US20050257862A1 - Production method of warm- or hot-formed product - Google Patents

Production method of warm- or hot-formed product Download PDF

Info

Publication number
US20050257862A1
US20050257862A1 US11/116,304 US11630405A US2005257862A1 US 20050257862 A1 US20050257862 A1 US 20050257862A1 US 11630405 A US11630405 A US 11630405A US 2005257862 A1 US2005257862 A1 US 2005257862A1
Authority
US
United States
Prior art keywords
temperature
steel sheet
forming
formed product
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/116,304
Other languages
English (en)
Inventor
Tatsuya Asai
Jiro Iwaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Assigned to KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.) reassignment KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASAI, TATSUYA, IWAYA, JIRO
Publication of US20050257862A1 publication Critical patent/US20050257862A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps

Definitions

  • the present invention relates to, in the field of producing a steel sheet formed product that is mainly applied to an automobile body: a method for producing a formed product by heating a steel sheet (blank) as the raw material to a temperature of not lower than the austenite and ferrite formation temperature (Ac1 transformation temperature) and subjecting the heated steel sheet to press forming; and a formed product obtained by the production method.
  • the present invention relates to: a method for producing a formed product that assures good formability without causing fracture, cracking, etc. during press forming; and a formed product thereof.
  • JP-A No. 102980/2002 proposes the technology of forming a metal material in the state of heating it to 850° C. to 1,050° C. with a press tool set of a relatively low temperature. It is said that the technology improves the formability of a metal material and also prevents delayed fracture caused by residual stress from occurring.
  • a high-strength steel sheet of 1,470 MPa class in tensile strength that has been considered to be hardly formable by a conventional cold forming method is used as a material in particular, the technology makes it possible to obtain a part having a relevant strength and good dimensional accuracy.
  • FIG. 1 is an explanatory schematic view showing a tool set configuration to apply such hot forming (hereunder referred to as “hot stamping” occasionally) as described above.
  • the reference numeral 1 shows a punch, 2 a die, 3 a blank holder, 4 a steel sheet (material), the reference character BHF a blank holding force, rp a punch shoulder radius, rd a die shoulder radius, and CL the clearance between the punch and the die.
  • the punch 1 and the die 2 are so configured that passages 1 a and 2 a, through which a coolant (for example, water) can pass, are formed therein, respectively, and the members can be cooled by passing the coolant through the passages.
  • a coolant for example, water
  • the forming is started while a blank (a steel sheet 4 ) is heated to a temperature not lower than the Ac3 transformation temperature and softened. That is, the steel sheet 4 is pushed into the hole of the die 2 with the punch 1 while the steel sheet 4 of a high temperature is held between the die 2 and the blank holder 3 , the outer diameter of the steel sheet 4 is reduced, and in the meantime the steel sheet 4 is formed into a shape conforming to the outer shape of the punch 1 . Meanwhile, by cooling the punch and die in parallel with the forming, heat of the steel sheet 4 is transferred to the tool set (the punch and die), and by further cooling and keeping it at the bottom dead center in forming, the material is hardened.
  • a blank a steel sheet 4
  • the tool set the punch and die
  • the microstructure of the formed product becomes mostly composed of a martensite structure due to the rapid cooling caused by a tool set after the forming.
  • a part having an ultra-high strength of 1,470 MPa or more can be obtained but, since the microstructure of the part is composed of martensite, the ductility of the part is inferior.
  • the part may have the possibility of fracture in some circumstances, for example, when an automobile collision occurs and the part is deformed. When the part fractures, the part cannot absorb collision force at the moment and resultantly the damage to a passenger may possibly increase.
  • a part formed by hot stamping always has a wider range of application and it is the present situation that the advantages of both high strength and good dimensional accuracy cannot be utilized enough.
  • the present invention has been established in view of the above situation and the object thereof is to provide: a method for producing a formed product by hot stamping, the formed product having a wider application range by securing good formability and good ductility without the occurrence of fracture and cracking during forming when a steel sheet is subjected to hot or cold forming; and the formed product that can exhibit such advantages.
  • One aspect of a production method of a warm- or hot-formed product which has attained the above object according to the present invention comprises the steps of: heating a steel sheet to a temperature not lower than the Ac1 transformation temperature; cooling the steel sheet to a temperature in the range from higher than the martensite transformation start temperature Ms point of the steel sheet to lower than the temperature determined in accordance with the heating temperature; and forming the cooled steel sheet with a punch and a die.
  • the steel sheet is heated to a temperature in the range from not lower than the Ac1 transformation temperature to lower than the Ac3 transformation temperature in the heating step; and the temperature determined in accordance with the heating temperature satisfies the following expression (1): Forming start temperature (° C.) ⁇ 0.725 ⁇ Heating temperature of a steel sheet (° C.) (1).
  • the steel sheet is heated to a temperature not lower than the Ac3 transformation temperature in the heating step; and the temperature determined in accordance with the heating temperature is 600° C.
  • the step of forming the cooled steel sheet with a punch and a die is finished during the time when the temperature of the steel sheet is higher than the temperature Ms point.
  • a blank holder may be used when the steel sheet is formed in the step of forming the cooled steel sheet with the punch and the die.
  • the forming start temperature is made to be controllable in accordance with the heating temperature of a steel sheet when the steel sheet is hot formed or warm formed, good formability can be secured without the occurrence of fracture and cracking during forming, thus a formed product that shows good ductility can be produced, and thereby the application range of the steel sheet is expected to expand.
  • FIG. 1 is an explanatory schematic view showing a tool set configuration for hot forming.
  • FIG. 2 is an explanatory schematic view showing a tool set configuration developed previously.
  • FIG. 3 is a graph showing the influence of a forming start temperature and a heating temperature on a flow stress.
  • FIG. 4 is a graph showing the relationship between the forming temperature at which a fracture stress exceeds a flow stress and a heating temperature.
  • FIG. 5 is a perspective view illustratively showing the appearance of a successfully formed product.
  • FIG. 6 is a graph showing the relationship between the cooling start temperature and the Vickers hardness (at a load of 9.8N) of a formed product.
  • FIG. 7 is a graph produced by putting in order the tensile strength and total elongation of a formed product in relation to a ferrite fraction.
  • the present inventors have heretofore been studying a technology that can realize good formability and as a part of the study have proposed the technology of deep drawing with the tool set shown in FIG. 2 .
  • this tool set configuration pins 7 to support a steel sheet are disposed at portions of a blank holder 3 and the steel sheet can keep close to a die 2 and the blank holder 3 without directly touching them by placing the steel sheet 4 on the pins 7 , (the other part of the configuration in FIG. 2 is basically identical to FIG. 1 ). Then, it is configured so that, at the time of forming, the upper faces of the pins 7 are on the same plane as the upper face of the blank holder and the steel sheet 4 is in the state of being mounted on the blank holder 3 .
  • the steel sheet 4 is supported by the pins 7 , thus direct contact between the steel sheet 4 and the tool set (particularly the die 2 and the blank holder 3 ) can be avoided before forming, thereby the portion of the steel sheet 4 above the upper face of the punch 1 and most of the other portions thereof are cooled nearly simultaneously.
  • the disadvantage that the material strength of the steel sheet 4 at the punch face lowers in comparison with the material strength thereof at the flange face due to the unevenness in the temperature of the steel sheet 4 can be prevented.
  • fracture at the punch face is prevented in particular and drawability can be improved.
  • the drawability of a steel sheet has improved dramatically but it has been found that the ductility of a formed product is not improved yet in some cases. That is, by the above proposed technologies or the technology proposed by the present inventors, the structure of the formed product is mainly composed of martensite due to the forming start temperature, forming temperature, forming termination temperature and the like. It has been estimated that this is the reason why the good ductility of a formed product cannot be maintained.
  • the present inventors have studied from various viewpoints in order to solve the drawback. As a result, the present inventors have found that the above object can be excellently attained by controlling the forming start temperature in accordance with the heating temperature of a steel sheet and have established the present invention.
  • the present invention is hereunder explained concretely along with the steps to the establishment of the present invention.
  • the present inventors firstly heated the steel sheet having the chemical composition shown in Table 1 below to 900° C. (the Ac1 and Ac3 transformation temperatures of the steel sheet were 725° C. and 850° C., respectively), and subjected the steel sheet to the deep drawing test through the aforementioned procedure with the tool set shown in FIG. 2 .
  • the present inventors confirmed that, when the steel sheet was formed in the state wherein the temperature of the blank lowered though it took time from the heating to the start of forming, the blank which had cracked till then during forming did not crack and could be formed.
  • the present inventors produced compression test pieces of a columnar shape separately, once heated them to 700° C., 800° C. and 900° C., thereafter cooled them to 500° C., 600° C., 700° C. and 800° C. at a cooling rate of 20° C./sec., and measured the average 10%-deformation stress (corresponding to the flow stress required for the drawing of a flange portion) when they were subjected to the compression test while they were maintained at the relevant temperatures. Further, the present inventors carried out similar tests using tensile test pieces and measured the fracture stress (corresponding to the “fracture stress” at the punch shoulder portion and the vertical wall portion). The results are shown in FIG.
  • FIG. 4 The relationship between a forming temperature at which a fracture stress exceeds a flow stress and a heating temperature, which was obtained on the basis of the above results, is shown in FIG. 4 .
  • the marks “ ⁇ ” mean the cases where cracking or the like did not occur, good formability was obtained, and moreover the ductility of the formed products was also good, the marks “x” the cases where fracture or the like occurred, and the mark “ ⁇ ” the case where good formability was obtained but the ductility of the formed product deteriorated.
  • FIG. 5 An example of the appearance of a successfully formed product is shown in FIG. 5 (schematic view). Next, concrete conditions stipulated in the present invention are explained.
  • the region where fracture occurs can obviously be distinguished from the region where good formability (and ductility) is obtained.
  • good formability can be obtained and also the ductility of the formed product is good as long as the aforementioned expression (1) is satisfied.
  • ferrite is already formed in some portions of the microstructure of the blank in the heating step and the ferrite fraction in this case is 10% or more in area percentage.
  • the relationship between the cooling (rapid cooling) start temperature and the Vickers hardness (at a load of 9.8N) of the formed product in this case is shown in FIG. 6 . From the figure, it is understood that, by controlling a cooling start temperature to lower than 600° C., the formation of ferrite is accelerated and the hardness of the steel sheet lowers.
  • the average cooling rate was 10 to 20° C./sec. in the temperature range from the heating temperature to the temperature at the time of holding the steel sheet in between (hardening temperature). Even by applying such production conditions, it becomes possible to actively introduce ferrite into the microstructure of a formed product, the ferrite fraction becomes 10% or more in area percentage, and good ductility is obtained.
  • the hardness was measured in the vicinity of the center of the sheet thickness at a center portion of the vertical wall of the formed product ( FIG. 3 ).
  • the heating temperature of a blank when the heating temperature of a blank is set at the Ac3 transformation temperature or higher, it is preferable that the upper limit thereof is about 1,000° C. at the highest. If the temperature exceeds 1,000° C., it is concerned that oxided scale forms abundantly (for example 100 ⁇ m or more) and the formed product (after subjected to descaling) becomes thinner than the prescribed thickness.
  • the lower limit of a forming start temperature is a temperature higher than the martensite transformation start temperature Ms point (refer to FIG. 4 ). If a forming start temperature is lower than the martensite transformation start temperature, martensite transformation undesirably occurs during forming (before a tool set reaches the bottom dead center in forming) and the forming can hardly be continued at the moment. In the present invention, as far as a forming start temperature is controlled in relation to a heating temperature, the above object can be attained.
  • the temperature is not particularly limited, from the viewpoint of reducing the amount of the martensite structure appearing during forming as much as possible, it is preferable that the forming termination temperature is also a temperature higher than the martensite transformation start temperature. Further, as a preferable embodiment, it is preferable that the time duration from the start of forming (when a blank touches a part of a tool set except pins 7 shown in FIG. 2 ) to the termination of the forming is within two seconds, and by adding this condition, fracture is prevented more reliably during forming.
  • the aforementioned object can be attained by properly controlling the relationship between a heating temperature and a forming start temperature.
  • Those effects can conspicuously be exhibited when a steel sheet is formed with a tool set equipped with a blank holder (namely deep drawing) and, in addition to this requirement, it is also effective to use the technologies proposed earlier in combination. That is, it is also effective to equalize the temperature of a steel sheet by employing the die configuration shown in FIG. 2 or to subject a steel sheet having oxided scale 15 ⁇ m or more in thickness on the surface to press forming and, by using those technologies in combination, the effects of the present invention can be exhibited more effectively. Note that, even when a steel sheet is formed while those configurations are added, the aforementioned production conditions stipulated in the present invention are not changed basically.
  • a formed product according to the present invention is not limited to the formed product drawn by using a blank holder but includes a formed product obtained through ordinary press forming. Even in the case of producing such a formed product obtained through ordinary press, the effects of the present invention can be attained.
  • the hot region cited in the present invention means the temperature region of the recrystallization temperature or higher and the warm region means the temperature region from the ordinary temperature to the recrystallization temperature.
  • the method according to the present invention is applicable to a steel sheet having a chemical composition of a very wide range. Basically, as far as a steel has hardenability, namely a steel contains C by 0.1% or more, the method is applicable to the steel.
  • a steel having the chemical composition shown in Table 1 was rolled to a thickness of 1.4 mm and annealed by ordinary means. Round blanks 95 mm in diameter (blank diameter) were stamped from the rolled steel sheet and used for tests (the Ac1 and Ac3 transformation temperatures of the blanks were accordingly 725° C. and 850° C., respectively).
  • the round blanks were subjected to square-shell drawing while it was warm or hot with a tool set having a square-shaped punch head (the tool set comprising a rectangular die and a rectangular punch and the length of each side being 45 mm, refer to FIG. 2 ) by the method of the present invention.
  • the blanks were heated in an atmospheric air in an electric furnace and the heating temperature was changed variously. Further, by controlling the heat retention time for each heating temperature at the time of heating, the thickness of the oxided scale formed during heating was equalized to be about 20 ⁇ m.
  • the forming test was carried out with the tool set, shown in FIG. 2 , incorporated into a crank press machine.
  • the time duration from the time when the tool set touched the blank to the time when the tool set stopped at the bottom dead center was set at 0.75 second.
  • the forming start temperature was controlled by controlling the cooling time duration from the time when the blank was taken out from a heating furnace to the time when the forming was started, and at the same time the actual temperatures were measured with a radiation thermometer.
  • the average cooling rate at the time was set at 10 to 20° C./sec. in the range from the heating temperature to the forming start temperature.
  • the blanks were held for about 20 sec. after the start of the forming at the bottom dead center and then subjected to hardening.
  • Other press forming conditions were as follows:
  • the hardness at a section, the microstructure and the ferrite fraction of the formed product were measured.
  • a steel sheet was prepared so as to simulate hardening at the bottom dead center of forming by heating the same steel sheet as used in the forming test, thereafter cooling it naturally to the forming start temperature, and right after that holding it between plate steels 10 mm in thickness, and a JIS #13B test piece was cut out from the simulated steel sheet and subjected to the tensile test and the measurement of the total elongation.
  • the hardness (Vickers hardness Hv, 9.8N load) was measured in the vicinity of the center of the sheet thickness at a center portion of the vertical wall of the formed product ( FIG. 5 ). Further, the formability was judged by the occurrence of fracture and shown by the mark “ ⁇ ” in the case of no fracture and the mark “x” in the case of fracture.
  • FIG. 7 shows the graph produced by putting in order the tensile strength and total elongation in relation to the ferrite fraction on the basis of the results.
  • FIG. 4 is the graph produced by putting the data in order on the basis of the same results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
US11/116,304 2004-05-21 2005-04-28 Production method of warm- or hot-formed product Abandoned US20050257862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004151754A JP4551694B2 (ja) 2004-05-21 2004-05-21 温熱間成形品の製造方法および成形品
JP2004-151754 2004-05-21

Publications (1)

Publication Number Publication Date
US20050257862A1 true US20050257862A1 (en) 2005-11-24

Family

ID=34836618

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/116,304 Abandoned US20050257862A1 (en) 2004-05-21 2005-04-28 Production method of warm- or hot-formed product

Country Status (5)

Country Link
US (1) US20050257862A1 (ja)
JP (1) JP4551694B2 (ja)
CN (1) CN1310714C (ja)
FR (1) FR2870469B1 (ja)
GB (1) GB2414208B (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1825934A1 (en) * 2006-02-24 2007-08-29 Mondragon Utillaje Y Systemas, S. Coop. Tool for forming a metal sheet
US20090007999A1 (en) * 2005-03-31 2009-01-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing hot-formed steel product
US20090178740A1 (en) * 2006-04-24 2009-07-16 Thyssenkrupp Steel Ag Device and method for the forming of blanks from high and very high strength steels
US20100050730A1 (en) * 2008-08-28 2010-03-04 Otto Buschsieweke Method of making tempered shaped part
US20120030929A1 (en) * 2009-05-14 2012-02-09 Diehl Metall Stiftung & Co. Kg Method for producing a component of a synchronization device for a manual transmission
US20130025340A1 (en) * 2010-04-23 2013-01-31 Topre Corporation Method of hot-press forming enabling hardness control
WO2013045933A1 (en) * 2011-09-27 2013-04-04 Imperial Innovations Limited A method of forming parts from sheet steel
EP2623226A1 (en) 2010-09-30 2013-08-07 Kabushiki Kaisha Kobe Seiko Sho Press-molded article and method for producing same
US20140295205A1 (en) * 2013-03-28 2014-10-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Press-formed product, hot press-forming method and hot press-forming apparatus
EP2823905A4 (en) * 2012-03-06 2015-07-01 Jfe Steel Corp HOT PRESSURE FORMING METHOD AND AUTOMOTIVE CHASSIS COMPONENT
EP2823904A4 (en) * 2012-03-06 2015-07-01 Jfe Steel Corp HOT PRESSURE PROCESSING AND BODY COMPONENTS OF A MOTOR VEHICLE
EP2117743B1 (de) 2007-03-01 2015-08-05 Schuler Pressen GmbH Kühlvorrichtung für eine platine
EP2832466A4 (en) * 2012-03-30 2015-11-11 Kobe Steel Ltd MANUFACTURING METHOD FOR HOT PRESSING MOLDED STEEL ELEMENT AND HOT PRESSING MOLDED STEEL MEMBER
US20160067760A1 (en) * 2013-05-09 2016-03-10 Nippon Steel & Sumitomo Metal Corporation Surface layer grain refining hot-shearing method and workpiece obtained by surface layer grain refining hot-shearing
US9358602B2 (en) 2010-09-30 2016-06-07 Kobe Steel, Ltd. Method for producing press-formed product
EP2159292A4 (en) * 2007-06-15 2016-08-31 Nippon Steel & Sumitomo Metal Corp METHOD FOR PRODUCING A FORM BODY
US9469891B2 (en) 2011-09-30 2016-10-18 Kobe Steel, Ltd. Press-forming product manufacturing method and press-forming facility
US10273555B2 (en) 2013-12-27 2019-04-30 Nippon Steel & Sumitomo Metal Corporation Hot-pressed steel sheet member
US10294557B2 (en) * 2005-09-21 2019-05-21 Arcelormittal France Method for making a steel part of multiphase microstructure
CN114130895A (zh) * 2021-12-01 2022-03-04 成都市鸿侠科技有限责任公司 一种基于滑轨式的飞机零部件用校形工艺及装置
US11344941B2 (en) 2011-07-21 2022-05-31 Kobe Steel, Ltd. Method of manufacturing hot-press-formed steel member

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630188B2 (ja) * 2005-12-19 2011-02-09 株式会社神戸製鋼所 スポット溶接部の接合強度および熱間成形性に優れた熱間成形用鋼板並びに熱間成形品
DE102008043401B4 (de) * 2008-11-03 2017-09-21 Volkswagen Ag Verfahren und Vorrichtung zur Herstellung von Blechbauteilen mittels Warmumformung sowie dadurch hergestellte Blechbauteile
JP5287995B2 (ja) * 2009-11-09 2013-09-11 トヨタ自動車株式会社 ホットプレス用金型及び温度測定装置、並びにホットプレス成形方法
JP5761839B2 (ja) * 2010-08-12 2015-08-12 株式会社エイチアンドエフ 鋼板のホットプレス方法
JP5612992B2 (ja) * 2010-09-30 2014-10-22 株式会社神戸製鋼所 熱間成形品の製造方法
JP2012091227A (ja) * 2010-09-30 2012-05-17 Kobe Steel Ltd プレス成形設備
WO2012043834A1 (ja) * 2010-09-30 2012-04-05 株式会社神戸製鋼所 プレス成形品およびその製造方法
JP5612993B2 (ja) * 2010-09-30 2014-10-22 株式会社神戸製鋼所 プレス成形品およびその製造方法
JP2013176803A (ja) * 2012-02-10 2013-09-09 Kobe Steel Ltd プレス成形品およびその製造方法
JP5942560B2 (ja) * 2012-04-18 2016-06-29 マツダ株式会社 鋼板のプレス成形方法
KR20180001590A (ko) * 2013-11-29 2018-01-04 신닛테츠스미킨 카부시키카이샤 열간 성형용 강판
DE102014114394B3 (de) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Verfahren zum Erzeugen eines gehärteten Stahlblechs
JP5952881B2 (ja) * 2014-11-27 2016-07-13 株式会社神戸製鋼所 プレス成形品の製造装置
CN109333001B (zh) * 2018-09-30 2020-06-19 苏州普热斯勒先进成型技术有限公司 高强钢汽车外覆盖件总成及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426235A (en) * 1981-01-26 1984-01-17 Kabushiki Kaisha Kobe Seiko Sho Cold-rolled high strength steel plate with composite steel structure of high r-value and method for producing same
US5618355A (en) * 1994-04-26 1997-04-08 Nippon Steel Corporation High-strength steel sheet suitable for deep drawing and process for producing the same
US5985044A (en) * 1994-12-15 1999-11-16 Sumitomo Metal Industries, Ltd. Forged, non-heat treated, nitrided steel parts and process of making
US6478900B1 (en) * 1994-12-30 2002-11-12 Diado Tokushuko Kabushiki Kaisha Method of forging precipitation hardening type stainless steel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537574B2 (ja) * 1974-04-17 1980-09-29
JPS5773132A (en) * 1980-10-24 1982-05-07 Nippon Kokan Kk <Nkk> Production of cold rolled mild steel plate of superior deep drawability and aging resistance by continuous annealing
JPS58221233A (ja) * 1982-06-15 1983-12-22 Nippon Kokan Kk <Nkk> プレス成形性の優れた高強度冷延鋼板の製造方法
JPS61170513A (ja) * 1985-01-24 1986-08-01 Kobe Steel Ltd 高強度非調質棒鋼の製造方法
JPS62286626A (ja) * 1986-06-04 1987-12-12 Nippon Steel Corp 鋼板のプレス成形方法
JP2981629B2 (ja) * 1991-12-12 1999-11-22 株式会社神戸製鋼所 深絞り性に優れる複合組織焼付硬化性鋼板の製造方法
JP3389562B2 (ja) * 2000-07-28 2003-03-24 アイシン高丘株式会社 車輌用衝突補強材の製造方法
JP2004025247A (ja) * 2002-06-26 2004-01-29 Jfe Steel Kk 高強度化部品の製造方法
JP3896061B2 (ja) * 2002-10-07 2007-03-22 新日本製鐵株式会社 熱間成形加工後の硬化能に優れた鋼板およびその使用方法
JP2004337923A (ja) * 2003-05-15 2004-12-02 Sumitomo Metal Ind Ltd 熱間成形鋼材の製造方法
JP2005177805A (ja) * 2003-12-19 2005-07-07 Nippon Steel Corp ホットプレス成形方法
JP4673558B2 (ja) * 2004-01-26 2011-04-20 新日本製鐵株式会社 生産性に優れた熱間プレス成形方法及び自動車用部材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426235A (en) * 1981-01-26 1984-01-17 Kabushiki Kaisha Kobe Seiko Sho Cold-rolled high strength steel plate with composite steel structure of high r-value and method for producing same
US5618355A (en) * 1994-04-26 1997-04-08 Nippon Steel Corporation High-strength steel sheet suitable for deep drawing and process for producing the same
US5985044A (en) * 1994-12-15 1999-11-16 Sumitomo Metal Industries, Ltd. Forged, non-heat treated, nitrided steel parts and process of making
US6478900B1 (en) * 1994-12-30 2002-11-12 Diado Tokushuko Kabushiki Kaisha Method of forging precipitation hardening type stainless steel

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090007999A1 (en) * 2005-03-31 2009-01-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing hot-formed steel product
US10294557B2 (en) * 2005-09-21 2019-05-21 Arcelormittal France Method for making a steel part of multiphase microstructure
EP1825934A1 (en) * 2006-02-24 2007-08-29 Mondragon Utillaje Y Systemas, S. Coop. Tool for forming a metal sheet
US9068239B2 (en) 2006-04-24 2015-06-30 Thyssenkrupp Steel Europe Ag Device and method for the forming of blanks from high and very high strength steels
US20090178740A1 (en) * 2006-04-24 2009-07-16 Thyssenkrupp Steel Ag Device and method for the forming of blanks from high and very high strength steels
EP2117743B1 (de) 2007-03-01 2015-08-05 Schuler Pressen GmbH Kühlvorrichtung für eine platine
EP2159292A4 (en) * 2007-06-15 2016-08-31 Nippon Steel & Sumitomo Metal Corp METHOD FOR PRODUCING A FORM BODY
US20100050730A1 (en) * 2008-08-28 2010-03-04 Otto Buschsieweke Method of making tempered shaped part
US20120030929A1 (en) * 2009-05-14 2012-02-09 Diehl Metall Stiftung & Co. Kg Method for producing a component of a synchronization device for a manual transmission
US20130025340A1 (en) * 2010-04-23 2013-01-31 Topre Corporation Method of hot-press forming enabling hardness control
US9409221B2 (en) * 2010-04-23 2016-08-09 Topre Corporation Method of hot-press forming enabling hardness control
US9315876B2 (en) 2010-09-30 2016-04-19 Kobe Steel, Ltd. Press-formed product and method for producing same
EP2623226A4 (en) * 2010-09-30 2017-11-01 Kabushiki Kaisha Kobe Seiko Sho Press-molded article and method for producing same
US9358602B2 (en) 2010-09-30 2016-06-07 Kobe Steel, Ltd. Method for producing press-formed product
EP2623226A1 (en) 2010-09-30 2013-08-07 Kabushiki Kaisha Kobe Seiko Sho Press-molded article and method for producing same
US11344941B2 (en) 2011-07-21 2022-05-31 Kobe Steel, Ltd. Method of manufacturing hot-press-formed steel member
US20140352388A1 (en) * 2011-09-27 2014-12-04 Imperial Innovations Limited Method of forming parts from sheet steel
WO2013045933A1 (en) * 2011-09-27 2013-04-04 Imperial Innovations Limited A method of forming parts from sheet steel
US9469891B2 (en) 2011-09-30 2016-10-18 Kobe Steel, Ltd. Press-forming product manufacturing method and press-forming facility
EP2823905B2 (en) 2012-03-06 2020-03-25 JFE Steel Corporation Warm press forming method and automobile frame component
EP2823904A4 (en) * 2012-03-06 2015-07-01 Jfe Steel Corp HOT PRESSURE PROCESSING AND BODY COMPONENTS OF A MOTOR VEHICLE
EP2823905A4 (en) * 2012-03-06 2015-07-01 Jfe Steel Corp HOT PRESSURE FORMING METHOD AND AUTOMOTIVE CHASSIS COMPONENT
EP2823905B1 (en) 2012-03-06 2017-01-11 JFE Steel Corporation Warm press forming method and automobile frame component
EP2832466A4 (en) * 2012-03-30 2015-11-11 Kobe Steel Ltd MANUFACTURING METHOD FOR HOT PRESSING MOLDED STEEL ELEMENT AND HOT PRESSING MOLDED STEEL MEMBER
US10029294B2 (en) 2012-03-30 2018-07-24 Kobe Steel, Ltd. Method for manufacturing hot-press formed steel-member, and the hot-press formed steel-member
US9849496B2 (en) * 2013-03-28 2017-12-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Press-formed product, hot press-forming method and hot press-forming apparatus
US20140295205A1 (en) * 2013-03-28 2014-10-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Press-formed product, hot press-forming method and hot press-forming apparatus
EP2995395A4 (en) * 2013-05-09 2016-12-28 Nippon Steel & Sumitomo Metal Corp SURFACE PROCESSING WITH SURFACE CORRFINDERING AND HOT SHEARING PRODUCT WITH SURFACE CORNFINERATION
US20160067760A1 (en) * 2013-05-09 2016-03-10 Nippon Steel & Sumitomo Metal Corporation Surface layer grain refining hot-shearing method and workpiece obtained by surface layer grain refining hot-shearing
US10273555B2 (en) 2013-12-27 2019-04-30 Nippon Steel & Sumitomo Metal Corporation Hot-pressed steel sheet member
CN114130895A (zh) * 2021-12-01 2022-03-04 成都市鸿侠科技有限责任公司 一种基于滑轨式的飞机零部件用校形工艺及装置

Also Published As

Publication number Publication date
JP2005329449A (ja) 2005-12-02
GB2414208A (en) 2005-11-23
FR2870469A1 (fr) 2005-11-25
GB2414208B (en) 2006-07-12
FR2870469B1 (fr) 2009-12-04
GB0510344D0 (en) 2005-06-29
JP4551694B2 (ja) 2010-09-29
CN1310714C (zh) 2007-04-18
CN1698993A (zh) 2005-11-23

Similar Documents

Publication Publication Date Title
US20050257862A1 (en) Production method of warm- or hot-formed product
US20090007999A1 (en) Method for manufacturing hot-formed steel product
JP5756773B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
JP4681492B2 (ja) 鋼板熱間プレス方法及びプレス成形品
US9849496B2 (en) Press-formed product, hot press-forming method and hot press-forming apparatus
JP5756774B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
US9938597B2 (en) Method for manufacturing press-formed product and press-formed product
KR101494113B1 (ko) 프레스 성형품 및 그 제조 방법
WO2015037061A1 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
JP5994748B2 (ja) 高強度プレス部品およびその製造方法
US20230311185A1 (en) Press methods for coated steels and uses of steels
EP3045550A1 (en) Method for manufacturing press-molded article, and press-molded article
CN108602105B (zh) 板状成形品、车辆用门以及板状成形品的制造方法
JP5894470B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
KR101719446B1 (ko) 프레스 성형품 및 그 제조 방법
JP5612992B2 (ja) 熱間成形品の製造方法
KR20230128107A (ko) 핫 스탬프 성형체
CN113474100B (zh) 冷压用的钢板的制造方法及冲压部件的制造方法
WO2012043836A1 (ja) プレス成形品およびその製造方法
JP5717024B2 (ja) 薄肉鋼加工品及びその熱処理方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ASAI, TATSUYA;IWAYA, JIRO;REEL/FRAME:016521/0208

Effective date: 20050401

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION