US20050234457A1 - Methods for treating fractures of the femur and femoral fracture devices - Google Patents
Methods for treating fractures of the femur and femoral fracture devices Download PDFInfo
- Publication number
- US20050234457A1 US20050234457A1 US11/090,102 US9010205A US2005234457A1 US 20050234457 A1 US20050234457 A1 US 20050234457A1 US 9010205 A US9010205 A US 9010205A US 2005234457 A1 US2005234457 A1 US 2005234457A1
- Authority
- US
- United States
- Prior art keywords
- opening
- plate
- joint
- polyaxial
- femur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/74—Devices for the head or neck or trochanter of the femur
- A61B17/742—Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck
- A61B17/748—Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck with means for adapting the angle between the longitudinal elements and the shaft axis of the femur
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/72—Intramedullary pins, nails or other devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/72—Intramedullary pins, nails or other devices
- A61B17/7233—Intramedullary pins, nails or other devices with special means of locking the nail to the bone
- A61B17/7241—Intramedullary pins, nails or other devices with special means of locking the nail to the bone the nail having separate elements through which screws pass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/74—Devices for the head or neck or trochanter of the femur
- A61B17/742—Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck
- A61B17/746—Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck the longitudinal elements coupled to a plate opposite the femoral head
Definitions
- the present invention relates generally to methods and devices for treating femoral fractures. More specifically, the present invention relates to the use of novel compression hip screw and intramedullary nail assemblies with a polyaxial cross member for treating fractures to the femur.
- a common compression hip screw (CHS) assembly generally includes a side plate having a barrel member, a lag screw, and a compression screw.
- the side plate is secured to the exterior of the femur, and the barrel member is inserted into a predrilled hole at a proper angle in the direction of the femoral head.
- the lag screw which has a threaded end and a smooth portion, is inserted through the barrel member so that it extends across the break or fracture line and into the femoral head.
- the threaded portion engages the femoral head.
- the compression screw connects the lag screw to the plate.
- the smooth portion of the lag screw is free to slide through the barrel member to permit the adjustment of the compression screw for active compression.
- the lag screw can slide inside the barrel member to allow the fractured sides of the break to bear on each other for passive compression and optimal healing of the fracture.
- a typical intramedullary nail assembly generally includes an intramedullary rod and a cross member directed toward the femoral head.
- the intramedullary rod is inserted into the marrow canal of the femur.
- the angled cross-member is inserted through the femur and a proximal end of the intramedullary rod.
- Some examples of the intramedullary nail assemblies are the Russell-Taylor (RT) reconstruction nail assembly and IMHS (intramedullary hip screw) assembly manufactured by Smith & Nephew Inc. of Memphis, Tenn.
- IMHS intramedullary hip screw
- both the RT reconstruction nail and the IMHS assemblies allow: a) active sliding compression that surgeons can apply during surgery to reduce the fracture; and b) passive sliding compression under load of a patient's body weight.
- the IMHS assembly employs a barrel member similar in some ways to the barrel member in the common CHS assembly, the RT reconstruction nail relies on its own structure without any barrel to provide the active/passive sliding compression.
- the aforementioned conventional devices have a fixed-angle opening oriented toward the femoral head, through which the sliding lag screw or cross-member is inserted.
- the lag screw or cross member can only be oriented at a single fixed angle relative to the side plate or intramedullary rod.
- surgeons are limited to using implants with a fixed anteversion/retroversion, regardless of the patient anatomy, which can vary significantly from one patient to the next.
- Such a limitation frequently leads to suboptimal cross member placement, which can lead to screw cut-out through the femoral head and further damage the proximal femur.
- the present invention advantageously addresses at least the above needs and other needs by providing methods for treating fractures of the femur and femoral fracture devices that can accommodate variances in a patient's anatomy through the use of a polyaxial adjustable cross member.
- an apparatus for treating fractures of the femur comprising: a first plate configured to secure to an exterior of a femur, the first plate providing a first opening; an extended portion having a polyaxial joint affixed at one end, the extended portion configured to extend through the first opening; a cross member configured for insertion into the extended portion to permit sliding compression of a fracture of the femur and rotation about a plurality of axes as provided by the polyaxial joint; and a securing mechanism configured to lock the polyaxial joint at a predetermined orientation in the first opening.
- an apparatus for treating fractures of the femur comprising: an intramedullary rod having a proximal end and a distal end and configured for insertion into the marrow canal of the femur, the intramedullary rod including a proximal pair of openings closer to the proximal end than to the distal end; a spherical joint inserted internal to the intramedullary rod near the proximal pair of openings in the intramedullary rod; a cross member configured for insertion through the proximal pair of openings and the spherical joint to permit sliding compression of a fracture of the femur and rotation about a plurality of axes as provided by the spherical joint; and a securing mechanism internal to the intramedullary rod and configured to lock the polyaxial joint at a predetermined orientation in the first opening.
- Alternative embodiments include the use of different securing mechanisms to lock the polyaxial joint in place and methods for using the same.
- FIG. 2 depicts the polyaxial CHS assembly shown in FIG. 1 , broken down into its various components, in accordance with an embodiment of the present invention
- FIG. 3 depicts aspects of a polyaxial CHS assembly, in accordance with another embodiment of the present invention.
- FIG. 4 depicts the polyaxial CHS assembly shown in FIG. 2 , broken down into its various components, in accordance with an embodiment of the present invention
- FIG. 5 depicts aspects of a polyaxial CHS assembly, in accordance with another embodiment of the present invention.
- FIG. 6 depicts the polyaxial CHS assembly shown in FIG. 5 , broken down into its various components, in accordance with an embodiment of the present invention
- FIG. 7 depicts aspects of a polyaxial CHS assembly, in accordance with another embodiment of the present invention.
- FIG. 8 depicts the polyaxial CHS assembly shown in FIG. 7 , broken down into its various components, in accordance with an embodiment of the present invention
- FIGS. 9 A-D depict aspects of a polyaxial CHS assembly, in accordance with various embodiments of the present invention.
- FIG. 12 depicts aspects of a polyaxial CHS assembly, in accordance with another embodiment of the present invention.
- FIGS. 14 A-B depict aspects of a polyaxial CHS assembly, in accordance with another embodiment of the present invention.
- FIG. 16 depicts aspects of a polyaxial CHS assembly, in accordance with another embodiment of the present invention.
- FIGS. 17 A-B depict aspects of a polyaxial CHS assembly, in accordance with another embodiment of the present invention.
- FIGS. 18 A-B depict aspects of a polyaxial CHS assembly, in accordance with another embodiment of the present invention.
- FIG. 21 depicts aspects of a polyaxial intramedullary (IM) nail assembly, in accordance with another embodiment of the present invention.
- FIG. 22 depicts aspects of a polyaxial intramedullary (IM) nail assembly, in accordance with another embodiment of the present invention.
- FIG. 23 depicts an exemplary shape for an opening in the side plate of a compression hip screw assembly, in accordance with an embodiment of the present invention.
- inventory of parts for femoral fracture devices of the present invention can also be substantially reduced because a one-size device can be used for different angles and anteversions/retroversions.
- Holes 112 can be threaded, or unthreaded, or a combination of both, to allow screws to operate as fixation screws or compression screws.
- some holes can be threaded for fixation screws, to form a rigid screw/plate construct, and some holes can be unthreaded to receive compression screws, for active compression during surgery.
- some or all holes can include a threaded portion and a non-threaded portion to receive either compression or fixation screws.
- the barrel member 120 is an extended portion that incorporates a spherical or ball joint 122 on one end and extends through an opening 114 in the side plate 110 .
- the ball joint 122 is allowed to pivot, preferably but not necessarily continuously, in a polyaxial manner in the opening 114 through a predetermined range of motion in preferably multiple degrees of rotational freedom. Accordingly, the ball joint 122 can have a potentially infinite number of positions across its range of motion relative to the opening 114 ; alternatively, structure such as detents or other desired features can be included to cause the ball joint 122 to cooperate with the opening 114 in a manner that only allows certain settings, such as certain degrees of angulation relative to the side plate 110 .
- the cross member 130 is a component that is able to engage the proximal portion of the femur, such as the femoral head.
- the cross member 130 can be a lag screw and is described and illustrated as such throughout the present disclosure for simplicity.
- the cross member 130 can be any fastening element, with or without threads, that can engage and anchor to the proximal portion of the femur, such as the femoral head.
- the lag screw 130 includes a threaded end 132 and a smooth portion 134 . It is inserted through the barrel member 120 and extends across the fracture line and into the femoral head.
- the polyaxial CHS assembly 100 can be subjected to high weight-bearing loads with combined axial (rotational) and bending (downward and off-axis) components.
- the lag screw 130 can be subjected to three times the patient's body weight every time the patient takes a step, with a typical cyclical loading of approximately one million times (i.e., steps) a year over the life cycle of the implant (some are never removed); and to even higher loads for more strenuous activities such as stair climbing and running.
- Such high weight-bearing loads can cause undesirable rotation of the lag screw 130 about its long axis, overwhelm the securing mechanism 140 , and shift the ball joint 122 away from the desired orientation.
- an anti-rotation aspect can be incorporated into the polyaxial CHS assembly to prevent the rotation of its cross member.
- the lag screw 130 is keyed with a depression 138 , that is preferably flat with two side walls, along its long axis, as shown in FIG. 2 .
- internal to barrel member 120 is a protrusion (not shown) that extends out from the inner wall of the barrel member 120 and into the depression 138 when the lag screw 130 is inserted through the barrel member 120 .
- the polyaxial CHS assembly 100 can be designed with proper geometric configurations as already described above and further described later. Additionally, suitable types of material having proper tensile strength and kinds of surface texture for the various components of such a polyaxial CHS assembly can be chosen in light of the expected loads. Additional embodiments of a polyaxial CHS assembly are further described below.
- FIG. 3 depicts aspects of a polyaxial CHS assembly 200 with a polyaxial cross member in accordance with another embodiment of the present invention.
- the polyaxial CHS assembly 200 functions similarly to the assembly 100 depicted in FIG. 1 , with like numerals indicating like elements, except for the securing mechanism 240 .
- FIG. 4 depicts the polyaxial CHS assembly 200 , broken down into its various components to further illustrate the securing mechanism 240 .
- the securing mechanism 240 includes a securing element 244 , such as a generally concave-shaped clamp, and one or more fastening elements 246 , such as screws, that clamp down to the side plate 110 and secure the ball joint 122 to the side plate 110 .
- the clamp 244 cooperates with one end of the side plate 110 to form an opening 114 , for example a circular opening, in which the ball joint 122 can pivot in a polyaxial manner.
- FIGS. 3 and 4 depict a clamp 244 that cooperates with the side plate 110 to form the circular opening 114
- the opening 114 can have different shapes, with clamp 244 and one end of the side plate 110 having different shapes to form the shape of the opening 114 .
- the different shapes for the opening 114 can be devised as desired such that the opening 114 can provide a proper seat for the ball joint 122 and contact the ball joint 122 at one or more areas to assist in maintaining the ball joint 122 at the desired orientation under high-weight bearing loads as discussed earlier.
- the clamp 244 and one end of the side plate 110 can both have half-rectangular shapes that cooperate with each other to form a rectangular-shaped opening 114 similar to the same one shown in FIG.
- the clamp 244 and the end of the side plate 110 can have shapes that cooperate with each other to form an opening 114 in the shape shown in FIG. 23 . Additionally, the clamp 244 and the end of the side plate 110 can have shapes different from each other.
- FIG. 5 depicts aspects of a CHS assembly 300 with a polyaxial cross member in accordance with still another embodiment of the present invention.
- the polyaxial CHS assembly 300 functions similarly to the assemblies 100 and 200 shown in FIGS. 1 and 3 , with like numerals indicating like elements, except for the securing mechanism 340 .
- FIG. 6 depicts the polyaxial CHS assembly 300 , broken down into its various components to further illustrate the securing mechanism 340 .
- the securing mechanism 340 includes a securing element 344 , such as a top plate, that can be threaded to one end of the side plate 110 to secure the ball joint 122 to the side plate 110 .
- the top plate 344 includes holes on its surface to which a tool can be applied to turn the top plate 344 .
- the top plate 344 can be adapted for any tool to be used to turn the top plate 344 .
- top plate 344 In addition to the top plate 344 being threaded, it can have an internal design that includes one or more ball bearings 1610 placed in one or more angled slots 1620 as shown in FIG. 16 .
- each bearing 1610 rolls along its respective angled slot 1620 in the other direction, e.g., counterclockwise, until it reaches a stopping position, whereby it is compressed between the ball joint 122 and the wall of its respective angled slot 1620 .
- a stopping position whereby it is compressed between the ball joint 122 and the wall of its respective angled slot 1620 .
- FIG. 7 depicts aspects of a CHS assembly 400 with a polyaxial cross member in accordance with still another embodiment of the present invention.
- the polyaxial CHS assembly 400 functions similarly to the assemblies 100 , 200 , and 300 shown in FIGS. 1, 3 , and 5 , with like numerals indicating like elements, except for the securing mechanism 440 .
- FIG. 8 depicts the polyaxial CHS assembly 400 , broken down into its various components to further illustrate the securing mechanism 440 .
- the securing mechanism 440 includes a securing element 444 , such as a top plate, and one or more fastening elements 446 , such as screws, that secure the barrel member 120 to an end of the side plate 110 .
- This embodiment is different from the one shown in FIG. 2 in that the side plate 110 is not depressed around the opening 114 in order to accommodate the top plate 444 . Instead, the top plate 444 is set abutted against the one end of the side plate 110 as shown in FIG. 7 . Once the lag screw 130 is inserted at the proper angle, the screws 446 are tightened to press the top plate 444 against the side plate 110 and bias the ball joint 122 against the side wall of the opening 114 so that the ball joint 122 can make contact with such side wall at one or more areas to hold and retain the ball joint 122 in place at the desired orientation.
- FIG. 9A depicts aspects of a polyaxial CHS assembly 900 , as viewed directly into the side plate 110 , having additional “press-fit sleeve” securing mechanism 940 in accordance with one embodiment of the present invention.
- the side plate 110 in the polyaxial CHS assembly 900 includes an opening 114 at one end.
- the securing mechanism 940 includes an expandable collet 944 that can secured to the side wall of the opening 114 by another securing mechanism, such as the securing mechanism 240 shown in FIGS. 3-4 and described earlier.
- the expandable collet 944 can be a single-piece design, as shown in FIG. 9A , or a multiple-piece design, for example, a two-piece design as shown in FIG. 9B .
- the multiple-piece design of the collet 944 allows it to be used with other securing mechanisms as described later.
- the barrel member 120 is tapered along its long axis.
- FIG. 9C depicts a cross section of the barrel member 120 , as cut along its long axis towards the opening 114 , showing the tapered sides.
- the tapered barrel member 120 is inserted, preferably with its tapered end first, into an opening in the center of the expandable collet 944 and at the desired angle to cover the lag screw 130 , it causes the collet 944 to compress against the side wall of the opening 114 .
- the collet 944 can be used as a polyaxial joint in place of the ball joint 122 shown in FIGS. 1-8 .
- the tapered barrel member 120 shown in FIG. 9C can further be threaded on its surface at one end.
- FIG. 9D depicts a cross section of the barrel member 120 T, as cut along its long axis towards the opening 114 , showing the tapered sides and threaded surface. Accordingly, the collet 944 is also threaded in the opening at its center in order to receive the threaded barrel member 120 T.
- the threadings on the barrel member 120 T eventually engages with the threadings in the expandable collet 944 and as the barrel member 120 T is turned along its threadings, it causes the collet 944 to expand into the side wall of the opening 114 and secures the collet 944 to the opening 114 in the side plate 110 .
- the pressure that collet 944 exerts back to the tapered barrel member 120 due to the threaded contact with the barrel member 120 T serves to hold and retain the barrel member 120 , and thus the lag screw 130 , in place at the proper angle.
- FIG. 12 depicts a polyaxial CHS assembly 1200 , as viewed directly into the side plate 110 , with another embodiment for a securing mechanism.
- the side plate 110 in the polyaxial CHS assembly 1200 includes an opening 114 at one end. It also has a gap 1220 at one portion in the side wall of the opening 110 .
- the securing mechanism then includes a slot or hole 1240 and a fastening element 1260 , such as a screw, that can be inserted into the slot 1240 to bring the separated portions of the side plate 110 together and close the gap 1220 .
- the screw 1260 is tightened or compressed in the slot 1240 to bias the ball joint 122 against the side wall of the opening 114 so that the ball joint 122 can make contact with such side wall at one or more areas to hold and retain the ball joint 122 in place at the desired orientation.
- the securing mechanism shown in FIG. 12 can also be used to secure the expandable collet 944 , shown in FIG. 9A , to the side wall of the opening 114 .
- FIG. 13 depicts a polyaxial CHS assembly 1300 , as viewed directly into the side plate 110 , with still another embodiment for a securing mechanism.
- the side plate 110 in the polyaxial CHS assembly 900 includes an opening 114 at one end.
- the side plate 110 also has a gap 1220 at one portion in the side wall of the opening 110 .
- external slots 1340 are provided to the separated portions of the side plate 110 , through which a fastening element 1360 , such as a screw, can be inserted and tightened to bring the separated portions together and close the gap 1220 to hold and retain the ball joint 122 in place at the desired location, as explained earlier.
- a fastening element 1360 such as a screw
- a cam lock, a latch, or any known locking mechanism can be arranged along the gap 1220 to bring the separated portions of the side plate 110 together and close such gap.
- the securing mechanism shown in FIG. 13 and the above alternate embodiments can also be used to secure the expandable collet 944 , shown in FIG. 9A , to the side wall of the opening 114 .
- FIGS. 14 A-B depict side views of a CHS assembly 1400 with a polyaxial cross member in accordance with still another embodiment of the present invention. Similar to some of the previously-described polyaxial CHS assemblies, the side plate 110 in the polyaxial CHS assembly 1400 includes an opening 114 at one end. However, FIG. 14A shows a cross-sectional view of the ball joint 122 that is constructed from two half sections 1430 and 1450 . In this embodiment, the barrel member 120 can be press-fitted, welded, made integral with (i.e., as a single structure), or secured in any desired manner with either one of the half sections 1430 , 1450 of the ball joint 122 ; e.g., the first half section 1430 .
- the remaining half section, e.g., the half section 1450 , of the ball joint 122 can be internally threaded and separate from the first half section 1430 .
- the barrel member 120 is further threaded at one end to receive the threads of the second half section 1450 so that the first half section 1430 can be held in place as the second half section 1450 is turned to create a distance between the two half sections 1430 and 1450 , as shown by the arrows in FIG. 14A .
- the ball joint 122 formed from two half sections, is pre-fitted into the opening 114 of the side plate 110 .
- the lag screw 130 is first inserted at a proper angle relative to the femur to engage, for example, the femoral head.
- the side plate 110 With the pre-fitted barrel member 120 and ball joint 122 , is introduced to the lateral side of the femur so that the barrel member 120 can be placed over the lag screw 130 . Again, at this junction, the side plate 110 can be adjusted in multiple planes until it fits, preferably flush, to the side of the femur.
- the barrel member 120 is then turned to separate the two half sections 1430 , 1450 of the ball joint 122 and compress them against the edges of the opening 114 , as shown in FIG. 14B , to hold and retain the ball joint 122 in place at the desired orientation. The surgery is continued and completed in a standard manner.
- FIG. 15 depicts another embodiment for a CHS assembly 1500 with a polyaxial cross member.
- a polyaxial joint that is formed from two half sections 1530 and 1550 .
- the side plate 110 is contoured at the opening 114 (hidden from view) to accommodate the contours of the two half sections 1530 and 1550 .
- the side plate 110 at the opening 114 and the two half sections 1530 and 1550 are curved.
- the barrel member 120 can be press-fitted, welded, made integral with (i.e., as a single structure), or secured in any desired manner with the first half section 1530 .
- the second half section 1550 can be internally threaded and separated from the first half section 1550 by the side plate 110 .
- the barrel member 120 is further threaded at one end to allow the threaded second half section 1550 to engage the barrel member 120 .
- the barrel member 120 with the attached half section 1530 can be placed over the lag screw 130 .
- the side plate 110 is attached to the femur so that the barrel member 120 protrudes through the opening 114 in the side plate 110 .
- the opening 114 is larger than the barrel member 120 to enable the latter to be set at a desired orientation.
- the second half section 1550 is threaded onto the barrel member 120 to compress the side plate 110 in between the two half sections 1530 and 1550 of the polyaxial joint.
- the resulting compression locks the barrel member 120 in place at the desired orientation.
- the barrel member 120 can be press-fitted, welded, made integral with (i.e., as a single structure), or secured in any desired manner with the second half section 1550 , and the first half section 1530 is internally threaded.
- the barrel member 120 is also threaded on its surface to engage the threaded first half section 1530 so that when the barrel member 120 is turned, the second half section 1550 is compressed against the side plate 110 , and the first half section 1530 is drawn also compress against side plate ( 110 ) and hold the barrel member 120 in place at the desired orientation.
- polyaxial joint is neither a ball joint or those shown in FIG. 15 , but a cylinder that can achieve uni-axial motion based on its long axis, and the lag screw 130 can be set at any angle along that singular axis of motion.
- FIGS. 17 A-B depict aspects of a polyaxial CHS assembly 1700 , as viewed directly into the side plate 110 , with another embodiment for a securing mechanism.
- the securing mechanism includes an interference element 1710 , such as a screw, that can be inserted in the opening 114 between the ball joint 122 and the side plate 110 anywhere along the side wall of the opening 114 such that it interferes with the movement of the ball joint 122 .
- FIG. 17B depicts a cross section taken along the line A-A′ of FIG. 17A with the screw 1710 . The pressure resulting from the interference caused by the screw 1710 prevents the ball joint 122 from moving.
- the ball joint 122 and/or the screw 1710 can deform as the latter is tightened or compressed in the opening 114 so that such deformation prevents the ball joint 122 from moving and holds and retains the ball joint 122 in place at the desired orientation.
- FIGS. 17 A-B Although only one interference element 1710 is shown in FIGS. 17 A-B, alternative embodiments are contemplated wherein there are more than one interference elements 1710 that can be inserted along the side wall of the opening 114 to provide additional holds on the ball joint 122 and withstand the high weight-bearing loads on the lag screw 130 as discussed earlier.
- the securing mechanism shown in FIGS. 17 A-B and the above alternate embodiments can also be used to secure the multi-section expandable collet 944 , shown in FIG. 9B , to the side wall of the opening 114 .
- FIGS. 18 A-B depict aspects of a polyaxial CHS assembly 1800 , as viewed directly into the side plate 110 , with another embodiment for a securing mechanism, which employs an interference concept similar to the above embodiment in FIGS. 17 A-B to lock the ball joint 122 in place.
- the securing mechanism also includes an interference element 1810 , such as a screw, that originates from the side plate 110 and engages the ball joint 122 in the opening 114 of the side plate 110 .
- the screw 1810 can be situated anywhere along the perimeter of the opening 114 in order to engage the ball joint 122 . It can protrude through the side wall of the opening 114 or from an area next to such side wall. As shown in the FIGS.
- the screw 1810 is applied against the ball joint 122 , and the resulting pressure prevents the later from moving.
- the contacting areas of both elements can be deformed and prevent the ball joint 122 from moving.
- the screw 1810 can be located anywhere along the side wall 114 so long as it can make contact with the ball joint 122 . Although only one interference element 1810 is shown in FIGS.
- FIGS. 18 A-B alternative embodiments are contemplated wherein there are more than one interference elements 1810 that can be inserted along the side wall of the opening 114 to provide additional holds on the ball joint 122 and withstand the high weight-bearing loads on the lag screw 130 as discussed earlier.
- the securing mechanism shown in FIGS. 18 A-B and the above alternate embodiments can also be used to secure the multi-section expandable collet 944 , shown in FIG. 9B , to the side wall of the opening 114 .
- FIG. 19 depicts aspects of a polyaxial CHS assembly 1900 , as viewed directly into the side plate 110 , with another embodiment for a securing mechanism.
- the securing mechanism is situated in a similar position to that of the screw 1810 shown in FIGS. 18A , B, i.e., anywhere along the side wall of the opening 114 .
- It includes a fastening element 1910 , such as a screw, and a spring-loaded member 1930 .
- the screw 1910 is inserted through an opening in the spring-loaded member 1930 to exert pressure and straighten out the later.
- the spring-loaded member 1930 compresses the ball joint 122 between the side wall of the opening 114 in the side plate 110 and the spring-loaded member and holds and retains the ball joint in place at the desired orientation for the barrel member 120 .
- the securing mechanism shown in FIG. 19 can also be used to secure the multi-section expandable collet 944 , shown in FIG. 9B , to the side wall of the opening 114 .
- FIG. 20 depicts aspects of a polyaxial CHS assembly 2000 , as viewed directly into the side plate 110 , with another embodiment for a securing mechanism.
- the securing mechanism 2000 is a cam lock having a rotating member 2010 and a pressure member 2030 .
- the rotating member 2010 can be rotated to apply force to the pressure member 2030 , which then engages and compresses the ball joint 122 between the pressure member 2030 and a side wall of the opening 114 to hold and retain the ball joint 122 in place at the desired orientation.
- the rotating member 2010 can include an overcenter feature so that it retains itself in place against the pressure member 2030 once rotated beyond a certain position.
- FIG. 10A depicts a cross section of the opening 114 as taken from line A-A′ in FIG. 9 , wherein the opening 114 is enclosed by a curved or spherical side wall 1015 .
- the side wall 1015 can have the same curvature as the ball joint 122 so that when the latter is inserted into the opening 114 and set at a desired orientation, the ball joint 122 can contact the side wall 1015 at one or more areas to assist one of the aforementioned securing mechanisms in retaining the ball joint 122 in place at the desired orientation.
- FIG. 10A depicts a cross section of the opening 114 as taken from line A-A′ in FIG. 9 , wherein the opening 114 is enclosed by a curved or spherical side wall 1015 .
- the side wall 1015 can have the same curvature as the ball joint 122 so that when the latter is inserted into the opening 114 and set at a desired orientation, the ball joint 122 can contact the side wall 1015 at one or more areas to
- the opening 114 is enclosed by a tapered side wall 1025 , which have protrusions 1027 at the edges of the side wall to help grip, compress, or make contact with the ball joint 122 at at least two points to assist one of the aforementioned securing mechanisms in retaining the ball joint 122 in place at the desired location.
- the protrusions 1027 can be configured, positioned, and oriented as desired.
- top plates 144 , 344 , and 444 shown in FIGS. 2, 6 , and 8 can have their openings tapered in the opposite direction, i.e., the side wall of such an opening is tapered in as the side wall runs from the top plate's back surface (facing into the femur and hidden in the figures) to the top plate's front surface.
- the tapered opening 114 and the tapered opening of the top plate in FIG. 2, 6 , or 8 provide additional hold on the ball joint 122 therebetween.
- the side wall of the opening 114 which can have various geometrical configurations, can further include one or more protrusions 1030 , e.g., raised bumps, as shown in FIG. 10B , and the ball joint 122 correspondingly includes one or more indentations 1040 , e.g., dimples, on its surface (e.g., similar to a golf ball).
- FIG. 10B shows only some of the protrusions 1030 and indentations 1040 for illustration purposes. It should be noted that the protrusions 1030 can be distributed uniformly throughout the side wall of the opening 114 ; likewise, the indentations 1040 can be distributed uniformly throughout the surface of the ball joint 122 .
- the protrusions 1030 can be distributed uniformly throughout the surface of the ball joint 122 , and the indentations 1040 can be distributed uniformly through the side wall of the opening 114 .
- the cooperation of the protrusions 1030 and indentation 1040 can limit the ball joint 122 to preset angulations. However, such cooperation can provide an additional hold on the ball joint 122 at the preset angulations and assist the lag screw 130 in withstanding the high weight-bearing loads mentioned earlier.
- the densities of the protrusions 1030 and the indentations 1040 and their locations on the side wall of the opening 114 and the surface of the ball joint 122 can be strategically chosen to provide desired angulations of the ball joint 122 about desired axes, wherein such angulations and desired axes are found useful in accommodating the human anatomy for fracture treatments, such as sliding compression.
- the ball joint 122 is then rotated to a desired location for the barrel 120 , and one or more of the protrusions 1030 are aligned and latched with the one or more indentations 1040 on the surface of the ball joint 122 to further hold the ball joint 122 at the desired orientation.
- the ball joint 122 further can be a collet-type ball joint with one or more slots or slits for expansion.
- FIG. 11 depicts a cross section of the ball joint 122 having expansions slots 1221 that are preferably arranged in a general direction along the axis of insertion of the ball joint 122 into the opening 114 .
- the ball joint 122 compresses against the expansions slots 1221 , which will counter with an expansion force (due to their spring-like actions) to further press the ball joint 122 against the opening 114 and assist with the holding of the ball joint 122 at the desired orientation.
- a polyaxial CHS assembly depicts a rectangular, square, or circular opening 114 in the side plate 110 to accommodate the ball joint 122
- the opening 114 can be circular, elliptical, polygonal, or any other shape, or any combination thereof so as to create a proper seat for the ball joint 122 .
- each of the mentioned fastening element can be a straight screw, a tapered screw, a tapered pin, a nail, a rivet, a bolt (and nut), or any element that can be used for fastening purposes and/or contacting the ball joint 122 to exert pressure or compression and/or hinder movement of the ball joint 122 .
- FIG. 21 depicts another femoral fracture device, namely, an intramedullary nail (IM) assembly 2100 , with a polyaxial cross member in accordance with an embodiment of the present invention.
- the IM nail assembly 2100 includes an IM rod 2110 that has a proximal end and a stem distal thereto (not shown). Closer to the proximal end are the openings 2114 and 2115 opposite to one another.
- the IM nail assembly 2100 further includes a ball joint 2122 , a securing mechanism 2116 , a cross member (not shown) which can maintain sliding contact with the ball joint 2212 to allow sliding compression of the fracture being treated, and a compression member (not shown) on the opposite side of the IM rod 2110 that extends through the opening 2115 and the ball joint 2122 to engage the cross member.
- the securing mechanism 2116 such as a set screw, is configured to secure the ball joint 2122 in place. It can be a straight screw, a tapered screw, a straight pin, a tapered pin, a nail, or any element that can exert pressure on the ball joint 2122 and hinder movement of such ball joint.
- the cross member in the IM nail assembly 2100 also extends through the femoral neck, across the fracture line, and into the femoral head; thus, it functions similarly to the cross member 130 shown in the various polyaxial compression hip screw assemblies described earlier.
- the compression member can be adjusted in order to adjust the compression (reduction) of the fracture and thus functions similarly to the compression member 150 shown in the various polyaxial compression hip screw assemblies described earlier.
- the IM nail assembly 2100 is structurally similar in some ways to a conventional IMHS assembly as described in, for example, U.S. Pat. No. 5,032,125 issued on Jul. 16, 1991, to Durham et al., which is herein incorporated by reference in its entirety, except that the conventional barrel in the IMHS assembly that is used to receive the cross member is now replaced with the ball joint 2122 with a through bore.
- the IM nail assembly 2100 can further include a barrel extension that is structurally and functionally similar to a barrel member 120 in one of the aforementioned polyaxial CHS assembly, whereby such barrel extension protrudes out of IM rod 2110 through the opening 2114 .
- the internal design of the IM rod 2110 is configured to receive the ball joint 2122 , which articulates within the IM rod 2110 and is locked in place with the setting member 2116 .
- the through bore in the ball joint 2122 is configured to receive the cross member via the opening 2114 in the IM rod 2110 .
- the IM rod 2110 is first inserted into the marrow canal of the femur.
- the cross member is inserted through the femur, the opening 2115 , and the ball joint 2122 in the IM rod 2110 , and out through the opening 2114 to the femoral head at a proper angle.
- the setting member 2116 exerts pressure (e.g., is tightened or compressed) on the ball joint 2122 to lock the ball joint 2122 , and consequently the cross member, in place at the desired orientation.
- the polyaxial IM nail assembly 2100 functions similarly to the above-described polyaxial compression hip screw assemblies in that it allows angulation and anteversion/retroversion of the cross member.
- FIG. 22 depicts a polyaxial IM nail assembly 2200 in accordance with another embodiment of the represent invention.
- the IM nail assembly 2200 is structurally and functionally similar to the IM nail assembly 2100 depicted in FIG. 2 , except that a cam lock 2250 is used in place of the setting member 2116 to lock the ball joint 2122 at the desired orientation.
- the cam lock 2250 is similar to one depicted in FIG. 20 in that it also includes a rotating member 2253 and a pressure member 2255 . Again, the rotating member 2053 can be rotated to push up the pressure member 2255 , which then engages and compresses the ball joint 122 to prevent movement on the desired orientation.
- the rotating member 2253 can include an overcenter feature so that it retains itself in place against the pressure member 2030 once rotated beyond a certain position.
- the seating e.g., inner wall of the IM rod 2110
- the seating can have various geometrical configurations, such as spherical or tapered.
- the seating can be a conical tapered section that can wedge the ball joint 2122 in place to lock it as the setting member 2116 or cam lock 2250 exerts pressure on the ball joint 2122 .
- the above polyaxial designs for the cross member in an IM nail assembly can be applied to other fastening and/or anchoring elements in the nail assembly as well.
- ball joints similar to ball joints 2122 (in above embodiments for a polyaxial IM nail assembly) or ball joints 122 (in above embodiments for a polyaxial CHS assembly) can be used with anchoring elements to optimize their orientation in securing the distal end of the IM rod 2116 within the marrow canal of the femur.
- U.S. Pat. No. 4,827,917 issued on May 9, 1989 to David L. Brumfield which is herein incorporated by reference in its entirety, discloses such anchoring elements with which ball joints can be used.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/090,102 US20050234457A1 (en) | 2004-03-26 | 2005-03-28 | Methods for treating fractures of the femur and femoral fracture devices |
US11/894,234 US7972336B2 (en) | 2004-03-26 | 2007-09-18 | Methods for treating fractures of the femur and femoral fracture devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55702704P | 2004-03-26 | 2004-03-26 | |
US11/090,102 US20050234457A1 (en) | 2004-03-26 | 2005-03-28 | Methods for treating fractures of the femur and femoral fracture devices |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/894,234 Division US7972336B2 (en) | 2004-03-26 | 2007-09-18 | Methods for treating fractures of the femur and femoral fracture devices |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050234457A1 true US20050234457A1 (en) | 2005-10-20 |
Family
ID=34968041
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/090,102 Abandoned US20050234457A1 (en) | 2004-03-26 | 2005-03-28 | Methods for treating fractures of the femur and femoral fracture devices |
US11/894,234 Active 2027-06-27 US7972336B2 (en) | 2004-03-26 | 2007-09-18 | Methods for treating fractures of the femur and femoral fracture devices |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/894,234 Active 2027-06-27 US7972336B2 (en) | 2004-03-26 | 2007-09-18 | Methods for treating fractures of the femur and femoral fracture devices |
Country Status (4)
Country | Link |
---|---|
US (2) | US20050234457A1 (fr) |
EP (1) | EP1727484A2 (fr) |
JP (1) | JP2008500844A (fr) |
WO (1) | WO2005094707A2 (fr) |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050149024A1 (en) * | 2003-09-08 | 2005-07-07 | Joseph Ferrante | Orthopaedic implant and screw assembly |
US20060036248A1 (en) * | 2004-07-01 | 2006-02-16 | Ferrante Joseph M | Fixation elements |
US20060235402A1 (en) * | 2005-03-11 | 2006-10-19 | Orthofix International B.V. | Device for the ostheosynthesis of proximal humerus fractures |
US20070155271A1 (en) * | 2005-12-30 | 2007-07-05 | Touzov Igor V | Heat conductive textile and method producing thereof |
US20070162011A1 (en) * | 2005-12-16 | 2007-07-12 | Depuy Products, Inc. | Orthopaedic device with locking barrel |
US20070233100A1 (en) * | 2006-03-31 | 2007-10-04 | Metzinger Anthony J | Variable angle intramedullary nail |
US20070233103A1 (en) * | 2006-03-31 | 2007-10-04 | Metzinger Anthony J | Intramedullary nail, intramedullary nail assembly and method |
US20070233104A1 (en) * | 2006-03-31 | 2007-10-04 | Metzinger Anthony J | Intramedullary nail implant assembly, kit and method |
US20070233101A1 (en) * | 2006-03-31 | 2007-10-04 | Metzinger Anthony J | Variable angle intramedullary nail, assembly and method |
US20070288020A1 (en) * | 2006-06-02 | 2007-12-13 | United Orthopedic Corporation | Soft tissue fixation device for organs proximate shankbone |
US20080077142A1 (en) * | 2004-03-26 | 2008-03-27 | Smith & Nephew, Inc. | Methods for treating fractures of the femur and femoral fracture devices |
US20080172092A1 (en) * | 2007-01-12 | 2008-07-17 | Paul Edward Kraemer | System and method for spinal instrumentation |
US20080249580A1 (en) * | 2005-09-28 | 2008-10-09 | Smith & Nephew, Inc. | Methods and Instruments of Reducing a Fracture |
US20080255559A1 (en) * | 2007-03-30 | 2008-10-16 | Depuy Products, Inc. | Orthopaedic trauma hip screw assembly and associated method |
WO2008098728A3 (fr) * | 2007-02-12 | 2008-10-23 | Stryker Trauma Gmbh | Dispositif de fixation |
US20080269752A1 (en) * | 2007-04-19 | 2008-10-30 | Stryker Trauma Gmbh | Hip fracture device with barrel and end cap for load control |
WO2009002890A1 (fr) * | 2007-06-22 | 2008-12-31 | Anthem Orthopaedics Van, Llc | Tige intramédullaire avec pièce de fixation pivotante et procédé d'utilisation |
WO2008141805A3 (fr) * | 2007-05-23 | 2009-02-12 | Ulrich Schreiber | Clou centromédullaire, en particulier clou centromédullaire verrouillé, et dispositif pour fixer ce clou centromédullaire dans un os long |
US7537618B2 (en) * | 2006-11-13 | 2009-05-26 | Howmedica Osteonics Corp. | Modular humeral head |
US20100094293A1 (en) * | 2008-10-11 | 2010-04-15 | Anthem Orthopaedics Van, Llc | Intramedullary rod with pivotable and fixed fasteners and method for using same |
US20100211112A1 (en) * | 2007-09-26 | 2010-08-19 | Zimmer, Gmbh | Bone anchoring device for the operative repair of fractures |
US7780667B2 (en) | 2003-09-08 | 2010-08-24 | Smith & Nephew, Inc. | Orthopaedic plate and screw assembly |
US7799030B2 (en) | 2003-09-08 | 2010-09-21 | Smith & Nephew, Inc. | Orthopaedic plate and screw assembly |
US20100305568A1 (en) * | 2008-02-05 | 2010-12-02 | Texas Scottish Rite Hospital For Children | External fixator ring |
US20100312243A1 (en) * | 2008-02-08 | 2010-12-09 | Texas Scottish Rite Hospital For Children | External fixator ring |
US20110004199A1 (en) * | 2008-02-18 | 2011-01-06 | Texas Scottish Rite Hospital For Children | Tool and method for external fixation strut adjustment |
US20110066152A1 (en) * | 2009-09-14 | 2011-03-17 | Zimmer, Gmbh | Angular lag implant for intramedullary nails |
US7918853B2 (en) | 2007-03-20 | 2011-04-05 | Smith & Nephew, Inc. | Orthopaedic plate and screw assembly |
US20110118741A1 (en) * | 2005-05-12 | 2011-05-19 | Jin Gon Kim | Apparatus for preventing distal migration of lag screw for hip fracture surgery |
US20110264150A1 (en) * | 2008-03-27 | 2011-10-27 | Henrik Hansson | Device for fixation of bone fragments at bone fractures |
US8105367B2 (en) | 2003-09-29 | 2012-01-31 | Smith & Nephew, Inc. | Bone plate and bone plate assemblies including polyaxial fasteners |
US20120089192A1 (en) * | 2010-10-07 | 2012-04-12 | Miami Device Solutions, Llc | Bone Plate Assembly with Guide Member |
US8182484B2 (en) * | 2008-04-21 | 2012-05-22 | Depuy Products, Inc. | Orthopaedic trauma hip screw assembly |
US8382807B2 (en) | 2005-07-25 | 2013-02-26 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US8449544B2 (en) | 2009-06-30 | 2013-05-28 | Smith & Nephew, Inc. | Orthopaedic implant and fastener assembly |
US20130184765A1 (en) * | 2012-01-16 | 2013-07-18 | Carbofix Orthopedics Ltd. | Multi-axial bone plate fixation |
US8574232B1 (en) | 2012-11-13 | 2013-11-05 | Texas Scottish Hospital for Children | External fixation connection rod for rapid and gradual adjustment |
US8734494B2 (en) | 2007-04-19 | 2014-05-27 | Stryker Trauma Gmbh | Hip fracture device with static locking mechanism allowing compression |
DE102012024688A1 (de) * | 2012-12-18 | 2014-06-18 | Cornelius Bobbert | Marknagel, insbesondere verriegelbarer Marknagel, mit Führungsdrahtdurchlässen |
DE102012024687A1 (de) * | 2012-12-18 | 2014-06-18 | Cornelius Bobbert | Verriegelbarer Marknagel mit wenigstens einem Einsatz zum Aufnehmen einer Verriegelungsschraube |
US8834469B2 (en) | 2009-06-30 | 2014-09-16 | Smith & Nephew, Inc. | Orthopaedic implant and fastener assembly |
US20140276819A1 (en) * | 2013-03-15 | 2014-09-18 | Biomet C.V. | Polyaxial pivot housing for external fixation system |
US8940028B2 (en) | 2005-07-25 | 2015-01-27 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US9078700B2 (en) | 2008-02-12 | 2015-07-14 | Texas Scottish Rite Hospital For Children | Fast adjust external fixation connection rod |
US9101427B2 (en) | 2010-06-07 | 2015-08-11 | Carbofix Orthopedics Ltd. | Self tapping insert |
US9101417B2 (en) | 2009-01-16 | 2015-08-11 | Carbofix Orthopedics Ltd. | Composite material bone implant |
US20150250507A1 (en) * | 2014-03-06 | 2015-09-10 | National University Of Ireland, Galway | Components for bone fixation devices |
US9443302B2 (en) | 2010-08-20 | 2016-09-13 | Amei Technologies, Inc. | Method and system for roentgenography-based modeling |
US9526549B2 (en) | 2012-01-16 | 2016-12-27 | Carbofix Orthopedics Ltd. | Bone screw with insert |
US9861418B2 (en) | 2012-02-08 | 2018-01-09 | Epix Orthopaedics, Inc. | Implant insertion device with continuously adjustable targeting assembly |
US10022171B2 (en) | 2011-07-26 | 2018-07-17 | Scott & White Healthcare | Bone screws and bone screw systems |
US10123828B2 (en) | 2013-03-15 | 2018-11-13 | Epix Orthopaedics, Inc. | Implantable device with pivotable fastener and self-adjusting set screw |
US10154867B2 (en) | 2010-06-07 | 2018-12-18 | Carbofix In Orthopedics Llc | Multi-layer composite material bone screw |
US10390866B2 (en) | 2011-06-15 | 2019-08-27 | Smith & Nephew, Inc. | Variable angle locking implant |
US10617458B2 (en) | 2015-12-23 | 2020-04-14 | Carbofix In Orthopedics Llc | Multi-layer composite material bone screw |
US10993750B2 (en) | 2015-09-18 | 2021-05-04 | Smith & Nephew, Inc. | Bone plate |
CN114848121A (zh) * | 2022-05-12 | 2022-08-05 | 中国人民解放军总医院第四医学中心 | 一种可调节支撑结构的三角力学稳定形态的髋部骨折固定装置 |
US11826077B2 (en) | 2020-03-23 | 2023-11-28 | Texas Scottish Rite Hospital For Children | External fixation strut |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2120744A4 (fr) * | 2007-01-11 | 2013-05-01 | Anthem Orthopaedics Llc | Dispositif de réparation osseuse intra-médullaire percutané et son procédé d'utilisation |
US20090326591A1 (en) * | 2008-01-29 | 2009-12-31 | Spencer Jr Edwin E | System and method to position and secure fractured bones |
WO2010077309A2 (fr) * | 2008-12-17 | 2010-07-08 | Nutek Orthopaedics, Inc. | Appareil de fixation externe équipé d'un moyen de fixation de broches réglable et de broches osseuses convergentes |
US10675068B2 (en) | 2010-10-27 | 2020-06-09 | DePuy Synthes Products, Inc. | Fixation device for treating a bone fracture |
US9220544B2 (en) * | 2011-12-15 | 2015-12-29 | Epix Orthopaedics, Inc. | Implantable device with locking adjustment mechanism and method for using same |
CN107184248B (zh) * | 2012-02-08 | 2020-02-21 | Epix整形外科股份有限公司 | 植入体插入装置 |
US9320555B2 (en) | 2013-01-31 | 2016-04-26 | Stryker European Holdings I, Llc | Modular lag screw |
US20140243826A1 (en) * | 2013-02-28 | 2014-08-28 | Yechiel Gotfried | Method for connecting fractured bone |
US9247980B2 (en) * | 2013-03-13 | 2016-02-02 | Kyphon Sarl | Device for performing a surgical procedure and method |
US10010423B2 (en) | 2013-03-15 | 2018-07-03 | Avinash Kumar | Anatomical humeral fixation system and method |
US9526542B2 (en) | 2014-05-07 | 2016-12-27 | Acumed Llc | Hip fixation with load-controlled dynamization |
US9433451B2 (en) | 2013-12-09 | 2016-09-06 | Acumed Llc | Hip fixation system with a compliant fixation element |
US10080596B2 (en) | 2013-12-09 | 2018-09-25 | Acumed Llc | Hip fixation with load-controlled dynamization |
WO2015089086A1 (fr) | 2013-12-09 | 2015-06-18 | Acumed Llc | Système de fixation de hanche conforme à base de clou |
US9463055B2 (en) | 2013-12-09 | 2016-10-11 | Acumed Llc | Plate-based compliant hip fixation system |
US10543026B2 (en) | 2014-04-21 | 2020-01-28 | The General Hospital Corporation | Fracture fixation device having clip for stabilizing intramedullary nail |
US10314618B2 (en) * | 2014-07-25 | 2019-06-11 | The General Hospital Corporation | System and method for an external hip fixator |
CN104224298A (zh) * | 2014-09-02 | 2014-12-24 | 苏州爱脊康生物科技有限公司 | 一种带有可滑动滑块的锁定加压接骨板 |
ITUA20162633A1 (it) * | 2016-04-15 | 2017-10-15 | Orthofix Srl | Dispositivo fissatore interno a piastra per la correzione pediatrica di gravi malformazioni ossee |
US11045242B2 (en) * | 2016-09-22 | 2021-06-29 | Globus Medical, Inc. | Systems and methods for intramedullary nail implantation |
Citations (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2439995A (en) * | 1944-04-11 | 1948-04-20 | Orville W Thrailkill | Securing device |
US2441765A (en) * | 1945-04-28 | 1948-05-18 | Surgical Specialties Corp | Surgical device |
US2496126A (en) * | 1947-10-28 | 1950-01-31 | Edward J Haboush | Fracture nail and bone plate |
US2526959A (en) * | 1947-07-01 | 1950-10-24 | Frank A Lorenzo | Fracture reduction apparatus |
US2702543A (en) * | 1952-11-28 | 1955-02-22 | Helen G Pugh | Surgical fracture fixation device for the hips |
US2834342A (en) * | 1956-08-29 | 1958-05-13 | Clyde E Yost | Surgical device for the fixation of fractured bones |
US3094120A (en) * | 1961-04-17 | 1963-06-18 | Blosser Howard William | Pin guide and stabilization bar |
US3308812A (en) * | 1964-05-27 | 1967-03-14 | Gidlund Ake Samuel | Device for osteosynthesis |
US3374786A (en) * | 1964-12-15 | 1968-03-26 | George R. Callender Jr. | Fractured bone setting fastener assembly |
US3554193A (en) * | 1968-07-05 | 1971-01-12 | Ilias Konstantinou | Femur-setting surgical device |
US3554196A (en) * | 1968-02-19 | 1971-01-12 | Eva M Wargo | Sanitary belt |
US3842825A (en) * | 1973-11-12 | 1974-10-22 | R Wagner | Hip fixation device |
US4011603A (en) * | 1975-08-29 | 1977-03-15 | Laure Prosthetics, Inc. | Finger joint implant |
US4095591A (en) * | 1977-01-27 | 1978-06-20 | Richards Manufacturing Co., Inc. | Compression screw system |
US4432358A (en) * | 1982-01-22 | 1984-02-21 | Fixel Irving E | Compression hip screw apparatus |
US4530355A (en) * | 1982-01-18 | 1985-07-23 | Richards Manufacturing Co., Inc. | Compression screw assembly |
US4612920A (en) * | 1984-11-06 | 1986-09-23 | Zimmer, Inc. | Compression hip screw |
US4827917A (en) * | 1986-12-30 | 1989-05-09 | Richards Medical Company | Fermoral fracture device |
US4988350A (en) * | 1988-06-24 | 1991-01-29 | Wolfgang Herzberg | Device for reconnecting a broken bone |
US5032125A (en) * | 1990-02-06 | 1991-07-16 | Smith & Nephew Richards Inc. | Intramedullary hip screw |
US5127914A (en) * | 1989-02-10 | 1992-07-07 | Calderale Pasquale M | Osteosynthesis means for the connection of bone fracture segments |
US5429640A (en) * | 1992-11-27 | 1995-07-04 | Clemson University | Intramedullary rod for fracture fixation of femoral shaft independent of ipsilateral femoral neck fracture fixation |
US5462547A (en) * | 1991-05-30 | 1995-10-31 | Synthes (U.S.A.) | Trochanter stabilization device |
US5484439A (en) * | 1992-09-16 | 1996-01-16 | Alphatec Manufacturing, Inc. | Modular femur fixation device |
US5549608A (en) * | 1995-07-13 | 1996-08-27 | Fastenetix, L.L.C. | Advanced polyaxial locking screw and coupling element device for use with rod fixation apparatus |
US5653709A (en) * | 1992-12-04 | 1997-08-05 | Synthes (U.S.A.) | Modular marrow nail |
US5871485A (en) * | 1998-03-18 | 1999-02-16 | Rao; G.V. Subba | Device for internal fixation of femoral neck fractures |
US6007536A (en) * | 1998-11-30 | 1999-12-28 | Yue; James J. | Variable angle blade plate for fixation of cancellous bone |
US6139552A (en) * | 1998-05-13 | 2000-10-31 | K. K. Hollyx | Bone jointer and a bone jointer fixing tool |
US6221074B1 (en) * | 1999-06-10 | 2001-04-24 | Orthodyne, Inc. | Femoral intramedullary rod system |
US6235034B1 (en) * | 1997-10-24 | 2001-05-22 | Robert S. Bray | Bone plate and bone screw guide mechanism |
US6238128B1 (en) * | 1998-05-02 | 2001-05-29 | Hilti Aktiengesellschaft | Dowel |
US6238126B1 (en) * | 1996-07-04 | 2001-05-29 | Vagn Erik Dall | Hip compression screw assemblies and joints therefor |
US20020151898A1 (en) * | 1999-10-21 | 2002-10-17 | Sohngen Gary W. | Modular intramedullary nail |
US6468278B1 (en) * | 1997-11-14 | 2002-10-22 | Medos Medizintechnik Gmbh | Implant for the stabilization of a fracture |
US6669697B1 (en) * | 1998-09-25 | 2003-12-30 | Perumala Corporation | Self-retaining bolt for internal spinal stabilizers |
US20050010224A1 (en) * | 2003-07-07 | 2005-01-13 | Watkins William T. | Compression bone screw device |
US6902567B2 (en) * | 2000-05-31 | 2005-06-07 | Silvana Vese | Device for fixing bone sections separated because of a fracture |
US20050192580A1 (en) * | 2004-02-26 | 2005-09-01 | Dalton Brian E. | Polyaxial locking screw plate assembly |
US20060122605A1 (en) * | 2004-12-06 | 2006-06-08 | Suh Sean S | Translational plate with cover blocking system |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US669697A (en) * | 1899-01-06 | 1901-03-12 | William G Hurst | Clip for attaching inflaters to cycles. |
DE1265339B (de) * | 1964-05-21 | 1968-04-04 | Ake Samuel Gidlund | Vorrichtung zur Knochenverbindung |
CH481639A (de) * | 1968-05-07 | 1969-11-30 | Feinmechanik Ag Vormals Jetter & Scheerer | Chirurgische Vorrichtung zur Behandlung von Schenkelhalsbrüchen |
GB2090745B (en) * | 1981-01-09 | 1984-05-02 | Howmedica Uk Ltd | Device for treating trochanteric fracture |
US5888204A (en) | 1996-04-15 | 1999-03-30 | Fastenetix, Llc | Acetabular cup having capped polyaxial locking screws |
US5520690A (en) | 1995-04-13 | 1996-05-28 | Errico; Joseph P. | Anterior spinal polyaxial locking screw plate assembly |
US5662667A (en) | 1995-09-19 | 1997-09-02 | Ethicon Endo-Surgery, Inc. | Surgical clamping mechanism |
JPH09220235A (ja) * | 1996-02-19 | 1997-08-26 | Bristol Mayers Sukuibu Kk | 骨接合装置 |
DE19610741C1 (de) | 1996-03-20 | 1997-11-20 | Eska Implants Gmbh & Co | Verriegelungsendoprothese für ein künstliches Hüftgelenk |
US6007538A (en) * | 1997-07-25 | 1999-12-28 | Duke University | Sternal closure device |
US5954722A (en) | 1997-07-29 | 1999-09-21 | Depuy Acromed, Inc. | Polyaxial locking plate |
CA2332822C (fr) | 1998-05-19 | 2007-01-16 | Synthes (U.S.A.) | Implant osteosynthetique dote d'un assemblage articule encastre |
US6123708A (en) * | 1999-02-03 | 2000-09-26 | Pioneer Laboratories, Inc. | Intramedullary bone fixation rod |
WO2001003593A1 (fr) | 1999-07-07 | 2001-01-18 | Synthes Ag Chur | Vis a os avec tete de vis constituees axialement de deux parties |
JP4236795B2 (ja) | 1999-09-16 | 2009-03-11 | 株式会社ホリックス | 骨接合装置 |
US6767351B2 (en) | 2000-02-01 | 2004-07-27 | Hand Innovations, Inc. | Fixation system with multidirectional stabilization pegs |
US6893444B2 (en) | 2000-02-01 | 2005-05-17 | Hand Innovations, Llc | Bone fracture fixation systems with both multidirectional and unidirectional stabilization pegs |
US20040153073A1 (en) | 2000-02-01 | 2004-08-05 | Hand Innovations, Inc. | Orthopedic fixation system including plate element with threaded holes having divergent axes |
US6413259B1 (en) | 2000-12-14 | 2002-07-02 | Blackstone Medical, Inc | Bone plate assembly including a screw retaining member |
DE10256095B4 (de) | 2002-12-02 | 2004-11-18 | Biedermann Motech Gmbh | Element mit einem Schaft und einem damit verbundenen Halteelement zum Verbinden mit einem Stab |
US6945973B2 (en) | 2003-05-01 | 2005-09-20 | Nuvasive, Inc. | Slidable bone plate system |
US6945975B2 (en) | 2003-07-07 | 2005-09-20 | Aesculap, Inc. | Bone fixation assembly and method of securement |
JP2007502677A (ja) | 2003-08-20 | 2007-02-15 | ウォーソー・オーソペディック・インコーポレーテッド | 例えば脊椎手術用の、多軸型整形外科デバイスおよびシステム |
FR2860420B1 (fr) | 2003-10-03 | 2006-06-02 | Surfic Technologies | Dispositif d'osteosynthese |
JP2008500844A (ja) | 2004-03-26 | 2008-01-17 | スミス アンド ネフュー インコーポレーテッド | 大腿骨骨折の治療方法及び大腿骨骨折用デバイス |
US7322984B2 (en) | 2005-01-06 | 2008-01-29 | Spinal, Llc | Spinal plate with internal screw locks |
US20060293668A1 (en) | 2005-06-10 | 2006-12-28 | Sdgi Holdings, Inc. | Bone screw locking mechanism and method of use |
US7883531B2 (en) | 2005-07-06 | 2011-02-08 | Stryker Spine | Multi-axial bone plate system |
SE531987C2 (sv) | 2006-03-17 | 2009-09-22 | Sven Olerud | Anordning för att fästa och fixera ett första element mot ett andra element |
US20070270846A1 (en) | 2006-03-31 | 2007-11-22 | Metzinger Anthony J | Fixture, intramedullary nail kit and method of presetting a nail assembly |
US20070233100A1 (en) | 2006-03-31 | 2007-10-04 | Metzinger Anthony J | Variable angle intramedullary nail |
US20070233104A1 (en) | 2006-03-31 | 2007-10-04 | Metzinger Anthony J | Intramedullary nail implant assembly, kit and method |
US7699876B2 (en) | 2006-11-08 | 2010-04-20 | Ebi, Llc | Multi-axial bone fixation apparatus |
DE102007051136A1 (de) | 2007-05-23 | 2009-04-30 | Eichhorn, Stefan, Dipl.-Ing. | Verriegelbarer Marknagel und Vorrichtung zum Fixieren |
US8852247B2 (en) | 2007-12-07 | 2014-10-07 | Custom Spine, Inc. | Orthopedic anti back-out mechanism |
US20090192549A1 (en) | 2008-01-30 | 2009-07-30 | Ebi, Llc | Bone plating system |
-
2005
- 2005-03-28 JP JP2007505276A patent/JP2008500844A/ja active Pending
- 2005-03-28 EP EP05729877A patent/EP1727484A2/fr not_active Withdrawn
- 2005-03-28 US US11/090,102 patent/US20050234457A1/en not_active Abandoned
- 2005-03-28 WO PCT/US2005/010462 patent/WO2005094707A2/fr not_active Application Discontinuation
-
2007
- 2007-09-18 US US11/894,234 patent/US7972336B2/en active Active
Patent Citations (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2439995A (en) * | 1944-04-11 | 1948-04-20 | Orville W Thrailkill | Securing device |
US2441765A (en) * | 1945-04-28 | 1948-05-18 | Surgical Specialties Corp | Surgical device |
US2526959A (en) * | 1947-07-01 | 1950-10-24 | Frank A Lorenzo | Fracture reduction apparatus |
US2496126A (en) * | 1947-10-28 | 1950-01-31 | Edward J Haboush | Fracture nail and bone plate |
US2702543A (en) * | 1952-11-28 | 1955-02-22 | Helen G Pugh | Surgical fracture fixation device for the hips |
US2834342A (en) * | 1956-08-29 | 1958-05-13 | Clyde E Yost | Surgical device for the fixation of fractured bones |
US3094120A (en) * | 1961-04-17 | 1963-06-18 | Blosser Howard William | Pin guide and stabilization bar |
US3308812A (en) * | 1964-05-27 | 1967-03-14 | Gidlund Ake Samuel | Device for osteosynthesis |
US3374786A (en) * | 1964-12-15 | 1968-03-26 | George R. Callender Jr. | Fractured bone setting fastener assembly |
US3554196A (en) * | 1968-02-19 | 1971-01-12 | Eva M Wargo | Sanitary belt |
US3554193A (en) * | 1968-07-05 | 1971-01-12 | Ilias Konstantinou | Femur-setting surgical device |
US3842825A (en) * | 1973-11-12 | 1974-10-22 | R Wagner | Hip fixation device |
US4011603A (en) * | 1975-08-29 | 1977-03-15 | Laure Prosthetics, Inc. | Finger joint implant |
US4095591A (en) * | 1977-01-27 | 1978-06-20 | Richards Manufacturing Co., Inc. | Compression screw system |
US4530355A (en) * | 1982-01-18 | 1985-07-23 | Richards Manufacturing Co., Inc. | Compression screw assembly |
US4432358A (en) * | 1982-01-22 | 1984-02-21 | Fixel Irving E | Compression hip screw apparatus |
US4612920A (en) * | 1984-11-06 | 1986-09-23 | Zimmer, Inc. | Compression hip screw |
US4827917A (en) * | 1986-12-30 | 1989-05-09 | Richards Medical Company | Fermoral fracture device |
US4988350A (en) * | 1988-06-24 | 1991-01-29 | Wolfgang Herzberg | Device for reconnecting a broken bone |
US5127914A (en) * | 1989-02-10 | 1992-07-07 | Calderale Pasquale M | Osteosynthesis means for the connection of bone fracture segments |
US5032125A (en) * | 1990-02-06 | 1991-07-16 | Smith & Nephew Richards Inc. | Intramedullary hip screw |
US5462547A (en) * | 1991-05-30 | 1995-10-31 | Synthes (U.S.A.) | Trochanter stabilization device |
US5484439A (en) * | 1992-09-16 | 1996-01-16 | Alphatec Manufacturing, Inc. | Modular femur fixation device |
US5429640A (en) * | 1992-11-27 | 1995-07-04 | Clemson University | Intramedullary rod for fracture fixation of femoral shaft independent of ipsilateral femoral neck fracture fixation |
US5562667A (en) * | 1992-11-27 | 1996-10-08 | Shuler; Thomas E. | Intramedullary rod for fracture fixation of femoral shaft independent of ipsilateral femoral neck fracture fixation |
US5653709A (en) * | 1992-12-04 | 1997-08-05 | Synthes (U.S.A.) | Modular marrow nail |
US5549608A (en) * | 1995-07-13 | 1996-08-27 | Fastenetix, L.L.C. | Advanced polyaxial locking screw and coupling element device for use with rod fixation apparatus |
US6238126B1 (en) * | 1996-07-04 | 2001-05-29 | Vagn Erik Dall | Hip compression screw assemblies and joints therefor |
US6235034B1 (en) * | 1997-10-24 | 2001-05-22 | Robert S. Bray | Bone plate and bone screw guide mechanism |
US6468278B1 (en) * | 1997-11-14 | 2002-10-22 | Medos Medizintechnik Gmbh | Implant for the stabilization of a fracture |
US5871485A (en) * | 1998-03-18 | 1999-02-16 | Rao; G.V. Subba | Device for internal fixation of femoral neck fractures |
US6238128B1 (en) * | 1998-05-02 | 2001-05-29 | Hilti Aktiengesellschaft | Dowel |
US6139552A (en) * | 1998-05-13 | 2000-10-31 | K. K. Hollyx | Bone jointer and a bone jointer fixing tool |
US6669697B1 (en) * | 1998-09-25 | 2003-12-30 | Perumala Corporation | Self-retaining bolt for internal spinal stabilizers |
US6007536A (en) * | 1998-11-30 | 1999-12-28 | Yue; James J. | Variable angle blade plate for fixation of cancellous bone |
US6221074B1 (en) * | 1999-06-10 | 2001-04-24 | Orthodyne, Inc. | Femoral intramedullary rod system |
US20020151898A1 (en) * | 1999-10-21 | 2002-10-17 | Sohngen Gary W. | Modular intramedullary nail |
US6902567B2 (en) * | 2000-05-31 | 2005-06-07 | Silvana Vese | Device for fixing bone sections separated because of a fracture |
US20050010224A1 (en) * | 2003-07-07 | 2005-01-13 | Watkins William T. | Compression bone screw device |
US7135023B2 (en) * | 2003-07-07 | 2006-11-14 | Watkins William T | Compression bone screw device |
US20050192580A1 (en) * | 2004-02-26 | 2005-09-01 | Dalton Brian E. | Polyaxial locking screw plate assembly |
US20060122605A1 (en) * | 2004-12-06 | 2006-06-08 | Suh Sean S | Translational plate with cover blocking system |
Cited By (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8187275B2 (en) | 2003-09-08 | 2012-05-29 | Smith & Nephew, Inc. | Orthopaedic implant and fastening assembly |
US20050149025A1 (en) * | 2003-09-08 | 2005-07-07 | Joseph Ferrante | Orthopaedic plate and screw assembly |
US7527627B2 (en) | 2003-09-08 | 2009-05-05 | Smith & Nephew, Inc. | Orthopaedic implant and screw assembly |
US8617161B2 (en) | 2003-09-08 | 2013-12-31 | Smith & Nephew, Inc. | Orthopaedic plate and fastener assembly |
US8298234B2 (en) | 2003-09-08 | 2012-10-30 | Smith & Nephew, Inc. | Orthopaedic implant and fastener assembly |
US7534244B2 (en) | 2003-09-08 | 2009-05-19 | Smith & Nephew, Inc. | Orthopaedic plate and screw assembly |
US8105326B2 (en) | 2003-09-08 | 2012-01-31 | Smith & Nephew, Inc. | Orthopaedic implant and fastener assembly |
US20050149024A1 (en) * | 2003-09-08 | 2005-07-07 | Joseph Ferrante | Orthopaedic implant and screw assembly |
US7780667B2 (en) | 2003-09-08 | 2010-08-24 | Smith & Nephew, Inc. | Orthopaedic plate and screw assembly |
US7799030B2 (en) | 2003-09-08 | 2010-09-21 | Smith & Nephew, Inc. | Orthopaedic plate and screw assembly |
US7931652B2 (en) | 2003-09-08 | 2011-04-26 | Smith & Nephew, Inc. | Orthopaedic plate and screw assembly |
US7883509B2 (en) | 2003-09-08 | 2011-02-08 | Smith & Nephew, Inc. | Orthopaedic implant and screw assembly |
US8105367B2 (en) | 2003-09-29 | 2012-01-31 | Smith & Nephew, Inc. | Bone plate and bone plate assemblies including polyaxial fasteners |
US8992581B2 (en) | 2003-09-29 | 2015-03-31 | Smith & Nephew, Inc. | Bone plate and bone plate assemblies including polyaxial fasteners |
US20080077142A1 (en) * | 2004-03-26 | 2008-03-27 | Smith & Nephew, Inc. | Methods for treating fractures of the femur and femoral fracture devices |
US7972336B2 (en) | 2004-03-26 | 2011-07-05 | Smith & Nephew, Inc. | Methods for treating fractures of the femur and femoral fracture devices |
US20060036248A1 (en) * | 2004-07-01 | 2006-02-16 | Ferrante Joseph M | Fixation elements |
US7833254B2 (en) * | 2005-03-11 | 2010-11-16 | Orthofix International B.V. | Device for the ostheosynthesis of proximal humerus fractures |
US20100249853A1 (en) * | 2005-03-11 | 2010-09-30 | Orthofix International B.V. | Device for the ostheosynthesis of proximal humerus fractures |
US8337534B2 (en) | 2005-03-11 | 2012-12-25 | Orthofix S.R.L. | Device for the ostheosynthesis of proximal humerus fractures |
US20060235402A1 (en) * | 2005-03-11 | 2006-10-19 | Orthofix International B.V. | Device for the ostheosynthesis of proximal humerus fractures |
US20110118741A1 (en) * | 2005-05-12 | 2011-05-19 | Jin Gon Kim | Apparatus for preventing distal migration of lag screw for hip fracture surgery |
US10292741B2 (en) | 2005-07-25 | 2019-05-21 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US9795424B2 (en) | 2005-07-25 | 2017-10-24 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US10327822B2 (en) | 2005-07-25 | 2019-06-25 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US11896270B2 (en) | 2005-07-25 | 2024-02-13 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US8940028B2 (en) | 2005-07-25 | 2015-01-27 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US10736680B2 (en) | 2005-07-25 | 2020-08-11 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US8382807B2 (en) | 2005-07-25 | 2013-02-26 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US10092337B2 (en) | 2005-07-25 | 2018-10-09 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US8888824B2 (en) | 2005-07-25 | 2014-11-18 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US10080598B2 (en) | 2005-07-25 | 2018-09-25 | Smith & Nephew, Inc. | Systems and methods for using polyaxial plates |
US20080249580A1 (en) * | 2005-09-28 | 2008-10-09 | Smith & Nephew, Inc. | Methods and Instruments of Reducing a Fracture |
US20070162011A1 (en) * | 2005-12-16 | 2007-07-12 | Depuy Products, Inc. | Orthopaedic device with locking barrel |
US7670341B2 (en) * | 2005-12-16 | 2010-03-02 | Depuy Products, Inc. | Orthopaedic device with locking barrel |
US20070155271A1 (en) * | 2005-12-30 | 2007-07-05 | Touzov Igor V | Heat conductive textile and method producing thereof |
US20070270846A1 (en) * | 2006-03-31 | 2007-11-22 | Metzinger Anthony J | Fixture, intramedullary nail kit and method of presetting a nail assembly |
US20070233101A1 (en) * | 2006-03-31 | 2007-10-04 | Metzinger Anthony J | Variable angle intramedullary nail, assembly and method |
US20070233104A1 (en) * | 2006-03-31 | 2007-10-04 | Metzinger Anthony J | Intramedullary nail implant assembly, kit and method |
US20070233103A1 (en) * | 2006-03-31 | 2007-10-04 | Metzinger Anthony J | Intramedullary nail, intramedullary nail assembly and method |
US20070233100A1 (en) * | 2006-03-31 | 2007-10-04 | Metzinger Anthony J | Variable angle intramedullary nail |
US20070288020A1 (en) * | 2006-06-02 | 2007-12-13 | United Orthopedic Corporation | Soft tissue fixation device for organs proximate shankbone |
US7537618B2 (en) * | 2006-11-13 | 2009-05-26 | Howmedica Osteonics Corp. | Modular humeral head |
US7785371B2 (en) | 2006-11-13 | 2010-08-31 | Howmedica Osteonics Corp. | Modular humeral head |
US7785370B2 (en) | 2006-11-13 | 2010-08-31 | Howmedica Osteonics Corp. | Modular humeral head |
US20080172092A1 (en) * | 2007-01-12 | 2008-07-17 | Paul Edward Kraemer | System and method for spinal instrumentation |
WO2008098728A3 (fr) * | 2007-02-12 | 2008-10-23 | Stryker Trauma Gmbh | Dispositif de fixation |
US7918853B2 (en) | 2007-03-20 | 2011-04-05 | Smith & Nephew, Inc. | Orthopaedic plate and screw assembly |
US8939978B2 (en) | 2007-03-20 | 2015-01-27 | Smith & Nephew, Inc. | Orthopaedic plate and screw assembly |
US20080255559A1 (en) * | 2007-03-30 | 2008-10-16 | Depuy Products, Inc. | Orthopaedic trauma hip screw assembly and associated method |
US8177786B2 (en) * | 2007-03-30 | 2012-05-15 | Depuy Products, Inc. | Orthopaedic trauma hip screw assembly and associated method |
US8734494B2 (en) | 2007-04-19 | 2014-05-27 | Stryker Trauma Gmbh | Hip fracture device with static locking mechanism allowing compression |
US9254153B2 (en) | 2007-04-19 | 2016-02-09 | Stryker Trauma Gmbh | Hip fracture device with static locking mechanism allowing compression |
US20080269752A1 (en) * | 2007-04-19 | 2008-10-30 | Stryker Trauma Gmbh | Hip fracture device with barrel and end cap for load control |
US8398636B2 (en) * | 2007-04-19 | 2013-03-19 | Stryker Trauma Gmbh | Hip fracture device with barrel and end cap for load control |
US9743964B2 (en) * | 2007-05-23 | 2017-08-29 | Ot Medizintechnik Gmbh | Intramedullary nail, particularly lockable intramedullary nail, and device for fixating the intramedullary nail in a hollow bone |
US20100179550A1 (en) * | 2007-05-23 | 2010-07-15 | Ulrich Schreiber | Intramedullary nail, particularly lockable intramedullary nail, and device for fixating the intramedullary nail in a hollow bone |
WO2008141805A3 (fr) * | 2007-05-23 | 2009-02-12 | Ulrich Schreiber | Clou centromédullaire, en particulier clou centromédullaire verrouillé, et dispositif pour fixer ce clou centromédullaire dans un os long |
US20150080894A1 (en) * | 2007-06-22 | 2015-03-19 | Epix Orthopaedics, Inc., a Delaware Corporation | Intramedullary rod with pivotable fastener and method for using same |
KR101503665B1 (ko) | 2007-06-22 | 2015-03-18 | 이픽스 오소페딕스, 인코포레이티드 | 죔쇠를 피봇시키기 위한 골수내 막대 |
US9861403B2 (en) * | 2007-06-22 | 2018-01-09 | Epix Orthopaedics, Inc. | Method for pivoting a fastener |
WO2009002890A1 (fr) * | 2007-06-22 | 2008-12-31 | Anthem Orthopaedics Van, Llc | Tige intramédullaire avec pièce de fixation pivotante et procédé d'utilisation |
US20090048600A1 (en) * | 2007-06-22 | 2009-02-19 | Anthem Orthopaedics Van, Llc | Intramedullary rod with pivotable fastener and method for using same |
US10687871B2 (en) | 2007-06-22 | 2020-06-23 | Epix Orthopaedics, Inc. | Intramedullary rod for pivoting a fastener |
US8906023B2 (en) | 2007-06-22 | 2014-12-09 | Epix Orthopaedics, Inc. | Intramedullary rod for pivoting a fastener |
AU2008268507B2 (en) * | 2007-06-22 | 2014-06-19 | Epix Orthopaedics, Inc. | Intramedullary rod with pivotable fastener and method for using same |
AU2008268507C1 (en) * | 2007-06-22 | 2014-11-13 | Epix Orthopaedics, Inc. | Intramedullary rod with pivotable fastener and method for using same |
AU2008306998B2 (en) * | 2007-09-26 | 2014-04-10 | Markus Kuster | Bone anchoring device for the operative repair of fractures |
US8641740B2 (en) * | 2007-09-26 | 2014-02-04 | Zimmer, Gmbh | Bone anchoring device for the operative repair of fractures |
EP2190369B1 (fr) * | 2007-09-26 | 2016-07-20 | Zimmer GmbH | Dispositif de fixation d'os en position pour le traitement opératoire de fractures |
US20100211112A1 (en) * | 2007-09-26 | 2010-08-19 | Zimmer, Gmbh | Bone anchoring device for the operative repair of fractures |
US9808289B2 (en) | 2008-02-05 | 2017-11-07 | Texas Scottish Rite Hospital For Children | External fixator ring |
US9295493B2 (en) | 2008-02-05 | 2016-03-29 | Texas Scottish Rite Hospital For Children | External fixator ring |
US20100305568A1 (en) * | 2008-02-05 | 2010-12-02 | Texas Scottish Rite Hospital For Children | External fixator ring |
US9155559B2 (en) | 2008-02-08 | 2015-10-13 | Texas Scottish Rite Hospital For Children | External fixator strut |
JP2011511678A (ja) * | 2008-02-08 | 2011-04-14 | テキサス スコティッシュ ライト ホスピタル フォー チルドレン | 創外固定支柱 |
US9681892B2 (en) | 2008-02-08 | 2017-06-20 | Texas Scottish Rite Hospital For Children | External fixator strut |
US8439914B2 (en) * | 2008-02-08 | 2013-05-14 | Texas Scottish Rite Hospital For Children | External fixation strut |
US20100312243A1 (en) * | 2008-02-08 | 2010-12-09 | Texas Scottish Rite Hospital For Children | External fixator ring |
US9456849B2 (en) | 2008-02-12 | 2016-10-04 | Texas Scottish Rite Hospital For Children | Fast adjust external fixation connection rod |
US9078700B2 (en) | 2008-02-12 | 2015-07-14 | Texas Scottish Rite Hospital For Children | Fast adjust external fixation connection rod |
US8864750B2 (en) | 2008-02-18 | 2014-10-21 | Texas Scottish Rite Hospital For Children | Tool and method for external fixation strut adjustment |
US20110004199A1 (en) * | 2008-02-18 | 2011-01-06 | Texas Scottish Rite Hospital For Children | Tool and method for external fixation strut adjustment |
US9101420B2 (en) * | 2008-03-27 | 2015-08-11 | Swemac Innovation Ab | Device for fixation of bone fragments at bone fractures |
US20110264150A1 (en) * | 2008-03-27 | 2011-10-27 | Henrik Hansson | Device for fixation of bone fragments at bone fractures |
US8182484B2 (en) * | 2008-04-21 | 2012-05-22 | Depuy Products, Inc. | Orthopaedic trauma hip screw assembly |
US20100094293A1 (en) * | 2008-10-11 | 2010-04-15 | Anthem Orthopaedics Van, Llc | Intramedullary rod with pivotable and fixed fasteners and method for using same |
US8790343B2 (en) * | 2008-10-11 | 2014-07-29 | Epix Orthopaedics, Inc. | Intramedullary rod with pivotable and fixed fasteners and method for using same |
US9101417B2 (en) | 2009-01-16 | 2015-08-11 | Carbofix Orthopedics Ltd. | Composite material bone implant |
US10028777B2 (en) | 2009-01-16 | 2018-07-24 | Carbofix Orthopedics Ltd. | Composite material bone implant |
US8449544B2 (en) | 2009-06-30 | 2013-05-28 | Smith & Nephew, Inc. | Orthopaedic implant and fastener assembly |
US8834469B2 (en) | 2009-06-30 | 2014-09-16 | Smith & Nephew, Inc. | Orthopaedic implant and fastener assembly |
US20110066152A1 (en) * | 2009-09-14 | 2011-03-17 | Zimmer, Gmbh | Angular lag implant for intramedullary nails |
US8926611B2 (en) | 2009-09-14 | 2015-01-06 | Zimmer Gmbh | Angular lag implant for intramedullary nails |
US9101427B2 (en) | 2010-06-07 | 2015-08-11 | Carbofix Orthopedics Ltd. | Self tapping insert |
US10154867B2 (en) | 2010-06-07 | 2018-12-18 | Carbofix In Orthopedics Llc | Multi-layer composite material bone screw |
US9370388B2 (en) | 2010-06-07 | 2016-06-21 | Carbofix Orthopedics Ltd. | Composite material bone implant |
US9974586B2 (en) | 2010-06-07 | 2018-05-22 | Carbofix Orthopedics Ltd. | Composite material bone implant |
US10849668B2 (en) | 2010-06-07 | 2020-12-01 | Carbofix Orthopedics Ltd. | Composite material bone implant |
US9443302B2 (en) | 2010-08-20 | 2016-09-13 | Amei Technologies, Inc. | Method and system for roentgenography-based modeling |
US20120089192A1 (en) * | 2010-10-07 | 2012-04-12 | Miami Device Solutions, Llc | Bone Plate Assembly with Guide Member |
US10258351B2 (en) * | 2010-10-07 | 2019-04-16 | Biedermann Technologies Gmbh & Co. Kg | Bone plate assembly with guide member |
US10448980B2 (en) | 2011-06-15 | 2019-10-22 | Smith & Nephew, Inc. | Variable angle locking implant |
US10405901B2 (en) | 2011-06-15 | 2019-09-10 | Smith & Nephew, Inc. | Variable angle locking implant |
US10390866B2 (en) | 2011-06-15 | 2019-08-27 | Smith & Nephew, Inc. | Variable angle locking implant |
US10022171B2 (en) | 2011-07-26 | 2018-07-17 | Scott & White Healthcare | Bone screws and bone screw systems |
US9526549B2 (en) | 2012-01-16 | 2016-12-27 | Carbofix Orthopedics Ltd. | Bone screw with insert |
US20130184765A1 (en) * | 2012-01-16 | 2013-07-18 | Carbofix Orthopedics Ltd. | Multi-axial bone plate fixation |
US9861418B2 (en) | 2012-02-08 | 2018-01-09 | Epix Orthopaedics, Inc. | Implant insertion device with continuously adjustable targeting assembly |
US9381042B2 (en) | 2012-11-13 | 2016-07-05 | Texas Scottish Rite Hospital For Children | External fixation connection rod for rapid and gradual adjustment |
US8574232B1 (en) | 2012-11-13 | 2013-11-05 | Texas Scottish Hospital for Children | External fixation connection rod for rapid and gradual adjustment |
DE102012024687A1 (de) * | 2012-12-18 | 2014-06-18 | Cornelius Bobbert | Verriegelbarer Marknagel mit wenigstens einem Einsatz zum Aufnehmen einer Verriegelungsschraube |
DE102012024688A1 (de) * | 2012-12-18 | 2014-06-18 | Cornelius Bobbert | Marknagel, insbesondere verriegelbarer Marknagel, mit Führungsdrahtdurchlässen |
US20140276819A1 (en) * | 2013-03-15 | 2014-09-18 | Biomet C.V. | Polyaxial pivot housing for external fixation system |
US9827011B2 (en) * | 2013-03-15 | 2017-11-28 | Biomet Manufacturing, Llc | Polyaxial pivot housing for external fixation system |
US10123828B2 (en) | 2013-03-15 | 2018-11-13 | Epix Orthopaedics, Inc. | Implantable device with pivotable fastener and self-adjusting set screw |
US10299830B2 (en) | 2013-03-15 | 2019-05-28 | Biomet Manufacturing, Llc | Clamping assembly for external fixation system |
US20150250507A1 (en) * | 2014-03-06 | 2015-09-10 | National University Of Ireland, Galway | Components for bone fixation devices |
US10993750B2 (en) | 2015-09-18 | 2021-05-04 | Smith & Nephew, Inc. | Bone plate |
US11534213B2 (en) | 2015-09-18 | 2022-12-27 | Smith & Nephew, Inc. | Bone plate |
US11974787B2 (en) | 2015-09-18 | 2024-05-07 | Smith & Nephew, Inc. | Bone plate |
US10617458B2 (en) | 2015-12-23 | 2020-04-14 | Carbofix In Orthopedics Llc | Multi-layer composite material bone screw |
US11826077B2 (en) | 2020-03-23 | 2023-11-28 | Texas Scottish Rite Hospital For Children | External fixation strut |
CN114848121A (zh) * | 2022-05-12 | 2022-08-05 | 中国人民解放军总医院第四医学中心 | 一种可调节支撑结构的三角力学稳定形态的髋部骨折固定装置 |
Also Published As
Publication number | Publication date |
---|---|
EP1727484A2 (fr) | 2006-12-06 |
US20080077142A1 (en) | 2008-03-27 |
WO2005094707A2 (fr) | 2005-10-13 |
US7972336B2 (en) | 2011-07-05 |
WO2005094707A3 (fr) | 2006-04-20 |
JP2008500844A (ja) | 2008-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7972336B2 (en) | Methods for treating fractures of the femur and femoral fracture devices | |
EP1507486B1 (fr) | Dispositif intramedullaire de fixation de fractures d'os longs methaphysaires | |
US7909858B2 (en) | Bone plate systems using provisional fixation | |
EP1251790B1 (fr) | Systeme de fixation palmaire | |
US8771272B2 (en) | Easily implantable and stable nail-fastener for skeletal fixation and method | |
US20010034523A1 (en) | Orthopedic implant used to repair intertrochanteric fractures and a method for inserting the same | |
US20240293159A1 (en) | Devices, methods and systems for remedying or preventing fractures | |
EP2838457B1 (fr) | Découpe bosselée au bord d'un trou | |
JP2008114076A (ja) | 角度固定式の穴において可変的な捩れ剛性を有する骨プレート | |
AU2004279312A1 (en) | An intramedullary implant for fracture fixation | |
MXPA05002485A (es) | Sistema para la fijacion de fracturas de hueso. | |
MXPA05002484A (es) | Sistema para la fijacion de tornillos y clavos quirurgicos. | |
US10258378B2 (en) | External bone fixation system | |
US12016592B2 (en) | External bone fixation system | |
US11974789B2 (en) | Compression device, bone plate, bone plate assembly, kit, and method | |
US20240252218A1 (en) | Telescoping Screw Head with Retention Feature | |
US20230338070A1 (en) | Retrograde Nail with Bone Plate | |
WO2023156848A1 (fr) | Système de fixation de fracture | |
AU2003234384B2 (en) | Intramedullary fixation device for metaphyseal long bone fractures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SMITH & NEPHEW, INC., TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JAMES, ANTHONY;MC REYNOLDS, KEITH;FERRANTE, JOSEPH M.;AND OTHERS;REEL/FRAME:016728/0208;SIGNING DATES FROM 20050523 TO 20050524 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |