * 1997-12-15 2001-07-31 Sequenom, Inc. Mass spectrometric methods for sequencing nucleic acids
US6274337B1 (en) * 1996-06-28 2001-08-14 Caliper Technologies Corp. High throughput screening assay systems in microscale fluidic devices
US20020040275A1 (en) * 2000-04-10 2002-04-04 The Scripps Research Institute Proteomic analysis
US20020042112A1 (en) * 1996-11-06 2002-04-11 Hubert Koster Dna diagnostics based on mass spectrometry
US20020045269A1 (en) * 2000-08-14 2002-04-18 Shchepinov Mikhail Sergeevich Mass spectrometry
US6428955B1 (en) * 1995-03-17 2002-08-06 Sequenom, Inc. DNA diagnostics based on mass spectrometry
US6436635B1 (en) * 1992-11-06 2002-08-20 Boston University Solid phase sequencing of double-stranded nucleic acids
US6455071B1 (en) * 1997-08-27 2002-09-24 Isis Innovation, Ltd. Branched dendrimeric structures
US20020146684A1 (en) * 2001-04-09 2002-10-10 Meldal Morten Peter One dimensional unichemo protection (UCP) in organic synthesis
US20020182651A1 (en) * 2001-03-02 2002-12-05 Matthew Patricelli Protein profiling platform
US20030119021A1 (en) * 2001-07-16 2003-06-26 Hubert Koster Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
US20030166007A1 (en) * 2002-01-28 2003-09-04 Mds Proteomics Inc. Chemical proteomics
US6654545B2 (en) * 1997-10-31 2003-11-25 Matsushita Electric Industrial Co., Ltd. Image signal and data storage medium implementing a display cycle identifier
US6680178B2 (en) * 2000-06-02 2004-01-20 The Regents Of The University Of California Profiling of protease specificity using combinatorial fluorogenic substrate libraries
WO2004008151A2 (en) * 2002-07-10 2004-01-22 Comgenex Rt. New combinatorial peptide libraries containing markers and methods for their preparation and utilization
US20040062911A1 (en) * 2002-09-27 2004-04-01 Lauf Robert J. Combinatorial synthesis of ceramic materials
US6797523B2 (en) * 2000-11-30 2004-09-28 Affinium Pharmaceuticals, Inc. Methods for systematic identification of protein—protein interactions
US20040209255A1 (en) * 2002-03-11 2004-10-21 Hk Pharmaceuticals, Inc. Compounds and methods for analyzing the proteome
US6818394B1 (en) * 1996-11-06 2004-11-16 Sequenom, Inc. High density immobilization of nucleic acids
US20050042771A1 (en) * 2003-01-16 2005-02-24 Hubert Koster Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
US20060079476A1 (en) * 2004-05-21 2006-04-13 Keasling Jay D Method for enhancing production of isoprenoid compounds

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3239887A1 (de) 1982-10-28 1984-05-03 Hubert Prof. Dr. 2000 Hamburg Köster Verfahren zur herstellung von oligonucleotiden
DE3239888A1 (de) 1982-10-28 1984-05-03 Hubert Prof. Dr. 2000 Hamburg Köster Verfahren zur herstellung von oligonucleosidphosphonaten
DE3326520A1 (de) 1983-07-22 1985-01-31 Hubert Prof. Dr. 2000 Hamburg Köster Verfahren zur definierten verknuepfung doppelhelikaler dna-fragmente mittels einer linker-dna sowie als linker-dna geeignete oligonucletide
EP0285675A1 (de) 1987-02-06 1988-10-12 BIOSYNTECH Biochemische Synthesetechnik GmbH Synthetische DNA-Kassetten mit Kodierung fuer artifizielle Proteine und deren Expression
US4923901A (en) 1987-09-04 1990-05-08 Millipore Corporation Membranes with bound oligonucleotides and peptides
EP0310361A3 (de) * 1987-09-30 1989-05-24 Beckman Instruments, Inc. Aus drei Verzahnungen bestehendes Konjugat und Verfahren zu seiner Verwendung
JPS6455181U (de) 1987-09-30 1989-04-05
US5770625A (en) * 1988-02-08 1998-06-23 The Trustees Of Columbia University In The City Of New York Butyryl-tyrosinyl spermine, analogs thereof and methods of preparing and using same
US5011861A (en) 1988-06-28 1991-04-30 Millipore Corporation Membranes for solid phase protein sequencing
EP0698792B1 (de) 1993-05-10 2003-07-02 Nissui Pharmaceutical Co., Ltd. Verfahren zur bestimmung von mehr als einem immunologischen liganden und bestimmungsreagenz sowie satz dafuer
CA2218188A1 (en) 1995-04-11 1996-10-17 Trustees Of Boston University Solid phase sequencing of biopolymers
US5777888A (en) * 1995-08-09 1998-07-07 Regents Of The University Of California Systems for generating and analyzing stimulus-response output signal matrices
AU6456496A (en) 1995-08-17 1997-03-12 Hybridon, Inc. Apparatus and process for multi-stage solid-phase synthesis of long-chained organic molecules
WO1997033169A1 (en) 1996-03-08 1997-09-12 Smithkline Beecham Corporation A method for determining the affinity of proteins for chemical agents during screening of combinatorial libraries
WO1997037041A2 (en) 1996-03-18 1997-10-09 Sequenom, Inc. Dna sequencing by mass spectrometry
AU739256B2 (en) 1996-04-08 2001-10-04 Glaxo Group Limited Mass-based encoding and qualitative analysis of combinatorial libraries
ES2288760T3 (es) 1996-04-25 2008-01-16 Bioarray Solutions Ltd. Ensamblaje electrocinetico controlado por luz de particulas proximas a superficies.
GB9609262D0 (en) 1996-05-02 1996-07-03 Isis Innovation Peptide library and method
IL119029A0 (en) * 1996-08-07 1996-11-14 Yeda Res & Dev Long-acting drugs and pharamaceutical compositions comprising them
DE19782097T1 (de) 1996-11-06 1999-10-14 Sequenom Inc Zusammensetzungen und Verfahren zur Immobilisierung von Nucleinsäuren an feste Träger
US5812272A (en) * 1997-01-30 1998-09-22 Hewlett-Packard Company Apparatus and method with tiled light source array for integrated assay sensing
AU748806B2 (en) * 1997-02-04 2002-06-13 Sequenom, Inc. A reversible stoichiometric process for conjugating biomolecules
JP2002507197A (ja) * 1997-05-30 2002-03-05 ビーエーエスエフ アクチェンゲゼルシャフト 置換チオピリジン
NZ516848A (en) 1997-06-20 2004-03-26 Ciphergen Biosystems Inc Retentate chromatography apparatus with applications in biology and medicine
EP0990051A1 (de) * 1997-07-07 2000-04-05 Florida State University Identifikation von molekulartargets
EP1003910A1 (de) 1997-07-22 2000-05-31 Rapigene, Inc. Verschiedene funktionen eines arrayelementes und dessen anwendungen
US5922617A (en) * 1997-11-12 1999-07-13 Functional Genetics, Inc. Rapid screening assay methods and devices
ATE304591T1 (de) 1997-12-19 2005-09-15 Hk Pharmaceuticals Inc Nicht-bakterielles klonierungssystem zur verabreichung und expression von nukleinsäuren
IL138668A0 (en) 1998-04-03 2001-10-31 Phylos Inc Addressable protein arrays
US7094943B2 (en) 1998-04-27 2006-08-22 Hubert Köster Solution phase biopolymer synthesis
US6723564B2 (en) 1998-05-07 2004-04-20 Sequenom, Inc. IR MALDI mass spectrometry of nucleic acids using liquid matrices
EP1068216B1 (de) * 1998-05-15 2003-12-10 Isis Innovation Limited Bibliotheken von unterschiedlich markierten oligomeren
US6406921B1 (en) * 1998-07-14 2002-06-18 Zyomyx, Incorporated Protein arrays for high-throughput screening
ATE253126T1 (de) 1998-08-25 2003-11-15 Univ Washington Schnelle quantitative analyse von proteinen oder proteinfunktionen in komplexen gemischen
US6629040B1 (en) * 1999-03-19 2003-09-30 University Of Washington Isotope distribution encoded tags for protein identification
US20020009394A1 (en) 1999-04-02 2002-01-24 Hubert Koster Automated process line
US6391649B1 (en) * 1999-05-04 2002-05-21 The Rockefeller University Method for the comparative quantitative analysis of proteins and other biological material by isotopic labeling and mass spectroscopy
AU784501B2 (en) * 1999-09-03 2006-04-13 Yale University Method to identify gene function using small molecule probes
WO2001018627A2 (en) * 1999-09-06 2001-03-15 National University Of Singapore Method and apparatus for computer automated detection of protein and nucleic acid targets of a chemical compound
AU776811C (en) 1999-10-13 2005-07-28 Agena Bioscience, Inc. Methods for generating databases and databases for identifying polymorphic genetic markers
EP1138781A3 (de) 2000-03-31 2004-07-14 Health Research, Inc. Methode zur Quantifizierung der Bindeaktivität von DNA-bindenden Proteinen
AU2001257091A1 (en) * 2000-04-18 2001-10-30 Gilead Sciences, Inc. Aptamer based two-site binding assay
WO2001096607A2 (en) 2000-06-13 2001-12-20 The Trustees Of Boston University Use of nucleotide analogs in the analysis of oligonucleotide mixtures and in highly multiplexed nucleic acid sequencing
US6531297B2 (en) 2000-10-20 2003-03-11 Applera Corporation Isolated human drug-metabolizing proteins, nucleic acid molecules encoding human drug-metabolizing proteins, and uses thereof
JP2004534519A (ja) * 2000-11-17 2004-11-18 アルフレッド イー. スランツ 標的分子機能の決定と薬物リード化合物の同定に関する方法
US7091046B2 (en) 2000-12-11 2006-08-15 Hk Pharmaceuticals, Inc. Multiplexed protein expression and activity assay
US6887667B2 (en) 2000-12-28 2005-05-03 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Method and apparatus to identify small variations of biomolecules
AU2002247097A1 (en) * 2001-02-05 2002-08-19 Activx Biosciences, Inc. Activity based probe analysis
DE60237810D1 (de) 2001-04-03 2010-11-11 Thermo Finnigan Llc Zur vereinfachung komplexer peptidgemische geeignete verfahren und kits
US7045296B2 (en) 2001-05-08 2006-05-16 Applera Corporation Process for analyzing protein samples
US7183116B2 (en) * 2001-05-14 2007-02-27 The Institute For Systems Biology Methods for isolation and labeling of sample molecules
GB0116143D0 (en) 2001-07-02 2001-08-22 Amersham Pharm Biotech Uk Ltd Chemical capture reagent
EP1319954A1 (de) 2001-12-12 2003-06-18 Centre National de Genotypage Verfahren zur Proteinanalyse durch Protein bindende Arrays
US20030157575A1 (en) * 2002-01-28 2003-08-21 Shane Climie Chemical proteomics
WO2003102018A2 (en) * 2002-06-03 2003-12-11 The Institute For Systems Biology Methods for quantitative proteome analysis of glycoproteins
US7655433B2 (en) * 2002-06-04 2010-02-02 The Institute For Systems Biology Methods for high-throughput and quantitative proteome analysis
US7473535B2 (en) * 2002-08-20 2009-01-06 The Institute For Systems Biology Chemical reagents and methods for detection and quantification of proteins in complex mixtures
AU2006259224B2 (en) 2005-06-16 2012-08-23 Mohammed Saeed Composition and method for inhibiting, preventing, or ameliorating complications associated with ingestion of a medicinal, chemical, or biological substance or agent

Patent Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415732A (en) * 1981-03-27 1983-11-15 University Patents, Inc. Phosphoramidite compounds and processes
US5198540A (en) * 1982-10-28 1993-03-30 Hubert Koster Process for the preparation of oligonucleotides in solution
US4725677A (en) * 1983-08-18 1988-02-16 Biosyntech Gmbh Process for the preparation of oligonucleotides
USRE34609E (en) * 1985-10-21 1994-05-17 Papst Licensing Gmbh Collectorless direct current motor, driver circuit for a drive and method of operating a collectorless direct current motor
US5547839A (en) * 1989-06-07 1996-08-20 Affymax Technologies N.V. Sequencing of surface immobilized polymers utilizing microflourescence detection
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5252707A (en) * 1989-09-22 1993-10-12 Mitsui Toatsu Chemicals Incorporated Inositol derivative and method for preparing same
US5410068A (en) * 1989-10-23 1995-04-25 Perseptive Biosystems, Inc. Succinimidyl trityl compounds and a process for preparing same
US5432018A (en) * 1990-06-20 1995-07-11 Affymax Technologies N.V. Peptide library and screening systems
US5580721A (en) * 1990-09-24 1996-12-03 The General Hospital Corporation Assays for inhibitors of myc oncoprotein
US5580736A (en) * 1992-10-30 1996-12-03 The General Hospital Corporation Interaction trap system for isolating novel proteins
US6436635B1 (en) * 1992-11-06 2002-08-20 Boston University Solid phase sequencing of double-stranded nucleic acids
US5547835A (en) * 1993-01-07 1996-08-20 Sequenom, Inc. DNA sequencing by mass spectrometry
US6238871B1 (en) * 1993-01-07 2001-05-29 Sequenom, Inc. DNA sequences by mass spectrometry
US5605798A (en) * 1993-01-07 1997-02-25 Sequenom, Inc. DNA diagnostic based on mass spectrometry
US6225450B1 (en) * 1993-01-07 2001-05-01 Sequenom, Inc. DNA sequencing by mass spectrometry
US6194144B1 (en) * 1993-01-07 2001-02-27 Sequenom, Inc. DNA sequencing by mass spectrometry
US5691141A (en) * 1993-01-07 1997-11-25 Sequenom, Inc. DNA sequencing by mass spectrometry
US5512473A (en) * 1993-01-29 1996-04-30 Brent; Roger Max-interacting proteins and related molecules and methods
US5872003A (en) * 1993-03-19 1999-02-16 Sequenom, Inc. DNA sequencing by mass spectrometry via exonuclease degradation
US5851765A (en) * 1993-03-19 1998-12-22 Sequenon, Inc. DNA sequencing by mass spectrometry via exonuclease degradation
US6074823A (en) * 1993-03-19 2000-06-13 Sequenom, Inc. DNA sequencing by mass spectrometry via exonuclease degradation
US5622824A (en) * 1993-03-19 1997-04-22 Sequenom, Inc. DNA sequencing by mass spectrometry via exonuclease degradation
US5695941A (en) * 1994-06-22 1997-12-09 The General Hospital Corporation Interaction trap systems for analysis of protein networks
US6221601B1 (en) * 1995-03-17 2001-04-24 Sequenom, Inc. DNA diagnostics based on mass spectrometry
US6221605B1 (en) * 1995-03-17 2001-04-24 Sequenom, Inc. DNA diagnostics based on mass spectrometry
US6268144B1 (en) * 1995-03-17 2001-07-31 Sequenom, Inc. DNA diagnostics based on mass spectrometry
US6258538B1 (en) * 1995-03-17 2001-07-10 Sequenom, Inc. DNA diagnostics based on mass spectrometry
US6197498B1 (en) * 1995-03-17 2001-03-06 Sequenom, Inc DNA diagnostics based on mass spectrometry
US6043031A (en) * 1995-03-17 2000-03-28 Sequenom, Inc. DNA diagnostics based on mass spectrometry
US6277573B1 (en) * 1995-03-17 2001-08-21 Sequenom, Inc. DNA diagnostics based on mass spectrometry
US6300076B1 (en) * 1995-03-17 2001-10-09 Sequenom, Inc. DNA diagnostics based on mass spectrometry
US6235478B1 (en) * 1995-03-17 2001-05-22 Sequenom, Inc. DNA diagnostics based on mass spectrometry
US6428955B1 (en) * 1995-03-17 2002-08-06 Sequenom, Inc. DNA diagnostics based on mass spectrometry
US5955280A (en) * 1995-04-11 1999-09-21 The General Hospital Corporation Reverse two-hybrid system
US6025129A (en) * 1995-04-25 2000-02-15 Irori Remotely programmable matrices with memories and uses thereof
US5741462A (en) * 1995-04-25 1998-04-21 Irori Remotely programmable matrices with memories
US5874214A (en) * 1995-04-25 1999-02-23 Irori Remotely programmable matrices with memories
US5961923A (en) * 1995-04-25 1999-10-05 Irori Matrices with memories and uses thereof
US5925562A (en) * 1995-04-25 1999-07-20 Irori Remotely programmable matrices with memories
US5751629A (en) * 1995-04-25 1998-05-12 Irori Remotely programmable matrices with memories
US5532379A (en) * 1995-05-05 1996-07-02 Pierce Chemical Company Biotin containing heterobifunctional cleavable compounds
US5760393A (en) * 1995-05-19 1998-06-02 Perseptive Biosystems, Inc. Time-of-flight mass spectrometry analysis of biomolecules
US6017496A (en) * 1995-06-07 2000-01-25 Irori Matrices with memories and uses thereof
US5807525A (en) * 1995-08-17 1998-09-15 Hybridon, Inc. Apparatus and process for multi stage solid phase synthesis of long chained organic molecules
US6146854A (en) * 1995-08-31 2000-11-14 Sequenom, Inc. Filtration processes, kits and devices for isolating plasmids
US5654545A (en) * 1995-09-19 1997-08-05 Bruker-Franzen Analytik Gmbh Mass resolution in time-of-flight mass spectrometers with reflectors
US5742049A (en) * 1995-12-21 1998-04-21 Bruker-Franzen Analytik Gmbh Method of improving mass resolution in time-of-flight mass spectrometry
US5641959A (en) * 1995-12-21 1997-06-24 Bruker-Franzen Analytik Gmbh Method for improved mass resolution with a TOF-LD source
US5777325A (en) * 1996-05-06 1998-07-07 Hewlett-Packard Company Device for time lag focusing time-of-flight mass spectrometry
US5928906A (en) * 1996-05-09 1999-07-27 Sequenom, Inc. Process for direct sequencing during template amplification
US6022688A (en) * 1996-05-13 2000-02-08 Sequenom, Inc. Method for dissociating biotin complexes
US6303309B1 (en) * 1996-05-13 2001-10-16 Sequenom, Inc. Method for dissociating biotin complexes
US6274337B1 (en) * 1996-06-28 2001-08-14 Caliper Technologies Corp. High throughput screening assay systems in microscale fluidic devices
US6117631A (en) * 1996-10-29 2000-09-12 Polyprobe, Inc. Detection of antigens via oligonucleotide antibody conjugates
US6110687A (en) * 1996-10-29 2000-08-29 Polyprobe, Inc. Detection of antigens via oligonucleotide antibody conjugates
US6133436A (en) * 1996-11-06 2000-10-17 Sequenom, Inc. Beads bound to a solid support and to nucleic acids
US5900481A (en) * 1996-11-06 1999-05-04 Sequenom, Inc. Bead linkers for immobilizing nucleic acids to solid supports
US6818394B1 (en) * 1996-11-06 2004-11-16 Sequenom, Inc. High density immobilization of nucleic acids
US6140053A (en) * 1996-11-06 2000-10-31 Sequenom, Inc. DNA sequencing by mass spectrometry via exonuclease degradation
US20020042112A1 (en) * 1996-11-06 2002-04-11 Hubert Koster Dna diagnostics based on mass spectrometry
US20010008615A1 (en) * 1997-01-23 2001-07-19 Daniel P. Little Systems and methods for preparing and analyzing low volume analyte array elements
US6024925A (en) * 1997-01-23 2000-02-15 Sequenom, Inc. Systems and methods for preparing low volume analyte array elements
US5972639A (en) * 1997-07-24 1999-10-26 Irori Fluorescence-based assays for measuring cell proliferation
US6455071B1 (en) * 1997-08-27 2002-09-24 Isis Innovation, Ltd. Branched dendrimeric structures
US6387628B1 (en) * 1997-09-02 2002-05-14 Sequenom, Inc. Mass spectrometric detection of polypeptides
US6322970B1 (en) * 1997-09-02 2001-11-27 Sequenom, Inc. Mass spectrometric detection of polypeptides
US6207370B1 (en) * 1997-09-02 2001-03-27 Sequenom, Inc. Diagnostics based on mass spectrometric detection of translated target polypeptides
US6654545B2 (en) * 1997-10-31 2003-11-25 Matsushita Electric Industrial Co., Ltd. Image signal and data storage medium implementing a display cycle identifier
US6268131B1 (en) * 1997-12-15 2001-07-31 Sequenom, Inc. Mass spectrometric methods for sequencing nucleic acids
US6168914B1 (en) * 1997-12-19 2001-01-02 Glaxo Wellcome Inc. System and method for solid-phase parallel synthesis of a combinatorial collection of compounds
US6485913B1 (en) * 1999-03-10 2002-11-26 Sequenom, Inc. Systems and methods for performing reactions in an unsealed environment
US6225061B1 (en) * 1999-03-10 2001-05-01 Sequenom, Inc. Systems and methods for performing reactions in an unsealed environment
US20020040275A1 (en) * 2000-04-10 2002-04-04 The Scripps Research Institute Proteomic analysis
US20020064799A1 (en) * 2000-04-10 2002-05-30 The Scripps Research Institute Of An Assignment Proteomic analysis
US20020182652A1 (en) * 2000-04-10 2002-12-05 Cravatt Benjamin F Proteomic analysis
US20020045194A1 (en) * 2000-04-10 2002-04-18 Cravatt Benjamin F. Proteomic analysis
US6872574B2 (en) * 2000-04-10 2005-03-29 The Scripps Research Institute Proteomic analysis
US6680178B2 (en) * 2000-06-02 2004-01-20 The Regents Of The University Of California Profiling of protease specificity using combinatorial fluorogenic substrate libraries
US20020045269A1 (en) * 2000-08-14 2002-04-18 Shchepinov Mikhail Sergeevich Mass spectrometry
US6797523B2 (en) * 2000-11-30 2004-09-28 Affinium Pharmaceuticals, Inc. Methods for systematic identification of protein—protein interactions
US20020182651A1 (en) * 2001-03-02 2002-12-05 Matthew Patricelli Protein profiling platform
US7179655B2 (en) * 2001-03-02 2007-02-20 Activx Biosciences, Inc. Protein profiling platform
US20020146684A1 (en) * 2001-04-09 2002-10-10 Meldal Morten Peter One dimensional unichemo protection (UCP) in organic synthesis
US20030119021A1 (en) * 2001-07-16 2003-06-26 Hubert Koster Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
US20030166007A1 (en) * 2002-01-28 2003-09-04 Mds Proteomics Inc. Chemical proteomics
US20040209255A1 (en) * 2002-03-11 2004-10-21 Hk Pharmaceuticals, Inc. Compounds and methods for analyzing the proteome
WO2004008151A2 (en) * 2002-07-10 2004-01-22 Comgenex Rt. New combinatorial peptide libraries containing markers and methods for their preparation and utilization
US20040062911A1 (en) * 2002-09-27 2004-04-01 Lauf Robert J. Combinatorial synthesis of ceramic materials
US20050042771A1 (en) * 2003-01-16 2005-02-24 Hubert Koster Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
US20060079476A1 (en) * 2004-05-21 2006-04-13 Keasling Jay D Method for enhancing production of isoprenoid compounds

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858560B2 (en) 2001-07-16 2010-12-28 Caprotec Bioanalytics Gmbh Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
US20040209255A1 (en) * 2002-03-11 2004-10-21 Hk Pharmaceuticals, Inc. Compounds and methods for analyzing the proteome
US20060210982A1 (en) * 2003-01-31 2006-09-21 Hiroshi Yanagawa Cleavable assigned molecules and screening method using the same
US7837626B2 (en) 2005-08-05 2010-11-23 Siemens Medical Solutions Usa, Inc. Contrast agent manipulation with medical ultrasound imaging
US20070043295A1 (en) * 2005-08-05 2007-02-22 Siemens Medical Solutions Usa, Inc. Contrast agent manipulation with medical ultrasound imaging
US20090321626A1 (en) * 2006-05-26 2009-12-31 Akos Vertes Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays
US8084734B2 (en) 2006-05-26 2011-12-27 The George Washington University Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays
US9000361B2 (en) 2009-01-17 2015-04-07 The George Washington University Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays
US20100200405A1 (en) * 2009-02-09 2010-08-12 Thomas Lenz Devices, systems and methods for separating magnetic particles
US8268264B2 (en) 2009-02-09 2012-09-18 Caprotec Bioanalytics Gmbh Devices, systems and methods for separating magnetic particles
US20100281003A1 (en) * 2009-04-02 2010-11-04 New York University System and uses for generating databases of protein secondary structures involved in inter-chain protein interactions
WO2010115141A2 (en) * 2009-04-02 2010-10-07 New York University System and uses for generating databases of protein secondary structures involved in inter-chain protein interactions
WO2010115141A3 (en) * 2009-04-02 2011-01-13 New York University System and uses for generating databases of protein secondary structures involved in inter-chain protein interactions
US20100323917A1 (en) * 2009-04-07 2010-12-23 Akos Vertes Tailored nanopost arrays (napa) for laser desorption ionization in mass spectrometry
US9490113B2 (en) 2009-04-07 2016-11-08 The George Washington University Tailored nanopost arrays (NAPA) for laser desorption ionization in mass spectrometry

Also Published As

Publication number Publication date
CA2658334A1 (en) 2004-08-05
EP2259068A2 (de) 2010-12-08
AU2004206856A1 (en) 2004-08-05
WO2004064972A9 (en) 2004-09-16
SG153699A1 (en) 2009-07-29
JP4842914B2 (ja) 2011-12-21
EP1583972B1 (de) 2010-11-24
AU2004206856A8 (en) 2006-09-07
CA2513549C (en) 2009-05-05
AU2004206856C1 (en) 2006-09-07
CA2513549A1 (en) 2004-08-05
DK2259068T3 (en) 2013-11-11
AU2004206856B2 (en) 2006-09-07
AU2004206856B9 (en) 2006-11-02
DE602004030212D1 (de) 2011-01-05
ATE489629T1 (de) 2010-12-15
JP4741458B2 (ja) 2011-08-03
IL187592A (en) 2010-05-31
WO2004064972A2 (en) 2004-08-05
CA2658334C (en) 2012-07-10
JP2008111841A (ja) 2008-05-15
US20100248264A1 (en) 2010-09-30
IL205388A0 (en) 2011-07-31
EP1583972A2 (de) 2005-10-12
US9034798B2 (en) 2015-05-19
IL169437A (en) 2010-12-30
JP2006518450A (ja) 2006-08-10
HK1080946A1 (en) 2006-05-04
IL169437A0 (en) 2009-02-11
IL187592A0 (en) 2008-03-20
WO2004064972A3 (en) 2005-01-27
EP2259068A3 (de) 2011-10-19
EP2259068B1 (de) 2013-08-14
US20100298168A1 (en) 2010-11-25
US20050042771A1 (en) 2005-02-24

Similar Documents

Publication Publication Date Title
US9034798B2 (en) Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
US8569481B2 (en) Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
EP1502102B1 (de) Verbindungen und verfahren für die analyse des proteoms
AU2006249219B2 (en) Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions
Wade et al. Application of base cleavable safety catch linkers to solid phase library production
US20080070916A1 (en) Dihydropyrancarboxamides and uses thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: HK PHARMACEUTICALS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOSTER, HUBERT;LITTLE, DANIEL;SIDDIQI, SUHAIB;AND OTHERS;REEL/FRAME:015245/0923

Effective date: 20040405

AS Assignment

Owner name: HK PHARMACEUTICALS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARAPPAN, SUBRAMANIAN;HASSMAN III, CHESTER FREDERICK;REEL/FRAME:015387/0176;SIGNING DATES FROM 20040501 TO 20040513

Owner name: HK PHARMACEUTICALS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARAPPAN, SUBRAMANIAN;HASSMAN III, CHESTER FREDERICK;SIGNING DATES FROM 20040501 TO 20040513;REEL/FRAME:015387/0176

AS Assignment

Owner name: HK PHARMACEUTICALS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GREALISH, MATTHEW PETER;REEL/FRAME:015278/0252

Effective date: 20041019

AS Assignment

Owner name: HUBERT KOSTER, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HK PHARMACEUTICALS, INC.;REEL/FRAME:018933/0873

Effective date: 20060418

AS Assignment

Owner name: CAPROTEC BIOANALYTICS GMBH, GERMAN DEMOCRATIC REPU

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOSTER, HUBERT;REEL/FRAME:020230/0553

Effective date: 20070926

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION