US20060051234A1 - Ni-Cr-Co alloy for advanced gas turbine engines - Google Patents

Ni-Cr-Co alloy for advanced gas turbine engines Download PDF

Info

Publication number
US20060051234A1
US20060051234A1 US10/934,920 US93492004A US2006051234A1 US 20060051234 A1 US20060051234 A1 US 20060051234A1 US 93492004 A US93492004 A US 93492004A US 2006051234 A1 US2006051234 A1 US 2006051234A1
Authority
US
United States
Prior art keywords
alloy
chromium
nickel
based alloy
cobalt based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/934,920
Other languages
English (en)
Inventor
Lee Pike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haynes International Inc
Original Assignee
Haynes International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haynes International Inc filed Critical Haynes International Inc
Priority to US10/934,920 priority Critical patent/US20060051234A1/en
Assigned to HAYNES INTERNATIONAL, INC. reassignment HAYNES INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PIKE, JR., LEE M.
Priority to TW094117291A priority patent/TWI359870B/zh
Priority to RU2005117714/02A priority patent/RU2377336C2/ru
Priority to CN201210057737.8A priority patent/CN102586652B/zh
Priority to CNA2005100781613A priority patent/CN1743483A/zh
Priority to JP2005206381A priority patent/JP4861651B2/ja
Priority to CA002517056A priority patent/CA2517056A1/en
Priority to EP05018830A priority patent/EP1640465B1/en
Priority to DK05018830.9T priority patent/DK1640465T3/da
Priority to ES05018830T priority patent/ES2335503T3/es
Priority to PL05018830T priority patent/PL1640465T3/pl
Priority to DE602005017338T priority patent/DE602005017338D1/de
Priority to AT05018830T priority patent/ATE447048T1/de
Priority to AU2005205736A priority patent/AU2005205736B2/en
Priority to GB0517657A priority patent/GB2417729B/en
Priority to KR1020050081625A priority patent/KR100788527B1/ko
Priority to MXPA05009401A priority patent/MXPA05009401A/es
Publication of US20060051234A1 publication Critical patent/US20060051234A1/en
Priority to US11/451,787 priority patent/US8066938B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Definitions

  • This invention relates to wroughtable high strength alloys for use at elevated temperatures.
  • it is related to alloys which possess sufficient creep strength, thermal stability, and resistance to strain age cracking to allow for fabrication and service in gas turbine transition ducts and other gas turbine components.
  • Transition ducts are often welded components made of sheet or thin plate material and thus need to be weldable as well as wroughtable.
  • gamma-prime strengthened alloys are used in transition ducts due to their high-strength at elevated temperatures.
  • current commercially available wrought gamma-prime strengthened alloys either do not have the strength or stability to be used at the very high temperatures demanded by advanced gas turbine design concepts, or can present difficulties during fabrication.
  • one such fabrication difficulty is the susceptibility of many wrought gamma-prime strengthened alloys to strain age cracking. The problem of strain age cracking will be described in more detail later in this document.
  • Wrought gamma-prime strengthened alloys are often based on the nickel-chromium-cobalt system, although other base systems are also used. These alloys will typically have aluminum and titanium additions which are responsible for the formation of the gamma-prime phase, Ni 3 (Al,Ti). Other gamma-prime forming elements, such as niobium and/or tantalum, can also be employed.
  • An age-hardening heat treatment is used to develop the gamma-prime phase into the alloy microstructure. This heat treatment is normally given to the alloy when it is in the annealed condition. The presence of gamma-prime phase leads to a considerable strengthening of the alloy over a broad temperature range.
  • Other elemental additions may include molybdenum or tungsten for solid solution strengthening, carbon for carbide formation, and boron for improved high temperature ductility.
  • Strain age cracking is a problem which limits the weldability of many gamma-prime strengthened alloys. This phenomenon typically occurs when a welded part is subjected to a high temperature for the first time after the welding operation. Often this is during the post-weld annealing treatment given to most welded gamma-prime alloy fabrications. The cracking occurs as a result of the formation of the gamma-prime phase during the heat up to the annealing temperature. The formation of the strengthening gamma-prime phase in conjunction with the low ductility many of these alloys possess at intermediate temperatures, as well as the mechanical restraint typically imposed by the welding operation will often lead to cracking. The problem of strain age cracking can limit alloys to be used up to only a certain thickness since greater material thickness leads to greater mechanical restraint.
  • CHRT controlled heating rate tensile
  • the test sample is pulled to fracture at a constant engineering strain rate.
  • the test sample starts in the annealed (not age-hardened) condition, so that the gamma-prime phase is precipitating during the heat-up stage as would be the case in a welded component being subjected to a post-weld heat treatment.
  • the percent elongation to fracture in the test sample is taken as a measure of susceptibility to strain age cracking (lower elongation values suggesting greater susceptibility to strain age cracking).
  • the elongation in the CHRT is a function of test temperature and normally will exhibit a minimum at a particular temperature. The temperature at which this occurs is around 1500° F. for many wrought gamma-prime strengthened alloys.
  • High temperature strength has long been evaluated with the use of creep-rupture tests, where samples are isothermally subjected to a constant load until the sample fractures. The time to fracture, or rupture life, is then used as a measure of the alloy strength at that temperature.
  • Thermal stability is a measure of whether the alloy microstructure remains relatively unaffected during a thermal exposure. Many high-temperature alloys can form brittle intermetallic or carbide phases during thermal exposure. The presence of these phases can dramatically reduce the room-temperature ductility of the material. This loss of ductility can be effectively measured using a standard tensile test.
  • Rene-41 or R-41 alloy (U.S. Pat. No. 2,945,758) was developed by General Electric in the 1950's for use in turbine engines. It has excellent creep strength, but is limited by poor thermal stability and resistance to strain age cracking.
  • M-252 alloy (U.S. Pat. No. 2,747,993), was also developed in the 1950's. Although currently available only in bar form, the composition would easily lend itself to sheet manufacture.
  • the M-252 alloy has good creep strength and resistance to strain age cracking, but like R-41 alloy is limited by poor thermal stability.
  • the Pratt & Whitney developed alloy known commercially as WASPALOY alloy (apparently having no U.S. patent coverage) is another gamma-prime strengthened alloy intended for use in turbine engines and available in sheet form. However, this alloy has marginal creep strength above 1500° F., marginal thermal stability, and has fairly poor resistance to strain age cracking.
  • the alloy commercially known as 263 alloy (U.S. Pat. No. 3,222,165) was developed in the late 1950's and introduced in 1960 by Rolls-Royce Limited. This alloy has excellent thermal stability and resistance to strain age cracking, but has very poor creep strength at temperatures greater than 1500° F.
  • the PK-33 alloy (U.S. Pat. No. 3,248,213) was developed by the International Nickel Company and introduced in 1961.
  • This alloy has good thermal stability and creep strength, but is limited by a poor resistance to strain age cracking. As suggested by these examples, no currently commercially available alloys are available which possess the unique combination of three key properties: good creep strength and good thermal stability in the 1600 to 1700° F. temperature range as well as good resistance to strain age cracking.
  • the principal objective of this invention is to provide new wrought age-hardenable nickel-chromium-cobalt based alloys which are suitable for use in high temperature gas turbine transition ducts and other gas turbine components possessing a combination of three specific key properties, namely resistance to strain age cracking, good thermal stability, and good creep-rupture strength.
  • the preferred ranges are 17 to 22 wt. % chromium, 8 to 15 wt. % cobalt, 4.0 to 9.5 wt. % molybdenum, up to 7.0 wt. % tungsten, 1.28 to 1.65 wt. % aluminum, 1.50 to 2.30 wt. % titanium, up to 0.80 wt. % niobium, up to 3 wt. % iron, 0.01 to 0.2 wt. % carbon, and up to 0.015 wt. % boron, with a balance of nickel and impurities.
  • FIG. 1 is a graph of the ductility of the studied wrought age-hardenable nickel-chromium-cobalt based alloys in a controlled heating rate tensile test at 1500° F.
  • FIG. 2 is a graph of the ductility of the studied wrought age-hardenable nickel-chromium-cobalt based alloys in a standard tensile test at room temperature.
  • the wrought age-hardenable nickel-chromium-cobalt based alloys described here have sufficient creep strength, thermal stability, and resistance to strain age cracking to allow for service in sheet or plate form in gas turbine transition ducts as well as in other product forms and other demanding gas turbine applications.
  • This combination of critical properties is achieved through control of several critical elements each with certain functions.
  • the presence of gamma-prime forming elements such as aluminum, titanium, and niobium contribute significantly to the high creep-rupture strength through the formation of the gamma-prime phase during the age-hardening process.
  • the combined amount of aluminum, titanium, and niobium must be carefully controlled to allow for good resistance to strain age cracking.
  • Molybdenum and possibly tungsten are added to provide additional creep-rupture strength through solid solution strengthening. Again, however, the total combined molybdenum and tungsten concentration must be carefully controlled, in this case to ensure sufficient thermal stability of the alloy.
  • gamma-prime strengthened alloys Based on the projected requirements for the next generation of gas turbine transition ducts, gamma-prime strengthened alloys have significant potential. Three of the more critical properties are creep strength, weldability (i.e. strain age cracking resistance), and thermal stability. However, producing a gamma-prime strengthened alloy which excels in all three of these properties is not straightforward and no commercially available alloy was found which possessed all three properties to a sufficient degree.
  • the experimental alloys have been labeled A through Z.
  • the commercial alloys were HAYNES R-41 alloy, HAYNES WASPALOY alloy, HAYNES 263 alloy, M-252 alloy, and NIMONIC PK-33 alloy.
  • the alloys (including both the experimental and the commercial alloys) had a Cr content which ranged from 17.5 to 21.3 wt. %, as well as a cobalt content ranging from 8.3 to 19.6 wt. %.
  • the aluminum content ranged from 0.49 to 1.89 wt. %, the titanium content from 1.53 to 3.12 wt. %, and the niobium content ranged from nil to 0.79 wt.
  • the molybdenum content ranged from 3.2 to 10.5 wt. % and the tungsten ranged from nil up to 8.3 wt. %.
  • Intentional minor element additions carbon and boron ranged from 0.034 to 0.163 wt. % and from nil to 0.008 wt. %, respectively.
  • Iron ranged from nil to 3.6 wt. %.
  • All testing of the alloys was performed on sheet material of 0.047′′ to 0.065′′ thickness.
  • the experimental alloys were vacuum induction melted, and then electro-slag remelted, at a heat size of 50 lb.
  • the ingots so produced were soaked at 2150° F. and then forged and rolled with starting temperatures of 2150° F.
  • the sheet thickness after hot rolling was 0.085′′.
  • the sheets were annealed at 2150° F. for 15 minutes and water quenched.
  • the sheets were then cold rolled to 0.060′′ thickness.
  • the cold rolled sheets were annealed at temperatures between 2050 and 2175° F. as necessary to produce a fully recrystallized, equiaxed grain structure with an ASTM grain size between 4 and 5.
  • the sheet material was given an age-hardening heat treatment of 1475° F. for 8 hours to produce the gamma-prime phase.
  • the commercial alloys HAYNES R-41 alloy, HAYNES WASPALOY alloy, HAYNES 263 alloy, and NIMONIC PK-33 alloy were obtained in sheet form in the mill annealed condition. Since no commercially available M-252 alloy sheet could be found, a 50 lb. heat was produced for evaluation using the same method as described above for the experimental alloys. All five of the commercial alloys were given post-anneal age-hardening heat treatments according accepted standards. These heat treatments are reported in Table 2.
  • the critical property in this test is the tensile ductility, as measured by a measurement of the elongation to failure. Alloys with a greater ductility in this test are expected to have greater resistance to strain age cracking. The objective of the present study was to have a ductility of 4.5% or greater. Of the experimental alloys, only alloy W failed to meet this requirement.
  • the tensile ductility (measured as the percent elongation to failure) is plotted as a function of the compositional variable Al+0.56Ti+0.29Nb (where the elemental compositions are in wt. %).
  • a line is drawn on the figure corresponding to a tensile ductility of 4.5%. All alloys plotted above this line (symbol: filled circles) were considered to have passed the controlled heating rate tensile test, while alloys plotted below the line (symbol: x-marks) were considered to have failed.
  • a dashed vertical line is drawn at a value of 2.9 wt. % for the compositional variable, Al+0.56Ti+0.29Nb.
  • a line is drawn on the figure corresponding to a tensile ductility of 20%. All alloys plotted above this line (symbol: filled circles) were considered to have passed the thermal stability test, while alloys plotted below the line (symbol: x-marks) were considered to have failed.
  • a dashed vertical line is drawn at a value of 9.5 wt. % for the compositional variable, Mo+0.52W. All alloys with a value greater than 9.5 were found to fail the thermal stability test.
  • the third key property for the target application is creep strength.
  • the creep-rupture strength of the alloys was measured at 1700° F. with a load of 7 ksi. A rupture life of greater than 300 hours was the established goal.
  • the results for the experimental and commercial alloys are shown in Table 5. All of the experimental alloys were found to pass the goal, with the exception of alloys V, Y, and Z. The commercial alloys all passed with the exception of 263 alloy and WASPALOY alloy. Of the total of five alloys which failed the creep-rupture goal, three of them (alloys V and Z, as well as WASPALOY alloy) did not satisfy one or both of Eqs. (1) and (2) and were thermally unstable. Thermal instability can be a negative influence on creep strength.
  • alloy Y and 263 alloy both had a relatively low total content of the solid solution strengthening elements molybdenum and tungsten. Additionally, the 263 alloy had a low total content of the gamma-prime forming elements aluminum, titanium, and niobium.
  • the Eqs. (1) and (2) were modified respectfully as (where the elemental compositions are in wt. %): 2.2 ⁇ Al+0.56Ti+0.29Nb ⁇ 2.9 (3) and 6.5 ⁇ Mo+0.52W ⁇ 9.5 (4)
  • the acceptable alloys contained in weight percent 17.5 to 21.3 chromium, 8.3 to 14.2 cobalt, 4.3 to 9.3 molybdenum, up to 7.0 tungsten, 1.29 to 1.63 aluminum, 1.59 to 2.28 titanium, up to 0.79 niobium, 0.034 to 0.097 carbon, 0.002 to 0.007 boron and up to 2.6 iron.
  • alloys containing these elements within the following ranges and meeting Eqs.
  • the alloy may also contain tantalum, up to 1.5 wt. %, manganese, up to 1.5 wt. %, silicon, up to 0.5 wt. %, and one or more of magnesium, calcium, hafnium, zirconium, yttrium, cerium and lanthanum. Each of these seven elements may be present up to 0.05 wt. %.
  • the acceptable alloys had a range of values for Al+0.56 Ti+0.29 Nb of from 2.35 to 2.84 and a range for Mo+0.52W of from 7.1 to 9.3.
  • TABLE 5 Alloy Rupture Life (hours) A 304 B 560 C 481 D 375 E 346 F 509 G 584 H 764 I 410 J 767 K 460 L 522 M 581 N 401 O 403 P 664 Q 419 R 328 S 641 T 506 U 384 V 284 W 463 X 339 Y 271 Z 283 R-41 alloy 618 WASPALOY 243 263 alloy 139 M-252 alloy 392 PK-33 alloy 412
  • chromium Cr
  • the chromium level should be between about 17 to 22 wt. %.
  • Co Co
  • Cobalt is a common element in many wrought gamma-prime strengthened alloys. Cobalt decreases the solubility of aluminum and titanium in nickel at lower temperatures allowing for a greater gamma-prime content for a given level of aluminum and titanium. It was found that Co levels of about 8 to 15 wt. % are acceptable for the alloys of this invention.
  • Al aluminum
  • Ti titanium
  • Nb niobium
  • Mo molybdenum
  • W tungsten
  • Carbon (C) is a necessary component and contributes to creep-strength of the alloys of this invention through formation of carbides. Carbides are also necessary for proper grain size control. Carbon should be present in the amount of about 0.01 to 0.2 wt. %.
  • Iron is not required, but typically will be present.
  • the presence of Fe allows economic use of revert materials, most of which contain residual amounts of Fe.
  • An acceptable, Fe-free alloy might be possible using new furnace linings and high purity charge materials.
  • the presented data indicate that levels up to at least about 3 wt. % are acceptable.
  • Boron (B) is normally added to wrought gamma-prime strengthened alloys in small amounts to improve elevated temperature ductility. Too much boron may lead to weldability problems.
  • the preferred range is up to about 0.015 wt. %.
  • Tantalum (Ta) is a gamma-prime forming element in this class of alloys. It is expected that tantalum could be partially substituted for aluminum, titanium, or niobium at levels up to about 1.5 wt. %.
  • Manganese (Mn) is often added to nickel based alloys to help control problems arising from the presence of sulfur impurities. It is expected that Mn could be added to alloys of this invention to levels of at least 1.5 wt. %.
  • Si can be present as an impurity and is sometimes intentionally added for increased environmental resistance. It is expected that Si could be added to alloys of this invention to levels of at least 0.5 wt. %.
  • Copper (Cu) can be present as an impurity originating either from the use of revert materials or during the melting and processing of the alloy itself. It is expected that Cu could be present in amounts up to at least 0.5 wt. %.
  • magnesium (Mg) and calcium (Ca) is often employed during primary melting of nickel base alloys. It is expected that levels of these elements up to about 0.05 wt. % could be present in alloys of this invention.
  • nickel based alloys to provide increased environmental resistance.
  • These elements include, but are not necessarily limited to lanthanum (La), cerium (Ce), yttrium (Y), zirconium (Zr), and hafnium (Hf). It is expected that amounts of each of these elements up to about 0.05 wt. % could be present in alloys of this invention.
  • the alloys should exhibit comparable properties in other wrought forms (such as plates, bars, tubes, pipes, forgings, and wires) and in cast, spray-formed, or powder metallurgy forms, namely, powder, compacted powder and sintered compacted powder. Consequently, the present invention encompasses all forms of the alloy composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Catalysts (AREA)
  • Coating By Spraying Or Casting (AREA)
US10/934,920 2004-09-03 2004-09-03 Ni-Cr-Co alloy for advanced gas turbine engines Abandoned US20060051234A1 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
US10/934,920 US20060051234A1 (en) 2004-09-03 2004-09-03 Ni-Cr-Co alloy for advanced gas turbine engines
TW094117291A TWI359870B (en) 2004-09-03 2005-05-26 Ni-cr-co alloy for advanced gas turbine engines
RU2005117714/02A RU2377336C2 (ru) 2004-09-03 2005-06-08 Сплав для газотурбинных двигателей
CN201210057737.8A CN102586652B (zh) 2004-09-03 2005-06-17 用于先进燃气涡轮发动机的Ni-Cr-Co合金
CNA2005100781613A CN1743483A (zh) 2004-09-03 2005-06-17 用于先进燃气涡轮发动机的Ni-Cr-Co合金
JP2005206381A JP4861651B2 (ja) 2004-09-03 2005-07-15 進歩したガスタービンエンジン用Ni−Cr−Co合金
CA002517056A CA2517056A1 (en) 2004-09-03 2005-08-24 Ni-cr-co alloy for advanced gas turbine engines
AT05018830T ATE447048T1 (de) 2004-09-03 2005-08-30 Ni-cr-co-mo legierung für einen gasturbinenantrieb
DK05018830.9T DK1640465T3 (da) 2004-09-03 2005-08-30 Ni-Cr-Co-legering til avancerede gasturbinemotorer
EP05018830A EP1640465B1 (en) 2004-09-03 2005-08-30 Ni-Cr-Co-Mo alloy for advanced gas turbine engines
ES05018830T ES2335503T3 (es) 2004-09-03 2005-08-30 Aleacion de ni-cr-co-mo para motores avanzados de turbina de gas.
PL05018830T PL1640465T3 (pl) 2004-09-03 2005-08-30 Stop Ni-Cr-Co-Mo do zaawansowanych silników turbin gazowych
DE602005017338T DE602005017338D1 (de) 2004-09-03 2005-08-30 Ni-Cr-Co-Mo Legierung für einen Gasturbinenantrieb
AU2005205736A AU2005205736B2 (en) 2004-09-03 2005-08-31 Ni-Cr-Co alloy for advanced gas turbine engines
GB0517657A GB2417729B (en) 2004-09-03 2005-08-31 Ni-Cr-Co alloy for advanced gas turbine engines
KR1020050081625A KR100788527B1 (ko) 2004-09-03 2005-09-02 개선된 가스 터빈 엔진을 위한 Ni-Cr-Co 합금
MXPA05009401A MXPA05009401A (es) 2004-09-03 2005-09-02 Aleaciones de ni-cr-co para motores de turbinas de gas avanzados.
US11/451,787 US8066938B2 (en) 2004-09-03 2006-06-13 Ni-Cr-Co alloy for advanced gas turbine engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/934,920 US20060051234A1 (en) 2004-09-03 2004-09-03 Ni-Cr-Co alloy for advanced gas turbine engines

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/451,787 Continuation-In-Part US8066938B2 (en) 2004-09-03 2006-06-13 Ni-Cr-Co alloy for advanced gas turbine engines

Publications (1)

Publication Number Publication Date
US20060051234A1 true US20060051234A1 (en) 2006-03-09

Family

ID=35198601

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/934,920 Abandoned US20060051234A1 (en) 2004-09-03 2004-09-03 Ni-Cr-Co alloy for advanced gas turbine engines

Country Status (16)

Country Link
US (1) US20060051234A1 (ru)
EP (1) EP1640465B1 (ru)
JP (1) JP4861651B2 (ru)
KR (1) KR100788527B1 (ru)
CN (2) CN102586652B (ru)
AT (1) ATE447048T1 (ru)
AU (1) AU2005205736B2 (ru)
CA (1) CA2517056A1 (ru)
DE (1) DE602005017338D1 (ru)
DK (1) DK1640465T3 (ru)
ES (1) ES2335503T3 (ru)
GB (1) GB2417729B (ru)
MX (1) MXPA05009401A (ru)
PL (1) PL1640465T3 (ru)
RU (1) RU2377336C2 (ru)
TW (1) TWI359870B (ru)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070090167A1 (en) * 2005-10-24 2007-04-26 Nikolai Arjakine Weld filler, use of the weld filler and welding process
US20070199629A1 (en) * 2004-12-23 2007-08-30 Siemens Power Generation, Inc. Corrosion resistant superalloy with improved oxidation resistance
EP1835040A1 (de) * 2006-03-17 2007-09-19 Siemens Aktiengesellschaft Schweisszusatzwekstoff, Verwendung des Schweisszusatzwekstoffes, Verfahren zum Schweissen und Bauteil
EP2009123A1 (en) * 2006-04-14 2008-12-31 Mitsubishi Materials Corporation Ni-BASED HEAT-RESISTANT ALLOY FOR GAS TURBINE COMBUSTOR
US20090123328A1 (en) * 2006-04-14 2009-05-14 Mitsubishi Materials Corporation Wire for welding nickel based heat resistant alloy
US20100158682A1 (en) * 2008-12-24 2010-06-24 Kabushiki Kaisha Toshiba Ni-based alloy for a casting part of a steam turbine with excellent high temperature strength, castability and weldability, turbine casing of a steam turbine,valve casing of a steam turbine, nozzle box of a steam turbine, and pipe of a steam turbine
US20100239425A1 (en) * 2009-03-18 2010-09-23 Kabushiki Kaisha Toshiba Nickel-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same
US20100310411A1 (en) * 2008-02-13 2010-12-09 The Japan Steel Works, Ltd. Ni-BASED SUPERALLOY WITH EXCELLENT UNSUSCEPTIBILITY TO SEGREGATION
EP2305415A1 (en) * 2008-07-30 2011-04-06 Mitsubishi Heavy Industries, Ltd. Welding material for ni-based alloy
EP2330225A1 (en) * 2008-10-02 2011-06-08 Sumitomo Metal Industries, Ltd. Ni BASED HEAT-RESISTANT ALLOY
EP2511389A1 (en) * 2009-12-10 2012-10-17 Sumitomo Metal Industries, Ltd. Austenitic heat-resistant alloy
CN103160709A (zh) * 2011-12-12 2013-06-19 北京有色金属研究总院 一种刷密封用高性能合金刷丝及其制备方法
CN103924126A (zh) * 2014-04-24 2014-07-16 四川六合锻造股份有限公司 一种高温合金材料及其制备方法
CN104087769A (zh) * 2014-06-25 2014-10-08 盐城市鑫洋电热材料有限公司 一种改善镍基电热合金性能的方法
US20150197071A1 (en) * 2012-09-24 2015-07-16 The Japan Steel Works, Ltd. Coating structure material
US9738953B2 (en) 2013-07-12 2017-08-22 Daido Steel Co., Ltd. Hot-forgeable Ni-based superalloy excellent in high temperature strength
US9828657B2 (en) 2014-09-29 2017-11-28 Hitachi Metals, Ltd. Ni-base super alloy
WO2019099719A1 (en) * 2017-11-16 2019-05-23 Arconic Inc. Cobalt-chromium-aluminum alloys, and methods for producing the same
WO2019125637A3 (en) * 2017-11-10 2019-08-15 Haynes International, Inc. HEAT TREATMENTS FOR IMPROVED DUCTILITY OF Ni-Cr-Co-Mo-Ti-Al ALLOYS
US10456874B2 (en) 2014-01-08 2019-10-29 Siemens Aktiengesellschaft Manganese-containing, cobalt-based high-temperature solder alloy, powder, component and soldering method
CN113046600A (zh) * 2021-03-15 2021-06-29 瑞安市石化机械厂 一种Incone625合金材料及其在高强度细长轴上的运用
CN115505788A (zh) * 2022-09-20 2022-12-23 北京北冶功能材料有限公司 一种抗应变时效开裂的镍基高温合金及其制备方法和应用
CN116676510A (zh) * 2023-05-22 2023-09-01 烟台大学 一种镍钴基铸造多晶高温合金材料及其制备方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805803B2 (ja) * 2006-12-19 2011-11-02 株式会社東芝 Ni基合金およびタービンロータ
US8506883B2 (en) * 2007-12-12 2013-08-13 Haynes International, Inc. Weldable oxidation resistant nickel-iron-chromium-aluminum alloy
EP2103700A1 (en) * 2008-03-14 2009-09-23 Siemens Aktiengesellschaft Nickel base alloy and use of it, turbine blade or vane and gas turbine
JP2010249050A (ja) * 2009-04-16 2010-11-04 Toshiba Corp 蒸気タービンおよび蒸気タービン設備
FR2949234B1 (fr) * 2009-08-20 2011-09-09 Aubert & Duval Sa Superalliage base nickel et pieces realisees en ce suparalliage
JP5550298B2 (ja) * 2009-10-05 2014-07-16 株式会社東芝 蒸気タービンの鍛造部品用のNi基合金、蒸気タービンのタービンロータ、蒸気タービンの動翼、蒸気タービンの静翼、蒸気タービン用螺合部材、および蒸気タービン用配管
JP5572842B2 (ja) * 2010-11-30 2014-08-20 独立行政法人日本原子力研究開発機構 析出強化型Ni基耐熱合金およびその製造方法
JP5792500B2 (ja) * 2011-04-11 2015-10-14 株式会社日本製鋼所 Ni基超合金材およびタービンロータ
ITMI20110830A1 (it) * 2011-05-12 2012-11-13 Alstom Technology Ltd Valvola per una turbina a vapore 700 c
EP2546021A1 (de) * 2011-07-12 2013-01-16 Siemens Aktiengesellschaft Nickelbasierte Legierung, Verwendung und Verfahren
JP5919980B2 (ja) * 2012-04-06 2016-05-18 新日鐵住金株式会社 Ni基耐熱合金
JP2014005528A (ja) * 2012-05-29 2014-01-16 Toshiba Corp Ni基耐熱合金およびタービン用部品
JP5981251B2 (ja) * 2012-07-20 2016-08-31 株式会社東芝 鍛造用Ni基合金および鍛造部品
JP6012454B2 (ja) * 2012-12-21 2016-10-25 三菱日立パワーシステムズ株式会社 鍛造部材並びにこれを用いた蒸気タービンロータ、蒸気タービン動翼、ボイラ配管、ボイラチューブ及び蒸気タービンボルト
KR101476145B1 (ko) * 2012-12-21 2014-12-24 한국기계연구원 도재 금속간 접합 특성과 기계적 특성이 우수한 니켈-크롬-코발트계 도재소부용 합금
WO2014126086A1 (ja) * 2013-02-13 2014-08-21 日立金属株式会社 金属粉末、熱間加工用工具および熱間加工用工具の製造方法
JP6377124B2 (ja) * 2013-03-15 2018-08-22 ヘインズ インターナショナル,インコーポレーテッド 加工性のある高強度耐酸化性Ni−Cr−Co−Mo−Al合金
US9346101B2 (en) 2013-03-15 2016-05-24 Kennametal Inc. Cladded articles and methods of making the same
US9862029B2 (en) 2013-03-15 2018-01-09 Kennametal Inc Methods of making metal matrix composite and alloy articles
JP6223743B2 (ja) * 2013-08-07 2017-11-01 株式会社東芝 Ni基合金の製造方法
RU2542195C1 (ru) * 2014-02-19 2015-02-20 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Жаропрочный сплав на основе никеля для литья сопловых лопаток с равноосной структурой газотурбинных установок
RU2542194C1 (ru) * 2014-02-19 2015-02-20 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок
RU2538054C1 (ru) * 2014-02-19 2015-01-10 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Жаропрочный сплав на основе никеля для изготовления лопаток газотурбинных установок
RU2570130C1 (ru) * 2014-06-11 2015-12-10 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Жаропрочный сплав на основе никеля для литья лопаток газотурбинных установок
RU2564653C1 (ru) * 2014-08-08 2015-10-10 Общество с ограниченной ответственностью "Научно-производственное объединение "Защитные покрытия" Жаропрочный сплав на основе никеля для изготовления и ремонта лопаток газотурбинных установок
CN104862533B (zh) * 2015-04-26 2016-08-17 北京金恒博远冶金技术发展有限公司 发动机涡轮用高温合金材料及其制备方法
JP6499546B2 (ja) * 2015-08-12 2019-04-10 山陽特殊製鋼株式会社 積層造形用Ni基超合金粉末
CN106676331B (zh) * 2016-12-22 2018-10-09 钢铁研究总院 一种耐高温高弹镍铬合金带材及其制备方法
US11117208B2 (en) * 2017-03-21 2021-09-14 Kennametal Inc. Imparting wear resistance to superalloy articles
WO2019018038A2 (en) * 2017-04-21 2019-01-24 Crs Holdings, Inc. PRECIPITATION-CURED COBALT-NICKEL SUPERALLIAGE AND ARTICLE MADE THEREFROM
KR102114253B1 (ko) * 2018-02-26 2020-05-22 한국기계연구원 크리프 강도가 우수한 Ni계 초내열합금 및 그 제조방법
CN108330335A (zh) * 2018-03-15 2018-07-27 江苏理工学院 一种高温耐热合金及其制造工艺
CN108441705B (zh) * 2018-03-16 2020-06-09 中国航发北京航空材料研究院 一种高强度镍基变形高温合金及其制备方法
RU2674274C1 (ru) * 2018-03-22 2018-12-06 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
KR102139177B1 (ko) * 2018-03-28 2020-07-30 한국기계연구원 크립 특성이 우수한 단련용 니켈기 초내열합금 및 이의 제조방법
DE102018208736A1 (de) * 2018-06-04 2019-12-05 Siemens Aktiengesellschaft Y, Y' gehärtete Kobalt-Nickel-Basislegierung, Pulver, Komponente und Verfahren
CN110551920B (zh) * 2019-08-30 2020-11-17 北京北冶功能材料有限公司 一种高性能易加工镍基变形高温合金及其制备方法
CN111636013A (zh) * 2020-06-12 2020-09-08 江苏银环精密钢管有限公司 一种新型电站用镍铬钴钼高温合金无缝管及制造方法
CN114196854B (zh) * 2020-09-02 2022-07-15 宝武特种冶金有限公司 一种高强度难变形镍基高温合金及其制备方法
CN112575228B (zh) * 2020-11-12 2021-09-03 中国联合重型燃气轮机技术有限公司 抗蠕变、长寿命镍基变形高温合金及其制备方法和应用
CN114032421B (zh) * 2022-01-07 2022-04-08 北京钢研高纳科技股份有限公司 一种增材制造用镍基高温合金、镍基高温合金粉末材料和制品

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2048167A (en) * 1936-04-11 1936-07-21 Int Nickel Co Nickel-chromium-iron-titanium alloys
US2515185A (en) * 1943-02-25 1950-07-18 Int Nickel Co Age hardenable nickel alloy
US2570193A (en) * 1946-04-09 1951-10-09 Int Nickel Co High-temperature alloys and articles
US2688536A (en) * 1951-01-27 1954-09-07 Gen Motors Corp High-temperature creep resistant alloy
US2712498A (en) * 1948-06-01 1955-07-05 Rolls Royce Nickel chromium alloys having high creep strength at high temperatures
US2747993A (en) * 1951-12-26 1956-05-29 Gen Electric High temperature nickel-base alloy
US2793950A (en) * 1953-07-03 1957-05-28 Union Carbide & Carbon Corp Heat-resistant nickel-base sheet alloy
US2805154A (en) * 1953-11-02 1957-09-03 Nat Res Corp Nickel-base alloy
US2809110A (en) * 1954-08-05 1957-10-08 Utica Drop Forge & Tool Corp Alloy for high temperature applications
US2945758A (en) * 1958-02-17 1960-07-19 Gen Electric Nickel base alloys
US3047381A (en) * 1958-02-03 1962-07-31 Gen Motors Corp High temperature heat and creep resistant alloy
US3065072A (en) * 1959-04-02 1962-11-20 Int Nickel Co Alloys with a nickel-chromium base
US3094414A (en) * 1960-03-15 1963-06-18 Int Nickel Co Nickel-chromium alloy
US3107167A (en) * 1961-04-07 1963-10-15 Special Metals Inc Hot workable nickel base alloy
US3222165A (en) * 1958-11-26 1965-12-07 Rolls Royce Nickel chromium base alloy products
US3248213A (en) * 1961-11-21 1966-04-26 Int Nickel Co Nickel-chromium alloys
US3390023A (en) * 1965-02-04 1968-06-25 North American Rockwell Method of heat treating age-hardenable alloys
US3479157A (en) * 1965-06-25 1969-11-18 Int Nickel Co Welded articles and alloys containing hafnium and nickel
US3516826A (en) * 1967-08-18 1970-06-23 Int Nickel Co Nickel-chromium alloys
US5131961A (en) * 1988-09-30 1992-07-21 Hitachi Metals, Ltd. Method for producing a nickel-base superalloy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB919709A (en) * 1960-03-15 1963-02-27 Mond Nickel Co Ltd Improvements in nickel-chromium-cobalt alloys
DE1213618B (de) * 1961-11-21 1966-03-31 Int Nickel Ltd Verwendung einer Nickel-Chrom-Kobalt-Legierung als Werkstoff fuer gut verform- und schweissbare Bleche
GB1029609A (en) * 1965-04-07 1966-05-18 Rolls Royce Nickel-chromium-molybdenum-cobalt alloy
JPH01129942A (ja) * 1987-11-13 1989-05-23 Daido Steel Co Ltd 熱間加工性に優れたNi基合金
JPH06172900A (ja) * 1992-12-09 1994-06-21 Hitachi Metals Ltd 樹脂成形用スクリュ材
KR100336803B1 (ko) * 1994-06-20 2002-11-14 유나이티드 테크놀로지스 코포레이션 우수한 내산화성을 가지는 다결정질 니켈초합금
DE69621460T2 (de) * 1995-12-21 2003-02-13 Teledyne Industries, Inc. Nickel-chrom-cobalt-legierung mit verbesserten hochtemperatureigenschaften
JPH09268337A (ja) * 1996-04-03 1997-10-14 Hitachi Metals Ltd 鍛造製高耐食超耐熱合金
US6478897B1 (en) * 1999-01-28 2002-11-12 Sumitomo Electric Engineering, Ltd. Heat-resistant alloy wire
JP2004190060A (ja) * 2002-12-09 2004-07-08 Hitachi Metals Ltd エンジンバルブ用耐熱合金

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2048167A (en) * 1936-04-11 1936-07-21 Int Nickel Co Nickel-chromium-iron-titanium alloys
US2515185A (en) * 1943-02-25 1950-07-18 Int Nickel Co Age hardenable nickel alloy
US2570193A (en) * 1946-04-09 1951-10-09 Int Nickel Co High-temperature alloys and articles
US2712498A (en) * 1948-06-01 1955-07-05 Rolls Royce Nickel chromium alloys having high creep strength at high temperatures
US2688536A (en) * 1951-01-27 1954-09-07 Gen Motors Corp High-temperature creep resistant alloy
US2747993A (en) * 1951-12-26 1956-05-29 Gen Electric High temperature nickel-base alloy
US2793950A (en) * 1953-07-03 1957-05-28 Union Carbide & Carbon Corp Heat-resistant nickel-base sheet alloy
US2805154A (en) * 1953-11-02 1957-09-03 Nat Res Corp Nickel-base alloy
US2809110A (en) * 1954-08-05 1957-10-08 Utica Drop Forge & Tool Corp Alloy for high temperature applications
US3047381A (en) * 1958-02-03 1962-07-31 Gen Motors Corp High temperature heat and creep resistant alloy
US2945758A (en) * 1958-02-17 1960-07-19 Gen Electric Nickel base alloys
US3222165A (en) * 1958-11-26 1965-12-07 Rolls Royce Nickel chromium base alloy products
US3065072A (en) * 1959-04-02 1962-11-20 Int Nickel Co Alloys with a nickel-chromium base
US3094414A (en) * 1960-03-15 1963-06-18 Int Nickel Co Nickel-chromium alloy
US3107167A (en) * 1961-04-07 1963-10-15 Special Metals Inc Hot workable nickel base alloy
US3248213A (en) * 1961-11-21 1966-04-26 Int Nickel Co Nickel-chromium alloys
US3390023A (en) * 1965-02-04 1968-06-25 North American Rockwell Method of heat treating age-hardenable alloys
US3479157A (en) * 1965-06-25 1969-11-18 Int Nickel Co Welded articles and alloys containing hafnium and nickel
US3516826A (en) * 1967-08-18 1970-06-23 Int Nickel Co Nickel-chromium alloys
US5131961A (en) * 1988-09-30 1992-07-21 Hitachi Metals, Ltd. Method for producing a nickel-base superalloy

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070199629A1 (en) * 2004-12-23 2007-08-30 Siemens Power Generation, Inc. Corrosion resistant superalloy with improved oxidation resistance
US7915566B2 (en) * 2005-10-24 2011-03-29 Siemens Aktiengesellschaft Weld filler, use of the weld filler and welding process
US20070090167A1 (en) * 2005-10-24 2007-04-26 Nikolai Arjakine Weld filler, use of the weld filler and welding process
EP1835040A1 (de) * 2006-03-17 2007-09-19 Siemens Aktiengesellschaft Schweisszusatzwekstoff, Verwendung des Schweisszusatzwekstoffes, Verfahren zum Schweissen und Bauteil
WO2007107419A1 (de) * 2006-03-17 2007-09-27 Siemens Aktiengesellschaft Schweisszusatzwerkstoff, verwendung des schweisszusatzwerkstoffes, verfahren zum schweissen und bauteil
EP2009123A4 (en) * 2006-04-14 2013-09-04 Mitsubishi Materials Corp NI-BASED HEAT-RESISTANT ALLOY FOR GAS TURBINE BURNER CHAMBER
US20090136382A1 (en) * 2006-04-14 2009-05-28 Mitsubishi Materials Corporation Nickel-based heat resistant alloy for gas turbine combustor
US20090123328A1 (en) * 2006-04-14 2009-05-14 Mitsubishi Materials Corporation Wire for welding nickel based heat resistant alloy
EP2009123A1 (en) * 2006-04-14 2008-12-31 Mitsubishi Materials Corporation Ni-BASED HEAT-RESISTANT ALLOY FOR GAS TURBINE COMBUSTOR
US8187531B2 (en) 2006-04-14 2012-05-29 Mitsubishi Materials Corporation Wire for welding nickel based heat resistant alloy
US8211360B2 (en) 2006-04-14 2012-07-03 Mitsubishi Materials Corporation Nickel-based heat resistant alloy for gas turbine combustor
US10221473B2 (en) 2008-02-13 2019-03-05 The Japan Steel Works, Ltd. Ni-based superalloy with excellent unsusceptibility to segregation
US9856553B2 (en) 2008-02-13 2018-01-02 The Japan Steel Works, Ltd. Ni-based superalloy with excellent unsusceptibility to segregation
US20100310411A1 (en) * 2008-02-13 2010-12-09 The Japan Steel Works, Ltd. Ni-BASED SUPERALLOY WITH EXCELLENT UNSUSCEPTIBILITY TO SEGREGATION
EP2305415A1 (en) * 2008-07-30 2011-04-06 Mitsubishi Heavy Industries, Ltd. Welding material for ni-based alloy
CN102105260A (zh) * 2008-07-30 2011-06-22 三菱重工业株式会社 Ni基合金用焊接材料
EP2305415A4 (en) * 2008-07-30 2013-09-04 Mitsubishi Heavy Ind Ltd WELDING MATERIAL FOR NI-BASED ALLOY
EP2330225A4 (en) * 2008-10-02 2013-08-28 Nippon Steel & Sumitomo Metal Corp HEAT-RESISTANT ALLOY ON NICKEL BASE
EP2330225A1 (en) * 2008-10-02 2011-06-08 Sumitomo Metal Industries, Ltd. Ni BASED HEAT-RESISTANT ALLOY
US20100158682A1 (en) * 2008-12-24 2010-06-24 Kabushiki Kaisha Toshiba Ni-based alloy for a casting part of a steam turbine with excellent high temperature strength, castability and weldability, turbine casing of a steam turbine,valve casing of a steam turbine, nozzle box of a steam turbine, and pipe of a steam turbine
US20100239425A1 (en) * 2009-03-18 2010-09-23 Kabushiki Kaisha Toshiba Nickel-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same
EP2511389A4 (en) * 2009-12-10 2013-08-28 Nippon Steel & Sumitomo Metal Corp HEAT-RESISTANT AUSTENITIC ALLOY
EP2511389A1 (en) * 2009-12-10 2012-10-17 Sumitomo Metal Industries, Ltd. Austenitic heat-resistant alloy
US8808473B2 (en) 2009-12-10 2014-08-19 Nippon Steel & Sumitomo Metal Corporation Austenitic heat resistant alloy
CN103160709A (zh) * 2011-12-12 2013-06-19 北京有色金属研究总院 一种刷密封用高性能合金刷丝及其制备方法
US20150197071A1 (en) * 2012-09-24 2015-07-16 The Japan Steel Works, Ltd. Coating structure material
US9604432B2 (en) * 2012-09-24 2017-03-28 The Japan Steel Works, Ltd. Coating structure material
US9738953B2 (en) 2013-07-12 2017-08-22 Daido Steel Co., Ltd. Hot-forgeable Ni-based superalloy excellent in high temperature strength
US10456874B2 (en) 2014-01-08 2019-10-29 Siemens Aktiengesellschaft Manganese-containing, cobalt-based high-temperature solder alloy, powder, component and soldering method
CN103924126A (zh) * 2014-04-24 2014-07-16 四川六合锻造股份有限公司 一种高温合金材料及其制备方法
CN104087769A (zh) * 2014-06-25 2014-10-08 盐城市鑫洋电热材料有限公司 一种改善镍基电热合金性能的方法
US9828657B2 (en) 2014-09-29 2017-11-28 Hitachi Metals, Ltd. Ni-base super alloy
WO2019125637A3 (en) * 2017-11-10 2019-08-15 Haynes International, Inc. HEAT TREATMENTS FOR IMPROVED DUCTILITY OF Ni-Cr-Co-Mo-Ti-Al ALLOYS
US11453939B2 (en) 2017-11-10 2022-09-27 Haynes International, Inc. Heat treatments for improved ductility of Ni—Cr—Co—Mo—Ti—Al alloys
WO2019099719A1 (en) * 2017-11-16 2019-05-23 Arconic Inc. Cobalt-chromium-aluminum alloys, and methods for producing the same
CN113046600A (zh) * 2021-03-15 2021-06-29 瑞安市石化机械厂 一种Incone625合金材料及其在高强度细长轴上的运用
CN115505788A (zh) * 2022-09-20 2022-12-23 北京北冶功能材料有限公司 一种抗应变时效开裂的镍基高温合金及其制备方法和应用
CN116676510A (zh) * 2023-05-22 2023-09-01 烟台大学 一种镍钴基铸造多晶高温合金材料及其制备方法

Also Published As

Publication number Publication date
EP1640465A2 (en) 2006-03-29
RU2005117714A (ru) 2006-12-20
JP4861651B2 (ja) 2012-01-25
MXPA05009401A (es) 2006-03-07
AU2005205736A1 (en) 2006-03-23
ES2335503T3 (es) 2010-03-29
EP1640465B1 (en) 2009-10-28
EP1640465A3 (en) 2006-04-05
CN1743483A (zh) 2006-03-08
TW200609359A (en) 2006-03-16
PL1640465T3 (pl) 2010-06-30
RU2377336C2 (ru) 2009-12-27
CN102586652B (zh) 2016-05-11
KR100788527B1 (ko) 2007-12-24
TWI359870B (en) 2012-03-11
DE602005017338D1 (de) 2009-12-10
CA2517056A1 (en) 2006-03-03
GB0517657D0 (en) 2005-10-05
GB2417729B (en) 2008-01-16
KR20060050963A (ko) 2006-05-19
AU2005205736B2 (en) 2012-02-23
CN102586652A (zh) 2012-07-18
DK1640465T3 (da) 2010-03-01
GB2417729A (en) 2006-03-08
ATE447048T1 (de) 2009-11-15
JP2006070360A (ja) 2006-03-16

Similar Documents

Publication Publication Date Title
US20060051234A1 (en) Ni-Cr-Co alloy for advanced gas turbine engines
US8066938B2 (en) Ni-Cr-Co alloy for advanced gas turbine engines
US10577680B2 (en) Fabricable, high strength, oxidation resistant Ni—Cr—Co—Mo—Al alloys
US8545643B2 (en) High temperature low thermal expansion Ni-Mo-Cr alloy
US20140169973A1 (en) Ni-Based Heat Resistant Alloy, Gas Turbine Component and Gas Turbine
US7922969B2 (en) Corrosion-resistant nickel-base alloy
CA2560147C (en) Ni-cr-co alloy for advanced gas turbine engines
US3005704A (en) Nickel base alloy for service at high temperatures
US11814704B2 (en) High strength thermally stable nickel-base alloys

Legal Events

Date Code Title Description
AS Assignment

Owner name: HAYNES INTERNATIONAL, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PIKE, JR., LEE M.;REEL/FRAME:015202/0894

Effective date: 20040903

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION