US3479157A - Welded articles and alloys containing hafnium and nickel - Google Patents

Welded articles and alloys containing hafnium and nickel Download PDF

Info

Publication number
US3479157A
US3479157A US559456A US3479157DA US3479157A US 3479157 A US3479157 A US 3479157A US 559456 A US559456 A US 559456A US 3479157D A US3479157D A US 3479157DA US 3479157 A US3479157 A US 3479157A
Authority
US
United States
Prior art keywords
hafnium
alloys
zirconium
alloy
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US559456A
Inventor
Edward Gordon Richards
David Marshall Ward
Keith John Hales
Norman Stephenson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huntington Alloys Corp
Original Assignee
International Nickel Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Nickel Co Inc filed Critical International Nickel Co Inc
Application granted granted Critical
Publication of US3479157A publication Critical patent/US3479157A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other

Definitions

  • This invention relates to nickel-base alloys and, more particularly, to hafnium-containing nickel-base alloys having improved weldability.
  • nickel-containing alloys are well known to have exceptional strength at high temperatures and are commonly used when creep resistance is essential. These alloys vary widely in composition, but all those with which this invention is concerned are age-hardened and have a face-centered cubic lattice structure and a base consisting, in addition to nickel, of one or more of iron, cobalt, and chromium, with or without one or more metals of high melting point such as tungsten, molybdenum, niobium and tantalum.
  • nickel may be the main constituent, and then normally amounts to 30% or more of the alloy, or only a minor constituent as, for example, in the age-hardenable stainless steels. In general, all the alloys in question contain at least 7.5% nickel.
  • the alloys with which this invention is concerned are of a composition such that a strengthening phase is precipitated upon heat treatment.
  • the strengthening phase is carbidic and in others, it contains titanium or aluminum or both.
  • alloys in which the highest strength at high temperature, say 650 C. and above, is required commonly contain both boron and zirconium in amounts up to 0.03% boron and 0.3% zirconium.
  • the surfaces being welded are displaced by thermal expansion to a greater extent than if it is low, thus increasing the stress to which the hot weld metal and the heat-affected zones are subjected during contraction when the welded structure cools. If there is complete restraint of relative movement, the deposited metal and the heat-affected zones are subjected to much more stress as a result of the contraction on cooling than if the welded surfaces can move towards one another. In either case cracking may occur.
  • the degree of restraint in a joint of a given configuration also depends on the section size of the component parts. Thicker sections are less able to yield on cooling and thereby relieve the stress on the joint. In a thick section, e.g. one greater than one-half inch, the effects of thermal expansion at right angles to the plate surface lead to additional stress in the joint, which increases as the thickness increases.
  • boron and zirconium on weldability depends both on the composition of the alloys as a whole and on the content of boron or zirconium or both. Some of the alloys are not weldable even when they are free from boron and zirconium. In other alloys the presence of either boron or zirconium inhibits weldability, even under the most favorable welding conditions. Still other alloys can be welded when the contents of boron and zirconium are very small, but lose weldability when the contents of boron and zirconium are increased to desirable values.
  • age-hardenable alloys containing boron and/or zirconium in amounts sufficient to substantially increase strength and ductility, can be made weldable without adversely affecting strength or ductility.
  • An object of the present invention is to provide high temperature alloys having high strength, ductility and weldability.
  • Another object of this invention is to provide high temperature, age-hardenable. alloys containing boron and/or zirconium which can be welded without cracking.
  • a further object of this invention is to provide a welded, high temperature alloy free from cracks and other weld defects.
  • FIGURES 1 to 3 show the permissible levels of boron and/or zirconium as a function of hafnium content in alloys of three different base compositions
  • FIGURE 4 shows the effect of hafnium on the multiplying factor.
  • the invention is based on the surprising discovery that the weldability of alloys of the kind in question containing boron or zirconium or both is much improved if the alloys contain a small amount of hafniums, and generally speaking, the present invention contemplates weldable, e.g., arc-weldable or otherwise, age-hardenable, nickel base alloys containing boron and/or zirconium with small additions of hafnium.
  • the improvement due to hafnium appears to be only a little affected by the base composi tion of the alloy, but to be dependent upon the boron and zirconium contents.
  • hafnium Extremely small additions of hafnium, that is to say as little as 0.005% or less, improve the weldability of the alloys, but the greatest improvement is obtained with amounts of hafnium in the range of 0.007% to 0.07%.
  • the way in which hafnium acts is not understood.
  • the hafnium increases the melting point of grain boundary constituents and thus reduces or eliminates liquid films around the grains which provide lines of Weakness in the alloy during cooling after welding.
  • the hafnium addition may change the way in which the zirconium and boron are distributed in the alloy, and thus counteract their adverse effect on weldability.
  • hafnium enables us to produce welded articles in which at least one of the surfaces that are welded together is of an alloy of the kind in question that contains boron or zirconium or both and also hafnium in an amount such as to render the alloy or alloys Weldable despite the presence of the boron or zirconium or both.
  • Weldable alloys in accordance with the invention have a face-centered cubic lattice structure and comprise up to about 35% chromium, up to about 30% or even 45% cobalt, up to about 80% iron, up to about 1.5% carbon, up to about 10% manganese, up to about 2% copper, up to about 10% molybdenum, up to about 15% or 20% or even 27% tungsten, up to about 10% niobium, up to about 10% tantalum, up to about 8% silicon, up to about 8% titanium, up to about 8% aluminium, up to about 2% vanadium, at least one metal selected from the group consisting of boron and zirconium, an amount of hafnium effective to prevent cracking of the alloy on welding, and the balance essentially nickel in amounts of at least 7 .5%.
  • One group of such alloys in which the strengthening phase contains titanium and aluminium comprises about 12% to 22% chromium, up to about 23% cobalt, up to about 40% iron, up to about 0.2% carbon, up to about 1% manganese, up to about 0.5% copper, up to about 6% molybdenum, up to about 2% tungsten, up to about 2% niobium, up to about 2% tantalum, up to about 2% silicon, about 0.2% to 3.5% titanium, about 0.1% to aluminium, 0.005 to 0.2% hafnium, at least one metal selected from the group consisting of boron and Zirconium,
  • hafnium present in amounts of at least about 7.5%.
  • amount of hafnium present will be from 0.001% to 0.5%, e.g. about 0.005% to 0.2% hafnium.
  • the amount of hafnium required to provide weldability in an alloy of given base composition may readily be determined without the need to produce test plates of large numbers of alloys of different composition by a simple test in which weld deposits of the alloy under test is made between plates of an alloy of the base compositionfree from boron, zirconium and hafnium, the deposits being formed from cast filler rods containing varying amounts of these elements; such filler rods can be made quite easily.
  • a vertical and horizontal plate of an alloy of the base composition under test were arranged in the form of an inverted T, the vertical plate being held A3" away from the horizontal plate by a spacer.
  • the plates were joined and held in position by a' weld along one lower edge of the vertical plate and by metal supports welded to both plates and arranged at right angles to both of them, on the side on which the holding weld between the plates was made.
  • the plates forming the T were free from boron, zirconium and hafnium.
  • test weld was made between the other lower edge of the vertical plate and the adjacent surface of the horizontal plate, using the inert-gas-shielded tungsten-arc process, using a A" diameter filler rod of the alloy of which the weldability was being tested.
  • This had the same base composition as the plates of the T, but also contained one or more of boron, zirconium and hafnium.
  • a single pass was made, and the resulting weld deposit was inspected with the naked eye, the absence of any visible cracks being taken as the criterion of weldability of the alloy of the composition of the deposit.
  • FIGURES 1 to 3 of the accompanying drawings each of which is a graph in which the boron contents are plotted as abscissae and the zirconium contents as ordinates.
  • FIGURE 1 relates to alloys all nominally containing 20% chromium, 16% cobalt, 2.4% titanium and 1.2% aluminium, the balance being substantially all nickel, except for varying amounts of boron, zirconium and hafnium.
  • Each of the lines in FIGURE 1 indicates the approximate boundary zone for weldability in accordance with the hafnium content, those alloys with compositions such as to fall below the line being Weldable.
  • FIGURE 1 can be used to determine the amount of hafnium required in an alloy of any given boron and zirconium content.
  • an alloy containing 0.005% boron and 0.02% zirconium is indicated by the point X in FIGURE 1, which is just above the 0.005% hafnium line, and so should contain more than 0.005 hafnium to be Weldable. However, it is also above the 0.1% hafnium line, so 0.1% hafnium is too much.
  • FIGURE 1 also shows that the beneficial effect of hafnium decreases as the hafnium content increases above 0.03%, but the upper limit of the hafnium content that brings about improvement depends not only on the total content of boron and zirconium but also upon their relative contents.
  • the presence of 0.1% hafnium actually decreases the weldability, and the upper limit of the hafnium content in such an alloy is 0.08%.
  • hafnium contents of 0.2% or more improve the weldability.
  • FIGURE 2 relates to the welding of alloys nominally containing 42% nickel, 16% chromium, 3.3% molybdenum, 1.2% titanium and 1.2% aluminium, the balance being substantially all iron, except for varying quantities of boron, zirconium and hafnium. It will be seen that in an alloy (Y) containing 0.005% boron and 0.02% zirconium, 0.01% hafnium will confer weldability. Again 0.1% hafnium is too much.
  • FIGURE 3 relates to alloys all nominally containing 15% chromium, 20% cobalt, 5% molybdenum, 1.2% titanium and 4.6% aluminium, the balance being nickel except for varying quantities of boron, zirconium and hafnium. Alloys of this base composition are unweldable in the absence of boron and zirconium, as is shown by FIGURE 3. The invention enables these alloys to be welded even when they contain boron and zirconium. It will be seen, for example that in an alloy (Z) again containing 0.005% boron and 0.02% zirconium, 0.01% hafnium is not enough, but only a little more is required. On the other hand 0.1% hafnium is too much.
  • FIGURE 4 of the accompanying drawings the multiplying factors for both boron and zircopium are plotted against hafnium content, the curves in full lines relating to the alloys of FIGURE 1, those in broken lines to the alloys of FIGURE 2, and those in chain lines to the alloys of FIGURE 3.
  • FIGURE 4 clearly shows the desirablity of working in the range of 0.007% to 0.07% hafnium.
  • a welded article according to the invention may consist of a single piece of an alloy having two surfaces Welded together to form, for example, a tube; of two components of the same alloy welded together; of two components of different alloys each of the kind in question welded together; or of a component of an alloy of the kind in question welded to a weldable metal or alloy.
  • the beneficial effect is to prevent cracking in the heat affected zone of the alloy of the kind in question.
  • the welding may be effected with or without a filler.
  • the filler may conveniently be of an alloy of the kind in question, which preferably but not necessarily also contains boron or zirconium or both. If it does contain boron or zirconium or both it should contain hafnium as well.
  • the most uniform properties throughout a welded structure are generally obtained when the surfaces that are welded together and the filler used in the welding are all of the same alloy.
  • a filler that is less susceptible to cracking may advantageously be used.
  • the parts to be welded are of dissimilar alloys, it is advantageous to use a filler different in composition from, but compatible with both the alloys.
  • the nickel base alloys which are weldable in accordance with this invention and the alloys for use as filler material may be prepared in the usual manner of preparing high temperature alloys. In this regard, preparation by vacuum melting is satisfactory but is not essential.
  • Hafnium and zirconium commonly occur together in nature, and it may be convenient to introduce the desired amounts of hafnium and zirconium by means of an addition agent containing both of these metals, e.g. a nickelzirconium-hafnium alloy.
  • EXAMPLE I An alloy, prepared in the usual manner, contained 20% chromium, 16% cobalt, 2.4% titanium, 1.2% aluminium, 0.003% boron, 0.02% zirconium, 0.08% hafnium, balance essentially nickel. A second alloy, prepared in the same manner, contained 0.11% hafnium, but otherwise had a composition identical to the first. A third alloy,
  • An alloy prepared in the usual manner, contained 42% nickel, 16% chromium, 3.3% molybdenum, 1.2%titaniurn, 1.2% aluminium, 0.004% boron, 0.02% zirconium, 0.1% hafnium, balance substantially iron.
  • Another alloy prepared in the same manner, had an identical composition to the first except that it did not contain hafnium. Butt welds were made between pairs of A3 inch thick plates of the alloys by the metal-inert gas short are proc ess under highly restrained conditions, using a filler of the same composition as the plates being welded. The heat affected zone of the hafnium free alloy showed cracks while the weld made with the hafnium containing alloy was sound.
  • EXAMPLE III This is an example of welding with a non-matching filler material.
  • An alloy prepared in the usual manner, contained 42% nickel, 16% chromium, 3.3% molybdenum, 1.2% titanium, 1.2% aluminium, 0.003% boron, 0.02% zirconium, 0.07% hafnium, balance essentially iron.
  • Another alloy prepared in the same manner, had an identical composition to the first except that it did not contain hafnium. Butt joints were made between pairs of inch thick plates of the alloys, under highly re strained conditions, using the metal-inert gas spray transfer welding process.
  • the filler material employed was a nickel-base alloy containing 16% chromium, 10% iron, 2% manganese and 3% titanium, the balance being nickel. The plates of hafnium-free alloy cracked in the heat-affected zone, but sound welds were obtained between those of the hafnium-containing alloy.
  • hafnium in the amounts required by the invention in alloys of the kind in question that contain boron or zirconium or both has not been found to impair the stress-rupture properties of the alloys.
  • the good welding characteristics displayed by the alloys of this invention greatly enhance their potential for high temperature applications such as, for example, use in aircraft gas turbines as jet pipes, flame tubes and jet silencers.
  • a crack-free welded article having at least one metal body with a fused joint therein with at least one of the surfaces at the fused joint being made of an age-hardenable nickel-containing alloy having a face-centered cubic lattice structure and being composed of at least one metal from the group consisting of iron, cobalt and chromium; iron, when present, being present in an amount up to cobalt, when present, being present in an amount up to 45%; chromium when present, being present in an amount up to 35%, up to about 1.5% carbon, up to about 10% manganese, up to about 2% copper, up to about 10% molybdenum, up to 27% tungsten, up to about 10% niobium, up to about 10% tantalum, up to about 8% silicon, up to about 8% titanium, up to about 8% aluminum, up to about 2% vanadium, at least one element selected from the group consisting of boron in an amount up to 0.03% and zirconium in an amount up to 0.3% to strengthen and
  • a welded article in accordance with claim 1 wherein the alloy is nickel-base and is composed of about 20% chromium, about 16% cobalt, about 2.4% titanium, about 1.2% aluminium, at least about 0.001% boron, at least about 0.02% zirconium and about 0.08% to 0.11% hafmum.
  • a weldable age-hardenable nickel-containing alloy composed of about 12% to 22% chromium, up to about 23% cobalt, up to about 40% iron, up to about 0.2% carbon, up to about 1% manganese, up to about 0.5% copper, up to about 6% molybdenum, up to about 2% tungsten, up to about 2% niobium, up to about 2% tantalum, up to about 2% silicon, about 0.2% to 3.5% titanium, about 0.1% to 5% aluminium, about 0.005% to 0.2% hafnium, at least one metal selected from the group consisting of boron in an amount up to 0.03% and zirconium in an amount up to 0.3% and the balance essentially nickel in an amount of at least 7.5%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

Filed June 22, 1966 Nov. 18, 1969 c ns ETAL 3,479,157
WELDED ARTICLES AND ALLOYS CONTAINING HAFNIUM AND NICKEL 5 Sheets-Sheet 1 Nov. 18, 1969 RICHARDS ETAL 3,479,157
v WELDED ARTICLES AND ALLOYS CONTAINING HAFNIUM AND NICKEL Filed June 22, 1966 3 Sheets-Sheet 2 1969 E. G. RICHARDS ET AL 3,479,157
WELDED ARTICLES AND ALLOYS CONTAINING HAFNIUM AND NICKEL Filed June 22, 1966 3 Sheets-Sheet 5 I A l l 0 v. 0005- 00/ 001.005 0-/ 02 United States Patent 3,479,157 WELDED ARTICLES AND ALLOYS CONTAINING HAFNIUM AND NICKEL Edward Gordon Richards, West Hagley, David Marshall Ward, Birmnigham, Keith John Hales, Brierly Hill, and Norman Stephenson, Haywards Heath, England, assignors to The International Nickel Company, Inc., New York, N.Y., a corporation of Delaware Filed June 22, 1966, Ser. No. 559,456 Claims priority, application Great Britain, June 25, 1965, 27,074/ 65 Int. Cl. B23k 35/30; 1532b 15/20; C22c 19/00 US. Cl. 29-194 9 Claims ABSTRACT OF THE DISCLOSURE Weldable age-hardenable nickel-containing alloys and welded articles made from such alloys are provided wherein the alloys have additions of boron and/or zirconium therein as strengtheners and also include a hafnium .001% to 0.5% addition to improve weldability.
This invention relates to nickel-base alloys and, more particularly, to hafnium-containing nickel-base alloys having improved weldability.
Various nickel-containing alloys are well known to have exceptional strength at high temperatures and are commonly used when creep resistance is essential. These alloys vary widely in composition, but all those with which this invention is concerned are age-hardened and have a face-centered cubic lattice structure and a base consisting, in addition to nickel, of one or more of iron, cobalt, and chromium, with or without one or more metals of high melting point such as tungsten, molybdenum, niobium and tantalum. In these alloys nickel may be the main constituent, and then normally amounts to 30% or more of the alloy, or only a minor constituent as, for example, in the age-hardenable stainless steels. In general, all the alloys in question contain at least 7.5% nickel.
The alloys with which this invention is concerned are of a composition such that a strengthening phase is precipitated upon heat treatment. In some, the strengthening phase is carbidic and in others, it contains titanium or aluminum or both. These alloys we refer to as age hardenable.
As the compositions of these alloys are adjusted to increase the strength at high temperature, the ductility at high temperature commonly falls. Some years ago, the striking discovery was made that small amounts of boron and zirconium substantially improve the ductility at high temperature without loss of, and in many cases with increase in, the strength. At the present time alloys in which the highest strength at high temperature, say 650 C. and above, is required commonly contain both boron and zirconium in amounts up to 0.03% boron and 0.3% zirconium.
Unfortunately boron and zirconium severely reduce the weldability of the alloys. Their presence increases the tendency for cracks to form in both the deposited weld metal and the heat-affected zones, and this leads to unsound welds. Even if the alloy is being welded to a readily welded metal or alloy, e.g. mild steel, cracks may form in the heat-affected zone of the alloy that contains boron or zirconium. Weldability depends not only on the composition of the alloys that are being welded but also on the conditions of welding, including particularly the heat input and the degree of restraint of relative movement between the surfaces that are being welded together. If the heat input is high the surfaces being welded are displaced by thermal expansion to a greater extent than if it is low, thus increasing the stress to which the hot weld metal and the heat-affected zones are subjected during contraction when the welded structure cools. If there is complete restraint of relative movement, the deposited metal and the heat-affected zones are subjected to much more stress as a result of the contraction on cooling than if the welded surfaces can move towards one another. In either case cracking may occur.
The degree of restraint in a joint of a given configuration. also depends on the section size of the component parts. Thicker sections are less able to yield on cooling and thereby relieve the stress on the joint. In a thick section, e.g. one greater than one-half inch, the effects of thermal expansion at right angles to the plate surface lead to additional stress in the joint, which increases as the thickness increases.
The effect of boron and zirconium on weldability depends both on the composition of the alloys as a whole and on the content of boron or zirconium or both. Some of the alloys are not weldable even when they are free from boron and zirconium. In other alloys the presence of either boron or zirconium inhibits weldability, even under the most favorable welding conditions. Still other alloys can be welded when the contents of boron and zirconium are very small, but lose weldability when the contents of boron and zirconium are increased to desirable values.
Because of these facts it is not at present feasible to make use of the alloys having the highest high-temperatur'e properties if components are to be fabricated by methods that include welding, particularly when thick sections are concerned.
We have now discovered a way in which age-hardenable alloys containing boron and/or zirconium, in amounts sufficient to substantially increase strength and ductility, can be made weldable without adversely affecting strength or ductility.
An object of the present invention is to provide high temperature alloys having high strength, ductility and weldability.
Another object of this invention is to provide high temperature, age-hardenable. alloys containing boron and/or zirconium which can be welded without cracking.
A further object of this invention is to provide a welded, high temperature alloy free from cracks and other weld defects.
Other objects and advantages will become apparent from the following description taken in conjunction with the accompanying drawings in which:
FIGURES 1 to 3 show the permissible levels of boron and/or zirconium as a function of hafnium content in alloys of three different base compositions, and
FIGURE 4 shows the effect of hafnium on the multiplying factor.
The invention is based on the surprising discovery that the weldability of alloys of the kind in question containing boron or zirconium or both is much improved if the alloys contain a small amount of hafniums, and generally speaking, the present invention contemplates weldable, e.g., arc-weldable or otherwise, age-hardenable, nickel base alloys containing boron and/or zirconium with small additions of hafnium. The improvement due to hafnium appears to be only a little affected by the base composi tion of the alloy, but to be dependent upon the boron and zirconium contents.
Extremely small additions of hafnium, that is to say as little as 0.005% or less, improve the weldability of the alloys, but the greatest improvement is obtained with amounts of hafnium in the range of 0.007% to 0.07%. The way in which hafnium acts is not understood. One possibility is that the hafnium increases the melting point of grain boundary constituents and thus reduces or eliminates liquid films around the grains which provide lines of Weakness in the alloy during cooling after welding. Alternatively the hafnium addition may change the way in which the zirconium and boron are distributed in the alloy, and thus counteract their adverse effect on weldability. Whatever the mechanism by which it acts, this advantageous effect of hafnium enables us to produce welded articles in which at least one of the surfaces that are welded together is of an alloy of the kind in question that contains boron or zirconium or both and also hafnium in an amount such as to render the alloy or alloys Weldable despite the presence of the boron or zirconium or both.
Weldable alloys in accordance with the invention have a face-centered cubic lattice structure and comprise up to about 35% chromium, up to about 30% or even 45% cobalt, up to about 80% iron, up to about 1.5% carbon, up to about 10% manganese, up to about 2% copper, up to about 10% molybdenum, up to about 15% or 20% or even 27% tungsten, up to about 10% niobium, up to about 10% tantalum, up to about 8% silicon, up to about 8% titanium, up to about 8% aluminium, up to about 2% vanadium, at least one metal selected from the group consisting of boron and zirconium, an amount of hafnium effective to prevent cracking of the alloy on welding, and the balance essentially nickel in amounts of at least 7 .5%. One group of such alloys in which the strengthening phase contains titanium and aluminium comprises about 12% to 22% chromium, up to about 23% cobalt, up to about 40% iron, up to about 0.2% carbon, up to about 1% manganese, up to about 0.5% copper, up to about 6% molybdenum, up to about 2% tungsten, up to about 2% niobium, up to about 2% tantalum, up to about 2% silicon, about 0.2% to 3.5% titanium, about 0.1% to aluminium, 0.005 to 0.2% hafnium, at least one metal selected from the group consisting of boron and Zirconium,
and the balance essentially nickel in amounts of at least about 7.5%. Generally speaking the amount of hafnium present will be from 0.001% to 0.5%, e.g. about 0.005% to 0.2% hafnium.
The amount of hafnium required to provide weldability in an alloy of given base composition may readily be determined without the need to produce test plates of large numbers of alloys of different composition by a simple test in which weld deposits of the alloy under test is made between plates of an alloy of the base compositionfree from boron, zirconium and hafnium, the deposits being formed from cast filler rods containing varying amounts of these elements; such filler rods can be made quite easily.
In carrying out such tests, a vertical and horizontal plate of an alloy of the base composition under test were arranged in the form of an inverted T, the vertical plate being held A3" away from the horizontal plate by a spacer. The plates were joined and held in position by a' weld along one lower edge of the vertical plate and by metal supports welded to both plates and arranged at right angles to both of them, on the side on which the holding weld between the plates was made. The plates forming the T were free from boron, zirconium and hafnium.
The test weld was made between the other lower edge of the vertical plate and the adjacent surface of the horizontal plate, using the inert-gas-shielded tungsten-arc process, using a A" diameter filler rod of the alloy of which the weldability was being tested. This had the same base composition as the plates of the T, but also contained one or more of boron, zirconium and hafnium. A single pass was made, and the resulting weld deposit was inspected with the naked eye, the absence of any visible cracks being taken as the criterion of weldability of the alloy of the composition of the deposit. The results of such tests on alloys of three different base composition were used to construction FIGURES 1 to 3 of the accompanying drawings, each of which is a graph in which the boron contents are plotted as abscissae and the zirconium contents as ordinates.
FIGURE 1 relates to alloys all nominally containing 20% chromium, 16% cobalt, 2.4% titanium and 1.2% aluminium, the balance being substantially all nickel, except for varying amounts of boron, zirconium and hafnium. Each of the lines in FIGURE 1 indicates the approximate boundary zone for weldability in accordance with the hafnium content, those alloys with compositions such as to fall below the line being Weldable. Thus it will be seen that in the absence of hafnium only alloys containing up to either 0.004% boron or 0.04% zirconium, or lesser amounts of both, can be welded, and these contents are not enough to give the desired high-temperature strength. When the hafnium content is 0.03%, alloys containing up to 0.02% boron and up to 0.13% zirconium can be Welded.
It will readily be appreciated that FIGURE 1 can be used to determine the amount of hafnium required in an alloy of any given boron and zirconium content. Thus an alloy containing 0.005% boron and 0.02% zirconium is indicated by the point X in FIGURE 1, which is just above the 0.005% hafnium line, and so should contain more than 0.005 hafnium to be Weldable. However, it is also above the 0.1% hafnium line, so 0.1% hafnium is too much.
FIGURE 1 also shows that the beneficial effect of hafnium decreases as the hafnium content increases above 0.03%, but the upper limit of the hafnium content that brings about improvement depends not only on the total content of boron and zirconium but also upon their relative contents. Thus in the boron-free alloy the presence of 0.1% hafnium actually decreases the weldability, and the upper limit of the hafnium content in such an alloy is 0.08%. In a zirconium-free alloy, however, hafnium contents of 0.2% or more improve the weldability.
The facts graphically shown in FIGURE 1 can be mathematically expressed as follows:
FIGURE 2 relates to the welding of alloys nominally containing 42% nickel, 16% chromium, 3.3% molybdenum, 1.2% titanium and 1.2% aluminium, the balance being substantially all iron, except for varying quantities of boron, zirconium and hafnium. It will be seen that in an alloy (Y) containing 0.005% boron and 0.02% zirconium, 0.01% hafnium will confer weldability. Again 0.1% hafnium is too much.
FIGURE 3 relates to alloys all nominally containing 15% chromium, 20% cobalt, 5% molybdenum, 1.2% titanium and 4.6% aluminium, the balance being nickel except for varying quantities of boron, zirconium and hafnium. Alloys of this base composition are unweldable in the absence of boron and zirconium, as is shown by FIGURE 3. The invention enables these alloys to be welded even when they contain boron and zirconium. It will be seen, for example that in an alloy (Z) again containing 0.005% boron and 0.02% zirconium, 0.01% hafnium is not enough, but only a little more is required. On the other hand 0.1% hafnium is too much.
The facts graphically shown in FIGURES 2 and 3 can be mathematically expressed as follows:
The increased tolerance for boron and zirconium with changes in hafnium content is shown by the reduction in the value of the multiplying factor for these elements in the equations. In FIGURE 4 of the accompanying drawings the multiplying factors for both boron and zircopium are plotted against hafnium content, the curves in full lines relating to the alloys of FIGURE 1, those in broken lines to the alloys of FIGURE 2, and those in chain lines to the alloys of FIGURE 3. FIGURE 4 clearly shows the desirablity of working in the range of 0.007% to 0.07% hafnium.
The equations given above relate to the composition of both the weld deposit and the heat-affected zones when the weld has been made.
In determining the hafnium content of an alloy of the kind in question regard must, of course, be paid to the possible effect of dilution of the alloy by a weld metal of composition different from that of the alloy.
Use is made of these facts in the invention by including hafnium in high temperature age-hardenable alloys that contain boron or zirconium or both and producing articles or components from them by welding with or without a filler.
A welded article according to the invention may consist of a single piece of an alloy having two surfaces Welded together to form, for example, a tube; of two components of the same alloy welded together; of two components of different alloys each of the kind in question welded together; or of a component of an alloy of the kind in question welded to a weldable metal or alloy. In the last-mentioned case, the beneficial effect is to prevent cracking in the heat affected zone of the alloy of the kind in question.
The welding may be effected with or without a filler. If the filler is used it may conveniently be of an alloy of the kind in question, which preferably but not necessarily also contains boron or zirconium or both. If it does contain boron or zirconium or both it should contain hafnium as well. The use of a filler of an alloy of the kind in question which is free from boron and zirconium leads to loss of strength at the weld. Therefore these elements are preferably present in such a filler, and it is desirable also to offset their effect by the inclusion of hafnium in the filler. The most uniform properties throughout a welded structure are generally obtained when the surfaces that are welded together and the filler used in the welding are all of the same alloy.
When, however, the design of the (welded article is such that high strength is not required in the weld, though of course cracking must be avoided, a filler that is less susceptible to cracking may advantageously be used. Again, when the parts to be welded are of dissimilar alloys, it is advantageous to use a filler different in composition from, but compatible with both the alloys.
The nickel base alloys which are weldable in accordance with this invention and the alloys for use as filler material may be prepared in the usual manner of preparing high temperature alloys. In this regard, preparation by vacuum melting is satisfactory but is not essential.
Hafnium and zirconium commonly occur together in nature, and it may be convenient to introduce the desired amounts of hafnium and zirconium by means of an addition agent containing both of these metals, e.g. a nickelzirconium-hafnium alloy.
For the purpose of giving those skilled in the art a better understanding of the invention, the following illustrative examples are given:
EXAMPLE I An alloy, prepared in the usual manner, contained 20% chromium, 16% cobalt, 2.4% titanium, 1.2% aluminium, 0.003% boron, 0.02% zirconium, 0.08% hafnium, balance essentially nickel. A second alloy, prepared in the same manner, contained 0.11% hafnium, but otherwise had a composition identical to the first. A third alloy,
prepared in the same manner, was free from hafnium but otherwise had a composition identical to the first two alloys. Butt welds were made between pairs of inch thick plates of the alloys by the fine wire process under highly restrained conditions, using a filler of the same composition as the plates being welded. The weld cracked when the alloy was hafnium free but was sound when the hafnium content was 0.08% and again when it was 0.11%.
EXAMPLE II An alloy, prepared in the usual manner, contained 42% nickel, 16% chromium, 3.3% molybdenum, 1.2%titaniurn, 1.2% aluminium, 0.004% boron, 0.02% zirconium, 0.1% hafnium, balance substantially iron. Another alloy, prepared in the same manner, had an identical composition to the first except that it did not contain hafnium. Butt welds were made between pairs of A3 inch thick plates of the alloys by the metal-inert gas short are proc ess under highly restrained conditions, using a filler of the same composition as the plates being welded. The heat affected zone of the hafnium free alloy showed cracks while the weld made with the hafnium containing alloy was sound.
EXAMPLE III This is an example of welding with a non-matching filler material. An alloy, prepared in the usual manner, contained 42% nickel, 16% chromium, 3.3% molybdenum, 1.2% titanium, 1.2% aluminium, 0.003% boron, 0.02% zirconium, 0.07% hafnium, balance essentially iron. Another alloy, prepared in the same manner, had an identical composition to the first except that it did not contain hafnium. Butt joints were made between pairs of inch thick plates of the alloys, under highly re strained conditions, using the metal-inert gas spray transfer welding process. The filler material employed was a nickel-base alloy containing 16% chromium, 10% iron, 2% manganese and 3% titanium, the balance being nickel. The plates of hafnium-free alloy cracked in the heat-affected zone, but sound welds were obtained between those of the hafnium-containing alloy.
The presence of hafnium in the amounts required by the invention in alloys of the kind in question that contain boron or zirconium or both has not been found to impair the stress-rupture properties of the alloys.
The good welding characteristics displayed by the alloys of this invention, despite the presence of appreciable amounts of boron and/or zirconium, greatly enhance their potential for high temperature applications such as, for example, use in aircraft gas turbines as jet pipes, flame tubes and jet silencers.
Although the present invention has been described in conjunction with preferred embodiments, it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the invention, as those skilled in the art will readily understand. Such modifications and variations are considered to be within the purview and scope of the invention and appended claims.
We claim:
1. A crack-free welded article having at least one metal body with a fused joint therein with at least one of the surfaces at the fused joint being made of an age-hardenable nickel-containing alloy having a face-centered cubic lattice structure and being composed of at least one metal from the group consisting of iron, cobalt and chromium; iron, when present, being present in an amount up to cobalt, when present, being present in an amount up to 45%; chromium when present, being present in an amount up to 35%, up to about 1.5% carbon, up to about 10% manganese, up to about 2% copper, up to about 10% molybdenum, up to 27% tungsten, up to about 10% niobium, up to about 10% tantalum, up to about 8% silicon, up to about 8% titanium, up to about 8% aluminum, up to about 2% vanadium, at least one element selected from the group consisting of boron in an amount up to 0.03% and zirconium in an amount up to 0.3% to strengthen and improve the ductility of the alloy, hafnium in an amount from 0.001% to 0.5% effective to prevent cracking of the welded article, and the balance essentially nickel in an amount of at least 7.5%.
2. A Welded article according to claim 1 in which all the welded surfaces are of an alloy of the same kind.
3. A welded article according to claim 1 in which the hafnium content of the alloy is from 0.007% to about 0.07%.
4. A Welded article according to claim 1 in which the hafnium is present in the amount of about 0.03%.
5. A welded article in accordance with claim 1 wherein the alloy is composed of about 42% nickel, about 16% chromium, about 3.3% molybdenum, about 1.2% titanium, about 1.2% aluminium, about 0.004% boron, about 0.02% zirconium, about 0.1% hafnium, and the balance substantially iron with normal amounts of impurities.
6. A welded article in accordance with claim 1 wherein the alloy is nickel-base and is composed of about 20% chromium, about 16% cobalt, about 2.4% titanium, about 1.2% aluminium, at least about 0.001% boron, at least about 0.02% zirconium and about 0.08% to 0.11% hafmum.
7. A weldable age-hardenable nickel-containing alloy composed of about 12% to 22% chromium, up to about 23% cobalt, up to about 40% iron, up to about 0.2% carbon, up to about 1% manganese, up to about 0.5% copper, up to about 6% molybdenum, up to about 2% tungsten, up to about 2% niobium, up to about 2% tantalum, up to about 2% silicon, about 0.2% to 3.5% titanium, about 0.1% to 5% aluminium, about 0.005% to 0.2% hafnium, at least one metal selected from the group consisting of boron in an amount up to 0.03% and zirconium in an amount up to 0.3% and the balance essentially nickel in an amount of at least 7.5%.
8. A filler material in accordance with claim 7 wherein the hafnium is present in amounts of about 0.007% to 0.07%.
9. A filler material in accordance with claim 7 wherein the hafnium is present in the amount of about 0.03%.
References Cited UNITED STATES PATENTS 2,428,033 9/1947 Nachtman 29196.6 3,024,109 3/1962 Hoppin.
3,184,577 5/1965 Witherell 128.8 3,201,233 8/1965 Hull 75-128.8 3,262,777 7/1966 Sadowski 75 12s.s 3,303,023 2/1967 Dulis 75- 12s.s 3,342,974 9/1967 Wallner 75 123 FOREIGN PATENTS 912,814 12/1962 Great Britain.
HYLAND BIZOT, Primary Examiner US. Cl. X.R.
US559456A 1965-06-25 1966-06-22 Welded articles and alloys containing hafnium and nickel Expired - Lifetime US3479157A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB27074/65A GB1070099A (en) 1965-06-25 1965-06-25 Welding high-temperature alloys

Publications (1)

Publication Number Publication Date
US3479157A true US3479157A (en) 1969-11-18

Family

ID=10253737

Family Applications (1)

Application Number Title Priority Date Filing Date
US559456A Expired - Lifetime US3479157A (en) 1965-06-25 1966-06-22 Welded articles and alloys containing hafnium and nickel

Country Status (8)

Country Link
US (1) US3479157A (en)
AT (1) AT270245B (en)
BE (1) BE683097A (en)
CH (1) CH462598A (en)
DE (1) DE1533285A1 (en)
ES (1) ES328348A1 (en)
GB (1) GB1070099A (en)
SE (1) SE327614B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753697A (en) * 1971-01-18 1973-08-21 Martin Marietta Corp Tungsten free alloy
US3765879A (en) * 1970-12-17 1973-10-16 Martin Marietta Corp Nickel base alloy
US3804680A (en) * 1970-06-06 1974-04-16 Atomic Energy Commission Method for inducing resistance to embrittlement by neutron irradiation and products formed thereby
US3865581A (en) * 1972-01-27 1975-02-11 Nippon Steel Corp Heat resistant alloy having excellent hot workabilities
US3898109A (en) * 1973-09-06 1975-08-05 Int Nickel Co Heat treatment of nickel-chromium-cobalt base alloys
US4039330A (en) * 1971-04-07 1977-08-02 The International Nickel Company, Inc. Nickel-chromium-cobalt alloys
US4530727A (en) * 1982-02-24 1985-07-23 The United States Of America As Represented By The Department Of Energy Method for fabricating wrought components for high-temperature gas-cooled reactors and product
US4774149A (en) * 1987-03-17 1988-09-27 General Electric Company Oxidation-and hot corrosion-resistant nickel-base alloy coatings and claddings for industrial and marine gas turbine hot section components and resulting composite articles
US5783318A (en) * 1994-06-22 1998-07-21 United Technologies Corporation Repaired nickel based superalloy
US6258317B1 (en) 1998-06-19 2001-07-10 Inco Alloys International, Inc. Advanced ultra-supercritical boiler tubing alloy
US6761854B1 (en) 1998-09-04 2004-07-13 Huntington Alloys Corporation Advanced high temperature corrosion resistant alloy
US20060051234A1 (en) * 2004-09-03 2006-03-09 Pike Lee M Jr Ni-Cr-Co alloy for advanced gas turbine engines
US20060222557A1 (en) * 2004-09-03 2006-10-05 Pike Lee M Jr Ni-Cr-Co alloy for advanced gas turbine engines
US20130048700A1 (en) * 2011-08-29 2013-02-28 General Electric Company Filler metal chemistry for improved weldability of super alloys
US20130323533A1 (en) * 2012-06-05 2013-12-05 General Electric Company Repaired superalloy components and methods for repairing superalloy components
US20150306710A1 (en) * 2014-04-04 2015-10-29 Special Metals Corporation High Strength Ni-Cr-Mo-W-Nb-Ti Welding Product and Method of Welding and Weld Deposit Using the Same
US9346132B2 (en) 2011-08-29 2016-05-24 General Electric Company Metal chemistry for improved weldability of super alloys
US20190241995A1 (en) * 2018-02-07 2019-08-08 General Electric Company Nickel Based Alloy with High Fatigue Resistance and Methods of Forming the Same
US10610982B2 (en) 2015-11-12 2020-04-07 General Electric Company Weld filler metal for superalloys and methods of making
US11187082B2 (en) 2015-10-07 2021-11-30 Siemens Energy Global GmbH & Co. KG Method for making steel or titanium products containing a precipitation-hardening nickel-base alloy, and part

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1109297A (en) * 1976-10-12 1981-09-22 David S. Duvall Age hardenable nickel superalloy welding wires containing manganese

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2428033A (en) * 1941-11-24 1947-09-30 John S Nachtman Manufacture of rustproof electrolytic coatings for metal stock
US3024109A (en) * 1957-12-24 1962-03-06 Gen Electric Elevated temperature, nickel-base brazing alloys
GB912814A (en) * 1959-01-21 1962-12-12 Allegheny Ludlum Steel Improvements in or relating to an austenitic nickel-chrome iron-base alloy
US3184577A (en) * 1963-01-18 1965-05-18 Int Nickel Co Welding material for producing welds with low coefficient of expansion
US3201233A (en) * 1962-06-13 1965-08-17 Westinghouse Electric Corp Crack resistant stainless steel alloys
US3262777A (en) * 1964-07-13 1966-07-26 Int Nickel Co Ultra tough maraging steel
US3303023A (en) * 1963-08-26 1967-02-07 Crucible Steel Co America Use of cold-formable austenitic stainless steel for valves for internal-combustion engines
US3342974A (en) * 1961-11-18 1967-09-19 Wallner Werner Arc welding electrode providing welds having high yield and rupture value

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2428033A (en) * 1941-11-24 1947-09-30 John S Nachtman Manufacture of rustproof electrolytic coatings for metal stock
US3024109A (en) * 1957-12-24 1962-03-06 Gen Electric Elevated temperature, nickel-base brazing alloys
GB912814A (en) * 1959-01-21 1962-12-12 Allegheny Ludlum Steel Improvements in or relating to an austenitic nickel-chrome iron-base alloy
US3342974A (en) * 1961-11-18 1967-09-19 Wallner Werner Arc welding electrode providing welds having high yield and rupture value
US3201233A (en) * 1962-06-13 1965-08-17 Westinghouse Electric Corp Crack resistant stainless steel alloys
US3184577A (en) * 1963-01-18 1965-05-18 Int Nickel Co Welding material for producing welds with low coefficient of expansion
US3303023A (en) * 1963-08-26 1967-02-07 Crucible Steel Co America Use of cold-formable austenitic stainless steel for valves for internal-combustion engines
US3262777A (en) * 1964-07-13 1966-07-26 Int Nickel Co Ultra tough maraging steel

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3804680A (en) * 1970-06-06 1974-04-16 Atomic Energy Commission Method for inducing resistance to embrittlement by neutron irradiation and products formed thereby
US3765879A (en) * 1970-12-17 1973-10-16 Martin Marietta Corp Nickel base alloy
US3753697A (en) * 1971-01-18 1973-08-21 Martin Marietta Corp Tungsten free alloy
US4039330A (en) * 1971-04-07 1977-08-02 The International Nickel Company, Inc. Nickel-chromium-cobalt alloys
US3865581A (en) * 1972-01-27 1975-02-11 Nippon Steel Corp Heat resistant alloy having excellent hot workabilities
US3898109A (en) * 1973-09-06 1975-08-05 Int Nickel Co Heat treatment of nickel-chromium-cobalt base alloys
US4530727A (en) * 1982-02-24 1985-07-23 The United States Of America As Represented By The Department Of Energy Method for fabricating wrought components for high-temperature gas-cooled reactors and product
US4774149A (en) * 1987-03-17 1988-09-27 General Electric Company Oxidation-and hot corrosion-resistant nickel-base alloy coatings and claddings for industrial and marine gas turbine hot section components and resulting composite articles
US5783318A (en) * 1994-06-22 1998-07-21 United Technologies Corporation Repaired nickel based superalloy
US6258317B1 (en) 1998-06-19 2001-07-10 Inco Alloys International, Inc. Advanced ultra-supercritical boiler tubing alloy
US6761854B1 (en) 1998-09-04 2004-07-13 Huntington Alloys Corporation Advanced high temperature corrosion resistant alloy
US20060051234A1 (en) * 2004-09-03 2006-03-09 Pike Lee M Jr Ni-Cr-Co alloy for advanced gas turbine engines
US20060222557A1 (en) * 2004-09-03 2006-10-05 Pike Lee M Jr Ni-Cr-Co alloy for advanced gas turbine engines
US8066938B2 (en) 2004-09-03 2011-11-29 Haynes International, Inc. Ni-Cr-Co alloy for advanced gas turbine engines
US20130048700A1 (en) * 2011-08-29 2013-02-28 General Electric Company Filler metal chemistry for improved weldability of super alloys
US9346132B2 (en) 2011-08-29 2016-05-24 General Electric Company Metal chemistry for improved weldability of super alloys
US20130323533A1 (en) * 2012-06-05 2013-12-05 General Electric Company Repaired superalloy components and methods for repairing superalloy components
US20150306710A1 (en) * 2014-04-04 2015-10-29 Special Metals Corporation High Strength Ni-Cr-Mo-W-Nb-Ti Welding Product and Method of Welding and Weld Deposit Using the Same
US9815147B2 (en) * 2014-04-04 2017-11-14 Special Metals Corporation High strength Ni—Cr—Mo—W—Nb—Ti welding product and method of welding and weld deposit using the same
US11187082B2 (en) 2015-10-07 2021-11-30 Siemens Energy Global GmbH & Co. KG Method for making steel or titanium products containing a precipitation-hardening nickel-base alloy, and part
US10610982B2 (en) 2015-11-12 2020-04-07 General Electric Company Weld filler metal for superalloys and methods of making
US20190241995A1 (en) * 2018-02-07 2019-08-08 General Electric Company Nickel Based Alloy with High Fatigue Resistance and Methods of Forming the Same

Also Published As

Publication number Publication date
CH462598A (en) 1968-09-15
BE683097A (en) 1966-12-27
SE327614B (en) 1970-08-24
ES328348A1 (en) 1967-08-16
AT270245B (en) 1969-04-25
DE1533285A1 (en) 1969-12-18
GB1070099A (en) 1967-05-24

Similar Documents

Publication Publication Date Title
US3479157A (en) Welded articles and alloys containing hafnium and nickel
US3859060A (en) Nickel-chromi um-cobalt-molybdenum alloys
CA2660107C (en) Welding alloy and articles for use in welding, weldments and method for producing weldments
US6242113B1 (en) Welding alloy and articles for use in welding, weldments and methods for producing weldments
US3181970A (en) Coated welding electrode
US4213026A (en) Age hardenable nickel superalloy welding wires containing manganese
US4507264A (en) Nickel base brazing alloy and method
US4414178A (en) Nickel-palladium-chromium-boron brazing alloy
EP0548405B1 (en) Heat-resistant alloy having high creep rupture strength under high-temperature low-stress conditions and excellent resistance to carburization
US3770427A (en) Welding material
US4391634A (en) Weldable oxide dispersion strengthened alloys
US4283234A (en) Gas turbine nozzle
EP0011649B1 (en) Padding alloys based on nickel
US3197859A (en) Methods of brazing
US5330711A (en) Nickel base alloys for castings
US4095976A (en) Weldable alloy
US2783144A (en) Hard facing alloy
US3919519A (en) Welding material
US3576622A (en) Nickel-base alloy
EP0260600B1 (en) High temperature nickel base alloy with improved stability
AU624463B2 (en) Tantalum-containing superalloys
US3953285A (en) Nickel-chromium-silicon brazing filler metal
CA1109297A (en) Age hardenable nickel superalloy welding wires containing manganese
Honeycombe et al. Intergranular attack in welded stress-corrosion resistant stainless steels
US3203791A (en) Nickel-chromium-iron alloys