US20060006144A1 - Arc-extinguishing composition and articles manufactured therefrom - Google Patents
Arc-extinguishing composition and articles manufactured therefrom Download PDFInfo
- Publication number
- US20060006144A1 US20060006144A1 US10/887,937 US88793704A US2006006144A1 US 20060006144 A1 US20060006144 A1 US 20060006144A1 US 88793704 A US88793704 A US 88793704A US 2006006144 A1 US2006006144 A1 US 2006006144A1
- Authority
- US
- United States
- Prior art keywords
- arc
- composition
- melamine
- extinguishing
- nylon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 146
- 239000011230 binding agent Substances 0.000 claims abstract description 122
- 229920000877 Melamine resin Polymers 0.000 claims abstract description 78
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims abstract description 76
- 150000001875 compounds Chemical class 0.000 claims abstract description 72
- 239000007822 coupling agent Substances 0.000 claims abstract description 50
- -1 melamine Chemical class 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims description 72
- 239000002245 particle Substances 0.000 claims description 29
- 229920001778 nylon Polymers 0.000 claims description 21
- 239000004677 Nylon Substances 0.000 claims description 20
- 239000004014 plasticizer Substances 0.000 claims description 19
- 229920002292 Nylon 6 Polymers 0.000 claims description 18
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 12
- 150000008064 anhydrides Chemical class 0.000 claims description 11
- 150000001412 amines Chemical class 0.000 claims description 10
- 239000004952 Polyamide Substances 0.000 claims description 9
- 229920002647 polyamide Polymers 0.000 claims description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- QQLZTRHXUSFZOM-UHFFFAOYSA-N 6-amino-1h-1,3,5-triazine-2,4-dithione Chemical compound NC1=NC(=S)NC(=S)N1 QQLZTRHXUSFZOM-UHFFFAOYSA-N 0.000 claims description 7
- MASBWURJQFFLOO-UHFFFAOYSA-N ammeline Chemical compound NC1=NC(N)=NC(O)=N1 MASBWURJQFFLOO-UHFFFAOYSA-N 0.000 claims description 7
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 claims description 6
- POJWUDADGALRAB-UHFFFAOYSA-N allantoin Chemical compound NC(=O)NC1NC(=O)NC1=O POJWUDADGALRAB-UHFFFAOYSA-N 0.000 claims description 6
- 150000001408 amides Chemical class 0.000 claims description 6
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 6
- 150000004820 halides Chemical class 0.000 claims description 6
- 239000004593 Epoxy Substances 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 5
- 150000002148 esters Chemical class 0.000 claims description 5
- 229920000571 Nylon 11 Polymers 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- 150000002596 lactones Chemical class 0.000 claims description 4
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 claims description 3
- POJWUDADGALRAB-PVQJCKRUSA-N Allantoin Natural products NC(=O)N[C@@H]1NC(=O)NC1=O POJWUDADGALRAB-PVQJCKRUSA-N 0.000 claims description 3
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 claims description 3
- 229920003189 Nylon 4,6 Polymers 0.000 claims description 3
- 229920000572 Nylon 6/12 Polymers 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 3
- DZHMRSPXDUUJER-UHFFFAOYSA-N [amino(hydroxy)methylidene]azanium;dihydrogen phosphate Chemical compound NC(N)=O.OP(O)(O)=O DZHMRSPXDUUJER-UHFFFAOYSA-N 0.000 claims description 3
- 229960000458 allantoin Drugs 0.000 claims description 3
- 239000004202 carbamide Substances 0.000 claims description 3
- STIAPHVBRDNOAJ-UHFFFAOYSA-N carbamimidoylazanium;carbonate Chemical compound NC(N)=N.NC(N)=N.OC(O)=O STIAPHVBRDNOAJ-UHFFFAOYSA-N 0.000 claims description 3
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 claims description 3
- ZMUCVNSKULGPQG-UHFFFAOYSA-N dodecanedioic acid;hexane-1,6-diamine Chemical compound NCCCCCCN.OC(=O)CCCCCCCCCCC(O)=O ZMUCVNSKULGPQG-UHFFFAOYSA-N 0.000 claims description 3
- DXTIKTAIYCJTII-UHFFFAOYSA-N guanidine acetate Chemical compound CC([O-])=O.NC([NH3+])=N DXTIKTAIYCJTII-UHFFFAOYSA-N 0.000 claims description 3
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 claims description 3
- 229940091173 hydantoin Drugs 0.000 claims description 3
- DOUHZFSGSXMPIE-UHFFFAOYSA-N hydroxidooxidosulfur(.) Chemical compound [O]SO DOUHZFSGSXMPIE-UHFFFAOYSA-N 0.000 claims description 3
- 150000003951 lactams Chemical class 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 claims description 3
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 claims description 3
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 claims description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 3
- 229940045136 urea Drugs 0.000 claims description 3
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 claims 2
- ZQKXQUJXLSSJCH-UHFFFAOYSA-N melamine cyanurate Chemical compound NC1=NC(N)=NC(N)=N1.O=C1NC(=O)NC(=O)N1 ZQKXQUJXLSSJCH-UHFFFAOYSA-N 0.000 claims 2
- 125000000524 functional group Chemical group 0.000 abstract description 23
- 229920000642 polymer Polymers 0.000 abstract description 20
- 238000000034 method Methods 0.000 abstract description 17
- 239000000126 substance Substances 0.000 abstract description 12
- 238000010791 quenching Methods 0.000 description 31
- 229920001577 copolymer Polymers 0.000 description 17
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 16
- 230000008878 coupling Effects 0.000 description 15
- 238000010168 coupling process Methods 0.000 description 15
- 238000005859 coupling reaction Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- 239000004698 Polyethylene Substances 0.000 description 14
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 230000007613 environmental effect Effects 0.000 description 11
- 239000000178 monomer Substances 0.000 description 11
- 229920000573 polyethylene Polymers 0.000 description 11
- 238000005382 thermal cycling Methods 0.000 description 10
- 229920004943 Delrin® Polymers 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 239000004743 Polypropylene Substances 0.000 description 8
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 7
- 239000005977 Ethylene Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 229920001169 thermoplastic Polymers 0.000 description 7
- 239000004416 thermosoftening plastic Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 6
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 6
- 229920001897 terpolymer Polymers 0.000 description 6
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 239000002491 polymer binding agent Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 3
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 3
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010891 electric arc Methods 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- YYXLGGIKSIZHSF-UHFFFAOYSA-N ethene;furan-2,5-dione Chemical compound C=C.O=C1OC(=O)C=C1 YYXLGGIKSIZHSF-UHFFFAOYSA-N 0.000 description 3
- 229920006226 ethylene-acrylic acid Polymers 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920005596 polymer binder Polymers 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004609 Impact Modifier Substances 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920005822 acrylic binder Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 125000004069 aziridinyl group Chemical group 0.000 description 2
- 229920005601 base polymer Polymers 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 2
- 230000000536 complexating effect Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 150000001282 organosilanes Chemical class 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004954 Polyphthalamide Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920006465 Styrenic thermoplastic elastomer Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229920003182 Surlyn® Polymers 0.000 description 1
- 239000005035 Surlyn® Substances 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 150000007973 cyanuric acids Chemical class 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- YWJUZWOHLHBWQY-UHFFFAOYSA-N decanedioic acid;hexane-1,6-diamine Chemical compound NCCCCCCN.OC(=O)CCCCCCCCC(O)=O YWJUZWOHLHBWQY-UHFFFAOYSA-N 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical group C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- CGPRUXZTHGTMKW-UHFFFAOYSA-N ethene;ethyl prop-2-enoate Chemical compound C=C.CCOC(=O)C=C CGPRUXZTHGTMKW-UHFFFAOYSA-N 0.000 description 1
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical compound C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229920001112 grafted polyolefin Polymers 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- UPRXAOPZPSAYHF-UHFFFAOYSA-N lithium;cyclohexyl(propan-2-yl)azanide Chemical compound CC(C)N([Li])C1CCCCC1 UPRXAOPZPSAYHF-UHFFFAOYSA-N 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 229920001910 maleic anhydride grafted polyolefin Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920006260 polyaryletherketone Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920006375 polyphtalamide Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 150000003141 primary amines Chemical group 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920002397 thermoplastic olefin Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/38—Means for extinguishing or suppressing arc
- H01H85/42—Means for extinguishing or suppressing arc using an arc-extinguishing gas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/70—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
- H01H33/76—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid wherein arc-extinguishing gas is evolved from stationary parts; Selection of material therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/30—Means for extinguishing or preventing arc between current-carrying parts
- H01H9/302—Means for extinguishing or preventing arc between current-carrying parts wherein arc-extinguishing gas is evolved from stationary parts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/38—Means for extinguishing or suppressing arc
- H01H2085/388—Means for extinguishing or suppressing arc using special materials
Definitions
- the present invention relates to arc-quenching materials and articles fabricated therefrom for high-voltage electrical devices and equipment such as circuit interrupters wherein, under certain conditions of operation, a high-voltage electrical arc is produced that is either desirably, or by necessity, quenched. More particularly, the present invention relates to a composition to achieve arc-quenching and structural properties in devices such as circuit interrupters, high-voltage fuses, circuit breakers, and separable cable connectors.
- the arc-quenching materials should include characteristics and properties sufficient for the particular application so as to be effective in quenching arcs via the rapid evolution of quenching gases.
- the evolved quenching gases should also be relatively nonconductive.
- the arc-quenching materials are capable of being molded or otherwise fabricated into suitable articles and shapes having desirable structural properties, thermal stability, and environmental resistance to thermal cycling.
- a sleeve or liner surrounds the path of the arc during fuse operation with the sleeve or liner being fabricated from an arc-extinguishing material.
- U.S. Pat. Nos. 3,629,767 and 4,307,369 for an example of fuses of this type surrounded by arc-extinguishing sleeves or liners.
- Typical arc-extinguishing materials and their properties are disclosed in the following U.S. Pat. Nos. 3,582,586; 3,761,669; 4,251,699; and 4,444,671.
- One composition in U.S. Pat. No. 3,582,586 includes melamine and polyethylene. While this composition is generally suitable for various applications and exhibits desirable arc-quenching properties, for many applications, it would be desirable to achieve a composition with improved mechanical characteristics and environmental resistance to thermal cycling while maintaining the desirable arc-quenching characteristics.
- melamine C 3 N 6 H 6
- Other, related nitrogen-containing compounds are also recognized in the prior art as arc-quenching or arc-interrupting compounds and are disclosed in Amundson et al U.S. Pat. No. 2,526,448.
- Melamine and its related compounds have excellent arc-interrupting characteristics but suffer from extreme structural weakness, so that they cannot be molded or pressed into satisfactory structural shapes except in combination with a suitable binder.
- a binder For a binder to be most effective in an arc-quenching or arc-interrupting composition it should volatilize or decompose in the presence of an electric arc, as does melamine.
- the binder does not necessarily have to provide any arc-interrupting or arc-extinguishing characteristics to the composition, since, in some cases, the arc-interrupting characteristics of the melamine included in the composition is sufficient for arc-interrupting purposes.
- the binder therefore, is primarily included for purposes of providing the melamine-containing composition with sufficient moldability and to provide a molded structure of sufficient physical strength, physical and chemical stability, and electrical insulating properties to provide a structurally sound, molded product.
- the physical strength of the molded product is most evident in its tensile strength, its percent elongation, and the amount of energy required to break the molded structure, or impact strength.
- Structural damage i.e., cracks have been found in prior art devices containing polyethylene as its primary binder material, and such damage is unacceptable in this art, since the break point allows another air space for the gases and arc to fill, thereby significantly lessening the arc-interrupting properties of the arc-interrupting device.
- failed arc extinguishing compositions that contain melamine usually fail because the pressure wave associated with the arc causes the composition to physically break before it has an opportunity to extinguish the arc.
- the arc-extinguishing compositions described herein extinguish the arc without physically breaking.
- thermoplastic polymeric binders have been found to be the most useful in arc-interrupting compositions based upon melamine or similar compounds, since the thermoplastic binders volatilize or decompose in the presence of an electric arc at lower power conditions than necessary to sublime melamine thereby producing large volumes of gas to drive the melamine into the core of the arc and to extinguish the arc under a wide range of power conditions. Further, the thermoplastic binders provide compositions with good molding characteristics, stability and electrical insulating properties.
- thermoplastic polymeric resins known to be useful as binders in melamine-based arc-interrupting compositions include polyethylene, polypropylene, polytetrafluoroethylene, acrylics, polystyrene, cellulosics polyamides (nylons), polyacetals (DELRIN), polyphenylene oxides, blends such as ABS, and polyimides.
- elastomeric, rubber-like materials as a portion of the binder in melamine-based arc-interrupting compositions such as butyl compounds, isoprene-based compounds, neoprene-based compounds and other synthetic elastomers.
- a binder comprising a carboxylic acid group-containing polymer, particularly a copolymer of two different monomers, at least one of which contains a carboxylic acid moiety, such as an ethylene acrylic acid copolymer.
- the carboxylic acid functionalities of the binder interact with arc-extinguishing compounds having carboxylic acid-active sites, such as amine, thiol, alcohol, halogen, and the like sites, to provide added physical strength and stability to the composition.
- the molded composition including the arc-interrupting compound and the binder, maintains excellent arc-interrupting capability, chemical stability and electrical insulating properties as well as increased physical strength.
- the present invention is directed to a new and improved arc extinguishing composition
- a new and improved binder for compositions containing an arc-interrupting compound, such as melamine, and to a method of extinguishing an arc by disposing the composition along the path of the arc, for contacting the arc.
- the binder or at least a portion of the binder, is a polymer that contains a functional group that binds to a coupling agent that is included in the arc-extinguishing composition.
- the coupling agent which may be a polymer that is compatible with the binder, contains a functional group that binds to the arc-extinguishing compound to tie the polymeric binder to the arc-extinguishing compound, e.g., melamine, to provide new and unexpected physical strength and stability to the composition.
- the molded composition including the arc-interrupting compound coupled to the binder, maintains excellent arc-interrupting capability, while providing chemical stability and electrical insulating properties as well as unexpected physical strength.
- the melamine or other arc-extinguishing compound provides unexpectedly better results when incorporated into the composition in finely divided form; and improved results are provided by combining a plasticizer for the polymeric binder.
- At least three embodiments of the arc-quenching materials and articles are described herein—each embodiment providing improved mechanical properties and/or arc-extinguishing results either alone or in combination with one or both of the other embodiments.
- Each of these three individual embodiments can be included alone in the materials and articles described herein or any two or three of these embodiments can be combined to further improve the materials and articles described herein.
- compositions described herein are suitable for deionizing and extinguishing a high-voltage electrical arc.
- the compositions include effective amounts of an arc-extinguishing material, such as melamine, and sufficient binding polymer to achieve the desired combination of arc-extinguishing properties and structural characteristics, such as tensile strength, elongation, environmental resistance to thermal cycling, and the like. Additionally, the composition for various applications and uses may include additives, fillers or fibrous materials.
- the composition is homogenized by compounding the constituents using dry blending, roll mill, extrusion and/or other plastic compounding techniques to obtain the molding resin compositions.
- the molding resin then is molded into articles of the desired shape using plastic processing techniques, such as injection molding, extrusion, and the like.
- plastic processing techniques such as injection molding, extrusion, and the like.
- a nylon base polymer binder is combined with melamine and an anhydride-functional coupling agent to achieve the desired arc-extinguishing and mechanical characteristics by virtue of the bonding and/or miscibility between the melamine, nylon, and the anhydride-functional coupling agent.
- the composition includes non-functionalized base polymeric binder(s) with or without the coupling agent and contains a finely divided arc-extinguishing material and/or a plasticizer for the base polymeric binder(s).
- compositions, articles and methods described herein is to provide a new and improved arc-quenching composition
- a new and improved arc-quenching composition comprising effective proportions of an arc-extinguishing compound, such as melamine, and a polymeric binder containing coupling agent-interactive moieties, such as an ethylene maleic anhydride polymer, and a suitable coupling agent capable of chemically and/or mechanically attaching the arc-extinguishing compound to the coupling agent and coupling the arc-extinguishing compound to the polymeric binder to achieve improved strength and desirable environmental resistance to thermal cycling.
- an arc-extinguishing compound such as melamine
- a polymeric binder containing coupling agent-interactive moieties such as an ethylene maleic anhydride polymer
- suitable coupling agent capable of chemically and/or mechanically attaching the arc-extinguishing compound to the coupling agent and coupling the arc-extinguishing compound to the polymeric
- compositions, articles, and methods described herein is to provide a new and improved arc-extinguishing composition with improved mechanical characteristics, when molded, while exhibiting at least the same desirable electrical arc-extinguishing characteristics of previously available arc-extinguishing compositions and articles.
- compositions, articles and methods described herein are to provide a new and improved arc-extinguishing composition including an arc-interrupting compound and a polymeric binder wherein the binder is a polymer, or copolymer formed from two different monomers, including coupling agent reactive groups or moieties for coupling the binder to the arc-interrupting compound through a coupling agent.
- compositions, articles and methods described herein are to provide a new and improved arc-extinguishing composition including an arc-extinguishing compound having at least one site reactive with a coupling agent-contained functional group; or a polymeric binder material including a plurality of reactive coupling agent contained functional moieties, such that when the composition is molded under heat and pressure, the arc-extinguishing compound and the polymeric binder will chemically bond (including ionic and/or covalent bonds) to the coupling agent to provide new and unexpected physical strength in the molded composition.
- Still another aspect of the compositions, articles and methods described herein, is to provide a new and improved arc-interrupting composition including an arc-interrupting compound having at least one reactive amine site in its molecule, such as melamine, and a thermoplastic resin binder material containing an amine-reactive site and a binder-reactive site; together with a suitable coupling agent for coupling the arc-interrupting compound to the polymeric binder through the coupling agent.
- an arc-interrupting compound having at least one reactive amine site in its molecule, such as melamine, and a thermoplastic resin binder material containing an amine-reactive site and a binder-reactive site
- compositions, articles and methods described herein are to provide a new and improved arc-interrupting composition that provides sufficient and excellent arc-interrupting characteristics as well as new and unexpected molding and physical strength properties such as tensile strength, elongation and ability to withstand thermal cycling and resist cracking.
- FIG. 1 is a bar graph showing mechanical toughness properties for the arc-extinguishing compositions of Table 1 in comparison to DELRIN 500;
- FIG. 2 and 3 are bar graphs showing weight changes due to water and nitric acid attack on the arc-extinguishing compositions of Table 1 in comparison to DELRIN 500;
- FIG. 4 is a bar graph showing the particle size distribution of standard grade and fine grade melamine
- FIG. 5 is a perspective view of a fuse sleeve or liner formed from the arc-extinguishing compositions described herein;
- FIG. 6 is a partially broken-away side view showing the sleeve or liner of FIG. 1 surrounding a fuse.
- the physical and thermal properties of an arc-extinguishing composition can be unexpectedly improved when the arc-extinguishing composition includes a binder that contains a coupling agent-reactive functional group, such as an anhydride group, that bonds to coupling agent.
- binders are particularly effective when used with arc-extinguishing compounds that have available reactive sites, such as amine groups; compounds containing one or more available hydroxyl groups, epoxy groups and/or aziridine groups; or compounds containing one or more available thiol groups having available carboxylic acid-reactive sulphur atoms, but are also effective with other arc-extinguishing compounds.
- polymeric binders having one or more coupling agent-reactive functional groups, and the reactive coupling agents, described herein have been found to be particularly effective with melamine or other similar arc-extinguishing compounds, such as benzoguanamine, dithioammelide, ammeline, and a cyanuric halide.
- the functionalized, coupling agent-reactive polymeric binder need not form 100% of the binder material used in the arc-extinguishing compositions and excellent results have been found in improvement of known arc-extinguishing compositions when the functionalized binder is included in only a small portion, e.g., 0.5 to 20% by weight, of the binder material used.
- the non-reacted (non-functional) portion of the coupling agent and polymeric binder should be sufficiently compatible such that the composition, when melted, forms a homogenous composition.
- Suitable polymeric binders having one or more coupling agent-reactive functional groups include thermoplastic and thermosetting polymers having one or more functional groups selected from anhydride, carbonyl, hydroxyl, carboxyl, amine, amide, ether, lactam, lactone, epoxy, ester, sulfate, sulfonate, sulfinate, sulfamate, phosphate, phosphonate, and/or phosphinate; or an aromatic ring capable of covalently or ionically bonding to the coupling agent.
- the binder has a functional group selected from anhydride, carbonyl, carboxyl, hydroxyl, amine, amide (particularly any nylon), ether, and/or an aromatic ring having a reactive group as part of the ring structure or as an extending coupling agent-reactive functional group.
- a functional group selected from anhydride, carbonyl, carboxyl, hydroxyl, amine, amide (particularly any nylon), ether, and/or an aromatic ring having a reactive group as part of the ring structure or as an extending coupling agent-reactive functional group.
- suitable polymeric binders containing these coupling agent-reactive functional groups include polypropylene, nylon 4/6, nylon 6/6, nylon 6, nylon 11, nylon 6/12, high-impact nylon, mineral-filled nylon, polycarbonate, polystyrene, acrylonitrile butadiene styrene, polysulfone, polybutylene terphthalate, polyethylene terphthalate, polyphenylene sulfide, polyester thermoplastic elastomer, polyetherimide, styrenic thermoplastic elastomer, olefinic thermoplastic elastomer, polyurethane thermoplastic, polyphenylene oxide, polyetheretherketone, phenylene ether co-polymer, polycarbonate/acrylonitrile butadiene styrene, polyarylether ketone, polyetherketoneetherketoneketone, polyphthalamide, and polyetherketoneketone and blends of any two or more of these polymers.
- Other suitable base resins include perfluoroal
- the functionalized binders used in one embodiment of the arc-interrupting compositions can be used in a widely varying amount, as well known in the art, together with the arc-interrupting or arc-extinguishing compound, such as melamine, and can be a combination of a number of different thermosetting and/or thermoplastic binder materials well known in the art.
- the functionalized binders are usually included in amounts of at least about 10% by weight of the total arc-interrupting composition and preferably in an amount of at least about 20% by weight of the arc-interrupting composition.
- the coupling agents used in the coupling agent embodiment to tie the arc-extinguishing compound to the functionalized polymeric binder preferably is a monomeric or polymeric compound that contains reactive functional groups that provide covalent bonds to both the arc-extinguishing compound and the polymeric binder.
- the attractive interaction between the coupling agent and/or the arc-extinguishing compound and/or the polymeric binder also can be by any mechanism selected from the group consisting of electrostatic complexing, ionic complexing, chelation, hydrogen bonding, ion-dipole, dipole/dipole, Van Der Waals forces, and any combination thereof.
- the preferred coupling agent is a polymer, e.g., terpolymer, that has an anhydride functionality for reaction with the preferred melamine arc-extinguishing compound.
- a polymer e.g., terpolymer
- an ethylene/ethyl acrylate/maleic anhydride terpolymer coupling agent e.g., Lotader 4720 from Atofina Chemicals Corporation
- the non-functional portion of the Lotadur coupling agent is compatible with the nylon, e.g., nylon 6 polymeric binder.
- suitable coupling agents include organosilanes, organofunctional silylating agents, particularly the organosilanes having an amino, epoxy, acrylate, n-mercapto and/or vinyl functionality including (3-Acryloxypropyl)trimethoxysilane; N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane; 3-Aminopropyltriethoxysilane; 3-Aminopropyltrimethoxylsilane; 3-Isocyanatoproplytriethoxysilane; (3-Glycidoxypropyl)trimethoxysilane; 3-Mercaptopropyltrimethoxysilane; 3-Methacryloxypropyltrimethoxysilane; and Vinyltrimethoxysilane.
- organosilanes organofunctional silylating agents, particularly the organosilanes having an amino, epoxy, acrylate, n-mercapto and/or vinyl functionality including (3-A
- the preferred coupling agents are functionalized polyolefins, e.g., polyethylene or polypropylene that is functionalized with one or more reactive functionalities that provide reactivity or electrostatic association with the arc-extinguishing material and with the polymeric binder.
- the coupling agent preferably includes glycidylmethacrylate (GMA) and/or maleic anhydride (MAH) functional groups for better compatibility with polyester, polyamide and/or polyolefin polymeric binders.
- the most preferred coupling agents are functionalized polyolefins, particularly terpolymers of ethylene or propylene (PE or PP) with ethylacrylate (EA) and maleic anhydride (MAH) or glycidylmethacrylate having 6.5-30 wt. % EA; 0.3-3.1 wt. % MAH or GMA with the remaining 66.9 wt. % to 93.2 wt. % being PE or PP, preferably polyethylene.
- EA ethylacrylate
- MAH maleic anhydride
- GMAH glycidylmethacrylate
- the terpolymer containing MAH is sold under the trade name Lotader, from Atofina Chemicals.
- Suitable coupling agents include terpolymers of PE or PP with MAH and n-butyl acrylate (Lotader grades 2210, 3210, 4210 and 3410); MAH grafted ethylene/butane copolymers (elastomers), having about 0.25 wt. % to 1 wt.
- % MAH sold by Dow Plastics, as AMPLIFY GR 208 functional polymers; titanate quarternary ammonium compounds, such as those sold by KENRICH petrochemicals as KEN-REACT® Water Soluble Chelate Titanate Quats and KEN-REACT® LICA®; KEN-REACT® NZ® Neoalkoxy Zinconates and Quats; KEN-REACT® KZ® Cycloheteroatom Zinconates; KEN-REACT® KA Reluminates; CAPOW® KR® and L® Series Titanate Coupling Agent Powders; styrene/maleic anhydride copolymers; epoxy modified polyolefins, particularly terpolymers of ethylene/methyl acrylate/glycidylmethacrylate (E-MA-GMA) or copolymers of ethylene and glycidylmethacrylate (E-GMA) having a GMA content of 3-8 wt.
- E-MA-GMA ethylene
- MA methyl acrylate
- the arc-interrupting compound included in the compositions described herein, such as melamine, is included in the compositions in their normal amounts, well-known in the art, and generally in amounts of about 5% to about 90% by total weight of the arc-interrupting composition, preferably about 10% to about 70%, more preferably about 20% to about 50%, based on the total weight of the composition.
- Excellent results are achieved with arc-interrupting compounds and binder materials present in proportions ranging from about four parts by weight of arc-interrupting compound to one part by weight of polymeric binder material by weight to about one part by weight of arc-interrupting compound to one part by weight of polymeric binder material. Best results are achieved when the arc-interrupting compound is included in the composition in an amount of two to three parts by weight of arc-interrupting compound per part by weight of polymeric binder material.
- the functional group-containing polymers or copolymers should be included in an amount sufficient to improve the tensile strength of the molded composition, preferably more than a 10% increase in tensile strength, as a result of the addition of the functional group-containing binder.
- a typical prior art arc-interrupting composition includes melamine in a polyethylene binder in proportions of three parts by weight of melamine to one part by weight of polyethylene binder and has a tensile strength of 1133 psi.
- a coupling agent-interacting functionalized polymeric binder such as ethylene/maleic anhydride
- the tensile strength is increased more than 10%.
- the tensile strength is increased to 1677 psi, or almost 50%.
- the binder material used with the arc-interrupting compound should include the functional group-containing polymers or copolymers described herein in amounts of about 2% by weight to about 100% by weight preferably about 50% to about 100% by weight, based on the total weight of polymeric binders contained in the composition.
- the remaining percentage of binder material can be any binder effective for moldability and arc-extinguishing characteristics, such as the polyolefins, e.g.
- polyethylene and/or polypropylene polyfluorinated resins, such as polytetrafluoroethylene, acrylic resins, polyamides, such as any nylon, and any other suitable binders, including thermosetting resins, such as epoxy resins, polyester resins, phenolic resins, and the like.
- Various elastomeric materials also may be included to improve the elongation properties of the molded compositions, such as butyl-based and/or isoprene-based and/or neoprene-based synthetic elastomers.
- the binders are useful with any arc-interrupting compound(s) to provide an arc-quenching composition that is readily moldable into a desired shape while exhibiting structural properties, thermal stability, and environmental resistance to thermal cycling heretofore impossible with known arc-quenching compositions.
- Very unexpected structural (mechanical) property improvements are achieved for the coupling agent embodiment when the arc-interrupting compound is a material that includes one or more reactive sites that are chemically reactive with one or more reactive moieties of a coupling agent, which is also chemically reactive with the functional binders described herein.
- melamine C 6 N 6 H 6
- melamine includes three equally spaced reactive primary amine moieties that can chemically bond (including ionic and/or covalent bonds) with the extending functional moieties of a vinyl/maleic anhydride binder, wherein the anhydride group acts as a coupling agent for the melamine, thereby achieving new and unexpected tensile strength, elongation and resistance to thermal cycling, while maintaining excellent arc-extinguishing properties.
- the percentage of functional group-containing monomer used in forming a functionalized binder polymer or copolymer can be varied widely to provide sufficient reactive, e.g., anhydride moieties, in the copolymer for chemical bonding (including ionic and/or covalent bonds) at one, two or all three of the reactive amine sites extending from the melamine vinyl structure.
- anhydride moieties in the copolymer for chemical bonding (including ionic and/or covalent bonds) at one, two or all three of the reactive amine sites extending from the melamine vinyl structure.
- different degrees of compound-binder chemical bonding can be provided for different properties when the functional group-containing polymers are used as at least a portion of the binder in the manufacture of arc-quenching compositions.
- the amount of functional group-containing monomer that should be polymerized, or copolymerized with a second monomer in forming copolymers is from about 0.5 percent to about 80%, based on the total weight of the polymerizable monomers, with the second monomer present in an amount of about 20% by weight to about 95% by weight based on the total weight of both monomers.
- Such copolymers are readily available, such as the ethylene/maleic anhydride copolymers manufactured by Atofinacontaining various amounts of maleic anhydride monomer.
- copolymer coupling agent sold by Atofina under the TrademarkLODATER 4720 provides an arc-quenching composition having exceptionally good structural characteristics, thermal stability and environmental resistance to thermal cycling.
- Other functionalized polymers and copolymers can be used having more or less coupling agent-reactive moieties, e.g., an anhydride percentage, and should provide similar structural improvements when used as a coupled binder in arc-quenching compositions.
- a reactive site on the arc-quenching compound chemically bonds (ionically and/or covalently) with the functional moiety of the polymeric binder to achieve new and unexpected tensile strength, elongation and resistance to cracking heretofore unachieved in the prior art.
- other arc-quenching compounds also include reactive sites, such as benzoguanamine having a pair of extending reactive amine groups; thio substituted organic arc-quenching compounds, such as dithioammelide; ammeline; and halogenated compounds such as cyanuric chloride.
- Each of these compounds has the ability to generate large volumes of arc-extinguishing gases under the influence of an electric arc.
- Each of these compounds is useful in accordance with compositions, materials, and articles described herein, in combination with the coupling agent-reactive binders; and/or finely divided form of the arc-extinguishing compounds; and/or the plasticizers for the polymeric binders, to achieve new and unexpected structural, mechanical and physical properties in an arc-extinguishing or arc-interrupting composition.
- a reactive, arc-extinguishing compound such as melamine
- any arc-extinguishing compounds that have reactive epoxy groups, aziridine groups, thiol groups, hydroxyl groups, halogen groups, and like -reactive sites, also can chemically bond (including ionic and/or covalent bonds) with the reactive functional groups from the polymeric binders used in the compositions described herein to provide new and unexpected structural properties, thermal stability, and thermal cycling resistance.
- the molecular weights of the reactive, functionalized polymeric binders vary widely and can range from a low of about 250 weight average molecular weight to a high of about 500,000 or more while achieving exceptionally good physical properties, thermal stability and resistance to thermal cycling in accordance with the compositions, articles, and methods described herein. It is preferred that the weight average molecular weight of the polymeric binders be in the range of about 1,000 to about 100,000 weight average molecular weight, and more preferably in the range of about 1,000 to about 50,000 weight average molecular weight.
- Fibrous additives include glass, inorganic fibers and organic fibers, such as polyacrylonitrile, polyamide and polyester fibers. Fillers that may be included are, for example, cellulosic materials, calcium carbonate, metal oxides, comminuted polymers, carbon black, and natural and synthetic silica materials.
- FIG. 1 shows one example of a specific use of the arc-extinguishing materials in the form of molded or extruded annular fuse sheath or liner 10 , manufactured (molded or extruded) from the arc-extinguishing compositions described herein, that is dimensioned to surround a fuse 12 disposed within a fuse tube 14 .
- Such fuses 12 may be provided to interrupt both low and high level fault currents.
- the sheath 10 does not burst or rupture and remains integral, the arc between terminals is elongated entirely within the fuse tube 14 .
- the elongating arc interacts with the arc-extinguishing material of the sheath 10 , evolving arc-extinguishing gases.
- the fuse 12 may also be called upon to interrupt high fault currents. At high fault currents the sheath usually ruptures and the extinguishment of the arc formed and elongated between terminals of the fuse is primarily due to the evolution of the arc-extinguishing gas from the bore of the fuse tube 14 .
- caprolactam is an effective material in imparting toughness (6.2 vs. 6.6) and the fine melamine also improved toughness (6.1 vs. 6.2). # However, the biggest effect is from the coupling agent/impact modifier. The increase in toughness is dramatically better than that seen going from X-Material to TX-Material. It is also clear a family of materials with a balance of toughness and stiffness can be made. 5. 6.1 material also proved to be a better AEM than Delrin, and to be more resistant to ozone and nitric acid. In addition, it can handle higher temperatures than X or TX.
- the environmental test consisted of immersing flex bars of material (1 ⁇ 2′′ by 1 ⁇ 8′′ by 5′′ long) most of the way into a solution of 10% Nitric Acid in DI water (by volume) for 7 days. Due to a miscalculation, the first 3 days were in a 7% solution. By not immersing the samples completely, an air/solution interface is created that tends to accelerate the chemical attack. Since Nylon 6 is hygroscopic, a control in 100% DI water was also run. The effect on weight and width was documented.
- Composition 6.1 was the first AEM material tested that matched or exceeded the toughness numbers for Delrin. Composition 6.1 also displayed rubber-like properties.
- FIG. 2 Weight Change
- FIG. 3 Size Change
- Both the 6.1 and the F.1 compositions provided much better resistance to nitric acid than the Delrin. They suffer surface attack in the form of yellowing, but no significant material loss.
- the Delrin sample showed severe erosion at the waterline, looking much like Delrin samples from the Swamp.
- Nylon 6 material both gained 1.6% in weight and 1.6% in size due to water absorption.
- the molded arc-extinguishing composition has unexpectedly increased toughness, and especially elongation, thereby preventing breakage of the molded articles.
- the compound should have a particle size distribution such that at least 90% by weight, up to 100%, of the particles have a size less than about 200 microns ( ⁇ m).
- at least 90% by weight of the particles have a particle size less than about 100 ⁇ m and, more preferably, at least 99% by weight of the arc-extinguishing compound particles have a particle size less than 100 ⁇ m.
- at least 90% by weight, up to 100% by weight, of the arc-extinguishing compound particles should have a particle size less than 50 ⁇ m.
- compositions, articles and methods described herein it has been found that by including a plasticizer for the binder polymer into the compositions, the structural properties of the molded articles are increased without sacrificing arc-extinguishing properties.
- compatible plasticizers should have a solubility parameter ( ⁇ ) suitable for the particular polymeric binder, as well known in the art.
- solubility parameters ( ⁇ ) is in accordance with ASTM Designation D-3132-84 (Re-approved 1990).
- the plasticizer for the polymeric binders should have a solubility parameter ( ⁇ ) as close as possible to the solubility parameter of the polymeric binder.
- Polyester polymeric binders have solubility parameters ⁇ in the range of about 9.5 to 12.
- Maleic Anhydride has a ⁇ of about 13.6.
- the adipate plasticizers have relatively low solubility parameters, but are suitable for plasticizing amines.
- Epoxys have ⁇ s of about 9-11 and ethers have ⁇ s of about 7.5-11.
- Ketones have ⁇ s of about 8.4-10; lactones of about 10-14; maleates about 8.5-10; phenols about 9.5-13; phosphates about 7.5-10; phosphonates about 8-10.
- any of the monomers used to form a polymeric binder can be used as a plasticizer for that polymer binder (e.g., ⁇ -caprolactam used to plasticize nylon 6) in accordance with the third (plasticizer) embodiment described herein.
- the plasticizer need only be compatible with the polymeric binder such that a homogeneous mixture is achieved when the arc-extinguishing composition is melted during the article molding process. If the plasticizer is not sufficiently compatible with the polymeric binder, the plasticizer will separate from the binder when melted, or will not form a homogeneous composition when melted together with the arc-extinguishing compound and other components of the composition.
- Table 7 compares the percent elongation achieved in molded articles containing DSM Melamine Grade 003 in comparison to the standard grade melamine. Compositions with and without a plasticizer also are shown in Table 7. A comparison of the finely divided melamine versus standard grade melamine is shown in FIG. 4 .
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Adhesives Or Adhesive Processes (AREA)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/887,937 US20060006144A1 (en) | 2004-07-09 | 2004-07-09 | Arc-extinguishing composition and articles manufactured therefrom |
EP05749425.4A EP1787307B1 (fr) | 2004-07-09 | 2005-05-16 | Composition d'extinction d'arc et les articles fabriqués par ce procédé |
BRPI0513059-0A BRPI0513059A (pt) | 2004-07-09 | 2005-05-16 | composição de extinção de arco, e, invólucro de extinção de arco |
PCT/US2005/017100 WO2006016932A1 (fr) | 2004-07-09 | 2005-05-16 | Composition d'extinction d’arc et les articles fabriqués par ce procédé |
CN200580022981.9A CN1981355B (zh) | 2004-07-09 | 2005-05-16 | 灭弧组合物和由其制造的制件 |
CA2572987A CA2572987C (fr) | 2004-07-09 | 2005-05-16 | Composition d'extinction d'arc et les articles fabriques par ce procede |
MX2007000272A MX2007000272A (es) | 2004-07-09 | 2005-05-16 | Composicion extintora de arco y articulos fabricados con la misma. |
AU2005272193A AU2005272193B2 (en) | 2004-07-09 | 2005-05-16 | Arc-extinguishing composition and articles manufactured therefrom |
US11/969,651 US7893380B2 (en) | 2004-07-09 | 2008-01-04 | Arc-extinguishing composition and articles manufactured therefrom |
US12/137,765 US20080237194A1 (en) | 2004-07-09 | 2008-06-12 | Metal-hydrate containing arc-extinguishing compositions and methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/887,937 US20060006144A1 (en) | 2004-07-09 | 2004-07-09 | Arc-extinguishing composition and articles manufactured therefrom |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/969,651 Continuation US7893380B2 (en) | 2004-07-09 | 2008-01-04 | Arc-extinguishing composition and articles manufactured therefrom |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060006144A1 true US20060006144A1 (en) | 2006-01-12 |
Family
ID=34969807
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/887,937 Abandoned US20060006144A1 (en) | 2004-07-09 | 2004-07-09 | Arc-extinguishing composition and articles manufactured therefrom |
US11/969,651 Expired - Lifetime US7893380B2 (en) | 2004-07-09 | 2008-01-04 | Arc-extinguishing composition and articles manufactured therefrom |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/969,651 Expired - Lifetime US7893380B2 (en) | 2004-07-09 | 2008-01-04 | Arc-extinguishing composition and articles manufactured therefrom |
Country Status (8)
Country | Link |
---|---|
US (2) | US20060006144A1 (fr) |
EP (1) | EP1787307B1 (fr) |
CN (1) | CN1981355B (fr) |
AU (1) | AU2005272193B2 (fr) |
BR (1) | BRPI0513059A (fr) |
CA (1) | CA2572987C (fr) |
MX (1) | MX2007000272A (fr) |
WO (1) | WO2006016932A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080237194A1 (en) * | 2004-07-09 | 2008-10-02 | S & C Electric Co. | Metal-hydrate containing arc-extinguishing compositions and methods |
US20080250892A1 (en) * | 2007-04-11 | 2008-10-16 | Dura Global Technologies, Inc. | Transmission Cable Assembly for High Temperature Environments |
US20110290624A1 (en) * | 2010-05-28 | 2011-12-01 | ABB Techology AG | Switching chamber insulation arrangement for a circuit breaker |
CN104559169A (zh) * | 2014-12-29 | 2015-04-29 | 浙江俊尔新材料股份有限公司 | 一种阻燃产气聚酰胺灭弧复合材料及其制备方法和应用 |
WO2016145556A1 (fr) * | 2015-03-13 | 2016-09-22 | Abb Technology Ltd | Tube d'extinction d'arc thermoplastique et son application |
US20210261766A1 (en) * | 2018-06-29 | 2021-08-26 | Dow Global Technologies Llc | Moisture-Curable Flame Retardant Composition for Wire and Cable Insulation and Jacket Layers |
EP3985709A1 (fr) * | 2020-10-15 | 2022-04-20 | Littelfuse, Inc. | Fusible avec composition de silicone d'extinction d'arc |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5286537B2 (ja) * | 2009-09-28 | 2013-09-11 | 三菱電機株式会社 | 消弧用絶縁成型物、および、それを用いた回路遮断器 |
US8471671B2 (en) | 2010-09-17 | 2013-06-25 | Cooper Technologies Company | Fuse and arc resistant end cap assembly therefor |
FR2965120B1 (fr) * | 2010-09-22 | 2012-10-12 | Areva T & D Sas | Appareil de coupure d'un courant electrique de moyenne ou haute tension et son procede de fabrication |
US8709563B2 (en) | 2011-09-30 | 2014-04-29 | Ticona Llc | Electrical conduit containing a fire-resisting thermoplastic composition |
CN103606497B (zh) * | 2013-11-27 | 2016-06-22 | 南京萨特科技发展有限公司 | 熔断器用灭弧浆料 |
US9559517B2 (en) * | 2014-09-16 | 2017-01-31 | Hoffman Enclosures, Inc. | Encapsulation of components and a low energy circuit for hazardous locations |
CN105321783A (zh) * | 2015-09-18 | 2016-02-10 | 合肥海畅电气技术有限公司 | 用于消弧柜灭弧剂 |
JP7010706B2 (ja) * | 2018-01-10 | 2022-01-26 | デクセリアルズ株式会社 | ヒューズ素子 |
CN116529085A (zh) * | 2020-10-26 | 2023-08-01 | 力特保险丝公司 | 用于限流熔断器的灭弧熔断器填充物 |
CN115881495A (zh) * | 2023-02-15 | 2023-03-31 | 广东中贝能源科技有限公司 | 灭弧材料及其制备方法 |
Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2351826A (en) * | 1940-08-02 | 1944-06-20 | Schweitzer & Conrad Inc | Switch construction |
US2526448A (en) * | 1949-08-25 | 1950-10-17 | Mcgraw Electric Co | Arc extinguishing material |
US2816980A (en) * | 1955-03-09 | 1957-12-17 | S & C Electric Co | Circuit interrupter construction |
US2816978A (en) * | 1954-02-24 | 1957-12-17 | S & C Electric Co | Circuit interrupter construction |
US2816985A (en) * | 1953-06-19 | 1957-12-17 | S & C Electric Co | Circuit interrupting means |
US3071666A (en) * | 1959-04-09 | 1963-01-01 | Westinghouse Electric Corp | Circuit interrupters |
US3090570A (en) * | 1958-12-29 | 1963-05-21 | Owens Corning Fiberglass Corp | Method and apparatus for forming and collecting filaments |
US3242257A (en) * | 1963-09-17 | 1966-03-22 | Rostone Corp | Arc interrupting molding composition and electrical apparatus made therefrom |
US3582586A (en) * | 1966-03-21 | 1971-06-01 | Rostone Corp | Arc-interrupting materials and apparatus |
US3629767A (en) * | 1971-01-07 | 1971-12-21 | S & C Electric Co | Circuit interrupter with damper body to reduce speed of moving terminal |
US4103129A (en) * | 1977-03-09 | 1978-07-25 | S & C Electric Company | High voltage circuit interrupter switch arrangement |
US4174358A (en) * | 1975-05-23 | 1979-11-13 | E. I. Du Pont De Nemours And Company | Tough thermoplastic nylon compositions |
US4251699A (en) * | 1976-07-26 | 1981-02-17 | S & C Electric Company | Arc extinguishing material comprising dicyandiamide |
US4307369A (en) * | 1980-09-19 | 1981-12-22 | S&C Electric Company | High-voltage fuse cutout |
US4444671A (en) * | 1976-03-29 | 1984-04-24 | S&C Electric Company | Arc extinguishing material |
US4554320A (en) * | 1982-05-29 | 1985-11-19 | Basf Aktiengesellschaft | Nylon molding materials having high impact strength |
US4966941A (en) * | 1987-07-14 | 1990-10-30 | E. I. Du Pont De Nemours And Company | Nylon compositions for blowmolding |
US4975551A (en) * | 1989-12-22 | 1990-12-04 | S & C Electric Company | Arc-extinguishing composition and articles manufactured therefrom |
US5070145A (en) * | 1985-04-23 | 1991-12-03 | Societe Chimique Des Charbonnages S.A. | Multi-phase thermoplastic compositions and articles obtained therefrom |
US5140491A (en) * | 1986-10-28 | 1992-08-18 | Allina Edward F | TVSS apparatus with ARC-extinguishing |
US5326947A (en) * | 1992-11-13 | 1994-07-05 | Edds Thomas A | Arc extinguishing device made of conductive plastic |
US5359174A (en) * | 1993-08-31 | 1994-10-25 | Eaton Corporation | Thermally conductive, insulating, arc-quenching coating compositions for current interrupters |
US5406245A (en) * | 1993-08-23 | 1995-04-11 | Eaton Corporation | Arc-quenching compositions for high voltage current limiting fuses and circuit interrupters |
US5756571A (en) * | 1997-02-13 | 1998-05-26 | Agrinutrients Company, Inc. | Intumescent thermoplastic polyamide graft polymers |
US5814384A (en) * | 1994-06-17 | 1998-09-29 | Alliedsignal, Inc. | Articles of manufacture comprising extruded polyamide-low density polyethylene graft blends |
US5990440A (en) * | 1994-03-10 | 1999-11-23 | Mitsubishi Denki Kabushiki Kaisha | Switch and arc extinguishing material for use therein |
US6005470A (en) * | 1993-12-13 | 1999-12-21 | Eaton Corporation | Arc-quenching filler for high voltage current limiting fuses and circuit interrupters |
US6218636B1 (en) * | 1999-01-11 | 2001-04-17 | Square D Company | Switchgear arc extinguishing chamber with side walls made of composite material |
US6235840B1 (en) * | 1998-03-11 | 2001-05-22 | Uniroyal Chemical Company, Inc. | Nylon modifiers having enhanced flow properties |
US20020156160A1 (en) * | 1996-05-08 | 2002-10-24 | Martin Lee Hamilton | Flame-retardant molded component |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2368451A (en) * | 1940-11-15 | 1945-01-30 | Gen Electric | Polyaminotriazine-formaldehyde resin modified with a preformed mono salt of a polyaminotriazine |
DE915956C (de) * | 1941-02-27 | 1954-08-02 | Aeg | Elektrischer Stromunterbrecher, insbesondere Hartgasschalter |
US2673912A (en) * | 1951-05-31 | 1954-03-30 | Westinghouse Electric Corp | Arc extinguisher |
US3862265A (en) * | 1971-04-09 | 1975-01-21 | Exxon Research Engineering Co | Polymers with improved properties and process therefor |
US4140988A (en) * | 1977-08-04 | 1979-02-20 | Gould Inc. | Electric fuse for small current intensities |
JPS57202003A (en) * | 1981-06-03 | 1982-12-10 | Hitachi Ltd | Sf6 gas insulating electric device and method of producing same |
FR2685700B1 (fr) * | 1991-12-31 | 1995-02-24 | Atochem | Nouveaux polyamides et objets obtenus a partir de ceux-ci. |
DE19517540A1 (de) * | 1995-05-12 | 1996-11-14 | Abb Research Ltd | Löschgasabgebender Werkstoff und Druckgasschalter mit einem solchen Werkstoff |
-
2004
- 2004-07-09 US US10/887,937 patent/US20060006144A1/en not_active Abandoned
-
2005
- 2005-05-16 CN CN200580022981.9A patent/CN1981355B/zh active Active
- 2005-05-16 CA CA2572987A patent/CA2572987C/fr active Active
- 2005-05-16 WO PCT/US2005/017100 patent/WO2006016932A1/fr active Application Filing
- 2005-05-16 BR BRPI0513059-0A patent/BRPI0513059A/pt not_active Application Discontinuation
- 2005-05-16 MX MX2007000272A patent/MX2007000272A/es active IP Right Grant
- 2005-05-16 AU AU2005272193A patent/AU2005272193B2/en active Active
- 2005-05-16 EP EP05749425.4A patent/EP1787307B1/fr active Active
-
2008
- 2008-01-04 US US11/969,651 patent/US7893380B2/en not_active Expired - Lifetime
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2351826A (en) * | 1940-08-02 | 1944-06-20 | Schweitzer & Conrad Inc | Switch construction |
US2526448A (en) * | 1949-08-25 | 1950-10-17 | Mcgraw Electric Co | Arc extinguishing material |
US2816985A (en) * | 1953-06-19 | 1957-12-17 | S & C Electric Co | Circuit interrupting means |
US2816978A (en) * | 1954-02-24 | 1957-12-17 | S & C Electric Co | Circuit interrupter construction |
US2816980A (en) * | 1955-03-09 | 1957-12-17 | S & C Electric Co | Circuit interrupter construction |
US3090570A (en) * | 1958-12-29 | 1963-05-21 | Owens Corning Fiberglass Corp | Method and apparatus for forming and collecting filaments |
US3071666A (en) * | 1959-04-09 | 1963-01-01 | Westinghouse Electric Corp | Circuit interrupters |
US3242257A (en) * | 1963-09-17 | 1966-03-22 | Rostone Corp | Arc interrupting molding composition and electrical apparatus made therefrom |
US3582586A (en) * | 1966-03-21 | 1971-06-01 | Rostone Corp | Arc-interrupting materials and apparatus |
US3629767A (en) * | 1971-01-07 | 1971-12-21 | S & C Electric Co | Circuit interrupter with damper body to reduce speed of moving terminal |
US4174358B1 (fr) * | 1975-05-23 | 1992-08-04 | Du Pont | |
US4174358A (en) * | 1975-05-23 | 1979-11-13 | E. I. Du Pont De Nemours And Company | Tough thermoplastic nylon compositions |
US4444671A (en) * | 1976-03-29 | 1984-04-24 | S&C Electric Company | Arc extinguishing material |
US4251699A (en) * | 1976-07-26 | 1981-02-17 | S & C Electric Company | Arc extinguishing material comprising dicyandiamide |
US4103129A (en) * | 1977-03-09 | 1978-07-25 | S & C Electric Company | High voltage circuit interrupter switch arrangement |
US4307369A (en) * | 1980-09-19 | 1981-12-22 | S&C Electric Company | High-voltage fuse cutout |
US4554320A (en) * | 1982-05-29 | 1985-11-19 | Basf Aktiengesellschaft | Nylon molding materials having high impact strength |
US5070145A (en) * | 1985-04-23 | 1991-12-03 | Societe Chimique Des Charbonnages S.A. | Multi-phase thermoplastic compositions and articles obtained therefrom |
US5140491A (en) * | 1986-10-28 | 1992-08-18 | Allina Edward F | TVSS apparatus with ARC-extinguishing |
US4966941A (en) * | 1987-07-14 | 1990-10-30 | E. I. Du Pont De Nemours And Company | Nylon compositions for blowmolding |
US4975551A (en) * | 1989-12-22 | 1990-12-04 | S & C Electric Company | Arc-extinguishing composition and articles manufactured therefrom |
US5326947A (en) * | 1992-11-13 | 1994-07-05 | Edds Thomas A | Arc extinguishing device made of conductive plastic |
US5406245A (en) * | 1993-08-23 | 1995-04-11 | Eaton Corporation | Arc-quenching compositions for high voltage current limiting fuses and circuit interrupters |
US5359174A (en) * | 1993-08-31 | 1994-10-25 | Eaton Corporation | Thermally conductive, insulating, arc-quenching coating compositions for current interrupters |
US6005470A (en) * | 1993-12-13 | 1999-12-21 | Eaton Corporation | Arc-quenching filler for high voltage current limiting fuses and circuit interrupters |
US5990440A (en) * | 1994-03-10 | 1999-11-23 | Mitsubishi Denki Kabushiki Kaisha | Switch and arc extinguishing material for use therein |
US5814384A (en) * | 1994-06-17 | 1998-09-29 | Alliedsignal, Inc. | Articles of manufacture comprising extruded polyamide-low density polyethylene graft blends |
US20020156160A1 (en) * | 1996-05-08 | 2002-10-24 | Martin Lee Hamilton | Flame-retardant molded component |
US5756571A (en) * | 1997-02-13 | 1998-05-26 | Agrinutrients Company, Inc. | Intumescent thermoplastic polyamide graft polymers |
US6235840B1 (en) * | 1998-03-11 | 2001-05-22 | Uniroyal Chemical Company, Inc. | Nylon modifiers having enhanced flow properties |
US6218636B1 (en) * | 1999-01-11 | 2001-04-17 | Square D Company | Switchgear arc extinguishing chamber with side walls made of composite material |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080237194A1 (en) * | 2004-07-09 | 2008-10-02 | S & C Electric Co. | Metal-hydrate containing arc-extinguishing compositions and methods |
US20080250892A1 (en) * | 2007-04-11 | 2008-10-16 | Dura Global Technologies, Inc. | Transmission Cable Assembly for High Temperature Environments |
US8857289B2 (en) * | 2007-04-11 | 2014-10-14 | Dura Operating, Llc | Transmission cable assembly for high temperature environments |
EP2133388A2 (fr) | 2008-06-12 | 2009-12-16 | S & C Electric Company | Hydrate métallique contenant des compositions d'extinction d'arc et procédés |
EP2133388A3 (fr) * | 2008-06-12 | 2010-02-17 | S & C Electric Company | Hydrate métallique contenant des compositions d'extinction d'arc et procédés |
AU2009202223B2 (en) * | 2008-06-12 | 2015-09-10 | S & C Electric Company | Metal-hydrate containing arc-extinguishing compostions and methods |
US20110290624A1 (en) * | 2010-05-28 | 2011-12-01 | ABB Techology AG | Switching chamber insulation arrangement for a circuit breaker |
US8420971B2 (en) * | 2010-05-28 | 2013-04-16 | Abb Technology Ag | Switching chamber insulation arrangement for a circuit breaker |
CN104559169A (zh) * | 2014-12-29 | 2015-04-29 | 浙江俊尔新材料股份有限公司 | 一种阻燃产气聚酰胺灭弧复合材料及其制备方法和应用 |
WO2016145556A1 (fr) * | 2015-03-13 | 2016-09-22 | Abb Technology Ltd | Tube d'extinction d'arc thermoplastique et son application |
US20210261766A1 (en) * | 2018-06-29 | 2021-08-26 | Dow Global Technologies Llc | Moisture-Curable Flame Retardant Composition for Wire and Cable Insulation and Jacket Layers |
EP3985709A1 (fr) * | 2020-10-15 | 2022-04-20 | Littelfuse, Inc. | Fusible avec composition de silicone d'extinction d'arc |
Also Published As
Publication number | Publication date |
---|---|
US7893380B2 (en) | 2011-02-22 |
CA2572987C (fr) | 2012-12-11 |
AU2005272193B2 (en) | 2010-11-25 |
WO2006016932A1 (fr) | 2006-02-16 |
WO2006016932B1 (fr) | 2006-04-06 |
CN1981355A (zh) | 2007-06-13 |
CA2572987A1 (fr) | 2006-02-16 |
MX2007000272A (es) | 2007-04-10 |
EP1787307A1 (fr) | 2007-05-23 |
CN1981355B (zh) | 2012-06-06 |
BRPI0513059A (pt) | 2008-04-22 |
US20080169271A1 (en) | 2008-07-17 |
EP1787307B1 (fr) | 2015-01-28 |
AU2005272193A1 (en) | 2006-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7893380B2 (en) | Arc-extinguishing composition and articles manufactured therefrom | |
AU2009202223B2 (en) | Metal-hydrate containing arc-extinguishing compostions and methods | |
CA2012365C (fr) | Materiau d'extinction d'arc electrique et articles fabriques avec ce materiau | |
JP4655094B2 (ja) | 消弧用樹脂加工品、及びそれを用いた回路遮断器 | |
KR20100017808A (ko) | 난연성 폴리아미드 수지 조성물 | |
JP2009277566A (ja) | 消弧用樹脂加工品、及びそれを用いた回路遮断器 | |
JP4827187B2 (ja) | 消弧用樹脂加工品、及びそれを用いた回路遮断器 | |
EP1313121A1 (fr) | Coupe-circuit | |
WO2001080269A1 (fr) | Disjoncteur | |
JP3359422B2 (ja) | 消弧用絶縁材料組成物、消弧用絶縁材料成形体およびそれらを用いた消弧装置 | |
KR101151679B1 (ko) | 아크-소거 조성물 및 이로부터 제조된 아티클 | |
JP4817316B2 (ja) | 消弧用樹脂加工品、及びそれを用いた回路遮断器 | |
US5883178A (en) | Crystalline polyolefin resin composition and electrical insulating part comprising said composition | |
JP5003630B2 (ja) | 消弧用樹脂加工品、及びそれを用いた回路遮断器 | |
JP4941409B2 (ja) | 消弧用樹脂加工品、及びそれを用いた回路遮断器 | |
Georlette | New brominated flame retardants meet requirements for technical plastics | |
WO2016145556A1 (fr) | Tube d'extinction d'arc thermoplastique et son application | |
JP5741148B2 (ja) | 消弧用絶縁材料成形体、および、それを用いた回路遮断器 | |
JPS62135667A (ja) | 難燃性デイストリビユ−タ−キヤツプ | |
JPH02256110A (ja) | 消弧体および回路しゃ断器 | |
JP2009070780A (ja) | 電力用開閉器の絶縁バリア | |
KR20030005406A (ko) | 회로 차단기 | |
JPS63202651A (ja) | ポリアミド−ポリフエニレンエ−テル樹脂組成物 | |
JP2015130356A (ja) | 消弧用絶縁材料成形体、および、それを用いた回路遮断器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: S&C ELECTRIC CO., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOORE, JEFFREY A.;REEL/FRAME:015105/0217 Effective date: 20040709 |
|
AS | Assignment |
Owner name: S & C ELECTRIC CO., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOORE, MR. JEFFREY A.;REEL/FRAME:015109/0393 Effective date: 20040709 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |