US3865581A - Heat resistant alloy having excellent hot workabilities - Google Patents

Heat resistant alloy having excellent hot workabilities Download PDF

Info

Publication number
US3865581A
US3865581A US326459A US32645973A US3865581A US 3865581 A US3865581 A US 3865581A US 326459 A US326459 A US 326459A US 32645973 A US32645973 A US 32645973A US 3865581 A US3865581 A US 3865581A
Authority
US
United States
Prior art keywords
heat resistant
hot
resistant alloy
present
workabilities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US326459A
Inventor
Shozo Sekino
Mizuo Sakakihara
Shoji Murota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of US3865581A publication Critical patent/US3865581A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • Heat resistant alloys are used for applications such as furnace parts,.burner nozzles, annealing boxes and protecting tubes for thermocuples and in recent years they have been widely used for components of atomic piles. These alloys are usually deformed at high temperatures (hot worked). Since the hot working is a working method which makes use of the character of the alloys that they soften at high temperatures, the hot working has an advantage that products of good dimentional accuracy can be easily obtained by small working power.
  • an austenite steel containing 7 to 20% of nickel and 14 to 25% of chromium can be mentioned.
  • this conventional heat resistant steel and the like contain Si and W so as to increase hardness and tensile strength as well as wear resistance at high temperatures, and there are very few heat resistant alloys having intentionally improved hot workabilities.
  • the present inventors have conducted various studies and experiments to overcome the defects and difficulties of the conventional alloys and have completed the present invention.
  • One of the objects of the present invention is to provide a heat resistant alloy having improved heat resistant properties, particularly hot workability.
  • Another object of the present invention is to provide a heat resistant alloy having excellent hot workability and an improved torsion property in a wide temperature range with addition of a small amount of selected alloying elements.
  • the attached drawing shows the synergistic effect of Zr and Ce in relation with the numbers of torsions.
  • the present invention is based on the discovery that when B, Zr, Ce, Mg and Be are selectively added in combination to a high-nickel and high-chromium austenite steel, the numbers of torsions can be increased in a wide range at high temperatures. The increase of the number of torsions represents improvement of the hot workability.
  • a heat resistant alloy having hot workability comprising 0.01 to 0.5% of C, 0.01 to 2.0% of Si, 0.01 to 3.0% of Mn, 22 to 80% of Ni and to 40% of Cr as basic components together with one or both of 0.0005 to 0.20% of B, and 0.001 to 6.0% of Zr and further one or more of 0.001 to 0.5% of Ce, 0.001 to 0.2% of Mg and 0.001 to 1.0% of Be, with the remainder being iron and unavoidable impurities,
  • a heat resistant alloy having excellent hot workability comprising 0.01 to 0.5% of C, 0.01 to 2.0% of Si, 0.01 to 3.0% of Mn, 22 to 80% of Ni, 10 to 40% of Cr as basic components, together with one or both of 0.0005 to 0.20% of B and 0.001 to 6.0% of Zr and further one or more of 0.001 to 0.5% of Ce, 0.001 to 0.2% of Mg and 0.001 to 1.0% of Be and still further one or more ofO.l to 10.0% of M0, 0.1 to 10.0% of W, 0.1 to 30.0% of Co, 0.05 to 10.0% of each of Ti, Nb, Ta, A1, V, Cu and Y (0.05 to 10.0% in total) with the remainder being iron and unavoidable impurities,
  • composition range of the present heat resistant alloy is: 0.01 to 0.45% of C, 0.01 to 0.15% of Si, 0.01 to 0.15% of Mn, 35 to of Ni, 10 to 25% of Cr, as basic components together with one or more of0.l to 10% ofMo, 0.1 to 10% ofCo, 0.1 to 10% of W, 0.001 to 0.03% of B, 0.01 to 1.0% of Zr, 0.01 to 0.1% of Ce, 0.001 to 0.01% of Mg, 0.001 to 0.1% of Be, 0.2 to 4.5% of Ti, 0.2 to 4.5% of Al, 0.05 to 0.1% of Y, 0.05 to 0.1% of Cu and still further one or more of Nb, V and Ta in an amount of 0.1 to 4.5 for each.
  • the hot workability depends on the ductility of grain boundaries, ductility of the matrix, non-metallic inclusions, precipitates and so on.
  • 35 to 65% of Ni and 15 to 35% of Cr are most desirable, and for the improvement of the ductility of grain boundaries, it is necessary to decrease the segregations and precipitates at grain boundaries.
  • Mn, Cu and Si segregate at grain boundaries and deteriorate workabilities of the alloy.
  • the grain boundary segregation of these elements is smallest when nickel is present 35 to 65% and chromium is present 10 to 25%. When the nickel content is less than 35% segregation of copper becomes large while the nickel content is more than 65% segregation of manganese and silicon becomes large.
  • Carbon is effective to improve tensile strength, heat resistant properties, such as, creep strength and creep rupture strength as required for a heat resistant alloy, and at least 0.01% of carbon is required for the above improvement.
  • This effect can be obtained when carbon is present together with carbide forming elements such as Mo, Ti and V and the carbides are present in a finely distributed state.
  • An excessive content of carbon forms too large carbides which kill the above effect.
  • the upper limit of the carbon content is defined at 0.5%. Silicon, when contained in an austenite alloy, remarkably reduces scaling at high temperature and improves tensile strength.
  • silicon is present in an amount of 0.01% or more, but an excessive silicon content precipitates the ferrite and the austenite becomes unstable, lowering the heat resistance properties and the hot workabilities.
  • a preferable range of the silicon content is not more 0.15%, but up to 2.0% of silicon is allowed to be present for obtaining the required strength.
  • manganese When manganese is contained in an amount 010,0 1% or more, it stabilizes the austenite and forms carbides to improve creep strength. Up to 3.0% of manganese may be contained for the above purpose. An excessive manganese content lowers the solubility of copper into the austenite and segregates Cu-riched phases of low melting point at the grain boundaries of the austenite, thus remarkably deteriotating hot workabilities and heat resistance properties. For this reason, a smaller amount of manganese is more desirable and a preferable range is 0.01 to 0.15%.
  • nickel and chromium are indispensable for improving heatresistant properties at high temperatures and producing the austenite matrix.
  • many heat resistant alloys have been developed from an austenite Ni 15Cr heat resistant steel.
  • these conventional alloys have not been improved intentionally so as to withstand severe hot workings.
  • the ranges of nickel and chromium contents in the present invention are defined so as to maintain heat resistant properties as required for an heat resistant alloy and to obtain excellent hot workabilities. Namely, 22 to 80% of Ni and 10 to 40% of Cr form a stabilized austenite to give excellent hot workabilities.
  • Heat resistant properties, particularly hot workabilities of the austenite produced by the above composition are already very excellent, but one or both of B and Zr and one or more of Ce, Mg and Be are contained in the present inventive alloys for giving hot workabilities enough to with-stand severe production conditions.
  • B When B is contained in an amount of 0.0005% or more in an austenite heat resistant alloy, creep strength is improved as well as hot workabilities at high temperatures, particularly in a temperature range of 1,100 to l,l50C are improved. But the content of B is beyond 0.2%, defects are formed and the above improvements are lowered. Thus the content of B is defined as 0.0005 to 0.2%, preferably 0.001 to 0.03%.
  • Zr When Zr is contained in an amount of 0.001% or more, heat resistant properties are improved as in case of B addition. Particularly when Zr is present at grain boundaries, it reacts with carbon to form MC carbides to improve intergranular ductility and improve hot workabilities below 1,100C. An excessive content of Zr forms large carbides and tends to kill the desirable effect of Zr addition. A Zr content of greater than 6.0% should be avoided. On the high-carbon side of the present invention, when Zr is contained in an amount of more than eight times the carbon content, the alloy shows tendencies toward embrittlement. Thus a preferable range of the Zr content is 0.01 to 1.0%.
  • Ce, Mg and Be prevent the effective elements such as Fe, Ni, and Mn from being sulfurated or oxidized during the steel making process and thus being partially wasted as impurities, and they are effective to clean the steel and decompose the sulfides remaining at the boundaries of solidifying grains and divide them into fine spheres, thus improving the hot workability above
  • the alloy having the chemical composition defined according to the present invention does not crack under severe hot working conditions.
  • Mo, W, Co, Ti, Nb, Ta, Al, V, Cu and Y may be added selectively to the alloy of the present invention.
  • These elements form carbides nitrides or intermetallic compounds and improve heat resistant properties.
  • Cu and Y, in particular, are effective to give the alloy corrosion resistance in addition.
  • the effects of these elements are observed when Mo, W and Co are present in an amount of 0.1% or more, and when Ti, Nb, Ta, A], V, Cu and Y are present in an amount of 0.05% (also 0.05% in total).
  • An excessive amount of these elements forms too large cabides, nitrides or intermetallic compounds and lowers hot workabilities.
  • the upper limits of these elements are defined as 10% for Mo and W, 30.0% for Co, 10% for Ti, Al, Nb, Ta, V, Cu and Y in single and in combination.
  • Cu causes segregation at grain boundaries together with Mn and Si and deteriorates workabilities.
  • the heat resistant alloy of the present invention can be produced by an ordinary production method which includes melting and refining in a converter or electric furnace, ingot-making, breakingdown, or continuous casting into slabs, hot rolling into wires or plates for commercial use.
  • the alloy of the present invention is produced by electro-slag refining, still further improved hot workabilities are obtained.
  • the hot rolled wires and plates may be subjected to temper treatments or cold rolling in combination with temper treatments for final use.
  • Table 1 shows chemical compositions of 15mm thick plates produced by melting in an electric furnace, ingot-making, breaking-down and hot rolling, and heat resistant properties including hot torsion numbers to show hot workability at 1,100C and creep rupture strength.
  • the alloys A, C, H and L are set forth as comparative to the present inventive alloys.
  • a heat resistant alloy having hot workability consisting essentially of 0.01 to 0.5% of C, 0.01 to 2.0% of Si, 0.01 to 3.0% of Mn, 22 to 80% of Ni and 10 to of Cr as basic components together with one or both of 0.0005 to 0.20% of B, and 0.001 to 6.0% of Zr and further one or more of 0.001 to 0.5% of Ce, 0.001 to 0.2% of Mg and 0.001 to 1.0% of Be, with the balance being iron and unavoidable impurities.
  • a heat resistant alloy having excellent hot workability consisting essentially of 0.01 to 0.5% of C, 0.01 to 2.0% of Si, 0.01 to 3.0% of Mn, 22 to 80% of Ni, 10 to 40% of Cr as basic components, together with one or both of 0.0005 to 0.20% of B and 0.001 to 6.0% of Zr and further one or more of 0.001 to 0.5% of Ce, 0.001 to 0.2% of Mg and 0.001 to 1.0% of Be and still 5 further one or more of 0.1 to 10.0% of M0, 0.1 to
  • a heat resistant alloy having excellent hot workability consisting essentially of 0.01 to 0.45% of C, 0.01 to 0.15% of Si, 0.01 to 0.15% of Mn, 35 to 65% of Ni, 10 to 25% of Cr, as basic components together with one or more of0.1 to 10% of M0, 0.1 to 10% of Co, 0.1 to 10% of W, 0.001 to 0.03% of B, 0.01 to 1.0% of Zr,

Abstract

A heat resistant alloy having hot workability comprising 0.01 to 0.5% of C, 0.01 to 2.0% of Si, 0.01 to 3.0% of Mn, 22 to 80% of Ni and 10 to 40% of Cr as basic components together with one or both of 0.0005 to 0.20% of B and 0.001 to 6.0% of Zr and further one or more of 0.001 to 0.5% of Ce, 0.001 to 0.2% of Mg and 0.001 to 1.0% of Be, with the remainder being iron and unavoidable impurities.

Description

United States Patent 1 Sekino et a1.
[ HEAT RESISTANT ALLOY HAVING EXCELLENT HOT WORKABILITIES [75] Inventors: Shozo Sekino; Mizuo Sakakihara;
Shoji Murota, all of Fukuoka-ken,
Japan [73] Assignee: Nippon Steel Corporation, Tokyo,
Japan [22] Filed: Jan. 24, 1973 [211 App]. No.: 326,459
1301 Foreign Application Priority Data Jan. 27. 1972 Japan 47-047) [52] US. Cl 75/122, 75/171, 75/128 R, 75/128 B, 75/128 Z [51] Int. Cl. C22c 19/00, C22c 28/00 [58] Field 01 Search 75/128 E, 128 F, 128 Z, 75/122, 171
[56] References Cited UNITED STATES PATENTS 2,047,918 7/1963 Lohr 75/128 E Torsion Numbers 0.03'lo2l' "1' 0.02 1429 [4 1- Feb. 11, 1975 2,240,063 3/1941 Allen 75/128 E 3,113,021 12/1963 Witherell 3,385,739 5/1968 Danis 3.408.179 10/1968 Lewis 3,479,157 ll/l969 Richards 75/128 F Primary Examiner-Hyland Bizot Attorney, Agent, or Firm-Toren, McGeady and Stanger [57] ABSTRACT 3 Claims, 1 Drawing Figure Temperature (Cl 'PA m1 m1 m1 1 1 ms Temperature (C) HEAT RESISTANT ALLOY HAVING EXCELLENT HOT WORKABILITIES The present invention relates to a heat resistant alloy having excellent hot workabilities.
Heat resistant alloys are used for applications such as furnace parts,.burner nozzles, annealing boxes and protecting tubes for thermocuples and in recent years they have been widely used for components of atomic piles. These alloys are usually deformed at high temperatures (hot worked). Since the hot working is a working method which makes use of the character of the alloys that they soften at high temperatures, the hot working has an advantage that products of good dimentional accuracy can be easily obtained by small working power.
As one of the conventional heat resistant materials which have a suitable hot workability, an austenite steel containing 7 to 20% of nickel and 14 to 25% of chromium can be mentioned.
However, this conventional heat resistant steel and the like contain Si and W so as to increase hardness and tensile strength as well as wear resistance at high temperatures, and there are very few heat resistant alloys having intentionally improved hot workabilities.
In recent years, along the progress of the chemical industry and other industries, their plants have been enlarged, and large constructional heat resistant components have been demanded therefore. Further heat resistant steel materials used for such large constructional components are subjected to severe production conditions starting from a large alloy ingot to a wide and thin material. The conventional alloys have a vital defect that they are susceptible to hot work cracking during their production process or during their secondary working step for obtaining a predescribed form.
The present inventors have conducted various studies and experiments to overcome the defects and difficulties of the conventional alloys and have completed the present invention.
One of the objects of the present invention is to provide a heat resistant alloy having improved heat resistant properties, particularly hot workability.
Another object of the present invention is to provide a heat resistant alloy having excellent hot workability and an improved torsion property in a wide temperature range with addition of a small amount of selected alloying elements.
Other objects of the present invention will be clear from the following descriptions and attached drawings.
The attached drawing shows the synergistic effect of Zr and Ce in relation with the numbers of torsions.
The present invention is based on the discovery that when B, Zr, Ce, Mg and Be are selectively added in combination to a high-nickel and high-chromium austenite steel, the numbers of torsions can be increased in a wide range at high temperatures. The increase of the number of torsions represents improvement of the hot workability.
Thus, the present invention specifically covers:
1. a heat resistant alloy having hot workability comprising 0.01 to 0.5% of C, 0.01 to 2.0% of Si, 0.01 to 3.0% of Mn, 22 to 80% of Ni and to 40% of Cr as basic components together with one or both of 0.0005 to 0.20% of B, and 0.001 to 6.0% of Zr and further one or more of 0.001 to 0.5% of Ce, 0.001 to 0.2% of Mg and 0.001 to 1.0% of Be, with the remainder being iron and unavoidable impurities,
2. a heat resistant alloy having excellent hot workability comprising 0.01 to 0.5% of C, 0.01 to 2.0% of Si, 0.01 to 3.0% of Mn, 22 to 80% of Ni, 10 to 40% of Cr as basic components, together with one or both of 0.0005 to 0.20% of B and 0.001 to 6.0% of Zr and further one or more of 0.001 to 0.5% of Ce, 0.001 to 0.2% of Mg and 0.001 to 1.0% of Be and still further one or more ofO.l to 10.0% of M0, 0.1 to 10.0% of W, 0.1 to 30.0% of Co, 0.05 to 10.0% of each of Ti, Nb, Ta, A1, V, Cu and Y (0.05 to 10.0% in total) with the remainder being iron and unavoidable impurities,
3. and the most preferable composition range of the present heat resistant alloy is: 0.01 to 0.45% of C, 0.01 to 0.15% of Si, 0.01 to 0.15% of Mn, 35 to of Ni, 10 to 25% of Cr, as basic components together with one or more of0.l to 10% ofMo, 0.1 to 10% ofCo, 0.1 to 10% of W, 0.001 to 0.03% of B, 0.01 to 1.0% of Zr, 0.01 to 0.1% of Ce, 0.001 to 0.01% of Mg, 0.001 to 0.1% of Be, 0.2 to 4.5% of Ti, 0.2 to 4.5% of Al, 0.05 to 0.1% of Y, 0.05 to 0.1% of Cu and still further one or more of Nb, V and Ta in an amount of 0.1 to 4.5 for each.
The hot workability depends on the ductility of grain boundaries, ductility of the matrix, non-metallic inclusions, precipitates and so on. For improvement of the matrix ductility, 35 to 65% of Ni and 15 to 35% of Cr are most desirable, and for the improvement of the ductility of grain boundaries, it is necessary to decrease the segregations and precipitates at grain boundaries. Mn, Cu and Si segregate at grain boundaries and deteriorate workabilities of the alloy. The grain boundary segregation of these elements is smallest when nickel is present 35 to 65% and chromium is present 10 to 25%. When the nickel content is less than 35% segregation of copper becomes large while the nickel content is more than 65% segregation of manganese and silicon becomes large. Thus, 35 to 65% of Ni and 10 to 25% of Cr assure the smallest segregation in case of an ordinary solidification and the alloy of these composition ranges has a strong corrosion resistance in a neutral oxidizing or reducing gas atmosphere of such as Ar, He, CO, H which containing a small amount of impurities.
Detailed explanations will be made on the reasons for defining each of the elements of the present heat resistant alloy as above.
Carbon is effective to improve tensile strength, heat resistant properties, such as, creep strength and creep rupture strength as required for a heat resistant alloy, and at least 0.01% of carbon is required for the above improvement. This effect can be obtained when carbon is present together with carbide forming elements such as Mo, Ti and V and the carbides are present in a finely distributed state. An excessive content of carbon forms too large carbides which kill the above effect. Thus, the upper limit of the carbon content is defined at 0.5%. Silicon, when contained in an austenite alloy, remarkably reduces scaling at high temperature and improves tensile strength. These effects are obtained when silicon is present in an amount of 0.01% or more, but an excessive silicon content precipitates the ferrite and the austenite becomes unstable, lowering the heat resistance properties and the hot workabilities. A preferable range of the silicon content is not more 0.15%, but up to 2.0% of silicon is allowed to be present for obtaining the required strength.
When manganese is contained in an amount 010,0 1% or more, it stabilizes the austenite and forms carbides to improve creep strength. Up to 3.0% of manganese may be contained for the above purpose. An excessive manganese content lowers the solubility of copper into the austenite and segregates Cu-riched phases of low melting point at the grain boundaries of the austenite, thus remarkably deteriotating hot workabilities and heat resistance properties. For this reason, a smaller amount of manganese is more desirable and a preferable range is 0.01 to 0.15%.
It is well known that nickel and chromium are indispensable for improving heatresistant properties at high temperatures and producing the austenite matrix. For example, many heat resistant alloys have been developed from an austenite Ni 15Cr heat resistant steel. However, these conventional alloys have not been improved intentionally so as to withstand severe hot workings.
The ranges of nickel and chromium contents in the present invention are defined so as to maintain heat resistant properties as required for an heat resistant alloy and to obtain excellent hot workabilities. Namely, 22 to 80% of Ni and 10 to 40% of Cr form a stabilized austenite to give excellent hot workabilities.
In an austenite forming range out of the above ranges, the improvement of hot workabilities is small as compared with that obtained in the present inventive ranges or the remarkable effects on other heat resistant properties are not produced, although some improvement of hot workabilities is obtained.
As stated above, 35 to 65% of Ni and 10 to 25% of Cr are preferable against the intergranular segregation of Mn, Cu, Si, etc.
Heat resistant properties, particularly hot workabilities of the austenite produced by the above composition are already very excellent, but one or both of B and Zr and one or more of Ce, Mg and Be are contained in the present inventive alloys for giving hot workabilities enough to with-stand severe production conditions.
When B is contained in an amount of 0.0005% or more in an austenite heat resistant alloy, creep strength is improved as well as hot workabilities at high temperatures, particularly in a temperature range of 1,100 to l,l50C are improved. But the content of B is beyond 0.2%, defects are formed and the above improvements are lowered. Thus the content of B is defined as 0.0005 to 0.2%, preferably 0.001 to 0.03%.
When Zr is contained in an amount of 0.001% or more, heat resistant properties are improved as in case of B addition. Particularly when Zr is present at grain boundaries, it reacts with carbon to form MC carbides to improve intergranular ductility and improve hot workabilities below 1,100C. An excessive content of Zr forms large carbides and tends to kill the desirable effect of Zr addition. A Zr content of greater than 6.0% should be avoided. On the high-carbon side of the present invention, when Zr is contained in an amount of more than eight times the carbon content, the alloy shows tendencies toward embrittlement. Thus a preferable range of the Zr content is 0.01 to 1.0%.
Ce, Mg and Be prevent the effective elements such as Fe, Ni, and Mn from being sulfurated or oxidized during the steel making process and thus being partially wasted as impurities, and they are effective to clean the steel and decompose the sulfides remaining at the boundaries of solidifying grains and divide them into fine spheres, thus improving the hot workability above The alloy having the chemical composition defined according to the present invention does not crack under severe hot working conditions.
Further, one or more of Mo, W, Co, Ti, Nb, Ta, Al, V, Cu and Y may be added selectively to the alloy of the present invention. These elements form carbides nitrides or intermetallic compounds and improve heat resistant properties. Cu and Y, in particular, are effective to give the alloy corrosion resistance in addition. The effects of these elements are observed when Mo, W and Co are present in an amount of 0.1% or more, and when Ti, Nb, Ta, A], V, Cu and Y are present in an amount of 0.05% (also 0.05% in total). An excessive amount of these elements forms too large cabides, nitrides or intermetallic compounds and lowers hot workabilities.
Thus, the upper limits of these elements are defined as 10% for Mo and W, 30.0% for Co, 10% for Ti, Al, Nb, Ta, V, Cu and Y in single and in combination.
Regarding Cu, Cu causes segregation at grain boundaries together with Mn and Si and deteriorates workabilities. Thus it is desirable to restrict the copper content as small as possible, and its preferred range is 0.05 to 0.1%,
Further, other elements such as P and S which are contained as unavoidable impurities should be maintained as low as possible because they damage heat resistant properties. The heat resistant alloy of the present invention can be produced by an ordinary production method which includes melting and refining in a converter or electric furnace, ingot-making, breakingdown, or continuous casting into slabs, hot rolling into wires or plates for commercial use. When the alloy of the present invention is produced by electro-slag refining, still further improved hot workabilities are obtained. The hot rolled wires and plates may be subjected to temper treatments or cold rolling in combination with temper treatments for final use.
One example of the present invention will be given here under.
Table 1 shows chemical compositions of 15mm thick plates produced by melting in an electric furnace, ingot-making, breaking-down and hot rolling, and heat resistant properties including hot torsion numbers to show hot workability at 1,100C and creep rupture strength.
In the table, the alloys A, C, H and L are set forth as comparative to the present inventive alloys.
[t is clear from the table that all of the present inventive alloys show remarkably improved heat resistant properties as compared with the comparative alloys.
Table 1 Designation Kind Chemical Compositions (7() of Alloys of Alloy O Si Mn Ni Cr Fe B, Zr Ce,Mg,Be
A Comparative 0.40 0.95 1.50 20.0 25.0 Balance B: 0003 Zr:0.07 B Inventive 0.40 0.95 1.50 20.0 25.0 do. B: 0.008 Be: 0.30 1 Ce: 0.40 C Comparative 0.20 0.50 0.80 50.0 30.0 do.
Be: 0.02 D 0.20 0.50 0.80 50.0 30.0 do.
Zr: 0.8 Ce: 0.07 E lnventive 0.20 0.50 0.80 50.0 30.0 do.
B: 0.03 Mg: 0.07 F 0.20 0.50 0.80 50.0 30.0 do. Mg: 01 Zr: 0.08 Be: 0.5 6 0.20 0.50 0.80 50.0 30.0 do. B: 0.05 Mg: 0.03
Zr: 0.04 Be: 0.09 H Comparative 0.08 0.30 0.20 75.0 15.0 do. Mg: 0.0l Ce: 0.02 l 0.08 0.30 0.20 75.0 15.0 do. Mg: 0.05
B: 0.0] Be: 0.07 .l lnventive 0.08 0.30 0.20 75.0 15.0 do.
Zr: 0.07 Be: 0.15 K 0.08 0.30 0.20 75.0 15.0 do. Zr: 0.15
B: 0.015 Ce: 0.1
L Comparative 0.08 0.50 0.80 55.0 33.3 10.0
Zr: 0.07 M Inventive 0.08 0.50 0.80 55.0 33.3 10.0 Zr: 0.07
B: 0.003 Ce: 0.02
Heat Resistant Designation Kind Chemical Composition (71. Properties of Alloys of Alloy Mo, W, Co, Ti. Nb, Hot Torsion Creep Rupture Ta, A1, V, Cu. Y Numbers Stren th at 1000C at [100C for l hrsKg/mm A Comparative Co: 0.5 10.0 1.5 B Inventive Co: 0.5 19.5 1.8 C Comparative Co: 1.00, M: 0.5 4.0 2.3 D Co: 10.0, Mo: 0.5 6.3 2.4 E Inventive Co: 10.0, M0: 0.5 14.2 2.6 F Co: 100, M0105 17.7 2.3 G Co: 10.0, M0: 0.5 20.1 2.3 H Comparative Co: 0.5, M0: 1.0, Y:0.02, Nb:0.1
8.0 1.0 l Co:0.5, Mo:l.0, Y:0.02, Nb:0.1
18.0 1.4 J Inventive C0205, Mo:1.0. Y:0.02, Nb:0.l
22.0 1.2 K Co:0.5, Mo:l.0, Y:0.02, Nb:0.l
24.0 1.5 L Comparative Mo:0.5, Al:0.4, Ti:0.4 3.5 2.8 M Inventive Mo:0.5, Ti:0.003, Nb:0.15 13.3 3.0
What is claimed:
1. A heat resistant alloy having hot workability consisting essentially of 0.01 to 0.5% of C, 0.01 to 2.0% of Si, 0.01 to 3.0% of Mn, 22 to 80% of Ni and 10 to of Cr as basic components together with one or both of 0.0005 to 0.20% of B, and 0.001 to 6.0% of Zr and further one or more of 0.001 to 0.5% of Ce, 0.001 to 0.2% of Mg and 0.001 to 1.0% of Be, with the balance being iron and unavoidable impurities.
2. A heat resistant alloy having excellent hot workability consisting essentially of 0.01 to 0.5% of C, 0.01 to 2.0% of Si, 0.01 to 3.0% of Mn, 22 to 80% of Ni, 10 to 40% of Cr as basic components, together with one or both of 0.0005 to 0.20% of B and 0.001 to 6.0% of Zr and further one or more of 0.001 to 0.5% of Ce, 0.001 to 0.2% of Mg and 0.001 to 1.0% of Be and still 5 further one or more of 0.1 to 10.0% of M0, 0.1 to
10.0% of W, 0.1 to 30.0% of Co, 0.05 to 10.0% of each ofTi, Nb, Ta, Al, V, Cu and Y (0.05 to 10.0% in total) with the balance being iron and unavoidable impurities.
3. A heat resistant alloy having excellent hot workability consisting essentially of 0.01 to 0.45% of C, 0.01 to 0.15% of Si, 0.01 to 0.15% of Mn, 35 to 65% of Ni, 10 to 25% of Cr, as basic components together with one or more of0.1 to 10% of M0, 0.1 to 10% of Co, 0.1 to 10% of W, 0.001 to 0.03% of B, 0.01 to 1.0% of Zr,
5 0.01 to 0.1% of Ce, 0.001 to 0.01% of Mg, 0.001 to 0.1% of Be, 0.2 to 4.5% of Ti, 0.2 to 4.5% of Al, 0.05 to 0.1% of Y, 0.05 to 0.1% of Cu and still further one or more of Nb, V and Ta in an amount of 0.1 to 4.5% for each with the balance being iron and unavoidable impurities.

Claims (3)

1. A HEAT RESISTANT ALLOY HAVING HOT WORKABILITY CONSISTING ESSENTIALLY OF 0.01 TO 0.5% OF C, 0.01 TO 2.0% OF SI, 0.01 TO 3.0% OF MN, 22 TO 80% OF NI AND 10 TO 40% OF CR AS BASIC COMPONENTS TOGEHTER WITH ONE OR BOTH OF 0.0005 TO 0.20% OF B, AND 0.001 TO 6.0% OF ZR AND FURTHER ONE OR MORE OF 0.001 TO 0.5% OF CE, 0.001 TO 0.2% OF MG AND 0.001 TO 1.0% OF BE, WITH THE BALANCE BEING IRON AND UNAVOIDABLE IMPURITIES.
2. A heat resistant alloy having excellent hot workability consisting essentially of 0.01 to 0.5% of C, 0.01 to 2.0% of Si, 0.01 to 3.0% of Mn, 22 to 80% of Ni, 10 to 40% of Cr as basic components, together with one or both of 0.0005 to 0.20% of B and 0.001 to 6.0% of Zr and further one or more of 0.001 to 0.5% of Ce, 0.001 to 0.2% of Mg and 0.001 to 1.0% of Be and still further one or more of 0.1 to 10.0% of Mo, 0.1 to 10.0% of W, 0.1 to 30.0% of Co, 0.05 to 10.0% of each of Ti, Nb, Ta, Al, V, Cu and Y (0.05 to 10.0% in total) with the balance being iron and unavoidable impurities.
3. A heat resistant alloy having excellent hot workability consisting essentially of 0.01 to 0.45% of C, 0.01 to 0.15% of Si, 0.01 to 0.15% of Mn, 35 to 65% of Ni, 10 to 25% of Cr, as basic components together with one or more of 0.1 to 10% of Mo, 0.1 to 10% of Co, 0.1 to 10% of W, 0.001 to 0.03% of B, 0.01 to 1.0% of Zr, 0.01 to 0.1% of Ce, 0.001 to 0.01% of Mg, 0.001 to 0.1% of Be, 0.2 to 4.5% of Ti, 0.2 to 4.5% of Al, 0.05 to 0.1% of Y, 0.05 to 0.1% of Cu and still further one or more of Nb, V and Ta in an amount of 0.1 to 4.5% for each with the balance being iron and unavoidable impurities.
US326459A 1972-01-27 1973-01-24 Heat resistant alloy having excellent hot workabilities Expired - Lifetime US3865581A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP947972A JPS5631345B2 (en) 1972-01-27 1972-01-27

Publications (1)

Publication Number Publication Date
US3865581A true US3865581A (en) 1975-02-11

Family

ID=11721376

Family Applications (1)

Application Number Title Priority Date Filing Date
US326459A Expired - Lifetime US3865581A (en) 1972-01-27 1973-01-24 Heat resistant alloy having excellent hot workabilities

Country Status (3)

Country Link
US (1) US3865581A (en)
JP (1) JPS5631345B2 (en)
GB (1) GB1424232A (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008051A (en) * 1974-09-11 1977-02-15 Brico Engineering Limited Composite metal articles
US4086107A (en) * 1974-05-22 1978-04-25 Nippon Steel Corporation Heat treatment process of high-carbon chromium-nickel heat-resistant stainless steels
US4108648A (en) * 1976-09-20 1978-08-22 Galina Vasilievna Zhurkina Nickel-based alloy
US4110110A (en) * 1975-08-27 1978-08-29 Mitsubishi Kinzoku Kabushiki Kaisha Nickel-base alloy excellent in corrosion resistance at high temperatures
US4119456A (en) * 1977-01-31 1978-10-10 Steel Founders' Society Of America High-strength cast heat-resistant alloy
US4153455A (en) * 1977-05-19 1979-05-08 Huntington Alloys, Inc. High temperature nickel-base alloys
US4174213A (en) * 1977-03-04 1979-11-13 Hitachi, Ltd. Highly ductile alloys of iron-nickel-chromium-molybdenum system for gas turbine combustor liner and filler metals
US4194909A (en) * 1974-11-16 1980-03-25 Mitsubishi Kinzoku Kabushiki Kaisha Forgeable nickel-base super alloy
US4207098A (en) * 1978-01-09 1980-06-10 The International Nickel Co., Inc. Nickel-base superalloys
US4227925A (en) * 1974-09-06 1980-10-14 Nippon Steel Corporation Heat-resistant alloy for welded structures
US4231795A (en) * 1978-06-22 1980-11-04 The United States Of America As Represented By The United States Department Of Energy High weldability nickel-base superalloy
US4236943A (en) * 1978-06-22 1980-12-02 The United States Of America As Represented By The United States Department Of Energy Precipitation hardenable iron-nickel-chromium alloy having good swelling resistance and low neutron absorbence
US4261767A (en) * 1976-07-28 1981-04-14 Creusot-Loire Alloy resistant to high temperature oxidation
US4272289A (en) * 1976-03-31 1981-06-09 Cabot Corporation Oxidation resistant iron base alloy articles for welding
US4283234A (en) * 1978-12-15 1981-08-11 Hitachi, Ltd. Gas turbine nozzle
US4394560A (en) * 1980-10-09 1983-07-19 Nissan Motor Company, Ltd. Covered electrode containing zirconium for shielded metal arc welding
US4396822A (en) * 1980-10-16 1983-08-02 Nissan Motor Co., Ltd. Welding wire for automatic arc welding
US4421558A (en) * 1980-01-10 1983-12-20 Kubota Ltd. Iron-based heat-resistant cast alloy
US4594103A (en) * 1983-06-28 1986-06-10 Castolin S.A. Powdered nickel-chromium based material for thermal spraying
EP0244520A1 (en) * 1985-04-16 1987-11-11 Daido Tokushuko Kabushiki Kaisha Heat resistant alloys
US4735771A (en) * 1986-12-03 1988-04-05 Chrysler Motors Corporation Method of preparing oxidation resistant iron base alloy compositions
US4837550A (en) * 1987-05-08 1989-06-06 Dale Electronics, Inc. Nichrome resistive element and method of making same
WO1989009843A1 (en) * 1988-04-04 1989-10-19 Chrysler Motors Corporation Oxidation resistant iron base alloy compositions
US4891183A (en) * 1986-12-03 1990-01-02 Chrysler Motors Corporation Method of preparing alloy compositions
US4900417A (en) * 1987-05-08 1990-02-13 Dale Electronics, Inc. Nichrome resistive element and method of making same
US4908185A (en) * 1987-05-08 1990-03-13 Dale Electronics, Inc. Nichrome resistive element and method of making same
US4911886A (en) * 1988-03-17 1990-03-27 Allegheny Ludlum Corporation Austentitic stainless steel
EP0386730A1 (en) * 1989-03-09 1990-09-12 Krupp VDM GmbH Nickel-chromium-iron alloy
US4999158A (en) * 1986-12-03 1991-03-12 Chrysler Corporation Oxidation resistant iron base alloy compositions
WO1991016467A1 (en) * 1990-04-16 1991-10-31 Carondelet Foundry Company Heat resistant alloys
JPH07150277A (en) * 1993-07-09 1995-06-13 Inco Alloys Internatl Inc Nickel-base alloy having excellent stress breaking strength and grain size controll-ability
US5516485A (en) * 1994-03-17 1996-05-14 Carondelet Foundry Company Weldable cast heat resistant alloy
WO1997023659A1 (en) * 1995-12-21 1997-07-03 Teledyne Industries, Inc. Stress rupture properties of nickel-chromium-cobalt alloys by adjustment of the levels of phosphorus and boron
EP0812926A1 (en) * 1996-06-13 1997-12-17 Inco Alloys International, Inc. Nickel-base alloys used for ethylene pyrolysis applications
US5824264A (en) * 1994-10-25 1998-10-20 Sumitomo Metal Industries, Ltd. High-temperature stainless steel and method for its production
US6350324B1 (en) * 1999-04-02 2002-02-26 Imphy Ugine Precision Soft magnetic alloy
EP1252350A1 (en) * 2000-01-24 2002-10-30 Inco Alloys International, Inc. High temperature thermal processing alloy
EP1312691A1 (en) * 2001-11-16 2003-05-21 Usinor Austenitic heat resistant alloy with improved castability and transformation, method of making steel slabs and wires
US20040025989A1 (en) * 2000-09-19 2004-02-12 Akihiko Chiba Co-ni base heat-resistant alloy and method for producing thereof
US20040079453A1 (en) * 2002-10-25 2004-04-29 Groh Jon Raymond Nickel-base alloy and its use in casting and welding operations
FR2848129A1 (en) * 2002-12-05 2004-06-11 Ascometal Sa Fabrication of monolithic piston, for high performance internal combustion engine, involves thixotropic forging of steel or other alloys with elevated mechanical properties
US20080008617A1 (en) * 2006-07-07 2008-01-10 Sawford Maria K Wear resistant high temperature alloy
US20080163957A1 (en) * 2007-01-04 2008-07-10 Ut-Battelle, Llc Oxidation resistant high creep strength austentic stainless steel
US20080241580A1 (en) * 2006-11-21 2008-10-02 Huntington Alloys Corporation Filler Metal Composition and Method for Overlaying Low NOx Power Boiler Tubes
US20080257457A1 (en) * 2007-04-19 2008-10-23 Ati Properties, Inc. Nickel-base alloys and articles made therefrom
US20090016926A1 (en) * 2003-01-25 2009-01-15 Schmidt + Clemens Gmbh + Co. Kg Thermostable and corrosion-resistant cast nickel-chromium alloy
US20090257908A1 (en) * 2008-04-10 2009-10-15 Huntington Alloys Corporation Ultra Supercritical Boiler Header Alloy and Method of Preparation
WO2010043375A1 (en) 2008-10-13 2010-04-22 Schmidt + Clemens Gmbh + Co. Kg Nickel-chromium alloy
CN101921967A (en) * 2010-08-12 2010-12-22 江苏新华合金电器有限公司 Novel austenitic heat-resistance stainless steel
DE102011001488A1 (en) * 2010-09-10 2012-03-15 Vacuumschmelze Gmbh & Co. Kg Linear electric motor comprises a stator and a rotor, where the stator and/or the rotor has a soft magnetic core formed as a sheet metal package, which comprises nickel, cobalt, manganese, silicon and chromium and/or molybdenum
CN103498112A (en) * 2013-10-14 2014-01-08 无锡通用钢绳有限公司 Stainless steel wire rope and production process thereof
US8926769B2 (en) 2005-07-01 2015-01-06 Sandvik Intellectual Property Ab Ni—Cr—Fe alloy for high-temperature use
US20150306710A1 (en) * 2014-04-04 2015-10-29 Special Metals Corporation High Strength Ni-Cr-Mo-W-Nb-Ti Welding Product and Method of Welding and Weld Deposit Using the Same
US10029957B2 (en) * 2012-08-21 2018-07-24 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US10160697B2 (en) * 2012-08-21 2018-12-25 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US10166524B2 (en) * 2012-08-21 2019-01-01 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US10195574B2 (en) * 2012-08-21 2019-02-05 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US10214464B2 (en) * 2012-08-21 2019-02-26 Uop Llc Steady state high temperature reactor
US10563293B2 (en) 2015-12-07 2020-02-18 Ati Properties Llc Methods for processing nickel-base alloys
US10633717B2 (en) 2015-09-29 2020-04-28 Hitachi Metals, Ltd. Low thermal expansion superalloy and manufacturing method thereof
CN112695228A (en) * 2020-12-10 2021-04-23 蜂巢蔚领动力科技(江苏)有限公司 1050 ℃ resistant nickel-based alloy material for nozzle ring vane of supercharger and manufacturing method thereof
DE102020213539A1 (en) 2020-10-28 2022-04-28 Siemens Energy Global GmbH & Co. KG Alloy, blank, component made of austenite and a process
US20220176499A1 (en) * 2020-12-03 2022-06-09 General Electric Company Braze composition and process of using
US11479836B2 (en) 2021-01-29 2022-10-25 Ut-Battelle, Llc Low-cost, high-strength, cast creep-resistant alumina-forming alloys for heat-exchangers, supercritical CO2 systems and industrial applications
WO2023208277A1 (en) 2022-04-28 2023-11-02 Vdm Metals International Gmbh Use of a nickel-iron-chromium alloy having high resistance in carburising and sulphidising and chlorinating environments and simultaneously good processability and strength
WO2023208278A1 (en) 2022-04-28 2023-11-02 Vdm Metals International Gmbh Use of a nickel-iron-chromium alloy having high resistance in highly corrosive environments and simultaneously good processability and strength
US11866809B2 (en) 2021-01-29 2024-01-09 Ut-Battelle, Llc Creep and corrosion-resistant cast alumina-forming alloys for high temperature service in industrial and petrochemical applications

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA975587A (en) * 1973-08-02 1975-10-07 International Nickel Company Of Canada Highly castable weldable oxidation resistant alloys
JPS50159410A (en) * 1974-06-14 1975-12-24
JPS5118210A (en) * 1974-08-05 1976-02-13 Nippon Steel Corp YOSETSUKOZOYOTAINETSU GOKIN
JPS5817818B2 (en) * 1976-09-08 1983-04-09 ガリナ ヴアシリエヴナ ジウルキナ Weldable heat-resistant nickel-based alloy
JPS60155653A (en) * 1984-01-25 1985-08-15 Hitachi Ltd Iron-base super alloy and its production
US4711763A (en) * 1986-12-16 1987-12-08 Cabot Corporation Sulfidation-resistant Co-Cr-Ni alloy with critical contents of silicon and cobalt
JPS63198316A (en) * 1987-01-08 1988-08-17 インコ、アロイス、インターナショナルインコーポレーテッド Tray for processing silicon wafer
JPS63266045A (en) * 1987-04-24 1988-11-02 Nippon Steel Corp High al austenitic heat resistant steel having excellent hot workability
JPH01100239A (en) * 1987-10-13 1989-04-18 Daido Steel Co Ltd High hardness corrosion-resistant alloy
JPH03243746A (en) * 1990-02-21 1991-10-30 Taihei Kinzoku Kogyo Kk Heat-resistant cast steel excellent in high temperature property
DE4411228C2 (en) * 1994-03-31 1996-02-01 Krupp Vdm Gmbh High-temperature resistant nickel-based alloy and use of the same
DE19703035C2 (en) * 1997-01-29 2000-12-07 Krupp Vdm Gmbh Use of an austenitic nickel-chromium-molybdenum-silicon alloy with high corrosion resistance against hot chlorine-containing gases and chlorides
AT408762B (en) * 1999-10-22 2002-03-25 Boehler Bleche Gmbh USE OF AN AUSTENITIC STEEL ALLOY
JP3842053B2 (en) * 2001-03-02 2006-11-08 山陽特殊製鋼株式会社 High strength low thermal expansion alloy with excellent twisting characteristics and its alloy wire
DE10228210B4 (en) * 2002-06-24 2012-09-13 Thyssenkrupp Nirosta Gmbh Heat-resistant sheet steel or strip and components made from them
CN113774256A (en) * 2021-09-14 2021-12-10 常州中钢精密锻材有限公司 High-performance and high-purity Ni-Cr alloy added with rare earth element Ce

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2047918A (en) * 1935-07-27 1936-07-14 Driver Harris Co Alloy
US2240063A (en) * 1940-09-06 1941-04-29 Driver Co Wilbur B Alloys for metal to glass seals
US3113021A (en) * 1961-02-13 1963-12-03 Int Nickel Co Filler wire for shielded arc welding
US3385739A (en) * 1965-04-13 1968-05-28 Eaton Yale & Towne Alloy steel articles and the method of making
US3408179A (en) * 1964-08-14 1968-10-29 Int Nickel Co Corrosion-resistant nickel-chromium alloys with improved stress-rupture characteristics
US3479157A (en) * 1965-06-25 1969-11-18 Int Nickel Co Welded articles and alloys containing hafnium and nickel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2047918A (en) * 1935-07-27 1936-07-14 Driver Harris Co Alloy
US2240063A (en) * 1940-09-06 1941-04-29 Driver Co Wilbur B Alloys for metal to glass seals
US3113021A (en) * 1961-02-13 1963-12-03 Int Nickel Co Filler wire for shielded arc welding
US3408179A (en) * 1964-08-14 1968-10-29 Int Nickel Co Corrosion-resistant nickel-chromium alloys with improved stress-rupture characteristics
US3385739A (en) * 1965-04-13 1968-05-28 Eaton Yale & Towne Alloy steel articles and the method of making
US3479157A (en) * 1965-06-25 1969-11-18 Int Nickel Co Welded articles and alloys containing hafnium and nickel

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086107A (en) * 1974-05-22 1978-04-25 Nippon Steel Corporation Heat treatment process of high-carbon chromium-nickel heat-resistant stainless steels
US4227925A (en) * 1974-09-06 1980-10-14 Nippon Steel Corporation Heat-resistant alloy for welded structures
US4008051A (en) * 1974-09-11 1977-02-15 Brico Engineering Limited Composite metal articles
US4194909A (en) * 1974-11-16 1980-03-25 Mitsubishi Kinzoku Kabushiki Kaisha Forgeable nickel-base super alloy
US4110110A (en) * 1975-08-27 1978-08-29 Mitsubishi Kinzoku Kabushiki Kaisha Nickel-base alloy excellent in corrosion resistance at high temperatures
US4272289A (en) * 1976-03-31 1981-06-09 Cabot Corporation Oxidation resistant iron base alloy articles for welding
US4261767A (en) * 1976-07-28 1981-04-14 Creusot-Loire Alloy resistant to high temperature oxidation
US4108648A (en) * 1976-09-20 1978-08-22 Galina Vasilievna Zhurkina Nickel-based alloy
US4119456A (en) * 1977-01-31 1978-10-10 Steel Founders' Society Of America High-strength cast heat-resistant alloy
US4174213A (en) * 1977-03-04 1979-11-13 Hitachi, Ltd. Highly ductile alloys of iron-nickel-chromium-molybdenum system for gas turbine combustor liner and filler metals
US4153455A (en) * 1977-05-19 1979-05-08 Huntington Alloys, Inc. High temperature nickel-base alloys
US4207098A (en) * 1978-01-09 1980-06-10 The International Nickel Co., Inc. Nickel-base superalloys
US4231795A (en) * 1978-06-22 1980-11-04 The United States Of America As Represented By The United States Department Of Energy High weldability nickel-base superalloy
US4236943A (en) * 1978-06-22 1980-12-02 The United States Of America As Represented By The United States Department Of Energy Precipitation hardenable iron-nickel-chromium alloy having good swelling resistance and low neutron absorbence
US4283234A (en) * 1978-12-15 1981-08-11 Hitachi, Ltd. Gas turbine nozzle
US4421558A (en) * 1980-01-10 1983-12-20 Kubota Ltd. Iron-based heat-resistant cast alloy
US4394560A (en) * 1980-10-09 1983-07-19 Nissan Motor Company, Ltd. Covered electrode containing zirconium for shielded metal arc welding
US4396822A (en) * 1980-10-16 1983-08-02 Nissan Motor Co., Ltd. Welding wire for automatic arc welding
US4594103A (en) * 1983-06-28 1986-06-10 Castolin S.A. Powdered nickel-chromium based material for thermal spraying
EP0244520A1 (en) * 1985-04-16 1987-11-11 Daido Tokushuko Kabushiki Kaisha Heat resistant alloys
US4891183A (en) * 1986-12-03 1990-01-02 Chrysler Motors Corporation Method of preparing alloy compositions
US4999158A (en) * 1986-12-03 1991-03-12 Chrysler Corporation Oxidation resistant iron base alloy compositions
WO1989009841A1 (en) * 1986-12-03 1989-10-19 Chrysler Motors Corporation Method of preparing oxidation resistant iron base alloy compositions
US4735771A (en) * 1986-12-03 1988-04-05 Chrysler Motors Corporation Method of preparing oxidation resistant iron base alloy compositions
US4837550A (en) * 1987-05-08 1989-06-06 Dale Electronics, Inc. Nichrome resistive element and method of making same
US4900417A (en) * 1987-05-08 1990-02-13 Dale Electronics, Inc. Nichrome resistive element and method of making same
US4908185A (en) * 1987-05-08 1990-03-13 Dale Electronics, Inc. Nichrome resistive element and method of making same
AU615904B2 (en) * 1987-05-08 1991-10-17 Dale Electronics Inc. Nichrome resistive element and method of making same
US4911886A (en) * 1988-03-17 1990-03-27 Allegheny Ludlum Corporation Austentitic stainless steel
WO1989009843A1 (en) * 1988-04-04 1989-10-19 Chrysler Motors Corporation Oxidation resistant iron base alloy compositions
EP0386730A1 (en) * 1989-03-09 1990-09-12 Krupp VDM GmbH Nickel-chromium-iron alloy
AU617242B2 (en) * 1989-03-09 1991-11-21 Vdm Nickel-Technologie Ag Heat-deformable, austenitic nickel-chromium-iron alloy with high oxidation resistance and thermal strength
WO1991016467A1 (en) * 1990-04-16 1991-10-31 Carondelet Foundry Company Heat resistant alloys
JPH07150277A (en) * 1993-07-09 1995-06-13 Inco Alloys Internatl Inc Nickel-base alloy having excellent stress breaking strength and grain size controll-ability
US5516485A (en) * 1994-03-17 1996-05-14 Carondelet Foundry Company Weldable cast heat resistant alloy
US5824264A (en) * 1994-10-25 1998-10-20 Sumitomo Metal Industries, Ltd. High-temperature stainless steel and method for its production
WO1997023659A1 (en) * 1995-12-21 1997-07-03 Teledyne Industries, Inc. Stress rupture properties of nickel-chromium-cobalt alloys by adjustment of the levels of phosphorus and boron
US6106767A (en) * 1995-12-21 2000-08-22 Teledyne Industries, Inc. Stress rupture properties of nickel-chromium-cobalt alloys by adjustment of the levels of phosphorus and boron
US5873950A (en) * 1996-06-13 1999-02-23 Inco Alloys International, Inc. Strengthenable ethylene pyrolysis alloy
EP0812926A1 (en) * 1996-06-13 1997-12-17 Inco Alloys International, Inc. Nickel-base alloys used for ethylene pyrolysis applications
US6350324B1 (en) * 1999-04-02 2002-02-26 Imphy Ugine Precision Soft magnetic alloy
EP1252350A1 (en) * 2000-01-24 2002-10-30 Inco Alloys International, Inc. High temperature thermal processing alloy
EP1252350A4 (en) * 2000-01-24 2003-05-02 Inco Alloys Int High temperature thermal processing alloy
US20040025989A1 (en) * 2000-09-19 2004-02-12 Akihiko Chiba Co-ni base heat-resistant alloy and method for producing thereof
EP1312691A1 (en) * 2001-11-16 2003-05-21 Usinor Austenitic heat resistant alloy with improved castability and transformation, method of making steel slabs and wires
US20040079453A1 (en) * 2002-10-25 2004-04-29 Groh Jon Raymond Nickel-base alloy and its use in casting and welding operations
FR2848129A1 (en) * 2002-12-05 2004-06-11 Ascometal Sa Fabrication of monolithic piston, for high performance internal combustion engine, involves thixotropic forging of steel or other alloys with elevated mechanical properties
EP1443200A1 (en) * 2002-12-05 2004-08-04 Ascometal A method for producing a piston for an internal combustion engine and a piston produced by the method
US20040129243A1 (en) * 2002-12-05 2004-07-08 Marc Robelet Method of manufacture of a piston for an internal combustion engine, and piston thus obtained
US7472674B2 (en) 2002-12-05 2009-01-06 Ascometal Method of manufacture of a piston for an internal combustion engine, and piston thus obtained
US20090016926A1 (en) * 2003-01-25 2009-01-15 Schmidt + Clemens Gmbh + Co. Kg Thermostable and corrosion-resistant cast nickel-chromium alloy
US10724121B2 (en) 2003-01-25 2020-07-28 Schmidt + Clemens Gmbh + Co. Kg Thermostable and corrosion-resistant cast nickel-chromium alloy
US10041152B2 (en) * 2003-01-25 2018-08-07 Schmidt + Clemens Gmbh + Co. Kg Thermostable and corrosion-resistant cast nickel-chromium alloy
US8926769B2 (en) 2005-07-01 2015-01-06 Sandvik Intellectual Property Ab Ni—Cr—Fe alloy for high-temperature use
US7651575B2 (en) * 2006-07-07 2010-01-26 Eaton Corporation Wear resistant high temperature alloy
US20080008617A1 (en) * 2006-07-07 2008-01-10 Sawford Maria K Wear resistant high temperature alloy
CN101484597B (en) * 2006-07-07 2011-03-30 伊顿公司 Wear resistant high temperature alloy
US20080241580A1 (en) * 2006-11-21 2008-10-02 Huntington Alloys Corporation Filler Metal Composition and Method for Overlaying Low NOx Power Boiler Tubes
US8568901B2 (en) 2006-11-21 2013-10-29 Huntington Alloys Corporation Filler metal composition and method for overlaying low NOx power boiler tubes
US20080163957A1 (en) * 2007-01-04 2008-07-10 Ut-Battelle, Llc Oxidation resistant high creep strength austentic stainless steel
US7744813B2 (en) * 2007-01-04 2010-06-29 Ut-Battelle, Llc Oxidation resistant high creep strength austenitic stainless steel
US20110206553A1 (en) * 2007-04-19 2011-08-25 Ati Properties, Inc. Nickel-base alloys and articles made therefrom
US8394210B2 (en) * 2007-04-19 2013-03-12 Ati Properties, Inc. Nickel-base alloys and articles made therefrom
US20080257457A1 (en) * 2007-04-19 2008-10-23 Ati Properties, Inc. Nickel-base alloys and articles made therefrom
US20090257908A1 (en) * 2008-04-10 2009-10-15 Huntington Alloys Corporation Ultra Supercritical Boiler Header Alloy and Method of Preparation
US10041153B2 (en) * 2008-04-10 2018-08-07 Huntington Alloys Corporation Ultra supercritical boiler header alloy and method of preparation
US10053756B2 (en) 2008-10-13 2018-08-21 Schmidt + Clemens Gmbh + Co. Kg Nickel chromium alloy
WO2010043375A1 (en) 2008-10-13 2010-04-22 Schmidt + Clemens Gmbh + Co. Kg Nickel-chromium alloy
CN101921967A (en) * 2010-08-12 2010-12-22 江苏新华合金电器有限公司 Novel austenitic heat-resistance stainless steel
DE102011001488B4 (en) * 2010-09-10 2014-07-10 Vacuumschmelze Gmbh & Co. Kg Use of a soft magnetic alloy in a rotor or stator of an electric motor
DE102011001488A1 (en) * 2010-09-10 2012-03-15 Vacuumschmelze Gmbh & Co. Kg Linear electric motor comprises a stator and a rotor, where the stator and/or the rotor has a soft magnetic core formed as a sheet metal package, which comprises nickel, cobalt, manganese, silicon and chromium and/or molybdenum
US10029957B2 (en) * 2012-08-21 2018-07-24 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US10214464B2 (en) * 2012-08-21 2019-02-26 Uop Llc Steady state high temperature reactor
US10160697B2 (en) * 2012-08-21 2018-12-25 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US10166524B2 (en) * 2012-08-21 2019-01-01 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US10195574B2 (en) * 2012-08-21 2019-02-05 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
CN103498112B (en) * 2013-10-14 2015-08-26 无锡通用钢绳有限公司 The production technique of stainless steel wire rope
CN103498112A (en) * 2013-10-14 2014-01-08 无锡通用钢绳有限公司 Stainless steel wire rope and production process thereof
US20150306710A1 (en) * 2014-04-04 2015-10-29 Special Metals Corporation High Strength Ni-Cr-Mo-W-Nb-Ti Welding Product and Method of Welding and Weld Deposit Using the Same
US9815147B2 (en) * 2014-04-04 2017-11-14 Special Metals Corporation High strength Ni—Cr—Mo—W—Nb—Ti welding product and method of welding and weld deposit using the same
US10633717B2 (en) 2015-09-29 2020-04-28 Hitachi Metals, Ltd. Low thermal expansion superalloy and manufacturing method thereof
US11725267B2 (en) 2015-12-07 2023-08-15 Ati Properties Llc Methods for processing nickel-base alloys
US10563293B2 (en) 2015-12-07 2020-02-18 Ati Properties Llc Methods for processing nickel-base alloys
DE102020213539A1 (en) 2020-10-28 2022-04-28 Siemens Energy Global GmbH & Co. KG Alloy, blank, component made of austenite and a process
US20220176499A1 (en) * 2020-12-03 2022-06-09 General Electric Company Braze composition and process of using
US11426822B2 (en) * 2020-12-03 2022-08-30 General Electric Company Braze composition and process of using
CN112695228A (en) * 2020-12-10 2021-04-23 蜂巢蔚领动力科技(江苏)有限公司 1050 ℃ resistant nickel-based alloy material for nozzle ring vane of supercharger and manufacturing method thereof
US11479836B2 (en) 2021-01-29 2022-10-25 Ut-Battelle, Llc Low-cost, high-strength, cast creep-resistant alumina-forming alloys for heat-exchangers, supercritical CO2 systems and industrial applications
US11866809B2 (en) 2021-01-29 2024-01-09 Ut-Battelle, Llc Creep and corrosion-resistant cast alumina-forming alloys for high temperature service in industrial and petrochemical applications
WO2023208277A1 (en) 2022-04-28 2023-11-02 Vdm Metals International Gmbh Use of a nickel-iron-chromium alloy having high resistance in carburising and sulphidising and chlorinating environments and simultaneously good processability and strength
DE102022110383A1 (en) 2022-04-28 2023-11-02 Vdm Metals International Gmbh Using a nickel-iron-chromium alloy with high resistance in carburizing and sulfiding and chlorinating environments while maintaining good workability and strength
WO2023208278A1 (en) 2022-04-28 2023-11-02 Vdm Metals International Gmbh Use of a nickel-iron-chromium alloy having high resistance in highly corrosive environments and simultaneously good processability and strength
DE102022110384A1 (en) 2022-04-28 2023-11-02 Vdm Metals International Gmbh Using a nickel-iron-chromium alloy with high resistance in highly corrosive environments while maintaining good workability and strength

Also Published As

Publication number Publication date
GB1424232A (en) 1976-02-11
JPS4879120A (en) 1973-10-24
JPS5631345B2 (en) 1981-07-21

Similar Documents

Publication Publication Date Title
US3865581A (en) Heat resistant alloy having excellent hot workabilities
US4279646A (en) Free cutting steel containing sulfide inclusion particles with controlled aspect, size and distribution
EP2199420B1 (en) Austenitic stainless steel
US8043446B2 (en) High manganese duplex stainless steel having superior hot workabilities and method manufacturing thereof
US4789412A (en) Cobalt-base alloy having high strength and high toughness, production process of the same, and gas turbine nozzle
US3567434A (en) Stainless steels
EP0381121A1 (en) High-strength heat-resistant steel with improved workability
EP0545753A1 (en) Duplex stainless steel having improved strength and corrosion resistance
JP4787640B2 (en) Composite roll for rolling
US4227925A (en) Heat-resistant alloy for welded structures
JP2005206913A (en) Alloy tool steel
EP2247761B1 (en) Method of making a high strength, high toughness, fatigue resistant, precipitation hardenable stainless steel
US3807991A (en) Ferritic stainless steel alloy
EP3722448A1 (en) High-mn steel and method for manufacturing same
US3132937A (en) Cast steel
US4086107A (en) Heat treatment process of high-carbon chromium-nickel heat-resistant stainless steels
US4832765A (en) Duplex alloy
US3128175A (en) Low alloy, high hardness, temper resistant steel
JPH0555585B2 (en)
US3262823A (en) Maraging steel
CA1063838A (en) Nickel-chromium filler metal
JPS5916954A (en) Roller for continuous casting
JP2819906B2 (en) Ni-base alloy for tools with excellent room and high temperature strength
JPH08325673A (en) Composite roll for rolling excellent in wear resistance, surface roughening resistance and the like
JPH0450366B2 (en)