US20050130304A1 - Regulation of endogenous gene expression in cells using zinc finger proteins - Google Patents
Regulation of endogenous gene expression in cells using zinc finger proteins Download PDFInfo
- Publication number
- US20050130304A1 US20050130304A1 US10/986,583 US98658304A US2005130304A1 US 20050130304 A1 US20050130304 A1 US 20050130304A1 US 98658304 A US98658304 A US 98658304A US 2005130304 A1 US2005130304 A1 US 2005130304A1
- Authority
- US
- United States
- Prior art keywords
- zfp
- gene
- expression
- cell
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 101710185494 Zinc finger protein Proteins 0.000 title claims abstract description 38
- 102100023597 Zinc finger protein 816 Human genes 0.000 title claims abstract description 38
- 230000014509 gene expression Effects 0.000 title abstract description 171
- 230000033228 biological regulation Effects 0.000 title description 23
- 210000004027 cell Anatomy 0.000 claims description 226
- 210000004962 mammalian cell Anatomy 0.000 claims description 13
- 239000012634 fragment Substances 0.000 claims description 9
- 210000000130 stem cell Anatomy 0.000 claims description 7
- 210000005260 human cell Anatomy 0.000 claims description 6
- 210000004102 animal cell Anatomy 0.000 claims description 5
- 108010061833 Integrases Proteins 0.000 claims description 3
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims description 2
- 102100034343 Integrase Human genes 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 304
- 238000000034 method Methods 0.000 abstract description 112
- 230000001413 cellular effect Effects 0.000 abstract description 49
- 102000004169 proteins and genes Human genes 0.000 description 96
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 94
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 94
- 235000018102 proteins Nutrition 0.000 description 91
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 87
- 150000007523 nucleic acids Chemical class 0.000 description 86
- 239000013598 vector Substances 0.000 description 81
- 102000039446 nucleic acids Human genes 0.000 description 74
- 108020004707 nucleic acids Proteins 0.000 description 74
- 239000013612 plasmid Substances 0.000 description 74
- 108020004414 DNA Proteins 0.000 description 72
- 238000009739 binding Methods 0.000 description 69
- 230000027455 binding Effects 0.000 description 66
- 239000013604 expression vector Substances 0.000 description 50
- 230000001105 regulatory effect Effects 0.000 description 50
- 235000001014 amino acid Nutrition 0.000 description 49
- 229940024606 amino acid Drugs 0.000 description 48
- 150000001413 amino acids Chemical class 0.000 description 45
- 230000035897 transcription Effects 0.000 description 44
- 238000013518 transcription Methods 0.000 description 44
- 108090000765 processed proteins & peptides Proteins 0.000 description 42
- 241000196324 Embryophyta Species 0.000 description 41
- 108091034117 Oligonucleotide Proteins 0.000 description 39
- 239000002502 liposome Substances 0.000 description 35
- 108091023040 Transcription factor Proteins 0.000 description 34
- 230000000694 effects Effects 0.000 description 34
- 102000004196 processed proteins & peptides Human genes 0.000 description 34
- 102000040945 Transcription factor Human genes 0.000 description 33
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 31
- 238000003556 assay Methods 0.000 description 31
- 229910052725 zinc Inorganic materials 0.000 description 31
- 239000011701 zinc Substances 0.000 description 31
- 230000004913 activation Effects 0.000 description 30
- 230000006870 function Effects 0.000 description 30
- 238000001890 transfection Methods 0.000 description 28
- 238000002474 experimental method Methods 0.000 description 27
- 229920001184 polypeptide Polymers 0.000 description 27
- 241001465754 Metazoa Species 0.000 description 26
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 26
- 239000012636 effector Substances 0.000 description 24
- 239000000203 mixture Substances 0.000 description 24
- 108091028043 Nucleic acid sequence Proteins 0.000 description 23
- 230000004568 DNA-binding Effects 0.000 description 22
- 230000004927 fusion Effects 0.000 description 21
- 210000001519 tissue Anatomy 0.000 description 21
- -1 ICAM Proteins 0.000 description 19
- 108020001507 fusion proteins Proteins 0.000 description 19
- 102000037865 fusion proteins Human genes 0.000 description 19
- 238000001415 gene therapy Methods 0.000 description 18
- 230000003612 virological effect Effects 0.000 description 18
- 206010028980 Neoplasm Diseases 0.000 description 17
- 108010068250 Herpes Simplex Virus Protein Vmw65 Proteins 0.000 description 16
- 108020004999 messenger RNA Proteins 0.000 description 16
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 15
- 241000700605 Viruses Species 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 15
- 238000013461 design Methods 0.000 description 15
- 238000001727 in vivo Methods 0.000 description 15
- 238000000746 purification Methods 0.000 description 15
- 238000000338 in vitro Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 238000006467 substitution reaction Methods 0.000 description 14
- 230000009261 transgenic effect Effects 0.000 description 14
- 108060001084 Luciferase Proteins 0.000 description 13
- 238000013459 approach Methods 0.000 description 13
- 230000001225 therapeutic effect Effects 0.000 description 13
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 12
- 241000588724 Escherichia coli Species 0.000 description 12
- 241000894006 Bacteria Species 0.000 description 11
- 108010077544 Chromatin Proteins 0.000 description 11
- 241000702421 Dependoparvovirus Species 0.000 description 11
- 108700020796 Oncogene Proteins 0.000 description 11
- 108700008625 Reporter Genes Proteins 0.000 description 11
- 230000001580 bacterial effect Effects 0.000 description 11
- 210000003483 chromatin Anatomy 0.000 description 11
- 238000012761 co-transfection Methods 0.000 description 11
- 239000002299 complementary DNA Substances 0.000 description 11
- 238000010276 construction Methods 0.000 description 11
- 239000003607 modifier Substances 0.000 description 11
- 125000003729 nucleotide group Chemical group 0.000 description 11
- 210000004940 nucleus Anatomy 0.000 description 11
- 108091006107 transcriptional repressors Proteins 0.000 description 11
- 101000700937 Amsacta albistriga Sex-specific storage protein 1 Proteins 0.000 description 10
- 108020004705 Codon Proteins 0.000 description 10
- 239000005089 Luciferase Substances 0.000 description 10
- 108700009124 Transcription Initiation Site Proteins 0.000 description 10
- 239000012190 activator Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000000295 complement effect Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 239000012528 membrane Substances 0.000 description 10
- 239000002773 nucleotide Substances 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 230000005945 translocation Effects 0.000 description 10
- 238000011144 upstream manufacturing Methods 0.000 description 10
- 239000013603 viral vector Substances 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 239000000427 antigen Substances 0.000 description 9
- 108091007433 antigens Proteins 0.000 description 9
- 102000036639 antigens Human genes 0.000 description 9
- 238000010367 cloning Methods 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 150000003384 small molecules Chemical class 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 239000003981 vehicle Substances 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 8
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 8
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 8
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 210000000170 cell membrane Anatomy 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 239000013613 expression plasmid Substances 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 230000006698 induction Effects 0.000 description 8
- 230000001939 inductive effect Effects 0.000 description 8
- 150000002632 lipids Chemical class 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 230000014616 translation Effects 0.000 description 8
- 241000701161 unidentified adenovirus Species 0.000 description 8
- 102000014914 Carrier Proteins Human genes 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 102100025169 Max-binding protein MNT Human genes 0.000 description 7
- UBQYURCVBFRUQT-UHFFFAOYSA-N N-benzoyl-Ferrioxamine B Chemical compound CC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCN UBQYURCVBFRUQT-UHFFFAOYSA-N 0.000 description 7
- 102000006382 Ribonucleases Human genes 0.000 description 7
- 108010083644 Ribonucleases Proteins 0.000 description 7
- 108010005774 beta-Galactosidase Proteins 0.000 description 7
- 108091008324 binding proteins Proteins 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 210000000349 chromosome Anatomy 0.000 description 7
- 229960000958 deferoxamine Drugs 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 150000004665 fatty acids Chemical class 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 230000002018 overexpression Effects 0.000 description 7
- 238000002823 phage display Methods 0.000 description 7
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 7
- 230000010076 replication Effects 0.000 description 7
- 230000001177 retroviral effect Effects 0.000 description 7
- 230000008685 targeting Effects 0.000 description 7
- 230000002103 transcriptional effect Effects 0.000 description 7
- 239000011592 zinc chloride Substances 0.000 description 7
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- 102000004127 Cytokines Human genes 0.000 description 6
- 108090000695 Cytokines Proteins 0.000 description 6
- 108700020911 DNA-Binding Proteins Proteins 0.000 description 6
- 241000238631 Hexapoda Species 0.000 description 6
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- 206010029113 Neovascularisation Diseases 0.000 description 6
- 241000700584 Simplexvirus Species 0.000 description 6
- 108700019146 Transgenes Proteins 0.000 description 6
- 125000003275 alpha amino acid group Chemical group 0.000 description 6
- 238000000137 annealing Methods 0.000 description 6
- 235000003704 aspartic acid Nutrition 0.000 description 6
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 230000003828 downregulation Effects 0.000 description 6
- 238000002337 electrophoretic mobility shift assay Methods 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 238000004806 packaging method and process Methods 0.000 description 6
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000003053 toxin Substances 0.000 description 6
- 231100000765 toxin Toxicity 0.000 description 6
- 108700012359 toxins Proteins 0.000 description 6
- 230000005026 transcription initiation Effects 0.000 description 6
- 108091006106 transcriptional activators Proteins 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 5
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 5
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 5
- 108010060434 Co-Repressor Proteins Proteins 0.000 description 5
- 102000008169 Co-Repressor Proteins Human genes 0.000 description 5
- 241000701022 Cytomegalovirus Species 0.000 description 5
- 101710096438 DNA-binding protein Proteins 0.000 description 5
- 108010042407 Endonucleases Proteins 0.000 description 5
- 108091060211 Expressed sequence tag Proteins 0.000 description 5
- 244000068988 Glycine max Species 0.000 description 5
- 235000010469 Glycine max Nutrition 0.000 description 5
- 101100446349 Glycine max FAD2-1 gene Proteins 0.000 description 5
- 101150078498 MYB gene Proteins 0.000 description 5
- 108060004795 Methyltransferase Proteins 0.000 description 5
- 108010057466 NF-kappa B Proteins 0.000 description 5
- 102000003945 NF-kappa B Human genes 0.000 description 5
- 239000005642 Oleic acid Substances 0.000 description 5
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 5
- 102000001253 Protein Kinase Human genes 0.000 description 5
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 5
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 5
- 108091027981 Response element Proteins 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 210000004748 cultured cell Anatomy 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 231100001129 embryonic lethality Toxicity 0.000 description 5
- 239000003623 enhancer Substances 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 210000003527 eukaryotic cell Anatomy 0.000 description 5
- 230000002538 fungal effect Effects 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 5
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 230000030648 nucleus localization Effects 0.000 description 5
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 108060006633 protein kinase Proteins 0.000 description 5
- 210000001938 protoplast Anatomy 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000010361 transduction Methods 0.000 description 5
- 230000026683 transduction Effects 0.000 description 5
- 230000004614 tumor growth Effects 0.000 description 5
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 4
- 229920000856 Amylose Polymers 0.000 description 4
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 102000004533 Endonucleases Human genes 0.000 description 4
- 108090000331 Firefly luciferases Proteins 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 102000003886 Glycoproteins Human genes 0.000 description 4
- 108090000288 Glycoproteins Proteins 0.000 description 4
- 102000003893 Histone acetyltransferases Human genes 0.000 description 4
- 108090000246 Histone acetyltransferases Proteins 0.000 description 4
- 102000009331 Homeodomain Proteins Human genes 0.000 description 4
- 108010048671 Homeodomain Proteins Proteins 0.000 description 4
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 4
- 241000725303 Human immunodeficiency virus Species 0.000 description 4
- 206010021143 Hypoxia Diseases 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 4
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 4
- 108091061960 Naked DNA Proteins 0.000 description 4
- 102000048850 Neoplasm Genes Human genes 0.000 description 4
- 108700019961 Neoplasm Genes Proteins 0.000 description 4
- 108091005461 Nucleic proteins Proteins 0.000 description 4
- 102000043276 Oncogene Human genes 0.000 description 4
- 108010091086 Recombinases Proteins 0.000 description 4
- 102000018120 Recombinases Human genes 0.000 description 4
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 4
- MMWCIQZXVOZEGG-HOZKJCLWSA-N [(1S,2R,3S,4S,5R,6S)-2,3,5-trihydroxy-4,6-diphosphonooxycyclohexyl] dihydrogen phosphate Chemical compound O[C@H]1[C@@H](O)[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](O)[C@H]1OP(O)(O)=O MMWCIQZXVOZEGG-HOZKJCLWSA-N 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 239000012091 fetal bovine serum Substances 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 235000013922 glutamic acid Nutrition 0.000 description 4
- 239000004220 glutamic acid Substances 0.000 description 4
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 238000002744 homologous recombination Methods 0.000 description 4
- 230000006801 homologous recombination Effects 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 4
- 239000005556 hormone Substances 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 238000001638 lipofection Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000000520 microinjection Methods 0.000 description 4
- 229920002401 polyacrylamide Polymers 0.000 description 4
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 4
- 102000040430 polynucleotide Human genes 0.000 description 4
- 108091033319 polynucleotide Proteins 0.000 description 4
- 239000002157 polynucleotide Substances 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 150000003626 triacylglycerols Chemical class 0.000 description 4
- 230000009452 underexpressoin Effects 0.000 description 4
- 241001430294 unidentified retrovirus Species 0.000 description 4
- 230000003827 upregulation Effects 0.000 description 4
- 239000013607 AAV vector Substances 0.000 description 3
- 102000007469 Actins Human genes 0.000 description 3
- 108010085238 Actins Proteins 0.000 description 3
- 102100026189 Beta-galactosidase Human genes 0.000 description 3
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 3
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 3
- 206010068051 Chimerism Diseases 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 3
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 241000724791 Filamentous phage Species 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 108010070675 Glutathione transferase Proteins 0.000 description 3
- 102000005720 Glutathione transferase Human genes 0.000 description 3
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 3
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 3
- 102000003964 Histone deacetylase Human genes 0.000 description 3
- 108090000353 Histone deacetylase Proteins 0.000 description 3
- 101000808011 Homo sapiens Vascular endothelial growth factor A Proteins 0.000 description 3
- 101000818735 Homo sapiens Zinc finger protein 10 Proteins 0.000 description 3
- 102100021244 Integral membrane protein GPR180 Human genes 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical group CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 241001631646 Papillomaviridae Species 0.000 description 3
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 3
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 3
- 108700001094 Plant Genes Proteins 0.000 description 3
- 108010059820 Polygalacturonase Proteins 0.000 description 3
- 108700040121 Protein Methyltransferases Proteins 0.000 description 3
- 102000055027 Protein Methyltransferases Human genes 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 101710183280 Topoisomerase Proteins 0.000 description 3
- 108050007918 Transcription factor STAT Proteins 0.000 description 3
- 102000000887 Transcription factor STAT Human genes 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 108700005077 Viral Genes Proteins 0.000 description 3
- 238000003314 affinity selection Methods 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 244000052616 bacterial pathogen Species 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 description 3
- 235000011010 calcium phosphates Nutrition 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000009274 differential gene expression Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 108010030074 endodeoxyribonuclease MluI Proteins 0.000 description 3
- 238000003209 gene knockout Methods 0.000 description 3
- 210000004602 germ cell Anatomy 0.000 description 3
- 230000007954 hypoxia Effects 0.000 description 3
- 238000000099 in vitro assay Methods 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 229930182817 methionine Chemical group 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 241000701447 unidentified baculovirus Species 0.000 description 3
- 235000015112 vegetable and seed oil Nutrition 0.000 description 3
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- AXAVXPMQTGXXJZ-UHFFFAOYSA-N 2-aminoacetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound NCC(O)=O.OCC(N)(CO)CO AXAVXPMQTGXXJZ-UHFFFAOYSA-N 0.000 description 2
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 2
- 108010020183 3-phosphoshikimate 1-carboxyvinyltransferase Proteins 0.000 description 2
- 102000000452 Acetyl-CoA carboxylase Human genes 0.000 description 2
- 108010016219 Acetyl-CoA carboxylase Proteins 0.000 description 2
- 108010013043 Acetylesterase Proteins 0.000 description 2
- 241000589158 Agrobacterium Species 0.000 description 2
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 2
- 102100023635 Alpha-fetoprotein Human genes 0.000 description 2
- 108700031308 Antennapedia Homeodomain Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000193738 Bacillus anthracis Species 0.000 description 2
- 108010018763 Biotin carboxylase Proteins 0.000 description 2
- 108010006654 Bleomycin Proteins 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 101710132601 Capsid protein Proteins 0.000 description 2
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 2
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 2
- 108090000994 Catalytic RNA Proteins 0.000 description 2
- 102000053642 Catalytic RNA Human genes 0.000 description 2
- 241000701489 Cauliflower mosaic virus Species 0.000 description 2
- 101710190411 Chalcone synthase A Proteins 0.000 description 2
- 101710094648 Coat protein Proteins 0.000 description 2
- 101100007328 Cocos nucifera COS-1 gene Proteins 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 102000011724 DNA Repair Enzymes Human genes 0.000 description 2
- 108010076525 DNA Repair Enzymes Proteins 0.000 description 2
- 108010053187 Diphtheria Toxin Proteins 0.000 description 2
- 102000016607 Diphtheria Toxin Human genes 0.000 description 2
- 208000035240 Disease Resistance Diseases 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 101150029707 ERBB2 gene Proteins 0.000 description 2
- 108010051542 Early Growth Response Protein 1 Proteins 0.000 description 2
- 102100023226 Early growth response protein 1 Human genes 0.000 description 2
- 101150016855 FAD2-1 gene Proteins 0.000 description 2
- 108010087894 Fatty acid desaturases Proteins 0.000 description 2
- 108700005088 Fungal Genes Proteins 0.000 description 2
- 108010001515 Galectin 4 Proteins 0.000 description 2
- 102100039556 Galectin-4 Human genes 0.000 description 2
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 2
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 2
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 description 2
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 108700023224 Glucose-1-phosphate adenylyltransferases Proteins 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 2
- 108010036115 Histone Methyltransferases Proteins 0.000 description 2
- 102000011787 Histone Methyltransferases Human genes 0.000 description 2
- 101001006782 Homo sapiens Kinesin-associated protein 3 Proteins 0.000 description 2
- 101000687346 Homo sapiens PR domain zinc finger protein 2 Proteins 0.000 description 2
- 101000753286 Homo sapiens Transcription intermediary factor 1-beta Proteins 0.000 description 2
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 2
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 2
- 102000012330 Integrases Human genes 0.000 description 2
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical group CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 108010054278 Lac Repressors Proteins 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 2
- 101710125418 Major capsid protein Proteins 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- 102000016397 Methyltransferase Human genes 0.000 description 2
- 241000714177 Murine leukemia virus Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 101710141454 Nucleoprotein Proteins 0.000 description 2
- 239000012124 Opti-MEM Substances 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 102100024885 PR domain zinc finger protein 2 Human genes 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- 108010081690 Pertussis Toxin Proteins 0.000 description 2
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 2
- 101710182846 Polyhedrin Proteins 0.000 description 2
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 2
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 2
- 101710083689 Probable capsid protein Proteins 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010087776 Proto-Oncogene Proteins c-myb Proteins 0.000 description 2
- 102000009096 Proto-Oncogene Proteins c-myb Human genes 0.000 description 2
- 241000125945 Protoparvovirus Species 0.000 description 2
- 108700033844 Pseudomonas aeruginosa toxA Proteins 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 241000607142 Salmonella Species 0.000 description 2
- 241000713311 Simian immunodeficiency virus Species 0.000 description 2
- 108010039811 Starch synthase Proteins 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 102000016553 Stearoyl-CoA Desaturase Human genes 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- 108010043934 Sucrose synthase Proteins 0.000 description 2
- 102000006467 TATA-Box Binding Protein Human genes 0.000 description 2
- 108010044281 TATA-Box Binding Protein Proteins 0.000 description 2
- 102000018679 Tacrolimus Binding Proteins Human genes 0.000 description 2
- 108010027179 Tacrolimus Binding Proteins Proteins 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 101710177717 Terminase small subunit Proteins 0.000 description 2
- 102000006601 Thymidine Kinase Human genes 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- 102100022012 Transcription intermediary factor 1-beta Human genes 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 108700021044 acyl-ACP thioesterase Proteins 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 239000003139 biocide Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229960001561 bleomycin Drugs 0.000 description 2
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 210000002798 bone marrow cell Anatomy 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 210000003855 cell nucleus Anatomy 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 230000030570 cellular localization Effects 0.000 description 2
- 108010040093 cellulose synthase Proteins 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 108091006090 chromatin-associated proteins Proteins 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 125000000151 cysteine group Chemical class N[C@@H](CS)C(=O)* 0.000 description 2
- 210000000172 cytosol Anatomy 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 108010011713 delta-15 desaturase Proteins 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- MWRBNPKJOOWZPW-CLFAGFIQSA-N dioleoyl phosphatidylethanolamine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-CLFAGFIQSA-N 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 210000001671 embryonic stem cell Anatomy 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000004345 fruit ripening Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 230000011132 hemopoiesis Effects 0.000 description 2
- 230000002363 herbicidal effect Effects 0.000 description 2
- 239000004009 herbicide Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 2
- 102000044778 human ZNF10 Human genes 0.000 description 2
- 108010064894 hydroperoxide lyase Proteins 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 238000005462 in vivo assay Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 238000011813 knockout mouse model Methods 0.000 description 2
- 235000020778 linoleic acid Nutrition 0.000 description 2
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 2
- 150000002634 lipophilic molecules Chemical class 0.000 description 2
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 2
- 239000003226 mitogen Substances 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 108020004017 nuclear receptors Proteins 0.000 description 2
- 238000002966 oligonucleotide array Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 108090000468 progesterone receptors Proteins 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 230000018883 protein targeting Effects 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000014493 regulation of gene expression Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 108091092562 ribozyme Proteins 0.000 description 2
- 239000012146 running buffer Substances 0.000 description 2
- 230000009758 senescence Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000013605 shuttle vector Substances 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 102000028561 sterol response element binding proteins Human genes 0.000 description 2
- 108091009326 sterol response element binding proteins Proteins 0.000 description 2
- 230000004960 subcellular localization Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 2
- 230000037426 transcriptional repression Effects 0.000 description 2
- 230000002463 transducing effect Effects 0.000 description 2
- 238000003151 transfection method Methods 0.000 description 2
- 238000011830 transgenic mouse model Methods 0.000 description 2
- 230000010474 transient expression Effects 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- 210000003956 transport vesicle Anatomy 0.000 description 2
- 208000019553 vascular disease Diseases 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- VGONTNSXDCQUGY-RRKCRQDMSA-N 2'-deoxyinosine Chemical group C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC2=O)=C2N=C1 VGONTNSXDCQUGY-RRKCRQDMSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- ZBMRKNMTMPPMMK-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid;azane Chemical compound [NH4+].CP(O)(=O)CCC(N)C([O-])=O ZBMRKNMTMPPMMK-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- 102100034544 Acyl-CoA 6-desaturase Human genes 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 description 1
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 description 1
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 102100040214 Apolipoprotein(a) Human genes 0.000 description 1
- 101710115418 Apolipoprotein(a) Proteins 0.000 description 1
- 102000018616 Apolipoproteins B Human genes 0.000 description 1
- 108010027006 Apolipoproteins B Proteins 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 208000006400 Arbovirus Encephalitis Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- BHELIUBJHYAEDK-OAIUPTLZSA-N Aspoxicillin Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3[C@H](C(C)(C)S[C@@H]32)C(O)=O)=O)NC(=O)[C@H](N)CC(=O)NC)=CC=C(O)C=C1 BHELIUBJHYAEDK-OAIUPTLZSA-N 0.000 description 1
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 1
- 108020000946 Bacterial DNA Proteins 0.000 description 1
- 108700003860 Bacterial Genes Proteins 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 208000003508 Botulism Diseases 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 108091067344 C/EBP family Proteins 0.000 description 1
- 102000039548 C/EBP family Human genes 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- 101100297347 Caenorhabditis elegans pgl-3 gene Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- 102000004410 Cholesterol 7-alpha-monooxygenases Human genes 0.000 description 1
- 108090000943 Cholesterol 7-alpha-monooxygenases Proteins 0.000 description 1
- 108010021408 Clostridium perfringens iota toxin Proteins 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000709687 Coxsackievirus Species 0.000 description 1
- 108010051219 Cre recombinase Proteins 0.000 description 1
- 101710095468 Cyclase Proteins 0.000 description 1
- 108050006400 Cyclin Proteins 0.000 description 1
- 102000016736 Cyclin Human genes 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 238000000116 DAPI staining Methods 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 101100540419 Danio rerio kdrl gene Proteins 0.000 description 1
- 241000725619 Dengue virus Species 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 101100098711 Drosophila melanogaster Taf1 gene Proteins 0.000 description 1
- 101100045316 Drosophila melanogaster Taf4 gene Proteins 0.000 description 1
- 101100045328 Drosophila melanogaster Taf5 gene Proteins 0.000 description 1
- 101100312913 Drosophila melanogaster Taf7 gene Proteins 0.000 description 1
- 108010069091 Dystrophin Proteins 0.000 description 1
- 102000001039 Dystrophin Human genes 0.000 description 1
- 108010024212 E-Selectin Proteins 0.000 description 1
- 102100023471 E-selectin Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 101150002621 EPO gene Proteins 0.000 description 1
- 102100030768 ETS domain-containing transcription factor ERF Human genes 0.000 description 1
- 201000011001 Ebola Hemorrhagic Fever Diseases 0.000 description 1
- UPEZCKBFRMILAV-JNEQICEOSA-N Ecdysone Natural products O=C1[C@H]2[C@@](C)([C@@H]3C([C@@]4(O)[C@@](C)([C@H]([C@H]([C@@H](O)CCC(O)(C)C)C)CC4)CC3)=C1)C[C@H](O)[C@H](O)C2 UPEZCKBFRMILAV-JNEQICEOSA-N 0.000 description 1
- 241001466953 Echovirus Species 0.000 description 1
- 240000003133 Elaeis guineensis Species 0.000 description 1
- 235000001950 Elaeis guineensis Nutrition 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 241000224431 Entamoeba Species 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 101800001467 Envelope glycoprotein E2 Proteins 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 108010092408 Eosinophil Peroxidase Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 102100031939 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 101001091269 Escherichia coli Hygromycin-B 4-O-kinase Proteins 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 102000007594 Estrogen Receptor alpha Human genes 0.000 description 1
- 108010007005 Estrogen Receptor alpha Proteins 0.000 description 1
- 101150118938 FLK gene Proteins 0.000 description 1
- 108010044495 Fetal Hemoglobin Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 241000710831 Flavivirus Species 0.000 description 1
- 108090000852 Forkhead Transcription Factors Proteins 0.000 description 1
- 102100035427 Forkhead box protein O1 Human genes 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 108010088742 GATA Transcription Factors Proteins 0.000 description 1
- 102000009041 GATA Transcription Factors Human genes 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 241000224466 Giardia Species 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 101100446350 Glycine max FAD2-2 gene Proteins 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 101100028493 Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) pan2 gene Proteins 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- 101100501688 Homo sapiens ERBB2 gene Proteins 0.000 description 1
- 101000938776 Homo sapiens ETS domain-containing transcription factor ERF Proteins 0.000 description 1
- 101000851181 Homo sapiens Epidermal growth factor receptor Proteins 0.000 description 1
- 101000877727 Homo sapiens Forkhead box protein O1 Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 1
- 101001109800 Homo sapiens Pro-neuregulin-1, membrane-bound isoform Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000652338 Homo sapiens Transcription factor Sp1 Proteins 0.000 description 1
- 241000598436 Human T-cell lymphotropic virus Species 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 208000035150 Hypercholesterolemia Diseases 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- 102100034349 Integrase Human genes 0.000 description 1
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 1
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical group OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-ZXPFJRLXSA-N L-methionine (R)-S-oxide Chemical group C[S@@](=O)CC[C@H]([NH3+])C([O-])=O QEFRNWWLZKMPFJ-ZXPFJRLXSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-UHFFFAOYSA-N L-methionine sulphoxide Chemical group CS(=O)CCC(N)C(O)=O QEFRNWWLZKMPFJ-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 108010001831 LDL receptors Proteins 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 101710128836 Large T antigen Proteins 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 241000589248 Legionella Species 0.000 description 1
- 208000007764 Legionnaires' Disease Diseases 0.000 description 1
- 241000222722 Leishmania <genus> Species 0.000 description 1
- 206010024238 Leptospirosis Diseases 0.000 description 1
- 108010037138 Linoleoyl-CoA Desaturase Proteins 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000712079 Measles morbillivirus Species 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 108700005443 Microbial Genes Proteins 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 241000711386 Mumps virus Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100372761 Mus musculus Flt1 gene Proteins 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 101001055320 Myxine glutinosa Insulin-like growth factor Proteins 0.000 description 1
- PCNLLVFKBKMRDB-UHFFFAOYSA-N N-ethyl-N-[[2-(1-pentylindol-3-yl)-1,3-thiazol-4-yl]methyl]ethanamine Chemical compound C(C)N(CC=1N=C(SC=1)C1=CN(C2=CC=CC=C12)CCCCC)CC PCNLLVFKBKMRDB-UHFFFAOYSA-N 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 102100035593 POU domain, class 2, transcription factor 1 Human genes 0.000 description 1
- 101710084414 POU domain, class 2, transcription factor 1 Proteins 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 240000007377 Petunia x hybrida Species 0.000 description 1
- 108090000472 Phosphoenolpyruvate carboxykinase (ATP) Proteins 0.000 description 1
- 102100034792 Phosphoenolpyruvate carboxykinase [GTP], mitochondrial Human genes 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 102000004257 Potassium Channel Human genes 0.000 description 1
- 241001415846 Procellariidae Species 0.000 description 1
- 102100025803 Progesterone receptor Human genes 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 101710149951 Protein Tat Proteins 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 108010018070 Proto-Oncogene Proteins c-ets Proteins 0.000 description 1
- 102000004053 Proto-Oncogene Proteins c-ets Human genes 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 101710194805 Putative repressor Proteins 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 241000711798 Rabies lyssavirus Species 0.000 description 1
- 101100173553 Rattus norvegicus Fer gene Proteins 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000242739 Renilla Species 0.000 description 1
- 108010052090 Renilla Luciferases Proteins 0.000 description 1
- 102100028255 Renin Human genes 0.000 description 1
- 108090000783 Renin Proteins 0.000 description 1
- 102000009661 Repressor Proteins Human genes 0.000 description 1
- 108010034634 Repressor Proteins Proteins 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- 241000606651 Rickettsiales Species 0.000 description 1
- 241000702670 Rotavirus Species 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 241000710799 Rubella virus Species 0.000 description 1
- 238000011579 SCID mouse model Methods 0.000 description 1
- 101100536259 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) TAF14 gene Proteins 0.000 description 1
- 108090000184 Selectins Proteins 0.000 description 1
- 102000003800 Selectins Human genes 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 108010053551 Sp1 Transcription Factor Proteins 0.000 description 1
- 241000295644 Staphylococcaceae Species 0.000 description 1
- 101001091268 Streptomyces hygroscopicus Hygromycin-B 7''-O-kinase Proteins 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 206010042566 Superinfection Diseases 0.000 description 1
- 101800001271 Surface protein Proteins 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 101150022916 TAF2 gene Proteins 0.000 description 1
- 108700026226 TATA Box Proteins 0.000 description 1
- 101710192266 Tegument protein VP22 Proteins 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 206010043376 Tetanus Diseases 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 108010068068 Transcription Factor TFIIIA Proteins 0.000 description 1
- 102100030246 Transcription factor Sp1 Human genes 0.000 description 1
- 241000224526 Trichomonas Species 0.000 description 1
- 241000223104 Trypanosoma Species 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 1
- 108050002568 Tumor necrosis factor ligand superfamily member 6 Proteins 0.000 description 1
- 102100033254 Tumor suppressor ARF Human genes 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 108010000134 Vascular Cell Adhesion Molecule-1 Proteins 0.000 description 1
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 241000269368 Xenopus laevis Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 102100021112 Zinc finger protein 10 Human genes 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 108060000200 adenylate cyclase Proteins 0.000 description 1
- 102000030621 adenylate cyclase Human genes 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- UPEZCKBFRMILAV-UHFFFAOYSA-N alpha-Ecdysone Natural products C1C(O)C(O)CC2(C)C(CCC3(C(C(C(O)CCC(C)(C)O)C)CCC33O)C)C3=CC(=O)C21 UPEZCKBFRMILAV-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000001772 anti-angiogenic effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- 230000001746 atrial effect Effects 0.000 description 1
- 229940065181 bacillus anthracis Drugs 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 239000005482 chemotactic factor Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 230000009146 cooperative binding Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 210000000448 cultured tumor cell Anatomy 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 108010005155 delta-12 fatty acid desaturase Proteins 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- UPEZCKBFRMILAV-JMZLNJERSA-N ecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@H]([C@H](O)CCC(C)(C)O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 UPEZCKBFRMILAV-JMZLNJERSA-N 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- 230000000799 fusogenic effect Effects 0.000 description 1
- UHBYWPGGCSDKFX-VKHMYHEASA-N gamma-carboxy-L-glutamic acid Chemical compound OC(=O)[C@@H](N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-VKHMYHEASA-N 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 102000055650 human NRG1 Human genes 0.000 description 1
- 102000052282 human Sp1 Human genes 0.000 description 1
- 102000058223 human VEGFA Human genes 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 101150109249 lacI gene Proteins 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 229940039781 leptin Drugs 0.000 description 1
- 238000000670 ligand binding assay Methods 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 208000002780 macular degeneration Diseases 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 235000013310 margarine Nutrition 0.000 description 1
- 239000003264 margarine Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-O methylsulfide anion Chemical group [SH2+]C LSDPWZHWYPCBBB-UHFFFAOYSA-O 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000003228 microsomal effect Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 108700021654 myb Genes Proteins 0.000 description 1
- 108700024542 myc Genes Proteins 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000005937 nuclear translocation Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 101150081585 panB gene Proteins 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000035778 pathophysiological process Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 210000000680 phagosome Anatomy 0.000 description 1
- 238000012247 phenotypical assay Methods 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229930195732 phytohormone Natural products 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 108020001213 potassium channel Proteins 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000001023 pro-angiogenic effect Effects 0.000 description 1
- 102000003998 progesterone receptors Human genes 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 208000028172 protozoa infectious disease Diseases 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 235000012045 salad Nutrition 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 102000023888 sequence-specific DNA binding proteins Human genes 0.000 description 1
- 108091008420 sequence-specific DNA binding proteins Proteins 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 108700029760 synthetic LTSP Proteins 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 208000001608 teratocarcinoma Diseases 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 230000036964 tight binding Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000035903 transrepression Effects 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 239000000277 virosome Substances 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
- A61P33/02—Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/67—General methods for enhancing the expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/66—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6897—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5091—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/71—Fusion polypeptide containing domain for protein-protein interaction containing domain for transcriptional activaation, e.g. VP16
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/80—Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
- C07K2319/81—Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor containing a Zn-finger domain for DNA binding
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/001—Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
- C12N2830/002—Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/001—Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
- C12N2830/005—Vector systems having a special element relevant for transcription controllable enhancer/promoter combination repressible enhancer/promoter combination, e.g. KRAB
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/008—Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/80—Vector systems having a special element relevant for transcription from vertebrates
- C12N2830/85—Vector systems having a special element relevant for transcription from vertebrates mammalian
Definitions
- the present invention provides methods for regulating gene expression of endogenous genes using recombinant zinc finger proteins.
- this ability can be used experimentally to determine the function of a gene of interest.
- One common existing method for experimentally determining the function of a newly discovered gene is to clone its cDNA into an expression vector driven by a strong promoter and measure the physiological consequence of its over-expression in a transfected cell. This method is labor intensive and does not address the physiological consequences of down-regulation of a target gene. Simple methods allowing the selective over and under-expression of uncharacterized genes would be of great utility to the scientific community. Methods that permit the regulation of genes in cell model systems, transgenic animals and transgenic plants would find widespread use in academic laboratories, pharmaceutical companies, genomics companies and in the biotechnology industry.
- transcription factors Gene expression is normally controlled through alterations in the function of sequence specific DNA binding proteins called transcription factors. These bind in the general proximity (although occasionally at great distances) of the point of transcription initiation of a gene. They act to influence the efficiency of formation or function of a transcription initiation complex at the promoter. Transcription factors can act in a positive fashion (transactivation) or in a negative fashion (transrepression).
- Transcription factor function can be constitutive (always “on”) or conditional. Conditional function can be imparted on a transcription factor by a variety of means, but the majority of these regulatory mechanisms depend of the sequestering of the factor in the cytoplasm and the inducible release and subsequent nuclear translocation, DNA binding and transactivation (or repression). Examples of transcription factors that function this way include progesterone receptors, sterol response element binding proteins (SREBPs) and NF-kappa B.
- SREBPs sterol response element binding proteins
- NF-kappa B NF-kappa B.
- Zinc finger proteins are proteins that can bind to DNA in a sequence-specific manner. Zinc fingers were first identified in the transcription factor TFIIIA from the oocytes of the African clawed toad, Xenopus laevis . ZFPs are widespread in eukaryotic cells.
- An exemplary motif characterizing one class of these proteins (C 2 H 2 class) is -Cys-(X) 2-4 -Cys-(X) 12 -His-(X) 3-5 -His (where X is any amino acid).
- a single finger domain is about 30 amino acids in length and several structural studies have demonstrated that it contains an alpha helix containing the two invariant histidine residues co-ordinated through zinc with the two cysteines of a single beta turn. To date, over 10,000 zinc finger sequences have been identified in several thousand known or putative transcription factors. ZFPs are involved not only in DNA-recognition, but also in RNA binding and protein-protein binding. Current estimates are that this class of molecules will constitute about 2% of all human genes.
- the structure suggests that each finger interacts independently with DNA over 3 base-pair intervals, with side-chains at positions ⁇ 1, 2, 3 and 6 on each recognition helix making contacts with respective DNA triplet sub-site.
- the amino terminus of Zif268 is situated at the 3′ end of its DNA recognition subsite.
- Recent results have indicated that some zinc fingers can bind to a fourth base in a target segment (Isalan et al., PNAS 94:5617-5621 (1997).
- the fourth base is on the opposite strand from the other three bases recognized by zinc finger and complementary to the base immediately 3′ of the three base subsite.
- the structure of the Zif268-DNA complex also suggested that the DNA sequence specificity of a ZFP might be altered by making amino acid substitutions at the four helix positions ( ⁇ 1, 2, 3 and 6) on a zinc finger recognition helix.
- Phage display experiments using zinc finger combinatorial libraries to test this observation were published in a series of papers in 1994 (Rebar et al., Science 263:671-673 (1994); Jamieson et al., Biochemistry 33:5689-5695 (1994); Choo et al., PNAS 91:11163-11167 (1994)).
- Combinatorial libraries were constructed with randomized side-chains in either the first or middle finger of Zif268 and then isolated with an altered Zif268 binding site in which the appropriate DNA sub-site was replaced by an altered DNA triplet. Correlation between the nature of introduced mutations and the resulting alteration in binding specificity gave rise to a partial set of substitution rules for rational design of ZFPs with altered binding specificity.
- Recombinant ZFPs have been reported to have the ability to regulate gene expression of transiently expressed reporter genes in cultured cells (see, e.g., Pomerantz et al., Science 267:93-96 (1995); Liu et al., PNAS 94:5525-5530 1997); and Beerli et al., PNAS 95:14628-14633 (1998)).
- Beerli et al., PNAS 95:14628-14633 report construction of a chimeric six finger ZFP fused to either a KRAB, ERD, or SID transcriptional repressor domain, or the VP16 or VP64 transcriptional activation domain.
- This chimeric ZFP was designed to recognize an 18 bp target site in the 5′ untranslated region of the human erbB-2 gene. Using this construct, the authors of this study report both activation and repression of a transiently expressed reporter luciferase construct linked to the erbB-2 promoter.
- a recombinant ZFP was reported to repress expression of an integrated plasmid construct encoding a bcr-abl oncogene (Choo et al., Nature 372:642-645 (1994)).
- the target segment to which the ZFPs bound was a nine base sequence GCA GAA GCC chosen to overlap the junction created by a specific oncogenic translocation fusing the genes encoding bcr and abl.
- the intention was that a ZFP specific to this target site would bind to the oncogene without binding to abl or bcr component genes.
- the authors used phage display to select a variant ZFP that bound to this target segment. the variant ZFP thus isolated was then reported to repress expression of a stably transfected bcr-abl construct in a cell line.
- transiently expressed genes are episomal and are not packaged into chromatin in the same manner as chromosomal genes.
- stably expressed gene described by Choo et al. is randomly integrated into the genome and is not found in a native chromatin environment as compared to an endogenous gene.
- specific regulation of an endogenous cellular gene in its native chromatin environment using a ZFP has not yet been demonstrated in the art.
- the present invention thus provides for the first time methods of regulating endogenous cellular gene expression, where the endogenous genes are in their native chromatin environment, in contrast to genes that have been transiently expressed in a cell, or those that have been exogenously integrated into the genome.
- the methods of regulation use ZFPs with a K d of less than about 25 nM to activate or repress gene transcription.
- the ZFPs of the invention therefore can be used to repress transcription of an endogenous cellular gene by 20% or more, and can be used to activate transcription of an endogenous cellular gene by about 1.5 fold or more.
- the present invention provides a method of inhibiting expression of an endogenous cellular gene in a cell, the method comprising the step of: contacting a first target site in the endogenous cellular gene with a first zinc finger protein, wherein the K d of the zinc finger protein is less than about 25 nM; thereby inhibiting expression of the endogenous cellular gene by at least about 20%.
- the present invention provides a method of inhibiting expression of an endogenous cellular gene in a cell, the method comprising the step of: contacting a target site in the endogenous cellular gene with a fusion zinc finger protein comprising six fingers and a regulatory domain, wherein the K d of the zinc finger protein is less than about 25 nM; thereby inhibiting expression of the endogenous cellular gene by at least about 20%.
- expression of the endogenous cellular gene is inhibited by at least about 75%-100%. In another embodiment, the inhibition of gene expression prevents gene activation.
- the present invention provides a method of activating expression of an endogenous cellular gene, the method comprising the step of: contacting a first target site in the endogenous cellular gene with a first zinc finger protein, wherein the K d of the zinc finger protein is less than about 25 nM; thereby activating expression of the endogenous cellular gene to at least about 150%.
- the present invention provides a method of activating expression of an endogenous cellular gene, the method comprising the step of: contacting a target site in the endogenous cellular gene with a fusion zinc finger protein comprising six fingers and a regulatory domain, wherein the K d of the zinc finger protein is less than about 25 nM; thereby activating expression of the endogenous cellular gene to at least about 150%.
- expression of the endogenous cellular gene is activated to at least about 200-500%. In another embodiment, activation of gene expression prevents repression of gene expression.
- the present invention provides a method of modulating expression of an endogenous cellular gene in a cell, the method comprising the step of: contacting a first target site in the endogenous cellular gene with a first zinc finger protein; thereby modulating expression of the endogenous cellular gene.
- the present invention provides a method of modulating expression of an endogenous cellular gene in a cell, the method comprising the step of: contacting a target site in the endogenous cellular gene with a fusion zinc finger protein comprising six fingers and a regulatory domain; thereby modulating expression of the endogenous cellular gene.
- the step of contacting further comprises contacting a second target site in the endogenous cellular gene with a second zinc finger protein.
- the first and second target sites are adjacent.
- the first and second zinc finger proteins are covalently linked.
- the first zinc finger protein is a fusion protein comprising a regulatory domain.
- the first zinc finger protein is a fusion protein comprising at least two regulatory domains.
- the first and second zinc finger proteins are fusion proteins, each comprising a regulatory domain.
- the first and second zinc finger protein are fusion proteins, each comprising at least two regulatory domains.
- the endogenous cellular gene is a selected from the group consisting of VEGF, ER ⁇ , IGF-I, c-myc, c-myb, ICAM, Her2/Neu, FAD2-1, EPO, GM-CSF, GDNF, and LDL-R.
- the regulatory domain is selected from the group consisting of a transcriptional repressor, a transcriptional activator, an endonuclease, a methyl transferase, a histone acetyltransferase, and a histone deacetylase.
- the cell is selected from the group consisting of animal cell, a plant cell, a bacterial cell, a protozoal cell, or a fungal cell.
- the cell is a mammalian cell.
- the cell is a human cell.
- the method further comprises the step of first administering to the cell a delivery vehicle comprising the zinc finger protein, wherein the delivery vehicle comprises a liposome or a membrane translocation polypeptide.
- the zinc finger protein is encoded by a zinc finger protein nucleic acid operably linked to a promoter, and the method further comprises the step of first administering the nucleic acid to the cell in a lipid:nucleic acid complex or as naked nucleic acid.
- the zinc finger protein is encoded by an expression vector comprising a zinc finger protein nucleic acid operably linked to a promoter, and the method further comprises the step of first administering the expression vector to the cell.
- the expression vector is a viral expression vector.
- the expression vector is a retroviral expression vector, an adenoviral expression vector, a DNA plasmid expression vector, or an AAV expression vector.
- the zinc finger protein is encoded by a nucleic acid operably linked to an inducible promoter. In another embodiment, the zinc finger protein is encoded by a nucleic acid operably linked to a weak promoter.
- the cell comprises less than about 1.5 ⁇ 10 6 copies of the zinc finger protein.
- the target site is upstream of a transcription initiation site of the endogenous cellular gene. In another embodiment, the target site is adjacent to a transcription initiation site of the endogenous cellular gene. In another embodiment, the target site is adjacent to an RNA polymerase pause site downstream of a transcription initiation site of the endogenous cellular gene.
- the zinc finger protein comprises an SP-1 backbone; In one embodiment, the zinc finger protein comprises a regulatory domain and is humanized.
- FIG. 1 PCR amplification scheme for production of ZFP-encoding synthetic genes.
- FIG. 2 Expression and purification of typical ZFPs.
- FIG. 2A Unfused ZFP before induction (lane 1), after induction (lane 2), and after purification (lane 3).
- FIG. 2B MBP-VEGF expression before induction (lane 1), after induction (lane 2), and after French Press lysis (lane 3).
- FIG. 2C Purification of MBP-VEGF by amylose affinity column showing flow-through (FT), and initial fractions (1-4). Fraction 2 was used for electrophoretic mobility shift assays (“EMSA”). M, molecular weight markers.
- FIG. 3 Typical EMSA experiment with MBP fused ZFP.
- MBP-VEGF1 protein was bound to labeled duplex DNA as described in the text.
- a three-fold protein dilution series was carried out; each point represents the percent shifted at that particular protein concentration plotted on a semi-log graph. Quantitation was by phosphorimager. In this case, the protein concentration yielding 50% of maximum shift (the apparent K d ) was 2 nM.
- FIG. 4 Off-rate experiment comparing VEGF1 to VEGF3a/1. Protein-DNA complexes were pre-formed and incubated with a 1000-fold excess of unlabeled oligonucleotide. Samples were electrophoresed at various times and the amount of shifted product was measured by phosphorimager. Curve fitting was used to calculate the indicated complex half-lives.
- FIG. 5 Typical expression vector used for transient ZFP expression in mammalian cells.
- FIG. 6 Co-transfection data showing repression of luciferase reporter activity via VEGF-KRAB protein expression. Error bars show the standard deviation of triplicate transfections.
- pGL3-C reporter vector control
- pVFR1-4x VEGF reporter plasmid
- VEGF1 VEGF1-KRAB
- VEGF3a VEGF3a-KRAB
- VEGF3a/1 VEGF3a/1-KRAB.
- FIG. 7 Co-transfection data showing activation of luciferase reporter activity via VEGF-VP16 protein expression. Error bars show the standard deviation of triplicate transfections.
- pGL3-P reporter with no VEGF target
- pcDNA empty effector vector control
- pVFR3-4x VEGF reporter plasmid
- VEGF1 VEGF1-VP16
- VEGF3a VEGF3a-VP16
- VEGF3a/1 VEGF3a/1-VP16.
- FIG. 8 VEGF ELISA data showing repression of endogenous VEGF gene expression due to transfection of a VEGF ZFP-KRAB effector plasmid.
- DFX treated control nontransfected Dfx treated cells; No ZFP (pcDNA-control), VEGF 1 (VEGF1-KRAB), VEGF 3a/1 (VEGF3a/1-KRAB), CCR5 (CCR5-KRAB); Mock uninduced (mock transfected cells untreated with DFX). Error bars show the standard deviation of duplicate transfections.
- FIG. 9 VEGF ELISA data showing activation of endogenous VEGF gene expression due to transfection of a VEGF ZFP-VP16 effector plasmid. Mock (mock transfected cells); No ZFP (NVF-control), VEGF 1 (VEGF1-VP16), VEGF 3a/1 (VEGF3a/1-VP16). Error bars show the standard deviation of duplicate transfections.
- FIG. 10 RNase protection assay showing changes in VEGF specific mRNA by VEGF-specific ZFPs.
- Panel A Activation of VEGF mRNA, NVF-Control (no ZFP), VEGF1-NVF (VEGF1-VP16), CCR5-5-NVF (CCR5-VP16), CCR5-3-NVF (CCR5-VP16).
- Panel B Repression of VEGF mRNA.
- NKF-Control no ZFP
- VEGF1-NKF VEGF1-KRAB
- VEGF3a/1-NKF VEGF3a/1-KRAB
- CCR5-3-NKF CCR5-KRAB
- the size of the 148 nucleotide VEGF specific band is indicated by an arrow.
- the VEGF specific probe was synthesized from a human angiogenesis multi-probe template set (Pharmingen). As a control, signals from the housekeeping genes L32 and GAPDH are shown (arrrows).
- the present application demonstrates for the first time that ZFPs can be used to regulate expression of an endogenous cellular gene that is present in its native chromatin environment.
- the present invention thus provides zinc finger DNA binding proteins that have been engineered to specifically recognize, with high efficacy, endogenous cellular genes.
- the experiments described herein demonstrate that a 3 finger ZFP with a target site affinity of less than about 10 nM (VEGF1) can be used to effectively activate or repress activity of an endogenous gene.
- VEGF3a/1 was also shown to effectively repress activity of an endogenous gene.
- the ZFPs of the invention exhibit high affinity for their target sites, with K d s of less than about 100 nM, preferably less than about 50 nM, most preferably less than about 25 nM or lower.
- the ZFPs of the invention can be used to regulate endogenous gene expression, both through activation and repression of endogenous gene transcription.
- the ZFPs can also be linked to regulatory domains, creating chimeric transcription factors to activate or repress transcription.
- the methods of regulation use ZFPs with a K d of less than about 25 nM to activate or repress gene transcription.
- the ZFPs of the invention therefore can be used to repress transcription of an endogenous cellular gene by 20% or more, and can be used to activate transcription of an endogenous cellular gene by about 1.5 fold or more.
- Such methods of regulating gene expression allow for novel human and mammalian therapeutic applications, e.g., treatment of genetic diseases, cancer, fungal, protozoal, bacterial, and viral infection, ischemia, vascular disease, arthritis, immunological disorders, etc., as well as providing means for functional genomics assays, and means for developing plants with altered phenotypes, including disease resistance, fruit ripening, sugar and oil composition, yield, and color.
- ZFPs can be designed to recognize any suitable target site, for regulation of expression of any endogenous gene of choice.
- endogenous genes suitable for regulation include VEGF, CCR5, ERa, Her2/Neu, Tat, Rev, HBV C, S, X, and P, LDL-R, PEPCK, CYP7, Fibrinogen, ApoB, Apo E, Apo(a), renin, NF- ⁇ B, I- ⁇ B, TNF- ⁇ , FAS ligand, amyloid precursor protein, atrial naturetic factor, ob-leptin, ucp-1, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-12, G-CSF, GM-CSF, Epo, PDGF, PAF, p53, Rb, fetal hemoglobin, dystrophin, eutrophin, GDNF, NGF, IGF-1, VEGF receptors flt and flk,
- a general theme in transcription factor function is that simple binding and sufficient proximity to the promoter are all that is generally needed. Exact positioning relative to the promoter, orientation, and within limits, distance do not matter greatly. This feature allows considerable flexibility in choosing sites for constructing artificial transcription factors.
- the target site recognized by the ZFP therefore can be any suitable site in the target gene that will allow activation or repression of gene expression by a ZFP, optionally linked to a regulatory domain. Preferred target sites include regions adjacent to, downstream, or upstream of the transcription start site.
- target sites that are located in enhancer regions, repressor sites, RNA polymerase pause sites, and specific regulatory sites (e.g., SP-1 sites, hypoxia response elements, nuclear receptor recognition elements, p53 binding sites), sites in the cDNA encoding region or in an expressed sequence tag (EST) coding region.
- specific regulatory sites e.g., SP-1 sites, hypoxia response elements, nuclear receptor recognition elements, p53 binding sites
- EST expressed sequence tag
- typically each finger recognizes 2-4 base pairs, with a two finger ZFP binding to a 4 to 7 bp target site, a three finger ZFP binding to a 6 to 10 base pair site, and a six finger ZFP binding to two adjacent target sites, each target site having from 6-10 base pairs.
- two ZFPs can be administered to a cell, recognizing either the same target endogenous cellular gene, or different target endogenous cellular gene.
- the first ZFP optionally is associated with the second ZFP, either covalently or non-covalently.
- Recognition of adjacent target sites by either associated or individual ZFPs can be used to produce cooperative binding of the ZFPs, resulting in an affinity that is greater than the affinity of the ZFPs when individually bound to their target site.
- two ZFPs are produced as a fusion protein linked by an amino acid linker, and the resulting six finger ZFP recognizes an approximately 18 base pair target site (see, e.g., Liu et al., PNAS 94:5525-5530 (1997)).
- An 18 base pair target site is expected to provide specificity in the human genome, as a target site of that size should occur only once in every 3 ⁇ 10 10 base pairs, and the size of the human genome is 3.5 ⁇ 10 9 base pairs (see, e.g., Liu et al., PNAS 94:5525-5530 (1997)).
- the ZFPs are non-covalently associated, through a leucine zipper, a STAT protein N-terminal domain, or the FK506 binding protein (see, e.g., O'Shea, Science 254: 539 (1991), Barahmand-Pour et al., Curr. Top. Microbiol. Immunol. 211:121-128 (1996); Klemm et al., Annu. Rev. Immunol. 16:569-592 (1998); Ho et al., Nature 382:822-826 (1996)).
- the ZFP is linked to at least one or more regulatory domains, described below.
- Preferred regulatory domains include transcription factor repressor or activator domains such as KRAB and VP16, co-repressor and co-activator domains, DNA methyl transferases, histone acetyltransferases, histone deacetylases, and endonucleases such as Fok1.
- transcription factor repressor or activator domains such as KRAB and VP16
- co-repressor and co-activator domains co-repressor and co-activator domains
- DNA methyl transferases such as KRAB and VP16
- histone acetyltransferases histone deacetylases
- endonucleases such as Fok1.
- the expression of the gene is reduced by about 20% (i.e., 80% of non-ZFP modulated expression), more preferably by about 50% (i.e., 50% of non-ZFP modulated expression), more preferably by
- typically expression is activated by about 1.5 fold (i.e., 150% of non-ZFP modulated expression), preferably 2 fold (i.e., 200% of non-ZFP modulated expression), more preferably 5-10 fold (i.e., 500-1000% of non-ZFP modulated expression), up to at least 100 fold or more.
- engineered ZFP activators and repressors can be also controlled by systems typified by the tet-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, PNAS 89:5547 (1992); Oligino et al., Gene Ther. 5:491-496 (1998); Wang et al., Gene Ther. 4:432-441 (1997); Neering et al., Blood 88:1147-1155 (1996); and Rendahl et al., Nat. Biotechnol. 16:757-761 (1998)). These impart small molecule control on the expression of the ZFP activators and repressors and thus impart small molecule control on the target gene(s) of interest. This beneficial feature could be used in cell culture models, in gene therapy, and in transgenic animals and plants.
- ZFP zinc finger protein
- a ZFP has least one finger, typically two fingers, three fingers, or six fingers. Each finger binds from two to four base pairs of DNA, typically three or four base pairs of DNA.
- a ZFP binds to a nucleic acid sequence called a target site or target segment. Each finger typically comprises an approximately 30 amino acid, zinc-chelating, DNA-binding subdomain.
- C 2 H 2 class An exemplary motif characterizing one class of these proteins (C 2 H 2 class) is -Cys-(X) 2-4 -Cys-(X) 12 -His-(X) 3-5 -His (where X is any amino acid).
- X is any amino acid.
- a single zinc finger of this class consists of an alpha helix containing the two invariant histidine residues co-ordinated with zinc along with the two cysteine residues of a single beta turn (see, e.g., Berg & Shi, Science 271:1081-1085 (1996)).
- a “target site” is the nucleic acid sequence recognized by a ZFP.
- a single target site typically has about four to about ten base pairs.
- a two-fingered ZFP recognizes a four to seven base pair target site
- a three-fingered ZFP recognizes a six to ten base pair target site
- a six fingered ZFP recognizes two adjacent nine to ten base pair target sites.
- adjacent target sites refers to non-overlapping target sites that are separated by zero to about 5 base pairs.
- K d refers to the dissociation constant for the compound, i.e., the concentration of a compound (e.g., a zinc finger protein) that gives half maximal binding of the compound to its target (i.e., half of the compound molecules are bound to the target) under given conditions (i.e., when [target] ⁇ K d ), as measured using a given assay system (see, e.g., U.S. Pat. No. 5,789,538).
- the assay system used to measure the K d should be chosen so that it gives the most accurate measure of the actual K d of the ZFP. Any assay system can be used, as long is it gives an accurate measurement of the actual K d of the ZFP.
- the K d for the ZFPs of the invention is measured using an electrophoretic mobility shift assay (“EMSA”), as described in Example I and on page 14 of the present specification. Unless an adjustment is made for ZFP purity or activity, the K d calculations made using the method of Example I may result in an underestimate of the true K d of a given ZFP.
- the K d of a ZFP used to modulate transcription of an endogenous cellular gene is less than about 100 nM, more preferably less than about 75 nM, more preferably less than about 50 nM, most preferably less than about 25 nM.
- An “endogenous cellular gene” refers to a gene that is native to a cell, which is in its normal genomic and chromatin context, and which is not heterologous to the cell.
- Such cellular genes include, e.g., animal genes, plant genes, bacterial genes, protozoal genes, fungal genes, mitrochondrial genes, and chloroplastic genes.
- an “endogenous gene” refers to a microbial or viral gene that is part of a naturally occurring microbial or viral genome in a microbially or virally infected cell.
- the microbial or viral genome can be extrachromosomal or integrated into the host chromosome. This term also encompasses endogenous cellular genes, as described above.
- a “native chromatin environment” refers to the naturally occurring, structural relationship of genomic DNA (e.g., bacterial, animal, fungal, plant, protozoal, mitochondrial, and chloroplastic) and DNA-binding proteins (e.g., histones and bacterial DNA binding protein II), which together form chromosomes.
- genomic DNA e.g., bacterial, animal, fungal, plant, protozoal, mitochondrial, and chloroplastic
- DNA-binding proteins e.g., histones and bacterial DNA binding protein II
- adjacent to a transcription initiation site refers to a target site that is within about 50 bases either upstream or downstream of a transcription initiation site.
- Upstream of a transcription initiation site refers to a target site that is more than about 50 bases 5′ of the transcription initiation site (i.e., in the non-transcribed region of the gene).
- RNA polymerase pause site is described in Uptain et al., Annu. Rev. Biochem. 66:117-172 (1997).
- “Humanized” refers to a non-human polypeptide sequence that has been modified to minimize immunoreactivity in humans, typically by altering the amino acid sequence to mimic existing human sequences, without substantially altering the function of the polypeptide sequence (see, e.g., Jones et al., Nature 321:522-525 (1986), and published UK patent application No. 8707252).
- Backbone sequences for the ZFPs are preferably be selected from existing human C 2 H 2 ZFPs (e.g., SP-1).
- Functional domains are preferably selected from existing human genes, (e.g., the activation domain from the p65 subunit of NF- ⁇ B).
- the recognition helix sequences will be selected from the thousands of existing ZFP DNA recognition domains provided by sequencing the human genome. As much as possible, domains will be combined as units from the same existing proteins. All of these steps will minimize the introduction of new junctional epitopes in the chimeric ZFPs and render the engineered ZFPs less immunogenic.
- administering an expression vector, nucleic acid, ZFP, or a delivery vehicle to a cell comprises transducing, transfecting, electroporating, translocating, fusing, phagocytosing, shooting or ballistic methods, etc., i.e., any means by which a protein or nucleic acid can be transported across a cell membrane and preferably into the nucleus of a cell.
- a “delivery vehicle” refers to a compound, e.g., a liposome, toxin, or a membrane translocation polypeptide, which is used to administer a ZFP. Delivery vehicles can also be used to administer nucleic acids encoding ZFPs, e.g., a lipid:nucleic acid complex, an expression vector, a virus, and the like.
- modulating expression “inhibiting expression” and “activating expression” of a gene refer to the ability of a ZFP to activate or inhibit transcription of a gene. Activation includes prevention of transcriptional inhibition (i.e., prevention of repression of gene expression) and inhibition includes prevention of transcriptional activation (i.e., prevention of gene activation).
- Modulation can be assayed by determining any parameter that is indirectly or directly affected by the expression of the target gene.
- parameters include, e.g., changes in RNA or protein levels, changes in protein activity, changes in product levels, changes in downstream gene expression, changes in reporter gene transcription (luciferase, CAT, ⁇ -galactosidase, ⁇ -glucuronidase, GFP (see, e.g., Mistili & Spector, Nature Biotechnology. 15:961-964 (1997)); changes in signal transduction, phosphorylation and dephosphorylation, receptor-ligand interactions, second messenger concentrations (e.g., cGMP, cAMP, IP3, and Ca 2+ ), cell growth, and neovascularization.
- RNA or protein levels can be measured by any means known to those skilled in the art, e.g., measurement of RNA or protein levels, measurement of RNA stability, identification of downstream or reporter gene expression, e.g., via chemiluminescence, fluorescence, calorimetric reactions, antibody binding, inducible markers, ligand binding assays; changes in intracellular second messengers such as cGMP and inositol triphosphate (IP3); changes in intracellular calcium levels; cytokine release, and the like.
- chemiluminescence, fluorescence, calorimetric reactions e.g., via chemiluminescence, fluorescence, calorimetric reactions, antibody binding, inducible markers, ligand binding assays
- changes in intracellular second messengers such as cGMP and inositol triphosphate (IP3)
- changes in intracellular calcium levels cytokine release, and the like.
- control samples are assigned a relative gene expression activity value of 100%. Modulation/inhibition of gene expression is achieved when the gene expression activity value relative to the control is about 80%, preferably 50% (i.e., 0.5 ⁇ the activity of the control), more preferably 25%, more preferably 5-0%. Modulation/activation of gene expression is achieved when the gene expression activity value relative to the control is 110%, more preferably 150% (i.e., 1.5 ⁇ the activity of the control), more preferably 200-500%, more preferably 1000-2000% or more.
- a “transcriptional activator” and a “transcriptional repressor” refer to proteins or effector domains of proteins that have the ability to modulate transcription, as described above.
- Such proteins include, e.g., transcription factors and co-factors (e.g., KRAB, MAD, ERD, SID, nuclear factor kappa B subunit p65, early growth response factor 1, and nuclear hormone receptors, VP16, VP64), endonucleases, integrases, recombinases, methyltransferases, histone acetyltransferases, histone deacetylases etc.
- Activators and repressors include co-activators and co-repressors (see, e.g., Utley et al., Nature 394:498-502 (1998)).
- a “regulatory domain” refers to a protein or a protein domain that has transcriptional modulation activity when tethered to a DNA binding domain, i.e., a ZFP.
- a regulatory domain is covalently or non-covalently linked to a ZFP to effect transcription modulation.
- a ZFP can act alone, without a regulatory domain, to effect transcription modulation.
- heterologous is a relative term, which when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature.
- a nucleic acid that is recombinantly produced typically has two or more sequences from unrelated genes synthetically arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source.
- the two nucleic acids are thus heterologous to each other in this context.
- the recombinant nucleic acids When added to a cell, the recombinant nucleic acids would also be heterologous to the endogenous genes of the cell.
- a heterologous nucleic acid would include an non-native (non-naturally occurring) nucleic acid that has integrated into the chromosome, or a non-native (non-naturally occurring) extrachromosomal nucleic acid.
- a naturally translocated piece of chromosome would not be considered heterologous in the context of this patent application, as it comprises an endogenous nucleic acid sequence that is native to the mutated cell.
- a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a “fusion protein,” where the two subsequences are encoded by a single nucleic acid sequence). See, e.g., Ausubel, supra, for an introduction to recombinant techniques.
- recombinant when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified.
- recombinant cells express genes that are not found within the native (naturally occurring) form of the cell or express a second copy of a native gene that is otherwise normally or abnormally expressed, under expressed or not expressed at all.
- a “promoter” is defined as an array of nucleic acid control sequences that direct transcription.
- a promoter typically includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of certain RNA polymerase II type promoters, a TATA element, enhancer, CCAAT box, SP-1 site, etc.
- a promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription.
- the promoters often have an element that is responsive to transactivation by a DNA-binding moiety such as a polypeptide, e.g., a nuclear receptor, Gal4, the lac repressor and the like.
- a “constitutive” promoter is a promoter that is active under most environmental and developmental conditions.
- An “inducible” promoter is a promoter that is active under certain environmental or developmental conditions.
- a “weak promoter” refers to a promoter having about the same activity as a wild type herpes simplex virus (“HSV”) thymidine kinase (“tk”) promoter or a mutated HSV tk promoter, as described in Eisenberg & McKnight, Mol. Cell. Biol. 5:1940-1947 (1985).
- HSV herpes simplex virus
- tk thymidine kinase
- operably linked refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.
- a nucleic acid expression control sequence such as a promoter, or array of transcription factor binding sites
- an “expression vector” is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell, and optionally integration or replication of the expression vector in a host cell.
- the expression vector can be part of a plasmid, virus, or nucleic acid fragment, of viral or non-viral origin.
- the expression vector includes an “expression cassette,” which comprises a nucleic acid to be transcribed operably linked to a promoter.
- expression vector also encompasses naked DNA operably linked to a promoter.
- host cell is meant a cell that contains a ZFP or an expression vector or nucleic acid encoding a ZFP.
- the host cell typically supports the replication or expression of the expression vector.
- Host cells may be prokaryotic cells such as E. coli , or eukaryotic cells such as yeast, fungal, protozoal, higher plant, insect, or amphibian cells, or mammalian cells such as CHO, HeLa, 293, COS-1, and the like, e.g., cultured cells (in vitro), explants and primary cultures (in vitro and ex vivo), and cells in vivo.
- Nucleic acid refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form.
- the term encompasses nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs).
- PNAs peptide-nucleic acids
- nucleic acid is used interchangeably with gene, cDNA, mRNA, oligonucleotide, and polynucleotide.
- the nucleotide sequences are displayed herein in the conventional 5′-3′ orientation.
- polypeptide “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an analog or mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. Polypeptides can be modified, e.g., by the addition of carbohydrate residues to form glycoproteins. The terms “polypeptide,” “peptide” and “protein” include glycoproteins, as well as non-glycoproteins. The polypeptide sequences are displayed herein in the conventional N-terminal to C-terminal orientation.
- amino acid refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids.
- Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, carboxyglutamate, and O-phosphoserine.
- Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an ⁇ carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine, and methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid.
- Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.
- Constantly modified variants applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem.
- nucleic acid variations are “silent variations,” which are one species of conservatively modified variations.
- Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid.
- each codon in a nucleic acid except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan
- TGG which is ordinarily the only codon for tryptophan
- amino acid and nucleic acid sequences individual substitutions, deletions or additions that alter, add or delete a single amino acid or nucleotide or a small percentage of amino acids or nucleotides in the sequence create a “conservatively modified variant,” where the alteration results in the substitution of an amino acid with a chemically similar amino acid.
- Conservative substitution tables providing functionally similar amino acids are well known in the art.
- conservatively modified variants are in addition to and do not exclude polymorphic variants and alleles of the invention.
- the ZFPs of the invention are engineered to recognize a selected target site in the endogenous gene of choice.
- a backbone from any suitable C 2 H 2 ZFP such as SP-1, SP-1C, or ZIF268, is used as the scaffold for the engineered ZFP (see, e.g., Jacobs, EMBO J. 11:4507 (1992); Desjarlais & Berg, PNAS 90:2256-2260 (1993)).
- a number of methods can then be used to design and select a ZFP with high affinity for its target (e.g., preferably with a K d of less than about 25 nM).
- a ZFP can be designed or selected to bind to any suitable target site in the target endogenous gene, with high affinity.
- nucleic acids encoding ZFPs e.g., phage display, random mutagenesis, combinatorial libraries, computer/rational design, affinity selection, PCR, cloning from cDNA or genomic libraries, synthetic construction and the like. (see, e.g., U.S. Pat. No.
- copending application U.S. Ser. No. ______ filed Jan. 12, 1999 (TTC attorney docket no. 019496-001800) provides methods that select a target gene, and identify a target site within the gene containing one to six (or more) D-able sites (see definition below). Using these methods, a ZFP can then be synthesized that binds to the preselected site.
- These methods of target site selection are premised, in part, on the recognition that the presence of one or more D-able sites in a target segment confers the potential for higher binding affinity in a ZFP selected or designed to bind to that site relative to ZFPs that bind to target segments lacking D-able sites. Experimental evidence supporting this insight is provided in Examples 2-9 of copending application U.S. Ser. No. ______, filed Jan. 12, 1999 (TTC attorney docket no. 019496-001800).
- a D-able site or subsite is a region of a target site that allows an appropriately designed single zinc finger to bind to four bases rather than three of the target site.
- a zinc finger binds to a triplet of bases on one strand of a double-stranded target segment (target strand) and a fourth base on the other strand (see FIG. 2 of copending application U.S. Ser. No. ______, filed Jan. 12, 1999 (TTC attorney docket no. 019496-001800). Binding of a single zinc finger to a four base target segment imposes constraints both on the sequence of the target strand and on the amino acid sequence of the zinc finger.
- the target site within the target strand should include the “D-able” site motif 5′ NNGK 3′, in which N and K are conventional IUPAC-IUB ambiguity codes.
- a zinc finger for binding to such a site should include an arginine residue at position ⁇ 1 and an aspartic acid, (or less preferably a glutamic acid) at position +2.
- the arginine residues at position ⁇ 1 interacts with the G residue in the D-able site.
- the aspartic acid (or glutamic acid) residue at position +2 of the zinc finger interacts with the opposite strand base complementary to the K base in the D-able site.
- D-able site It is the interaction between aspartic acid (symbol D) and the opposite strand base (fourth base) that confers the name D-able site.
- symbol D symbol D
- opposite strand base fourth base
- D-able site formula there are two subtypes of D-able sites: 5′ NNGG 3′ and 5′ NNGT 3′.
- the aspartic acid or glutamic acid at position +2 of a zinc finger interacts with a C in the opposite strand to the D-able site.
- the aspartic acid or glutamic acid at position +2 of a zinc finger interacts with an A in the opposite strand to the D-able site.
- NNGG is preferred over NNGT.
- a target site should be selected in which at least one finger of the protein, and optionally, two or all three fingers have the potential to bind a D-able site.
- Such can be achieved by selecting a target site from within a larger target gene having the formula 5′-NNx aNy bNzc-3′, wherein
- At least one of the three sets (x, a), (y, b) and (z, c) is the set (G, K), meaning that the first position of the set is G and the second position is G or T.
- Those of the three sets (if any) which are not (G, K) are (N, N), meaning that the first position of the set can be occupied by any nucleotide and the second position of the set can be occupied by any nucleotide.
- the set (x, a) can be (G, K) and the sets (y, b) and (z, c) can both be (N, N).
- the triplets of NNx aNy and bNzc represent the triplets of bases on the target strand bound by the three fingers in a ZFP. If only one of x, y and z is a G, and this G is followed by a K, the target site includes a single D-able subsite. For example, if only x is G, and a is K, the site reads 5′-NNG KNy bNzc-3′ with the D-able subsite highlighted.
- the target site has two overlapping D-able subsites as follows: 5′-NNG KNG KNz c-3′, with one such site being represented in bold and the other in italics. If all three of x, y and z are G and a, b, and c are K, then the target segment includes three D-able subsites, as follows 5′NNG KNG KNG K 3′, the D-able subsites being represented by bold, italics and underline.
- the methods of the invention identify first and second target segments, each independently conforming to the above formula.
- the two target segments in such methods are constrained to be adjacent or proximate (i.e., within about 0-5 bases) of each other in the target gene.
- the strategy underlying selection of proximate target segments is to allow the design of a ZFP formed by linkage of two component ZFPs specific for the first and second target segments respectively.
- These principles can be extended to select target sites to be bound by ZFPs with any number of component fingers. For example, a suitable target site for a nine finger protein would have three component segments, each conforming to the above formula.
- the target sites identified by the above methods can be subject to further evaluation by other criteria or can be used directly for design or selection (if needed) and production of a ZFP specific for such a site.
- a further criteria for evaluating potential target sites is their proximity to particular regions within a gene. If a ZFP is to be used to repress a cellular gene on its own (i.e., without linking the ZFP to a repressing moiety), then the optimal location appears to be at, or within 50 bp upstream or downstream of the site of transcription initiation, to interfere with the formation of the transcription complex (Kim & Pabo, J. Biol. Chem. 272:29795-296800 (1997)) or compete for an essential enhancer binding protein.
- a ZFP is fused to a functional domain such as the KRAB repressor domain or the VP16 activator domain
- the location of the binding site is considerably more flexible and can be outside known regulatory regions.
- a KRAB domain can repress transcription at a promoter up to at least 3 kbp from where KRAB is bound (Margolin et al., PNAS 91:4509-4513 (1994)).
- target sites can be selected that do not necessarily include or overlap segments of demonstrable biological significance with target genes, such as regulatory sequences.
- Other criteria for further evaluating target segments include the prior availability of ZFPs binding to such segments or related segments, and/or ease of designing new ZFPs to bind a given target segment.
- a ZFP that binds to the segment can be provided by a variety of approaches.
- the simplest of approaches is to provide a precharacterized ZFP from an existing collection that is already known to bind to the target site. However, in many instances, such ZFPs do not exist.
- An alternative approach can also be used to design new ZFPs, which uses the information in a database of existing ZFPs and their respective binding affinities.
- a further approach is to design a ZFP based on substitution rules as discussed above.
- a still further alternative is to select a ZFP with specificity for a given target by an empirical process such as phage display.
- each component finger of a ZFP is designed or selected independently of other component fingers. For example, each finger can be obtained from a different preexisting ZFP or each finger can be subject to separate randomization and selection.
- the ZFP or the DNA encoding it are synthesized. Exemplary methods for synthesizing and expressing DNA encoding zinc finger proteins are described below.
- the ZFP or a polynucleotide encoding it can then be used for modulation of expression, or analysis of the target gene containing the target site to which the ZFP binds.
- ZFP polypeptides and nucleic acids can be made using routine techniques in the field of recombinant genetics. Basic texts disclosing the general methods of use in this invention include Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd ed. 1989); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Current Protocols in Molecular Biology (Ausubel et al., eds., 1994)).
- essentially any nucleic acid can be custom ordered from any of a variety of commercial sources.
- peptides and antibodies can be custom ordered from any of a variety of commercial sources.
- Two alternative methods are typically used to create the coding sequences required to express newly designed DNA-binding peptides.
- One protocol is a PCR-based assembly procedure that utilizes six overlapping oligonucleotides ( FIG. 1 ).
- Three oligonucleotides (oligos 1, 3, and 5 in FIG. 1 ) correspond to “universal” sequences that encode portions of the DNA-binding domain between the recognition helices. These oligonucleotides remain constant for all zinc finger constructs.
- the other three “specific” oligonucleotides are designed to encode the recognition helices. These oligonucleotides contain substitutions primarily at positions ⁇ 1, 2, 3 and 6 on the recognition helices making them specific for each of the different DNA-binding domains.
- PCR synthesis is carried out in two steps.
- a double stranded DNA template is created by combining the six oligonucleotides (three universal, three specific) in a four cycle PCR reaction with a low temperature annealing step, thereby annealing the oligonucleotides to form a DNA “scaffold.”
- the gaps in the scaffold are filled in by high-fidelity thermostable polymerase, the combination of Taq and Pfu polymerases also suffices.
- the zinc finger template is amplified by external primers designed to incorporate restriction sites at either end for cloning into a shuttle vector or directly into an expression vector.
- An alternative method of cloning the newly designed DNA-binding proteins relies on annealing complementary oligonucleotides encoding the specific regions of the desired ZFP.
- This particular application requires that the oligonucleotides be phosphorylated prior to the final ligation step. This is usually performed before setting up the annealing reactions, but kinasing can also occur post-annealing.
- the “universal” oligonucleotides encoding the constant regions of the proteins are annealed with their complementary oligonucleotides.
- the “specific” oligonucleotides encoding the finger recognition helices are annealed with their respective complementary oligonucleotides. These complementary oligos are designed to fill in the region which was previously filled in by polymerase in the protocol described above.
- the complementary oligos to the common oligos 1 and finger 3 are engineered to leave overhanging sequences specific for the restriction sites used in cloning into the vector of choice.
- the second assembly protocol differs from the initial protocol in the following aspects: the “scaffold” encoding the newly designed ZFP is composed entirely of synthetic DNA thereby eliminating the polymerase fill-in step, additionally the fragment to be cloned into the vector does not require amplification. Lastly, the design of leaving sequence-specific overhangs eliminates the need for restriction enzyme digests of the inserting fragment.
- Expression vectors that are commonly utilized include, but are not limited to, a modified pMAL-c2 bacterial expression vector (New England BioLabs, “NEB”) or a eukaryotic expression vector, pcDNA (Promega).
- any suitable method of protein purification known to those of skill in the art can be used to purify ZFPs of the invention (see Ausubel, supra, Sambrook, supra).
- any suitable host can be used, e.g., bacterial cells, insect cells, yeast cells, mammalian cells, and the like.
- expression of the ZFP fused to a maltose binding protein (MBP-ZFP) in bacterial strain JM109 allows for straightforward purification through an amylose column (NEB).
- High expression levels of the zinc finger chimeric protein can be obtained by induction with IPTG since the MBP-ZFP fusion in the pMal-c2 expression plasmid is under the control of the IPTG inducible tac promoter (NEB).
- Bacteria containing the MBP-ZFP fusion plasmids are inoculated in to 2 ⁇ YT medium containing 10 ⁇ M ZnCl 2 , 0.02% glucose, plus 50 ⁇ g/ml ampicillin and shaken at 37° C.
- IPTG is added to 0.3 mM and the cultures are allowed to shake. After 3 hours the bacteria are harvested by centrifugation, disrupted by sonication, and then insoluble material is removed by centrifugation.
- the MBP-ZFP proteins are captured on an amylose-bound resin, washed extensively with buffer containing 20 mM Tris-HCl (pH 7.5), 200 mM NaCl, 5 mM DTT and 50 ⁇ M ZnCl 2 , then eluted with maltose in essentially the same buffer (purification is based on a standard protocol from NEB). Purified proteins are quantitated and stored for biochemical analysis.
- K d The biochemical properties of the purified proteins, e.g., K d , can be characterized by any suitable assay.
- K d is characterized via electrophoretic mobility shift assays (“EMSA”) (Buratowski & Chodosh, in Current Protocols in Molecular Biology pp. 12.2.1-12.2.7 (Ausubel ed., 1996); see also U.S. Pat. No. 5,789,538, U.S. Ser. No. ______, filed Jan. 12, 1999 (TTC attorney docket no. 019496-001800), herein incorporated by reference, and Example I).
- Affinity is measured by titrating purified protein against a low fixed amount of labeled double-stranded oligonucleotide target.
- the target comprises the natural binding site sequence (9 or 18 bp) flanked by the 3 bp found in the natural sequence. External to the binding site plus flanking sequence is a constant sequence.
- the annealed oligonucleotide targets possess a 1 bp 5′ overhang which allows for efficient labeling of the target with T4 phage polynucleotide kinase.
- the target is added at a concentration of 40 nM or lower (the actual concentration is kept at least 10-fold lower than the lowest protein dilution) and the reaction is allowed to equilibrate for at least 45 min.
- reaction mixture also contains 10 mM Tris (pH 7.5), 100 mM KCl, 1 mM MgCl 2 , 0.1 mM ZnCl 2 , 5 mM DTT, 10% glycerol, 0.02% BSA (poly (dIdC) or (dAdT) (Pharmacia) can also added at 10-100 ⁇ g/ ⁇ l).
- the equilibrated reactions are loaded onto a 10% polyacrylamide gel, which has been pre-run for 45 min in Tris/glycine buffer, then bound and unbound labeled target is resolved be electrophoresis at 150V (alternatively, 10-20% gradient Tris-HCl gels, containing a 4% polyacrylamide stacker, can be used).
- the dried gels are visualized by autoradiography or phosphoroimaging and the apparent K d is determined by calculating the protein concentration that gives half-maximal binding.
- Similar assays can also include determining active fractions in the protein preparations. Active fractions are determined by stoichiometric gel shifts where proteins are titrated against a high concentration of target DNA. Titrations are done at 100, 50, and 25% of target (usually at micromolar levels).
- phage display libraries can be used to select ZFPs with high affinity to the selected target site.
- This method differs fundamentally from direct design in that it involves the generation of diverse libraries of mutagenized ZFPs, followed by the isolation of proteins with desired DNA-binding properties using affinity selection methods. To use this method, the experimenter typically proceeds as follows.
- a gene for a ZFP is mutagenized to introduce diversity into regions important for binding specificity and/or affinity. In a typical application, this is accomplished via randomization of a single finger at positions ⁇ 1, +2, +3, and +6, and perhaps accessory positions such as +1, +5, +8, or +10.
- the mutagenized gene is cloned into a phage or phagemid vector as a fusion with, e.g., gene III of filamentous phage, which encodes the coat protein pIII.
- the zinc finger gene is inserted between segments of gene III encoding the membrane export signal peptide and the remainder of pIII, so that the ZFP is expressed as an amino-terminal fusion with pIII in the mature, processed protein.
- the mutagenized zinc finger gene may also be fused to a truncated version of gene III encoding, minimally, the C-terminal region required for assembly of pIII into the phage particle.
- the resultant vector library is transformed into E. Coli and used to produce filamentous phage which express variant ZFPs on their surface as fusions with the coat protein pIII (if a phagemid vector is used, then the this step requires superinfection with helper phage).
- the phage library is then incubated with target DNA site, and affinity selection methods are used to isolate phage which bind target with high affinity from bulk phage.
- the DNA target is immobilized on a solid support, which is then washed under conditions sufficient to remove all but the tightest binding phage. After washing, any phage remaining on the support are recovered via elution under conditions which totally disrupt zinc finger-DNA binding.
- Recovered phage are used to infect fresh E. coli , which is then amplified and used to produce a new batch of phage particles. The binding and recovery steps are then repeated as many times as is necessary to sufficiently enrich the phage pool for tight binders such that these may be identified using sequencing and/or screening methods.
- the ZFPs of the invention can optionally be associated with regulatory domains for modulation of gene expression.
- the ZFP can be covalently or non-covalently associated with one or more regulatory domains, alternatively two or more regulatory domains, with the two or more domains being two copies of the same domain, or two different domains.
- the regulatory domains can be covalently linked to the ZFP, e.g., via an amino acid linker, as part of a fusion protein.
- the ZFPs can also be associated with a regulatory domain via a non-covalent dimerization domain, e.g., a leucine zipper, a STAT protein N terminal domain, or an FK506 binding protein (see, e.g., O'Shea, Science 254: 539 (1991), Barahmand -Pour et al., Curr. Top. Microbiol. Immunol. 211:121-128 (1996); Klemm et al., Annu. Rev. Immunol. 16:569-592 (1998); Klemm et al., Annu. Rev. Immunol.
- a non-covalent dimerization domain e.g., a leucine zipper, a STAT protein N terminal domain, or an FK506 binding protein
- the regulatory domain can be associated with the ZFP at any suitable position, including the C- or N-terminus of the ZFP.
- Common regulatory domains for addition to the ZFP include, e.g., effector domains from transcription factors (activators, repressors, co-activators, co-repressors), silencers, nuclear hormone receptors, oncogene transcription factors (e.g., myc, jun, fos, myb, max, mad, rel, ets, bcl, myb, mos family members etc.); DNA repair enzymes and their associated factors and modifiers; DNA rearrangement enzymes and their associated factors and modifiers; chromatin associated proteins and their modifiers (e.g., kinases, acetylases and deacetylases); and DNA modifying enzymes (e.g., methyltransferases, topoisomerases, helicases, ligases, kinases, phosphatases, polymerases, endonucleases) and their associated factors and modifiers.
- transcription factors activators, repressors, co-activators, co-repressor
- Transcription factor polypeptides from which one can obtain a regulatory domain include those that are involved in regulated and basal transcription. Such polypeptides include transcription factors, their effector domains, coactivators, silencers, nuclear hormone receptors (see, e.g., Goodrich et al., Cell 84:825-30 (1996) for a review of proteins and nucleic acid elements involved in transcription; transcription factors in general are reviewed in Barnes & Adcock, Clin. Exp. Allergy 25 Suppl. 2:46-9 (1995) and Roeder, Methods Enzymol. 273:165-71 (1996)). Databases dedicated to transcription factors are known (see, e.g., Science 269:630 (1995)).
- Nuclear hormone receptor transcription factors are described in, for example, Rosen et al., J. Med. Chem. 38:4855-74 (1995).
- the C/EBP family of transcription factors are reviewed in Wedel et al., Immunobiology 193:171-85 (1995).
- Coactivators and co-repressors that mediate transcription regulation by nuclear hormone receptors are reviewed in, for example, Meier, Eur. J. Endocrinol. 134(2): 158-9 (1996); Kaiser et al., Trends Biochem. Sci. 21:342-5 (1996); and Utley et al., Nature 394:498-502 (1998)).
- TATA box binding protein TBP
- TAF TAF box binding protein
- TAF polypeptides which include TAF30, TAF55, TAF80, TAF110, TAF150, and TAF250
- TAF30, TAF55, TAF80, TAF110, TAF150, and TAF250 are described in Goodrich & Tjian, Curr. Opin. Cell Biol. 6:403-9 (1994) and Hurley, Curr. Opin. Struct. Biol. 6:69-75 (1996).
- the STAT family of transcription factors are reviewed in, for example, Barahmand-Pour et al., Curr. Top. Microbiol. Immunol. 211:121-8 (1996). Transcription factors involved in disease are reviewed in Aso et al., J. Clin. Invest. 97:1561-9 (1996).
- the KRAB repression domain from the human KOX-1 protein is used as a transcriptional repressor (Thiesen et al., New Biologist 2:363-374 (1990); Margolin et al., PNAS 91:4509-4513 (1994); Pengue et al., Nucl. Acids Res. 22:2908-2914 (1994); Witzgall et al., PNAS 91:4514-4518 (1994); see also Example III)).
- KAP-1 a KRAB co-repressor
- KRAB is used with KRAB (Friedman et al., Genes Dev. 10:2067-2078 (1996)).
- KAP-1 can be used alone with a ZFP.
- Other preferred transcription factors and transcription factor domains that act as transcriptional repressors include MAD (see, e.g., Sommer et al., J. Biol. Chem. 273:6632-6642 (1998); Gupta et al., Oncogene 16:1149-1159 (1998); Queva et al., Oncogene 16:967-977 (1998); Larsson et al., Oncogene 15:737-748 (1997); Laherty et al., Cell 89:349-356 (1997); and Cultraro et al., Mol Cell. Biol.
- FKHR forkhead in rhapdosarcoma gene; Ginsberg et al., Cancer Res. 15:3542-3546 (1998); Epstein et al., Mol. Cell. Biol. 18:4118-4130 (1998)); EGR-1 (early growth response gene product-1; Yan et al., PNAS 95:8298-8303 (1998); and Liu et al., Cancer Gene Ther. 5:3-28 (1998)); the ets2 repressor factor repressor domain (ERD; Sgouras et al., EMBO J. 14:4781-4793 ((19095)); and the MAD smSIN3 interaction domain (SID; Ayer et al., Mol. Cell. Biol. 16:5772-5781 (1996)).
- EGD ets2 repressor factor repressor domain
- SID MAD smSIN3 interaction domain
- the HSV VP16 activation domain is used as a transcriptional activator (see, e.g., Hagmann et al., J. Virol. 71:5952-5962 (1997)).
- Other preferred transcription factors that could supply activation domains include the VP64 activation domain (Seipel et al., EMBO J. 11:4961-4968 (1996)); nuclear hormone receptors (see, e.g., Torchia et al., Curr. Opin. Cell. Biol. 10:373-383 (1998)); the p65 subunit of nuclear factor kappa B (Bitko & Barik, J. Virol.
- Kinases, phosphatases, and other proteins that modify polypeptides involved in gene regulation are also useful as regulatory domains for ZFPs. Such modifiers are often involved in switching on or off transcription mediated by, for example, hormones.
- Kinases involved in transcription regulation are reviewed in Davis, Mol. Reprod. Dev. 42:459-67 (1995), Jackson et al., Adv. Second Messenger Phosphoprotein Res. 28:279-86 (1993), and Boulikas, Crit. Rev. Eukaryot. Gene Expr. 5:1-77 (1995), while phosphatases are reviewed in, for example, Schonthal & Senin, Cancer Biol. 6:239-48 (1995).
- Nuclear tyrosine kinases are described in Wang, Trends Biochem. Sci. 19:373-6 (1994).
- useful domains can also be obtained from the gene products of oncogenes (e.g., myc, jun, fos, myb, max, mad, rel, ets, bcl, myb, mos family members) and their associated factors and modifiers.
- Oncogenes are described in, for example, Cooper, Oncogenes, 2nd ed., The Jones and Bartlett Series in Biology, Boston, Mass., Jones and Bartlett Publishers, 1995.
- the ets transcription factors are reviewed in Waslylk et al., Eur. J. Biochem. 211:7-18 (1993) and Crepieux et al., Crit. Rev. Oncog. 5:615-38 (1994).
- Myc oncogenes are reviewed in, for example, Ryan et al., Biochem. J. 314:713-21 (1996).
- the jun and fos transcription factors are described in, for example, The Fos and Jun Families of Transcription Factors , Angel & Herrlich, eds. (1994).
- the max oncogene is reviewed in Hurlin et al., Cold Spring Harb. Symp. Quant. Biol. 59:109-16.
- the myb gene family is reviewed in Kanei-Ishii et al., Curr. Top. Microbiol. Immunol. 211:89-98 (1996).
- the mos family is reviewed in Yew et al., Curr. Opin. Genet. Dev. 3:19-25 (1993).
- ZFPs can include regulatory domains obtained from DNA repair enzymes and their associated factors and modifiers.
- DNA repair systems are reviewed in, for example, Vos, Curr. Opin. Cell Biol. 4:385-95 (1992); Sancar, Ann. Rev. Genet. 29:69-105 (1995); Lehmann, Genet. Eng. 17:1-19 (1995); and Wood, Ann. Rev. Biochem. 65:135-67 (1996).
- DNA rearrangement enzymes and their associated factors and modifiers can also be used as regulatory domains (see, e.g., Gangloff et al., Experientia 50:261-9 (1994); Sadowski, FASEB J. 7:760-7 (1993)).
- regulatory domains can be derived from DNA modifying enzymes (e.g., DNA methyltransferases, topoisomerases, helicases, ligases, kinases, phosphatases, polymerases) and their associated factors and modifiers.
- DNA modifying enzymes e.g., DNA methyltransferases, topoisomerases, helicases, ligases, kinases, phosphatases, polymerases
- Helicases are reviewed in Matson et al., Bioessays, 16:13-22 (1994), and methyltransferases are described in Cheng, Curr. Opin. Struct. Biol. 5:4-10 (1995).
- Chromatin associated proteins and their modifiers are also useful as domains for addition to the ZFP of choice.
- the regulatory domain is a DNA methyl transferase that acts as a transcriptional repressor (see, e.g., Van den Wyngaert et al., FEBS Lett. 426:283-289 (1998); Flynn et al., J. Mol. Biol. 279:101-116 (1998); Okano et al., Nucleic Acids Res.
- endonucleases such as Fok1 are used as transcriptional repressors, which act via gene cleavage (see, e.g., WO95/09233; and PCT/US94/01201).
- Factors that control chromatin and DNA structure, movement and localization and their associated factors and modifiers; factors derived from microbes (e.g., prokaryotes, eukaryotes and virus) and factors that associate with or modify them can also be used to obtain chimeric proteins.
- recombinases and integrases are used as regulatory domains.
- histone acetyltransferase is used as a transcriptional activator (see, e.g., Jin & Scotto, Mol. Cell. Biol.
- histone deacetylase is used as a transcriptional repressor (see, e.g., Jin & Scotto, Mol. Cell. Biol. 18:4377-4384 (1998); Syntichaki & Thireos, J. Biol. Chem. 273:24414-24419 (1998); Sakaguchi et al., Genes Dev. 12:2831-2841 (1998); and Martinez et al., J. Biol. Chem. 273:23781-23785 (1998)).
- Linker domains between polypeptide domains can be included.
- Such linkers are typically polypeptide sequences, such as poly gly sequences of between about 5 and 200 amino acids.
- Preferred linkers are typically flexible amino acid subsequences which are synthesized as part of a recombinant fusion protein.
- the linker DGGGS is used to link two ZFPs.
- the flexible linker linking two ZFPs is an amino acid subsequence comprising the sequence TGEKP (see, e.g., Liu et al., PNAS 5525-5530 (1997)).
- the linker LRQKDGERP is used to link two ZFPs.
- the following linkers are used to link two ZFPs: GGRR (Pomerantz et al. 1995, supra), (G4S) n (Kim et al., PNAS 93, 1156-1160 (1996.); and GGRRGGGS; LRQRDGERP; LRQKDGGGSERP; LRQKd(G3S) 2 ERP.
- flexible linkers can be rationally designed using computer program capable of modeling both DNA-binding sites and the peptides themselves (Desjarlais & Berg, PNAS 90:2256-2260 (1993), PNAS 91:11099-11103 (1994) or by phage display methods.
- a chemical linker is used to connect synthetically or recombinantly produced domain sequences.
- Such flexible linkers are known to persons of skill in the art.
- poly(ethylene glycol) linkers are available from Shearwater Polymers, Inc. Huntsville, Ala. These linkers optionally have amide linkages, sulfhydryl linkages, or heterofunctional linkages.
- non-covalent methods can be used to produce molecules with ZFPs associated with regulatory domains.
- the ZFP is expressed as a fusion protein such as maltose binding protein (“MBP”), glutathione S transferase (GST), hexahistidine, c-myc, and the FLAG epitope, for ease of purification, monitoring expression, or monitoring cellular and subcellular localization.
- MBP maltose binding protein
- GST glutathione S transferase
- hexahistidine hexahistidine
- c-myc hexahistidine
- FLAG epitope FLAG epitope
- the nucleic acid encoding the ZFP of choice is typically cloned into intermediate vectors for transformation into prokaryotic or eukaryotic cells for replication and/or expression, e.g., for determination of K d .
- Intermediate vectors are typically prokaryote vectors, e.g., plasmids, or shuttle vectors, or insect vectors, for storage or manipulation of the nucleic acid encoding ZFP or production of protein.
- the nucleic acid encoding a ZFP is also typically cloned into an expression vector, for administration to a plant cell, animal cell, preferably a mammalian cell or a human cell, fungal cell, bacterial cell, or protozoal cell.
- a ZFP is typically subcloned into an expression vector that contains a promoter to direct transcription.
- Suitable bacterial and eukaryotic promoters are well known in the art and described, e.g., in Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd ed. 1989); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Current Protocols in Molecular Biology (Ausubel et al., eds., 1994).
- Bacterial expression systems for expressing the ZFP are available in, e.g., E.
- Kits for such expression systems are commercially available.
- Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available.
- the promoter used to direct expression of a ZFP nucleic acid depends on the particular application. For example, a strong constitutive promoter is typically used for expression and purification of ZFP. In contrast, when a ZFP is administered in vivo for gene regulation, either a constitutive or an inducible promoter is used, depending on the particular use of the ZFP.
- a preferred promoter for administration of a ZFP can be a weak promoter, such as HSV TK or a promoter having similar activity.
- the promoter typically can also include elements that are responsive to transactivation, e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tet-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, PNAS 89:5547 (1992); Oligino et al., Gene Ther. 5:491-496 (1998); Wang et al., Gene Ther. 4:432-441 (1997); Neering et al., Blood 88:1147-1155 (1996); and Rendahl et al., Nat. Biotechnol. 16:757-761 (1998)).
- elements that are responsive to transactivation e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tet-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, PNAS
- the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the nucleic acid in host cells, either prokaryotic or eukaryotic.
- a typical expression cassette thus contains a promoter operably linked, e.g., to the nucleic acid sequence encoding the ZFP, and signals required, e.g., for efficient polyadenylation of the transcript, transcriptional termination, ribosome binding sites, or translation termination. Additional elements of the cassette may include, e.g., enhancers, and heterologous spliced intronic signals.
- the particular expression vector used to transport the genetic information into the cell is selected with regard to the intended use of the ZFP, e.g., expression in plants, animals, bacteria, fungus, protozoa etc. (see expression vectors described below and in the Example section).
- Standard bacterial expression vectors include plasmids such as pBR322 based plasmids, pSKF, pET23D, and commercially available fusion expression systems such as GST and LacZ.
- a preferred fusion protein is the maltose binding protein, “MBP.” Such fusion proteins are used for purification of the ZFP.
- Epitope tags can also be added to recombinant proteins to provide convenient methods of isolation, for monitoring expression, and for monitoring cellular and subcellular localization, e.g., c-myc or FLAG.
- Expression vectors containing regulatory elements from eukaryotic viruses are often used in eukaryotic expression vectors, e.g., SV40 vectors, papilloma virus vectors, and vectors derived from Epstein-Barr virus.
- eukaryotic vectors include pMSG, pAV009/A+, pMTO10/A+, pMAMneo-5, baculovirus pDSVE, and any other vector allowing expression of proteins under the direction of the SV40 early promoter, SV40 late promoter, metallothionein promoter, murine mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells.
- Some expression systems have markers for selection of stably transfected cell lines such as thymidine kinase, hygromycin B phosphotransferase, and dihydrofolate reductase.
- High yield expression systems are also suitable, such as using a baculovirus vector in insect cells, with a ZFP encoding sequence under the direction of the polyhedrin promoter or other strong baculovirus promoters.
- the elements that are typically included in expression vectors also include a replicon that functions in E. coli , a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of recombinant sequences.
- Standard transfection methods are used to produce bacterial, mammalian, yeast or insect cell lines that express large quantities of protein, which are then purified using standard techniques (see, e.g., Colley et al., J. Biol. Chem. 264:17619-17622 (1989); Guide to Protein Purification, in Methods in Enzymology , vol. 182 (Deutscher, ed., 1990)). Transformation of eukaryotic and prokaryotic cells are performed according to standard techniques (see, e.g., Morrison, J. Bact. 132:349-351 (1977); Clark-Curtiss & Curtiss, Methods in Enzymology 101:347-362 (Wu et al., eds, 1983).
- Any of the well known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, liposomes, microinjection, naked DNA, plasmid vectors, viral vectors, both episomal and integrative, and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al., supra). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing the protein of choice.
- a variety of assays can be used to determine the level of gene expression regulation by ZFPs.
- the activity of a particular ZFP can be assessed using a variety of in vitro and in vivo assays, by measuring, e.g., protein or mRNA levels, product levels, enzyme activity, tumor growth; transcriptional activation or repression of a reporter gene; second messenger levels (e.g., cGMP, cAMP, IP3, DAG, Ca 2+ ); cytokine and hormone production levels; and neovascularization, using, e.g., immunoassays (e.g., ELISA and immunohistochemical assays with antibodies), hybridization assays (e.g., RNase protection, northerns, in situ hybridization, oligonucleotide array studies), colorimetric assays, amplification assays, enzyme activity assays, tumor growth assays, phenotypic assays, and the like.
- immunoassays e.g.
- ZFPs are typically first tested for activity in vitro using cultured cells, e.g., 293 cells, CHO cells, VERO cells, BHK cells, HeLa cells, COS cells, and the like. Preferably, human cells are used.
- the ZFP is often first tested using a transient expression system with a reporter gene, and then regulation of the target endogenous gene is tested in cells and in animals, both in vivo and ex vivo.
- the ZFP can be recombinantly expressed in a cell, recombinantly expressed in cells transplanted into an animal, or recombinantly expressed in a transgenic animal, as well as administered as a protein to an animal or cell using delivery vehicles described below.
- the cells can be immobilized, be in solution, be injected into an animal, or be naturally occurring in a transgenic or non-transgenic animal.
- Modulation of gene expression is tested using one of the in vitro or in vivo assays described herein. Samples or assays are treated with a ZFP and compared to control samples without the test compound, to examine the extent of modulation.
- the ZFP typically has a K d of 200 nM or less, more preferably 100 nM or less, more preferably 50 nM, most preferably 25 nM or less.
- the effects of the ZFPs can be measured by examining any of the parameters described above. Any suitable gene expression, phenotypic, or physiological change can be used to assess the influence of a ZFP.
- Any suitable gene expression, phenotypic, or physiological change can be used to assess the influence of a ZFP.
- the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as tumor growth, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots or oligonucleotide array studies), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP.
- Preferred assays for ZFP regulation of endogenous gene expression can be performed in vitro.
- ZFP regulation of endogenous gene expression in cultured cells is measured by examining protein production using an ELISA assay (see Examples VI and VII). The test sample is compared to control cells treated with an empty vector or an unrelated ZFP that is targeted to another gene.
- ZFP regulation of endogenous gene expression is determined in vitro by measuring the level of target gene mRNA expression.
- the level of gene expression is measured using amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNase protection, dot blotting. RNase protection is used in one embodiment (see Example VIII and FIG. 10 ).
- the level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.
- a reporter gene system can be devised using the target gene promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or ⁇ -gal.
- a reporter gene such as luciferase, green fluorescent protein, CAT, or ⁇ -gal.
- the reporter construct is typically co-transfected into a cultured cell. After treatment with the ZFP of choice, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.
- Another example of a preferred assay format useful for monitoring ZFP regulation of endogenous gene expression is performed in vivo.
- This assay is particularly useful for examining ZFPs that inhibit expression of tumor promoting genes, genes involved in tumor support, such as neovascularization (e.g., VEGF), or that activate tumor suppressor genes such as p53.
- cultured tumor cells expressing the ZFP of choice are injected subcutaneously into an immune compromised mouse such as an athymic mouse, an irradiated mouse, or a SCID mouse. After a suitable length of time, preferably 4-8 weeks, tumor growth is measured, e.g., by volume or by its two largest dimensions, and compared to the control.
- Tumors that have statistically significant reduction are said to have inhibited growth.
- the extent of tumor neovascularization can also be measured.
- Immunoassays using endothelial cell specific antibodies are used to stain for vascularization of the tumor and the number of vessels in the tumor. Tumors that have a statistically significant reduction in the number of vessels (using, e.g., Student's T test) are said to have inhibited neovascularization.
- Transgenic and non-transgenic animals are also used as a preferred embodiment for examining regulation of endogenous gene expression in vivo.
- Transgenic animals typically express the ZFP of choice.
- animals that transiently express the ZFP of choice, or to which the ZFP has been administered in a delivery vehicle, can be used. Regulation of endogenous gene expression is tested using any one of the assays described herein.
- Non-viral vector delivery systems include DNA plasmids, naked nucleic acid, and nucleic acid complexed with a delivery vehicle such as a liposome.
- Viral vector delivery systems include DNA and RNA viruses, which have either episomal or integrated genomes after delivery to the cell.
- Methods of non-viral delivery of nucleic acids encoding engineered ZFPs include lipofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, polycation or lipid:nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA.
- Lipofection is described in e.g., U.S. Pat. No. 5,049,386, U.S. Pat. No. 4,946,787; and U.S. Pat. No. 4,897,355) and lipofection reagents are sold commercially (e.g., TransfectamTM and LipofectinTM).
- Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides include those of Felgner, WO 91/17424, WO 91/16024. Delivery can be to cells (ex vivo administration) or target tissues (in vivo administration).
- lipid:nucleic acid complexes including targeted liposomes such as immunolipid complexes
- the preparation of lipid:nucleic acid complexes, including targeted liposomes such as immunolipid complexes is well known to one of skill in the art (see, e.g., Crystal, Science 270:404-410 (1995); Blaese et al., Cancer Gene Ther. 2:291-297 (1995); Behr et al., Bioconjugate Chem. 5:382-389 (1994); Remy et al., Bioconjugate Chem. 5:647-654 (1994); Gao et al., Gene Therapy 2:710-722 (1995); Ahmad et al., Cancer Res. 52:4817-4820 (1992); U.S. Pat. Nos. 4,186,183, 4,217,344, 4,235,871, 4,261,975, 4,485,054, 4,501,728, 4,774,085, 4,837,028, and 4,946,787).
- RNA or DNA viral based systems for the delivery of nucleic acids encoding engineered ZFP take advantage of highly evolved processes for targeting a virus to specific cells in the body and trafficking the viral payload to the nucleus.
- Viral vectors can be administered directly to patients (in vivo) or they can be used to treat cells in vitro and the modified cells are administered to patients (ex vivo).
- Conventional viral based systems for the delivery of ZFPs could include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer.
- Viral vectors are currently the most efficient and versatile method of gene transfer in target cells and tissues. Integration in the host genome is possible with the retrovirus, lentivirus, and adeno-associated virus gene transfer methods, often resulting in long term expression of the inserted transgene. Additionally, high transduction efficiencies have been observed in many different cell types and target tissues.
- Lentiviral vectors are retroviral vector that are able to transduce or infect non-dividing cells and typically produce high viral titers. Selection of a retroviral gene transfer system would therefore depend on the target tissue. Retroviral vectors are comprised of cis-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum cis-acting LTRs are sufficient for replication and packaging of the vectors, which are then used to integrate the therapeutic gene into the target cell to provide permanent transgene expression.
- Widely used retroviral vectors include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immuno deficiency virus (SIV), human immuno deficiency virus (HIV), and combinations thereof (see, e.g., Buchscher et al., J. Virol. 66:2731-2739 (1992); Johann et al., J. Virol. 66:1635-1640 (1992); Sommerfelt et al., Virol. 176:58-59 (1990); Wilson et al., J. Virol. 63:2374-2378 (1989); Miller et al., J. Virol. 65:2220-2224 (1991); PCT/US94/05700).
- MiLV murine leukemia virus
- GaLV gibbon ape leukemia virus
- SIV Simian Immuno deficiency virus
- HAV human immuno deficiency virus
- Adenoviral based systems are typically used.
- Adenoviral based vectors are capable of very high transduction efficiency in many cell types and do not require cell division. With such vectors, high titer and levels of expression have been obtained. This vector can be produced in large quantities in a relatively simple system.
- Adeno-associated virus (“AAV”) vectors are also used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides, and for in vivo and ex vivo gene therapy procedures (see, e.g., West et al., Virology 160:38-47 (1987); U.S. Pat. No.
- At least six viral vector approaches are currently available for gene transfer in clinical trials, with retroviral vectors by far the most frequently used system. All of these viral vectors utilize approaches that involve complementation of defective vectors by genes inserted into helper cell lines to generate the transducing agent.
- pLASN and MFG-S are examples are retrovirai vectors that have been used in clinical trials (Dubar et al., Blood 85:3048-305 (1995); Kohn et al., Nat. Med. 1:1017-102 (1995); Malech et al., PNAS 94:22 12133-12138 (1997)).
- PA317/pLASN was the first therapeutic vector used in a gene therapy trial. (Blaese et al., Science 270:475-480 (1995)). Transduction efficiencies of 50% or greater have been observed for MFG-S packaged vectors. (Ellem et al., Immunol Immunother. 44(1): 10-20 (1997); Dranoff et al., Hum. Gene Ther. 1:111-2 (1997).
- Recombinant adeno-associated virus vectors are a promising alternative gene delivery systems based on the defective and nonpathogenic parvovirus adeno-associated type 2 virus. All vectors are derived from a plasmid that retains only the AAV 145 bp inverted terminal repeats flanking the transgene expression cassette. Efficient gene transfer and stable transgene delivery due to integration into the genomes of the transduced cell are key features for this vector system. (Wagner et al., Lancet 351:9117 1702-3 (1998), Kearns et al., Gene Ther. 9:748-55 (1996)).
- Ad vectors Replication-deficient recombinant adenoviral vectors (Ad) are predominantly used for colon cancer gene therapy, because they can be produced at high titer and they readily infect a number of different cell types. Most adenovirus vectors are engineered such that a transgene replaces the Ad E1a, E1b, and E3 genes; subsequently the replication defector vector is propagated in human 293 cells that supply deleted gene function in trans. Ad vectors can transduce multiply types of tissues in vivo, including nondividing, differentiated cells such as those found in the liver, kidney and muscle system tissues. Conventional Ad vectors have a large carrying capacity.
- Ad vector An example of the use of an Ad vector in a clinical trial involved polynucleotide therapy for antitumor immunization with intramuscular injection (Sterman et al., Hum. Gene Ther. 7:1083-9 (1998)). Additional examples of the use of adenovirus vectors for gene transfer in clinical trials include Rosenecker et al., Infection 24:1 5-10 (1996); Sterman et al., Hum. Gene Ther. 9:7 1083-1089 (1998); Welsh et al., Hum. Gene Ther. 2:205-18 (1995); Alvarez et al., Hum. Gene Ther. 5:597-613 (1997); Topf et al., Gene Ther. 5:507-513 (1998); Sterman et al., Hum. Gene Ther. 7:1083-1089 (1998).
- Packaging cells are used to form virus particles that are capable of infecting a host cell. Such cells include 293 cells, which package adenovirus, and ⁇ 2 cells or PA317 cells, which package retrovirus.
- Viral vectors used in gene therapy are usually generated by producer cell line that packages a nucleic acid vector into a viral particle. The vectors typically contain the minimal viral sequences required for packaging and subsequent integration into a host, other viral sequences being replaced by an expression cassette for the protein to be expressed. The missing viral functions are supplied in trans by the packaging cell line. For example, AAV vectors used in gene therapy typically only possess ITR sequences from the AAV genome which are required for packaging and integration into the host genome.
- Viral DNA is packaged in a cell line, which contains a helper plasmid encoding the other AAV genes, namely rep and cap, but lacking ITR sequences.
- the cell line is also infected with adenovirus as a helper.
- the helper virus promotes replication of the AAV vector and expression of AAV genes from the helper plasmid.
- the helper plasmid is not packaged in significant amounts due to a lack of ITR sequences. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV.
- a viral vector is typically modified to have specificity for a given cell type by expressing a ligand as a fusion protein with a viral coat protein on the viruses outer surface.
- the ligand is chosen to have affinity for a receptor known to be present on the cell type of interest.
- Han et al., PNAS 92:9747-9751 (1995) reported that Moloney murine leukemia virus can be modified to express human heregulin fused to gp70, and the recombinant virus infects certain human breast cancer cells expressing human epidermal growth factor receptor.
- filamentous phage can be engineered to display antibody fragments (e.g., FAB or Fv) having specific binding affinity for virtually any chosen cellular receptor.
- FAB fragment-binding protein
- Fv antibody fragment-binding protein
- Gene therapy vectors can be delivered in vivo by administration to an individual patient, typically by systemic administration (e.g., intravenous, intraperitoneal, intramuscular, subdermal, or intracranial infusion) or topical application, as described below.
- vectors can be delivered to cells ex vivo, such as cells explanted from an individual patient (e.g., lymphocytes, bone marrow aspirates, tissue biopsy) or universal donor hematopoietic stem cells, followed by reimplantation of the cells into a patient, usually after selection for cells which have incorporated the vector.
- Ex vivo cell transfection for diagnostics, research, or for gene therapy is well known to those of skill in the art.
- cells are isolated from the subject organism, transfected with a ZFP nucleic acid (gene or cDNA), and re-infused back into the subject organism (e.g., patient).
- a ZFP nucleic acid gene or cDNA
- Various cell types suitable for ex vivo transfection are well known to those of skill in the art (see, e.g., Freshney et al., Culture of Animal Cells, A Manual of Basic Technique (3rd ed. 1994)) and the references cited therein for a discussion of how to isolate and culture cells from patients).
- stem cells are used in ex vivo procedures for cell transfection and gene therapy.
- the advantage to using stem cells is that they can be differentiated into other cell types in vitro, or can be introduced into a mammal (such as the donor of the cells) where they will engraft in the bone marrow.
- Methods for differentiating CD34+ cells in vitro into clinically important immune cell types using cytokines such a GM-CSF, IFN- ⁇ and TNF- ⁇ are known (see Inaba et al., J. Exp. Med. 176:1693-1702 (1992)).
- Stem cells are isolated for transduction and differentiation using known methods. For example, stem cells are isolated from bone marrow cells by panning the bone marrow cells with antibodies which bind unwanted cells, such as CD4+ and CD8+ (T cells), CD45+(panB cells), GR-1 (granulocytes), and lad (differentiated antigen presenting cells) (see Inaba et al., J. Exp. Med. 176:1693-1702 (1992)).
- T cells CD4+ and CD8+
- CD45+(panB cells) CD45+(panB cells)
- GR-1 granulocytes
- lad differentiated antigen presenting cells
- Vectors e.g., retroviruses, adenoviruses, liposomes, etc.
- therapeutic ZFP nucleic acids can be also administered directly to the organism for transduction of cells in vivo.
- naked DNA can be administered.
- Administration is by any of the routes normally used for introducing a molecule into ultimate contact with blood or tissue cells. Suitable methods of administering such nucleic acids are available and well known to those of skill in the art, and, although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route.
- compositions of the present invention are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention, as described below (see, e.g., Remington 's Pharmaceutical Sciences, 17th ed., 1989).
- polypeptide compounds such as the ZFPs
- ZFPs polypeptide compounds
- lipid-protein bilayers that are freely permeable to small, nonionic lipophilic compounds and are inherently impermeable to polar compounds, macromolecules, and therapeutic or diagnostic agents.
- proteins and other compounds such as liposomes have been described, which have the ability to translocate polypeptides such as ZFPs across a cell membrane.
- membrane translocation polypeptides have amphiphilic or hydrophobic amino acid subsequences that have the ability to act as membrane-translocating carriers.
- homeodomain proteins have the ability to translocate across cell membranes.
- the shortest internalizable peptide of a homeodomain protein, Antennapedia was found to be the third helix of the protein, from amino acid position 43 to 58 (see, e.g., Prochiantz, Current Opinion in Neurobiology 6:629-634 (1996)).
- Another subsequence, the h (hydrophobic) domain of signal peptides was found to have similar cell membrane translocation characteristics (see, e.g., Lin et al., J. Biol. Chem. 270:1 4255-14258 (1995)).
- Examples of peptide sequences which can be linked to a ZFP of the invention, for facilitating uptake of ZFP into cells include, but are not limited to: an 11 animo acid peptide of the tat protein of HIV; a 20 residue peptide sequence which corresponds to amino acids 84-103 of the p16 protein (see Fahraeus et al., Current Biology 6:84 (1996)); the third helix of the 60-amino acid long homeodomain of Antennapedia (Derossi et al., J. Biol. Chem.
- K-FGF Kaposi fibroblast growth factor
- VP22 translocation domain from HSV (Elliot & O'Hare, Cell 88:223-233 (1997)).
- Other suitable chemical moieties that provide enhanced cellular uptake may also be chemically linked to ZFPs.
- Toxin molecules also have the ability to transport polypeptides across cell membranes. Often, such molecules are composed of at least two parts (called “binary toxins”): a translocation or binding domain or polypeptide and a separate toxin domain or polypeptide. Typically, the translocation domain or polypeptide binds to a cellular receptor, and then the toxin is transported into the cell.
- Clostridium perfringens iota toxin diphtheria toxin (DT), Pseudomonas exotoxin A (PE), pertussis toxin (PT), Bacillus anthracis toxin, and pertussis adenylate cyclase (CYA)
- DT diphtheria toxin
- PE Pseudomonas exotoxin A
- PT pertussis toxin
- Bacillus anthracis toxin Bacillus anthracis toxin
- pertussis adenylate cyclase CYA
- Such subsequences can be used to translocate ZFPs across a cell membrane.
- ZFPs can be conveniently fused to or derivatized with such sequences.
- the translocation sequence is provided as part of a fusion protein.
- a linker can be used to link the ZFP and the translocation sequence. Any suitable linker can be used, e.g., a peptide linker.
- the ZFP can also be introduced into an animal cell, preferably a mammalian cell, via a liposomes and liposome derivatives such as immunoliposomes.
- liposome refers to vesicles comprised of one or more concentrically ordered lipid bilayers, which encapsulate an aqueous phase.
- the aqueous phase typically contains the compound to be delivered to the cell, i.e., a ZFP.
- the liposome fuses with the plasma membrane, thereby releasing the drug into the cytosol.
- the liposome is phagocytosed or taken up by the cell in a transport vesicle. Once in the endosome or phagosome, the liposome either degrades or fuses with the membrane of the transport vesicle and releases its contents.
- the liposome In current methods of drug delivery via liposomes, the liposome ultimately becomes permeable and releases the encapsulated compound (in this case, a ZFP) at the target tissue or cell.
- the encapsulated compound in this case, a ZFP
- this can be accomplished, for example, in a passive manner wherein the liposome bilayer degrades over time through the action of various agents in the body.
- active drug release involves using an agent to induce a permeability change in the liposome vesicle.
- Liposome membranes can be constructed so that they become destabilized when the environment becomes acidic near the liposome membrane (see, e.g., PNAS 84:7851 (1987); Biochemistry 28:908 (1989)).
- DOPE Dioleoylphosphatidylethanolamine
- Such liposomes typically comprise a ZFP and a lipid component, e.g., a neutral and/or cationic lipid, optionally including a receptor-recognition molecule such as an antibody that binds to a predetermined cell surface receptor or ligand (e.g., an antigen).
- a lipid component e.g., a neutral and/or cationic lipid, optionally including a receptor-recognition molecule such as an antibody that binds to a predetermined cell surface receptor or ligand (e.g., an antigen).
- Suitable methods include, for example, sonication, extrusion, high pressure/homogenization, microfluidization, detergent dialysis, calcium-induced fusion of small liposome vesicles and ether-fusion methods, all of which are well known in the art.
- targeting moieties that are specific to a particular cell type, tissue, and the like.
- targeting moieties e.g., ligands, receptors, and monoclonal antibodies
- targeting moieties include monoclonal antibodies specific to antigens associated with neoplasms, such as prostate cancer specific antigen and MAGE. Tumors can also be diagnosed by detecting gene products resulting from the activation or over-expression of oncogenes, such as ras or c-erbB2. In addition, many tumors express antigens normally expressed by fetal tissue, such as the alphafetoprotein (AFP) and carcinoembryonic antigen (CEA).
- AFP alphafetoprotein
- CEA carcinoembryonic antigen
- Sites of viral infection can be diagnosed using various viral antigens such as hepatitis B core and surface antigens (HBVc, HBVs) hepatitis C antigens, Epstein-Barr virus antigens, human immunodeficiency type-1 virus (HIV1) and papilloma virus antigens.
- Inflammation can be detected using molecules specifically recognized by surface molecules which are expressed at sites of inflammation such as integrins (e.g., VCAM-1), selectin receptors (e.g., ELAM-1) and the like.
- Standard methods for coupling targeting agents to liposomes can be used. These methods generally involve incorporation into liposomes lipid components, e.g., phosphatidylethanolamine, which can be activated for attachment of targeting agents, or derivatized lipophilic compounds, such as lipid derivatized bleomycin.
- lipid components e.g., phosphatidylethanolamine
- Antibody targeted liposomes can be constructed using, for instance, liposomes which incorporate protein A (see Renneisen et al., J. Biol. Chem., 265:16337-16342 (1990) and Leonetti et al., PNAS 87:2448-2451 (1990).
- the dose administered to a patient should be sufficient to effect a beneficial therapeutic response in the patient over time.
- particular dosage regimens can be useful for determining phenotypic changes in an experimental setting, e.g., in functional genomics studies, and in cell or animal models.
- the dose will be determined by the efficacy and K d of the particular ZFP employed, the nuclear volume of the target cell, and the condition of the patient, as well as the body weight or surface area of the patient to be treated.
- the size of the dose also will be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular compound or vector in a particular patient.
- the maximum therapeutically effective dosage of ZFP for approximately 99% binding to target sites is calculated to be in the range of less than about 1.5 ⁇ 10 5 to 1.5 ⁇ 10 6 copies of the specific ZFP molecule per cell.
- the appropriate dose of an expression vector encoding a ZFP can also be calculated by taking into account the average rate of ZFP expression from the promoter and the average rate of ZFP degradation in the cell.
- a weak promoter such as a wild-type or mutant HSV TK is used, as described above.
- the dose of ZFP in micrograms is calculated by taking into account the molecular weight of the particular ZFP being employed.
- the physician evaluates circulating plasma levels of the ZFP or nucleic acid encoding the ZFP, potential ZFP toxicities, progression of the disease, and the production of anti-ZFP antibodies. Administration can be accomplished via single or divided doses.
- ZFPs and expression vectors encoding ZFPs can be administered directly to the patient for modulation of gene expression and for therapeutic or prophylactic applications, for example, cancer, ischemia, diabetic retinopathy, macular degeneration, rheumatoid arthritis, psoriasis, HIV infection, sickle cell anemia, Alzheimer's disease, muscular dystrophy, neurodegenerative diseases, vascular disease, cystic fibrosis, stroke, and the like.
- Administration of therapeutically effective amounts is by any of the routes normally used for introducing ZFP into ultimate contact with the tissue to be treated.
- the ZFPs are administered in any suitable manner, preferably with pharmaceutically acceptable carriers. Suitable methods of administering such modulators are available and well known to those of skill in the art, and, although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route.
- compositions of the present invention are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention (see, e.g., Remington's Pharmaceutical Sciences, 17 th ed. 1985)).
- the ZFPs can be made into aerosol formulations (i.e., they can be “nebulized”) to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.
- Formulations suitable for parenteral administration include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives.
- compositions can be administered, for example, by intravenous infusion, orally, topically, intraperitoneally, intravesically or intrathecally.
- the formulations of compounds can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials.
- Injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described.
- ZFPs can be used to engineer plants for traits such as increased disease resistance, modification of structural and storage polysaccharides, flavors, proteins, and fatty acids, fruit ripening, yield, color, nutritional characteristics, improved storage capability, and the like.
- traits such as increased disease resistance, modification of structural and storage polysaccharides, flavors, proteins, and fatty acids, fruit ripening, yield, color, nutritional characteristics, improved storage capability, and the like.
- the engineering of crop species for enhanced oil production e.g., the modification of the fatty acids produced in oilseeds, is of interest.
- Seed oils are composed primarily of triacylglycerols (TAGs), which are glycerol esters of fatty acids. Commercial production of these vegetable oils is accounted for primarily by six major oil crops (soybean, oil palm, rapeseed, sunflower, cotton seed, and peanut.) Vegetable oils are used predominantly (90%) for human consumption as margarine, shortening, salad oils, and frying oil. The remaining 10% is used for non-food applications such as lubricants, oleochemicals, biofuels, detergents, and other industrial applications.
- TAGs triacylglycerols
- the desired characteristics of the oil used in each of these applications varies widely, particularly in terms of the chain length and number of double bonds present in the fatty acids making up the TAGs. These properties are manipulated by the plant in order to control membrane fluidity and temperature sensitivity. The same properties can be controlled using ZFPs to produce oils with improved characteristics for food and industrial uses.
- the primary fatty acids in the TAGs of oilseed crops are 16 to 18 carbons in length and contain 0 to 3 double bonds. Palmitic acid (16:0 [16 carbons: 0 double bonds]), oleic acid (18:1), linoleic acid (18:2), and linolenic acid (18:3) predominate. The number of double bonds, or degree of saturation, determines the melting temperature, reactivity, cooking performance, and health attributes of the resulting oil.
- the enzyme responsible for the conversion of oleic acid (18:1) into linoleic acid (18:2) (which is then the precursor for 18:3 formation) is ⁇ 12-oleate desaturase, also referred to as omega-6 desaturase.
- omega-6 desaturase also referred to as omega-6 desaturase.
- ZFPs are used to regulate expression of the FAD2-1 gene in soybeans.
- Two genes encoding microsomal ⁇ 6 desaturases have been cloned recently from soybean, and are referred to as FAD2-1 and FAD2-2 (Heppard et al., Plant Physiol. 110:311-319 (1996)).
- FAD2-1 delta 12 desaturase appears to control the bulk of oleic acid desaturation in the soybean seed.
- ZFPs can thus be used to modulate gene expression of FAD2-1 in plants.
- ZFPs can be used to inhibit expression of the FAD2-1 gene in soybean in order to increase the accumulation of oleic acid (18:1) in the oil seed.
- ZFPs can be used to modulate expression of any other plant gene, such as delta-9 desaturase, delta-12 desaturases from other plants, delta-15 desaturase, acetyl-CoA carboxylase, acyl-ACP-thioesterase, ADP-glucose pyrophosphorylase, starch synthase, cellulose synthase, sucrose synthase, senescence-associated genes, heavy metal chelators, fatty acid hydroperoxide lyase, polygalacturonase, EPSP synthase, plant viral genes, plant fungal pathogen genes, and plant bacterial pathogen genes.
- delta-9 desaturase delta-12 desaturases from other plants
- delta-15 desaturase acetyl-CoA carboxylase
- acyl-ACP-thioesterase ADP-glucose pyrophosphorylase
- starch synthase cellulose synthase
- sucrose synthase sucrose synthase
- Recombinant DNA vectors suitable for transformation of plant cells are also used to deliver the ZFP of the invention to plant cells.
- Techniques for transforming a wide variety of higher plant species are well known and described in the technical and scientific literature (see, e.g., Weising et al. Ann. Rev. Genet. 22:421-477 (1988)).
- a DNA sequence coding for the desired ZFP is combined with transcriptional and translational initiation regulatory sequences which will direct the transcription of the ZFP in the intended tissues of the transformed plant.
- a plant promoter fragment may be employed which will direct expression of the ZFP in all tissues of a regenerated plant.
- Such promoters are referred to herein as “constitutive” promoters and are active under most environmental conditions and states of development or cell differentiation.
- constitutive promoters include the cauliflower mosaic virus (CaMV) 35 S transcription initiation region, the 1′- or 2′-promoter derived from T-DNA of Agrobacterium tumafaciens , and other transcription initiation regions from various plant genes known to those of skill.
- the plant promoter may direct expression of the ZFP in a specific tissue or may be otherwise under more precise environmental or developmental control. Such promoters are referred to here as “inducible” promoters. Examples of environmental conditions that may effect transcription by inducible promoters include anaerobic conditions or the presence of light.
- promoters under developmental control include promoters that initiate transcription only in certain tissues, such as fruit, seeds, or flowers.
- a polygalacturonase promoter can direct expression of the ZFP in the fruit
- a CHS-A (chalcone synthase A from petunia) promoter can direct expression of the ZFP in flower of a plant.
- the vector comprising the ZFP sequences will typically comprise a marker gene which confers a selectable phenotype on plant cells.
- the marker may encode biocide resistance, particularly antibiotic resistance, such as resistance to kanamycin, G418, bleomycin, hygromycin, or herbicide resistance, such as resistance to chlorosluforon or Basta.
- DNA constructs may be introduced into the genome of the desired plant host by a variety of conventional techniques.
- the DNA construct may be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the DNA constructs can be introduced directly to plant tissue using biolistic methods, such as DNA particle bombardment.
- the DNA constructs may be combined with suitable T-DNA flanking regions and introduced into a conventional Agrobacterium tumefaciens host vector. The virulence functions of the Agrobacterium tumefaciens host will direct the insertion of the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria.
- Microinjection techniques are known in the art and well described in the scientific and patent literature.
- the introduction of DNA constructs using polyethylene glycol precipitation is described in Paszkowski et al. EMBO J. 3:2717-2722 (1984).
- Electroporation techniques are described in Fromm et al. PNAS 82:5824 (1985).
- Biolistic transformation techniques are described in Klein et al. Nature 327:70-73 (1987).
- Agrobacterium tumefaciens - meditated transformation techniques are well described in the scientific literature (see, e.g., Horsch et al. Science 233:496-498 (1984)); and Fraley et al. PNAS 80:4803 (1983)).
- Transformed plant cells which are derived by any of the above transformation techniques can be cultured to regenerate a whole plant which possesses the transformed genotype and thus the desired ZFP-controlled phenotype.
- Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, typically relying on a biocide and/or herbicide marker which has been introduced together with the ZFP nucleotide sequences.
- Plant regeneration from cultured protoplasts is described in Evans et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture , pp. 124-176 (1983); and Binding, Regeneration of Plants, Plant Protoplasts , pp. 21-73 (1985). Regeneration can also be obtained from plant callus, explants, organs, or parts thereof.
- Such regeneration techniques are described generally in Klee et al. Ann. Rev. of Plant Phys. 38:467-486 (1987).
- ZFPs also have use for assays to determine the phenotypic consequences and function of gene expression.
- the recent advances in analytical techniques, coupled with focussed mass sequencing efforts have created the opportunity to identify and characterize many more molecular targets than were previously available. This new information about genes and their functions will speed along basic biological understanding and present many new targets for therapeutic intervention. In some cases analytical tools have not kept pace with the generation of new data.
- An example is provided by recent advances in the measurement of global differential gene expression. These methods, typified by gene expression microarrays, differential cDNA cloning frequencies, subtractive hybridization and differential display methods, can very rapidly identify genes that are up or down-regulated in different tissues or in response to specific stimuli.
- a candidate gene can be accomplished by cloning a full-length cDNA, subcloning it into a mammalian expression vector and transfecting the recombinant vector into an appropriate host cell.
- This approach is straightforward but labor intensive, particularly when the initial candidate gene is represented by a simple expressed sequence tag (EST).
- EST simple expressed sequence tag
- Under expression of a candidate gene by “conventional” methods is yet more problematic.
- Antisense methods and methods that rely on targeted ribozymes are unreliable, succeeding for only a small fraction of the targets selected.
- Gene knockout by homologous recombination works fairly well in recombinogenic stem cells but very inefficiently in somatically derived cell lines. In either case large clones of syngeneic genomic DNA (on the order of 10 kb) should be isolated for recombination to work efficiently.
- the ZFP technology can be used to rapidly analyze differential gene expression studies. Engineered ZFPs can be readily used to up or down-regulate any endogenous target gene. Very little sequence information is required to create a gene-specific DNA binding domain. This makes the ZFP technology ideal for analysis of long lists of poorly characterized differentially expressed genes.
- engineered ZFPs to add functional information to genomic data is merely illustrative. Any experimental situation that could benefit from the specific up or down-regulation of a gene or genes could benefit from the reliability and ease of use of engineered ZFPs.
- ZFPs greater experimental control can be imparted by ZFPs than can be achieved by more conventional methods. This is because the production and/or function of an engineered ZFP can be placed under small molecule control. Examples of this approach are provided by the Tet-On system, the ecdysone-regulated system and a system incorporating a chimeric factor including a mutant progesterone receptor. These systems are all capable of indirectly imparting small molecule control on any endogenous gene of interest or any transgene by placing the function and/or expression of a ZFP regulator under small molecule control.
- a further application of the ZFP technology is manipulating gene expression in transgenic animals.
- over-expression of an endogenous gene or the introduction of a heterologous gene to a transgenic animal, such as a transgenic mouse is a fairly straightforward process.
- the ZFP technology is an improvement in these types of methods because one can circumvent the need for generating full-length cDNA clones of the gene under study.
- chimerism extends to the germline homozygous knockout animals can be isolated by back-crossing.
- knockout animals can be generated in approximately one year.
- embryonic lethality results when the gene to be knocked out plays an essential role in development. This can manifest itself as a lack of chimerism, lack of germline transmission or the inability to generate homozygous back crosses. Genes can play significantly different physiological roles during development versus in adult animals. Therefore, embryonic lethality is not considered a rationale for dismissing a gene target as a useful target for therapeutic intervention in adults. Embryonic lethality most often simply means that the gene of interest can not be easily studied in mouse models, using conventional methods.
- Developmental compensation is the substitution of a related gene product for the gene product being knocked out. Genes often exist in extensive families. Selection or induction during the course of development can in some cases trigger the substitution of one family member for another mutant member. This type of functional substitution may not be possible in the adult animal.
- a typical result of developmental compensation would be the lack of a phenotype in a knockout mouse when the ablation of that gene's function in an adult would otherwise cause a physiological change. This is a kind of false negative result that often confounds the interpretation of conventional knockout mouse models.
- engineered ZFPs to manipulate gene expression can be restricted to adult animals using the small molecule regulated systems described in the previous section. Expression and/or function of a zinc finger-based repressor can be switched off during development and switched on at will in the adult animals. This approach relies on the addition of the ZFP expressing module only; homologous recombination is not required. Because the ZFP repressors are trans dominant, there is no concern about germline transmission or homozygosity. These issues dramatically affect the time and labor required to go from a poorly characterized gene candidate (a cDNA or EST clone) to a mouse model.
- a poorly characterized gene candidate a cDNA or EST clone
- Chimeric targeted mice can be derived according to Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual , (1988); Teratocarcinomas and Embryonic Stem Cells: A Practical Approach , Robertson, ed., (1987); and Capecchi et al., Science 244:1288 (1989.
- VEGF vascular endothelial growth factor
- VEGF is an approximately 46 kDa glycoprotein that is an endothelial cell-specific mitogen induced by hypoxia.
- VEGF has been implicated in angiogenesis associated with cancer, various retinopathies, and other serious diseases.
- the DNA target site chosen was a region surrounding the transcription initiation site of the gene.
- the two 9 base pair (bp) sites chosen are found within the sequence agcGGGGAGGA T cGCGGAGGCTtgg, where the upper-case letters represent actual 9-bp targets.
- the protein targeting the upstream 9-bp target was denoted VEGF1, and the protein targeting the downstream 9-bp target was denoted VEGF3a.
- the major start site of transcription for VEGF is at the T at the 3′ end of the first 9-bp target, which is underlined in the sequence above.
- SP-1 The human SP-1 transcription factor was used as a progenitor molecule for the construction of designed ZFPs.
- SP-1 has a three finger DNA-binding domain related to the well-studied murine Zif268 (Christy et al., PNAS 85:7857-7861 (1988)). Site-directed mutagenesis experiments using this domain have shown that the proposed “recognition rules” that operate in Zif268 can be used to adapt SP-1 to other target DNA sequences (Desjarlais & Berg, PNAS 91:11099-11103 (1994)).
- the SP-1 sequence used for construction of zinc finger clones corresponds to amino acids 533 to 624 in the SP-1 transcription factor.
- Coding sequences were constructed to express these peptides using a PCR-based assembly procedure that utilizes six overlapping oligonucleotides ( FIG. 1 ). Three oligonucleotides (oligos 1, 3, and 5 in FIG. 1 ) corresponding to “universal” sequences that encode portions of the DNA-binding domain between the recognition helices. These oligonucleotides remain constant for any zinc finger construct. The other three “specific” oligonucleotides (oligos 2, 4, and 6 in FIG. 1 ) were designed to encode the recognition helices. These oligonucleotides contained substitutions at positions ⁇ 1, 2, 3 and 6 on the recognition helices to make them specific for each of the different DNA-binding domains. Codon bias was chosen to allow expression in both mammalian cells and E. coli.
- the PCR synthesis was carried out in two steps.
- the double stranded DNA template was created by combining the six oligonucleotides (three universal, three specific) and using a four cycle PCR reaction with a low temperature (250) annealing step. At this temperature, the six oligonucleotides join to form a DNA “scaffold.”
- the gaps in the scaffold were filled in by a combination of Taq and Pfu polymerases.
- the zinc finger template was amplified in thirty cycles by external primers that were designed to incorporate restriction sites for cloning into pUC19. Accuracy of clones for the VEGF ZFPs were verified by DNA sequencing.
- VEGF1 GGTACCCATACCTGGCAAGAAGAAGCAGCACATCTGCCACATCCAGGGCT GTGGTAAAGTTTACGGCACAACCTCAAATCTGCGTCGTCACCTGCGCTGG CACACCGGCGAGAGGCCTTTCATGTGTACCTGGTCCTACTGTGGTAAACG CTTCACCCGTTCGTCAAACCTGCAGCGTCACAAGCGTACCCACACCGGTG AGAAGAAATTTGCTTGCCCGGAGTGTCCGAAGCGCTTCATGCGTAGTGAC CACCTGTCCCGTCACATCAAGACCCACCAGAATAAGAAGGGTGGATCC
- VEGF1 translation VPIPGKKKQHICHIQGCGKVYGTTSNLRRHLRWHTGERPFMCTWSYCGKR FTRSSNLQRHKRTHTGEKKFACPECPKRFMRSDHLSRHIKTHQNKKGGS VEGF3a: GGTACCCATACCTGGCAAGAAGAAGCAGCACATCTGCCACATCCAGGGCT
- the ability of the designed ZFPs to bind their target sites was verified by expressing and purifying recombinant protein from E. coli and performing electrophoretic mobility shift assays (EMSAs).
- ESAs electrophoretic mobility shift assays
- the expression of ZFPs was carried out in two different systems. In the first, the DNA-binding peptides were expressed in E. coli by inserting them into the commercially available pET15b vector (Novagen). This vector contains a T7 promoter sequence to drive expression of the recombinant protein.
- the constructs were introduced into E. coli /BL21/DE3 (lacI q ) cells, which contain an IPTG-inducible T7 polymerase. Cultures were supplemented with 50 ⁇ M ZnCl 2 , Were grown at 37° C.
- ZFP expression was seen at very high levels, approximately 30% of total cellular protein ( FIG. 2 ). These proteins are referred to as “unfused” ZFPs.
- Partially pure unfused ZFPs were produced as follows (adapted from Desjarlais & Berg, Proteins: Structure, Function and Genetics 12:101-104 (1992)).
- a frozen cell pellet was resuspended in ⁇ fraction (1/50) ⁇ th volume of 1 M NaCl, 25 mM Tris HCl (pH 8.0), 100 I ⁇ ZnCl 2 , 5 mM DTT.
- the samples were boiled for 10 min. and centrifuged for 10 min. at ⁇ 3,000 ⁇ g. At this point the ZFP protein in the supernatant was >50% pure as estimated by staining of SDS polyacrylamide gels with Coomassie blue, and the product migrated at the predicted molecular weight of around 11 kDa ( FIG. 2 ).
- the second method of producing ZFPs was to express them as fusions to the E. coli Maltose Binding Protein (MBP).
- MBP Maltose Binding Protein
- N-terminal MBP fusions to the ZFPs were constructed by PCR amplification of the pET15b clones and insertion into the vector pMal-c2 under the control of the Tac promoter (New England Biolabs). The fusion allows simple purification and detection of the recombinant protein. It had been reported previously that zinc finger DNA-binding proteins can be expressed from this vector in soluble form to high levels in E. coli and can bind efficiently to the appropriate DNA target without refolding (Liu et al. PNAS 94:5525-5530 (1997)).
- MBP-fused proteins were as described by the manufacturer (New England Biolabs). Transformants were grown in LB medium supplemented with glucose and ampicillin, and were induced with IPTG for 3 hrs at 37° C. The cells were lysed by French press, then exposed to an agarose-based amylose resin, which specifically binds to the MBP moiety, thus acting as an affinity resin for this protein. The MBP fusion protein was eluted with 10 mM maltose ( FIG. 2C ) to release ZFP of >50% purity. In some cases, the proteins were further concentrated using a Centricon 30 filter unit (Amicon).
- Partially purified unfused and MBP fusion ZFPs were tested by EMSA to assess binding to their target DNA sequences.
- the protein concentrations in the preparations were measured by Bradford assay (BioRad). Since SDS polyacrylamide gels demonstrated >50% homogeneity by either purification method, no adjustment was made for ZFP purity in the calculations. In addition, there could be significant amounts of inactive protein in the preparations. Therefore, the data generated by EMSAs below represent an underestimate of the true affinity of the proteins for their targets (i.e., overestimate of K d s). Two separate preparations were made for each protein to help control for differences in ZFP activity.
- VEGF DNA target sites for the EMSA experiments were generated by embedding the 9-bp binding sites in 29-bp duplex oligonucleotides.
- the sequences of the recognition (“top”) strand and their complements (“bottom”) used in the assays are as follows: VEGF site 1, top: 5′-CATGCATAGC GGGGAGGAT CGCCATCGAT VEGF site 1, bottom: 5′-ATCGATGGCGATCCTCCCCGCTATGCATG VEGF site 3, top: 5′-CATGCATATC GCGGAGGCT TGGCATCGAT VEGF site 3, bottom: 5′-ATCGATGCCAAGCCTCCGCGATATGCATG
- the VEGF DNA target sites are underlined.
- the 3 bp on either side of the 9 bp binding site was also derived from the actual VEGF DNA sequence.
- the top strand of each target site was labeled with polynucleotide kinase and ⁇ - 32 P dATP. Top and bottom strands were annealed in a reaction containing each oligonucleotide at 0.5 ⁇ M, 10 mM Tris-HCl (pH 8.0), 1 mM EDTA, and 50 mM NaCl. The mix was heated to 95° C. for 5 min. and slow cooled to 30° C. over 60 min. Duplex formation was confirmed by polyacrylamide gel electrophoresis. Free label and ssDNA remaining in the target preparations did not appear to interfere with the binding reactions.
- Binding of the ZFPs to target oligonucleotides was performed by titrating protein against a fixed amount of duplex substrate. Twenty microliter binding reactions contained 10 fmole (0.5 nM) 5′- 32 P-labeled double-stranded target DNA, 35 mM Tris HCl (pH 7.8), 100 mM KCl, 1 mM MgCl 2 , 1 mM dithiothreitol, 10% glycerol, 20 ⁇ g/ml poly dI-dC (optionally), 200 ⁇ g/ml bovine serum albumin, and 25 ⁇ M ZnCl 2 .
- Protein was added as one fifth volume from a dilution series made in 200 mM NaCl, 20 mM Tris (pH 7.5), 1 mM DTT. Binding was allowed to proceed for 30 min. at room temperature. Polyacrylamide gel electrophoresis was carried out at 4° C. using precast 10% or 10-20% Tris-HCl gels (BioRad) and standard Tris-Glycine running buffer containing 0.1 mM ZnCl 2 .
- FIG. 3 The results of a typical EMSA using an MBP fused ZFP are shown in FIG. 3 .
- a 3-fold dilution series of the MBP-VEGF1 protein was used.
- the shifted product was quantitated on a phosphorimager (Molecular Dynamics) and the relative signal (percent of plateau value) vs. the log 10 of nM protein concentration was plotted.
- An apparent K d was found by determining the protein concentration that gave half maximal binding of MBP-VEGF1 to its target site, which in this experiment was approximately 2 nM.
- VEGF1 showed the stronger DNA-binding affinity; in multiple EMSA analyses, the average apparent K d was determined to be approximately 10 nM when bound to VEGF site 1.
- VEGF3a bound well to its target site but with a higher apparent K d than VEGF1; the average K d for VEGF3a was about 200 nM.
- K d s were also determined under these conditions for MBP fusions of the wild-type Zif268 and SP-1 ZFPs, which yielded K d s of 60 and 65 nM, respectively.
- this Example demonstrates the generation of two novel DNA-binding proteins directed to specific targets near the transcriptional start of the VEGF gene. These proteins bind with affinities similar to those of naturally-occurring transcription factors binding to their targets.
- DNA target length For random DNA, a sequence of n nucleotides would be expected to occur once every 0.5 ⁇ 4 n base-pairs. Thus, DNA-binding domains designed to recognize only 9 bp of DNA would find sites every 130,000 bp and could therefore bind to multiple locations in a complex genome (on the order of 20,000 sites in the human genome). 9-bp putative repressor-binding sequences have been chosen for VEGF in the 5′ UTR where they might directly interfere with transcription.
- a larger domain was constructed to recognize 18 base-pairs by joining separate three-finger domains with a linker sequence to form a six-finger protein. This should ensure that the repressor specifically targets the appropriate sequence, particularly under conditions where only small amounts of the repressor are being produced.
- the 9-bp target sites in VEGF were chosen to be adjacent to one another so that the zinc fingers could be linked to recognize an 18-bp sequence.
- the linker DGGGS was chosen because it permits binding of ZFPs to two 9-bp sites that are separated by a one nucleotide gap, as is the case for the VEGF1 and VEGF3a sites (see also Liu et al., PNAS 5525-5530 (1997)).
- VEGF3a/1 protein encoding sequence was generated as follows.
- VEGF3a was PCR amplified using the primers SPE7 (5′-GAGCA GAATTC GGCAAGAAGAAGCAGCAC) and SPEamp12 (5′-GTGG TCTAGA CAGCTCGTCACTTCGC) to generate EcoRI and XbaI restriction sites at the ends (restriction sites underlined).
- VEGF1 was PCR amplified using the primers SPEamp13 (5′-GGAG CCAAGG CTGTGGTAAAGTTTACGG) and SPEamp11 (5′-GGAG AAGCTT GGATCCTCATTATCCC) to generate StyI and HindIII restriction sites at the ends (restriction sites underlined).
- the linked ZFP sequences were then amplified with primers (1) GB19 GCCATGCCGGTACCCATACCTGGCAAGAAGAAGCAGCAC) (2) GB10 CAGATCGGATCCACCCTTCTTATTCTGGTGGGT to introduce KpnI and BamHI sites for cloning into the modified pMAL-c2 expression vector as described above.
- the nucleotide sequence of the designed, 6-finger ZFP VEGF3a/1 from KpnI to BamHI is: GGTACCCATACCTGGCAAGAAGAAGCAGCACATCTGCCACATCCAGGGCT GTGGTAAAGTTTACGGCCAGTCCTCCGACCTGCAGCGTCACCTCCGCTGG CACACCGGCGAGAGGCCTTTCATGTGTACCTGGTCCTACTGTGGTAAACG CTTCACACGTTCGTCAAACCTACAGAGGCACAAGCGTACACACACAGGTG AGAAGAAATTTGCTTGCCCGGAGTGTCCGAAGCGCTTCATGCGAAGTGAC GAGCTGTCTAGACACATCAAAACCCACCAGAACAAGAAAGACGGCGGTGG CAGCGGCAAAAAGAAACAGCACATATGTCACATCCAAGGCTGTGGTAAAG TTTACGGCACAACCTCAAATCTGCGTCGTCACCTGCGCTGGCACACCGGC GAGAGGCCTTTCATGTGTACCTGGTCCTACTGTGGTAAACGCTTCACCCG TTCG
- VEGF3a/1 amino acid translation (using single letter code) is: VPIPGKKKQHICHIQGCGKVYGQSSDLQRHLRWHTGERPFMCTWSYCGKR FTRSSNLQRHKRTHTGEKKFACPECPKRFMRSDELSRHIKTHQNKKDGGG SGKKKQHICHIQGCGKVYGTTSNLRRHLRWHTGERPFMCTWSYCGKRFTR SSNLQRHKRTHTGEKKFACPECPKRFMRSDHLSRHIKTHQNKKGGS
- the 18-bp binding protein VEGF3a/1 was expressed in E. coli as an MBP fusion, purified by affinity chromatography, and tested in EMSA experiments as described in Example I.
- the target oligonucleotides were prepared as described and comprised the following complementary sequences: (1) JVF9 AGCGAGCGGGGAGGATCGCGGAGGCTTGGGGCAGCCGGGTAG, and (2) JYF10 CGCTCTACCCGGCTGCCCCAAGCCTCCGCGATCCTCCCCGCT.
- 20 ⁇ l binding reactions contained 10 fmole (0.5 nM) 5′- 32 P-labeled double-stranded target DNA, 35 mM Tris HCl (pH 7.8), 100 mM KCl, 1 mM MgCl 2 , 5 mM dithiothreitol, 10% glycerol, 20 ⁇ g/ml poly dI-dC, 200 ⁇ g/ml bovine serum albumin, and 25 ⁇ M ZnCl 2 . Protein was added as one fifth volume from a 3-fold dilution series. Binding was allowed to proceed for 60 min at either room temperature or 37° C.
- Polyacrylamide gel electrophoresis was carried out at room temperature or 37° C. using precast 10% or 10-20% Tris-HCl gels (BioRad) and standard Tris-Glycine running buffer.
- the room temperature assays yielded an apparent K d for this VEGF3a/1 protein of approximately 1.5 nM.
- the 18-bp binding ZFP bound with high affinity to its target site.
- VEGF1 protein was tested against its target using the oligonucleotides described in Example I, yielding an apparent K d of approximately 2.5 nM.
- the apparent K d is a useful measure of the affinity of a protein for its DNA target.
- its occupancy is determined to a large extent by the off-rate of the DNA-binding protein. This parameter can be measured by competition experiments as shown in FIG. 4 .
- the conditions for EMSA were as described above; binding and electrophoresis were performed at 37° C. These data indicate that the half-life of the protein-DNA complex is more than ten times longer for VEGF3a/1 than for VEGF1.
- the occupancy of the target site is much higher for the 18-bp binding protein than for the 9-bp binding protein.
- This Example describes the development of expression vectors for producing ZFPs within mammalian cells, translocating them to the nucleus, and providing functional domains that are localized to the target DNA sequence by the ZFP.
- the functional domains employed are the Kruppel-Associated Box (KRAB) repression domain and the Herpes Simplex Virus (HSV-1) VP16 activation domain.
- DNA-binding proteins contain separable domains that function as transcriptional repressors. Approximately 20% of ZFPs contain a non-DNA-binding domain of about 90 amino acids that functions as a transcriptional repressor (Thiesen, The New Biologist 2:363-374 (1990); Margolin et al., PNAS 91:4509-4513 (1994); Pengue et al., (1994), supra; Witzgall et al., (1994), supra).
- This domain termed the KRAB domain, is modular and can be joined to other DNA-binding proteins to block expression of genes containing the target DNA sequence (Margolin et al., (1994); Pengue et al., (1994); Witzgall et al., (1994), supra).
- the KRAB domain has no effect by itself; it needs to be tethered to a DNA sequence via a DNA-binding protein to function as a repressor.
- the KRAB domain has been shown to block transcription initiation and can function at a distance of up to at least 3 kb from the transcription start site.
- the KRAB domain from the human KOX-1 protein was used for the studies described here. This 64 amino acid domain can be fused to ZFPs and has been shown to confer repression in cell culture (Liu et al., supra).
- VP16 protein of HSV-1 has been studied extensively, and it has been shown that the C-terminal 78 amino acids can act as a trans-activation domain when fused to a DNA-binding domain (Hagmann et al., J Virology 71:5952-5962 (1997)). VP16 has also been shown to function at a distance and in an orientation-independent manner. For these studies, amino acids 413 to 490 in the VP16 protein sequence were used.
- DNA encoding this domain was PCR amplified from plasmid pMSVP16 ⁇ C+119 using primers with the following sequences: (1) JVF24 CGCGGATCCGCCCCCCCGACCGATG, and (2) JVF25 CCGCAAGCTTACTTGTCATCGTCGTCCTTGTAGTCGCTGCCCCCACCGTA CTCGTCAATTCC.
- the downstream primer, JVF25 was designed to include a downstream FLAG epitope-encoding sequence.
- the vectors are derived from pcDNA3.1 (+) (Invitrogen), and place the ZFP constructs under the control of the cytomegalovirus (CMV) promoter.
- CMV cytomegalovirus
- the vector carries ampicillin and neomycin markers for selection in bacteria and mammalian cell culture, respectively.
- a Kozak sequence for proper translation initiation was incorporated.
- the nuclear localization sequence (NLS) from the SV40 large T antigen (Pro-Lys-Lys-Lys-Arg-Lys-Val) was added.
- the insertion site for the ZFP-encoding sequence is followed by the functional domain sequence.
- the three versions of this vector differ in the functional domain; “pcDNA-NKF” carries the KRAB repression domain sequence, “pcDNA-NVF” carries the VP16 activation domain, and “NF-control” carries no functional domain.
- the FLAG epitope sequence (Kodak) is the FLAG epitope sequence to allow specific detection of the ZFPs.
- Plasmid pcDNA- ⁇ HB was constructed by digesting plasmid pcDNA3.1(+) (Invitrogen) with HindIII and BamHI, filling in the sticky ends with Klenow, and religating. This eliminated the HindIII, KpnI, and BamHI sites in the polylinker.
- the vector pcDNA3.1(+) is described in the Invitrogen catalog.
- Plasmid pcDNA-NKF was generated by inserting a fragment into the EcoRI/XhoI sites of pcDNA- ⁇ HB that contained the following: 1) a segment from EcoRI to KpnI containing the Kozak sequence including the initiation codon and the SV40 NLS sequence, altogether comprising the DNA sequence GAATTC GCTAGCGCCACCATGGCCCCCAAGAAGAAGAGGAAGGTGGGAAT CCATGG GGTAC ,
- the VEGF3a/1-KRAB effector plasmid was generated by inserting a KpnI-BamHI cassette containing the ZFP sequences into pcDNA-NKF digested with KpnI and BamHI.
- the VEGF1-KRAB and VEGF3a-KRAB effector plasmids were constructed in a similar way except that the ZFP sequences were first cloned into the NLS-KRAB-FLAG sequences in the context of plasmid pLitmus 28 (New England Biolabs) and subsequently moved to the BamHI-XhoI sites of pcDNA3.1(+) as a BglII-XhoI cassette, where the BglII site was placed immediately upstream of the EcoRI site (see Example IV for expression of these vectors).
- Plasmid pcDNA-NVF was constructed by PCR amplifying the VP16 transactivation domain, as described above, and inserting the product into the BamHI/HindIII sites of pcDNA-NKF, replacing the KRAB sequence.
- VEGF1-VP16 and VEGF3a/1-VP16 vectors were constructed by inserting a KpnI-BamHI cassette containing the ZFP sequences into pcDNA-NVF digested with KpnI and BamHI.
- Plasmid NF-control was generated by inserting the sequence GAATTC GCTAGCGCCACCATGGCCCCCAAGAAGAAGAGGAAGGTGGGAAT CCATGGGGTACCCGGGGATGGATCCGGCAGCGACTACAAGGACGACGATG ACAAGTAAGCTT CTCGAG into the EcoRI-XhoI sites of pcDNA-NKF, thereby replacing the NLS-KRAB-FLAG sequences with NLS-FLAG only.
- VEGF1-NF and VEGF3a/1-NF were constructed by inserting a KpnI-BamHI cassette containing the ZFP sequences into NF-control digested with KpnI and BamHI.
- CCR5-KRAB was constructed in the same way as the VEGF KRAB vectors, except that the ZFP sequences were designed to be specific for a DNA target site that is unrelated to the VEGF targets.
- Plasmid NKF-control was designed to express NLS-KRAB-FLAG without zinc finger protein sequences; plasmid NVF-control was designed to express NLS-VP16-FLAG without ZFP sequences.
- Plasmid NKF-control was designed to express NLS-KRAB-FLAG without zinc finger protein sequences; plasmid NVF-control was designed to express NLS-VP16-FLAG without ZFP sequences.
- These plasmids were made by digesting pcDNA-NKF and -NVF, respectively, with BamHI, filling in the ends with Klenow, and religating in order to place the downstream domains into the proper reading frame. These plasmids serve as rigorous controls for cell culture studies.
- VEGF vascular endothelial growth factor
- 293 human embryonic kidney cells were transfected with the expression plasmid encoding the NLS-VEGF1-KRAB-FLAG chimera. Lipofectamine was used as described below. After 24-48 hours, cells were fixed and exposed to a primary antibody against the FLAG epitope. A secondary antibody labeled with Texas Red was applied, and the cells were counter stained with DAPI. Texas Red staining was observed to consistently co-localize with the DAPI staining, indicating that the ZFP being expressed from this plasmid was nuclear localized.
- This Example demonstrates the use of transient co-transfection studies to measure the activity of the ZFP repressor proteins in cells.
- Such experiments involve co-transfection of ZFP-KRAB expression (“effector”) plasmids with reporter plasmids carrying the VEGF target sites. Efficacy is assessed by the repression of reporter gene expression in the presence of the effector plasmid relative to empty vector controls.
- effector ZFP-KRAB expression
- the reporter plasmid system was based on the pGL3 firefly luciferase vectors (Promega). Four copies of the VEGF target sites were inserted upstream of the SV40 promoter, which is driving the firefly luciferase gene, in the plasmid pGL3-Control to create pVFR1-4x. This plasmid contains the SV40 enhancer and expresses firefly luciferase to high levels in many cell types. Insertions were made by ligating together tandem copies of the two complementary 42-bp oligonucleotides, JVF9 and JVF10, described in Example II.
- Adaptor sequences were ligated on, and the assembly was inserted into the MluI/BglII sites of pGL3-Control. This resulted in the insertion of the following sequence between those sites: ACGCGTaagcttGCTAGCGAGC GGGGAGGAT C GCGGAGGCT TGGGGCAGC CGGGTAGAGCGAGC GGGGAGGAT C GCGGAGGCT TGGGGCAGCCGGGTAGAGCGAGC GG GGAGGAT C GCGGAGGCT TGGGGCAGCCGGGTAGAGCTCAGaagcttAG ATCT.
- the first six and last six nucleotides shown are the MluI and BglII sites; the lowercase letters indicate HindIII sites.
- the binding sites for VEGF1 and VEGF3a are underlined.
- the effector plasmid construction is described above.
- the VEGF1-KRAB, VEGF3a-KRAB, and VEGF3a/1-KRAB expression vectors were designed to produce a fusion of the SV40 nuclear localization sequence, the VEGF ZFP, the KRAB repression domain, and a FLAG epitope marker all under the control of the CMV promoter.
- the empty pcDNA3.1 expression vector was used as a control (pcDNA).
- FIG. 6 shows a typical set of transfections using COS-1 (African green monkey kidney) cells. Approximately 40,000 cells were seeded into each well of a 24-well plate and allowed to grow overnight in Dulbecco's Modified Eagle Medium (D-MEM) medium containing 10% fetal bovine serum at 37° C. with 5% CO 2 . Cells were washed with PBS and overlayed with 200 ⁇ l of serum-free D-MEM. Plasmids were introduced using lipofectamine (Gibco-BRL).
- D-MEM Dulbecco's Modified Eagle Medium
- Each well was transfected with about 0.3 ⁇ g of effector plasmid, 0.3 ⁇ g of reporter plasmid, and 0.01 ⁇ g of plasmid pRL-SV40 (Promega) that had been complexed with 6 ⁇ l of lipofectamine and 25 ⁇ l of D-MEM for 30 min at 37° C. Transfections were done in triplicate. After 3 hrs, 1 ml of medium containing 10% serum was added to each well. Cells were harvested 40-48 hours after transfection. Luciferase assays were done using the Dual LuciferaseTM System (Promega).
- the third plasmid transfected, pRL-SV40 carries the Renilla luciferase gene and was co-transfected as a standard for transfection efficiency.
- the data shown in FIG. 6 are the averages of triplicate assays normalized against the Renilla activity.
- the presence or absence of the ZFP-KRAB expression plasmid does not influence the luciferase expression level.
- the reporter containing four copies of the VEGF target site presence of the VEGF1 (9-bp-binding ZFP) or VEGF3a/1 (18-bp-binding ZFP) expression plasmid reduces luciferase expression by a factor of 2-3 relative to the empty pcDNA vector control.
- the VEGF3a (9-bp-binding ZFP) expression plasmid appears to exhibit little or no effect.
- a second reporter plasmid, pVFR2-4x was constructed by removing the four copies of the VEGF target sites using HindIII and inserted them into the HindIII site of pGL3-Control (in the forward orientation). This places the target sites between the start site of transcription for the SV40 promoter and the translational start codon of the luciferase gene.
- approximately 3-4 fold repression of the luciferase signal was observed with the VEGF1-KRAB or VEGF3a/1-KRAB repressors relative to the pcDNA controls (data not shown). This indicates that the repressors are active when bound either upstream or downstream of the start of transcription.
- the experimental setup is similar to that of Example IV except that a different transfection method, a different cell line, and a different set of reporter and effector plasmids was used.
- pVFR3-4x For activation experiments, a reporter was constructed labeled pVFR3-4x. This reporter contains the four copies of the VEGF targets, with the sequence shown above, at the MluI/BglII sites of plasmid pGL3-Promoter (Promega). This vector has been deleted for the SV40 enhancer sequence and therefore has a lower basal level of firefly luciferase expression.
- pVFR3-4x was constructed by swapping the KpnI/NcoI fragment of pVFR1-4x into the KpnI/NcoI sites of pGL3-Promoter.
- the effector plasmid construction is described above.
- the VEGF1-VP16, VEGF3a-VP16, and VEGF3a/1-VP16 expression vectors were designed to produce a fusion of the SV40 nuclear localization sequence, the VEGF ZFP, the VP16 trans-activation domain, and a FLAG epitope tag all under the control of the CMV promoter.
- the empty pcDNA3 expression vector was used as a control.
- FIG. 7 shows a typical set of transfections using 293 (human embryonic kidney) cells. Approximately 40,000 cells were seeded into each well of a 24-well plate and allowed to grow overnight in D-MEM medium containing 10% fetal bovine serum at 37° C. with 5% CO 2 . Cells were washed with serum-free D-MEM and overlayed with 200 ⁇ l of the same. Plasmids were introduced using a calcium phosphate transfection kit (Gibco-BRL) according to the manufacturer's instructions.
- Gibco-BRL calcium phosphate transfection kit
- Cells in each well were transfected with 1.5 ⁇ g of reporter plasmid, 1.5 ⁇ g of effector plasmid, and 0.5 ⁇ g of an actin/ ⁇ -gal plasmid. Plasmids were combined with 15 ⁇ l of CaCl 2 and brought to 100 ⁇ l with dH 2 O. 100 ⁇ l of HEPES solution was added dropwise while vortexing. The mix was incubated for 30 min at room temperature. The 200 ⁇ l of calcium phosphate-treated DNA was then added to the medium in each well. Transfections were done in triplicate. After 5 hours, the medium was removed and 1 ml of medium containing 10% serum was added. Cells were harvested 40-48 hours after transfection.
- Luciferase assays were done using the Dual-LightTM system (Tropix).
- the third plasmid transfected, actin/ ⁇ -gal carries the ⁇ -galactosidase gene under the control of the actin promoter and was co-transfected as a standard for transfection efficiency.
- the ⁇ -galactosidase assays were also done according to the manufacturer's protocol (Tropix).
- the data shown in FIG. 7 are the average of triplicate assays normalized against the ⁇ -galactosidase activity.
- pGL3-Promoter pGL3-P
- ZFP-VP16 expression plasmid For the control reporter plasmid, pGL3-Promoter (pGL3-P), the presence or absence of the ZFP-VP16 expression plasmid does not significantly influence the luciferase expression level.
- pVFR3-4x the reporter containing four copies of the VEGF target site, presence of VEGF1 (the 9-bp-binding ZFP) shows a very slight activation relative to the empty pcDNA vector control.
- VEGF3a/I the 18-bp-binding ZFP expression plasmid activates luciferase expression very substantially, showing about a 14-fold increase relative to pcDNA.
- a fourth VEGF reporter plasmid was constructed by cloning the KpnI/NcoI fragment of pVFR2-4x into pGL3-Promoter to create plasmid pVFR4-4x. Activation was observed in co-transfections using this reporter in combination with effector plasmids expressing the VEGF1-VP16 and VEGF3a/1-VP16 fusions (data not shown). This indicates that these artificial trans-activators are functional when bound either upstream or downstream of the start of transcription.
- This Example demonstrates that a designed ZFP can repress expression of an endogenous cellular gene that is in its natural context and chromatin structure. Specifically, effector plasmids expressing VEGF ZFPs fused to the KRAB repression domain were introduced into cells and were shown to down-regulate the VEGF gene.
- Eucaryotic expression vectors were constructed that fuse the VEGF3a/1 and the VEGF1 ZFPs to the SV40 NLS and KRAB, as described above in Example III. Transfections were done using Lipofectamine, a commercially available liposome preparation from GIBCO-BRL. All plasmid DNAs were prepared using Qiagen Midi DNA purification system. 10 ⁇ g of the effector plasmid was mixed with 100 ⁇ g of Lipofectamine (50 ⁇ l) in a total volume of 1600 ⁇ l of Opti-MEM. A pCMV ⁇ -gal plasmid (Promega) was also included in the DNA mixture as an internal control for transfection efficiency.
- the 293 cells were induced by treatment with 100 ⁇ M DFX (desferrioxamine), resulting in a rapid and lasting transcriptional activation of the VEGF gene and also in a gradual increase in VEGF mRNA stability (Ikeda et al., J. Biol. Chem. 270:19761-19766 (1995)).
- DFX deferrioxamine
- 293 cells secrete a low level of VEGF in the culture media. The cells were allowed to incubate an additional 24 hours before the supernatants were collected for determination of VEGF levels by an ELISA assay.
- VEGF expression was noted in the DFX treated cells transfected with VEGF3a/1-KRAB, an expression vector encoding the 18 bp binding VEGF high affinity ZFP.
- a two-fold decrease in expression was observed when cells were transfected with VEGF1-KRAB, an expression vector encoding the 9 bp binding VEGF high affinity ZFP.
- No significant decrease in VEGF expression was observed in cells that were transfected with a non-VEGF ZFP (CCR5-KRAB) or NKF-control ( FIG. 8 ). Similar results have been obtained in three independent transfection experiments.
- VEGF1-NF which expresses the 9-bp-binding VEGF1 ZFP without a functional domain
- VEGF3a/1-NF which expresses the 18-bp binding protein without a functional domain.
- binding to the start site of transcription even without a repression domain, interferes with transcription.
- the VEGF3a ZFP is unable to affect expression levels (plasmid VEGF3a-KRAB).
- VEGF1 fused to KRAB results in a dramatic decrease in expression.
- VEGF3a/1 fused to KRAB prevents expression of VEGF altogether.
- a designed ZFP is capable of locating and binding to its target site on the chromosome and preventing expression of an endogenous cellular target gene.
- the results indicate that ZFPs with a K d of less than about 25 nM (e.g., VEGF1 has an average apparent K d of about 10 nM) provide dramatic decreases in expression.
- the data demonstrate that the KRAB functional domain enhances gene silencing. Because in this experiment the introduction of the repressor occurs before the inducer of VEGF is added (DFX), the data demonstrate the ability of a designed repressor to prevent activation of an already quiescent gene.
- This Example demonstrates that a designed ZFP can activate the expression of a gene that is in its natural context and chromatin structure. Specifically, effector plasmids expressing VEGF ZFPs fused to the VP16 activation domain were introduced into cells and were shown to up-regulate the VEGF gene.
- Eucaryotic expression vectors were constructed that fuse the VEGF3a/1 and the VEGF1 ZFPs to the SV40 NLS and VP16, as described in Example III. Transfections were done using Lipofectamine, a commercially available liposome preparation from GIBCO-BRL. All plasmid DNAs were prepared using the Qiagen Midi DNA purification system. 10 ⁇ g of the effector plasmid (containing the engineered ZFP) was mixed with 100 ⁇ g of Lipofectamine (50 ⁇ l) in a total volume of 1600 ⁇ l of Opti-MEM. A pCMVP-gal plasmid (Promega) was also included in the DNA mixture as an internal control for transfection efficiency.
- Lipofectamine a commercially available liposome preparation from GIBCO-BRL. All plasmid DNAs were prepared using the Qiagen Midi DNA purification system. 10 ⁇ g of the effector plasmid (containing the engineered ZFP) was mixed with 100
- VEGF1-VP16 For the three-fingered VEGF1-specific ZFP (VEGF1-VP16), a 7-10 fold increase in VEGF expression was observed when compared to control plasmid (NVF-control) and mock transfected cells ( FIG. 9 ). Similar results have been obtained in 5 independent experiments. It is important to note that the level of VEGF secretion in VEGF1-VP16 transfected cells was equivalent or greater than the level in cells that have been treated with DFX ( FIG. 9 ). Introduction of VEGF3a/1-VP16 stimulated a more modest induction of VEGF. This result is consistent with the finding in Example VI, in which expression of the 18-bp binding protein without a functional domain prevented activation to a certain degree. This result suggested that the tight binding of this protein to the start site of transcription interferes with activation.
- a ribonuclease protection assay was performed to correlate the increased level of VEGF protein with an increase in VEGF mRNA levels (Example VII), and to correlate the decreased level of VEGF protein with a decrease in VEGF mRNA levels (Example VI).
- RNA was isolated from the transfected cells using an RNA isolation kit (Pharmingen). Radiolabeled multi template probes, which included a VEGF specific probe, were prepared by in vitro transcription and hybridized overnight at 56° C. to 5 ⁇ g of each of the RNAs from the experimental and control transfected cells. The hybridization mixture was treated with RNase and the protected probes were purified and subjected to 5% denaturing polyacrylamide gel electrophoresis and the radioactivity was evaluated by autoradiography. 293 cells transfected with the VEGF1-VP16 had a 2-4 fold increase in the level of VEGF mRNA when compared to cells transfected with NVF-control ( FIG. 10 , panel A; see Example VII for experimental details). The size of the protected probe was identical to the size of the probe generated from the control human RNA provided as a control for RNA integrity. ( FIG. 10 , panel A).
- This experiment demonstrates that the increase in VEGF protein observed upon transfection with the VEGF1-VP16 chimeric transcription factor is mediated by an increase in the level of VEGF mRNA. Similarly, the decrease in VEGF protein observed upon transfection with the VEGF3a/1-KRAB chimeric transcription factor is mediated by a decrease in the level of VEGF mRNA.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Zoology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Neurology (AREA)
- Analytical Chemistry (AREA)
- Urology & Nephrology (AREA)
- Cell Biology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Physical Education & Sports Medicine (AREA)
Abstract
The present invention provides methods for modulating expression of endogenous cellular genes using recombinant zinc finger proteins.
Description
- This application is related to Townsend and Townsend and Crew docket number 019496-001800, U.S. Ser. No ______, filed Jan. 12, 1999, herein incorporated by reference in its entirety.
- This invention was made with government support under Grant No. 1 R43 DK52251-01, awarded by the National Institutes of Health. The government has certain rights in this invention.
- The present invention provides methods for regulating gene expression of endogenous genes using recombinant zinc finger proteins.
- Many, perhaps most physiological and pathophysiological processes can be controlled by the selective up or down regulation of gene expression. If methods existed for gene expression control, pathologies could be treated. Examples include the inappropriate expression of proinflamatory cytokines in rheumatoid arthritis, under expression of the hepatic LDL receptor in hypercholesteremia, over expression of proangiogenic factors and under expression of antiangiogenic factors in solid tumor growth, to name just a few. In addition, pathogenic organisms such as viruses, bacteria, fungi, and protozoa could be controlled by altering gene expression. There is a clear unmet need for therapeutic approaches that are simply able to up-regulate beneficial genes and down-regulate disease causing genes.
- In addition to the direct therapeutic utility provided by the ability to manipulate gene expression, this ability can be used experimentally to determine the function of a gene of interest. One common existing method for experimentally determining the function of a newly discovered gene is to clone its cDNA into an expression vector driven by a strong promoter and measure the physiological consequence of its over-expression in a transfected cell. This method is labor intensive and does not address the physiological consequences of down-regulation of a target gene. Simple methods allowing the selective over and under-expression of uncharacterized genes would be of great utility to the scientific community. Methods that permit the regulation of genes in cell model systems, transgenic animals and transgenic plants would find widespread use in academic laboratories, pharmaceutical companies, genomics companies and in the biotechnology industry.
- An additional use of tools permitting the manipulation of gene expression is in the production of commercially useful biological products. Cell lines, transgenic animals and transgenic plants could be engineered to over-express a useful protein product. The production of erythropoietin by such an engineered cell line serves as an example. Likewise, production from metabolic pathways might be altered or improved by the selective up or down-regulation of a gene encoding a crucial enzyme. An example of this is the production of plants with altered levels of fatty acid saturation.
- Methods currently exist in the art, which allow one to alter the expression of a given gene, e.g., using ribozymes, antisense technology, small molecule regulators, over-expression of cDNA clones, and gene-knockouts. These methods have to date proven to be generally insufficient for many applications and typically have not demonstrated either high target efficacy or high specificity in vivo. For useful experimental results and therapeutic treatments, these characteristics are desired.
- Gene expression is normally controlled through alterations in the function of sequence specific DNA binding proteins called transcription factors. These bind in the general proximity (although occasionally at great distances) of the point of transcription initiation of a gene. They act to influence the efficiency of formation or function of a transcription initiation complex at the promoter. Transcription factors can act in a positive fashion (transactivation) or in a negative fashion (transrepression).
- Transcription factor function can be constitutive (always “on”) or conditional. Conditional function can be imparted on a transcription factor by a variety of means, but the majority of these regulatory mechanisms depend of the sequestering of the factor in the cytoplasm and the inducible release and subsequent nuclear translocation, DNA binding and transactivation (or repression). Examples of transcription factors that function this way include progesterone receptors, sterol response element binding proteins (SREBPs) and NF-kappa B. There are examples of transcription factors that respond to phosphorylation or small molecule ligands by altering their ability to bind their cognate DNA recognition sequence (Hou et al., Science 256:1701 (1994); Gossen & Bujard, PNAS 89:5547 (1992); Oligino et al., Gene Ther. 5:491-496 (1998); Wang et al., Gene Ther. 4:432-441 (1997); Neering et al., Blood 88:1147-1155 (1996); and Rendahl et al., Nat. Biotechnol. 16:757-761 (1998)). This mechanism is common in prokaryotes but somewhat less common in eukaryotes.
- Zinc finger proteins (“ZFPs”) are proteins that can bind to DNA in a sequence-specific manner. Zinc fingers were first identified in the transcription factor TFIIIA from the oocytes of the African clawed toad, Xenopus laevis. ZFPs are widespread in eukaryotic cells. An exemplary motif characterizing one class of these proteins (C2H2 class) is -Cys-(X)2-4-Cys-(X)12-His-(X)3-5-His (where X is any amino acid). A single finger domain is about 30 amino acids in length and several structural studies have demonstrated that it contains an alpha helix containing the two invariant histidine residues co-ordinated through zinc with the two cysteines of a single beta turn. To date, over 10,000 zinc finger sequences have been identified in several thousand known or putative transcription factors. ZFPs are involved not only in DNA-recognition, but also in RNA binding and protein-protein binding. Current estimates are that this class of molecules will constitute about 2% of all human genes.
- The X-ray crystal structure of Zif268, a three-finger domain from a murine transcription factor, has been solved in complex with its cognate DNA-sequence and shows that each finger can be superimposed on the next by a periodic rotation and translation of the finger along the main DNA axis. The structure suggests that each finger interacts independently with DNA over 3 base-pair intervals, with side-chains at positions −1, 2, 3 and 6 on each recognition helix making contacts with respective DNA triplet sub-site. The amino terminus of Zif268 is situated at the 3′ end of its DNA recognition subsite. Recent results have indicated that some zinc fingers can bind to a fourth base in a target segment (Isalan et al., PNAS 94:5617-5621 (1997). The fourth base is on the opposite strand from the other three bases recognized by zinc finger and complementary to the base immediately 3′ of the three base subsite.
- The structure of the Zif268-DNA complex also suggested that the DNA sequence specificity of a ZFP might be altered by making amino acid substitutions at the four helix positions (−1, 2, 3 and 6) on a zinc finger recognition helix. Phage display experiments using zinc finger combinatorial libraries to test this observation were published in a series of papers in 1994 (Rebar et al., Science 263:671-673 (1994); Jamieson et al., Biochemistry 33:5689-5695 (1994); Choo et al., PNAS 91:11163-11167 (1994)). Combinatorial libraries were constructed with randomized side-chains in either the first or middle finger of Zif268 and then isolated with an altered Zif268 binding site in which the appropriate DNA sub-site was replaced by an altered DNA triplet. Correlation between the nature of introduced mutations and the resulting alteration in binding specificity gave rise to a partial set of substitution rules for rational design of ZFPs with altered binding specificity.
- Greisman & Pabo, Science 275:657-661 (1997) discuss an elaboration of a phage display method in which each finger of a zinc finger protein is successively subjected to randomization and selection. This paper reported selection of ZFPs for a nuclear hormone response element, a p53 target site and a TATA box sequence.
- Recombinant ZFPs have been reported to have the ability to regulate gene expression of transiently expressed reporter genes in cultured cells (see, e.g., Pomerantz et al., Science 267:93-96 (1995); Liu et al., PNAS 94:5525-5530 1997); and Beerli et al., PNAS 95:14628-14633 (1998)).
- For example, Pomerantz et al., Science 267:93-96 (1995) report an attempt to design a novel DNA binding protein by fusing two fingers from Zif268 with a homeodomain from Oct-1. The hybrid protein was then fused with either a transcriptional activator or repressor domain for expression as a chimeric protein. The chimeric protein was reported to bind a target site representing a hybrid of the subsites of its two components. The authors then constructed a reporter vector containing a luciferase gene operably linked to a promoter and a hybrid site for the chimeric DNA binding protein in proximity to the promoter. The authors reported that their chimeric DNA binding protein could activate or repress expression of the luciferase gene.
- Liu et al., PNAS 94:5525-5530 (1997) report forming a composite ZFP by using a peptide spacer to link two component ZFPs, each having three fingers. The composite protein was then further linked to transcriptional activation or repression domains. It was reported that the resulting chimeric protein bound to a target site formed from the target segments bound by the two component ZFPs. It was further reported that the chimeric ZFP could activate or repress transcription of a reporter gene when its target site was inserted into a reporter plasmid in proximity to a promoter operably linked to the reporter.
- Beerli et al., PNAS 95:14628-14633 (1998) report construction of a chimeric six finger ZFP fused to either a KRAB, ERD, or SID transcriptional repressor domain, or the VP16 or VP64 transcriptional activation domain. This chimeric ZFP was designed to recognize an 18 bp target site in the 5′ untranslated region of the human erbB-2 gene. Using this construct, the authors of this study report both activation and repression of a transiently expressed reporter luciferase construct linked to the erbB-2 promoter.
- In addition, a recombinant ZFP was reported to repress expression of an integrated plasmid construct encoding a bcr-abl oncogene (Choo et al., Nature 372:642-645 (1994)). The target segment to which the ZFPs bound was a nine base sequence GCA GAA GCC chosen to overlap the junction created by a specific oncogenic translocation fusing the genes encoding bcr and abl. The intention was that a ZFP specific to this target site would bind to the oncogene without binding to abl or bcr component genes. The authors used phage display to select a variant ZFP that bound to this target segment. the variant ZFP thus isolated was then reported to repress expression of a stably transfected bcr-abl construct in a cell line.
- To date, these methods have focused on regulation of either transiently expressed genes, or on regulation of exogenous genes that have been integrated into the genome. The transiently expressed genes described by Pomerantz et al., Liu et al., and Beerli et al. are episomal and are not packaged into chromatin in the same manner as chromosomal genes. Moreover, even the stably expressed gene described by Choo et al. is randomly integrated into the genome and is not found in a native chromatin environment as compared to an endogenous gene. In contrast, specific regulation of an endogenous cellular gene in its native chromatin environment using a ZFP has not yet been demonstrated in the art.
- The present invention thus provides for the first time methods of regulating endogenous cellular gene expression, where the endogenous genes are in their native chromatin environment, in contrast to genes that have been transiently expressed in a cell, or those that have been exogenously integrated into the genome. In one preferred embodiment, the methods of regulation use ZFPs with a Kd of less than about 25 nM to activate or repress gene transcription. The ZFPs of the invention therefore can be used to repress transcription of an endogenous cellular gene by 20% or more, and can be used to activate transcription of an endogenous cellular gene by about 1.5 fold or more.
- In one aspect, the present invention provides a method of inhibiting expression of an endogenous cellular gene in a cell, the method comprising the step of: contacting a first target site in the endogenous cellular gene with a first zinc finger protein, wherein the Kd of the zinc finger protein is less than about 25 nM; thereby inhibiting expression of the endogenous cellular gene by at least about 20%.
- In another aspect, the present invention provides a method of inhibiting expression of an endogenous cellular gene in a cell, the method comprising the step of: contacting a target site in the endogenous cellular gene with a fusion zinc finger protein comprising six fingers and a regulatory domain, wherein the Kd of the zinc finger protein is less than about 25 nM; thereby inhibiting expression of the endogenous cellular gene by at least about 20%.
- In one embodiment, expression of the endogenous cellular gene is inhibited by at least about 75%-100%. In another embodiment, the inhibition of gene expression prevents gene activation.
- In another aspect, the present invention provides a method of activating expression of an endogenous cellular gene, the method comprising the step of: contacting a first target site in the endogenous cellular gene with a first zinc finger protein, wherein the Kd of the zinc finger protein is less than about 25 nM; thereby activating expression of the endogenous cellular gene to at least about 150%.
- In another aspect, the present invention provides a method of activating expression of an endogenous cellular gene, the method comprising the step of: contacting a target site in the endogenous cellular gene with a fusion zinc finger protein comprising six fingers and a regulatory domain, wherein the Kd of the zinc finger protein is less than about 25 nM; thereby activating expression of the endogenous cellular gene to at least about 150%.
- In one embodiment, expression of the endogenous cellular gene is activated to at least about 200-500%. In another embodiment, activation of gene expression prevents repression of gene expression.
- In another aspect, the present invention provides a method of modulating expression of an endogenous cellular gene in a cell, the method comprising the step of: contacting a first target site in the endogenous cellular gene with a first zinc finger protein; thereby modulating expression of the endogenous cellular gene.
- In another aspect, the present invention provides a method of modulating expression of an endogenous cellular gene in a cell, the method comprising the step of: contacting a target site in the endogenous cellular gene with a fusion zinc finger protein comprising six fingers and a regulatory domain; thereby modulating expression of the endogenous cellular gene.
- In one embodiment, the step of contacting further comprises contacting a second target site in the endogenous cellular gene with a second zinc finger protein. In another embodiment, the first and second target sites are adjacent. In another embodiment, the first and second zinc finger proteins are covalently linked. In another embodiment, the first zinc finger protein is a fusion protein comprising a regulatory domain. In another embodiment, the first zinc finger protein is a fusion protein comprising at least two regulatory domains. In another embodiment, the first and second zinc finger proteins are fusion proteins, each comprising a regulatory domain. In another embodiment, the first and second zinc finger protein are fusion proteins, each comprising at least two regulatory domains.
- In one embodiment, the endogenous cellular gene is a selected from the group consisting of VEGF, ERα, IGF-I, c-myc, c-myb, ICAM, Her2/Neu, FAD2-1, EPO, GM-CSF, GDNF, and LDL-R. In another embodiment, the regulatory domain is selected from the group consisting of a transcriptional repressor, a transcriptional activator, an endonuclease, a methyl transferase, a histone acetyltransferase, and a histone deacetylase.
- In one embodiment, the cell is selected from the group consisting of animal cell, a plant cell, a bacterial cell, a protozoal cell, or a fungal cell. In another embodiment, the cell is a mammalian cell. In another embodiment, the cell is a human cell.
- In one embodiment, the method further comprises the step of first administering to the cell a delivery vehicle comprising the zinc finger protein, wherein the delivery vehicle comprises a liposome or a membrane translocation polypeptide.
- In one embodiment, the zinc finger protein is encoded by a zinc finger protein nucleic acid operably linked to a promoter, and the method further comprises the step of first administering the nucleic acid to the cell in a lipid:nucleic acid complex or as naked nucleic acid. In another embodiment, the zinc finger protein is encoded by an expression vector comprising a zinc finger protein nucleic acid operably linked to a promoter, and the method further comprises the step of first administering the expression vector to the cell. In another embodiment, the expression vector is a viral expression vector. In another embodiment, the expression vector is a retroviral expression vector, an adenoviral expression vector, a DNA plasmid expression vector, or an AAV expression vector.
- In one the zinc finger protein is encoded by a nucleic acid operably linked to an inducible promoter. In another embodiment, the zinc finger protein is encoded by a nucleic acid operably linked to a weak promoter.
- In one embodiment, the cell comprises less than about 1.5×106 copies of the zinc finger protein.
- In one embodiment, the target site is upstream of a transcription initiation site of the endogenous cellular gene. In another embodiment, the target site is adjacent to a transcription initiation site of the endogenous cellular gene. In another embodiment, the target site is adjacent to an RNA polymerase pause site downstream of a transcription initiation site of the endogenous cellular gene.
- In another embodiment, the zinc finger protein comprises an SP-1 backbone; In one embodiment, the zinc finger protein comprises a regulatory domain and is humanized.
-
FIG. 1 : PCR amplification scheme for production of ZFP-encoding synthetic genes. -
FIG. 2 . Expression and purification of typical ZFPs.FIG. 2A : Unfused ZFP before induction (lane 1), after induction (lane 2), and after purification (lane 3).FIG. 2B : MBP-VEGF expression before induction (lane 1), after induction (lane 2), and after French Press lysis (lane 3).FIG. 2C : Purification of MBP-VEGF by amylose affinity column showing flow-through (FT), and initial fractions (1-4).Fraction 2 was used for electrophoretic mobility shift assays (“EMSA”). M, molecular weight markers. -
FIG. 3 . Typical EMSA experiment with MBP fused ZFP. MBP-VEGF1 protein was bound to labeled duplex DNA as described in the text. A three-fold protein dilution series was carried out; each point represents the percent shifted at that particular protein concentration plotted on a semi-log graph. Quantitation was by phosphorimager. In this case, the protein concentration yielding 50% of maximum shift (the apparent Kd) was 2 nM. -
FIG. 4 . Off-rate experiment comparing VEGF1 to VEGF3a/1. Protein-DNA complexes were pre-formed and incubated with a 1000-fold excess of unlabeled oligonucleotide. Samples were electrophoresed at various times and the amount of shifted product was measured by phosphorimager. Curve fitting was used to calculate the indicated complex half-lives. -
FIG. 5 . Typical expression vector used for transient ZFP expression in mammalian cells. -
FIG. 6 . Co-transfection data showing repression of luciferase reporter activity via VEGF-KRAB protein expression. Error bars show the standard deviation of triplicate transfections. pGL3-C (reporter vector control); pVFR1-4x (VEGF reporter plasmid); VEGF1 (VEGF1-KRAB); VEGF3a (VEGF3a-KRAB); VEGF3a/1 (VEGF3a/1-KRAB). -
FIG. 7 . Co-transfection data showing activation of luciferase reporter activity via VEGF-VP16 protein expression. Error bars show the standard deviation of triplicate transfections. pGL3-P (reporter with no VEGF target); pcDNA (empty effector vector control); pVFR3-4x (VEGF reporter plasmid); VEGF1 (VEGF1-VP16); VEGF3a (VEGF3a-VP16); VEGF3a/1 (VEGF3a/1-VP16). -
FIG. 8 . VEGF ELISA data showing repression of endogenous VEGF gene expression due to transfection of a VEGF ZFP-KRAB effector plasmid. DFX treated (control nontransfected Dfx treated cells; No ZFP (pcDNA-control), VEGF 1 (VEGF1-KRAB), VEGF 3a/1 (VEGF3a/1-KRAB), CCR5 (CCR5-KRAB); Mock uninduced (mock transfected cells untreated with DFX). Error bars show the standard deviation of duplicate transfections. -
FIG. 9 . VEGF ELISA data showing activation of endogenous VEGF gene expression due to transfection of a VEGF ZFP-VP16 effector plasmid. Mock (mock transfected cells); No ZFP (NVF-control), VEGF 1 (VEGF1-VP16), VEGF 3a/1 (VEGF3a/1-VP16). Error bars show the standard deviation of duplicate transfections. -
FIG. 10 . RNase protection assay showing changes in VEGF specific mRNA by VEGF-specific ZFPs. Panel A: Activation of VEGF mRNA, NVF-Control (no ZFP), VEGF1-NVF (VEGF1-VP16), CCR5-5-NVF (CCR5-VP16), CCR5-3-NVF (CCR5-VP16). Panel B: Repression of VEGF mRNA. NKF-Control (no ZFP), VEGF1-NKF (VEGF1-KRAB), VEGF3a/1-NKF (VEGF3a/1-KRAB), CCR5-3-NKF (CCR5-KRAB). The size of the 148 nucleotide VEGF specific band is indicated by an arrow. The VEGF specific probe was synthesized from a human angiogenesis multi-probe template set (Pharmingen). As a control, signals from the housekeeping genes L32 and GAPDH are shown (arrrows). - Introduction
- The present application demonstrates for the first time that ZFPs can be used to regulate expression of an endogenous cellular gene that is present in its native chromatin environment. The present invention thus provides zinc finger DNA binding proteins that have been engineered to specifically recognize, with high efficacy, endogenous cellular genes. The experiments described herein demonstrate that a 3 finger ZFP with a target site affinity of less than about 10 nM (VEGF1) can be used to effectively activate or repress activity of an endogenous gene. Furthermore, a 6 finger ZFP (VEGF3a/1) was also shown to effectively repress activity of an endogenous gene. Preferably, the ZFPs of the invention exhibit high affinity for their target sites, with Kds of less than about 100 nM, preferably less than about 50 nM, most preferably less than about 25 nM or lower.
- As a result, the ZFPs of the invention can be used to regulate endogenous gene expression, both through activation and repression of endogenous gene transcription. The ZFPs can also be linked to regulatory domains, creating chimeric transcription factors to activate or repress transcription. In one preferred embodiment, the methods of regulation use ZFPs with a Kd of less than about 25 nM to activate or repress gene transcription. The ZFPs of the invention therefore can be used to repress transcription of an endogenous cellular gene by 20% or more, and can be used to activate transcription of an endogenous cellular gene by about 1.5 fold or more.
- Such methods of regulating gene expression allow for novel human and mammalian therapeutic applications, e.g., treatment of genetic diseases, cancer, fungal, protozoal, bacterial, and viral infection, ischemia, vascular disease, arthritis, immunological disorders, etc., as well as providing means for functional genomics assays, and means for developing plants with altered phenotypes, including disease resistance, fruit ripening, sugar and oil composition, yield, and color.
- As described herein, ZFPs can be designed to recognize any suitable target site, for regulation of expression of any endogenous gene of choice. Examples of endogenous genes suitable for regulation include VEGF, CCR5, ERa, Her2/Neu, Tat, Rev, HBV C, S, X, and P, LDL-R, PEPCK, CYP7, Fibrinogen, ApoB, Apo E, Apo(a), renin, NF-κB, I-κB, TNF-α, FAS ligand, amyloid precursor protein, atrial naturetic factor, ob-leptin, ucp-1, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-12, G-CSF, GM-CSF, Epo, PDGF, PAF, p53, Rb, fetal hemoglobin, dystrophin, eutrophin, GDNF, NGF, IGF-1, VEGF receptors flt and flk, topoisomerase, telomerase, bcl-2, cyclins, angiostatin, IGF, ICAM-1, STATS, c-myc, c-myb, TH, PTI-1, polygalacturonase, EPSP synthase, FAD2-1, delta-12 desaturase, delta-9 desaturase, delta-15 desaturase, acetyl-CoA carboxylase, acyl-ACP-thioesterase, ADP-glucose pyrophosphorylase, starch synthase, cellulose synthase, sucrose synthase, senescence-associated genes, heavy metal chelators, fatty acid hydroperoxide lyase, viral genes, protozoal genes, fungal genes, and bacterial genes. In general, suitable genes to be regulated include cytokines, lymphokines, growth factors, mitogenic factors, chemotactic factors, onco-active factors, receptors, potassium channels, G-proteins, signal transduction molecules, and other disease-related genes.
- A general theme in transcription factor function is that simple binding and sufficient proximity to the promoter are all that is generally needed. Exact positioning relative to the promoter, orientation, and within limits, distance do not matter greatly. This feature allows considerable flexibility in choosing sites for constructing artificial transcription factors. The target site recognized by the ZFP therefore can be any suitable site in the target gene that will allow activation or repression of gene expression by a ZFP, optionally linked to a regulatory domain. Preferred target sites include regions adjacent to, downstream, or upstream of the transcription start site. In addition, target sites that are located in enhancer regions, repressor sites, RNA polymerase pause sites, and specific regulatory sites (e.g., SP-1 sites, hypoxia response elements, nuclear receptor recognition elements, p53 binding sites), sites in the cDNA encoding region or in an expressed sequence tag (EST) coding region. As described below, typically each finger recognizes 2-4 base pairs, with a two finger ZFP binding to a 4 to 7 bp target site, a three finger ZFP binding to a 6 to 10 base pair site, and a six finger ZFP binding to two adjacent target sites, each target site having from 6-10 base pairs.
- As described herein, two ZFPs can be administered to a cell, recognizing either the same target endogenous cellular gene, or different target endogenous cellular gene. The first ZFP optionally is associated with the second ZFP, either covalently or non-covalently. Recognition of adjacent target sites by either associated or individual ZFPs can be used to produce cooperative binding of the ZFPs, resulting in an affinity that is greater than the affinity of the ZFPs when individually bound to their target site.
- In one embodiment, two ZFPs are produced as a fusion protein linked by an amino acid linker, and the resulting six finger ZFP recognizes an approximately 18 base pair target site (see, e.g., Liu et al., PNAS 94:5525-5530 (1997)). An 18 base pair target site is expected to provide specificity in the human genome, as a target site of that size should occur only once in every 3×1010 base pairs, and the size of the human genome is 3.5×109 base pairs (see, e.g., Liu et al., PNAS 94:5525-5530 (1997)). In another embodiment, the ZFPs are non-covalently associated, through a leucine zipper, a STAT protein N-terminal domain, or the FK506 binding protein (see, e.g., O'Shea, Science 254: 539 (1991), Barahmand-Pour et al., Curr. Top. Microbiol. Immunol. 211:121-128 (1996); Klemm et al., Annu. Rev. Immunol. 16:569-592 (1998); Ho et al., Nature 382:822-826 (1996)).
- In another embodiment, the ZFP is linked to at least one or more regulatory domains, described below. Preferred regulatory domains include transcription factor repressor or activator domains such as KRAB and VP16, co-repressor and co-activator domains, DNA methyl transferases, histone acetyltransferases, histone deacetylases, and endonucleases such as Fok1. For repression of gene expression, typically the expression of the gene is reduced by about 20% (i.e., 80% of non-ZFP modulated expression), more preferably by about 50% (i.e., 50% of non-ZFP modulated expression), more preferably by about 75-100% (i.e., 25% to 0% of non-ZFP modulated expression). For activation of gene expression, typically expression is activated by about 1.5 fold (i.e., 150% of non-ZFP modulated expression), preferably 2 fold (i.e., 200% of non-ZFP modulated expression), more preferably 5-10 fold (i.e., 500-1000% of non-ZFP modulated expression), up to at least 100 fold or more.
- The expression of engineered ZFP activators and repressors can be also controlled by systems typified by the tet-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, PNAS 89:5547 (1992); Oligino et al., Gene Ther. 5:491-496 (1998); Wang et al., Gene Ther. 4:432-441 (1997); Neering et al., Blood 88:1147-1155 (1996); and Rendahl et al., Nat. Biotechnol. 16:757-761 (1998)). These impart small molecule control on the expression of the ZFP activators and repressors and thus impart small molecule control on the target gene(s) of interest. This beneficial feature could be used in cell culture models, in gene therapy, and in transgenic animals and plants.
- Definitions
- As used herein, the following terms have the meanings ascribed to them unless specified otherwise.
- The term “zinc finger protein” or “ZFP” refers to a protein having DNA binding domains that are stabilized by zinc. The individual DNA binding domains are typically referred to as “fingers” A ZFP has least one finger, typically two fingers, three fingers, or six fingers. Each finger binds from two to four base pairs of DNA, typically three or four base pairs of DNA. A ZFP binds to a nucleic acid sequence called a target site or target segment. Each finger typically comprises an approximately 30 amino acid, zinc-chelating, DNA-binding subdomain. An exemplary motif characterizing one class of these proteins (C2H2 class) is -Cys-(X)2-4-Cys-(X)12-His-(X)3-5-His (where X is any amino acid). Studies have demonstrated that a single zinc finger of this class consists of an alpha helix containing the two invariant histidine residues co-ordinated with zinc along with the two cysteine residues of a single beta turn (see, e.g., Berg & Shi, Science 271:1081-1085 (1996)).
- A “target site” is the nucleic acid sequence recognized by a ZFP. A single target site typically has about four to about ten base pairs. Typically, a two-fingered ZFP recognizes a four to seven base pair target site, a three-fingered ZFP recognizes a six to ten base pair target site, and a six fingered ZFP recognizes two adjacent nine to ten base pair target sites.
- The term “adjacent target sites” refers to non-overlapping target sites that are separated by zero to about 5 base pairs.
- “Kd” refers to the dissociation constant for the compound, i.e., the concentration of a compound (e.g., a zinc finger protein) that gives half maximal binding of the compound to its target (i.e., half of the compound molecules are bound to the target) under given conditions (i.e., when [target]<<Kd), as measured using a given assay system (see, e.g., U.S. Pat. No. 5,789,538). The assay system used to measure the Kd should be chosen so that it gives the most accurate measure of the actual Kd of the ZFP. Any assay system can be used, as long is it gives an accurate measurement of the actual Kd of the ZFP. In one embodiment, the Kd for the ZFPs of the invention is measured using an electrophoretic mobility shift assay (“EMSA”), as described in Example I and on page 14 of the present specification. Unless an adjustment is made for ZFP purity or activity, the Kd calculations made using the method of Example I may result in an underestimate of the true Kd of a given ZFP. Preferably, the Kd of a ZFP used to modulate transcription of an endogenous cellular gene is less than about 100 nM, more preferably less than about 75 nM, more preferably less than about 50 nM, most preferably less than about 25 nM.
- An “endogenous cellular gene” refers to a gene that is native to a cell, which is in its normal genomic and chromatin context, and which is not heterologous to the cell. Such cellular genes include, e.g., animal genes, plant genes, bacterial genes, protozoal genes, fungal genes, mitrochondrial genes, and chloroplastic genes.
- An “endogenous gene” refers to a microbial or viral gene that is part of a naturally occurring microbial or viral genome in a microbially or virally infected cell. The microbial or viral genome can be extrachromosomal or integrated into the host chromosome. This term also encompasses endogenous cellular genes, as described above.
- A “native chromatin environment” refers to the naturally occurring, structural relationship of genomic DNA (e.g., bacterial, animal, fungal, plant, protozoal, mitochondrial, and chloroplastic) and DNA-binding proteins (e.g., histones and bacterial DNA binding protein II), which together form chromosomes. The endogenous cellular gene can be in a transcriptionally active or inactive state in the native chromatin environment.
- The phrase “adjacent to a transcription initiation site” refers to a target site that is within about 50 bases either upstream or downstream of a transcription initiation site. “Upstream” of a transcription initiation site refers to a target site that is more than about 50
bases 5′ of the transcription initiation site (i.e., in the non-transcribed region of the gene). - The phrase “RNA polymerase pause site” is described in Uptain et al., Annu. Rev. Biochem. 66:117-172 (1997).
- “Humanized” refers to a non-human polypeptide sequence that has been modified to minimize immunoreactivity in humans, typically by altering the amino acid sequence to mimic existing human sequences, without substantially altering the function of the polypeptide sequence (see, e.g., Jones et al., Nature 321:522-525 (1986), and published UK patent application No. 8707252). Backbone sequences for the ZFPs are preferably be selected from existing human C2H2 ZFPs (e.g., SP-1). Functional domains are preferably selected from existing human genes, (e.g., the activation domain from the p65 subunit of NF-κB). Where possible, the recognition helix sequences will be selected from the thousands of existing ZFP DNA recognition domains provided by sequencing the human genome. As much as possible, domains will be combined as units from the same existing proteins. All of these steps will minimize the introduction of new junctional epitopes in the chimeric ZFPs and render the engineered ZFPs less immunogenic.
- “Administering” an expression vector, nucleic acid, ZFP, or a delivery vehicle to a cell comprises transducing, transfecting, electroporating, translocating, fusing, phagocytosing, shooting or ballistic methods, etc., i.e., any means by which a protein or nucleic acid can be transported across a cell membrane and preferably into the nucleus of a cell.
- A “delivery vehicle” refers to a compound, e.g., a liposome, toxin, or a membrane translocation polypeptide, which is used to administer a ZFP. Delivery vehicles can also be used to administer nucleic acids encoding ZFPs, e.g., a lipid:nucleic acid complex, an expression vector, a virus, and the like.
- The terms “modulating expression” “inhibiting expression” and “activating expression” of a gene refer to the ability of a ZFP to activate or inhibit transcription of a gene. Activation includes prevention of transcriptional inhibition (i.e., prevention of repression of gene expression) and inhibition includes prevention of transcriptional activation (i.e., prevention of gene activation).
- Modulation can be assayed by determining any parameter that is indirectly or directly affected by the expression of the target gene. Such parameters include, e.g., changes in RNA or protein levels, changes in protein activity, changes in product levels, changes in downstream gene expression, changes in reporter gene transcription (luciferase, CAT, β-galactosidase, β-glucuronidase, GFP (see, e.g., Mistili & Spector, Nature Biotechnology. 15:961-964 (1997)); changes in signal transduction, phosphorylation and dephosphorylation, receptor-ligand interactions, second messenger concentrations (e.g., cGMP, cAMP, IP3, and Ca2+), cell growth, and neovascularization. These assays can be in vitro, in vivo, and ex vivo. Such functional effects can be measured by any means known to those skilled in the art, e.g., measurement of RNA or protein levels, measurement of RNA stability, identification of downstream or reporter gene expression, e.g., via chemiluminescence, fluorescence, calorimetric reactions, antibody binding, inducible markers, ligand binding assays; changes in intracellular second messengers such as cGMP and inositol triphosphate (IP3); changes in intracellular calcium levels; cytokine release, and the like.
- To determine the level of gene expression modulation by a ZFP, cells contacted with ZFPs are compared to control cells, e.g., without the zinc finger protein or with a non-specific ZFP, to examine the extent of inhibition or activation. Control samples are assigned a relative gene expression activity value of 100%. Modulation/inhibition of gene expression is achieved when the gene expression activity value relative to the control is about 80%, preferably 50% (i.e., 0.5× the activity of the control), more preferably 25%, more preferably 5-0%. Modulation/activation of gene expression is achieved when the gene expression activity value relative to the control is 110%, more preferably 150% (i.e., 1.5× the activity of the control), more preferably 200-500%, more preferably 1000-2000% or more.
- A “transcriptional activator” and a “transcriptional repressor” refer to proteins or effector domains of proteins that have the ability to modulate transcription, as described above. Such proteins include, e.g., transcription factors and co-factors (e.g., KRAB, MAD, ERD, SID, nuclear factor kappa B subunit p65, early
growth response factor 1, and nuclear hormone receptors, VP16, VP64), endonucleases, integrases, recombinases, methyltransferases, histone acetyltransferases, histone deacetylases etc. Activators and repressors include co-activators and co-repressors (see, e.g., Utley et al., Nature 394:498-502 (1998)). - A “regulatory domain” refers to a protein or a protein domain that has transcriptional modulation activity when tethered to a DNA binding domain, i.e., a ZFP. Typically, a regulatory domain is covalently or non-covalently linked to a ZFP to effect transcription modulation. Alternatively, a ZFP can act alone, without a regulatory domain, to effect transcription modulation.
- The term “heterologous” is a relative term, which when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, a nucleic acid that is recombinantly produced typically has two or more sequences from unrelated genes synthetically arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. The two nucleic acids are thus heterologous to each other in this context. When added to a cell, the recombinant nucleic acids would also be heterologous to the endogenous genes of the cell. Thus, in a chromosome, a heterologous nucleic acid would include an non-native (non-naturally occurring) nucleic acid that has integrated into the chromosome, or a non-native (non-naturally occurring) extrachromosomal nucleic acid. In contrast, a naturally translocated piece of chromosome would not be considered heterologous in the context of this patent application, as it comprises an endogenous nucleic acid sequence that is native to the mutated cell.
- Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a “fusion protein,” where the two subsequences are encoded by a single nucleic acid sequence). See, e.g., Ausubel, supra, for an introduction to recombinant techniques.
- The term “recombinant” when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within the native (naturally occurring) form of the cell or express a second copy of a native gene that is otherwise normally or abnormally expressed, under expressed or not expressed at all.
- A “promoter” is defined as an array of nucleic acid control sequences that direct transcription. As used herein, a promoter typically includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of certain RNA polymerase II type promoters, a TATA element, enhancer, CCAAT box, SP-1 site, etc. As used herein, a promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. The promoters often have an element that is responsive to transactivation by a DNA-binding moiety such as a polypeptide, e.g., a nuclear receptor, Gal4, the lac repressor and the like.
- A “constitutive” promoter is a promoter that is active under most environmental and developmental conditions. An “inducible” promoter is a promoter that is active under certain environmental or developmental conditions.
- A “weak promoter” refers to a promoter having about the same activity as a wild type herpes simplex virus (“HSV”) thymidine kinase (“tk”) promoter or a mutated HSV tk promoter, as described in Eisenberg & McKnight, Mol. Cell. Biol. 5:1940-1947 (1985).
- The term “operably linked” refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.
- An “expression vector” is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell, and optionally integration or replication of the expression vector in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment, of viral or non-viral origin. Typically, the expression vector includes an “expression cassette,” which comprises a nucleic acid to be transcribed operably linked to a promoter. The term expression vector also encompasses naked DNA operably linked to a promoter.
- By “host cell” is meant a cell that contains a ZFP or an expression vector or nucleic acid encoding a ZFP. The host cell typically supports the replication or expression of the expression vector. Host cells may be prokaryotic cells such as E. coli, or eukaryotic cells such as yeast, fungal, protozoal, higher plant, insect, or amphibian cells, or mammalian cells such as CHO, HeLa, 293, COS-1, and the like, e.g., cultured cells (in vitro), explants and primary cultures (in vitro and ex vivo), and cells in vivo.
- “Nucleic acid” refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form. The term encompasses nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs).
- Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. The term nucleic acid is used interchangeably with gene, cDNA, mRNA, oligonucleotide, and polynucleotide. The nucleotide sequences are displayed herein in the conventional 5′-3′ orientation.
- The terms “polypeptide,” “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an analog or mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. Polypeptides can be modified, e.g., by the addition of carbohydrate residues to form glycoproteins. The terms “polypeptide,” “peptide” and “protein” include glycoproteins, as well as non-glycoproteins. The polypeptide sequences are displayed herein in the conventional N-terminal to C-terminal orientation.
- The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine, and methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.
- “Conservatively modified variants” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)). Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon in an amino acid herein, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are “silent variations,” which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence.
- As to amino acid and nucleic acid sequences, individual substitutions, deletions or additions that alter, add or delete a single amino acid or nucleotide or a small percentage of amino acids or nucleotides in the sequence create a “conservatively modified variant,” where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants and alleles of the invention.
- The following groups each contain amino acids that are conservative substitutions for one another:
-
- 1) Alanine (A), Glycine (G);
- 2) Serine (S), Threonine (T);
- 3) Aspartic acid (D), Glutamic acid (E);
- 4) Asparagine (N), Glutamine (Q);
- 5) Cysteine (C), Methionine (M);
- 6) Arginine (R), Lysine (K), Histidine (H);
- 7) Isoleucine (I), Leucine (L), Valine (V); and
- 8) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).
- (see, e.g., Creighton, Proteins (1984) for a discussion of amino acid properties).
Design of ZFPs
- The ZFPs of the invention are engineered to recognize a selected target site in the endogenous gene of choice. Typically, a backbone from any suitable C2H2 ZFP, such as SP-1, SP-1C, or ZIF268, is used as the scaffold for the engineered ZFP (see, e.g., Jacobs, EMBO J. 11:4507 (1992); Desjarlais & Berg, PNAS 90:2256-2260 (1993)). A number of methods can then be used to design and select a ZFP with high affinity for its target (e.g., preferably with a Kd of less than about 25 nM). As described above, a ZFP can be designed or selected to bind to any suitable target site in the target endogenous gene, with high affinity. Co-pending patent application U.S. Ser. No. ______, filed Jan. 12, 1999 (TTC attorney docket no. 019496-001800, herein incorporated by reference), comprehensively describes methods for design, construction, and expression of ZFPs for selected target sites.
- Any suitable method known in the art can be used to design and construct nucleic acids encoding ZFPs, e.g., phage display, random mutagenesis, combinatorial libraries, computer/rational design, affinity selection, PCR, cloning from cDNA or genomic libraries, synthetic construction and the like. (see, e.g., U.S. Pat. No. 5,786,538; Wu et al., PNAS 92:344-348 (1995); Jamieson et al., Biochemistry 33:5689-5695 (1994); Rebar & Pabo, Science 263:671-673 (1994); Choo & Klug, PNAS 91:11163-11167 (1994); Choo & Klug, PNAS 91: 11168-11172 (1994); Desjarlais & Berg, PNAS 90:2256-2260 (1993); Desjarlais & Berg, PNAS 89:7345-7349 (1992); Pomerantz et al., Science 267:93-96 (1995); Pomerantz et al., PNAS 92:9752-9756 (1995); and Liu et al., PNAS 94:5525-5530 (1997); Griesman & Pabo, Science 275:657-661 (1997); Desjarlais & Berg, PNAS 91:11-99-11103 (1994)).
- In a preferred embodiment, copending application U.S. Ser. No. ______, filed Jan. 12, 1999 (TTC attorney docket no. 019496-001800) provides methods that select a target gene, and identify a target site within the gene containing one to six (or more) D-able sites (see definition below). Using these methods, a ZFP can then be synthesized that binds to the preselected site. These methods of target site selection are premised, in part, on the recognition that the presence of one or more D-able sites in a target segment confers the potential for higher binding affinity in a ZFP selected or designed to bind to that site relative to ZFPs that bind to target segments lacking D-able sites. Experimental evidence supporting this insight is provided in Examples 2-9 of copending application U.S. Ser. No. ______, filed Jan. 12, 1999 (TTC attorney docket no. 019496-001800).
- A D-able site or subsite is a region of a target site that allows an appropriately designed single zinc finger to bind to four bases rather than three of the target site. Such a zinc finger binds to a triplet of bases on one strand of a double-stranded target segment (target strand) and a fourth base on the other strand (see
FIG. 2 of copending application U.S. Ser. No. ______, filed Jan. 12, 1999 (TTC attorney docket no. 019496-001800). Binding of a single zinc finger to a four base target segment imposes constraints both on the sequence of the target strand and on the amino acid sequence of the zinc finger. The target site within the target strand should include the “D-able”site motif 5′NNGK 3′, in which N and K are conventional IUPAC-IUB ambiguity codes. A zinc finger for binding to such a site should include an arginine residue at position −1 and an aspartic acid, (or less preferably a glutamic acid) at position +2. The arginine residues at position −1 interacts with the G residue in the D-able site. The aspartic acid (or glutamic acid) residue at position +2 of the zinc finger interacts with the opposite strand base complementary to the K base in the D-able site. It is the interaction between aspartic acid (symbol D) and the opposite strand base (fourth base) that confers the name D-able site. As is apparent from the D-able site formula, there are two subtypes of D-able sites: 5′NNGG 3′ and 5′NNGT 3′. For the former site, the aspartic acid or glutamic acid at position +2 of a zinc finger interacts with a C in the opposite strand to the D-able site. In the latter site, the aspartic acid or glutamic acid at position +2 of a zinc finger interacts with an A in the opposite strand to the D-able site. In general, NNGG is preferred over NNGT. - In the design of a ZFP with three fingers, a target site should be selected in which at least one finger of the protein, and optionally, two or all three fingers have the potential to bind a D-able site. Such can be achieved by selecting a target site from within a larger target gene having the
formula 5′-NNx aNy bNzc-3′, wherein -
- each of the sets (x, a), (y, b) and (z, c) is either (N, N) or (G, K);
- at least one of (x, a), (y, b) and (z, c) is (G, K) and
- N and K are IUPAC-IUB ambiguity codes
- In other words, at least one of the three sets (x, a), (y, b) and (z, c) is the set (G, K), meaning that the first position of the set is G and the second position is G or T. Those of the three sets (if any) which are not (G, K) are (N, N), meaning that the first position of the set can be occupied by any nucleotide and the second position of the set can be occupied by any nucleotide. As an example, the set (x, a) can be (G, K) and the sets (y, b) and (z, c) can both be (N, N).
- In the
formula 5′-NNx aNy bNzc-3′, the triplets of NNx aNy and bNzc represent the triplets of bases on the target strand bound by the three fingers in a ZFP. If only one of x, y and z is a G, and this G is followed by a K, the target site includes a single D-able subsite. For example, if only x is G, and a is K, the site reads 5′-NNG KNy bNzc-3′ with the D-able subsite highlighted. If both x and y but not z are G, and a and b are K, then the target site has two overlapping D-able subsites as follows: 5′-NNG KNG KNz c-3′, with one such site being represented in bold and the other in italics. If all three of x, y and z are G and a, b, and c are K, then the target segment includes three D-able subsites, as follows 5′NNG KNG KNG K3′, the D-able subsites being represented by bold, italics and underline. - These methods thus work by selecting a target gene, and systematically searching within the possible subsequences of the gene for target sites conforming to the
formula 5′-NNx aNy bNzc-3′, as described above. In some such methods, every possible subsequence of 10 contiguous bases on either strand of a potential target gene is evaluated to determine whether it conforms to the above formula, and, if so, how many D-able sites are present. Typically, such a comparison is performed by computer, and a list of target sites conforming to the formula are output. Optionally, such target sites can be output in different subsets according to how many D-able sites are present. - In a variation, the methods of the invention identify first and second target segments, each independently conforming to the above formula. The two target segments in such methods are constrained to be adjacent or proximate (i.e., within about 0-5 bases) of each other in the target gene. The strategy underlying selection of proximate target segments is to allow the design of a ZFP formed by linkage of two component ZFPs specific for the first and second target segments respectively. These principles can be extended to select target sites to be bound by ZFPs with any number of component fingers. For example, a suitable target site for a nine finger protein would have three component segments, each conforming to the above formula.
- The target sites identified by the above methods can be subject to further evaluation by other criteria or can be used directly for design or selection (if needed) and production of a ZFP specific for such a site. A further criteria for evaluating potential target sites is their proximity to particular regions within a gene. If a ZFP is to be used to repress a cellular gene on its own (i.e., without linking the ZFP to a repressing moiety), then the optimal location appears to be at, or within 50 bp upstream or downstream of the site of transcription initiation, to interfere with the formation of the transcription complex (Kim & Pabo, J. Biol. Chem. 272:29795-296800 (1997)) or compete for an essential enhancer binding protein. If, however, a ZFP is fused to a functional domain such as the KRAB repressor domain or the VP16 activator domain, the location of the binding site is considerably more flexible and can be outside known regulatory regions. For example, a KRAB domain can repress transcription at a promoter up to at least 3 kbp from where KRAB is bound (Margolin et al., PNAS 91:4509-4513 (1994)). Thus, target sites can be selected that do not necessarily include or overlap segments of demonstrable biological significance with target genes, such as regulatory sequences. Other criteria for further evaluating target segments include the prior availability of ZFPs binding to such segments or related segments, and/or ease of designing new ZFPs to bind a given target segment.
- After a target segment has been selected, a ZFP that binds to the segment can be provided by a variety of approaches. The simplest of approaches is to provide a precharacterized ZFP from an existing collection that is already known to bind to the target site. However, in many instances, such ZFPs do not exist. An alternative approach can also be used to design new ZFPs, which uses the information in a database of existing ZFPs and their respective binding affinities. A further approach is to design a ZFP based on substitution rules as discussed above. A still further alternative is to select a ZFP with specificity for a given target by an empirical process such as phage display. In some such methods, each component finger of a ZFP is designed or selected independently of other component fingers. For example, each finger can be obtained from a different preexisting ZFP or each finger can be subject to separate randomization and selection.
- Once a ZFP has been selected, designed, or otherwise provided to a given target segment, the ZFP or the DNA encoding it are synthesized. Exemplary methods for synthesizing and expressing DNA encoding zinc finger proteins are described below. The ZFP or a polynucleotide encoding it can then be used for modulation of expression, or analysis of the target gene containing the target site to which the ZFP binds.
- Expression and Purification of ZFPs
- ZFP polypeptides and nucleic acids can be made using routine techniques in the field of recombinant genetics. Basic texts disclosing the general methods of use in this invention include Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd ed. 1989); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Current Protocols in Molecular Biology (Ausubel et al., eds., 1994)). In addition, essentially any nucleic acid can be custom ordered from any of a variety of commercial sources. Similarly, peptides and antibodies can be custom ordered from any of a variety of commercial sources.
- Two alternative methods are typically used to create the coding sequences required to express newly designed DNA-binding peptides. One protocol is a PCR-based assembly procedure that utilizes six overlapping oligonucleotides (
FIG. 1 ). Three oligonucleotides (oligos FIG. 1 ) correspond to “universal” sequences that encode portions of the DNA-binding domain between the recognition helices. These oligonucleotides remain constant for all zinc finger constructs. The other three “specific” oligonucleotides (oligos FIG. 1 ) are designed to encode the recognition helices. These oligonucleotides contain substitutions primarily at positions −1, 2, 3 and 6 on the recognition helices making them specific for each of the different DNA-binding domains. - The PCR synthesis is carried out in two steps. First, a double stranded DNA template is created by combining the six oligonucleotides (three universal, three specific) in a four cycle PCR reaction with a low temperature annealing step, thereby annealing the oligonucleotides to form a DNA “scaffold.” The gaps in the scaffold are filled in by high-fidelity thermostable polymerase, the combination of Taq and Pfu polymerases also suffices. In the second phase of construction, the zinc finger template is amplified by external primers designed to incorporate restriction sites at either end for cloning into a shuttle vector or directly into an expression vector.
- An alternative method of cloning the newly designed DNA-binding proteins relies on annealing complementary oligonucleotides encoding the specific regions of the desired ZFP. This particular application requires that the oligonucleotides be phosphorylated prior to the final ligation step. This is usually performed before setting up the annealing reactions, but kinasing can also occur post-annealing. In brief, the “universal” oligonucleotides encoding the constant regions of the proteins (
oligos common oligos 1 andfinger 3 are engineered to leave overhanging sequences specific for the restriction sites used in cloning into the vector of choice. The second assembly protocol differs from the initial protocol in the following aspects: the “scaffold” encoding the newly designed ZFP is composed entirely of synthetic DNA thereby eliminating the polymerase fill-in step, additionally the fragment to be cloned into the vector does not require amplification. Lastly, the design of leaving sequence-specific overhangs eliminates the need for restriction enzyme digests of the inserting fragment. - The resulting fragment encoding the newly designed ZFP is ligated into an expression vector. Expression vectors that are commonly utilized include, but are not limited to, a modified pMAL-c2 bacterial expression vector (New England BioLabs, “NEB”) or a eukaryotic expression vector, pcDNA (Promega).
- Any suitable method of protein purification known to those of skill in the art can be used to purify ZFPs of the invention (see Ausubel, supra, Sambrook, supra). In addition, any suitable host can be used, e.g., bacterial cells, insect cells, yeast cells, mammalian cells, and the like.
- In one embodiment, expression of the ZFP fused to a maltose binding protein (MBP-ZFP) in bacterial strain JM109 allows for straightforward purification through an amylose column (NEB). High expression levels of the zinc finger chimeric protein can be obtained by induction with IPTG since the MBP-ZFP fusion in the pMal-c2 expression plasmid is under the control of the IPTG inducible tac promoter (NEB). Bacteria containing the MBP-ZFP fusion plasmids are inoculated in to 2×YT medium containing 10 μM ZnCl2, 0.02% glucose, plus 50 μg/ml ampicillin and shaken at 37° C. At mid-exponential growth IPTG is added to 0.3 mM and the cultures are allowed to shake. After 3 hours the bacteria are harvested by centrifugation, disrupted by sonication, and then insoluble material is removed by centrifugation. The MBP-ZFP proteins are captured on an amylose-bound resin, washed extensively with buffer containing 20 mM Tris-HCl (pH 7.5), 200 mM NaCl, 5 mM DTT and 50 μM ZnCl2, then eluted with maltose in essentially the same buffer (purification is based on a standard protocol from NEB). Purified proteins are quantitated and stored for biochemical analysis.
- The biochemical properties of the purified proteins, e.g., Kd, can be characterized by any suitable assay. In one embodiment, Kd is characterized via electrophoretic mobility shift assays (“EMSA”) (Buratowski & Chodosh, in Current Protocols in Molecular Biology pp. 12.2.1-12.2.7 (Ausubel ed., 1996); see also U.S. Pat. No. 5,789,538, U.S. Ser. No. ______, filed Jan. 12, 1999 (TTC attorney docket no. 019496-001800), herein incorporated by reference, and Example I). Affinity is measured by titrating purified protein against a low fixed amount of labeled double-stranded oligonucleotide target. The target comprises the natural binding site sequence (9 or 18 bp) flanked by the 3 bp found in the natural sequence. External to the binding site plus flanking sequence is a constant sequence. The annealed oligonucleotide targets possess a 1
bp 5′ overhang which allows for efficient labeling of the target with T4 phage polynucleotide kinase. For the assay the target is added at a concentration of 40 nM or lower (the actual concentration is kept at least 10-fold lower than the lowest protein dilution) and the reaction is allowed to equilibrate for at least 45 min. In addition the reaction mixture also contains 10 mM Tris (pH 7.5), 100 mM KCl, 1 mM MgCl2, 0.1 mM ZnCl2, 5 mM DTT, 10% glycerol, 0.02% BSA (poly (dIdC) or (dAdT) (Pharmacia) can also added at 10-100 μg/μl). - The equilibrated reactions are loaded onto a 10% polyacrylamide gel, which has been pre-run for 45 min in Tris/glycine buffer, then bound and unbound labeled target is resolved be electrophoresis at 150V (alternatively, 10-20% gradient Tris-HCl gels, containing a 4% polyacrylamide stacker, can be used). The dried gels are visualized by autoradiography or phosphoroimaging and the apparent Kd is determined by calculating the protein concentration that gives half-maximal binding.
- Similar assays can also include determining active fractions in the protein preparations. Active fractions are determined by stoichiometric gel shifts where proteins are titrated against a high concentration of target DNA. Titrations are done at 100, 50, and 25% of target (usually at micromolar levels).
- In another embodiment, phage display libraries can be used to select ZFPs with high affinity to the selected target site. This method differs fundamentally from direct design in that it involves the generation of diverse libraries of mutagenized ZFPs, followed by the isolation of proteins with desired DNA-binding properties using affinity selection methods. To use this method, the experimenter typically proceeds as follows.
- First, a gene for a ZFP is mutagenized to introduce diversity into regions important for binding specificity and/or affinity. In a typical application, this is accomplished via randomization of a single finger at positions −1, +2, +3, and +6, and perhaps accessory positions such as +1, +5, +8, or +10.
- Next, the mutagenized gene is cloned into a phage or phagemid vector as a fusion with, e.g., gene III of filamentous phage, which encodes the coat protein pIII. The zinc finger gene is inserted between segments of gene III encoding the membrane export signal peptide and the remainder of pIII, so that the ZFP is expressed as an amino-terminal fusion with pIII in the mature, processed protein. When using phagemid vectors, the mutagenized zinc finger gene may also be fused to a truncated version of gene III encoding, minimally, the C-terminal region required for assembly of pIII into the phage particle.
- The resultant vector library is transformed into E. Coli and used to produce filamentous phage which express variant ZFPs on their surface as fusions with the coat protein pIII (if a phagemid vector is used, then the this step requires superinfection with helper phage). The phage library is then incubated with target DNA site, and affinity selection methods are used to isolate phage which bind target with high affinity from bulk phage. Typically, the DNA target is immobilized on a solid support, which is then washed under conditions sufficient to remove all but the tightest binding phage. After washing, any phage remaining on the support are recovered via elution under conditions which totally disrupt zinc finger-DNA binding.
- Recovered phage are used to infect fresh E. coli, which is then amplified and used to produce a new batch of phage particles. The binding and recovery steps are then repeated as many times as is necessary to sufficiently enrich the phage pool for tight binders such that these may be identified using sequencing and/or screening methods.
- Regulatory Domains
- The ZFPs of the invention can optionally be associated with regulatory domains for modulation of gene expression. The ZFP can be covalently or non-covalently associated with one or more regulatory domains, alternatively two or more regulatory domains, with the two or more domains being two copies of the same domain, or two different domains. The regulatory domains can be covalently linked to the ZFP, e.g., via an amino acid linker, as part of a fusion protein. The ZFPs can also be associated with a regulatory domain via a non-covalent dimerization domain, e.g., a leucine zipper, a STAT protein N terminal domain, or an FK506 binding protein (see, e.g., O'Shea, Science 254: 539 (1991), Barahmand-Pour et al., Curr. Top. Microbiol. Immunol. 211:121-128 (1996); Klemm et al., Annu. Rev. Immunol. 16:569-592 (1998); Klemm et al., Annu. Rev. Immunol. 16:569-592 (1998); Ho et al., Nature 382:822-826 (1996); and Pomeranz et al., Biochem. 37:965 (1998)). The regulatory domain can be associated with the ZFP at any suitable position, including the C- or N-terminus of the ZFP.
- Common regulatory domains for addition to the ZFP include, e.g., effector domains from transcription factors (activators, repressors, co-activators, co-repressors), silencers, nuclear hormone receptors, oncogene transcription factors (e.g., myc, jun, fos, myb, max, mad, rel, ets, bcl, myb, mos family members etc.); DNA repair enzymes and their associated factors and modifiers; DNA rearrangement enzymes and their associated factors and modifiers; chromatin associated proteins and their modifiers (e.g., kinases, acetylases and deacetylases); and DNA modifying enzymes (e.g., methyltransferases, topoisomerases, helicases, ligases, kinases, phosphatases, polymerases, endonucleases) and their associated factors and modifiers.
- Transcription factor polypeptides from which one can obtain a regulatory domain include those that are involved in regulated and basal transcription. Such polypeptides include transcription factors, their effector domains, coactivators, silencers, nuclear hormone receptors (see, e.g., Goodrich et al., Cell 84:825-30 (1996) for a review of proteins and nucleic acid elements involved in transcription; transcription factors in general are reviewed in Barnes & Adcock, Clin. Exp. Allergy 25 Suppl. 2:46-9 (1995) and Roeder, Methods Enzymol. 273:165-71 (1996)). Databases dedicated to transcription factors are known (see, e.g., Science 269:630 (1995)). Nuclear hormone receptor transcription factors are described in, for example, Rosen et al., J. Med. Chem. 38:4855-74 (1995). The C/EBP family of transcription factors are reviewed in Wedel et al., Immunobiology 193:171-85 (1995). Coactivators and co-repressors that mediate transcription regulation by nuclear hormone receptors are reviewed in, for example, Meier, Eur. J. Endocrinol. 134(2): 158-9 (1996); Kaiser et al., Trends Biochem. Sci. 21:342-5 (1996); and Utley et al., Nature 394:498-502 (1998)). GATA transcription factors, which are involved in regulation of hematopoiesis, are described in, for example, Simon, Nat. Genet. 11:9-11 (1995); Weiss et al., Exp. Hematol. 23:99-107. TATA box binding protein (TBP) and its associated TAF polypeptides (which include TAF30, TAF55, TAF80, TAF110, TAF150, and TAF250) are described in Goodrich & Tjian, Curr. Opin. Cell Biol. 6:403-9 (1994) and Hurley, Curr. Opin. Struct. Biol. 6:69-75 (1996). The STAT family of transcription factors are reviewed in, for example, Barahmand-Pour et al., Curr. Top. Microbiol. Immunol. 211:121-8 (1996). Transcription factors involved in disease are reviewed in Aso et al., J. Clin. Invest. 97:1561-9 (1996).
- In one embodiment, the KRAB repression domain from the human KOX-1 protein is used as a transcriptional repressor (Thiesen et al., New Biologist 2:363-374 (1990); Margolin et al., PNAS 91:4509-4513 (1994); Pengue et al., Nucl. Acids Res. 22:2908-2914 (1994); Witzgall et al., PNAS 91:4514-4518 (1994); see also Example III)). In another embodiment, KAP-1, a KRAB co-repressor, is used with KRAB (Friedman et al., Genes Dev. 10:2067-2078 (1996)). Alternatively, KAP-1 can be used alone with a ZFP. Other preferred transcription factors and transcription factor domains that act as transcriptional repressors include MAD (see, e.g., Sommer et al., J. Biol. Chem. 273:6632-6642 (1998); Gupta et al., Oncogene 16:1149-1159 (1998); Queva et al., Oncogene 16:967-977 (1998); Larsson et al., Oncogene 15:737-748 (1997); Laherty et al., Cell 89:349-356 (1997); and Cultraro et al., Mol Cell. Biol. 17:2353-2359 (19977)); FKHR (forkhead in rhapdosarcoma gene; Ginsberg et al., Cancer Res. 15:3542-3546 (1998); Epstein et al., Mol. Cell. Biol. 18:4118-4130 (1998)); EGR-1 (early growth response gene product-1; Yan et al., PNAS 95:8298-8303 (1998); and Liu et al., Cancer Gene Ther. 5:3-28 (1998)); the ets2 repressor factor repressor domain (ERD; Sgouras et al., EMBO J. 14:4781-4793 ((19095)); and the MAD smSIN3 interaction domain (SID; Ayer et al., Mol. Cell. Biol. 16:5772-5781 (1996)).
- In one embodiment, the HSV VP16 activation domain is used as a transcriptional activator (see, e.g., Hagmann et al., J. Virol. 71:5952-5962 (1997)). Other preferred transcription factors that could supply activation domains include the VP64 activation domain (Seipel et al., EMBO J. 11:4961-4968 (1996)); nuclear hormone receptors (see, e.g., Torchia et al., Curr. Opin. Cell. Biol. 10:373-383 (1998)); the p65 subunit of nuclear factor kappa B (Bitko & Barik, J. Virol. 72:5610-5618 (1998) and Doyle & Hunt, Neuroreport 8:2937-2942 (1997)); and EGR-1 (early growth response gene product-1; Yan et al., PNAS 95:8298-8303 (1998); and Liu et al., Cancer Gene Ther. 5:3-28 (1998)).
- Kinases, phosphatases, and other proteins that modify polypeptides involved in gene regulation are also useful as regulatory domains for ZFPs. Such modifiers are often involved in switching on or off transcription mediated by, for example, hormones. Kinases involved in transcription regulation are reviewed in Davis, Mol. Reprod. Dev. 42:459-67 (1995), Jackson et al., Adv. Second Messenger Phosphoprotein Res. 28:279-86 (1993), and Boulikas, Crit. Rev. Eukaryot. Gene Expr. 5:1-77 (1995), while phosphatases are reviewed in, for example, Schonthal & Senin, Cancer Biol. 6:239-48 (1995). Nuclear tyrosine kinases are described in Wang, Trends Biochem. Sci. 19:373-6 (1994).
- As described, useful domains can also be obtained from the gene products of oncogenes (e.g., myc, jun, fos, myb, max, mad, rel, ets, bcl, myb, mos family members) and their associated factors and modifiers. Oncogenes are described in, for example, Cooper, Oncogenes, 2nd ed., The Jones and Bartlett Series in Biology, Boston, Mass., Jones and Bartlett Publishers, 1995. The ets transcription factors are reviewed in Waslylk et al., Eur. J. Biochem. 211:7-18 (1993) and Crepieux et al., Crit. Rev. Oncog. 5:615-38 (1994). Myc oncogenes are reviewed in, for example, Ryan et al., Biochem. J. 314:713-21 (1996). The jun and fos transcription factors are described in, for example, The Fos and Jun Families of Transcription Factors, Angel & Herrlich, eds. (1994). The max oncogene is reviewed in Hurlin et al., Cold Spring Harb. Symp. Quant. Biol. 59:109-16. The myb gene family is reviewed in Kanei-Ishii et al., Curr. Top. Microbiol. Immunol. 211:89-98 (1996). The mos family is reviewed in Yew et al., Curr. Opin. Genet. Dev. 3:19-25 (1993).
- ZFPs can include regulatory domains obtained from DNA repair enzymes and their associated factors and modifiers. DNA repair systems are reviewed in, for example, Vos, Curr. Opin. Cell Biol. 4:385-95 (1992); Sancar, Ann. Rev. Genet. 29:69-105 (1995); Lehmann, Genet. Eng. 17:1-19 (1995); and Wood, Ann. Rev. Biochem. 65:135-67 (1996). DNA rearrangement enzymes and their associated factors and modifiers can also be used as regulatory domains (see, e.g., Gangloff et al., Experientia 50:261-9 (1994); Sadowski, FASEB J. 7:760-7 (1993)).
- Similarly, regulatory domains can be derived from DNA modifying enzymes (e.g., DNA methyltransferases, topoisomerases, helicases, ligases, kinases, phosphatases, polymerases) and their associated factors and modifiers. Helicases are reviewed in Matson et al., Bioessays, 16:13-22 (1994), and methyltransferases are described in Cheng, Curr. Opin. Struct. Biol. 5:4-10 (1995). Chromatin associated proteins and their modifiers (e.g., kinases, acetylases and deacetylases), such as histone deacetylase (Wolffe, Science 272:371-2 (1996)) are also useful as domains for addition to the ZFP of choice. In one preferred embodiment, the regulatory domain is a DNA methyl transferase that acts as a transcriptional repressor (see, e.g., Van den Wyngaert et al., FEBS Lett. 426:283-289 (1998); Flynn et al., J. Mol. Biol. 279:101-116 (1998); Okano et al., Nucleic Acids Res. 26:2536-2540 (1998); and Zardo & Caiafa, J. Biol. Chem. 273:16517-16520 (1998)). In another preferred embodiment, endonucleases such as Fok1 are used as transcriptional repressors, which act via gene cleavage (see, e.g., WO95/09233; and PCT/US94/01201).
- Factors that control chromatin and DNA structure, movement and localization and their associated factors and modifiers; factors derived from microbes (e.g., prokaryotes, eukaryotes and virus) and factors that associate with or modify them can also be used to obtain chimeric proteins. In one embodiment, recombinases and integrases are used as regulatory domains. In one embodiment, histone acetyltransferase is used as a transcriptional activator (see, e.g., Jin & Scotto, Mol. Cell. Biol. 18:4377-4384 (1998); Wolffe, Science 272:371-372 (1996); Taunton et al., Science 272:408-411 (1996); and Hassig et al., PNAS 95:3519-3524 (1998)). In another embodiment, histone deacetylase is used as a transcriptional repressor (see, e.g., Jin & Scotto, Mol. Cell. Biol. 18:4377-4384 (1998); Syntichaki & Thireos, J. Biol. Chem. 273:24414-24419 (1998); Sakaguchi et al., Genes Dev. 12:2831-2841 (1998); and Martinez et al., J. Biol. Chem. 273:23781-23785 (1998)).
- Linker domains between polypeptide domains, e.g., between two ZFPs or between a ZFP and a regulatory domain, can be included. Such linkers are typically polypeptide sequences, such as poly gly sequences of between about 5 and 200 amino acids. Preferred linkers are typically flexible amino acid subsequences which are synthesized as part of a recombinant fusion protein. For example, in one embodiment, the linker DGGGS is used to link two ZFPs. In another embodiment, the flexible linker linking two ZFPs is an amino acid subsequence comprising the sequence TGEKP (see, e.g., Liu et al., PNAS 5525-5530 (1997)). In another embodiment, the linker LRQKDGERP is used to link two ZFPs. In another embodiment, the following linkers are used to link two ZFPs: GGRR (Pomerantz et al. 1995, supra), (G4S)n (Kim et al., PNAS 93, 1156-1160 (1996.); and GGRRGGGS; LRQRDGERP; LRQKDGGGSERP; LRQKd(G3S)2 ERP. Alternatively, flexible linkers can be rationally designed using computer program capable of modeling both DNA-binding sites and the peptides themselves (Desjarlais & Berg, PNAS 90:2256-2260 (1993), PNAS 91:11099-11103 (1994) or by phage display methods.
- In other embodiments, a chemical linker is used to connect synthetically or recombinantly produced domain sequences. Such flexible linkers are known to persons of skill in the art. For example, poly(ethylene glycol) linkers are available from Shearwater Polymers, Inc. Huntsville, Ala. These linkers optionally have amide linkages, sulfhydryl linkages, or heterofunctional linkages. In addition to covalent linkage of ZFPs to regulatory domains, non-covalent methods can be used to produce molecules with ZFPs associated with regulatory domains.
- In addition to regulatory domains, often the ZFP is expressed as a fusion protein such as maltose binding protein (“MBP”), glutathione S transferase (GST), hexahistidine, c-myc, and the FLAG epitope, for ease of purification, monitoring expression, or monitoring cellular and subcellular localization.
- Expression Vectors for Nucleic Acids Encoding ZFP
- The nucleic acid encoding the ZFP of choice is typically cloned into intermediate vectors for transformation into prokaryotic or eukaryotic cells for replication and/or expression, e.g., for determination of Kd. Intermediate vectors are typically prokaryote vectors, e.g., plasmids, or shuttle vectors, or insect vectors, for storage or manipulation of the nucleic acid encoding ZFP or production of protein. The nucleic acid encoding a ZFP is also typically cloned into an expression vector, for administration to a plant cell, animal cell, preferably a mammalian cell or a human cell, fungal cell, bacterial cell, or protozoal cell.
- To obtain expression of a cloned gene or nucleic acid, a ZFP is typically subcloned into an expression vector that contains a promoter to direct transcription. Suitable bacterial and eukaryotic promoters are well known in the art and described, e.g., in Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd ed. 1989); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Current Protocols in Molecular Biology (Ausubel et al., eds., 1994). Bacterial expression systems for expressing the ZFP are available in, e.g., E. coli, Bacillus sp., and Salmonella (Palva et al., Gene 22:229-235 (1983)). Kits for such expression systems are commercially available. Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available.
- The promoter used to direct expression of a ZFP nucleic acid depends on the particular application. For example, a strong constitutive promoter is typically used for expression and purification of ZFP. In contrast, when a ZFP is administered in vivo for gene regulation, either a constitutive or an inducible promoter is used, depending on the particular use of the ZFP. In addition, a preferred promoter for administration of a ZFP can be a weak promoter, such as HSV TK or a promoter having similar activity. The promoter typically can also include elements that are responsive to transactivation, e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tet-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, PNAS 89:5547 (1992); Oligino et al., Gene Ther. 5:491-496 (1998); Wang et al., Gene Ther. 4:432-441 (1997); Neering et al., Blood 88:1147-1155 (1996); and Rendahl et al., Nat. Biotechnol. 16:757-761 (1998)).
- In addition to the promoter, the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the nucleic acid in host cells, either prokaryotic or eukaryotic. A typical expression cassette thus contains a promoter operably linked, e.g., to the nucleic acid sequence encoding the ZFP, and signals required, e.g., for efficient polyadenylation of the transcript, transcriptional termination, ribosome binding sites, or translation termination. Additional elements of the cassette may include, e.g., enhancers, and heterologous spliced intronic signals.
- The particular expression vector used to transport the genetic information into the cell is selected with regard to the intended use of the ZFP, e.g., expression in plants, animals, bacteria, fungus, protozoa etc. (see expression vectors described below and in the Example section). Standard bacterial expression vectors include plasmids such as pBR322 based plasmids, pSKF, pET23D, and commercially available fusion expression systems such as GST and LacZ. A preferred fusion protein is the maltose binding protein, “MBP.” Such fusion proteins are used for purification of the ZFP. Epitope tags can also be added to recombinant proteins to provide convenient methods of isolation, for monitoring expression, and for monitoring cellular and subcellular localization, e.g., c-myc or FLAG.
- Expression vectors containing regulatory elements from eukaryotic viruses are often used in eukaryotic expression vectors, e.g., SV40 vectors, papilloma virus vectors, and vectors derived from Epstein-Barr virus. Other exemplary eukaryotic vectors include pMSG, pAV009/A+, pMTO10/A+, pMAMneo-5, baculovirus pDSVE, and any other vector allowing expression of proteins under the direction of the SV40 early promoter, SV40 late promoter, metallothionein promoter, murine mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells.
- Some expression systems have markers for selection of stably transfected cell lines such as thymidine kinase, hygromycin B phosphotransferase, and dihydrofolate reductase. High yield expression systems are also suitable, such as using a baculovirus vector in insect cells, with a ZFP encoding sequence under the direction of the polyhedrin promoter or other strong baculovirus promoters.
- The elements that are typically included in expression vectors also include a replicon that functions in E. coli, a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of recombinant sequences.
- Standard transfection methods are used to produce bacterial, mammalian, yeast or insect cell lines that express large quantities of protein, which are then purified using standard techniques (see, e.g., Colley et al., J. Biol. Chem. 264:17619-17622 (1989); Guide to Protein Purification, in Methods in Enzymology, vol. 182 (Deutscher, ed., 1990)). Transformation of eukaryotic and prokaryotic cells are performed according to standard techniques (see, e.g., Morrison, J. Bact. 132:349-351 (1977); Clark-Curtiss & Curtiss, Methods in Enzymology 101:347-362 (Wu et al., eds, 1983).
- Any of the well known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, liposomes, microinjection, naked DNA, plasmid vectors, viral vectors, both episomal and integrative, and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al., supra). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing the protein of choice.
- Assays for Determining Regulation of Gene Expression by ZFPs
- A variety of assays can be used to determine the level of gene expression regulation by ZFPs. The activity of a particular ZFP can be assessed using a variety of in vitro and in vivo assays, by measuring, e.g., protein or mRNA levels, product levels, enzyme activity, tumor growth; transcriptional activation or repression of a reporter gene; second messenger levels (e.g., cGMP, cAMP, IP3, DAG, Ca2+); cytokine and hormone production levels; and neovascularization, using, e.g., immunoassays (e.g., ELISA and immunohistochemical assays with antibodies), hybridization assays (e.g., RNase protection, northerns, in situ hybridization, oligonucleotide array studies), colorimetric assays, amplification assays, enzyme activity assays, tumor growth assays, phenotypic assays, and the like.
- ZFPs are typically first tested for activity in vitro using cultured cells, e.g., 293 cells, CHO cells, VERO cells, BHK cells, HeLa cells, COS cells, and the like. Preferably, human cells are used. The ZFP is often first tested using a transient expression system with a reporter gene, and then regulation of the target endogenous gene is tested in cells and in animals, both in vivo and ex vivo. The ZFP can be recombinantly expressed in a cell, recombinantly expressed in cells transplanted into an animal, or recombinantly expressed in a transgenic animal, as well as administered as a protein to an animal or cell using delivery vehicles described below. The cells can be immobilized, be in solution, be injected into an animal, or be naturally occurring in a transgenic or non-transgenic animal.
- Modulation of gene expression is tested using one of the in vitro or in vivo assays described herein. Samples or assays are treated with a ZFP and compared to control samples without the test compound, to examine the extent of modulation. As described above, for regulation of endogenous gene expression, the ZFP typically has a Kd of 200 nM or less, more preferably 100 nM or less, more preferably 50 nM, most preferably 25 nM or less.
- The effects of the ZFPs can be measured by examining any of the parameters described above. Any suitable gene expression, phenotypic, or physiological change can be used to assess the influence of a ZFP. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as tumor growth, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots or oligonucleotide array studies), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP.
- Preferred assays for ZFP regulation of endogenous gene expression can be performed in vitro. In one preferred in vitro assay format, ZFP regulation of endogenous gene expression in cultured cells is measured by examining protein production using an ELISA assay (see Examples VI and VII). The test sample is compared to control cells treated with an empty vector or an unrelated ZFP that is targeted to another gene.
- In another embodiment, ZFP regulation of endogenous gene expression is determined in vitro by measuring the level of target gene mRNA expression. The level of gene expression is measured using amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNase protection, dot blotting. RNase protection is used in one embodiment (see Example VIII and
FIG. 10 ). The level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein. - Alternatively, a reporter gene system can be devised using the target gene promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or β-gal. The reporter construct is typically co-transfected into a cultured cell. After treatment with the ZFP of choice, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.
- Another example of a preferred assay format useful for monitoring ZFP regulation of endogenous gene expression is performed in vivo. This assay is particularly useful for examining ZFPs that inhibit expression of tumor promoting genes, genes involved in tumor support, such as neovascularization (e.g., VEGF), or that activate tumor suppressor genes such as p53. In this assay, cultured tumor cells expressing the ZFP of choice are injected subcutaneously into an immune compromised mouse such as an athymic mouse, an irradiated mouse, or a SCID mouse. After a suitable length of time, preferably 4-8 weeks, tumor growth is measured, e.g., by volume or by its two largest dimensions, and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth. Alternatively, the extent of tumor neovascularization can also be measured. Immunoassays using endothelial cell specific antibodies are used to stain for vascularization of the tumor and the number of vessels in the tumor. Tumors that have a statistically significant reduction in the number of vessels (using, e.g., Student's T test) are said to have inhibited neovascularization.
- Transgenic and non-transgenic animals are also used as a preferred embodiment for examining regulation of endogenous gene expression in vivo. Transgenic animals typically express the ZFP of choice. Alternatively, animals that transiently express the ZFP of choice, or to which the ZFP has been administered in a delivery vehicle, can be used. Regulation of endogenous gene expression is tested using any one of the assays described herein.
- Nucleic Acids Encoding ZFPs and Gene Therapy
- Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids encoding engineered ZFP in mammalian cells or target tissues. Such methods can be used to administer nucleic acids encoding ZFPs to cells in vitro. Preferably, the nucleic acids encoding ZFPs are administered for in vivo or ex vivo gene therapy uses. Non-viral vector delivery systems include DNA plasmids, naked nucleic acid, and nucleic acid complexed with a delivery vehicle such as a liposome. Viral vector delivery systems include DNA and RNA viruses, which have either episomal or integrated genomes after delivery to the cell. For a review of gene therapy procedures, see Anderson, Science 256:808-813 (1992); Nabel & Felgner, TIBTECH 11:211-217 (1993); Mitani & Caskey, TIBTECH 11:162-166 (1993); Dillon, TIBTECH 11: 167-175 (1993); Miller, Nature 357:455-460 (1992); Van Brunt, Biotechnology 6(10):1149-1154 (1988); Vigne, Restorative Neurology and Neuroscience 8:35-36 (1995); Kremer & Perricaudet, British Medical Bulletin 51(1):31-44 (1995); Haddada et al., in Current Topics in Microbiology and Immunology Doerfler and Böhm (eds) (1995); and Yu et al., Gene Therapy 1:13-26 (1994).
- Methods of non-viral delivery of nucleic acids encoding engineered ZFPs include lipofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, polycation or lipid:nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA. Lipofection is described in e.g., U.S. Pat. No. 5,049,386, U.S. Pat. No. 4,946,787; and U.S. Pat. No. 4,897,355) and lipofection reagents are sold commercially (e.g., Transfectam™ and Lipofectin™). Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides include those of Felgner, WO 91/17424, WO 91/16024. Delivery can be to cells (ex vivo administration) or target tissues (in vivo administration).
- The preparation of lipid:nucleic acid complexes, including targeted liposomes such as immunolipid complexes, is well known to one of skill in the art (see, e.g., Crystal, Science 270:404-410 (1995); Blaese et al., Cancer Gene Ther. 2:291-297 (1995); Behr et al., Bioconjugate Chem. 5:382-389 (1994); Remy et al., Bioconjugate Chem. 5:647-654 (1994); Gao et al., Gene Therapy 2:710-722 (1995); Ahmad et al., Cancer Res. 52:4817-4820 (1992); U.S. Pat. Nos. 4,186,183, 4,217,344, 4,235,871, 4,261,975, 4,485,054, 4,501,728, 4,774,085, 4,837,028, and 4,946,787).
- The use of RNA or DNA viral based systems for the delivery of nucleic acids encoding engineered ZFP take advantage of highly evolved processes for targeting a virus to specific cells in the body and trafficking the viral payload to the nucleus. Viral vectors can be administered directly to patients (in vivo) or they can be used to treat cells in vitro and the modified cells are administered to patients (ex vivo). Conventional viral based systems for the delivery of ZFPs could include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Viral vectors are currently the most efficient and versatile method of gene transfer in target cells and tissues. Integration in the host genome is possible with the retrovirus, lentivirus, and adeno-associated virus gene transfer methods, often resulting in long term expression of the inserted transgene. Additionally, high transduction efficiencies have been observed in many different cell types and target tissues.
- The tropism of a retrovirus can be altered by incorporating foreign envelope proteins, expanding the potential target population of target cells. Lentiviral vectors are retroviral vector that are able to transduce or infect non-dividing cells and typically produce high viral titers. Selection of a retroviral gene transfer system would therefore depend on the target tissue. Retroviral vectors are comprised of cis-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum cis-acting LTRs are sufficient for replication and packaging of the vectors, which are then used to integrate the therapeutic gene into the target cell to provide permanent transgene expression. Widely used retroviral vectors include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immuno deficiency virus (SIV), human immuno deficiency virus (HIV), and combinations thereof (see, e.g., Buchscher et al., J. Virol. 66:2731-2739 (1992); Johann et al., J. Virol. 66:1635-1640 (1992); Sommerfelt et al., Virol. 176:58-59 (1990); Wilson et al., J. Virol. 63:2374-2378 (1989); Miller et al., J. Virol. 65:2220-2224 (1991); PCT/US94/05700).
- In applications where transient expression of the ZFP is preferred, adenoviral based systems are typically used. Adenoviral based vectors are capable of very high transduction efficiency in many cell types and do not require cell division. With such vectors, high titer and levels of expression have been obtained. This vector can be produced in large quantities in a relatively simple system. Adeno-associated virus (“AAV”) vectors are also used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides, and for in vivo and ex vivo gene therapy procedures (see, e.g., West et al., Virology 160:38-47 (1987); U.S. Pat. No. 4,797,368; WO 93/24641; Kotin, Human Gene Therapy 5:793-801 (1994); Muzyczka, J. Clin. Invest. 94:1351 (1994). Construction of recombinant AAV vectors are described in a number of publications, including U.S. Pat. No. 5,173,414; Tratschin et al., Mol. Cell. Biol. 5:3251-3260 (1985); Tratschin, et al., Mol. Cell. Biol. 4:2072-2081 (1984); Hermonat & Muzyczka, PNAS 81:6466-6470 (1984); and Samulski et al., J. Virol. 63:03822-3828 (1989).
- In particular, at least six viral vector approaches are currently available for gene transfer in clinical trials, with retroviral vectors by far the most frequently used system. All of these viral vectors utilize approaches that involve complementation of defective vectors by genes inserted into helper cell lines to generate the transducing agent.
- pLASN and MFG-S are examples are retrovirai vectors that have been used in clinical trials (Dubar et al., Blood 85:3048-305 (1995); Kohn et al., Nat. Med. 1:1017-102 (1995); Malech et al., PNAS 94:22 12133-12138 (1997)). PA317/pLASN was the first therapeutic vector used in a gene therapy trial. (Blaese et al., Science 270:475-480 (1995)). Transduction efficiencies of 50% or greater have been observed for MFG-S packaged vectors. (Ellem et al., Immunol Immunother. 44(1): 10-20 (1997); Dranoff et al., Hum. Gene Ther. 1:111-2 (1997).
- Recombinant adeno-associated virus vectors (rAAV) are a promising alternative gene delivery systems based on the defective and nonpathogenic parvovirus adeno-associated
type 2 virus. All vectors are derived from a plasmid that retains only the AAV 145 bp inverted terminal repeats flanking the transgene expression cassette. Efficient gene transfer and stable transgene delivery due to integration into the genomes of the transduced cell are key features for this vector system. (Wagner et al., Lancet 351:9117 1702-3 (1998), Kearns et al., Gene Ther. 9:748-55 (1996)). - Replication-deficient recombinant adenoviral vectors (Ad) are predominantly used for colon cancer gene therapy, because they can be produced at high titer and they readily infect a number of different cell types. Most adenovirus vectors are engineered such that a transgene replaces the Ad E1a, E1b, and E3 genes; subsequently the replication defector vector is propagated in human 293 cells that supply deleted gene function in trans. Ad vectors can transduce multiply types of tissues in vivo, including nondividing, differentiated cells such as those found in the liver, kidney and muscle system tissues. Conventional Ad vectors have a large carrying capacity. An example of the use of an Ad vector in a clinical trial involved polynucleotide therapy for antitumor immunization with intramuscular injection (Sterman et al., Hum. Gene Ther. 7:1083-9 (1998)). Additional examples of the use of adenovirus vectors for gene transfer in clinical trials include Rosenecker et al., Infection 24:1 5-10 (1996); Sterman et al., Hum. Gene Ther. 9:7 1083-1089 (1998); Welsh et al., Hum. Gene Ther. 2:205-18 (1995); Alvarez et al., Hum. Gene Ther. 5:597-613 (1997); Topf et al., Gene Ther. 5:507-513 (1998); Sterman et al., Hum. Gene Ther. 7:1083-1089 (1998).
- Packaging cells are used to form virus particles that are capable of infecting a host cell. Such cells include 293 cells, which package adenovirus, and ψ2 cells or PA317 cells, which package retrovirus. Viral vectors used in gene therapy are usually generated by producer cell line that packages a nucleic acid vector into a viral particle. The vectors typically contain the minimal viral sequences required for packaging and subsequent integration into a host, other viral sequences being replaced by an expression cassette for the protein to be expressed. The missing viral functions are supplied in trans by the packaging cell line. For example, AAV vectors used in gene therapy typically only possess ITR sequences from the AAV genome which are required for packaging and integration into the host genome. Viral DNA is packaged in a cell line, which contains a helper plasmid encoding the other AAV genes, namely rep and cap, but lacking ITR sequences. The cell line is also infected with adenovirus as a helper. The helper virus promotes replication of the AAV vector and expression of AAV genes from the helper plasmid. The helper plasmid is not packaged in significant amounts due to a lack of ITR sequences. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV.
- In many gene therapy applications, it is desirable that the gene therapy vector be delivered with a high degree of specificity to a particular tissue type. A viral vector is typically modified to have specificity for a given cell type by expressing a ligand as a fusion protein with a viral coat protein on the viruses outer surface. The ligand is chosen to have affinity for a receptor known to be present on the cell type of interest. For example, Han et al., PNAS 92:9747-9751 (1995), reported that Moloney murine leukemia virus can be modified to express human heregulin fused to gp70, and the recombinant virus infects certain human breast cancer cells expressing human epidermal growth factor receptor. This principle can be extended to other pairs of virus expressing a ligand fusion protein and target cell expressing a receptor. For example, filamentous phage can be engineered to display antibody fragments (e.g., FAB or Fv) having specific binding affinity for virtually any chosen cellular receptor. Although the above description applies primarily to viral vectors, the same principles can be applied to nonviral vectors. Such vectors can be engineered to contain specific uptake sequences thought to favor uptake by specific target cells.
- Gene therapy vectors can be delivered in vivo by administration to an individual patient, typically by systemic administration (e.g., intravenous, intraperitoneal, intramuscular, subdermal, or intracranial infusion) or topical application, as described below. Alternatively, vectors can be delivered to cells ex vivo, such as cells explanted from an individual patient (e.g., lymphocytes, bone marrow aspirates, tissue biopsy) or universal donor hematopoietic stem cells, followed by reimplantation of the cells into a patient, usually after selection for cells which have incorporated the vector.
- Ex vivo cell transfection for diagnostics, research, or for gene therapy (e.g., via re-infusion of the transfected cells into the host organism) is well known to those of skill in the art. In a preferred embodiment, cells are isolated from the subject organism, transfected with a ZFP nucleic acid (gene or cDNA), and re-infused back into the subject organism (e.g., patient). Various cell types suitable for ex vivo transfection are well known to those of skill in the art (see, e.g., Freshney et al., Culture of Animal Cells, A Manual of Basic Technique (3rd ed. 1994)) and the references cited therein for a discussion of how to isolate and culture cells from patients).
- In one embodiment, stem cells are used in ex vivo procedures for cell transfection and gene therapy. The advantage to using stem cells is that they can be differentiated into other cell types in vitro, or can be introduced into a mammal (such as the donor of the cells) where they will engraft in the bone marrow. Methods for differentiating CD34+ cells in vitro into clinically important immune cell types using cytokines such a GM-CSF, IFN-γ and TNF-α are known (see Inaba et al., J. Exp. Med. 176:1693-1702 (1992)).
- Stem cells are isolated for transduction and differentiation using known methods. For example, stem cells are isolated from bone marrow cells by panning the bone marrow cells with antibodies which bind unwanted cells, such as CD4+ and CD8+ (T cells), CD45+(panB cells), GR-1 (granulocytes), and lad (differentiated antigen presenting cells) (see Inaba et al., J. Exp. Med. 176:1693-1702 (1992)).
- Vectors (e.g., retroviruses, adenoviruses, liposomes, etc.) containing therapeutic ZFP nucleic acids can be also administered directly to the organism for transduction of cells in vivo. Alternatively, naked DNA can be administered. Administration is by any of the routes normally used for introducing a molecule into ultimate contact with blood or tissue cells. Suitable methods of administering such nucleic acids are available and well known to those of skill in the art, and, although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route.
- Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention, as described below (see, e.g., Remington 's Pharmaceutical Sciences, 17th ed., 1989).
- Delivery Vehicles for ZFPs
- An important factor in the administration of polypeptide compounds, such as the ZFPs, is ensuring that the polypeptide has the ability to traverse the plasma membrane of a cell, or the membrane of an intra-cellular compartment such as the nucleus. Cellular membranes are composed of lipid-protein bilayers that are freely permeable to small, nonionic lipophilic compounds and are inherently impermeable to polar compounds, macromolecules, and therapeutic or diagnostic agents. However, proteins and other compounds such as liposomes have been described, which have the ability to translocate polypeptides such as ZFPs across a cell membrane.
- For example, “membrane translocation polypeptides” have amphiphilic or hydrophobic amino acid subsequences that have the ability to act as membrane-translocating carriers. In one embodiment, homeodomain proteins have the ability to translocate across cell membranes. The shortest internalizable peptide of a homeodomain protein, Antennapedia, was found to be the third helix of the protein, from amino acid position 43 to 58 (see, e.g., Prochiantz, Current Opinion in Neurobiology 6:629-634 (1996)). Another subsequence, the h (hydrophobic) domain of signal peptides, was found to have similar cell membrane translocation characteristics (see, e.g., Lin et al., J. Biol. Chem. 270:1 4255-14258 (1995)).
- Examples of peptide sequences which can be linked to a ZFP of the invention, for facilitating uptake of ZFP into cells, include, but are not limited to: an 11 animo acid peptide of the tat protein of HIV; a 20 residue peptide sequence which corresponds to amino acids 84-103 of the p16 protein (see Fahraeus et al., Current Biology 6:84 (1996)); the third helix of the 60-amino acid long homeodomain of Antennapedia (Derossi et al., J. Biol. Chem. 269:10444 (1994)); the h region of a signal peptide such as the Kaposi fibroblast growth factor (K-FGF) h region (Lin et al., supra); or the VP22 translocation domain from HSV (Elliot & O'Hare, Cell 88:223-233 (1997)). Other suitable chemical moieties that provide enhanced cellular uptake may also be chemically linked to ZFPs.
- Toxin molecules also have the ability to transport polypeptides across cell membranes. Often, such molecules are composed of at least two parts (called “binary toxins”): a translocation or binding domain or polypeptide and a separate toxin domain or polypeptide. Typically, the translocation domain or polypeptide binds to a cellular receptor, and then the toxin is transported into the cell. Several bacterial toxins, including Clostridium perfringens iota toxin, diphtheria toxin (DT), Pseudomonas exotoxin A (PE), pertussis toxin (PT), Bacillus anthracis toxin, and pertussis adenylate cyclase (CYA), have been used in attempts to deliver peptides to the cell cytosol as internal or amino-terminal fusions (Arora et al., J. Biol. Chem., 268:3334-3341 (1993); Perelle et al., Infect. Immun., 61:5147-5156 (1993); Stenmark et al., J. Cell Biol. 113:1025-1032 (1991); Donnelly et al., PNAS 90:3530-3534 (1993); Carbonetti et al., Abstr. Annu. Meet. Am. Soc. Microbiol. 95:295 (1995); Sebo et al., Infect. Immun. 63:3851-3857 (1995); Klimpel et al., PNAS USA. 89:10277-10281 (1992); and Novak et al., J. Biol. Chem. 267:17186-17193 1992)).
- Such subsequences can be used to translocate ZFPs across a cell membrane. ZFPs can be conveniently fused to or derivatized with such sequences. Typically, the translocation sequence is provided as part of a fusion protein. Optionally, a linker can be used to link the ZFP and the translocation sequence. Any suitable linker can be used, e.g., a peptide linker.
- The ZFP can also be introduced into an animal cell, preferably a mammalian cell, via a liposomes and liposome derivatives such as immunoliposomes. The term “liposome” refers to vesicles comprised of one or more concentrically ordered lipid bilayers, which encapsulate an aqueous phase. The aqueous phase typically contains the compound to be delivered to the cell, i.e., a ZFP.
- The liposome fuses with the plasma membrane, thereby releasing the drug into the cytosol. Alternatively, the liposome is phagocytosed or taken up by the cell in a transport vesicle. Once in the endosome or phagosome, the liposome either degrades or fuses with the membrane of the transport vesicle and releases its contents.
- In current methods of drug delivery via liposomes, the liposome ultimately becomes permeable and releases the encapsulated compound (in this case, a ZFP) at the target tissue or cell. For systemic or tissue specific delivery, this can be accomplished, for example, in a passive manner wherein the liposome bilayer degrades over time through the action of various agents in the body. Alternatively, active drug release involves using an agent to induce a permeability change in the liposome vesicle. Liposome membranes can be constructed so that they become destabilized when the environment becomes acidic near the liposome membrane (see, e.g., PNAS 84:7851 (1987); Biochemistry 28:908 (1989)). When liposomes are endocytosed by a target cell, for example, they become destabilized and release their contents. This destabilization is termed fusogenesis. Dioleoylphosphatidylethanolamine (DOPE) is the basis of many “fusogenic” systems.
- Such liposomes typically comprise a ZFP and a lipid component, e.g., a neutral and/or cationic lipid, optionally including a receptor-recognition molecule such as an antibody that binds to a predetermined cell surface receptor or ligand (e.g., an antigen). A variety of methods are available for preparing liposomes as described in, e.g., Szoka et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), U.S. Pat. Nos. 4,186,183, 4,217,344, 4,235,871, 4,261,975, 4,485,054, 4,501,728, 4,774,085, 4,837,028, 4,235,871, 4,261,975, 4,485,054, 4,501,728, 4,774,085, 4,837,028, 4,946,787, PCT Publication No. WO 91├17424, Deamer & Bangham, Biochim. Biophys. Acta 443:629-634 (1976); Fraley, et al., PNAS 76:3348-3352 (1979); Hope et al., Biochim. Biophys. Acta 812:55-65 (1985); Mayer et al., Biochim. Biophys. Acta 858:161-168 (1986); Williams et al., PNAS 85:242-246 (1988); Liposomes (Ostro (ed.), 1983, Chapter 1); Hope et al., Chem. Phys. Lip. 40:89 (1986); Gregoriadis, Liposome Technology (1984) and Lasic, Liposomes: from Physics to Applications (1993)). Suitable methods include, for example, sonication, extrusion, high pressure/homogenization, microfluidization, detergent dialysis, calcium-induced fusion of small liposome vesicles and ether-fusion methods, all of which are well known in the art.
- In certain embodiments of the present invention, it is desirable to target the liposomes of the invention using targeting moieties that are specific to a particular cell type, tissue, and the like. Targeting of liposomes using a variety of targeting moieties (e.g., ligands, receptors, and monoclonal antibodies) has been previously described (see, e.g., U.S. Pat. Nos. 4,957,773 and 4,603,044).
- Examples of targeting moieties include monoclonal antibodies specific to antigens associated with neoplasms, such as prostate cancer specific antigen and MAGE. Tumors can also be diagnosed by detecting gene products resulting from the activation or over-expression of oncogenes, such as ras or c-erbB2. In addition, many tumors express antigens normally expressed by fetal tissue, such as the alphafetoprotein (AFP) and carcinoembryonic antigen (CEA). Sites of viral infection can be diagnosed using various viral antigens such as hepatitis B core and surface antigens (HBVc, HBVs) hepatitis C antigens, Epstein-Barr virus antigens, human immunodeficiency type-1 virus (HIV1) and papilloma virus antigens. Inflammation can be detected using molecules specifically recognized by surface molecules which are expressed at sites of inflammation such as integrins (e.g., VCAM-1), selectin receptors (e.g., ELAM-1) and the like.
- Standard methods for coupling targeting agents to liposomes can be used. These methods generally involve incorporation into liposomes lipid components, e.g., phosphatidylethanolamine, which can be activated for attachment of targeting agents, or derivatized lipophilic compounds, such as lipid derivatized bleomycin. Antibody targeted liposomes can be constructed using, for instance, liposomes which incorporate protein A (see Renneisen et al., J. Biol. Chem., 265:16337-16342 (1990) and Leonetti et al., PNAS 87:2448-2451 (1990).
- Doses of ZFPs
- For therapeutic applications of ZFPs, the dose administered to a patient, in the context of the present invention should be sufficient to effect a beneficial therapeutic response in the patient over time. In addition, particular dosage regimens can be useful for determining phenotypic changes in an experimental setting, e.g., in functional genomics studies, and in cell or animal models. The dose will be determined by the efficacy and Kd of the particular ZFP employed, the nuclear volume of the target cell, and the condition of the patient, as well as the body weight or surface area of the patient to be treated. The size of the dose also will be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular compound or vector in a particular patient.
- The maximum therapeutically effective dosage of ZFP for approximately 99% binding to target sites is calculated to be in the range of less than about 1.5×105 to 1.5×106 copies of the specific ZFP molecule per cell. The number of ZFPs per cell for this level of binding is calculated as follows, using the volume of a HeLa cell nucleus (approximately 1000 μm3 or 10−12 L; Cell Biology, (Altman & Katz, eds. (1976)). As the HeLa nucleus is relatively large, this dosage number is recalculated as needed using the volume of the target cell nucleus. This calculation also does not take into account competition for ZFP binding by other sites. This calculation also assumes that essentially all of the ZFP is localized to the nucleus. A value of 100× Kd is used to calculate approximately 99% binding of to the target site, and a value of 10× Kd is used to calculate approximately 90% binding of to the target site. For this example, Kd=25 nM
-
- ZFP+target site⇄complex
- i.e., DNA+protein⇄DNA:protein complex
- Kd=[DNA][protein]
- [DNA:protein complex]
- When 50% of ZFP is bound, Kd=[protein]
- So when [protein]=25 nM and the nucleus volume is 10−12 L
- [protein]=(25×109 moles/L) (10−12 L/nucleus) (6×1023 molecules/mole)=15,000 molecules/nucleus for 50% binding
- When 99% target is bound; 100× Kd=[protein]
- 100× Kd=[protein]=2.5 μM
- (2.5×10−6 moles/L) (10−12 L/nucleus) (6×1023 molecules/mole)=about 1,500,000 molecules per nucleus for 99% binding of target site.
- The appropriate dose of an expression vector encoding a ZFP can also be calculated by taking into account the average rate of ZFP expression from the promoter and the average rate of ZFP degradation in the cell. Preferably, a weak promoter such as a wild-type or mutant HSV TK is used, as described above. The dose of ZFP in micrograms is calculated by taking into account the molecular weight of the particular ZFP being employed.
- In determining the effective amount of the ZFP to be administered in the treatment or prophylaxis of disease, the physician evaluates circulating plasma levels of the ZFP or nucleic acid encoding the ZFP, potential ZFP toxicities, progression of the disease, and the production of anti-ZFP antibodies. Administration can be accomplished via single or divided doses.
- Pharmaceutical Compositions and Administration
- ZFPs and expression vectors encoding ZFPs can be administered directly to the patient for modulation of gene expression and for therapeutic or prophylactic applications, for example, cancer, ischemia, diabetic retinopathy, macular degeneration, rheumatoid arthritis, psoriasis, HIV infection, sickle cell anemia, Alzheimer's disease, muscular dystrophy, neurodegenerative diseases, vascular disease, cystic fibrosis, stroke, and the like. Examples of microorganisms that can be inhibited by ZFP gene therapy include pathogenic bacteria, e.g., chlamydia, rickettsial bacteria, mycobacteria, staphylococci, streptococci, pneumococci, meningococci and conococci, klebsiella, proteus, serratia, pseudomonas, legionella, diphtheria, salmonella, bacilli, cholera, tetanus, botulism, anthrax, plague, leptospirosis, and Lyme disease bacteria; infectious fungus, e.g., Aspergillus, Candida species; protozoa such as sporozoa (e.g., Plasmodia), rhizopods (e.g., Entamoeba) and flagellates (Trypanosoma, Leishmania, Trichomonas, Giardia, etc.); viral diseases, e.g., hepatitis (A, B, or C), herpes virus (e.g., VZV, HSV-1, HSV-6, HSV-II, CMV, and EBV), HIV, Ebola, adenovirus, influenza virus, flaviviruses, echovirus, rhinovirus, coxsackie virus, cornovirus, respiratory syncytial virus, mumps virus, rotavirus, measles virus, rubella virus, parvovirus, vaccinia virus, HTLV virus, dengue virus, papillomavirus, poliovirus, rabies virus, and arboviral encephalitis virus, etc.
- Administration of therapeutically effective amounts is by any of the routes normally used for introducing ZFP into ultimate contact with the tissue to be treated. The ZFPs are administered in any suitable manner, preferably with pharmaceutically acceptable carriers. Suitable methods of administering such modulators are available and well known to those of skill in the art, and, although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route.
- Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention (see, e.g., Remington's Pharmaceutical Sciences, 17th ed. 1985)).
- The ZFPs, alone or in combination with other suitable components, can be made into aerosol formulations (i.e., they can be “nebulized”) to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.
- Formulations suitable for parenteral administration, such as, for example, by intravenous, intramuscular, intradermal, and subcutaneous routes, include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. In the practice of this invention, compositions can be administered, for example, by intravenous infusion, orally, topically, intraperitoneally, intravesically or intrathecally. The formulations of compounds can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials. Injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described.
- Regulation of Gene Expression in Plants
- ZFPs can be used to engineer plants for traits such as increased disease resistance, modification of structural and storage polysaccharides, flavors, proteins, and fatty acids, fruit ripening, yield, color, nutritional characteristics, improved storage capability, and the like. In particular, the engineering of crop species for enhanced oil production, e.g., the modification of the fatty acids produced in oilseeds, is of interest.
- Seed oils are composed primarily of triacylglycerols (TAGs), which are glycerol esters of fatty acids. Commercial production of these vegetable oils is accounted for primarily by six major oil crops (soybean, oil palm, rapeseed, sunflower, cotton seed, and peanut.) Vegetable oils are used predominantly (90%) for human consumption as margarine, shortening, salad oils, and frying oil. The remaining 10% is used for non-food applications such as lubricants, oleochemicals, biofuels, detergents, and other industrial applications.
- The desired characteristics of the oil used in each of these applications varies widely, particularly in terms of the chain length and number of double bonds present in the fatty acids making up the TAGs. These properties are manipulated by the plant in order to control membrane fluidity and temperature sensitivity. The same properties can be controlled using ZFPs to produce oils with improved characteristics for food and industrial uses.
- The primary fatty acids in the TAGs of oilseed crops are 16 to 18 carbons in length and contain 0 to 3 double bonds. Palmitic acid (16:0 [16 carbons: 0 double bonds]), oleic acid (18:1), linoleic acid (18:2), and linolenic acid (18:3) predominate. The number of double bonds, or degree of saturation, determines the melting temperature, reactivity, cooking performance, and health attributes of the resulting oil.
- The enzyme responsible for the conversion of oleic acid (18:1) into linoleic acid (18:2) (which is then the precursor for 18:3 formation) is Δ12-oleate desaturase, also referred to as omega-6 desaturase. A block at this step in the fatty acid desaturation pathway should result in the accumulation of oleic acid at the expense of polyunsaturates.
- In one embodiment ZFPs are used to regulate expression of the FAD2-1 gene in soybeans. Two genes encoding microsomal Δ6 desaturases have been cloned recently from soybean, and are referred to as FAD2-1 and FAD2-2 (Heppard et al., Plant Physiol. 110:311-319 (1996)). FAD2-1 (delta 12 desaturase) appears to control the bulk of oleic acid desaturation in the soybean seed. ZFPs can thus be used to modulate gene expression of FAD2-1 in plants. Specifically, ZFPs can be used to inhibit expression of the FAD2-1 gene in soybean in order to increase the accumulation of oleic acid (18:1) in the oil seed. Moreover, ZFPs can be used to modulate expression of any other plant gene, such as delta-9 desaturase, delta-12 desaturases from other plants, delta-15 desaturase, acetyl-CoA carboxylase, acyl-ACP-thioesterase, ADP-glucose pyrophosphorylase, starch synthase, cellulose synthase, sucrose synthase, senescence-associated genes, heavy metal chelators, fatty acid hydroperoxide lyase, polygalacturonase, EPSP synthase, plant viral genes, plant fungal pathogen genes, and plant bacterial pathogen genes.
- Recombinant DNA vectors suitable for transformation of plant cells are also used to deliver the ZFP of the invention to plant cells. Techniques for transforming a wide variety of higher plant species are well known and described in the technical and scientific literature (see, e.g., Weising et al. Ann. Rev. Genet. 22:421-477 (1988)). A DNA sequence coding for the desired ZFP is combined with transcriptional and translational initiation regulatory sequences which will direct the transcription of the ZFP in the intended tissues of the transformed plant.
- For example, a plant promoter fragment may be employed which will direct expression of the ZFP in all tissues of a regenerated plant. Such promoters are referred to herein as “constitutive” promoters and are active under most environmental conditions and states of development or cell differentiation. Examples of constitutive promoters include the cauliflower mosaic virus (CaMV) 35S transcription initiation region, the 1′- or 2′-promoter derived from T-DNA of Agrobacterium tumafaciens, and other transcription initiation regions from various plant genes known to those of skill.
- Alternatively, the plant promoter may direct expression of the ZFP in a specific tissue or may be otherwise under more precise environmental or developmental control. Such promoters are referred to here as “inducible” promoters. Examples of environmental conditions that may effect transcription by inducible promoters include anaerobic conditions or the presence of light.
- Examples of promoters under developmental control include promoters that initiate transcription only in certain tissues, such as fruit, seeds, or flowers. For example, the use of a polygalacturonase promoter can direct expression of the ZFP in the fruit, a CHS-A (chalcone synthase A from petunia) promoter can direct expression of the ZFP in flower of a plant.
- The vector comprising the ZFP sequences will typically comprise a marker gene which confers a selectable phenotype on plant cells. For example, the marker may encode biocide resistance, particularly antibiotic resistance, such as resistance to kanamycin, G418, bleomycin, hygromycin, or herbicide resistance, such as resistance to chlorosluforon or Basta.
- Such DNA constructs may be introduced into the genome of the desired plant host by a variety of conventional techniques. For example, the DNA construct may be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the DNA constructs can be introduced directly to plant tissue using biolistic methods, such as DNA particle bombardment. Alternatively, the DNA constructs may be combined with suitable T-DNA flanking regions and introduced into a conventional Agrobacterium tumefaciens host vector. The virulence functions of the Agrobacterium tumefaciens host will direct the insertion of the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria.
- Microinjection techniques are known in the art and well described in the scientific and patent literature. The introduction of DNA constructs using polyethylene glycol precipitation is described in Paszkowski et al. EMBO J. 3:2717-2722 (1984). Electroporation techniques are described in Fromm et al. PNAS 82:5824 (1985). Biolistic transformation techniques are described in Klein et al. Nature 327:70-73 (1987).
- Agrobacterium tumefaciens-meditated transformation techniques are well described in the scientific literature (see, e.g., Horsch et al. Science 233:496-498 (1984)); and Fraley et al. PNAS 80:4803 (1983)).
- Transformed plant cells which are derived by any of the above transformation techniques can be cultured to regenerate a whole plant which possesses the transformed genotype and thus the desired ZFP-controlled phenotype. Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, typically relying on a biocide and/or herbicide marker which has been introduced together with the ZFP nucleotide sequences. Plant regeneration from cultured protoplasts is described in Evans et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176 (1983); and Binding, Regeneration of Plants, Plant Protoplasts, pp. 21-73 (1985). Regeneration can also be obtained from plant callus, explants, organs, or parts thereof. Such regeneration techniques are described generally in Klee et al. Ann. Rev. of Plant Phys. 38:467-486 (1987).
- Functional Genomics Assays
- ZFPs also have use for assays to determine the phenotypic consequences and function of gene expression. The recent advances in analytical techniques, coupled with focussed mass sequencing efforts have created the opportunity to identify and characterize many more molecular targets than were previously available. This new information about genes and their functions will speed along basic biological understanding and present many new targets for therapeutic intervention. In some cases analytical tools have not kept pace with the generation of new data. An example is provided by recent advances in the measurement of global differential gene expression. These methods, typified by gene expression microarrays, differential cDNA cloning frequencies, subtractive hybridization and differential display methods, can very rapidly identify genes that are up or down-regulated in different tissues or in response to specific stimuli. Increasingly, such methods are being used to explore biological processes such as, transformation, tumor progression, the inflammatory response, neurological disorders etc. One can now very easily generate long lists of differentially expressed genes that correlate with a given physiological phenomenon, but demonstrating a causative relationship between an individual differentially expressed gene and the phenomenon is difficult. Until now, simple methods for assigning function to differentially expressed genes have not kept pace with the ability to monitor differential gene expression.
- Using conventional molecular approaches, over expression of a candidate gene can be accomplished by cloning a full-length cDNA, subcloning it into a mammalian expression vector and transfecting the recombinant vector into an appropriate host cell. This approach is straightforward but labor intensive, particularly when the initial candidate gene is represented by a simple expressed sequence tag (EST). Under expression of a candidate gene by “conventional” methods is yet more problematic. Antisense methods and methods that rely on targeted ribozymes are unreliable, succeeding for only a small fraction of the targets selected. Gene knockout by homologous recombination works fairly well in recombinogenic stem cells but very inefficiently in somatically derived cell lines. In either case large clones of syngeneic genomic DNA (on the order of 10 kb) should be isolated for recombination to work efficiently.
- The ZFP technology can be used to rapidly analyze differential gene expression studies. Engineered ZFPs can be readily used to up or down-regulate any endogenous target gene. Very little sequence information is required to create a gene-specific DNA binding domain. This makes the ZFP technology ideal for analysis of long lists of poorly characterized differentially expressed genes. One can simply build a zinc finger-based DNA binding domain for each candidate gene, create chimeric up and down-regulating artificial transcription factors and test the consequence of up or down-regulation on the phenotype under study (transformation, response to a cytokine etc.) by switching the candidate genes on or off one at a time in a model system.
- This specific example of using engineered ZFPs to add functional information to genomic data is merely illustrative. Any experimental situation that could benefit from the specific up or down-regulation of a gene or genes could benefit from the reliability and ease of use of engineered ZFPs.
- Additionally, greater experimental control can be imparted by ZFPs than can be achieved by more conventional methods. This is because the production and/or function of an engineered ZFP can be placed under small molecule control. Examples of this approach are provided by the Tet-On system, the ecdysone-regulated system and a system incorporating a chimeric factor including a mutant progesterone receptor. These systems are all capable of indirectly imparting small molecule control on any endogenous gene of interest or any transgene by placing the function and/or expression of a ZFP regulator under small molecule control.
- Transgenic Mice
- A further application of the ZFP technology is manipulating gene expression in transgenic animals. As with cell lines, over-expression of an endogenous gene or the introduction of a heterologous gene to a transgenic animal, such as a transgenic mouse, is a fairly straightforward process. The ZFP technology is an improvement in these types of methods because one can circumvent the need for generating full-length cDNA clones of the gene under study.
- Likewise, as with cell-based systems, conventional down-regulation of gene expression in transgenic animals is plagued by technical difficulties. Gene knockout by homologous recombination is the method most commonly applied currently. This method requires a relatively long genomic clone of the gene to be knocked out (ca. 10 kb). Typically, a selectable marker is inserted into an exon of the gene of interest to effect the gene disruption, and a second counter-selectable marker provided outside of the region of homology to select homologous versus non-homologous recombinants. This construct is transfected into embryonic stem cells and recombinants selected in culture. Recombinant stem cells are combined with very early stage embryos generating chimeric animals. If the chimerism extends to the germline homozygous knockout animals can be isolated by back-crossing. When the technology is successfully applied, knockout animals can be generated in approximately one year. Unfortunately two common issues often prevent the successful application of the knockout technology; embryonic lethality and developmental compensation. Embryonic lethality results when the gene to be knocked out plays an essential role in development. This can manifest itself as a lack of chimerism, lack of germline transmission or the inability to generate homozygous back crosses. Genes can play significantly different physiological roles during development versus in adult animals. Therefore, embryonic lethality is not considered a rationale for dismissing a gene target as a useful target for therapeutic intervention in adults. Embryonic lethality most often simply means that the gene of interest can not be easily studied in mouse models, using conventional methods.
- Developmental compensation is the substitution of a related gene product for the gene product being knocked out. Genes often exist in extensive families. Selection or induction during the course of development can in some cases trigger the substitution of one family member for another mutant member. This type of functional substitution may not be possible in the adult animal. A typical result of developmental compensation would be the lack of a phenotype in a knockout mouse when the ablation of that gene's function in an adult would otherwise cause a physiological change. This is a kind of false negative result that often confounds the interpretation of conventional knockout mouse models.
- A few new methods have been developed to avoid embryonic lethality. These methods are typified by an approach using the cre recombinase and lox DNA recognition elements. The recognition elements are inserted into a gene of interest using homologous recombination (as described above) and the expression of the recombinase induced in adult mice post-development. This causes the deletion of a portion of the target gene and avoids developmental complications. The method is labor intensive and suffers form chimerism due to non-uniform induction of the recombinase.
- The use of engineered ZFPs to manipulate gene expression can be restricted to adult animals using the small molecule regulated systems described in the previous section. Expression and/or function of a zinc finger-based repressor can be switched off during development and switched on at will in the adult animals. This approach relies on the addition of the ZFP expressing module only; homologous recombination is not required. Because the ZFP repressors are trans dominant, there is no concern about germline transmission or homozygosity. These issues dramatically affect the time and labor required to go from a poorly characterized gene candidate (a cDNA or EST clone) to a mouse model. This ability can be used to rapidly identify and/or validate gene targets for therapeutic intervention, generate novel model systems and permit the analysis of complex physiological phenomena (development, hematopoiesis, transformation, neural function etc.). Chimeric targeted mice can be derived according to Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual, (1988); Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed., (1987); and Capecchi et al., Science 244:1288 (1989.
- All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.
- Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
- The following examples are provided by way of illustration only and not by way of limitation. Those of skill in the art will readily recognize a variety of noncritical parameters that could be changed or modified to yield essentially similar results.
- This first Example demonstrates the construction of ZFPs designed to recognize DNA sequences contained in the promoter of the human vascular endothelial growth factor (VEGF) gene. VEGF is an approximately 46 kDa glycoprotein that is an endothelial cell-specific mitogen induced by hypoxia. VEGF has been implicated in angiogenesis associated with cancer, various retinopathies, and other serious diseases. The DNA target site chosen was a region surrounding the transcription initiation site of the gene. The two 9 base pair (bp) sites chosen are found within the sequence agcGGGGAGGATcGCGGAGGCTtgg, where the upper-case letters represent actual 9-bp targets. The protein targeting the upstream 9-bp target was denoted VEGF1, and the protein targeting the downstream 9-bp target was denoted VEGF3a. The major start site of transcription for VEGF is at the T at the 3′ end of the first 9-bp target, which is underlined in the sequence above.
- The human SP-1 transcription factor was used as a progenitor molecule for the construction of designed ZFPs. SP-1 has a three finger DNA-binding domain related to the well-studied murine Zif268 (Christy et al., PNAS 85:7857-7861 (1988)). Site-directed mutagenesis experiments using this domain have shown that the proposed “recognition rules” that operate in Zif268 can be used to adapt SP-1 to other target DNA sequences (Desjarlais & Berg, PNAS 91:11099-11103 (1994)). The SP-1 sequence used for construction of zinc finger clones corresponds to amino acids 533 to 624 in the SP-1 transcription factor.
- The selection of amino acids in the recognition helices of the two designed ZFPs, VEGF1 and VEGF3a, is summarized in Table 1.
TABLE 1 Amino acids chosen for recognition helices of VEGF-recognizing ZFPs Position: Finger 1Finger 2Finger 3Protein −1 2 3 6 −1 2 3 6 −1 2 3 6 VEGF1 T S N R R S N R R D H R VEGF3A Q S D R R S N R R D E R - Coding sequences were constructed to express these peptides using a PCR-based assembly procedure that utilizes six overlapping oligonucleotides (
FIG. 1 ). Three oligonucleotides (oligos FIG. 1 ) corresponding to “universal” sequences that encode portions of the DNA-binding domain between the recognition helices. These oligonucleotides remain constant for any zinc finger construct. The other three “specific” oligonucleotides (oligos FIG. 1 ) were designed to encode the recognition helices. These oligonucleotides contained substitutions at positions −1, 2, 3 and 6 on the recognition helices to make them specific for each of the different DNA-binding domains. Codon bias was chosen to allow expression in both mammalian cells and E. coli. - The PCR synthesis was carried out in two steps. First, the double stranded DNA template was created by combining the six oligonucleotides (three universal, three specific) and using a four cycle PCR reaction with a low temperature (250) annealing step. At this temperature, the six oligonucleotides join to form a DNA “scaffold.” The gaps in the scaffold were filled in by a combination of Taq and Pfu polymerases. In the second phase of construction, the zinc finger template was amplified in thirty cycles by external primers that were designed to incorporate restriction sites for cloning into pUC19. Accuracy of clones for the VEGF ZFPs were verified by DNA sequencing. The DNA sequences of each of the two constructs are listed below.
VEGF1: GGTACCCATACCTGGCAAGAAGAAGCAGCACATCTGCCACATCCAGGGCT GTGGTAAAGTTTACGGCACAACCTCAAATCTGCGTCGTCACCTGCGCTGG CACACCGGCGAGAGGCCTTTCATGTGTACCTGGTCCTACTGTGGTAAACG CTTCACCCGTTCGTCAAACCTGCAGCGTCACAAGCGTACCCACACCGGTG AGAAGAAATTTGCTTGCCCGGAGTGTCCGAAGCGCTTCATGCGTAGTGAC CACCTGTCCCGTCACATCAAGACCCACCAGAATAAGAAGGGTGGATCC VEGF1 translation: VPIPGKKKQHICHIQGCGKVYGTTSNLRRHLRWHTGERPFMCTWSYCGKR FTRSSNLQRHKRTHTGEKKFACPECPKRFMRSDHLSRHIKTHQNKKGGS VEGF3a: GGTACCCATACCTGGCAAGAAGAAGCAGCACATCTGCCACATCCAGGGCT GTGGTAAAGTTTACGGCCAGTCCTCCGACCTGCAGCGTCACCTGCGCTGG CACACCGGCGAGAGGCCTTTCATGTGTACCTGGTCCTACTGTGGTAAACG CTTCACCCGTTCGTCAAACCTACAGAGGCACAAGCGTACACACACCGGTG AGAAGAAATTTGCTTGCCCGGAGTGTCCGAAGCGCTTCATGCGAAGTGAC GAGCTGTCACGACATATCAAGACCCACCAGAACAAGAAGGGTGGATCC VEGF3a translation: VPIPGKKKQHICHIQGCGKVYGQSSDLQRHLRWHTGERPFMCTWSYCGKR FTRSSNLQRHKRTHTGEKKFACPECPKRFMRSDELSRHIKTHQNKKGGS - The ability of the designed ZFPs to bind their target sites was verified by expressing and purifying recombinant protein from E. coli and performing electrophoretic mobility shift assays (EMSAs). The expression of ZFPs was carried out in two different systems. In the first, the DNA-binding peptides were expressed in E. coli by inserting them into the commercially available pET15b vector (Novagen). This vector contains a T7 promoter sequence to drive expression of the recombinant protein. The constructs were introduced into E. coli/BL21/DE3 (lacIq) cells, which contain an IPTG-inducible T7 polymerase. Cultures were supplemented with 50 μM ZnCl2, Were grown at 37° C. to an OD at 600 nm of 0.5-0.6, and protein production was induced with IPTG for 2 hrs. ZFP expression was seen at very high levels, approximately 30% of total cellular protein (
FIG. 2 ). These proteins are referred to as “unfused” ZFPs. - Partially pure unfused ZFPs were produced as follows (adapted from Desjarlais & Berg, Proteins: Structure, Function and Genetics 12:101-104 (1992)). A frozen cell pellet was resuspended in {fraction (1/50)}th volume of 1 M NaCl, 25 mM Tris HCl (pH 8.0), 100 IμZnCl2, 5 mM DTT. The samples were boiled for 10 min. and centrifuged for 10 min. at ˜3,000×g. At this point the ZFP protein in the supernatant was >50% pure as estimated by staining of SDS polyacrylamide gels with Coomassie blue, and the product migrated at the predicted molecular weight of around 11 kDa (
FIG. 2 ). - The second method of producing ZFPs was to express them as fusions to the E. coli Maltose Binding Protein (MBP). N-terminal MBP fusions to the ZFPs were constructed by PCR amplification of the pET15b clones and insertion into the vector pMal-c2 under the control of the Tac promoter (New England Biolabs). The fusion allows simple purification and detection of the recombinant protein. It had been reported previously that zinc finger DNA-binding proteins can be expressed from this vector in soluble form to high levels in E. coli and can bind efficiently to the appropriate DNA target without refolding (Liu et al. PNAS 94:5525-5530 (1997)). Production of MBP-fused proteins was as described by the manufacturer (New England Biolabs). Transformants were grown in LB medium supplemented with glucose and ampicillin, and were induced with IPTG for 3 hrs at 37° C. The cells were lysed by French press, then exposed to an agarose-based amylose resin, which specifically binds to the MBP moiety, thus acting as an affinity resin for this protein. The MBP fusion protein was eluted with 10 mM maltose (
FIG. 2C ) to release ZFP of >50% purity. In some cases, the proteins were further concentrated using aCentricon 30 filter unit (Amicon). - Partially purified unfused and MBP fusion ZFPs were tested by EMSA to assess binding to their target DNA sequences. The protein concentrations in the preparations were measured by Bradford assay (BioRad). Since SDS polyacrylamide gels demonstrated >50% homogeneity by either purification method, no adjustment was made for ZFP purity in the calculations. In addition, there could be significant amounts of inactive protein in the preparations. Therefore, the data generated by EMSAs below represent an underestimate of the true affinity of the proteins for their targets (i.e., overestimate of Kds). Two separate preparations were made for each protein to help control for differences in ZFP activity.
- The VEGF DNA target sites for the EMSA experiments were generated by embedding the 9-bp binding sites in 29-bp duplex oligonucleotides. The sequences of the recognition (“top”) strand and their complements (“bottom”) used in the assays are as follows:
VEGF site 1, top:5′- CATGCATAGCGGGGAGGATCGCCATCGAT VEGF site 1, bottom: 5′- ATCGATGGCGATCCTCCCCGCTATGCATG VEGF site 3, top: 5′- CATGCATATCGCGGAGGCTTGGCATCGAT VEGF site 3, bottom: 5′-ATCGATGCCAAGCCTCCGCGATATGCATG - The VEGF DNA target sites are underlined. The 3 bp on either side of the 9 bp binding site was also derived from the actual VEGF DNA sequence. The top strand of each target site was labeled with polynucleotide kinase and γ-32P dATP. Top and bottom strands were annealed in a reaction containing each oligonucleotide at 0.5 μM, 10 mM Tris-HCl (pH 8.0), 1 mM EDTA, and 50 mM NaCl. The mix was heated to 95° C. for 5 min. and slow cooled to 30° C. over 60 min. Duplex formation was confirmed by polyacrylamide gel electrophoresis. Free label and ssDNA remaining in the target preparations did not appear to interfere with the binding reactions.
- Binding of the ZFPs to target oligonucleotides was performed by titrating protein against a fixed amount of duplex substrate. Twenty microliter binding reactions contained 10 fmole (0.5 nM) 5′-32P-labeled double-stranded target DNA, 35 mM Tris HCl (pH 7.8), 100 mM KCl, 1 mM MgCl2, 1 mM dithiothreitol, 10% glycerol, 20 μg/ml poly dI-dC (optionally), 200 μg/ml bovine serum albumin, and 25 μM ZnCl2. Protein was added as one fifth volume from a dilution series made in 200 mM NaCl, 20 mM Tris (pH 7.5), 1 mM DTT. Binding was allowed to proceed for 30 min. at room temperature. Polyacrylamide gel electrophoresis was carried out at 4° C. using precast 10% or 10-20% Tris-HCl gels (BioRad) and standard Tris-Glycine running buffer containing 0.1 mM ZnCl2.
- The results of a typical EMSA using an MBP fused ZFP are shown in
FIG. 3 . In this case, a 3-fold dilution series of the MBP-VEGF1 protein was used. The shifted product was quantitated on a phosphorimager (Molecular Dynamics) and the relative signal (percent of plateau value) vs. the log10 of nM protein concentration was plotted. An apparent Kd was found by determining the protein concentration that gave half maximal binding of MBP-VEGF1 to its target site, which in this experiment was approximately 2 nM. - The binding affinities determined for the VEGF proteins can be summarized as follows. VEGF1 showed the stronger DNA-binding affinity; in multiple EMSA analyses, the average apparent Kd was determined to be approximately 10 nM when bound to
VEGF site 1. VEGF3a bound well to its target site but with a higher apparent Kd than VEGF1; the average Kd for VEGF3a was about 200 nM. In both cases the MBP-fused and unfused versions of the proteins bound with similar affinities. Kds were also determined under these conditions for MBP fusions of the wild-type Zif268 and SP-1 ZFPs, which yielded Kds of 60 and 65 nM, respectively. These results are similar to binding constants reported in the literature for Zif268 of approximately 2-30 nM (see, e.g., Jamieson et al., Biochemistry 33:5689-5695 (1994)). The Kds for the synthetic VEGF ZFPs therefore compare very favorably with those determined for these naturally-occurring DNA-binding proteins. - In summary, this Example demonstrates the generation of two novel DNA-binding proteins directed to specific targets near the transcriptional start of the VEGF gene. These proteins bind with affinities similar to those of naturally-occurring transcription factors binding to their targets.
- An important consideration in ZFP design is DNA target length. For random DNA, a sequence of n nucleotides would be expected to occur once every 0.5×4n base-pairs. Thus, DNA-binding domains designed to recognize only 9 bp of DNA would find sites every 130,000 bp and could therefore bind to multiple locations in a complex genome (on the order of 20,000 sites in the human genome). 9-bp putative repressor-binding sequences have been chosen for VEGF in the 5′ UTR where they might directly interfere with transcription. However, in case zinc finger domains that recognize 9-bp sites lack the necessary affinity or specificity when expressed inside cells, a larger domain was constructed to recognize 18 base-pairs by joining separate three-finger domains with a linker sequence to form a six-finger protein. This should ensure that the repressor specifically targets the appropriate sequence, particularly under conditions where only small amounts of the repressor are being produced. The 9-bp target sites in VEGF were chosen to be adjacent to one another so that the zinc fingers could be linked to recognize an 18-bp sequence. The linker DGGGS was chosen because it permits binding of ZFPs to two 9-bp sites that are separated by a one nucleotide gap, as is the case for the VEGF1 and VEGF3a sites (see also Liu et al., PNAS 5525-5530 (1997)).
- The 6-finger VEGF3a/1 protein encoding sequence was generated as follows. VEGF3a was PCR amplified using the primers SPE7 (5′-GAGCAGAATTCGGCAAGAAGAAGCAGCAC) and SPEamp12 (5′-GTGGTCTAGACAGCTCGTCACTTCGC) to generate EcoRI and XbaI restriction sites at the ends (restriction sites underlined). VEGF1 was PCR amplified using the primers SPEamp13 (5′-GGAGCCAAGGCTGTGGTAAAGTTTACGG) and SPEamp11 (5′-GGAGAAGCTTGGATCCTCATTATCCC) to generate StyI and HindIII restriction sites at the ends (restriction sites underlined). Using synthetic oligonucleotides, the following sequence was ligated between the XbaI and StyI sites, where XbaI and StyI are underlined: TCT AGA CAC ATC AAA ACC CAC CAG AAC AAG AAA GAC GGC GGT GGC AGC GGC AAA AAG AAA CAG CAC ATA TGT CAC ATC CAA GG. This introduced the linker sequence DGGGS between the two SP-1 domains. The ligation product was reamplified with primers SPE7 and SPEamp11 and cloned into pUC19 using the EcoRI and HindIII sites. The linked ZFP sequences were then amplified with primers
(1) GB19 GCCATGCCGGTACCCATACCTGGCAAGAAGAAGCAGCAC) (2) GB10 CAGATCGGATCCACCCTTCTTATTCTGGTGGGT
to introduce KpnI and BamHI sites for cloning into the modified pMAL-c2 expression vector as described above. - The nucleotide sequence of the designed, 6-finger ZFP VEGF3a/1 from KpnI to BamHI is:
GGTACCCATACCTGGCAAGAAGAAGCAGCACATCTGCCACATCCAGGGCT GTGGTAAAGTTTACGGCCAGTCCTCCGACCTGCAGCGTCACCTCCGCTGG CACACCGGCGAGAGGCCTTTCATGTGTACCTGGTCCTACTGTGGTAAACG CTTCACACGTTCGTCAAACCTACAGAGGCACAAGCGTACACACACAGGTG AGAAGAAATTTGCTTGCCCGGAGTGTCCGAAGCGCTTCATGCGAAGTGAC GAGCTGTCTAGACACATCAAAACCCACCAGAACAAGAAAGACGGCGGTGG CAGCGGCAAAAAGAAACAGCACATATGTCACATCCAAGGCTGTGGTAAAG TTTACGGCACAACCTCAAATCTGCGTCGTCACCTGCGCTGGCACACCGGC GAGAGGCCTTTCATGTGTACCTGGTCCTACTGTGGTAAACGCTTCACCCG TTCGTCAAACCTGCAGCGTCACAAGCGTACCCACACCGGTGAGAAGAAAT TTGCTTGCCCGGAGTGTCCGAAGCGCTTCATGCGTAGTGACCACCTGTCC CGTCACATCAAGACCCACCAGAATAAGAAGGGTGGATCC - The VEGF3a/1 amino acid translation (using single letter code) is:
VPIPGKKKQHICHIQGCGKVYGQSSDLQRHLRWHTGERPFMCTWSYCGKR FTRSSNLQRHKRTHTGEKKFACPECPKRFMRSDELSRHIKTHQNKKDGGG SGKKKQHICHIQGCGKVYGTTSNLRRHLRWHTGERPFMCTWSYCGKRFTR SSNLQRHKRTHTGEKKFACPECPKRFMRSDHLSRHIKTHQNKKGGS - The 18-bp binding protein VEGF3a/1 was expressed in E. coli as an MBP fusion, purified by affinity chromatography, and tested in EMSA experiments as described in Example I. The target oligonucleotides were prepared as described and comprised the following complementary sequences:
(1) JVF9 AGCGAGCGGGGAGGATCGCGGAGGCTTGGGGCAGCCGGGTAG, and (2) JYF10 CGCTCTACCCGGCTGCCCCAAGCCTCCGCGATCCTCCCCGCT. - For the EMSA studies, 20 μl binding reactions contained 10 fmole (0.5 nM) 5′-32P-labeled double-stranded target DNA, 35 mM Tris HCl (pH 7.8), 100 mM KCl, 1 mM MgCl2, 5 mM dithiothreitol, 10% glycerol, 20 μg/ml poly dI-dC, 200 μg/ml bovine serum albumin, and 25 μM ZnCl2. Protein was added as one fifth volume from a 3-fold dilution series. Binding was allowed to proceed for 60 min at either room temperature or 37° C. Polyacrylamide gel electrophoresis was carried out at room temperature or 37° C. using precast 10% or 10-20% Tris-HCl gels (BioRad) and standard Tris-Glycine running buffer. The room temperature assays yielded an apparent Kd for this VEGF3a/1 protein of approximately 1.5 nM. Thus, the 18-bp binding ZFP bound with high affinity to its target site. In a parallel experiment, VEGF1 protein was tested against its target using the oligonucleotides described in Example I, yielding an apparent Kd of approximately 2.5 nM. When binding and electrophoresis were performed at 37° C., the apparent Kd of VEGF3a/1 was approximately 9 nM when tested against the 18-bp target, compared to a Kd of 40 nM for VEGF1 tested against its target. This indicates that the difference in binding affinities is accentuated at the higher temperature.
- The apparent Kd is a useful measure of the affinity of a protein for its DNA target. However, for a DNA binding site either in vitro or in vivo, its occupancy is determined to a large extent by the off-rate of the DNA-binding protein. This parameter can be measured by competition experiments as shown in
FIG. 4 . The conditions for EMSA were as described above; binding and electrophoresis were performed at 37° C. These data indicate that the half-life of the protein-DNA complex is more than ten times longer for VEGF3a/1 than for VEGF1. Thus, under these in vitro conditions, the occupancy of the target site is much higher for the 18-bp binding protein than for the 9-bp binding protein. - This Example describes the development of expression vectors for producing ZFPs within mammalian cells, translocating them to the nucleus, and providing functional domains that are localized to the target DNA sequence by the ZFP. The functional domains employed are the Kruppel-Associated Box (KRAB) repression domain and the Herpes Simplex Virus (HSV-1) VP16 activation domain.
- Certain DNA-binding proteins contain separable domains that function as transcriptional repressors. Approximately 20% of ZFPs contain a non-DNA-binding domain of about 90 amino acids that functions as a transcriptional repressor (Thiesen, The New Biologist 2:363-374 (1990); Margolin et al., PNAS 91:4509-4513 (1994); Pengue et al., (1994), supra; Witzgall et al., (1994), supra). This domain, termed the KRAB domain, is modular and can be joined to other DNA-binding proteins to block expression of genes containing the target DNA sequence (Margolin et al., (1994); Pengue et al., (1994); Witzgall et al., (1994), supra). The KRAB domain has no effect by itself; it needs to be tethered to a DNA sequence via a DNA-binding protein to function as a repressor. The KRAB domain has been shown to block transcription initiation and can function at a distance of up to at least 3 kb from the transcription start site. The KRAB domain from the human KOX-1 protein (Thiesen, The New Biologist 2:363-37 (1990)) was used for the studies described here. This 64 amino acid domain can be fused to ZFPs and has been shown to confer repression in cell culture (Liu et al., supra).
- The VP16 protein of HSV-1 has been studied extensively, and it has been shown that the C-terminal 78 amino acids can act as a trans-activation domain when fused to a DNA-binding domain (Hagmann et al., J Virology 71:5952-5962 (1997)). VP16 has also been shown to function at a distance and in an orientation-independent manner. For these studies, amino acids 413 to 490 in the VP16 protein sequence were used. DNA encoding this domain was PCR amplified from plasmid pMSVP16ΔC+119 using primers with the following sequences:
(1) JVF24 CGCGGATCCGCCCCCCCGACCGATG, and (2) JVF25 CCGCAAGCTTACTTGTCATCGTCGTCCTTGTAGTCGCTGCCCCCACCGTA CTCGTCAATTCC. - The downstream primer, JVF25, was designed to include a downstream FLAG epitope-encoding sequence.
- Three expression vectors were constructed for these studies. The general design is summarized in
FIG. 5 . The vectors are derived from pcDNA3.1 (+) (Invitrogen), and place the ZFP constructs under the control of the cytomegalovirus (CMV) promoter. The vector carries ampicillin and neomycin markers for selection in bacteria and mammalian cell culture, respectively. A Kozak sequence for proper translation initiation (Kozak, J. Biol. Chem. 266:19867-19870 (1991)) was incorporated. To achieve nuclear localization of the products, the nuclear localization sequence (NLS) from the SV40 large T antigen (Pro-Lys-Lys-Lys-Arg-Lys-Val) (Kalderon et al., Cell 39:499-509 (1984)) was added. The insertion site for the ZFP-encoding sequence is followed by the functional domain sequence. The three versions of this vector differ in the functional domain; “pcDNA-NKF” carries the KRAB repression domain sequence, “pcDNA-NVF” carries the VP16 activation domain, and “NF-control” carries no functional domain. Following the functional domain is the FLAG epitope sequence (Kodak) to allow specific detection of the ZFPs. - The vectors were constructed as follows. Plasmid pcDNA-ΔHB was constructed by digesting plasmid pcDNA3.1(+) (Invitrogen) with HindIII and BamHI, filling in the sticky ends with Klenow, and religating. This eliminated the HindIII, KpnI, and BamHI sites in the polylinker. The vector pcDNA3.1(+) is described in the Invitrogen catalog. Plasmid pcDNA-NKF was generated by inserting a fragment into the EcoRI/XhoI sites of pcDNA-ΔHB that contained the following: 1) a segment from EcoRI to KpnI containing the Kozak sequence including the initiation codon and the SV40 NLS sequence, altogether comprising the DNA sequence
GAATTCGCTAGCGCCACCATGGCCCCCAAGAAGAAGAGGAAGGTGGGAAT CCATGGGGTAC, - where the EcoRI and KpnI sites are underlined; and 2) a segment from KpnI to XhoI containing a BamHI site, the KRAB-A box from KOX1 (amino acid coordinates 11-53 in Thiesen, 1990, supra), the FLAG epitope (from Kodak/IBI catalog), and a HindIII site, altogether comprising the sequence
GGTACCCGGGGATCCCGGACACTGGTGACCTTCAAGGATGTATTTGTGGA CTTCACCAGGGAGGAGTGGAAGCTGCTGGACACTGCTCAGCAGATCGTGT ACAGAAATGTGATGCTGGAGAACTATAAGAACCTGGTTTCCTTGGGCAGC GACTACAAGGACGACGATGACAAGTAAGCTTCTCGAG
where the KpnI, BamHI and XhoI sites are underlined. - The VEGF3a/1-KRAB effector plasmid was generated by inserting a KpnI-BamHI cassette containing the ZFP sequences into pcDNA-NKF digested with KpnI and BamHI. The VEGF1-KRAB and VEGF3a-KRAB effector plasmids were constructed in a similar way except that the ZFP sequences were first cloned into the NLS-KRAB-FLAG sequences in the context of plasmid pLitmus 28 (New England Biolabs) and subsequently moved to the BamHI-XhoI sites of pcDNA3.1(+) as a BglII-XhoI cassette, where the BglII site was placed immediately upstream of the EcoRI site (see Example IV for expression of these vectors).
- The effector plasmids used in Example V were constructed as follows. Plasmid pcDNA-NVF was constructed by PCR amplifying the VP16 transactivation domain, as described above, and inserting the product into the BamHI/HindIII sites of pcDNA-NKF, replacing the KRAB sequence. The sequence of the inserted fragment, from BamHI to HindIII, was:
GGATCCGCCCCCCCGACCGATGTCAGCCTGGGGGACGAGCTCCACTTAGA CGGCGAGGACGTGGCGATGGCGCATGCCGACGCGCTAGACGATTTCGATC TGGACATGTTGGGGGACGGGGATTCCCCGGGGCCGGGATTTACCCCCCAC GACTCCGCCCCCTACGGCGCTCTGGATATGGCCGACTTCGAGTTTGAGCA GATGTTTACCGATGCCCTTGGAATTGACGAGTACGGTGGGGGCAGCGACT ACAAGGACGACGATGACAAGTAAGCTT. - VEGF1-VP16 and VEGF3a/1-VP16 vectors were constructed by inserting a KpnI-BamHI cassette containing the ZFP sequences into pcDNA-NVF digested with KpnI and BamHI.
- The effector plasmids used in Example VI were constructed as follows. Plasmid NF-control was generated by inserting the sequence
GAATTCGCTAGCGCCACCATGGCCCCCAAGAAGAAGAGGAAGGTGGGAAT CCATGGGGTACCCGGGGATGGATCCGGCAGCGACTACAAGGACGACGATG ACAAGTAAGCTTCTCGAG
into the EcoRI-XhoI sites of pcDNA-NKF, thereby replacing the NLS-KRAB-FLAG sequences with NLS-FLAG only. - VEGF1-NF and VEGF3a/1-NF were constructed by inserting a KpnI-BamHI cassette containing the ZFP sequences into NF-control digested with KpnI and BamHI. CCR5-KRAB was constructed in the same way as the VEGF KRAB vectors, except that the ZFP sequences were designed to be specific for a DNA target site that is unrelated to the VEGF targets.
- Finally, control versions of both the KRAB and VP16 expression plasmids were constructed. Plasmid NKF-control was designed to express NLS-KRAB-FLAG without zinc finger protein sequences; plasmid NVF-control was designed to express NLS-VP16-FLAG without ZFP sequences. These plasmids were made by digesting pcDNA-NKF and -NVF, respectively, with BamHI, filling in the ends with Klenow, and religating in order to place the downstream domains into the proper reading frame. These plasmids serve as rigorous controls for cell culture studies.
- Mammalian cell expression and nuclear localization of the VEGF engineered ZFPs was demonstrated through immunofluorescence studies. 293 (human embryonic kidney) cells were transfected with the expression plasmid encoding the NLS-VEGF1-KRAB-FLAG chimera. Lipofectamine was used as described below. After 24-48 hours, cells were fixed and exposed to a primary antibody against the FLAG epitope. A secondary antibody labeled with Texas Red was applied, and the cells were counter stained with DAPI. Texas Red staining was observed to consistently co-localize with the DAPI staining, indicating that the ZFP being expressed from this plasmid was nuclear localized.
- This Example demonstrates the use of transient co-transfection studies to measure the activity of the ZFP repressor proteins in cells. Such experiments involve co-transfection of ZFP-KRAB expression (“effector”) plasmids with reporter plasmids carrying the VEGF target sites. Efficacy is assessed by the repression of reporter gene expression in the presence of the effector plasmid relative to empty vector controls.
- The reporter plasmid system was based on the pGL3 firefly luciferase vectors (Promega). Four copies of the VEGF target sites were inserted upstream of the SV40 promoter, which is driving the firefly luciferase gene, in the plasmid pGL3-Control to create pVFR1-4x. This plasmid contains the SV40 enhancer and expresses firefly luciferase to high levels in many cell types. Insertions were made by ligating together tandem copies of the two complementary 42-bp oligonucleotides, JVF9 and JVF10, described in Example II. Adaptor sequences were ligated on, and the assembly was inserted into the MluI/BglII sites of pGL3-Control. This resulted in the insertion of the following sequence between those sites:
ACGCGTaagcttGCTAGCGAGCGGGGAGGATCGCGGAGGCTTGGGGCAGC CGGGTAGAGCGAGCGGGGAGGATCGCGGAGGCTTGGGGCAGCCGGGTAGA GCGAGCGGGGAGGATCGCGGAGCCTTGGGGCAGCCGGGTAGAGCGAGCGG GGAGGATCGCGGAGGCTTGGGGCAGCCGGGTAGAGCGCTCAGaagcttAG ATCT. - The first six and last six nucleotides shown are the MluI and BglII sites; the lowercase letters indicate HindIII sites. The binding sites for VEGF1 and VEGF3a are underlined.
- The effector plasmid construction is described above. The VEGF1-KRAB, VEGF3a-KRAB, and VEGF3a/1-KRAB expression vectors were designed to produce a fusion of the SV40 nuclear localization sequence, the VEGF ZFP, the KRAB repression domain, and a FLAG epitope marker all under the control of the CMV promoter. The empty pcDNA3.1 expression vector was used as a control (pcDNA).
- All vectors were prepared using Qiagen DNA purification kits.
FIG. 6 shows a typical set of transfections using COS-1 (African green monkey kidney) cells. Approximately 40,000 cells were seeded into each well of a 24-well plate and allowed to grow overnight in Dulbecco's Modified Eagle Medium (D-MEM) medium containing 10% fetal bovine serum at 37° C. with 5% CO2. Cells were washed with PBS and overlayed with 200 μl of serum-free D-MEM. Plasmids were introduced using lipofectamine (Gibco-BRL). Each well was transfected with about 0.3 μg of effector plasmid, 0.3 μg of reporter plasmid, and 0.01 μg of plasmid pRL-SV40 (Promega) that had been complexed with 6 μl of lipofectamine and 25 μl of D-MEM for 30 min at 37° C. Transfections were done in triplicate. After 3 hrs, 1 ml of medium containing 10% serum was added to each well. Cells were harvested 40-48 hours after transfection. Luciferase assays were done using the Dual Luciferase™ System (Promega). The third plasmid transfected, pRL-SV40, carries the Renilla luciferase gene and was co-transfected as a standard for transfection efficiency. The data shown inFIG. 6 are the averages of triplicate assays normalized against the Renilla activity. - For the control reporter plasmid pGL3-Control (pGL3-C), the presence or absence of the ZFP-KRAB expression plasmid does not influence the luciferase expression level. However, for pVFR1-4x, the reporter containing four copies of the VEGF target site, presence of the VEGF1 (9-bp-binding ZFP) or VEGF3a/1 (18-bp-binding ZFP) expression plasmid reduces luciferase expression by a factor of 2-3 relative to the empty pcDNA vector control. The VEGF3a (9-bp-binding ZFP) expression plasmid appears to exhibit little or no effect. These experiments clearly demonstrate that a designed ZFP is capable of functioning in a cell to repress transcription of a gene when its target site is present. Furthermore, it appears that a certain level of affinity is required for function; i.e., VEGF1 and VEGF3a/1, with Kds of 10 nM or less, are functional, whereas VEGF3a, with a Kd of 200 nM, is not.
- A second reporter plasmid, pVFR2-4x, was constructed by removing the four copies of the VEGF target sites using HindIII and inserted them into the HindIII site of pGL3-Control (in the forward orientation). This places the target sites between the start site of transcription for the SV40 promoter and the translational start codon of the luciferase gene. In similar co-transfection experiments to those described, approximately 3-4 fold repression of the luciferase signal was observed with the VEGF1-KRAB or VEGF3a/1-KRAB repressors relative to the pcDNA controls (data not shown). This indicates that the repressors are active when bound either upstream or downstream of the start of transcription.
- This Example demonstrates the use of transient co-transfection studies to measure the activity of the ZFP transcriptional activators in cells. The experimental setup is similar to that of Example IV except that a different transfection method, a different cell line, and a different set of reporter and effector plasmids was used.
- For activation experiments, a reporter was constructed labeled pVFR3-4x. This reporter contains the four copies of the VEGF targets, with the sequence shown above, at the MluI/BglII sites of plasmid pGL3-Promoter (Promega). This vector has been deleted for the SV40 enhancer sequence and therefore has a lower basal level of firefly luciferase expression. pVFR3-4x was constructed by swapping the KpnI/NcoI fragment of pVFR1-4x into the KpnI/NcoI sites of pGL3-Promoter.
- The effector plasmid construction is described above. The VEGF1-VP16, VEGF3a-VP16, and VEGF3a/1-VP16 expression vectors were designed to produce a fusion of the SV40 nuclear localization sequence, the VEGF ZFP, the VP16 trans-activation domain, and a FLAG epitope tag all under the control of the CMV promoter. The empty pcDNA3 expression vector was used as a control.
- All vectors were prepared using Qiagen DNA purification kits.
FIG. 7 shows a typical set of transfections using 293 (human embryonic kidney) cells. Approximately 40,000 cells were seeded into each well of a 24-well plate and allowed to grow overnight in D-MEM medium containing 10% fetal bovine serum at 37° C. with 5% CO2. Cells were washed with serum-free D-MEM and overlayed with 200 μl of the same. Plasmids were introduced using a calcium phosphate transfection kit (Gibco-BRL) according to the manufacturer's instructions. Cells in each well were transfected with 1.5 μg of reporter plasmid, 1.5 μg of effector plasmid, and 0.5 μg of an actin/β-gal plasmid. Plasmids were combined with 15 μl of CaCl2 and brought to 100 μl with dH2O. 100 μl of HEPES solution was added dropwise while vortexing. The mix was incubated for 30 min at room temperature. The 200 μl of calcium phosphate-treated DNA was then added to the medium in each well. Transfections were done in triplicate. After 5 hours, the medium was removed and 1 ml of medium containing 10% serum was added. Cells were harvested 40-48 hours after transfection. Luciferase assays were done using the Dual-Light™ system (Tropix). The third plasmid transfected, actin/β-gal, carries the β-galactosidase gene under the control of the actin promoter and was co-transfected as a standard for transfection efficiency. The β-galactosidase assays were also done according to the manufacturer's protocol (Tropix). The data shown inFIG. 7 are the average of triplicate assays normalized against the β-galactosidase activity. - For the control reporter plasmid, pGL3-Promoter (pGL3-P), the presence or absence of the ZFP-VP16 expression plasmid does not significantly influence the luciferase expression level. For pVFR3-4x, the reporter containing four copies of the VEGF target site, presence of VEGF1 (the 9-bp-binding ZFP) shows a very slight activation relative to the empty pcDNA vector control. VEGF3a/I (the 18-bp-binding ZFP) expression plasmid activates luciferase expression very substantially, showing about a 14-fold increase relative to pcDNA. These experiments clearly demonstrate that a designed ZFP, when fused to the VP16 activation domain, is capable of functioning in a cell to activate transcription of a gene when its target site is present. Furthermore, these results clearly demonstrate that an 18-bp binding protein, VEGF3a/1, is a much better activator in this assay than a 9-bp binding VEGF1 protein. This could be a result of the improved affinity or decreased off-rate of the VEGF3a/1 protein.
- A fourth VEGF reporter plasmid was constructed by cloning the KpnI/NcoI fragment of pVFR2-4x into pGL3-Promoter to create plasmid pVFR4-4x. Activation was observed in co-transfections using this reporter in combination with effector plasmids expressing the VEGF1-VP16 and VEGF3a/1-VP16 fusions (data not shown). This indicates that these artificial trans-activators are functional when bound either upstream or downstream of the start of transcription.
- These co-transfection data demonstrate that ZFPs can be used to regulate expression of reporter genes. Such experiments serve as a useful tool for identifying ZFPs for further use as modulators of expression of endogenous cellular genes. As is shown below, modulation results can vary between co-transfection experiments and endogenous gene experiments, while using the same ZFP construct.
- This Example demonstrates that a designed ZFP can repress expression of an endogenous cellular gene that is in its natural context and chromatin structure. Specifically, effector plasmids expressing VEGF ZFPs fused to the KRAB repression domain were introduced into cells and were shown to down-regulate the VEGF gene.
- Eucaryotic expression vectors were constructed that fuse the VEGF3a/1 and the VEGF1 ZFPs to the SV40 NLS and KRAB, as described above in Example III. Transfections were done using Lipofectamine, a commercially available liposome preparation from GIBCO-BRL. All plasmid DNAs were prepared using Qiagen Midi DNA purification system. 10 μg of the effector plasmid was mixed with 100 μg of Lipofectamine (50 μl) in a total volume of 1600 μl of Opti-MEM. A pCMVβ-gal plasmid (Promega) was also included in the DNA mixture as an internal control for transfection efficiency. Following a 30 minute incubation, 6.4 ml of DMEM was added and the mixture was layered on 3×106 293 cells. After five hours, the DNA-Lipofectamine mixture was removed, and fresh culture medium containing 10% fetal bovine serum was layered on the cells.
- Eighteen hours post transfection, the 293 cells were induced by treatment with 100 μM DFX (desferrioxamine), resulting in a rapid and lasting transcriptional activation of the VEGF gene and also in a gradual increase in VEGF mRNA stability (Ikeda et al., J. Biol. Chem. 270:19761-19766 (1995)). Under routine culture conditions, 293 cells secrete a low level of VEGF in the culture media. The cells were allowed to incubate an additional 24 hours before the supernatants were collected for determination of VEGF levels by an ELISA assay.
- In parallel experiments that demonstrated a similar level of repression, cell viability was monitored using the Promega Celltiter 96® Aqueous One Solution cell proliferation assay (Promega). After Dfx treatment for 18 hours, 500 μL of the original 2 ml of media was removed and analyzed for VEGF expression, as described above. To evaluation cell viability, 300 μL of Promega Celltiter 96® Aqueous One Solution Reagent was added to the remaining 1.5 ml. The cells were then incubated at 37° C. for approximately 2 hours. 100 μL from each well was transferred to a 96-well plate and read on an ELISA plate reader at OD 490 μm. There was no significant reduction in viability of cells expressing the VEGF3a/1-KRAB construct relative to those transfected with empty vector controls, indicating that the VEGF repression observed was not due to generalized cell death.
- A 40-50-fold decrease in VEGF expression Was noted in the DFX treated cells transfected with VEGF3a/1-KRAB, an expression vector encoding the 18 bp binding VEGF high affinity ZFP. A two-fold decrease in expression was observed when cells were transfected with VEGF1-KRAB, an expression vector encoding the 9 bp binding VEGF high affinity ZFP. No significant decrease in VEGF expression was observed in cells that were transfected with a non-VEGF ZFP (CCR5-KRAB) or NKF-control (
FIG. 8 ). Similar results have been obtained in three independent transfection experiments. - In a separate experiment, the following results were obtained (data not shown). VEGF1-NF, which expresses the 9-bp-binding VEGF1 ZFP without a functional domain, showed no effect on VEGF gene expression. A significant reduction in VEGF expression was observed with VEGF3a/1-NF, which expresses the 18-bp binding protein without a functional domain. This result suggests that binding to the start site of transcription, even without a repression domain, interferes with transcription. Even when fused to the KRAB domain, the VEGF3a ZFP is unable to affect expression levels (plasmid VEGF3a-KRAB). However, VEGF1 fused to KRAB (VEGF1-KRAB) results in a dramatic decrease in expression. VEGF3a/1 fused to KRAB (VEGF3a/1-KRAB) prevents expression of VEGF altogether.
- These data indicate that a designed ZFP is capable of locating and binding to its target site on the chromosome and preventing expression of an endogenous cellular target gene. In particular, the results indicate that ZFPs with a Kd of less than about 25 nM (e.g., VEGF1 has an average apparent Kd of about 10 nM) provide dramatic decreases in expression. In addition, the data demonstrate that the KRAB functional domain enhances gene silencing. Because in this experiment the introduction of the repressor occurs before the inducer of VEGF is added (DFX), the data demonstrate the ability of a designed repressor to prevent activation of an already quiescent gene. In addition, these results demonstrate that a six-finger engineered ZFP (VEGF3a/1) with nanomolar affinity for its target is able to inhibit the hypoxic response of the VEGF gene when it binds a target that overlaps the transcriptional start site.
- This Example demonstrates that a designed ZFP can activate the expression of a gene that is in its natural context and chromatin structure. Specifically, effector plasmids expressing VEGF ZFPs fused to the VP16 activation domain were introduced into cells and were shown to up-regulate the VEGF gene.
- Eucaryotic expression vectors were constructed that fuse the VEGF3a/1 and the VEGF1 ZFPs to the SV40 NLS and VP16, as described in Example III. Transfections were done using Lipofectamine, a commercially available liposome preparation from GIBCO-BRL. All plasmid DNAs were prepared using the Qiagen Midi DNA purification system. 10 μg of the effector plasmid (containing the engineered ZFP) was mixed with 100 μg of Lipofectamine (50 μl) in a total volume of 1600 μl of Opti-MEM. A pCMVP-gal plasmid (Promega) was also included in the DNA mixture as an internal control for transfection efficiency. Following a 30 minute incubation, 6.4 ml of DMEM was added and the mixture was layered on 3×106 293 cells. After five hours, the DNA-Lipofectamine mixture was removed, and fresh culture medium containing 10% fetal bovine serum was layered on the cells. One day later, fresh media was added and the supernatant was collected 24 hours later for determination of VEGF levels using a commercially available ELISA kit (R and D Systems).
- For the three-fingered VEGF1-specific ZFP (VEGF1-VP16), a 7-10 fold increase in VEGF expression was observed when compared to control plasmid (NVF-control) and mock transfected cells (
FIG. 9 ). Similar results have been obtained in 5 independent experiments. It is important to note that the level of VEGF secretion in VEGF1-VP16 transfected cells was equivalent or greater than the level in cells that have been treated with DFX (FIG. 9 ). Introduction of VEGF3a/1-VP16 stimulated a more modest induction of VEGF. This result is consistent with the finding in Example VI, in which expression of the 18-bp binding protein without a functional domain prevented activation to a certain degree. This result suggested that the tight binding of this protein to the start site of transcription interferes with activation. - These data indicate that a designed ZFP is capable of locating and binding to its target site on the chromosome, presenting a transcriptional activation domain, and dramatically enhancing the expression level of that gene. In particular, the results indicate that ZFPs with a Kd of less than about 25 nM (e.g., VEGF1 has an average apparent Kd of about 10 nM) provide dramatic increases in expression.
- To further substantiate the results in Examples VI and VII, a ribonuclease protection assay (RPA) was performed to correlate the increased level of VEGF protein with an increase in VEGF mRNA levels (Example VII), and to correlate the decreased level of VEGF protein with a decrease in VEGF mRNA levels (Example VI).
- RNA was isolated from the transfected cells using an RNA isolation kit (Pharmingen). Radiolabeled multi template probes, which included a VEGF specific probe, were prepared by in vitro transcription and hybridized overnight at 56° C. to 5 μg of each of the RNAs from the experimental and control transfected cells. The hybridization mixture was treated with RNase and the protected probes were purified and subjected to 5% denaturing polyacrylamide gel electrophoresis and the radioactivity was evaluated by autoradiography. 293 cells transfected with the VEGF1-VP16 had a 2-4 fold increase in the level of VEGF mRNA when compared to cells transfected with NVF-control (
FIG. 10 , panel A; see Example VII for experimental details). The size of the protected probe was identical to the size of the probe generated from the control human RNA provided as a control for RNA integrity. (FIG. 10 , panel A). - In a separate experiment, the level of VEGF specific mRNA was also quantitated in cells that had been transfected with a VEGF-KRAB effector plasmid (
FIG. 10 , panel B; see Example VI for experimental details). The details of the transfection are described in Example VI. A dramatic decrease in the level of VEGF mRNA was observed when cells were transfected with the VEGF3a/1-KRAB effector plasmid. No significant decrease in VEGF mRNA was observed when cells were transfected with NKF-control or a non-VEGF specific ZFP (CCR5-5-KRAB and CCR5-3-KRAB, which recognize different CCR5 target sites). - This experiment demonstrates that the increase in VEGF protein observed upon transfection with the VEGF1-VP16 chimeric transcription factor is mediated by an increase in the level of VEGF mRNA. Similarly, the decrease in VEGF protein observed upon transfection with the VEGF3a/1-KRAB chimeric transcription factor is mediated by a decrease in the level of VEGF mRNA.
Claims (7)
1. A cell comprising an engineered zinc finger protein, wherein the zinc finger protein further comprises an integrase or a functional fragment thereof.
2. The cell of claim 1 , wherein the cell is a plant cell.
3. The cell of claim 1 , wherein the cell is an animal cell.
4. The cell of claim 3 , wherein the cell is a mammalian cell.
5. The cell of claim 4 , wherein the cell is a human cell.
6. The cell of claim 5 , wherein the cell is a stem cell.
7. The cell of claim 6 , wherein the cell is a hematopoietic stem cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/986,583 US20050130304A1 (en) | 1999-01-12 | 2004-11-12 | Regulation of endogenous gene expression in cells using zinc finger proteins |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/229,037 US6534261B1 (en) | 1999-01-12 | 1999-01-12 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US10/222,614 US7163824B2 (en) | 1999-01-12 | 2002-08-15 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US10/986,583 US20050130304A1 (en) | 1999-01-12 | 2004-11-12 | Regulation of endogenous gene expression in cells using zinc finger proteins |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/222,614 Continuation US7163824B2 (en) | 1999-01-12 | 2002-08-15 | Regulation of endogenous gene expression in cells using zinc finger proteins |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050130304A1 true US20050130304A1 (en) | 2005-06-16 |
Family
ID=22859587
Family Applications (17)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/229,037 Expired - Lifetime US6534261B1 (en) | 1999-01-12 | 1999-01-12 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US09/478,681 Expired - Lifetime US6607882B1 (en) | 1999-01-12 | 2000-01-06 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US09/706,243 Expired - Lifetime US6824978B1 (en) | 1999-01-12 | 2000-11-03 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US09/897,844 Expired - Lifetime US6979539B2 (en) | 1999-01-12 | 2001-07-02 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US09/942,087 Expired - Lifetime US6933113B2 (en) | 1999-01-12 | 2001-08-28 | Modulation of endogenous gene expression in cells |
US10/222,614 Expired - Lifetime US7163824B2 (en) | 1999-01-12 | 2002-08-15 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US10/845,384 Expired - Lifetime US7220719B2 (en) | 1999-01-12 | 2004-05-13 | Modulation of endogenous gene expression in cells |
US10/984,304 Abandoned US20050215502A1 (en) | 1999-01-12 | 2004-11-09 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US10/986,583 Abandoned US20050130304A1 (en) | 1999-01-12 | 2004-11-12 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US11/505,044 Expired - Fee Related US8268618B2 (en) | 1999-01-12 | 2006-08-16 | Repressing endogenous CCR5 gene expression in cells using engineered zinc finger proteins |
US11/505,775 Expired - Fee Related US7985887B2 (en) | 1999-01-12 | 2006-08-17 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US11/521,291 Abandoned US20100261271A1 (en) | 1999-01-12 | 2006-09-14 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US11/524,165 Abandoned US20100279406A1 (en) | 1999-01-12 | 2006-09-20 | Alteration of tumor growth using zinc finger proteins |
US13/068,878 Expired - Fee Related US9491934B2 (en) | 1999-01-12 | 2011-05-23 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US13/068,877 Abandoned US20110247087A1 (en) | 1999-01-12 | 2011-05-23 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US14/297,197 Abandoned US20140325691A1 (en) | 1999-01-12 | 2014-06-05 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US15/499,615 Abandoned US20170251645A1 (en) | 1999-01-12 | 2017-04-27 | Regulation of endogenous gene expression in cells using zinc finger proteins |
Family Applications Before (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/229,037 Expired - Lifetime US6534261B1 (en) | 1999-01-12 | 1999-01-12 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US09/478,681 Expired - Lifetime US6607882B1 (en) | 1999-01-12 | 2000-01-06 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US09/706,243 Expired - Lifetime US6824978B1 (en) | 1999-01-12 | 2000-11-03 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US09/897,844 Expired - Lifetime US6979539B2 (en) | 1999-01-12 | 2001-07-02 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US09/942,087 Expired - Lifetime US6933113B2 (en) | 1999-01-12 | 2001-08-28 | Modulation of endogenous gene expression in cells |
US10/222,614 Expired - Lifetime US7163824B2 (en) | 1999-01-12 | 2002-08-15 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US10/845,384 Expired - Lifetime US7220719B2 (en) | 1999-01-12 | 2004-05-13 | Modulation of endogenous gene expression in cells |
US10/984,304 Abandoned US20050215502A1 (en) | 1999-01-12 | 2004-11-09 | Regulation of endogenous gene expression in cells using zinc finger proteins |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/505,044 Expired - Fee Related US8268618B2 (en) | 1999-01-12 | 2006-08-16 | Repressing endogenous CCR5 gene expression in cells using engineered zinc finger proteins |
US11/505,775 Expired - Fee Related US7985887B2 (en) | 1999-01-12 | 2006-08-17 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US11/521,291 Abandoned US20100261271A1 (en) | 1999-01-12 | 2006-09-14 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US11/524,165 Abandoned US20100279406A1 (en) | 1999-01-12 | 2006-09-20 | Alteration of tumor growth using zinc finger proteins |
US13/068,878 Expired - Fee Related US9491934B2 (en) | 1999-01-12 | 2011-05-23 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US13/068,877 Abandoned US20110247087A1 (en) | 1999-01-12 | 2011-05-23 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US14/297,197 Abandoned US20140325691A1 (en) | 1999-01-12 | 2014-06-05 | Regulation of endogenous gene expression in cells using zinc finger proteins |
US15/499,615 Abandoned US20170251645A1 (en) | 1999-01-12 | 2017-04-27 | Regulation of endogenous gene expression in cells using zinc finger proteins |
Country Status (11)
Country | Link |
---|---|
US (17) | US6534261B1 (en) |
EP (1) | EP1061805B1 (en) |
JP (3) | JP2002534104A (en) |
AT (1) | ATE304792T1 (en) |
AU (1) | AU745844B2 (en) |
CA (1) | CA2323086C (en) |
DE (2) | DE20023745U1 (en) |
DK (1) | DK1061805T3 (en) |
ES (1) | ES2250103T3 (en) |
GB (1) | GB2348424B (en) |
WO (1) | WO2000041566A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030194727A1 (en) * | 2001-12-07 | 2003-10-16 | Kim Jin-Soo | Phenotypic screen of chimeric proteins |
US20040170619A1 (en) * | 2001-03-19 | 2004-09-02 | John Girdlestone | Gene regulation |
US20070178499A1 (en) * | 2006-01-06 | 2007-08-02 | The Scripps Research Institute | Specific Labeling of Protein with Zinc Finger Tags and Use of Zinc-Finger-Tagged Proteins for Analysis |
WO2014039585A2 (en) | 2012-09-04 | 2014-03-13 | The Scripps Research Institute | Chimeric polypeptides having targeted binding specificity |
WO2021011936A2 (en) | 2019-07-18 | 2021-01-21 | University Of Rochester | Cell-type selective immunoprotection of cells |
US11466271B2 (en) | 2017-02-06 | 2022-10-11 | Novartis Ag | Compositions and methods for the treatment of hemoglobinopathies |
Families Citing this family (846)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE45721E1 (en) | 1994-08-20 | 2015-10-06 | Gendaq, Ltd. | Relating to binding proteins for recognition of DNA |
US7285416B2 (en) * | 2000-01-24 | 2007-10-23 | Gendaq Limited | Regulated gene expression in plants |
US7262055B2 (en) * | 1998-08-25 | 2007-08-28 | Gendaq Limited | Regulated gene expression in plants |
JP4309051B2 (en) * | 1998-03-02 | 2009-08-05 | マサチューセッツ インスティテュート オブ テクノロジー | Polyzinc finger protein with improved linker |
US6534261B1 (en) | 1999-01-12 | 2003-03-18 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
US6599692B1 (en) * | 1999-09-14 | 2003-07-29 | Sangamo Bioscience, Inc. | Functional genomics using zinc finger proteins |
US7070934B2 (en) * | 1999-01-12 | 2006-07-04 | Sangamo Biosciences, Inc. | Ligand-controlled regulation of endogenous gene expression |
US7013219B2 (en) | 1999-01-12 | 2006-03-14 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
JP2002535995A (en) | 1999-02-03 | 2002-10-29 | ザ チルドレンズ メディカル センター コーポレイション | Gene repair involving induction of double-stranded DNA breaks at chromosomal target sites |
US20030104526A1 (en) | 1999-03-24 | 2003-06-05 | Qiang Liu | Position dependent recognition of GNN nucleotide triplets by zinc fingers |
US6794136B1 (en) | 2000-11-20 | 2004-09-21 | Sangamo Biosciences, Inc. | Iterative optimization in the design of binding proteins |
GB9915126D0 (en) * | 1999-06-30 | 1999-09-01 | Imp College Innovations Ltd | Control of gene expression |
US7943731B1 (en) * | 1999-08-11 | 2011-05-17 | Massachusetts Institute Of Technology | Dimerizing peptides |
US6780590B2 (en) * | 1999-09-14 | 2004-08-24 | Sangamo Biosciences, Inc. | Gene identification |
US7329728B1 (en) * | 1999-10-25 | 2008-02-12 | The Scripps Research Institute | Ligand activated transcriptional regulator proteins |
DE60023936T2 (en) * | 1999-12-06 | 2006-05-24 | Sangamo Biosciences Inc., Richmond | METHODS OF USING RANDOMIZED ZINCFINGER PROTEIN LIBRARIES FOR IDENTIFYING GENERAL FUNCTIONS |
US7151201B2 (en) * | 2000-01-21 | 2006-12-19 | The Scripps Research Institute | Methods and compositions to modulate expression in plants |
EP1276869A2 (en) * | 2000-01-21 | 2003-01-22 | The Scripps Research Institute | Methods and compositions to modulate expression in plants |
WO2001053478A2 (en) * | 2000-01-24 | 2001-07-26 | Gendaq Limited | Methods for regulating transcription in plants by introduction of engireed zinc finger polypeptides |
ATE355368T1 (en) * | 2000-01-24 | 2006-03-15 | Gendaq Ltd | NUCLEIC ACID BINDING POLYPEPTIDES CHARACTERIZED BY FLEXIBLE LINKED NUCLEIC ACID DOMAIN |
EP1254369B1 (en) * | 2000-02-08 | 2010-10-06 | Sangamo BioSciences, Inc. | Cells for drug discovery |
US20020061512A1 (en) * | 2000-02-18 | 2002-05-23 | Kim Jin-Soo | Zinc finger domains and methods of identifying same |
AU2001257421A1 (en) | 2000-04-28 | 2001-11-12 | Sangamo Biosciences, Inc. | Pharmacogenomics and identification of drug targets by reconstruction of signal transduction pathways based on sequences of accessible regions |
WO2001083819A2 (en) * | 2000-04-28 | 2001-11-08 | Sangamo Biosciences, Inc. | Methods for designing exogenous regulatory molecules |
EP1276859B1 (en) * | 2000-04-28 | 2007-02-07 | Sangamo Biosciences Inc. | Targeted modification of chromatin structure |
US20030049649A1 (en) * | 2000-04-28 | 2003-03-13 | Wolffe Alan P. | Targeted modification of chromatin structure |
WO2001083751A2 (en) * | 2000-04-28 | 2001-11-08 | Sangamo Biosciences, Inc. | Methods for binding an exogenous molecule to cellular chromatin |
US7923542B2 (en) | 2000-04-28 | 2011-04-12 | Sangamo Biosciences, Inc. | Libraries of regulatory sequences, methods of making and using same |
CA2407745C (en) | 2000-04-28 | 2011-11-22 | Sangamo Biosciences, Inc. | Databases of regulatory sequences; methods of making and using same |
US20040039175A1 (en) * | 2000-05-08 | 2004-02-26 | Yen Choo | Modulation of viral gene expression by engineered zinc finger proteins |
GB0015090D0 (en) * | 2000-06-20 | 2000-08-09 | Implyx Ltd | Gene-activating conjugates |
US6492117B1 (en) * | 2000-07-12 | 2002-12-10 | Gendaq Limited | Zinc finger polypeptides capable of binding DNA quadruplexes |
US20030082561A1 (en) * | 2000-07-21 | 2003-05-01 | Takashi Sera | Zinc finger domain recognition code and uses thereof |
EP1303608A2 (en) * | 2000-07-21 | 2003-04-23 | Syngenta Participations AG | Zinc finger domain recognition code and uses thereof |
US20030114410A1 (en) | 2000-08-08 | 2003-06-19 | Technion Research And Development Foundation Ltd. | Pharmaceutical compositions and methods useful for modulating angiogenesis and inhibiting metastasis and tumor fibrosis |
AU2002213431A1 (en) * | 2000-09-29 | 2002-04-08 | Sangamo Biosciences, Inc. | Modulation of gene expression using localization domains |
US6919204B2 (en) * | 2000-09-29 | 2005-07-19 | Sangamo Biosciences, Inc. | Modulation of gene expression using localization domains |
AU2002211703A1 (en) * | 2000-10-13 | 2002-04-22 | Crosslink Genetics Corporation | Artificial transcriptional factors and methods of use |
US20040132033A1 (en) * | 2000-11-30 | 2004-07-08 | Wolffe Elizabeth J. | Human heparanase gene regulatory sequences |
US7067317B2 (en) * | 2000-12-07 | 2006-06-27 | Sangamo Biosciences, Inc. | Regulation of angiogenesis with zinc finger proteins |
US7026462B2 (en) * | 2000-12-07 | 2006-04-11 | Sangamo Biosciences, Inc. | Regulation of angiogenesis with zinc finger proteins |
AU2002225187A1 (en) * | 2001-01-22 | 2002-07-30 | Sangamo Biosciences, Inc. | Zinc finger polypeptides and their use |
DK1353941T3 (en) | 2001-01-22 | 2013-06-17 | Sangamo Biosciences Inc | Modified zinc finger binding proteins |
US6872548B2 (en) * | 2001-01-31 | 2005-03-29 | Human Genome Sciences, Inc. | Scaffolded fusion polypeptides and compositions and methods for making the same |
US8735153B2 (en) | 2001-09-24 | 2014-05-27 | Sangamo Biosciences, Inc. | Modulation of stem cells using zinc finger proteins |
US20040259258A1 (en) * | 2001-12-07 | 2004-12-23 | Kim Jin-Soo | Regulation of prokaryotic gene expression with zinc finger proteins |
AU2002367173A1 (en) * | 2001-12-21 | 2003-07-15 | Achillion Pharmaceuticals, Inc. | Antifungal compositions |
US7262054B2 (en) * | 2002-01-22 | 2007-08-28 | Sangamo Biosciences, Inc. | Zinc finger proteins for DNA binding and gene regulation in plants |
EP1476547B1 (en) * | 2002-01-23 | 2006-12-06 | The University of Utah Research Foundation | Targeted chromosomal mutagenesis using zinc finger nucleases |
ATE531796T1 (en) * | 2002-03-21 | 2011-11-15 | Sangamo Biosciences Inc | METHODS AND COMPOSITIONS FOR USING ZINC FINGER ENDONUCLEASES TO IMPROVE HOMOLOGOUS RECOMBINATION |
MXPA05001829A (en) * | 2002-08-12 | 2005-05-27 | Monsanto Technology Llc | Methods for increasing total oil levels in plants. |
US7361635B2 (en) | 2002-08-29 | 2008-04-22 | Sangamo Biosciences, Inc. | Simultaneous modulation of multiple genes |
EP2806025B1 (en) | 2002-09-05 | 2019-04-03 | California Institute of Technology | Use of zinc finger nucleases to stimulate gene targeting |
US20070178454A1 (en) * | 2002-10-21 | 2007-08-02 | Joung J K | Context sensitive paralell optimization of zinc finger dna binding domains |
US20060246440A1 (en) * | 2002-10-23 | 2006-11-02 | Joung J K | Methods for producing zinc finger proteins that bind to extended dna target sequences |
US20060166206A1 (en) * | 2002-11-15 | 2006-07-27 | Sangamo Biosciences, Inc. | Methods and compositions for analysis of regulatory sequences |
CN100398652C (en) * | 2002-12-09 | 2008-07-02 | 图尔金株式会社 | Regulatory zinc finger proteins |
US8071285B1 (en) * | 2003-05-14 | 2011-12-06 | Carl Henry Lawyer | Zinc finger protein derivatives and methods of using same |
US7595306B2 (en) * | 2003-06-09 | 2009-09-29 | Alnylam Pharmaceuticals Inc | Method of treating neurodegenerative disease |
WO2005004794A2 (en) | 2003-06-09 | 2005-01-20 | Alnylam Pharmaceuticals Inc. | Method of treating neurodegenerative disease |
WO2004108883A2 (en) * | 2003-06-10 | 2004-12-16 | Toolgen, Inc. | Transducible dna-binding proteins |
WO2005003766A2 (en) * | 2003-06-13 | 2005-01-13 | Whitehead Institute For Biomedical Research | Methods of regulating metabolism and mitochondrial function |
US20120196370A1 (en) | 2010-12-03 | 2012-08-02 | Fyodor Urnov | Methods and compositions for targeted genomic deletion |
CA2534296C (en) | 2003-08-08 | 2013-03-26 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
US11311574B2 (en) | 2003-08-08 | 2022-04-26 | Sangamo Therapeutics, Inc. | Methods and compositions for targeted cleavage and recombination |
US8409861B2 (en) * | 2003-08-08 | 2013-04-02 | Sangamo Biosciences, Inc. | Targeted deletion of cellular DNA sequences |
US7888121B2 (en) * | 2003-08-08 | 2011-02-15 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
US7407776B2 (en) | 2003-09-19 | 2008-08-05 | Sangamo Biosciences, Inc. | Engineered zinc finger proteins for regulation of gene expression |
US7972854B2 (en) | 2004-02-05 | 2011-07-05 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
JP4564052B2 (en) * | 2004-04-08 | 2010-10-20 | サンガモ バイオサイエンシズ インコーポレイテッド | Methods and compositions for modulating myocardial contractility |
ES2315859T3 (en) * | 2004-04-08 | 2009-04-01 | Sangamo Biosciences, Inc. | METHODS AND COMPOSITIONS TO TREAT NEUROPATIC AND NEURODEGENERATIVE AFFECTIONS. |
WO2005100392A2 (en) * | 2004-04-08 | 2005-10-27 | Sangamo Biosciences, Inc. | Treatment of neuropathic pain with zinc finger proteins |
EP1769088A2 (en) * | 2004-06-30 | 2007-04-04 | Whitehead Institute For Biomedical Research | Novel methods for high-throughput genome-wide location analysis |
US20060063231A1 (en) * | 2004-09-16 | 2006-03-23 | Sangamo Biosciences, Inc. | Compositions and methods for protein production |
US20090124993A1 (en) | 2005-02-17 | 2009-05-14 | Burkly Linda C | Treating neurological disorders |
EP2314614B1 (en) | 2005-02-28 | 2015-11-25 | Sangamo BioSciences, Inc. | Anti-angiogenic methods and compositions |
KR20070119710A (en) | 2005-03-31 | 2007-12-20 | 더 제너럴 하스피탈 코포레이션 | Monitoring and modulating hgf/hgfr activity |
AU2006261845C1 (en) | 2005-06-27 | 2013-05-16 | Exelixis Patent Company Llc | Imidazole based LXR modulators |
SG10201508995QA (en) * | 2005-07-26 | 2015-11-27 | Sangamo Biosciences Inc | Targeted integration and expression of exogenous nucleic acid sequences |
TWI428143B (en) | 2006-01-18 | 2014-03-01 | Gen Hospital Corp | Methods of increasing lymphatic function |
KR100756055B1 (en) * | 2006-01-27 | 2007-09-07 | 연세대학교 산학협력단 | Recombinant Adenoviruses Capable of Regulating Angiogenesis |
CA2641198A1 (en) * | 2006-02-09 | 2007-08-16 | Sangamo Biosciences, Inc. | Method for treating peripheral arterial disease with zinc finger proteins |
GB0607063D0 (en) * | 2006-04-07 | 2006-05-17 | Cellcentric Ltd | Compositions and methods for epigenetic modification of nucleic acid sequences in vivo |
CA2650414A1 (en) * | 2006-05-19 | 2007-11-29 | Sangamo Biosciences, Inc. | Methods and compositions for inactivation of dihydrofolate reductase |
EP2213731B1 (en) * | 2006-05-25 | 2013-12-04 | Sangamo BioSciences, Inc. | Variant foki cleavage half-domains |
US7951925B2 (en) | 2006-05-25 | 2011-05-31 | Sangamo Biosciences, Inc. | Methods and compositions for gene inactivation |
JP5496658B2 (en) | 2006-05-25 | 2014-05-21 | バイオジェン・アイデック・エムエイ・インコーポレイテッド | How to treat a stroke |
US8148129B2 (en) * | 2006-06-30 | 2012-04-03 | The Regents Of The University Of California | Generation of potent dominant negative transcriptional inhibitors |
US7739870B2 (en) * | 2006-08-04 | 2010-06-22 | Briggs And Stratton Corporation | Hydrostatic transmission |
US9428756B2 (en) * | 2006-08-11 | 2016-08-30 | Dow Agrosciences Llc | Zinc finger nuclease-mediated homologous recombination |
WO2008060510A2 (en) | 2006-11-13 | 2008-05-22 | Sangamo Biosciences, Inc. | Zinc finger nuclease for targeting the human glucocorticoid receptor locus |
PT2415872T (en) | 2006-12-14 | 2016-07-07 | Sangamo Biosciences Inc | Optimized non-canonical zinc finger proteins |
DE602008003684D1 (en) | 2007-04-26 | 2011-01-05 | Sangamo Biosciences Inc | TARGETED INTEGRATION IN THE PPP1R12C POSITION |
WO2009009086A2 (en) * | 2007-07-12 | 2009-01-15 | Sangamo Biosciences, Inc. | Methods and compositions for inactivating alpha 1,6 fucosyltransferase (fut 8) gene expression |
ES2402334T3 (en) | 2007-08-02 | 2013-04-30 | Gilead Biologics, Inc | Procedures and compositions for the treatment and diagnosis of fibrosis |
US8105827B2 (en) * | 2007-09-06 | 2012-01-31 | Academia Sinica | Protein expression systems |
US11235026B2 (en) | 2007-09-27 | 2022-02-01 | Sangamo Therapeutics, Inc. | Methods and compositions for modulating PD1 |
US8563314B2 (en) | 2007-09-27 | 2013-10-22 | Sangamo Biosciences, Inc. | Methods and compositions for modulating PD1 |
US9506120B2 (en) * | 2007-09-27 | 2016-11-29 | Sangamo Biosciences, Inc. | Rapid in vivo identification of biologically active nucleases |
CA2937438C (en) | 2007-09-27 | 2020-07-07 | Dow Agrosciences Llc | Engineered zinc finger proteins targeting 5-enolpyruvyl shikimate-3-phosphate synthase genes |
US8936936B2 (en) * | 2007-10-25 | 2015-01-20 | Sangamo Biosciences, Inc. | Methods and compositions for targeted integration |
ES2787513T3 (en) | 2007-12-03 | 2020-10-16 | Sanbio Inc | Methods and compositions to modulate stem cell differentiation |
US20090176729A1 (en) * | 2007-12-14 | 2009-07-09 | Alnylam Pharmaceuticals, Inc. | Method of treating neurodegenerative disease |
EP2250184A4 (en) * | 2008-02-08 | 2011-05-04 | Sangamo Biosciences Inc | Treatment of chronic pain with zinc finger proteins |
JP2011518555A (en) * | 2008-04-14 | 2011-06-30 | サンガモ バイオサイエンシーズ, インコーポレイテッド | Linear donor constructs for targeted integration |
WO2009146179A1 (en) * | 2008-04-15 | 2009-12-03 | University Of Iowa Research Foundation | Zinc finger nuclease for the cftr gene and methods of use thereof |
US8791324B2 (en) | 2008-04-21 | 2014-07-29 | Danziger Innovations Ltd. | Plant viral expression vectors and use of same for generating genotypic variations in plant genomes |
JP5746016B2 (en) * | 2008-04-30 | 2015-07-08 | サンバイオ,インコーポレイティド | Nerve regenerative cells with alterations in DNA methylation Not applicable for federal assistance |
US9394531B2 (en) * | 2008-05-28 | 2016-07-19 | Sangamo Biosciences, Inc. | Compositions for linking DNA-binding domains and cleavage domains |
CA2893175C (en) | 2008-06-10 | 2016-09-06 | Sangamo Biosciences, Inc. | Methods and compositions for generation of bax- and bak-deficient cell lines |
EP2323638B1 (en) | 2008-07-18 | 2014-05-07 | Hill's Pet Nutrition, Inc. | Compositions and methods for treating osteoarthritis |
CN102123778B (en) * | 2008-08-14 | 2014-10-29 | 李伟德 | Dynamic filtration device using centrifugal force |
CA2734235C (en) | 2008-08-22 | 2019-03-26 | Sangamo Biosciences, Inc. | Methods and compositions for targeted single-stranded cleavage and targeted integration |
WO2010053518A2 (en) | 2008-10-29 | 2010-05-14 | Sangamo Biosciences, Inc. | Methods and compositions for inactivating glutamine synthetase gene expression |
US20110023145A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in autism spectrum disorders |
US20110023143A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of neurodevelopmental genes in animals |
US20110023150A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genome editing of genes associated with schizophrenia in animals |
US20110016540A1 (en) * | 2008-12-04 | 2011-01-20 | Sigma-Aldrich Co. | Genome editing of genes associated with trinucleotide repeat expansion disorders in animals |
US20110023158A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Bovine genome editing with zinc finger nucleases |
US20110023159A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Ovine genome editing with zinc finger nucleases |
EP3156494B8 (en) | 2008-12-04 | 2018-09-19 | Sangamo Therapeutics, Inc. | Genome editing in rats using zinc-finger nucleases |
US20110016543A1 (en) * | 2008-12-04 | 2011-01-20 | Sigma-Aldrich Co. | Genomic editing of genes involved in inflammation |
US20110023152A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genome editing of cognition related genes in animals |
US20110016539A1 (en) * | 2008-12-04 | 2011-01-20 | Sigma-Aldrich Co. | Genome editing of neurotransmission-related genes in animals |
US20110016541A1 (en) * | 2008-12-04 | 2011-01-20 | Sigma-Aldrich Co. | Genome editing of sensory-related genes in animals |
US20110023154A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Silkworm genome editing with zinc finger nucleases |
US20110023157A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Equine genome editing with zinc finger nucleases |
US20110023147A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of prion disorder-related genes in animals |
US20110023156A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Feline genome editing with zinc finger nucleases |
US20110023139A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in cardiovascular disease |
US20110023151A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genome editing of abc transporters |
US20110023148A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genome editing of addiction-related genes in animals |
US20110016546A1 (en) * | 2008-12-04 | 2011-01-20 | Sigma-Aldrich Co. | Porcine genome editing with zinc finger nucleases |
US20110030072A1 (en) * | 2008-12-04 | 2011-02-03 | Sigma-Aldrich Co. | Genome editing of immunodeficiency genes in animals |
US20110023146A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in secretase-associated disorders |
US20110023140A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Rabbit genome editing with zinc finger nucleases |
US20110023144A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in amyotrophyic lateral sclerosis disease |
US20110023141A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved with parkinson's disease |
US20110016542A1 (en) * | 2008-12-04 | 2011-01-20 | Sigma-Aldrich Co. | Canine genome editing with zinc finger nucleases |
US20110023149A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in tumor suppression in animals |
US20110023153A1 (en) * | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in alzheimer's disease |
AR074783A1 (en) | 2008-12-17 | 2011-02-09 | Dow Agrosciences Llc | METHODS AND COMPOSITIONS TO EXPRESS ONE OR MORE PRODUCTS OF A NUCLEIC ACID INTEGRATED TO LOCUS ZP15 OF A VEGETABLE CELL |
US9107935B2 (en) * | 2009-01-06 | 2015-08-18 | Gilead Biologics, Inc. | Chemotherapeutic methods and compositions |
EP2206723A1 (en) | 2009-01-12 | 2010-07-14 | Bonas, Ulla | Modular DNA-binding domains |
US20110239315A1 (en) | 2009-01-12 | 2011-09-29 | Ulla Bonas | Modular dna-binding domains and methods of use |
EP2393506B1 (en) * | 2009-02-04 | 2018-03-28 | Sangamo Therapeutics, Inc. | Methods and compositions for treating neuropathies |
KR20110140121A (en) * | 2009-02-06 | 2011-12-30 | 길리아드 바이오로직스, 인크. | Methods and compositions for treatment of neovascularization |
US8460674B2 (en) * | 2009-02-07 | 2013-06-11 | University Of Washington | HSV-1 epitopes and methods for using same |
JP5932632B2 (en) | 2009-03-20 | 2016-06-15 | サンガモ バイオサイエンシーズ, インコーポレイテッド | Modification of CXCR4 using modified zinc finger protein |
JP6215533B2 (en) * | 2009-04-09 | 2017-10-18 | サンガモ セラピューティクス, インコーポレイテッド | Targeted integration into stem cells |
US8772008B2 (en) * | 2009-05-18 | 2014-07-08 | Sangamo Biosciences, Inc. | Methods and compositions for increasing nuclease activity |
EP2449135B1 (en) | 2009-06-30 | 2016-01-06 | Sangamo BioSciences, Inc. | Rapid screening of biologically active nucleases and isolation of nuclease-modified cells |
WO2011005849A1 (en) | 2009-07-08 | 2011-01-13 | Cellular Dynamics International, Inc. | Modified ips cells having a mutant form of human immunodeficiency virus (hiv) cellular entry gene |
US9234016B2 (en) * | 2009-07-28 | 2016-01-12 | Sangamo Biosciences, Inc. | Engineered zinc finger proteins for treating trinucleotide repeat disorders |
DK2462230T3 (en) * | 2009-08-03 | 2015-10-19 | Recombinetics Inc | METHODS AND COMPOSITIONS FOR TARGETED RE-MODIFICATION |
NZ619886A (en) * | 2009-08-11 | 2015-03-27 | Sangamo Biosciences Inc | Organisms homozygous for targeted modification |
AU2010284036B2 (en) | 2009-08-21 | 2014-12-18 | Gilead Biologics, Inc. | Catalytic domains from lysyl oxidase and LOXL2 |
WO2011022670A1 (en) * | 2009-08-21 | 2011-02-24 | Arresto Biosciences, Inc | In vivo screening assays |
CA2771630A1 (en) * | 2009-08-21 | 2011-02-24 | Victoria Smith | Therapeutic methods and compositions |
US20110207144A1 (en) * | 2009-08-21 | 2011-08-25 | Derek Marshall | In vitro screening assays |
CA2771786A1 (en) * | 2009-08-21 | 2011-02-24 | Gilead Biologics, Inc. | In vivo screening assays |
WO2011048600A1 (en) | 2009-10-21 | 2011-04-28 | Danziger Innovations Ltd. | Generating genotypic variations in plant genomes by gamete infection |
BR112012009668B1 (en) * | 2009-10-22 | 2022-08-16 | Dow Agrosciences Llc | NON-NATURALLY OCCURRING ZINC FINGER PROTEIN AND FUSION PROTEIN COMPRISING THE SAME |
AU2015203725B2 (en) * | 2009-10-22 | 2017-02-02 | Corteva Agriscience Llc | Engineered zinc finger proteins targeting plant genes involved in fatty acid biosynthesis |
US8956828B2 (en) | 2009-11-10 | 2015-02-17 | Sangamo Biosciences, Inc. | Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases |
US9420770B2 (en) | 2009-12-01 | 2016-08-23 | Indiana University Research & Technology Corporation | Methods of modulating thrombocytopenia and modified transgenic pigs |
PL2816112T3 (en) | 2009-12-10 | 2019-03-29 | Regents Of The University Of Minnesota | Tal effector-mediated DNA modification |
CA2793596A1 (en) | 2009-12-30 | 2011-07-07 | Pioneer Hi-Bred International, Inc. | Methods and compositions for targeted polynucleotide modification |
WO2011085070A2 (en) * | 2010-01-06 | 2011-07-14 | Virginia Tech Intellectual Properties, Inc. | Methods and compositions to improve the health of plants, animals and microbes by manipulating protein entry into symbionts and their hosts |
US20110203012A1 (en) * | 2010-01-21 | 2011-08-18 | Dotson Stanton B | Methods and compositions for use of directed recombination in plant breeding |
EA031322B1 (en) * | 2010-01-22 | 2018-12-28 | Дау Агросайенсиз Ллс | Cell or cell line for expression of exogenous nucleic acid sequences and use of a cell or cell line |
MX2012009088A (en) | 2010-02-04 | 2012-12-05 | Gilead Biologics Inc | Antibodies that bind to lysyl oxidase-like 2 (loxl2) and methods of use therefor. |
PT2534173T (en) | 2010-02-08 | 2019-10-31 | Sangamo Therapeutics Inc | Engineered cleavage half-domains |
CA2788850C (en) | 2010-02-09 | 2019-06-25 | Sangamo Biosciences, Inc. | Targeted genomic modification with partially single-stranded donor molecules |
CN103025866A (en) | 2010-03-22 | 2013-04-03 | 菲利普莫里斯生产公司 | Modifying enzyme activity in plants |
US9315825B2 (en) * | 2010-03-29 | 2016-04-19 | The Trustees Of The University Of Pennsylvania | Pharmacologically induced transgene ablation system |
CN102971421A (en) * | 2010-04-13 | 2013-03-13 | 西格马-奥尔德里奇有限责任公司 | Methods for generating endogenously tagged protein |
US8771985B2 (en) | 2010-04-26 | 2014-07-08 | Sangamo Biosciences, Inc. | Genome editing of a Rosa locus using zinc-finger nucleases |
EP3636766A1 (en) | 2010-05-03 | 2020-04-15 | Sangamo Therapeutics, Inc. | Compositions for linking zinc finger modules |
CA2798988C (en) | 2010-05-17 | 2020-03-10 | Sangamo Biosciences, Inc. | Tal-effector (tale) dna-binding polypeptides and uses thereof |
JP5996527B2 (en) | 2010-05-28 | 2016-09-21 | テラヴィア ホールディングス, インコーポレイテッド | Food ingredients containing oils depending on the application |
WO2012012667A2 (en) | 2010-07-21 | 2012-01-26 | Sangamo Biosciences, Inc. | Methods and compositions for modification of a hla locus |
BR112013001685B1 (en) | 2010-07-23 | 2021-10-13 | Sigma-Aldrich Co. Llc | METHOD FOR EDITING AT LEAST ONE ENDOGENOUS CHROMOSOMIC SEQUENCE IN A CELL BY INSERTING A SEQUENCE INTO THE CHROMOSOMIC SEQUENCE |
EP2622090B1 (en) | 2010-09-27 | 2019-06-19 | Sangamo Therapeutics, Inc. | Compositions for inhibiting viral entry into cells |
WO2012051343A1 (en) | 2010-10-12 | 2012-04-19 | The Children's Hospital Of Philadelphia | Methods and compositions for treating hemophilia b |
SG10201509035WA (en) | 2010-11-03 | 2015-12-30 | Solazyme Inc | Microbial Oils With Lowered Pour Points, Dielectric Fluids Produced Therefrom, And Related Methods |
JP2014513520A (en) | 2010-12-29 | 2014-06-05 | シグマ−アルドリッチ・カンパニー、エルエルシー | Cells with perturbed expression of proteins involved in ADME and toxicological processes |
US9267123B2 (en) | 2011-01-05 | 2016-02-23 | Sangamo Biosciences, Inc. | Methods and compositions for gene correction |
AR084844A1 (en) | 2011-01-14 | 2013-06-26 | Jones Jeffrey B | CITRIC TREES WITH CITRUS CANCRO RESISTANCE |
JP6071904B2 (en) | 2011-02-02 | 2017-02-01 | テラヴィア ホールディングス, インコーポレイテッド | Oils that are produced from recombinant oil producing microorganisms |
EP2694554A1 (en) | 2011-04-08 | 2014-02-12 | Gilead Biologics, Inc. | Methods and compositions for normalization of tumor vasculature by inhibition of loxl2 |
US8980583B2 (en) | 2011-06-30 | 2015-03-17 | Sigma-Aldrich Co. Llc | Cells deficient in CMP-N-acetylneuraminic acid hydroxylase and/or glycoprotein alpha-1,3-galactosyltransferase |
WO2013009935A2 (en) | 2011-07-12 | 2013-01-17 | Two Blades Foundation | Late blight resistance genes |
JP6214530B2 (en) | 2011-07-15 | 2017-10-18 | ザ ジェネラル ホスピタル コーポレイション | Method for assembling a transcription activator-like effector |
WO2013066438A2 (en) | 2011-07-22 | 2013-05-10 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
EP2737063B1 (en) | 2011-07-25 | 2016-06-01 | Sangamo BioSciences, Inc. | Methods and compositions for alteration of a cystic fibrosis transmembrane conductance regulator (cftr) gene |
ES2961613T3 (en) | 2011-09-21 | 2024-03-12 | Sangamo Therapeutics Inc | Methods and compositions for the regulation of transgene expression |
WO2013044029A1 (en) | 2011-09-23 | 2013-03-28 | University Of Louisville Research Foundation, Inc. | Methods and compositions for expanding cells and improving engraftment |
KR20140079780A (en) * | 2011-10-11 | 2014-06-27 | 알리오프타 아게 | Regulation of receptor expression through delivery of artificial transcription factors |
AU2012328682B2 (en) | 2011-10-27 | 2017-09-21 | Sangamo Therapeutics, Inc. | Methods and compositions for modification of the HPRT locus |
US9458205B2 (en) | 2011-11-16 | 2016-10-04 | Sangamo Biosciences, Inc. | Modified DNA-binding proteins and uses thereof |
CN110438083A (en) | 2012-01-11 | 2019-11-12 | 西格马-奥尔德里奇有限责任公司 | The generation of recombinant protein with simple sugar-type |
BR112014018294B1 (en) | 2012-01-26 | 2022-01-11 | Norfolk Plant Sciences, Ltd | METHOD FOR PRODUCING A PLANT, EXPRESSION CASSETTE, AND BACTERIAL CELL |
JP6023218B2 (en) | 2012-01-27 | 2016-11-09 | サンバイオ,インコーポレイティド | Methods and compositions for modulating angiogenesis and vascular development |
JP6309461B2 (en) | 2012-02-28 | 2018-04-11 | シグマ−アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニーSigma−Aldrich Co., LLC | Targeting histone acetylation |
KR102084539B1 (en) | 2012-02-29 | 2020-03-04 | 상가모 테라퓨틱스, 인코포레이티드 | Methods and compositions for treating huntington's disease |
SG11201406711TA (en) | 2012-04-18 | 2014-11-27 | Solazyme Inc | Tailored oils |
EP2839013B1 (en) | 2012-04-18 | 2020-08-26 | The Board of Trustees of the Leland Stanford Junior University | Non-disruptive gene targeting |
WO2013163628A2 (en) | 2012-04-27 | 2013-10-31 | Duke University | Genetic correction of mutated genes |
JP6352250B2 (en) | 2012-05-02 | 2018-07-04 | ダウ アグロサイエンシィズ エルエルシー | Target modification of malate dehydrogenase |
WO2013169802A1 (en) | 2012-05-07 | 2013-11-14 | Sangamo Biosciences, Inc. | Methods and compositions for nuclease-mediated targeted integration of transgenes |
US11120889B2 (en) | 2012-05-09 | 2021-09-14 | Georgia Tech Research Corporation | Method for synthesizing a nuclease with reduced off-site cleavage |
US9890364B2 (en) | 2012-05-29 | 2018-02-13 | The General Hospital Corporation | TAL-Tet1 fusion proteins and methods of use thereof |
CA2875945A1 (en) | 2012-06-07 | 2013-12-12 | The Children's Hospital Of Philadelphia | Controlled gene expression methods |
KR20150023670A (en) | 2012-06-12 | 2015-03-05 | 제넨테크, 인크. | Methods and compositions for generating conditional knock-out alleles |
BR112014031891A2 (en) | 2012-06-19 | 2017-08-01 | Univ Minnesota | genetic targeting in plants using DNA viruses |
US10648001B2 (en) | 2012-07-11 | 2020-05-12 | Sangamo Therapeutics, Inc. | Method of treating mucopolysaccharidosis type I or II |
EP2872154B1 (en) | 2012-07-11 | 2017-05-31 | Sangamo BioSciences, Inc. | Methods and compositions for delivery of biologics |
HUE051612T2 (en) | 2012-07-11 | 2021-03-01 | Sangamo Therapeutics Inc | Methods and compositions for the treatment of lysosomal storage diseases |
ES2757623T3 (en) * | 2012-07-25 | 2020-04-29 | Broad Inst Inc | Inducible DNA binding proteins and genomic disruption tools and applications thereof |
KR102474010B1 (en) * | 2012-08-29 | 2022-12-02 | 상가모 테라퓨틱스, 인코포레이티드 | Methods and compositions for treatment of a genetic condition |
US9937205B2 (en) | 2012-09-04 | 2018-04-10 | The Trustees Of The University Of Pennsylvania | Inhibition of diacylglycerol kinase to augment adoptive T cell transfer |
UA118090C2 (en) | 2012-09-07 | 2018-11-26 | ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі | Fad2 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks |
UA119135C2 (en) | 2012-09-07 | 2019-05-10 | ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі | Engineered transgene integration platform (etip) for gene targeting and trait stacking |
EP3406715B1 (en) | 2012-09-07 | 2023-12-13 | Corteva Agriscience LLC | Fad3 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks |
EP2895620B1 (en) | 2012-09-11 | 2017-08-02 | Life Technologies Corporation | Nucleic acid amplification |
WO2014043143A1 (en) | 2012-09-11 | 2014-03-20 | Life Technologies Corporation | Nucleic acid amplification |
DK2906684T3 (en) | 2012-10-10 | 2020-09-28 | Sangamo Therapeutics Inc | T-CELL MODIFIING COMPOUNDS AND USES THEREOF |
EP3789405A1 (en) | 2012-10-12 | 2021-03-10 | The General Hospital Corporation | Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins |
JP6450683B2 (en) | 2012-11-01 | 2019-01-09 | セレクティス | Plants for the production of therapeutic proteins |
US9506915B2 (en) | 2012-11-15 | 2016-11-29 | Board Of Trustees Of The University Of Arkansas | Methods and kits for isolation and analysis of a chromatin region |
US9279816B2 (en) | 2012-11-15 | 2016-03-08 | Board Of Trustees Of The University Of Arkansas | Methods and kits for isolation and analysis of a chromatin region |
CA2891510C (en) | 2012-11-16 | 2022-10-18 | Transposagen Biopharmaceuticals, Inc. | Site-specific enzymes and methods of use |
WO2014089212A1 (en) | 2012-12-05 | 2014-06-12 | Sangamo Biosciences, Inc. | Methods and compositions for regulation of metabolic disorders |
US10272163B2 (en) | 2012-12-07 | 2019-04-30 | The Regents Of The University Of California | Factor VIII mutation repair and tolerance induction |
EP2825654B1 (en) | 2012-12-12 | 2017-04-26 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
WO2014093694A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
US8993233B2 (en) | 2012-12-12 | 2015-03-31 | The Broad Institute Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
BR112015013784A2 (en) | 2012-12-12 | 2017-07-11 | Massachusetts Inst Technology | application, manipulation and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
MX2015007549A (en) | 2012-12-12 | 2017-01-20 | Broad Inst Inc | Engineering of systems, methods and optimized guide compositions for sequence manipulation. |
PL2896697T3 (en) | 2012-12-12 | 2016-01-29 | Broad Inst Inc | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
PL2898075T3 (en) | 2012-12-12 | 2016-09-30 | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation | |
EP2931899A1 (en) | 2012-12-12 | 2015-10-21 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
RU2015128052A (en) | 2012-12-13 | 2017-01-19 | Дау Агросайенсиз Ллс | PRECISE TARGETING OF GENES REGARDING SPECIFIC LOCUS OF CORN |
RU2699523C2 (en) * | 2012-12-17 | 2019-09-05 | Президент Энд Фэллоуз Оф Харвард Коллидж | Rna-guided engineering of human genome |
ES2673864T3 (en) | 2012-12-21 | 2018-06-26 | Cellectis | Potatoes with reduced cold-induced sweetening |
EP3919505B1 (en) | 2013-01-16 | 2023-08-30 | Emory University | Uses of cas9-nucleic acid complexes |
WO2014124284A1 (en) | 2013-02-07 | 2014-08-14 | The General Hospital Corporation | Tale transcriptional activators |
US10227610B2 (en) | 2013-02-25 | 2019-03-12 | Sangamo Therapeutics, Inc. | Methods and compositions for enhancing nuclease-mediated gene disruption |
US9957515B2 (en) | 2013-03-15 | 2018-05-01 | Cibus Us Llc | Methods and compositions for targeted gene modification |
KR102210322B1 (en) | 2013-03-15 | 2021-02-01 | 더 제너럴 하스피탈 코포레이션 | Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing |
US10760064B2 (en) | 2013-03-15 | 2020-09-01 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
US10113162B2 (en) | 2013-03-15 | 2018-10-30 | Cellectis | Modifying soybean oil composition through targeted knockout of the FAD2-1A/1B genes |
WO2014153470A2 (en) | 2013-03-21 | 2014-09-25 | Sangamo Biosciences, Inc. | Targeted disruption of t cell receptor genes using engineered zinc finger protein nucleases |
KR102223568B1 (en) | 2013-04-05 | 2021-03-04 | 다우 아그로사이언시즈 엘엘씨 | Methods and compositions for integration of an exogenous sequence within the genome of plants |
WO2014182700A1 (en) | 2013-05-10 | 2014-11-13 | Sangamo Biosciences, Inc. | Delivery methods and compositions for nuclease-mediated genome engineering |
WO2014186435A2 (en) | 2013-05-14 | 2014-11-20 | University Of Georgia Research Foundation, Inc. | Compositions and methods for reducing neointima formation |
CN116083487A (en) | 2013-05-15 | 2023-05-09 | 桑格摩生物治疗股份有限公司 | Methods and compositions for treating genetic conditions |
CN105531372A (en) * | 2013-06-14 | 2016-04-27 | 塞尔克蒂斯股份有限公司 | Methods for non-transgenic genome editing in plants |
KR20160034901A (en) | 2013-06-17 | 2016-03-30 | 더 브로드 인스티튜트, 인코퍼레이티드 | Optimized crispr-cas double nickase systems, methods and compositions for sequence manipulation |
CN105793425B (en) | 2013-06-17 | 2021-10-26 | 布罗德研究所有限公司 | Delivery, use and therapeutic applications of CRISPR-CAS systems and compositions for targeting disorders and diseases using viral components |
CN107995927B (en) | 2013-06-17 | 2021-07-30 | 布罗德研究所有限公司 | Delivery and use of CRISPR-CAS systems, vectors and compositions for liver targeting and therapy |
EP3011029B1 (en) | 2013-06-17 | 2019-12-11 | The Broad Institute, Inc. | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
ES2767318T3 (en) | 2013-06-17 | 2020-06-17 | Broad Inst Inc | Supply, modification and optimization of systems, methods and compositions to generate models and act on postmitotic cell diseases and disorders |
WO2014204727A1 (en) | 2013-06-17 | 2014-12-24 | The Broad Institute Inc. | Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof |
US10011850B2 (en) | 2013-06-21 | 2018-07-03 | The General Hospital Corporation | Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing |
US20150044192A1 (en) | 2013-08-09 | 2015-02-12 | President And Fellows Of Harvard College | Methods for identifying a target site of a cas9 nuclease |
US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
WO2015031619A1 (en) | 2013-08-28 | 2015-03-05 | Sangamo Biosciences, Inc. | Compositions for linking dna-binding domains and cleavage domains |
SG11201601313TA (en) * | 2013-08-29 | 2016-03-30 | Univ Temple | Methods and compositions for rna-guided treatment of hiv infection |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
US9322037B2 (en) | 2013-09-06 | 2016-04-26 | President And Fellows Of Harvard College | Cas9-FokI fusion proteins and uses thereof |
WO2015051319A2 (en) | 2013-10-04 | 2015-04-09 | Solazyme, Inc. | Tailored oils |
CN116836957A (en) | 2013-10-17 | 2023-10-03 | 桑格摩生物科学股份有限公司 | Delivery methods and compositions for nuclease-mediated genome engineering |
EP3057432B1 (en) | 2013-10-17 | 2018-11-21 | Sangamo Therapeutics, Inc. | Delivery methods and compositions for nuclease-mediated genome engineering in hematopoietic stem cells |
AU2014341929B2 (en) | 2013-11-04 | 2017-11-30 | Corteva Agriscience Llc | Optimal maize loci |
EP3862434A1 (en) | 2013-11-04 | 2021-08-11 | Dow AgroSciences LLC | Optimal soybean loci |
NZ719494A (en) | 2013-11-04 | 2017-09-29 | Dow Agrosciences Llc | Optimal maize loci |
BR102014027436B1 (en) | 2013-11-04 | 2022-06-28 | Dow Agrosciences Llc | RECOMBINANT NUCLEIC ACID MOLECULE AND METHOD FOR PRODUCTION OF A TRANSGENIC PLANT CELL |
JP2016536021A (en) | 2013-11-07 | 2016-11-24 | エディタス・メディシン,インコーポレイテッド | CRISPR-related methods and compositions with governing gRNA |
CN105934524A (en) | 2013-11-11 | 2016-09-07 | 桑格摩生物科学股份有限公司 | Methods and compositions for treating huntington's disease |
PT3492593T (en) | 2013-11-13 | 2021-10-18 | Childrens Medical Center | Nuclease-mediated regulation of gene expression |
US9932607B2 (en) | 2013-11-15 | 2018-04-03 | The Board Of Trustees Of The Leland Stanford Junior University | Site-specific integration of transgenes into human cells |
EP3757116A1 (en) | 2013-12-09 | 2020-12-30 | Sangamo Therapeutics, Inc. | Methods and compositions for genome engineering |
WO2015089486A2 (en) | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems |
US9068179B1 (en) | 2013-12-12 | 2015-06-30 | President And Fellows Of Harvard College | Methods for correcting presenilin point mutations |
KR20160089527A (en) | 2013-12-12 | 2016-07-27 | 더 브로드 인스티튜트, 인코퍼레이티드 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for genome editing |
JP2017501149A (en) | 2013-12-12 | 2017-01-12 | ザ・ブロード・インスティテュート・インコーポレイテッド | Delivery, use and therapeutic applications of CRISPR-CAS systems and compositions for targeting disorders and diseases using particle delivery components |
AU2014361784A1 (en) | 2013-12-12 | 2016-06-23 | Massachusetts Institute Of Technology | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for HBV and viral diseases and disorders |
US10774338B2 (en) | 2014-01-16 | 2020-09-15 | The Regents Of The University Of California | Generation of heritable chimeric plant traits |
WO2015116680A1 (en) | 2014-01-30 | 2015-08-06 | Two Blades Foundation | Plants with enhanced resistance to phytophthora |
EP3102673B1 (en) | 2014-02-03 | 2020-04-15 | Sangamo Therapeutics, Inc. | Methods and compositions for treatment of a beta thalessemia |
EP3110454B1 (en) | 2014-02-24 | 2020-11-18 | Sangamo Therapeutics, Inc. | Methods and compositions for nuclease-mediated targeted integration |
TW201538518A (en) | 2014-02-28 | 2015-10-16 | Dow Agrosciences Llc | Root specific expression conferred by chimeric gene regulatory elements |
SG11201607038TA (en) | 2014-03-04 | 2016-09-29 | Sigma Aldrich Co Llc | Viral resistant cells and uses thereof |
KR102569558B1 (en) | 2014-03-14 | 2023-08-22 | 시버스 유에스 엘엘씨 | Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair |
ES2879373T3 (en) | 2014-03-18 | 2021-11-22 | Sangamo Therapeutics Inc | Methods and compositions for the regulation of zinc finger protein expression |
US10612041B2 (en) | 2014-03-21 | 2020-04-07 | The Board Of Trustees Of The Leland Stanford Junior University | Genome editing without nucleases |
WO2015153889A2 (en) | 2014-04-02 | 2015-10-08 | University Of Florida Research Foundation, Incorporated | Materials and methods for the treatment of latent viral infection |
US20150301028A1 (en) | 2014-04-22 | 2015-10-22 | Q-State Biosciences, Inc. | Analysis of compounds for pain and sensory disorders |
US9522936B2 (en) | 2014-04-24 | 2016-12-20 | Sangamo Biosciences, Inc. | Engineered transcription activator like effector (TALE) proteins |
WO2015171603A1 (en) | 2014-05-06 | 2015-11-12 | Two Blades Foundation | Methods for producing plants with enhanced resistance to oomycete pathogens |
RU2691102C2 (en) | 2014-05-08 | 2019-06-11 | Сангамо Байосайенсиз, Инк. | Methods and compositions for treating huntington's disease |
ES2964536T3 (en) | 2014-05-09 | 2024-04-08 | Univ Yale | Particles coated with hyperbranched polyglycerol and methods for their preparation |
US11918695B2 (en) | 2014-05-09 | 2024-03-05 | Yale University | Topical formulation of hyperbranched polymer-coated particles |
AU2015259191B2 (en) | 2014-05-13 | 2019-03-21 | Sangamo Therapeutics, Inc. | Methods and compositions for prevention or treatment of a disease |
BR112016028023A2 (en) | 2014-05-30 | 2017-08-22 | Univ Leland Stanford Junior | COMPOSITIONS AND METHODS OF ADMINISTRATION OF TREATMENTS FOR LATENT VIRAL INFECTIONS |
WO2015188056A1 (en) | 2014-06-05 | 2015-12-10 | Sangamo Biosciences, Inc. | Methods and compositions for nuclease design |
EA039693B1 (en) | 2014-06-16 | 2022-02-28 | Дзе Джонс Хопкинс Юниверсити | COMPOSITIONS AND METHODS FOR THE EXPRESSION OF CRISPR GUIDE RNAs USING THE H1 PROMOTER |
EP3158072B1 (en) | 2014-06-20 | 2021-01-13 | Cellectis | Potatoes with reduced granule-bound starch synthase |
EP3919621A1 (en) | 2014-06-23 | 2021-12-08 | The General Hospital Corporation | Genomewide unbiased identification of dsbs evaluated by sequencing (guide-seq) |
CA2954201A1 (en) | 2014-07-08 | 2016-01-14 | Vib Vzw | Means and methods to increase plant yield |
CN106574255A (en) | 2014-07-10 | 2017-04-19 | 泰拉瑞亚控股公司 | Ketoacyl acp synthase genes and uses thereof |
US20170142942A1 (en) | 2014-07-14 | 2017-05-25 | Washington State University | Nanos knock-out that ablates germline cells |
EP3169773B1 (en) | 2014-07-15 | 2023-07-12 | Juno Therapeutics, Inc. | Engineered cells for adoptive cell therapy |
US11278572B2 (en) | 2014-07-18 | 2022-03-22 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Reducing CXCR4 expression and/or function to enhance engraftment of hematopoietic stem cells |
US9816074B2 (en) | 2014-07-25 | 2017-11-14 | Sangamo Therapeutics, Inc. | Methods and compositions for modulating nuclease-mediated genome engineering in hematopoietic stem cells |
WO2016014837A1 (en) | 2014-07-25 | 2016-01-28 | Sangamo Biosciences, Inc. | Gene editing for hiv gene therapy |
US20170218397A1 (en) * | 2014-07-30 | 2017-08-03 | Texas Tech University System | Conditional cytotoxic gene therapy vector for selectable stem cell modification for anti hiv gene therapy |
WO2016022363A2 (en) | 2014-07-30 | 2016-02-11 | President And Fellows Of Harvard College | Cas9 proteins including ligand-dependent inteins |
US9616090B2 (en) | 2014-07-30 | 2017-04-11 | Sangamo Biosciences, Inc. | Gene correction of SCID-related genes in hematopoietic stem and progenitor cells |
US11071289B2 (en) | 2014-08-14 | 2021-07-27 | Biocytogen Boston Corp | DNA knock-in system |
DK3180426T3 (en) | 2014-08-17 | 2020-03-30 | Broad Inst Inc | RETURNING BY USING CAS9 NICKASES |
PL3194570T3 (en) | 2014-09-16 | 2021-12-20 | Sangamo Therapeutics, Inc. | Methods and compositions for nuclease-mediated genome engineering and correction in hematopoietic stem cells |
CN107295802B (en) | 2014-09-24 | 2021-06-29 | 希望之城 | Adeno-associated virus vector variants for efficient genome editing and methods thereof |
CA2963080A1 (en) | 2014-10-01 | 2016-04-07 | The General Hospital Corporation | Methods for increasing efficiency of nuclease-induced homology-directed repair |
GB201418965D0 (en) | 2014-10-24 | 2014-12-10 | Ospedale San Raffaele And Fond Telethon | |
WO2016094872A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Dead guides for crispr transcription factors |
WO2016094874A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Escorted and functionalized guides for crispr-cas systems |
EP3985115A1 (en) | 2014-12-12 | 2022-04-20 | The Broad Institute, Inc. | Protected guide rnas (pgrnas) |
US10889834B2 (en) | 2014-12-15 | 2021-01-12 | Sangamo Therapeutics, Inc. | Methods and compositions for enhancing targeted transgene integration |
WO2016106236A1 (en) | 2014-12-23 | 2016-06-30 | The Broad Institute Inc. | Rna-targeting system |
AU2015369725A1 (en) | 2014-12-24 | 2017-06-29 | Massachusetts Institute Of Technology | CRISPR having or associated with destabilization domains |
EP3247366A4 (en) | 2015-01-21 | 2018-10-31 | Sangamo Therapeutics, Inc. | Methods and compositions for identification of highly specific nucleases |
US10626372B1 (en) | 2015-01-26 | 2020-04-21 | Fate Therapeutics, Inc. | Methods and compositions for inducing hematopoietic cell differentiation |
EP3256487A4 (en) | 2015-02-09 | 2018-07-18 | Duke University | Compositions and methods for epigenome editing |
US10048275B2 (en) | 2015-03-13 | 2018-08-14 | Q-State Biosciences, Inc. | Cardiotoxicity screening methods |
WO2016161446A1 (en) | 2015-04-03 | 2016-10-06 | Dana-Farber Cancer Institute, Inc. | Composition and methods of genome editing of b-cells |
BR112017021903B1 (en) | 2015-04-15 | 2023-12-05 | Corteva Agriscience Llc | PLANT PROMOTER FOR TRANSGENE EXPRESSION |
JP2018511331A (en) | 2015-04-15 | 2018-04-26 | ダウ アグロサイエンシィズ エルエルシー | Plant promoter for transgene expression |
PT3289080T (en) | 2015-04-30 | 2021-11-19 | Univ Columbia | Gene therapy for autosomal dominant diseases |
US11845928B2 (en) | 2015-05-04 | 2023-12-19 | Tsinghua University | Methods and kits for fragmenting DNA |
US10179918B2 (en) | 2015-05-07 | 2019-01-15 | Sangamo Therapeutics, Inc. | Methods and compositions for increasing transgene activity |
EP3294892B1 (en) | 2015-05-09 | 2020-11-25 | Two Blades Foundation | Late blight resistance gene from solanum americanum and methods of use |
MX2017014446A (en) | 2015-05-12 | 2018-06-13 | Sangamo Therapeutics Inc | Nuclease-mediated regulation of gene expression. |
WO2016183448A1 (en) * | 2015-05-14 | 2016-11-17 | University Of Southern California | Optimized gene editing utilizing a recombinant endonuclease system |
CA2986583A1 (en) | 2015-05-21 | 2016-11-24 | Q-State Biosciences, Inc. | Optogenetics microscope |
US20160346360A1 (en) | 2015-05-29 | 2016-12-01 | Agenovir Corporation | Compositions and methods for cell targeted hpv treatment |
US10117911B2 (en) | 2015-05-29 | 2018-11-06 | Agenovir Corporation | Compositions and methods to treat herpes simplex virus infections |
EP3303586A1 (en) | 2015-05-29 | 2018-04-11 | Juno Therapeutics, Inc. | Composition and methods for regulating inhibitory interactions in genetically engineered cells |
US20180296537A1 (en) | 2015-06-05 | 2018-10-18 | Novartis Ag | Methods and compositions for diagnosing, treating, and monitoring treatment of shank3 deficiency associated disorders |
ES2886599T3 (en) | 2015-06-17 | 2021-12-20 | Poseida Therapeutics Inc | Compositions and methods for targeting proteins to specific loci in the genome |
CA3012631A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US9957501B2 (en) | 2015-06-18 | 2018-05-01 | Sangamo Therapeutics, Inc. | Nuclease-mediated regulation of gene expression |
US9790490B2 (en) | 2015-06-18 | 2017-10-17 | The Broad Institute Inc. | CRISPR enzymes and systems |
EP3436575A1 (en) | 2015-06-18 | 2019-02-06 | The Broad Institute Inc. | Novel crispr enzymes and systems |
WO2017011519A1 (en) | 2015-07-13 | 2017-01-19 | Sangamo Biosciences, Inc. | Delivery methods and compositions for nuclease-mediated genome engineering |
MA42895A (en) | 2015-07-15 | 2018-05-23 | Juno Therapeutics Inc | MODIFIED CELLS FOR ADOPTIVE CELL THERAPY |
LT3331355T (en) | 2015-08-06 | 2024-07-25 | The Curators Of The University Of Missouri | Porcine reproductive and respiratory syndrome virus (prrsv)-resistant porcine and cells having modified cd163 genes |
WO2017024317A2 (en) | 2015-08-06 | 2017-02-09 | Dana-Farber Cancer Institute, Inc. | Methods to induce targeted protein degradation through bifunctional molecules |
EP3337908A4 (en) | 2015-08-18 | 2019-01-23 | The Broad Institute, Inc. | Methods and compositions for altering function and structure of chromatin loops and/or domains |
US9512446B1 (en) | 2015-08-28 | 2016-12-06 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
US9926546B2 (en) | 2015-08-28 | 2018-03-27 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
WO2017040709A1 (en) | 2015-08-31 | 2017-03-09 | Caribou Biosciences, Inc. | Directed nucleic acid repair |
JP2018530536A (en) | 2015-09-11 | 2018-10-18 | ザ ジェネラル ホスピタル コーポレイション | Full verification and sequencing of nuclease DSB (FIND-seq) |
US10837024B2 (en) | 2015-09-17 | 2020-11-17 | Cellectis | Modifying messenger RNA stability in plant transformations |
TW201718861A (en) | 2015-09-22 | 2017-06-01 | 道禮責任有限公司 | Plant promoter and 3'UTR for transgene expression |
TW201718862A (en) | 2015-09-22 | 2017-06-01 | Dow Agrosciences Llc | Plant promoter and 3' UTR for transgene expression |
CA2998500A1 (en) | 2015-09-23 | 2017-03-30 | Sangamo Therapeutics, Inc. | Htt repressors and uses thereof |
US9850484B2 (en) | 2015-09-30 | 2017-12-26 | The General Hospital Corporation | Comprehensive in vitro reporting of cleavage events by sequencing (Circle-seq) |
WO2017062790A1 (en) | 2015-10-09 | 2017-04-13 | Two Blades Foundation | Cold shock protein receptors and methods of use |
EP4089175A1 (en) | 2015-10-13 | 2022-11-16 | Duke University | Genome engineering with type i crispr systems in eukaryotic cells |
US10280429B2 (en) | 2015-10-22 | 2019-05-07 | Dow Agrosciences Llc | Plant promoter for transgene expression |
US20170211142A1 (en) | 2015-10-22 | 2017-07-27 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
IL294014B2 (en) | 2015-10-23 | 2024-07-01 | Harvard College | Nucleobase editors and uses thereof |
BR112018008519A2 (en) | 2015-10-28 | 2018-11-06 | Sangamo Therapeutics Inc | liver-specific constructs, factor viii expression cassettes and methods of use thereof |
US20180230489A1 (en) | 2015-10-28 | 2018-08-16 | Voyager Therapeutics, Inc. | Regulatable expression using adeno-associated virus (aav) |
EP4249074A3 (en) | 2015-11-04 | 2024-01-10 | Fate Therapeutics, Inc. | Genomic engineering of pluripotent cells |
WO2017078807A1 (en) | 2015-11-04 | 2017-05-11 | Fate Therapeutics, Inc. | Methods and compositions for inducing hematopoietic cell differentiation |
WO2017078935A1 (en) | 2015-11-04 | 2017-05-11 | Dow Agrosciences Llc | Plant promoter for transgene expression |
WO2017087708A1 (en) | 2015-11-19 | 2017-05-26 | The Brigham And Women's Hospital, Inc. | Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity |
JP6976249B2 (en) | 2015-11-23 | 2021-12-08 | サンガモ セラピューティクス, インコーポレイテッド | Methods and compositions for engineering immunity |
AU2016369490C1 (en) | 2015-12-18 | 2021-12-23 | Sangamo Therapeutics, Inc. | Targeted disruption of the T cell receptor |
WO2017106657A1 (en) | 2015-12-18 | 2017-06-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
CA3008382A1 (en) | 2015-12-18 | 2017-06-22 | Sangamo Therapeutics, Inc. | Targeted disruption of the mhc cell receptor |
EP3402494B1 (en) | 2016-01-11 | 2021-04-07 | The Board of Trustees of the Leland Stanford Junior University | Chimeric proteins and methods of immunotherapy |
KR20180096800A (en) | 2016-01-11 | 2018-08-29 | 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 | Methods of modulating chimeric proteins and gene expression |
BR112018014288A2 (en) | 2016-01-15 | 2018-12-18 | Univ Minnesota | methods and compositions for the treatment of neurological disease |
UY37108A (en) | 2016-02-02 | 2017-08-31 | Cellectis | MODIFICATION OF THE COMPOSITION OF SOYBEAN OILS THROUGH DIRECTED KNOCKOUT OF THE FAD3A / B / C GENES |
EP3411056A4 (en) | 2016-02-02 | 2019-10-02 | Sangamo Therapeutics, Inc. | Compositions for linking dna-binding domains and cleavage domains |
EA201891629A1 (en) | 2016-02-09 | 2019-03-29 | Сибас Юс Ллс | METHODS AND COMPOSITIONS FOR IMPROVING THE EFFICIENCY OF TARGETED MODIFICATION OF GENES WITH THE APPLICATION OF MEDIATED OLIGONUCLEOTIDE REPAIR GENES |
US11136597B2 (en) | 2016-02-16 | 2021-10-05 | Yale University | Compositions for enhancing targeted gene editing and methods of use thereof |
AU2017221424A1 (en) | 2016-02-16 | 2018-09-20 | Yale University | Compositions and methods for treatment of cystic fibrosis |
CN109069870B (en) | 2016-02-24 | 2022-04-29 | 洛克菲勒大学 | Embryonic cell-based therapeutic candidate screening systems, models for huntington's disease and uses thereof |
CA3016504A1 (en) | 2016-03-23 | 2017-09-28 | Dana-Farber Cancer Institute, Inc. | Methods for enhancing the efficiency of gene editing |
US20190117799A1 (en) | 2016-04-01 | 2019-04-25 | The Brigham And Women's Hospital, Inc. | Stimuli-responsive nanoparticles for biomedical applications |
CA3026055A1 (en) | 2016-04-19 | 2017-10-26 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
AU2017253107B2 (en) | 2016-04-19 | 2023-07-20 | Massachusetts Institute Of Technology | CPF1 complexes with reduced indel activity |
US11514331B2 (en) | 2016-04-27 | 2022-11-29 | Massachusetts Institute Of Technology | Sequence-controlled polymer random access memory storage |
US11410746B2 (en) | 2016-04-27 | 2022-08-09 | Massachusetts Institute Of Technology | Stable nanoscale nucleic acid assemblies and methods thereof |
CN117431234A (en) | 2016-05-27 | 2024-01-23 | 阿迪根有限公司 | Peptides and nanoparticles for intracellular delivery of genome editing molecules |
GB2552861B (en) * | 2016-06-02 | 2019-05-15 | Sigma Aldrich Co Llc | Using programmable DNA binding proteins to enhance targeted genome modification |
CA3028074A1 (en) | 2016-06-16 | 2018-12-20 | Oslo Universitetssykehus Hf | Improved gene editing |
KR20230156150A (en) | 2016-06-17 | 2023-11-13 | 더 브로드 인스티튜트, 인코퍼레이티드 | Type vi crispr orthologs and systems |
MX2019000088A (en) | 2016-06-27 | 2019-08-29 | Broad Inst Inc | Compositions and methods for detecting and treating diabetes. |
MA45491A (en) | 2016-06-27 | 2019-05-01 | Juno Therapeutics Inc | CMH-E RESTRICTED EPITOPES, BINDING MOLECULES AND RELATED METHODS AND USES |
EP3475446A1 (en) | 2016-06-27 | 2019-05-01 | Juno Therapeutics, Inc. | Method of identifying peptide epitopes, molecules that bind such epitopes and related uses |
WO2018005873A1 (en) | 2016-06-29 | 2018-01-04 | The Broad Institute Inc. | Crispr-cas systems having destabilization domain |
AU2017295720B2 (en) | 2016-07-13 | 2021-07-22 | Vertex Pharmaceuticals Incorporated | Methods, compositions and kits for increasing genome editing efficiency |
CA3030587A1 (en) | 2016-07-15 | 2018-01-18 | Salk Institute For Biological Studies | Methods and compositions for genome editing in non-dividing cells |
SG11201900447SA (en) | 2016-07-21 | 2019-02-27 | Maxcyte Inc | Methods and compositions for modifying genomic dna |
EP3490556A4 (en) | 2016-07-27 | 2020-04-15 | Case Western Reserve University | Compounds and methods of promoting myelination |
CA3032699A1 (en) | 2016-08-03 | 2018-02-08 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
JP7066126B2 (en) | 2016-08-09 | 2022-05-13 | ブイアイビー ブイゼットダブリュ | Cellulose synthase inhibitors and mutant plants |
AU2017308889B2 (en) | 2016-08-09 | 2023-11-09 | President And Fellows Of Harvard College | Programmable Cas9-recombinase fusion proteins and uses thereof |
SG10202101133SA (en) | 2016-08-11 | 2021-03-30 | Jackson Lab | Methods and compositions relating to improved human red blood cell survival in genetically modified immunodeficient non-human animals |
CN110114461A (en) | 2016-08-17 | 2019-08-09 | 博德研究所 | Novel C RISPR enzyme and system |
US20200283743A1 (en) | 2016-08-17 | 2020-09-10 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
CN110418841A (en) | 2016-08-24 | 2019-11-05 | 桑格摩生物治疗股份有限公司 | The target specific nucleic acid enzyme of engineering |
JP7203014B2 (en) | 2016-08-24 | 2023-01-12 | サンガモ セラピューティクス, インコーポレイテッド | Regulation of gene expression using engineered nucleases |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US10960085B2 (en) | 2016-09-07 | 2021-03-30 | Sangamo Therapeutics, Inc. | Modulation of liver genes |
BR112019005687A2 (en) | 2016-10-03 | 2019-07-02 | Dow Agrosciences Llc | plant promoter for transgenic expression |
US10400246B2 (en) | 2016-10-03 | 2019-09-03 | Dow Agrosciences Llc | Plant promoter for transgene expression |
AU2017338827B2 (en) | 2016-10-03 | 2023-08-31 | Juno Therapeutics, Inc. | HPV-specific binding molecules |
US10961505B2 (en) | 2016-10-05 | 2021-03-30 | FUJIFILM Cellular Dynamics, Inc. | Generating mature lineages from induced pluripotent stem cells with MECP2 disruption |
AU2017343780B2 (en) | 2016-10-13 | 2023-08-31 | Juno Therapeutics, Inc. | Immunotherapy methods and compositions involving tryptophan metabolic pathway modulators |
WO2018071868A1 (en) | 2016-10-14 | 2018-04-19 | President And Fellows Of Harvard College | Aav delivery of nucleobase editors |
AU2017341926B2 (en) | 2016-10-14 | 2022-06-30 | The General Hospital Corporation | Epigenetically regulated site-specific nucleases |
GB201617559D0 (en) | 2016-10-17 | 2016-11-30 | University Court Of The University Of Edinburgh The | Swine comprising modified cd163 and associated methods |
US11219695B2 (en) | 2016-10-20 | 2022-01-11 | Sangamo Therapeutics, Inc. | Methods and compositions for the treatment of Fabry disease |
WO2018081138A1 (en) | 2016-10-24 | 2018-05-03 | Yale University | Biodegradable contraceptive implants |
CA3041668A1 (en) | 2016-10-31 | 2018-05-03 | Sangamo Therapeutics, Inc. | Gene correction of scid-related genes in hematopoietic stem and progenitor cells |
EP4256951A3 (en) | 2016-11-04 | 2023-12-06 | Flagship Pioneering Innovations V. Inc. | Novel plant cells, plants, and seeds |
CN109906030B (en) | 2016-11-04 | 2022-03-18 | 安健基因公司 | Genetically modified non-human animals and methods for producing heavy chain-only antibodies |
WO2018092072A1 (en) | 2016-11-16 | 2018-05-24 | Cellectis | Methods for altering amino acid content in plants through frameshift mutations |
US11504389B2 (en) | 2016-12-01 | 2022-11-22 | Sangamo Therapeutics, Inc. | Tau modulators and methods and compositions for delivery thereof |
WO2018102612A1 (en) | 2016-12-02 | 2018-06-07 | Juno Therapeutics, Inc. | Engineered b cells and related compositions and methods |
MX2019006438A (en) | 2016-12-05 | 2019-11-28 | Juno Therapeutics Inc | Production of engineered cells for adoptive cell therapy. |
ES2968892T3 (en) | 2016-12-08 | 2024-05-14 | Univ Case Western Reserve | Methods and compositions to increase the production of functional myelin |
EP3555299A1 (en) | 2016-12-16 | 2019-10-23 | Two Blades Foundation | Late blight resistance genes and methods of use |
US20200085758A1 (en) | 2016-12-16 | 2020-03-19 | The Brigham And Women's Hospital, Inc. | Co-delivery of nucleic acids for simultaneous suppression and expression of target genes |
EP3559230B1 (en) | 2016-12-20 | 2023-09-06 | Bristol-Myers Squibb Company | Methods for increasing the efficiency of homology directed repair (hdr) in the cellular genome |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
WO2018126087A1 (en) | 2016-12-29 | 2018-07-05 | Applied Stemcell, Inc. | Gene editing method using virus |
US20190390241A1 (en) | 2017-01-24 | 2019-12-26 | Sigma-Aldrich Co. Llc | Viral resistant cells and culture systems |
SG11201906795SA (en) | 2017-01-28 | 2019-08-27 | Inari Agriculture Inc | Novel plant cells, plants, and seeds |
AU2018224387B2 (en) | 2017-02-22 | 2024-08-08 | Crispr Therapeutics Ag | Compositions and methods for gene editing |
EP3592853A1 (en) | 2017-03-09 | 2020-01-15 | President and Fellows of Harvard College | Suppression of pain by gene editing |
JP2020510439A (en) | 2017-03-10 | 2020-04-09 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Base-editing factor from cytosine to guanine |
EP3599842B1 (en) | 2017-03-21 | 2024-08-07 | The Jackson Laboratory | A genetically modified mouse expressing human apoe4 and mouse trem2.p.r47h and methods of use thereof |
IL269458B2 (en) | 2017-03-23 | 2024-02-01 | Harvard College | Nucleobase editors comprising nucleic acid programmable dna binding proteins |
US11963966B2 (en) | 2017-03-31 | 2024-04-23 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating ovarian tumors |
SG11201909203WA (en) | 2017-04-03 | 2019-11-28 | Encoded Therapeutics Inc | Tissue selective transgene expression |
US20200113821A1 (en) | 2017-04-04 | 2020-04-16 | Yale University | Compositions and methods for in utero delivery |
US20210115407A1 (en) | 2017-04-12 | 2021-04-22 | The Broad Institute, Inc. | Respiratory and sweat gland ionocytes |
US20200071773A1 (en) | 2017-04-12 | 2020-03-05 | Massachusetts Eye And Ear Infirmary | Tumor signature for metastasis, compositions of matter methods of use thereof |
KR20200006054A (en) | 2017-04-12 | 2020-01-17 | 더 브로드 인스티튜트, 인코퍼레이티드 | New Type VI CRISPR Orthologs and Systems |
WO2018191657A1 (en) | 2017-04-13 | 2018-10-18 | Acuitas Therapeutics, Inc. | Lipids for delivery of active agents |
BR112019021993A2 (en) | 2017-04-20 | 2020-05-12 | Oregon Health & Science University | HUMAN GENE CORRECTION |
EP3612023A4 (en) | 2017-04-20 | 2021-05-12 | Egenesis, Inc. | Methods for generating genetically modified animals |
WO2018195486A1 (en) | 2017-04-21 | 2018-10-25 | The Broad Institute, Inc. | Targeted delivery to beta cells |
EP3615668B1 (en) | 2017-04-25 | 2024-02-28 | Cellectis | Alfalfa with reduced lignin composition |
AU2018256877B2 (en) | 2017-04-28 | 2022-06-02 | Acuitas Therapeutics, Inc. | Novel carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids |
US11932867B2 (en) | 2017-04-28 | 2024-03-19 | National Jewish Health | Methods of treating rheumatoid arthritis using RNA-guided genome editing of HLA gene |
CN110869497A (en) | 2017-05-03 | 2020-03-06 | 桑格摩生物治疗股份有限公司 | Methods and compositions for modifying cystic fibrosis transmembrane conductance regulator (CFTR) gene |
US11591601B2 (en) | 2017-05-05 | 2023-02-28 | The Broad Institute, Inc. | Methods for identification and modification of lncRNA associated with target genotypes and phenotypes |
WO2018209320A1 (en) | 2017-05-12 | 2018-11-15 | President And Fellows Of Harvard College | Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation |
WO2018209209A1 (en) | 2017-05-12 | 2018-11-15 | Two Blades Foundation | Methods for screening proteins for pattern recognition receptor function in plant protoplasts |
WO2018209344A1 (en) | 2017-05-12 | 2018-11-15 | The Jackson Laboratory | Nsg mice lacking mhc class i and class ii |
CN110959040A (en) | 2017-05-25 | 2020-04-03 | 通用医疗公司 | Base editor with improved accuracy and specificity |
WO2018232195A1 (en) | 2017-06-14 | 2018-12-20 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
WO2018232356A1 (en) | 2017-06-15 | 2018-12-20 | The Regents Of The University Of California | Targeted non-viral dna insertions |
US11512287B2 (en) | 2017-06-16 | 2022-11-29 | Sangamo Therapeutics, Inc. | Targeted disruption of T cell and/or HLA receptors |
JP7454494B2 (en) | 2017-06-26 | 2024-03-22 | ザ・ブロード・インスティテュート・インコーポレイテッド | CRISPR/CAS-Adenine Deaminase System Compositions, Systems and Methods for Targeted Nucleic Acid Editing |
US12049643B2 (en) | 2017-07-14 | 2024-07-30 | The Broad Institute, Inc. | Methods and compositions for modulating cytotoxic lymphocyte activity |
EP3654993A4 (en) | 2017-07-17 | 2021-08-25 | The Broad Institute, Inc. | Cell atlas of the healthy and ulcerative colitis human colon |
CN111164211B (en) | 2017-07-18 | 2024-08-02 | 杰特贝林基因治疗股份有限公司 | Compositions and methods for treating beta-hemoglobinopathies |
EP3658675A1 (en) | 2017-07-28 | 2020-06-03 | Two Blades Foundation | Potyvirus resistance genes and methods of use |
JP2020534795A (en) | 2017-07-28 | 2020-12-03 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Methods and Compositions for Evolving Base Editing Factors Using Phage-Supported Continuous Evolution (PACE) |
US20210054404A1 (en) | 2017-08-22 | 2021-02-25 | Napigen, Inc. | Organelle genome modification using polynucleotide guided endonuclease |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
WO2019048618A1 (en) | 2017-09-08 | 2019-03-14 | Keygene N.V. | Balanced indels |
CA3073848A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
JP2020537515A (en) | 2017-10-03 | 2020-12-24 | ジュノー セラピューティクス インコーポレイテッド | HPV-specific binding molecule |
EP3692152A4 (en) | 2017-10-04 | 2021-12-01 | The Broad Institute, Inc. | Methods and compositions for altering function and structure of chromatin loops and/or domains |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
WO2019079462A1 (en) * | 2017-10-17 | 2019-04-25 | President And Fellows Of Harvard College | Cas9-based transcription modulation systems |
IT201700120699A1 (en) | 2017-10-24 | 2019-04-24 | Humanitas Mirasole Spa | CELLS NK OR CELLS T AND THEIR USES |
AU2018355587B2 (en) | 2017-10-27 | 2023-02-02 | The Regents Of The University Of California | Targeted replacement of endogenous T cell receptors |
US11851679B2 (en) | 2017-11-01 | 2023-12-26 | Juno Therapeutics, Inc. | Method of assessing activity of recombinant antigen receptors |
SG11202004003YA (en) | 2017-11-09 | 2020-05-28 | Sangamo Therapeutics Inc | Genetic modification of cytokine inducible sh2-containing protein (cish) gene |
EP3707150A1 (en) | 2017-11-10 | 2020-09-16 | Massachusetts Institute Of Technology | Microbial production of pure single stranded nucleic acids |
EP3710039A4 (en) | 2017-11-13 | 2021-08-04 | The Broad Institute, Inc. | Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway |
US20200277573A1 (en) | 2017-11-17 | 2020-09-03 | Iovance Biotherapeutics, Inc. | Til expansion from fine needle aspirates and small biopsies |
EP3713644B1 (en) | 2017-11-20 | 2024-08-07 | University of Georgia Research Foundation, Inc. | Compositions and methods for modulating hif-2a to improve muscle generation and repair |
JP2021503885A (en) | 2017-11-22 | 2021-02-15 | アイオバンス バイオセラピューティクス,インコーポレイテッド | Expanded culture of peripheral blood lymphocytes (PBL) from peripheral blood |
WO2019108619A1 (en) | 2017-11-28 | 2019-06-06 | Two Blades Foundation | Methods and compositions for enhancing the disease resistance of plants |
MA50942A (en) | 2017-12-01 | 2020-10-07 | Encoded Therapeutics Inc | MODIFIED DNA BINDING PROTEINS |
WO2019126578A1 (en) | 2017-12-20 | 2019-06-27 | Poseida Therapeutics, Inc. | Compositions and methods for directing proteins to specific loci in the genome |
IL275177B2 (en) | 2017-12-22 | 2024-05-01 | Fate Therapeutics Inc | Enhanced immune effector cells and use thereof |
US11994512B2 (en) | 2018-01-04 | 2024-05-28 | Massachusetts Institute Of Technology | Single-cell genomic methods to generate ex vivo cell systems that recapitulate in vivo biology with improved fidelity |
CN111819285B (en) | 2018-01-09 | 2024-08-09 | 希博斯美国有限公司 | Shatterproof genes and mutations |
WO2019140351A1 (en) | 2018-01-12 | 2019-07-18 | Two Blades Foundation | Stem rust resistance genes and methods of use |
WO2019143677A1 (en) | 2018-01-17 | 2019-07-25 | Vertex Pharmaceuticals Incorporated | Quinoxalinone compounds, compositions, methods, and kits for increasing genome editing efficiency |
US12005127B2 (en) | 2018-01-17 | 2024-06-11 | Vertex Pharmaceuticals Incorporated | DNA-PK inhibitors |
WO2019143675A1 (en) | 2018-01-17 | 2019-07-25 | Vertex Pharmaceuticals Incorporated | Dna-pk inhibitors |
US11926835B1 (en) | 2018-01-29 | 2024-03-12 | Inari Agriculture Technology, Inc. | Methods for efficient tomato genome editing |
WO2019157324A1 (en) | 2018-02-08 | 2019-08-15 | Sangamo Therapeutics, Inc. | Engineered target specific nucleases |
EP4186921A1 (en) | 2018-03-23 | 2023-05-31 | The Trustees of Columbia University in the City of New York | Gene editing for autosomal dominant diseases |
BR112020019205A2 (en) | 2018-03-29 | 2021-01-05 | Fate Therapeutics, Inc. | GENETICALLY MODIFIED IMMUNE CELLS AND USE OF THE SAME |
US10968257B2 (en) | 2018-04-03 | 2021-04-06 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
BR112020020245A2 (en) | 2018-04-05 | 2021-04-06 | Editas Medicine, Inc. | METHODS OF PRODUCING CELLS EXPRESSING A RECOMBINANT RECEIVER AND RELATED COMPOSITIONS |
KR20210019993A (en) | 2018-04-05 | 2021-02-23 | 주노 쎄러퓨티크스 인코퍼레이티드 | Τ Cell receptor and engineered cells expressing it |
EP3775237A1 (en) | 2018-04-05 | 2021-02-17 | Juno Therapeutics, Inc. | T cells expressing a recombinant receptor, related polynucleotides and methods |
AU2019247490A1 (en) | 2018-04-06 | 2020-10-22 | Children's Medical Center Corporation | Compositions and methods for somatic cell reprogramming and modulating imprinting |
US11421007B2 (en) | 2018-04-18 | 2022-08-23 | Sangamo Therapeutics, Inc. | Zinc finger protein compositions for modulation of huntingtin (Htt) |
CN110396132B (en) * | 2018-04-20 | 2022-12-02 | 上海科技大学 | Zinc finger protein-superoxide dismutase fusion protein with cell penetrability |
DK3560330T3 (en) | 2018-04-24 | 2022-07-11 | Kws Saat Se & Co Kgaa | PLANTS WITH IMPROVED DIGESTION AND MARKER HAPLOTYPES |
US11957695B2 (en) | 2018-04-26 | 2024-04-16 | The Broad Institute, Inc. | Methods and compositions targeting glucocorticoid signaling for modulating immune responses |
WO2019210131A1 (en) | 2018-04-27 | 2019-10-31 | Iovance Biotherapeutics, Inc. | Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy |
WO2019210268A2 (en) | 2018-04-27 | 2019-10-31 | The Broad Institute, Inc. | Sequencing-based proteomics |
US20210386829A1 (en) | 2018-05-04 | 2021-12-16 | The Broad Institute, Inc. | Compositions and methods for modulating cgrp signaling to regulate innate lymphoid cell inflammatory responses |
EP3790963A4 (en) | 2018-05-11 | 2022-04-20 | Beam Therapeutics, Inc. | Methods of editing single nucleotide polymorphism using programmable base editor systems |
CN112105420A (en) | 2018-05-11 | 2020-12-18 | 克里斯珀医疗股份公司 | Methods and compositions for treating cancer |
US11690921B2 (en) | 2018-05-18 | 2023-07-04 | Sangamo Therapeutics, Inc. | Delivery of target specific nucleases |
US20210198330A1 (en) | 2018-05-23 | 2021-07-01 | The Broad Institute, Inc. | Base editors and uses thereof |
US20210371932A1 (en) | 2018-06-01 | 2021-12-02 | Massachusetts Institute Of Technology | Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients |
US11866719B1 (en) | 2018-06-04 | 2024-01-09 | Inari Agriculture Technology, Inc. | Heterologous integration of regulatory elements to alter gene expression in wheat cells and wheat plants |
BR112020024863A2 (en) | 2018-06-05 | 2022-02-01 | Lifeedit Inc | RNA-guided nucleases, active fragments and variants thereof and methods of use |
GB201809273D0 (en) | 2018-06-06 | 2018-07-25 | Vib Vzw | Novel mutant plant cinnamoyl-coa reductase proteins |
CN112424365A (en) | 2018-06-07 | 2021-02-26 | 以色列国家农业部、农村发展农业研究组织·沃尔卡尼中心 | Nucleic acid constructs and methods of use thereof |
CN112384063A (en) | 2018-06-07 | 2021-02-19 | 以色列国家农业部、农村发展农业研究组织·沃尔卡尼中心 | Methods for regeneration and transformation of cannabis |
US12036240B2 (en) | 2018-06-14 | 2024-07-16 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
WO2019246483A1 (en) | 2018-06-21 | 2019-12-26 | The Jackson Laboratory | Genetically modified mouse models of alzheimer's disease |
WO2020028617A1 (en) | 2018-08-01 | 2020-02-06 | University Of Georgia Research Foundation, Inc. | Compositions and methods for improving embryo development |
EP3833761A1 (en) | 2018-08-07 | 2021-06-16 | The Broad Institute, Inc. | Novel cas12b enzymes and systems |
WO2020041380A1 (en) | 2018-08-20 | 2020-02-27 | The Broad Institute, Inc. | Methods and compositions for optochemical control of crispr-cas9 |
AU2019326408A1 (en) | 2018-08-23 | 2021-03-11 | Sangamo Therapeutics, Inc. | Engineered target specific base editors |
WO2020047353A1 (en) | 2018-08-31 | 2020-03-05 | Yale University | Compositions and methods for enhancing triplex and nuclease-based gene editing |
WO2020051283A1 (en) | 2018-09-05 | 2020-03-12 | The Regents Of The University Of California | Generation of heritably gene-edited plants without tissue culture |
EP4268831A3 (en) | 2018-09-12 | 2024-05-22 | Fred Hutchinson Cancer Center | Reducing cd33 expression to selectively protect therapeutic cells |
WO2020061161A1 (en) | 2018-09-18 | 2020-03-26 | Sangamo Therapeutics, Inc. | Programmed cell death 1 (pd1) specific nucleases |
US20220088224A1 (en) | 2018-09-18 | 2022-03-24 | Vnv Newco Inc. | Arc-based capsids and uses thereof |
US20220411783A1 (en) | 2018-10-12 | 2022-12-29 | The Broad Institute, Inc. | Method for extracting nuclei or whole cells from formalin-fixed paraffin-embedded tissues |
US20220001030A1 (en) | 2018-10-15 | 2022-01-06 | Fondazione Telethon | Genome editing methods and constructs |
WO2020081730A2 (en) | 2018-10-16 | 2020-04-23 | Massachusetts Institute Of Technology | Methods and compositions for modulating microenvironment |
US20220389395A1 (en) | 2018-10-29 | 2022-12-08 | The Broad Institute, Inc. | Nucleobase editors comprising geocas9 and uses thereof |
TW202031894A (en) | 2018-11-01 | 2020-09-01 | 中國大陸商亘喜生物科技(上海)有限公司 | Compositions and methods for t cell engineering |
EP3877512A2 (en) | 2018-11-05 | 2021-09-15 | Iovance Biotherapeutics, Inc. | Selection of improved tumor reactive t-cells |
AU2019377422A1 (en) | 2018-11-05 | 2021-05-27 | Iovance Biotherapeutics, Inc. | Treatment of NSCLC patients refractory for anti-PD-1 antibody |
US20220090018A1 (en) | 2018-11-05 | 2022-03-24 | Iovance Biotherapeutics, Inc. | Processes for production of tumor infiltrating lymphocytes and used of the same in immunotherapy |
WO2020096927A1 (en) | 2018-11-05 | 2020-05-14 | Iovance Biotherapeutics, Inc. | Expansion of tils utilizing akt pathway inhibitors |
AU2019376903A1 (en) | 2018-11-07 | 2021-05-20 | Crispr Therapeutics Ag | Anti-LIV1 immune cell cancer therapy |
CN112955472A (en) | 2018-11-07 | 2021-06-11 | 克里斯珀医疗股份公司 | anti-PTK 7 immune cell cancer therapy |
US20220226375A1 (en) | 2018-11-07 | 2022-07-21 | Crispr Therapeutics Ag | Anti-cd33 immune cell cancer therapy |
US20220282275A1 (en) | 2018-11-15 | 2022-09-08 | The Broad Institute, Inc. | G-to-t base editors and uses thereof |
AU2019390394B2 (en) | 2018-11-28 | 2023-11-30 | Forty Seven, Inc. | Genetically modified HSPCs resistant to ablation regime |
WO2020112195A1 (en) | 2018-11-30 | 2020-06-04 | Yale University | Compositions, technologies and methods of using plerixafor to enhance gene editing |
AU2019391114A1 (en) | 2018-12-05 | 2021-06-24 | Vertex Pharmaceuticals Incorporated | Gene-editing systems for editing a cystic fibrosis transmembrane regulator (CFTR) gene |
GB201820109D0 (en) | 2018-12-11 | 2019-01-23 | Vib Vzw | Plants with a lignin trait and udp-glycosyltransferase mutation |
US11384344B2 (en) | 2018-12-17 | 2022-07-12 | The Broad Institute, Inc. | CRISPR-associated transposase systems and methods of use thereof |
JP2022514023A (en) | 2018-12-19 | 2022-02-09 | アイオバンス バイオセラピューティクス,インコーポレイテッド | Methods and Uses for Expanding Tumor-Infiltrating Lymphocytes Using Manipulated Cytokine Receptor Pairs |
BR112021012665A2 (en) | 2018-12-27 | 2021-11-03 | Lifeedit Therapeutics Inc | Useful polypeptides for gene editing and methods of use |
US11739156B2 (en) | 2019-01-06 | 2023-08-29 | The Broad Institute, Inc. Massachusetts Institute of Technology | Methods and compositions for overcoming immunosuppression |
MX2021008358A (en) | 2019-01-11 | 2021-09-30 | Acuitas Therapeutics Inc | Lipids for lipid nanoparticle delivery of active agents. |
US11419932B2 (en) | 2019-01-24 | 2022-08-23 | Massachusetts Institute Of Technology | Nucleic acid nanostructure platform for antigen presentation and vaccine formulations formed therefrom |
US11946040B2 (en) | 2019-02-04 | 2024-04-02 | The General Hospital Corporation | Adenine DNA base editor variants with reduced off-target RNA editing |
CN112805026A (en) | 2019-02-06 | 2021-05-14 | 桑格摩生物治疗股份有限公司 | Methods for treating mucopolysaccharidosis type I |
WO2020163017A1 (en) | 2019-02-06 | 2020-08-13 | Klogenix Llc | Dna binding proteins and uses thereof |
CN111544585A (en) | 2019-02-11 | 2020-08-18 | 北京卡替医疗技术有限公司 | Adjuvant capable of boosting immune cells to expand in vivo |
US20230053540A1 (en) | 2019-02-19 | 2023-02-23 | Massachusetts Institute Of Technology | Treatment of liver injury |
AU2020233284A1 (en) | 2019-03-01 | 2021-09-16 | Iovance Biotherapeutics, Inc. | Expansion of tumor infiltrating lymphocytes from liquid tumors and therapeutic uses thereof |
WO2020181178A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | T:a to a:t base editing through thymine alkylation |
WO2020181202A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | A:t to t:a base editing through adenine deamination and oxidation |
WO2020181180A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | A:t to c:g base editors and uses thereof |
WO2020181195A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | T:a to a:t base editing through adenine excision |
US20220170013A1 (en) | 2019-03-06 | 2022-06-02 | The Broad Institute, Inc. | T:a to a:t base editing through adenosine methylation |
MX2021010831A (en) | 2019-03-08 | 2021-12-15 | Obsidian Therapeutics Inc | Cd40l compositions and methods for tunable regulation. |
WO2020186101A1 (en) | 2019-03-12 | 2020-09-17 | The Broad Institute, Inc. | Detection means, compositions and methods for modulating synovial sarcoma cells |
US20220152115A1 (en) | 2019-03-13 | 2022-05-19 | The Broad Institute, Inc. | Microglial progenitors for regeneration of functional microglia in the central nervous system and therapeutics uses thereof |
EP3937969A1 (en) | 2019-03-14 | 2022-01-19 | The Broad Institute, Inc. | Compositions and methods for modulating cgrp signaling to regulate intestinal innate lymphoid cells |
US20220142948A1 (en) | 2019-03-18 | 2022-05-12 | The Broad Institute, Inc. | Compositions and methods for modulating metabolic regulators of t cell pathogenicity |
US20220152148A1 (en) | 2019-03-18 | 2022-05-19 | The Broad Institute, Inc. | Modulation of type 2 immunity by targeting clec-2 signaling |
WO2020191102A1 (en) | 2019-03-18 | 2020-09-24 | The Broad Institute, Inc. | Type vii crispr proteins and systems |
DE112020001342T5 (en) | 2019-03-19 | 2022-01-13 | President and Fellows of Harvard College | Methods and compositions for editing nucleotide sequences |
MX2021012152A (en) | 2019-04-02 | 2021-11-03 | Sangamo Therapeutics Inc | Methods for the treatment of beta-thalassemia. |
CA3131759A1 (en) | 2019-04-09 | 2020-10-15 | Prashant MALI | Long-lasting analgesia via targeted in vivo epigenetic repression |
CN113966401A (en) | 2019-04-10 | 2022-01-21 | 犹他大学研究基金会 | HTRA1 modulation for the treatment of AMD |
WO2020210751A1 (en) | 2019-04-12 | 2020-10-15 | The Broad Institute, Inc. | System for genome editing |
EP3956349A1 (en) | 2019-04-17 | 2022-02-23 | The Broad Institute, Inc. | Adenine base editors with reduced off-target effects |
AU2020262281A1 (en) | 2019-04-23 | 2021-11-04 | Sangamo Therapeutics, Inc. | Modulators of chromosome 9 open reading frame 72 gene expression and uses thereof |
KR20220016474A (en) | 2019-05-01 | 2022-02-09 | 주노 쎄러퓨티크스 인코퍼레이티드 | Cells expressing chimeric receptors from modified CD247 loci, related polynucleotides and methods |
AU2020265741A1 (en) | 2019-05-01 | 2021-11-25 | Editas Medicine, Inc. | Cells expressing a recombinant receptor from a modified TGFBR2 Locus, related polynucleotides and methods |
US20220243287A1 (en) | 2019-05-13 | 2022-08-04 | KWS SAAT SE & Co. KGaA | Drought tolerance in corn |
WO2020232029A1 (en) | 2019-05-13 | 2020-11-19 | Iovance Biotherapeutics, Inc. | Methods and compositions for selecting tumor infiltrating lymphocytes and uses of the same in immunotherapy |
US20220249701A1 (en) | 2019-05-14 | 2022-08-11 | The Broad Institute, Inc. | Compositions and methods for targeting multinucleated cells |
AR118995A1 (en) | 2019-05-25 | 2021-11-17 | Kws Saat Se & Co Kgaa | HAPLOID INDUCTION ENHANCER |
WO2020243371A1 (en) | 2019-05-28 | 2020-12-03 | Massachusetts Institute Of Technology | Methods and compositions for modulating immune responses |
US20210317192A9 (en) | 2019-05-29 | 2021-10-14 | Massachusetts Institute Of Technology | Hiv-1 specific immunogen compositions and methods of use |
US20220243178A1 (en) | 2019-05-31 | 2022-08-04 | The Broad Institute, Inc. | Methods for treating metabolic disorders by targeting adcy5 |
US11781248B2 (en) | 2019-06-13 | 2023-10-10 | Allogene Therapeutics, Inc. | Anti-TALEN antibodies and uses thereof |
BR112021026220A2 (en) | 2019-06-25 | 2022-02-15 | Inari Agriculture Tech Inc | Enhanced genome editing by homology-dependent repair |
US11905532B2 (en) | 2019-06-25 | 2024-02-20 | Massachusetts Institute Of Technology | Compositions and methods for molecular memory storage and retrieval |
AR122276A1 (en) | 2019-06-27 | 2022-08-31 | Two Blades Found | ENGINEERED ATRLP23 PATTERN RECOGNITION RECEIVERS AND METHODS OF USE |
CN114269372A (en) | 2019-06-27 | 2022-04-01 | 克里斯珀医疗股份公司 | Use of chimeric antigen receptor T cells and NK cell inhibitors for the treatment of cancer |
WO2021011348A1 (en) | 2019-07-12 | 2021-01-21 | The Regents Of The University Of California | Plants with enhanced resistance to bacterial pathogens |
JP2022543112A (en) | 2019-08-01 | 2022-10-07 | サナ バイオテクノロジー,インコーポレイテッド | DUX4-expressing cells and their uses |
EP3772542A1 (en) | 2019-08-07 | 2021-02-10 | KWS SAAT SE & Co. KGaA | Modifying genetic variation in crops by modulating the pachytene checkpoint protein 2 |
WO2021025750A1 (en) | 2019-08-08 | 2021-02-11 | The Broad Institute, Inc. | Base editors with diversified targeting scope |
BR112022002695A2 (en) | 2019-08-12 | 2022-08-23 | Lifeedit Therapeutics Inc | RNA-GUIDED NUCLEASES, ACTIVE FRAGMENTS AND VARIANTS THEREOF AND METHODS OF USE |
US20220282333A1 (en) | 2019-08-13 | 2022-09-08 | The General Hospital Corporation | Methods for predicting outcomes of checkpoint inhibition and treatment thereof |
WO2021030666A1 (en) | 2019-08-15 | 2021-02-18 | The Broad Institute, Inc. | Base editing by transglycosylation |
AU2020336302A1 (en) | 2019-08-23 | 2022-03-03 | Sana Biotechnology, Inc. | CD24 expressing cells and uses thereof |
JP2022546699A (en) | 2019-08-30 | 2022-11-07 | イェール ユニバーシティー | Compositions and methods for delivering nucleic acids to cells |
WO2021041922A1 (en) | 2019-08-30 | 2021-03-04 | The Broad Institute, Inc. | Crispr-associated mu transposase systems |
JP2022547865A (en) | 2019-09-06 | 2022-11-16 | クリスパー セラピューティクス アクチェンゲゼルシャフト | Genetically engineered T cells with improved persistence in culture |
AU2020352552A1 (en) | 2019-09-23 | 2022-03-17 | Omega Therapeutics, Inc. | Compositions and methods for modulating hepatocyte nuclear factor 4-alpha (HNF4α) gene expression |
AU2020355000A1 (en) | 2019-09-23 | 2022-03-17 | Omega Therapeutics, Inc. | Compositions and methods for modulating apolipoprotein B (APOB) gene expression |
WO2021067864A1 (en) | 2019-10-02 | 2021-04-08 | Sangamo Therapeutics, Inc. | Zinc finger protein transcription factors for treatment of prion disease |
US11981922B2 (en) | 2019-10-03 | 2024-05-14 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the modulation of cell interactions and signaling in the tumor microenvironment |
US11793787B2 (en) | 2019-10-07 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for enhancing anti-tumor immunity by targeting steroidogenesis |
WO2021072328A1 (en) | 2019-10-10 | 2021-04-15 | The Broad Institute, Inc. | Methods and compositions for prime editing rna |
WO2021074367A1 (en) | 2019-10-17 | 2021-04-22 | KWS SAAT SE & Co. KGaA | Enhanced disease resistance of crops by downregulation of repressor genes |
CA3155727A1 (en) | 2019-10-25 | 2021-04-29 | Cecile Chartier-Courtaud | Gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy |
US11844800B2 (en) | 2019-10-30 | 2023-12-19 | Massachusetts Institute Of Technology | Methods and compositions for predicting and preventing relapse of acute lymphoblastic leukemia |
EP4051787A1 (en) | 2019-11-01 | 2022-09-07 | Sangamo Therapeutics, Inc. | Gin recombinase variants |
AU2020376048A1 (en) | 2019-11-01 | 2022-06-02 | Sangamo Therapeutics, Inc. | Compositions and methods for genome engineering |
WO2021108717A2 (en) | 2019-11-26 | 2021-06-03 | The Broad Institute, Inc | Systems and methods for evaluating cas9-independent off-target editing of nucleic acids |
CA3161104A1 (en) | 2019-12-11 | 2021-06-17 | Cecile Chartier-Courtaud | Processes for the production of tumor infiltrating lymphocytes (tils) and methods of using the same |
EP4074821A4 (en) | 2019-12-13 | 2024-01-17 | Chugai Seiyaku Kabushiki Kaisha | System for detecting extracellular purinergic receptor ligand and nonhuman animal having same transferred thereinto |
EP4085133A1 (en) | 2019-12-30 | 2022-11-09 | Lifeedit Therapeutics, Inc. | Rna-guided nucleases and active fragments and variants thereof and methods of use |
US20230056856A1 (en) | 2020-01-08 | 2023-02-23 | Obsidian Therapeutics, Inc. | Compositions and methods for tunable regulation of transcription |
WO2021142835A1 (en) | 2020-01-19 | 2021-07-22 | 北京卡替医疗技术有限公司 | Strengthened receptor for improving immune cell function |
WO2021155065A1 (en) | 2020-01-28 | 2021-08-05 | The Broad Institute, Inc. | Base editors, compositions, and methods for modifying the mitochondrial genome |
US20230235309A1 (en) | 2020-02-05 | 2023-07-27 | The Broad Institute, Inc. | Adenine base editors and uses thereof |
US20230108687A1 (en) | 2020-02-05 | 2023-04-06 | The Broad Institute, Inc. | Gene editing methods for treating spinal muscular atrophy |
JP2023517326A (en) | 2020-03-11 | 2023-04-25 | オメガ セラピューティクス, インコーポレイテッド | Compositions and methods for modulating forkhead box P3 (FOXP3) gene expression |
CA3173096A1 (en) | 2020-03-25 | 2021-09-30 | Sonja SCHREPFER | Hypoimmunogenic neural cells for the treatment of neurological disorders and conditions |
WO2021198781A2 (en) | 2020-04-02 | 2021-10-07 | Takeda Pharmaceutical Company Limited | Adamts13 variant, compositions, and uses thereof |
TW202208626A (en) | 2020-04-24 | 2022-03-01 | 美商生命編輯公司 | Rna-guided nucleases and active fragments and variants thereof and methods of use |
WO2021222318A1 (en) | 2020-04-28 | 2021-11-04 | The Broad Institute, Inc. | Targeted base editing of the ush2a gene |
EP4146794A1 (en) | 2020-05-04 | 2023-03-15 | Iovance Biotherapeutics, Inc. | Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy |
US20230193212A1 (en) | 2020-05-06 | 2023-06-22 | Orchard Therapeutics (Europe) Limited | Treatment for neurodegenerative diseases |
US20230212613A1 (en) | 2020-05-06 | 2023-07-06 | Cellectis S.A. | Methods for targeted insertion of exogenous sequences in cellular genomes |
CN115715203A (en) | 2020-05-06 | 2023-02-24 | 塞勒克提斯公司 | Methods of genetically modifying cells to deliver therapeutic proteins |
DE112021002672T5 (en) | 2020-05-08 | 2023-04-13 | President And Fellows Of Harvard College | METHODS AND COMPOSITIONS FOR EDIT BOTH STRANDS SIMULTANEOUSLY OF A DOUBLE STRANDED NUCLEOTIDE TARGET SEQUENCE |
CA3173882A1 (en) | 2020-05-11 | 2021-11-18 | Alexandra Briner CRAWLEY | Rna-guided nucleic acid binding proteins and active fragments and variants thereof and methods of use |
CN115835873A (en) | 2020-05-13 | 2023-03-21 | 朱诺治疗学股份有限公司 | Method for generating donor batch cells expressing recombinant receptor |
US20230190871A1 (en) | 2020-05-20 | 2023-06-22 | Sana Biotechnology, Inc. | Methods and compositions for treatment of viral infections |
CN116782762A (en) | 2020-05-29 | 2023-09-19 | 科沃施种子欧洲股份两合公司 | Plant haploid induction |
WO2021247836A1 (en) | 2020-06-03 | 2021-12-09 | Board Of Regents, The University Of Texas System | Methods for targeting shp-2 to overcome resistance |
EP4161552A1 (en) | 2020-06-05 | 2023-04-12 | The Broad Institute, Inc. | Compositions and methods for treating neoplasia |
JP2023531531A (en) | 2020-06-26 | 2023-07-24 | ジュノ セラピューティクス ゲーエムベーハー | Engineered T Cells Conditionally Expressing Recombinant Receptors, Related Polynucleotides, and Methods |
WO2022015969A1 (en) | 2020-07-15 | 2022-01-20 | LifeEDIT Therapeutics, Inc. | Uracil stabilizing proteins and active fragments and variants thereof and methods of use |
US11976019B2 (en) | 2020-07-16 | 2024-05-07 | Acuitas Therapeutics, Inc. | Cationic lipids for use in lipid nanoparticles |
WO2022034374A2 (en) | 2020-08-11 | 2022-02-17 | University Of Oslo | Improved gene editing |
IL300516A (en) | 2020-08-13 | 2023-04-01 | Sana Biotechnology Inc | Methods of treating sensitized patients with hypoimmunogenic cells, and associated methods and compositions |
EP4204545A2 (en) | 2020-08-25 | 2023-07-05 | Kite Pharma, Inc. | T cells with improved functionality |
AU2021331785A1 (en) | 2020-08-31 | 2023-03-30 | Gennao Bio, Inc. | Compositions and methods for delivery of nucleic acids to cells |
CA3173886A1 (en) | 2020-09-11 | 2022-03-17 | Tyson D. BOWEN | Dna modifying enzymes and active fragments and variants thereof and methods of use |
KR20230074515A (en) | 2020-09-23 | 2023-05-30 | 크리스퍼 테라퓨틱스 아게 | Genetically engineered T cells with disrupted legase-1 and/or TGFBRII with improved functionality and persistence |
KR20230074519A (en) | 2020-09-25 | 2023-05-30 | 상가모 테라퓨틱스, 인코포레이티드 | Zinc finger fusion proteins for nucleobase editing |
WO2022076606A1 (en) | 2020-10-06 | 2022-04-14 | Iovance Biotherapeutics, Inc. | Treatment of nsclc patients with tumor infiltrating lymphocyte therapies |
EP4225330A1 (en) | 2020-10-06 | 2023-08-16 | Iovance Biotherapeutics, Inc. | Treatment of nsclc patients with tumor infiltrating lymphocyte therapies |
CN116802203A (en) | 2020-11-04 | 2023-09-22 | 朱诺治疗学股份有限公司 | Cells expressing chimeric receptors from modified constant CD3 immunoglobulin superfamily chain loci, related polynucleotides and methods |
CN117042600A (en) | 2020-11-16 | 2023-11-10 | 猪改良英国有限公司 | Anti-influenza a animals with edited ANP32 gene |
US11661459B2 (en) | 2020-12-03 | 2023-05-30 | Century Therapeutics, Inc. | Artificial cell death polypeptide for chimeric antigen receptor and uses thereof |
CA3201621A1 (en) | 2020-12-03 | 2022-06-09 | Century Therapeutics, Inc. | Genetically engineered cells and uses thereof |
JP2024500403A (en) | 2020-12-17 | 2024-01-09 | アイオバンス バイオセラピューティクス,インコーポレイテッド | Treatment of cancer with tumor-infiltrating lymphocytes |
EP4262811A1 (en) | 2020-12-17 | 2023-10-25 | Iovance Biotherapeutics, Inc. | Treatment with tumor infiltrating lymphocyte therapies in combination with ctla-4 and pd-1 inhibitors |
MX2023007524A (en) | 2020-12-22 | 2023-09-19 | Chroma Medicine Inc | Compositions and methods for epigenetic editing. |
US20220193134A1 (en) | 2020-12-23 | 2022-06-23 | Crispr Therapeutics Ag | Co-use of lenalidomide with car-t cells |
AU2021412988A1 (en) | 2020-12-31 | 2023-06-15 | Sana Biotechnology, Inc. | Methods and compositions for modulating car-t activity |
WO2022150790A2 (en) | 2021-01-11 | 2022-07-14 | The Broad Institute, Inc. | Prime editor variants, constructs, and methods for enhancing prime editing efficiency and precision |
KR20230142500A (en) | 2021-01-12 | 2023-10-11 | 마치 테라퓨틱스, 인크. | Context-dependent, double-stranded DNA-specific deaminase and uses thereof |
WO2022165111A1 (en) | 2021-01-28 | 2022-08-04 | Precision Biosciences, Inc. | Modulation of tgf beta signaling in genetically-modified eukaryotic cells |
TW202241508A (en) | 2021-01-29 | 2022-11-01 | 美商艾歐凡斯生物治療公司 | Cytokine associated tumor infiltrating lymphocytes compositions and methods |
WO2022171783A1 (en) | 2021-02-11 | 2022-08-18 | Koninklijke Nederlandse Akademie Van Wetenschappen | Curing disease by transcription regulatory gene editing |
WO2022178307A1 (en) | 2021-02-19 | 2022-08-25 | Beam Therapeutics Inc. | Recombinant rabies viruses for gene therapy |
EP4305153A1 (en) | 2021-03-09 | 2024-01-17 | CRISPR Therapeutics AG | Genetically engineered t cells with ptpn2 knockout have improved functionality and anti-tumor activity |
WO2022198141A1 (en) | 2021-03-19 | 2022-09-22 | Iovance Biotherapeutics, Inc. | Methods for tumor infiltrating lymphocyte (til) expansion related to cd39/cd69 selection and gene knockout in tils |
AR125191A1 (en) | 2021-03-22 | 2023-06-21 | Lifeedit Therapeutics Inc | DNA MODIFYING ENZYMES AND THEIR ACTIVE FRAGMENTS AND VARIANTS AND METHODS OF USE |
EP4314280A1 (en) | 2021-03-22 | 2024-02-07 | Juno Therapeutics, Inc. | Method to assess potency of viral vector particles |
AR125199A1 (en) | 2021-03-23 | 2023-06-21 | Iovance Biotherapeutics Inc | CISH GENE EDITION OF TUMOR-INFILTRATING LYMPHOCYTES AND THEIR USES IN IMMUNOTHERAPY |
WO2022216524A1 (en) | 2021-04-07 | 2022-10-13 | Century Therapeutics, Inc. | Combined artificial cell death/reporter system polypeptide for chimeric antigen receptor cell and uses thereof |
JP2024519515A (en) | 2021-04-07 | 2024-05-15 | センチュリー セラピューティクス,インコーポレイテッド | Compositions and methods for generating gamma-delta T cells from induced pluripotent stem cells - Patents.com |
US20220333074A1 (en) | 2021-04-07 | 2022-10-20 | Century Therapeutics, Inc. | Compositions and Methods for Generating Alpha-Beta T Cells from Induced Pluripotent Stem Cells |
TW202308669A (en) | 2021-04-19 | 2023-03-01 | 美商艾歐凡斯生物治療公司 | Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies |
EP4334438A1 (en) | 2021-05-05 | 2024-03-13 | Fujifilm Cellular Dynamics, Inc. | Methods and compositions for ipsc-derived microglia |
EP4336997A1 (en) | 2021-05-11 | 2024-03-20 | Two Blades Foundation | Methods for preparing a library of plant disease resistance genes for functional testing for disease resistance |
EP4340850A1 (en) | 2021-05-17 | 2024-03-27 | Iovance Biotherapeutics, Inc. | Pd-1 gene-edited tumor infiltrating lymphocytes and uses of same in immunotherapy |
WO2022242644A1 (en) | 2021-05-18 | 2022-11-24 | 赛斯尔擎生物技术(上海)有限公司 | Method for modifying cell |
AU2022277649A1 (en) | 2021-05-21 | 2023-11-30 | Cellectis S.A. | Enhancing efficacy of t-cell-mediated immunotherapy by modulating cancer-associated fibroblasts in solid tumors |
US20220389436A1 (en) | 2021-05-26 | 2022-12-08 | FUJIFILM Cellular Dynamics, Inc. | Methods to prevent rapid silencing of genes in pluripotent stem cells |
KR20240013135A (en) | 2021-05-27 | 2024-01-30 | 사나 바이오테크놀로지, 인크. | Hypoimmunogenic cells containing engineered HLA-E or HLA-G |
WO2022261509A1 (en) | 2021-06-11 | 2022-12-15 | The Broad Institute, Inc. | Improved cytosine to guanine base editors |
WO2022261394A1 (en) | 2021-06-11 | 2022-12-15 | LifeEDIT Therapeutics, Inc. | Rna polymerase iii promoters and methods of use |
WO2023283359A2 (en) | 2021-07-07 | 2023-01-12 | Omega Therapeutics, Inc. | Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression |
EP4370544A2 (en) | 2021-07-14 | 2024-05-22 | Sana Biotechnology, Inc. | Altered expression of y chromosome-linked antigens in hypoimmunogenic cells |
WO2023288306A2 (en) * | 2021-07-16 | 2023-01-19 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Targeting myd88 gene in vitro and in vivo |
EP4377446A1 (en) | 2021-07-28 | 2024-06-05 | Iovance Biotherapeutics, Inc. | Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with kras inhibitors |
CA3227103A1 (en) | 2021-07-30 | 2023-02-02 | Matthew P. GEMBERLING | Compositions and methods for modulating expression of frataxin (fxn) |
EP4377460A1 (en) | 2021-07-30 | 2024-06-05 | Tune Therapeutics, Inc. | Compositions and methods for modulating expression of methyl-cpg binding protein 2 (mecp2) |
WO2023006933A1 (en) | 2021-07-30 | 2023-02-02 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
EP4381057A2 (en) | 2021-08-06 | 2024-06-12 | The Broad Institute Inc. | Improved prime editors and methods of use |
JP2024534772A (en) | 2021-08-11 | 2024-09-26 | サナ バイオテクノロジー,インコーポレイテッド | Genetically modified cells for allogeneic cell therapy |
AU2022325955A1 (en) | 2021-08-11 | 2024-02-08 | Sana Biotechnology, Inc. | Genetically modified cells for allogeneic cell therapy to reduce instant blood mediated inflammatory reactions |
AU2022325232A1 (en) | 2021-08-11 | 2024-02-08 | Sana Biotechnology, Inc. | Genetically modified primary cells for allogeneic cell therapy |
MX2024001443A (en) | 2021-08-11 | 2024-05-15 | Sana Biotechnology Inc | Inducible systems for altering gene expression in hypoimmunogenic cells. |
WO2023019227A1 (en) | 2021-08-11 | 2023-02-16 | Sana Biotechnology, Inc. | Genetically modified cells for allogeneic cell therapy to reduce complement-mediated inflammatory reactions |
MX2024002927A (en) | 2021-09-08 | 2024-05-29 | Flagship Pioneering Innovations Vi Llc | Methods and compositions for modulating a genome. |
CA3230629A1 (en) | 2021-09-08 | 2023-03-16 | Beam Therapeutics Inc. | Viral guide rna delivery |
CN118234849A (en) | 2021-09-10 | 2024-06-21 | 富士胶片细胞动力公司 | Compositions for inducing pluripotent stem cell-derived cells and methods of use thereof |
WO2023042079A1 (en) | 2021-09-14 | 2023-03-23 | Crispr Therapeutics Ag | Genetically engineered immune cells having a disrupted cd83 gene |
WO2023055893A1 (en) * | 2021-09-30 | 2023-04-06 | Peter Biotherapeutics, Inc. | Gene regulation |
EP4408859A1 (en) | 2021-09-30 | 2024-08-07 | Two Blades Foundation | Plant disease resistance genes against stem rust and methods of use |
MX2024003887A (en) | 2021-10-14 | 2024-07-09 | Arsenal Biosciences Inc | Immune cells having co-expressed shrnas and logic gate systems. |
WO2023069478A1 (en) | 2021-10-20 | 2023-04-27 | University Of Rochester | Methods and compositions for rejuvenating cns glial populations by suppression of transcription factors |
WO2023070043A1 (en) | 2021-10-20 | 2023-04-27 | Yale University | Compositions and methods for targeted editing and evolution of repetitive genetic elements |
EP4419654A1 (en) | 2021-10-20 | 2024-08-28 | University of Rochester | Method for rejuvenating glial progenitor cells and rejuvenated glial progenitor cells per se |
AU2022371442A1 (en) | 2021-10-21 | 2024-04-18 | Vertex Pharmaceuticals Incorporated | Hypoimmune cells |
WO2023069790A1 (en) | 2021-10-22 | 2023-04-27 | Sana Biotechnology, Inc. | Methods of engineering allogeneic t cells with a transgene in a tcr locus and associated compositions and methods |
WO2023076898A1 (en) | 2021-10-25 | 2023-05-04 | The Broad Institute, Inc. | Methods and compositions for editing a genome with prime editing and a recombinase |
WO2023076880A1 (en) | 2021-10-25 | 2023-05-04 | Board Of Regents, The University Of Texas System | Foxo1-targeted therapy for the treatment of cancer |
EP4423755A2 (en) | 2021-10-27 | 2024-09-04 | Iovance Biotherapeutics, Inc. | Systems and methods for coordinating manufacturing of cells for patient-specific immunotherapy |
CA3235390A1 (en) | 2021-10-29 | 2023-05-04 | Deepika Rajesh | Dopaminergic neurons comprising mutations and methods of use thereof |
IL312452A (en) | 2021-11-01 | 2024-06-01 | Tome Biosciences Inc | Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo |
CN114015674B (en) | 2021-11-02 | 2024-08-30 | 辉大(上海)生物科技有限公司 | CRISPR-Cas12i system |
EP4426832A1 (en) | 2021-11-03 | 2024-09-11 | The J. David Gladstone Institutes, A Testamentary Trust Established under The Will of J. David Gladstone | Precise genome editing using retrons |
WO2023081900A1 (en) | 2021-11-08 | 2023-05-11 | Juno Therapeutics, Inc. | Engineered t cells expressing a recombinant t cell receptor (tcr) and related systems and methods |
KR20240103014A (en) | 2021-11-09 | 2024-07-03 | 암젠 인크 | Method for generating antibody peptide conjugates |
CN118401658A (en) | 2021-11-26 | 2024-07-26 | 益杰立科(上海)生物科技有限公司 | Methods of modulating PCSK9 and uses thereof |
GB202117314D0 (en) | 2021-11-30 | 2022-01-12 | Clarke David John | Cyclic nucleic acid fragmentation |
GB202409605D0 (en) | 2021-12-03 | 2024-08-14 | Broad Inst Inc | Compositions and methods for efficient in vivo delivery |
WO2023105244A1 (en) | 2021-12-10 | 2023-06-15 | Pig Improvement Company Uk Limited | Editing tmprss2/4 for disease resistance in livestock |
GB202118058D0 (en) | 2021-12-14 | 2022-01-26 | Univ Warwick | Methods to increase yields in crops |
WO2023111913A1 (en) | 2021-12-15 | 2023-06-22 | Crispr Therapeutics Ag | Engineered anti-liv1 cell with regnase-1 and/or tgfbrii disruption |
AU2022420615A1 (en) | 2021-12-22 | 2024-07-04 | Tome Biosciences, Inc. | Co-delivery of a gene editor construct and a donor template |
WO2023119201A2 (en) | 2021-12-22 | 2023-06-29 | Crispr Therapeutics Ag | Genetically engineered t cells with disrupted casitas b-lineage lymphoma proto-oncogene-b (cblb) and uses thereof |
WO2023122722A1 (en) | 2021-12-22 | 2023-06-29 | Sangamo Therapeutics, Inc. | Novel zinc finger fusion proteins for nucleobase editing |
KR20240137574A (en) | 2021-12-23 | 2024-09-20 | 사나 바이오테크놀로지, 인크. | CHIMERIC ANTIGEN RECEPTOR (CAR) T CELLS FOR THERAPY OF AUTOIMMUNE DISEASES AND RELATED METHODS |
WO2023129937A1 (en) | 2021-12-29 | 2023-07-06 | Century Therapeutics, Inc. | Genetically engineered cells having anti-cd19 / anti-cd22 chimeric antigen receptors, and uses thereof |
WO2023131616A1 (en) | 2022-01-05 | 2023-07-13 | Vib Vzw | Means and methods to increase abiotic stress tolerance in plants |
WO2023131637A1 (en) | 2022-01-06 | 2023-07-13 | Vib Vzw | Improved silage grasses |
WO2023137471A1 (en) | 2022-01-14 | 2023-07-20 | Tune Therapeutics, Inc. | Compositions, systems, and methods for programming t cell phenotypes through targeted gene activation |
WO2023137472A2 (en) | 2022-01-14 | 2023-07-20 | Tune Therapeutics, Inc. | Compositions, systems, and methods for programming t cell phenotypes through targeted gene repression |
WO2023141602A2 (en) | 2022-01-21 | 2023-07-27 | Renagade Therapeutics Management Inc. | Engineered retrons and methods of use |
WO2023139557A1 (en) | 2022-01-24 | 2023-07-27 | LifeEDIT Therapeutics, Inc. | Rna-guided nucleases and active fragments and variants thereof and methods of use |
WO2023144199A1 (en) | 2022-01-26 | 2023-08-03 | Vib Vzw | Plants having reduced levels of bitter taste metabolites |
WO2023150553A1 (en) | 2022-02-01 | 2023-08-10 | University Of Rochester | Gpr17 promoter-based targeting and transduction of glial progenitor cells |
WO2023150557A1 (en) | 2022-02-01 | 2023-08-10 | University Of Rochester | Methods of generating a population of neurons from human glial progenitor cells and genetic constructs for carrying out such methods |
WO2023154578A1 (en) | 2022-02-14 | 2023-08-17 | Sana Biotechnology, Inc. | Methods of treating patients exhibiting a prior failed therapy with hypoimmunogenic cells |
AU2023220128A1 (en) | 2022-02-17 | 2024-08-22 | Sana Biotechnology, Inc. | Engineered cd47 proteins and uses thereof |
TW202340457A (en) | 2022-02-28 | 2023-10-16 | 美商凱特製藥公司 | Allogeneic therapeutic cells |
WO2023166425A1 (en) | 2022-03-01 | 2023-09-07 | Crispr Therapeutics Ag | Methods and compositions for treating angiopoietin-like 3 (angptl3) related conditions |
WO2023168397A1 (en) | 2022-03-04 | 2023-09-07 | Sigma-Aldrich Co. Llc | Metabolic selection via the asparagine biosynthesis pathway |
WO2023173123A1 (en) | 2022-03-11 | 2023-09-14 | Sana Biotechnology, Inc. | Genetically modified cells and compositions and uses thereof |
TW202403046A (en) | 2022-03-21 | 2024-01-16 | 瑞士商Crispr治療公司 | Methods and compositions for treating lipoprotein-related diseases |
WO2023180968A1 (en) | 2022-03-23 | 2023-09-28 | Crispr Therapeutics Ag | Anti-cd19 car-t cells with multiple gene edits and therapeutic uses thereof |
US20230331841A1 (en) | 2022-03-23 | 2023-10-19 | Crispr Therapeutics Ag | Anti-cd83 car-t cells with regnase-1 and/or tgfbrii disruption |
WO2023192872A1 (en) | 2022-03-28 | 2023-10-05 | Massachusetts Institute Of Technology | Rna scaffolded wireframe origami and methods thereof |
AU2023248451A1 (en) | 2022-04-04 | 2024-10-17 | President And Fellows Of Harvard College | Cas9 variants having non-canonical pam specificities and uses thereof |
WO2023196818A1 (en) | 2022-04-04 | 2023-10-12 | The Regents Of The University Of California | Genetic complementation compositions and methods |
WO2023196877A1 (en) | 2022-04-06 | 2023-10-12 | Iovance Biotherapeutics, Inc. | Treatment of nsclc patients with tumor infiltrating lymphocyte therapies |
WO2023201369A1 (en) | 2022-04-15 | 2023-10-19 | Iovance Biotherapeutics, Inc. | Til expansion processes using specific cytokine combinations and/or akti treatment |
WO2023205744A1 (en) | 2022-04-20 | 2023-10-26 | Tome Biosciences, Inc. | Programmable gene insertion compositions |
WO2023212715A1 (en) | 2022-04-28 | 2023-11-02 | The Broad Institute, Inc. | Aav vectors encoding base editors and uses thereof |
WO2023215711A1 (en) | 2022-05-01 | 2023-11-09 | Chroma Medicine, Inc. | Compositions and methods for epigenetic regulation of pcsk9 expression |
WO2023213831A1 (en) | 2022-05-02 | 2023-11-09 | Fondazione Telethon Ets | Homology independent targeted integration for gene editing |
WO2023215831A1 (en) | 2022-05-04 | 2023-11-09 | Tome Biosciences, Inc. | Guide rna compositions for programmable gene insertion |
WO2023220035A1 (en) | 2022-05-09 | 2023-11-16 | Synteny Therapeutics, Inc. | Erythroparvovirus compositions and methods for gene therapy |
WO2023220040A1 (en) | 2022-05-09 | 2023-11-16 | Synteny Therapeutics, Inc. | Erythroparvovirus with a modified capsid for gene therapy |
WO2023220043A1 (en) | 2022-05-09 | 2023-11-16 | Synteny Therapeutics, Inc. | Erythroparvovirus with a modified genome for gene therapy |
WO2023220608A1 (en) | 2022-05-10 | 2023-11-16 | Iovance Biotherapeutics, Inc. | Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with an il-15r agonist |
EP4278891A1 (en) | 2022-05-20 | 2023-11-22 | KWS SAAT SE & Co. KGaA | Clubroot resistance and markers in brassica |
WO2023225670A2 (en) | 2022-05-20 | 2023-11-23 | Tome Biosciences, Inc. | Ex vivo programmable gene insertion |
WO2023230613A1 (en) | 2022-05-27 | 2023-11-30 | The Broad Institute, Inc. | Improved mitochondrial base editors and methods for editing mitochondrial dna |
WO2023240147A1 (en) | 2022-06-08 | 2023-12-14 | Century Therapeutics, Inc. | Genetically engineered cells expressing cd16 variants and nkg2d and uses thereof |
WO2023240169A1 (en) | 2022-06-08 | 2023-12-14 | Century Therapeutics, Inc. | Immunoeffector cells derived from induced pluripotent stem cells genetically engineered with membrane bound il12 and uses thereof |
WO2023240137A1 (en) | 2022-06-08 | 2023-12-14 | The Board Institute, Inc. | Evolved cas14a1 variants, compositions, and methods of making and using same in genome editing |
WO2023240212A2 (en) | 2022-06-08 | 2023-12-14 | Century Therapeutics, Inc. | Genetically engineered cells having anti-cd133 / anti-egfr chimeric antigen receptors, and uses thereof |
WO2023242827A2 (en) | 2022-06-17 | 2023-12-21 | Crispr Therapeutics Ag | LIPID NANOPARTICLES (LNPs)-BASED OCULAR DELIVERY |
WO2023248145A1 (en) | 2022-06-21 | 2023-12-28 | Crispr Therapeutics Ag | Compositions and methods for treating human immunodeficiency virus |
WO2023248147A1 (en) | 2022-06-21 | 2023-12-28 | Crispr Therapeutics Ag | Methods and compositions for in vivo editing of stem cells |
WO2023250509A1 (en) | 2022-06-23 | 2023-12-28 | Chroma Medicine, Inc. | Compositions and methods for epigenetic regulation of b2m expression |
WO2023250490A1 (en) | 2022-06-23 | 2023-12-28 | Chroma Medicine, Inc. | Compositions and methods for epigenetic regulation of trac expression |
WO2023250512A1 (en) | 2022-06-23 | 2023-12-28 | Chroma Medicine, Inc. | Compositions and methods for epigenetic regulation of ciita expression |
WO2023250511A2 (en) | 2022-06-24 | 2023-12-28 | Tune Therapeutics, Inc. | Compositions, systems, and methods for reducing low-density lipoprotein through targeted gene repression |
WO2024003786A1 (en) | 2022-06-29 | 2024-01-04 | Crispr Therapeutics Ag | Chimeric antigen receptor targeting gpc-3 and immune cells expressing such for therapeutic uses |
US20240003871A1 (en) | 2022-06-29 | 2024-01-04 | FUJIFILM Cellular Dynamics, Inc. | Ipsc-derived astrocytes and methods of use thereof |
GB2621813A (en) | 2022-06-30 | 2024-02-28 | Univ Newcastle | Preventing disease recurrence in Mitochondrial replacement therapy |
WO2024003334A1 (en) | 2022-06-30 | 2024-01-04 | Cellectis S.A. | Enhancing safety of t-cell-mediated immunotherapy |
WO2024015881A2 (en) | 2022-07-12 | 2024-01-18 | Tune Therapeutics, Inc. | Compositions, systems, and methods for targeted transcriptional activation |
WO2024013514A2 (en) | 2022-07-15 | 2024-01-18 | Pig Improvement Company Uk Limited | Gene edited livestock animals having coronavirus resistance |
WO2024020597A1 (en) | 2022-07-22 | 2024-01-25 | The Johns Hopkins University | Dendrimer-enabled targeted intracellular crispr/cas system delivery and gene editing |
WO2024023067A1 (en) | 2022-07-25 | 2024-02-01 | Koninklijke Nederlandse Akademie Van Wetenschappen | Curing disease by transcription regulatory gene editing |
WO2024023802A2 (en) | 2022-07-29 | 2024-02-01 | Crispr Therapeutics Ag | Genetically engineered immune cells having disrupted transporter associated with antigen processing-2 (tap-2) gene |
WO2024023801A2 (en) | 2022-07-29 | 2024-02-01 | Crispr Therapeutics Ag | Genetically engineered immune cells having disrupted transporter associated with antigen processing-1 (tap-1) gene |
WO2024023804A2 (en) | 2022-07-29 | 2024-02-01 | Crispr Therapeutics Ag | Genetically engineered immune cells having disrupted transporter associated with antigen processing binding protein (tapbp) gene |
WO2024033901A1 (en) | 2022-08-12 | 2024-02-15 | LifeEDIT Therapeutics, Inc. | Rna-guided nucleases and active fragments and variants thereof and methods of use |
WO2024040083A1 (en) | 2022-08-16 | 2024-02-22 | The Broad Institute, Inc. | Evolved cytosine deaminases and methods of editing dna using same |
WO2024038168A1 (en) | 2022-08-19 | 2024-02-22 | UCB Biopharma SRL | Novel rna-guided nucleases and nucleic acid targeting systems comprising such |
US20240067968A1 (en) | 2022-08-19 | 2024-02-29 | Tune Therapeutics, Inc. | Compositions, systems, and methods for regulation of hepatitis b virus through targeted gene repression |
TW202424186A (en) | 2022-08-25 | 2024-06-16 | 美商生命編輯治療學公司 | Chemical modification of guide rnas with locked nucleic acid for rna guided nuclease-mediated gene editing |
WO2024044723A1 (en) | 2022-08-25 | 2024-02-29 | Renagade Therapeutics Management Inc. | Engineered retrons and methods of use |
WO2024042165A2 (en) | 2022-08-26 | 2024-02-29 | UCB Biopharma SRL | Novel rna-guided nucleases and nucleic acid targeting systems comprising such rna-guided nucleases |
WO2024042168A1 (en) | 2022-08-26 | 2024-02-29 | UCB Biopharma SRL | Novel rna-guided nucleases and nucleic acid targeting systems comprising such rna-guided nucleases |
WO2024042199A1 (en) | 2022-08-26 | 2024-02-29 | KWS SAAT SE & Co. KGaA | Use of paired genes in hybrid breeding |
WO2024064642A2 (en) | 2022-09-19 | 2024-03-28 | Tune Therapeutics, Inc. | Compositions, systems, and methods for modulating t cell function |
WO2024062388A2 (en) | 2022-09-20 | 2024-03-28 | Crispr Therapeutics Ag | Genetically engineered immune cells expressing chimeric antigen receptor targeting cd20 |
WO2024064910A1 (en) | 2022-09-23 | 2024-03-28 | Chroma Medicine, Inc. | Compositions and methods for epigenetic regulation of hbv gene expression |
WO2024073692A1 (en) | 2022-09-30 | 2024-04-04 | Sigma-Aldrich Co. Llc | Metabolic selection via the glycine-formate biosynthesis pathway |
WO2024073686A1 (en) | 2022-09-30 | 2024-04-04 | Sigma-Aldrich Co. Llc | Metabolic selection via the serine biosynthesis pathway |
WO2024081736A2 (en) | 2022-10-11 | 2024-04-18 | Yale University | Compositions and methods of using cell-penetrating antibodies |
WO2024079157A1 (en) | 2022-10-11 | 2024-04-18 | KWS SAAT SE & Co. KGaA | Virus and insect resistance and markers in barley |
WO2024081879A1 (en) | 2022-10-14 | 2024-04-18 | Chroma Medicine, Inc. | Compositions and methods for epigenetic regulation of cd247 expression |
WO2024094775A1 (en) | 2022-11-03 | 2024-05-10 | Cellectis S.A. | Enhancing efficacy and safety of t-cell-mediated immunotherapy |
WO2024098027A1 (en) | 2022-11-04 | 2024-05-10 | Iovance Biotherapeutics, Inc. | Methods for tumor infiltrating lymphocyte (til) expansion related to cd39/cd103 selection |
WO2024095245A2 (en) | 2022-11-04 | 2024-05-10 | LifeEDIT Therapeutics, Inc. | Evolved adenine deaminases and rna-guided nuclease fusion proteins with internal insertion sites and methods of use |
WO2024098024A1 (en) | 2022-11-04 | 2024-05-10 | Iovance Biotherapeutics, Inc. | Expansion of tumor infiltrating lymphocytes from liquid tumors and therapeutic uses thereof |
WO2024102277A2 (en) | 2022-11-07 | 2024-05-16 | Syngenta Crop Protection Ag | Genes altering soy plant flowering time and/or maturation and uses thereof |
WO2024100604A1 (en) | 2022-11-09 | 2024-05-16 | Juno Therapeutics Gmbh | Methods for manufacturing engineered immune cells |
WO2024102838A1 (en) | 2022-11-09 | 2024-05-16 | Century Therapeutics, Inc. | Engineered interleukin-7 receptors and uses thereof |
WO2024103017A2 (en) | 2022-11-10 | 2024-05-16 | Century Therapeutics, Inc. | Genetically engineered cells having anti-nectin4 chimeric antigen receptors, and uses thereof |
WO2024112571A2 (en) | 2022-11-21 | 2024-05-30 | Iovance Biotherapeutics, Inc. | Two-dimensional processes for the expansion of tumor infiltrating lymphocytes and therapies therefrom |
WO2024118836A1 (en) | 2022-11-30 | 2024-06-06 | Iovance Biotherapeutics, Inc. | Processes for production of tumor infiltrating lymphocytes with shortened rep step |
WO2024119101A1 (en) | 2022-12-01 | 2024-06-06 | Yale University | Stimuli-responsive traceless engineering platform for intracellular payload delivery |
WO2024124044A1 (en) | 2022-12-07 | 2024-06-13 | The Brigham And Women’S Hospital, Inc. | Compositions and methods targeting sat1 for enhancing anti¬ tumor immunity during tumor progression |
WO2024127370A1 (en) | 2022-12-16 | 2024-06-20 | LifeEDIT Therapeutics, Inc. | Guide rnas that target trac gene and methods of use |
WO2024127369A1 (en) | 2022-12-16 | 2024-06-20 | LifeEDIT Therapeutics, Inc. | Guide rnas that target foxp3 gene and methods of use |
WO2024137677A1 (en) | 2022-12-19 | 2024-06-27 | FUJIFILM Holdings America Corporation | Extracellular vesicle-enriched secretome composition derived from induced pluripotent stem cell derived-microglia and methods of use thereof |
WO2024138194A1 (en) | 2022-12-22 | 2024-06-27 | Tome Biosciences, Inc. | Platforms, compositions, and methods for in vivo programmable gene insertion |
WO2024151541A1 (en) | 2023-01-09 | 2024-07-18 | Sana Biotechnology, Inc. | Type-1 diabetes autoimmune mouse |
WO2024155745A1 (en) | 2023-01-18 | 2024-07-25 | The Broad Institute, Inc. | Base editing-mediated readthrough of premature termination codons (bert) |
WO2024163678A2 (en) | 2023-02-01 | 2024-08-08 | Tune Therapeutics, Inc. | Fusion proteins and systems for targeted activation of frataxin (fxn) and related methods |
WO2024163683A2 (en) | 2023-02-01 | 2024-08-08 | Tune Therapeutics, Inc. | Systems, compositions, and methods for modulating expression of methyl-cpg binding protein 2 (mecp2) and x-inactive specific transcript (xist) |
WO2024161021A1 (en) | 2023-02-03 | 2024-08-08 | Juno Therapeutics Gmbh | Methods for non-viral manufacturing of engineered immune cells |
WO2024163862A2 (en) | 2023-02-03 | 2024-08-08 | The Broad Institute, Inc. | Gene editing methods, systems, and compositions for treating spinal muscular atrophy |
US20240301447A1 (en) | 2023-02-15 | 2024-09-12 | Arbor Biotechnologies, Inc. | Gene editing method for inhibiting aberrant splicing in stathmin 2 (stmn2) transcript |
WO2024187174A2 (en) | 2023-03-09 | 2024-09-12 | Aadigen, Llc | Compositions for treating cancer with kras mutations and uses thereof |
WO2024192141A1 (en) | 2023-03-13 | 2024-09-19 | Dana-Farber Cancer Institute, Inc. | Treatment of cancers having a drug-resistant mesenchymal cell state |
WO2024192108A1 (en) | 2023-03-14 | 2024-09-19 | Evolveimmune Therapeutics, Inc. | Genetically modified car t cells and methods of making and using the same |
WO2024211287A1 (en) | 2023-04-03 | 2024-10-10 | Seagen Inc. | Production cell lines with targeted integration sites |
Citations (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4990607A (en) * | 1989-03-14 | 1991-02-05 | The Rockefeller University | Alteration of gene expression in plants |
US5096814A (en) * | 1984-03-23 | 1992-03-17 | Kernforschungsanlage Juelich Gmbh | Macroporous and microporous inorganic carrier for immobilization of cells |
US5096815A (en) * | 1989-01-06 | 1992-03-17 | Protein Engineering Corporation | Generation and selection of novel dna-binding proteins and polypeptides |
US5198346A (en) * | 1989-01-06 | 1993-03-30 | Protein Engineering Corp. | Generation and selection of novel DNA-binding proteins and polypeptides |
US5223409A (en) * | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
US5243041A (en) * | 1991-08-22 | 1993-09-07 | Fernandez Pol Jose A | DNA vector with isolated CDNA gene encoding metallopanstimulin |
US5302519A (en) * | 1991-09-09 | 1994-04-12 | Fred Hutchinson Cancer Research Center | Method of producing a Mad polypeptide |
US5324818A (en) * | 1991-08-21 | 1994-06-28 | The Regents Of The University Of Michigan | Proteins useful in the regulation of κB-containing genes |
US5324638A (en) * | 1992-05-13 | 1994-06-28 | Sloan-Kettering Institute For Cancer Research | Brain transcription factor, nucleic acids encoding same and uses thereof |
US5324819A (en) * | 1988-04-08 | 1994-06-28 | Stryker Corporation | Osteogenic proteins |
US5340739A (en) * | 1988-07-13 | 1994-08-23 | Brigham & Women's Hospital | Hematopoietic cell specific transcriptional regulatory elements of serglycin and uses thereof |
US5348864A (en) * | 1991-01-25 | 1994-09-20 | E. R. Squibb & Sons, Inc. | Mouse vav proto-oncogene DNA and protein sequences |
US5350840A (en) * | 1989-11-13 | 1994-09-27 | Massachusetts Institute Of Technology | Localization and characterization of the Wilms' tumor gene |
US5356802A (en) * | 1992-04-03 | 1994-10-18 | The Johns Hopkins University | Functional domains in flavobacterium okeanokoites (FokI) restriction endonuclease |
US5376530A (en) * | 1987-12-16 | 1994-12-27 | Institut Pasteur | Steroid/thyroid hormone receptor-related gene, which is inappropriately expressed in human heptocellular carcinoma, and which is a retinoic acid receptor |
US5436150A (en) * | 1992-04-03 | 1995-07-25 | The Johns Hopkins University | Functional domains in flavobacterium okeanokoities (foki) restriction endonuclease |
US5487994A (en) * | 1992-04-03 | 1996-01-30 | The Johns Hopkins University | Insertion and deletion mutants of FokI restriction endonuclease |
US5498530A (en) * | 1991-10-16 | 1996-03-12 | Affymax Technologies, N.V. | Peptide library and screening method |
US5578483A (en) * | 1988-12-23 | 1996-11-26 | The Salk Institute For Biological Studies | Receptor transcription-repression activity compositions and methods |
US5597693A (en) * | 1989-03-17 | 1997-01-28 | The Salk Institute For Biological Studies | Hormone response element compositions and assay |
US5639592A (en) * | 1990-09-21 | 1997-06-17 | The Salk Institute For Biological Studies | Functional antagonism between proto-oncoprotein c-Jun and hormone receptors |
US5674738A (en) * | 1986-08-22 | 1997-10-07 | Roche Molecular Systems, Inc. | DNA encoding thermostable nucleic acid polymerase enzyme from thermus species Z05 |
US5702914A (en) * | 1994-12-21 | 1997-12-30 | The Salk Institute For Biological Studies | Use of reporter genes for retinoid receptor screening assays having novel retinoid-associated response elements |
US5789538A (en) * | 1995-02-03 | 1998-08-04 | Massachusetts Institute Of Technology | Zinc finger proteins with high affinity new DNA binding specificities |
US5792640A (en) * | 1992-04-03 | 1998-08-11 | The Johns Hopkins University | General method to clone hybrid restriction endonucleases using lig gene |
US5830721A (en) * | 1994-02-17 | 1998-11-03 | Affymax Technologies N.V. | DNA mutagenesis by random fragmentation and reassembly |
US5869618A (en) * | 1990-05-25 | 1999-02-09 | Lippman; Marc E. | Antibodies to ligand growth factors |
US5871907A (en) * | 1991-05-15 | 1999-02-16 | Medical Research Council | Methods for producing members of specific binding pairs |
US5871902A (en) * | 1994-12-09 | 1999-02-16 | The Gene Pool, Inc. | Sequence-specific detection of nucleic acid hybrids using a DNA-binding molecule or assembly capable of discriminating perfect hybrids from non-perfect hybrids |
US5916794A (en) * | 1992-04-03 | 1999-06-29 | Johns Hopkins University | Methods for inactivating target DNA and for detecting conformational change in a nucleic acid |
US5939538A (en) * | 1996-10-25 | 1999-08-17 | Immusol Incorporated | Methods and compositions for inhibiting HIV infection of cells by cleaving HIV co-receptor RNA |
US5972615A (en) * | 1998-01-21 | 1999-10-26 | Urocor, Inc. | Biomarkers and targets for diagnosis, prognosis and management of prostate disease |
US6001885A (en) * | 1996-09-02 | 1999-12-14 | Centre International De Recherches Dermatologiques | Retinoid inhibition of expression of VEGF |
US6007988A (en) * | 1994-08-20 | 1999-12-28 | Medical Research Council | Binding proteins for recognition of DNA |
US6140466A (en) * | 1994-01-18 | 2000-10-31 | The Scripps Research Institute | Zinc finger protein derivatives and methods therefor |
US6140081A (en) * | 1998-10-16 | 2000-10-31 | The Scripps Research Institute | Zinc finger binding domains for GNN |
US6160091A (en) * | 1997-04-30 | 2000-12-12 | Prolifix Limited | Myc-binding zinc finger proteins, their preparation and their use |
US6242568B1 (en) * | 1994-01-18 | 2001-06-05 | The Scripps Research Institute | Zinc finger protein derivatives and methods therefor |
US6265196B1 (en) * | 1996-05-07 | 2001-07-24 | Johns Hopkins University | Methods for inactivating target DNA and for detecting conformational change in a nucleic acid |
US6534261B1 (en) * | 1999-01-12 | 2003-03-18 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US553409A (en) * | 1896-01-21 | Globe and method of making same | ||
US5602009A (en) | 1988-12-23 | 1997-02-11 | The Salk Institute For Biological Studies | Dominant negative chimeras of the steroid/thyroid superfamily of receptors |
AU8498091A (en) | 1990-08-02 | 1992-03-02 | Regents Of The University Of Colorado, The | Systematic polypeptide evolution by reverse translation |
GB9226065D0 (en) * | 1992-12-14 | 1993-02-10 | Ici Plc | Peptides |
US5814618A (en) | 1993-06-14 | 1998-09-29 | Basf Aktiengesellschaft | Methods for regulating gene expression |
US6004941A (en) | 1993-06-14 | 1999-12-21 | Basf Aktiengesellschaft | Methods for regulating gene expression |
AU8124694A (en) | 1993-10-29 | 1995-05-22 | Affymax Technologies N.V. | In vitro peptide and antibody display libraries |
WO1995019431A1 (en) | 1994-01-18 | 1995-07-20 | The Scripps Research Institute | Zinc finger protein derivatives and methods therefor |
AU3331595A (en) | 1994-08-18 | 1996-03-14 | Ariad Pharmaceuticals, Inc. | Composite dna-binding proteins and materials and methods relating thereto |
GB9824544D0 (en) | 1998-11-09 | 1999-01-06 | Medical Res Council | Screening system |
DE4435919C1 (en) | 1994-10-07 | 1995-12-07 | Deutsches Krebsforsch | DNA encoding zinc finger protein |
ATE544776T1 (en) | 1994-12-29 | 2012-02-15 | Massachusetts Inst Technology | CHIMERIC DNA BINDING PROTEINS |
US5935811A (en) | 1995-03-03 | 1999-08-10 | California Institute Of Technology | Neuron-restrictive silencer factor nucleic acids |
US6090783A (en) * | 1995-03-24 | 2000-07-18 | Shionogi & Co., Ltd. | DNA molecule relating to suppression of gene expression and novel protein |
WO1996032475A2 (en) | 1995-04-12 | 1996-10-17 | University Of Washington | Methods for preparing dna-binding proteins |
WO1997025727A1 (en) | 1996-01-11 | 1997-07-17 | Alliedsignal Inc. | Distributed gap electrical choke |
WO1997027213A1 (en) | 1996-01-23 | 1997-07-31 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for screening for transdominant effector peptides and rna molecules |
GB9606166D0 (en) | 1996-03-23 | 1996-05-29 | Hienemann Vivienne S | Greetings device |
US6388055B1 (en) * | 1996-10-03 | 2002-05-14 | Smithkline Beecham Corporation | Mouse CC-CKR5 receptor polypeptide |
GB9710807D0 (en) | 1997-05-23 | 1997-07-23 | Medical Res Council | Nucleic acid binding proteins |
GB9710809D0 (en) | 1997-05-23 | 1997-07-23 | Medical Res Council | Nucleic acid binding proteins |
US7119250B2 (en) * | 1997-06-03 | 2006-10-10 | The University Of Chicago | Plant centromere compositions |
US6383746B1 (en) * | 1997-10-23 | 2002-05-07 | The United States Of America As Represented By The Department Of Health And Human Services | Functional promoter for CCR5 |
GB9724829D0 (en) | 1997-11-21 | 1998-01-21 | Muller Rolf | Transcription factor |
AU2218199A (en) | 1998-01-09 | 1999-07-26 | Cubist Pharmaceuticals, Inc. | Method for identifying validated target and assay combinations |
AU755784B2 (en) | 1998-01-15 | 2002-12-19 | Ariad Pharmaceuticals, Inc. | Regulation of biological events using multimeric chimeric proteins |
US6410248B1 (en) | 1998-01-30 | 2002-06-25 | Massachusetts Institute Of Technology | General strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites |
ATE344322T1 (en) | 1998-02-13 | 2006-11-15 | Koester Hubert | USE OF RIBOZYMES TO DETERMINE THE FUNCTION OF GENES |
AU758728B2 (en) | 1998-02-20 | 2003-03-27 | Genome Dynamics, Inc. | Method for designing DNA-binding proteins of the zinc-finger class |
JP4309051B2 (en) | 1998-03-02 | 2009-08-05 | マサチューセッツ インスティテュート オブ テクノロジー | Polyzinc finger protein with improved linker |
US6100087A (en) * | 1998-03-11 | 2000-08-08 | City Of Hope | Ribozymes targeted to human CCR5 mRNA |
DE69932813D1 (en) | 1998-03-17 | 2006-09-28 | Gendaq Ltd | NUCLEIC BINDING PROTEIN |
US6453242B1 (en) | 1999-01-12 | 2002-09-17 | Sangamo Biosciences, Inc. | Selection of sites for targeting by zinc finger proteins and methods of designing zinc finger proteins to bind to preselected sites |
US6599692B1 (en) | 1999-09-14 | 2003-07-29 | Sangamo Bioscience, Inc. | Functional genomics using zinc finger proteins |
US7013219B2 (en) * | 1999-01-12 | 2006-03-14 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
WO2001004296A1 (en) | 1999-07-12 | 2001-01-18 | Mcgill University | Rbp1 polypeptides and uses thereof |
US20020164575A1 (en) | 1999-09-14 | 2002-11-07 | Sangamo Biosciences, Inc., A Delaware Corporation | Gene identification |
US7888499B2 (en) * | 2000-11-09 | 2011-02-15 | Commonwealth Scientific And Industrial Research Organization | Barley with reduced SSII activity and starch containing products with a reduced amylopectin content |
EP1364027B1 (en) | 2001-02-21 | 2009-09-02 | Novartis AG | Zinc finger binding domains for nucleotide sequence ann |
EP1421177A4 (en) | 2001-08-20 | 2006-06-07 | Scripps Research Inst | Zinc finger binding domains for cnn |
-
1999
- 1999-01-12 US US09/229,037 patent/US6534261B1/en not_active Expired - Lifetime
-
2000
- 2000-01-06 EP EP00906882A patent/EP1061805B1/en not_active Expired - Lifetime
- 2000-01-06 US US09/478,681 patent/US6607882B1/en not_active Expired - Lifetime
- 2000-01-06 DE DE20023745U patent/DE20023745U1/en not_active Expired - Lifetime
- 2000-01-06 AT AT00906882T patent/ATE304792T1/en active
- 2000-01-06 CA CA002323086A patent/CA2323086C/en not_active Expired - Lifetime
- 2000-01-06 DK DK00906882T patent/DK1061805T3/en active
- 2000-01-06 WO PCT/US2000/000409 patent/WO2000041566A1/en active IP Right Grant
- 2000-01-06 ES ES00906882T patent/ES2250103T3/en not_active Expired - Lifetime
- 2000-01-06 DE DE60022705T patent/DE60022705T8/en active Active
- 2000-01-06 AU AU28470/00A patent/AU745844B2/en not_active Expired
- 2000-01-06 JP JP2000593186A patent/JP2002534104A/en not_active Withdrawn
- 2000-01-12 GB GB0000650A patent/GB2348424B/en not_active Expired - Lifetime
- 2000-11-03 US US09/706,243 patent/US6824978B1/en not_active Expired - Lifetime
-
2001
- 2001-01-12 JP JP2001005820A patent/JP5490971B2/en not_active Expired - Lifetime
- 2001-07-02 US US09/897,844 patent/US6979539B2/en not_active Expired - Lifetime
- 2001-08-28 US US09/942,087 patent/US6933113B2/en not_active Expired - Lifetime
-
2002
- 2002-08-15 US US10/222,614 patent/US7163824B2/en not_active Expired - Lifetime
-
2004
- 2004-05-13 US US10/845,384 patent/US7220719B2/en not_active Expired - Lifetime
- 2004-11-09 US US10/984,304 patent/US20050215502A1/en not_active Abandoned
- 2004-11-12 US US10/986,583 patent/US20050130304A1/en not_active Abandoned
-
2006
- 2006-08-16 US US11/505,044 patent/US8268618B2/en not_active Expired - Fee Related
- 2006-08-17 US US11/505,775 patent/US7985887B2/en not_active Expired - Fee Related
- 2006-09-14 US US11/521,291 patent/US20100261271A1/en not_active Abandoned
- 2006-09-20 US US11/524,165 patent/US20100279406A1/en not_active Abandoned
-
2011
- 2011-05-18 JP JP2011111794A patent/JP2011207893A/en active Pending
- 2011-05-23 US US13/068,878 patent/US9491934B2/en not_active Expired - Fee Related
- 2011-05-23 US US13/068,877 patent/US20110247087A1/en not_active Abandoned
-
2014
- 2014-06-05 US US14/297,197 patent/US20140325691A1/en not_active Abandoned
-
2017
- 2017-04-27 US US15/499,615 patent/US20170251645A1/en not_active Abandoned
Patent Citations (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5096814A (en) * | 1984-03-23 | 1992-03-17 | Kernforschungsanlage Juelich Gmbh | Macroporous and microporous inorganic carrier for immobilization of cells |
US5674738A (en) * | 1986-08-22 | 1997-10-07 | Roche Molecular Systems, Inc. | DNA encoding thermostable nucleic acid polymerase enzyme from thermus species Z05 |
US5376530A (en) * | 1987-12-16 | 1994-12-27 | Institut Pasteur | Steroid/thyroid hormone receptor-related gene, which is inappropriately expressed in human heptocellular carcinoma, and which is a retinoic acid receptor |
US5324819A (en) * | 1988-04-08 | 1994-06-28 | Stryker Corporation | Osteogenic proteins |
US5340739A (en) * | 1988-07-13 | 1994-08-23 | Brigham & Women's Hospital | Hematopoietic cell specific transcriptional regulatory elements of serglycin and uses thereof |
US5223409A (en) * | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
US5403484A (en) * | 1988-09-02 | 1995-04-04 | Protein Engineering Corporation | Viruses expressing chimeric binding proteins |
US5578483A (en) * | 1988-12-23 | 1996-11-26 | The Salk Institute For Biological Studies | Receptor transcription-repression activity compositions and methods |
US5096815A (en) * | 1989-01-06 | 1992-03-17 | Protein Engineering Corporation | Generation and selection of novel dna-binding proteins and polypeptides |
US5198346A (en) * | 1989-01-06 | 1993-03-30 | Protein Engineering Corp. | Generation and selection of novel DNA-binding proteins and polypeptides |
US4990607A (en) * | 1989-03-14 | 1991-02-05 | The Rockefeller University | Alteration of gene expression in plants |
US5597693A (en) * | 1989-03-17 | 1997-01-28 | The Salk Institute For Biological Studies | Hormone response element compositions and assay |
US5350840A (en) * | 1989-11-13 | 1994-09-27 | Massachusetts Institute Of Technology | Localization and characterization of the Wilms' tumor gene |
US5869618A (en) * | 1990-05-25 | 1999-02-09 | Lippman; Marc E. | Antibodies to ligand growth factors |
US5639592A (en) * | 1990-09-21 | 1997-06-17 | The Salk Institute For Biological Studies | Functional antagonism between proto-oncoprotein c-Jun and hormone receptors |
US5348864A (en) * | 1991-01-25 | 1994-09-20 | E. R. Squibb & Sons, Inc. | Mouse vav proto-oncogene DNA and protein sequences |
US5871907A (en) * | 1991-05-15 | 1999-02-16 | Medical Research Council | Methods for producing members of specific binding pairs |
US5324818A (en) * | 1991-08-21 | 1994-06-28 | The Regents Of The University Of Michigan | Proteins useful in the regulation of κB-containing genes |
US5243041A (en) * | 1991-08-22 | 1993-09-07 | Fernandez Pol Jose A | DNA vector with isolated CDNA gene encoding metallopanstimulin |
US5302519A (en) * | 1991-09-09 | 1994-04-12 | Fred Hutchinson Cancer Research Center | Method of producing a Mad polypeptide |
US5498530A (en) * | 1991-10-16 | 1996-03-12 | Affymax Technologies, N.V. | Peptide library and screening method |
US5436150A (en) * | 1992-04-03 | 1995-07-25 | The Johns Hopkins University | Functional domains in flavobacterium okeanokoities (foki) restriction endonuclease |
US5487994A (en) * | 1992-04-03 | 1996-01-30 | The Johns Hopkins University | Insertion and deletion mutants of FokI restriction endonuclease |
US5792640A (en) * | 1992-04-03 | 1998-08-11 | The Johns Hopkins University | General method to clone hybrid restriction endonucleases using lig gene |
US5916794A (en) * | 1992-04-03 | 1999-06-29 | Johns Hopkins University | Methods for inactivating target DNA and for detecting conformational change in a nucleic acid |
US5356802A (en) * | 1992-04-03 | 1994-10-18 | The Johns Hopkins University | Functional domains in flavobacterium okeanokoites (FokI) restriction endonuclease |
US5324638A (en) * | 1992-05-13 | 1994-06-28 | Sloan-Kettering Institute For Cancer Research | Brain transcription factor, nucleic acids encoding same and uses thereof |
US6242568B1 (en) * | 1994-01-18 | 2001-06-05 | The Scripps Research Institute | Zinc finger protein derivatives and methods therefor |
US6140466A (en) * | 1994-01-18 | 2000-10-31 | The Scripps Research Institute | Zinc finger protein derivatives and methods therefor |
US5830721A (en) * | 1994-02-17 | 1998-11-03 | Affymax Technologies N.V. | DNA mutagenesis by random fragmentation and reassembly |
US6007988A (en) * | 1994-08-20 | 1999-12-28 | Medical Research Council | Binding proteins for recognition of DNA |
US6013453A (en) * | 1994-08-20 | 2000-01-11 | Medical Research Council | Binding proteins for recognition of DNA |
US5871902A (en) * | 1994-12-09 | 1999-02-16 | The Gene Pool, Inc. | Sequence-specific detection of nucleic acid hybrids using a DNA-binding molecule or assembly capable of discriminating perfect hybrids from non-perfect hybrids |
US5702914A (en) * | 1994-12-21 | 1997-12-30 | The Salk Institute For Biological Studies | Use of reporter genes for retinoid receptor screening assays having novel retinoid-associated response elements |
US5789538A (en) * | 1995-02-03 | 1998-08-04 | Massachusetts Institute Of Technology | Zinc finger proteins with high affinity new DNA binding specificities |
US6265196B1 (en) * | 1996-05-07 | 2001-07-24 | Johns Hopkins University | Methods for inactivating target DNA and for detecting conformational change in a nucleic acid |
US6001885A (en) * | 1996-09-02 | 1999-12-14 | Centre International De Recherches Dermatologiques | Retinoid inhibition of expression of VEGF |
US5939538A (en) * | 1996-10-25 | 1999-08-17 | Immusol Incorporated | Methods and compositions for inhibiting HIV infection of cells by cleaving HIV co-receptor RNA |
US6160091A (en) * | 1997-04-30 | 2000-12-12 | Prolifix Limited | Myc-binding zinc finger proteins, their preparation and their use |
US5972615A (en) * | 1998-01-21 | 1999-10-26 | Urocor, Inc. | Biomarkers and targets for diagnosis, prognosis and management of prostate disease |
US6140081A (en) * | 1998-10-16 | 2000-10-31 | The Scripps Research Institute | Zinc finger binding domains for GNN |
US6534261B1 (en) * | 1999-01-12 | 2003-03-18 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040170619A1 (en) * | 2001-03-19 | 2004-09-02 | John Girdlestone | Gene regulation |
US20030194727A1 (en) * | 2001-12-07 | 2003-10-16 | Kim Jin-Soo | Phenotypic screen of chimeric proteins |
US7514257B2 (en) | 2001-12-07 | 2009-04-07 | Toolgen, Inc. | Zinc finger transcription factor differentiation proteins |
US20070178499A1 (en) * | 2006-01-06 | 2007-08-02 | The Scripps Research Institute | Specific Labeling of Protein with Zinc Finger Tags and Use of Zinc-Finger-Tagged Proteins for Analysis |
WO2014039585A2 (en) | 2012-09-04 | 2014-03-13 | The Scripps Research Institute | Chimeric polypeptides having targeted binding specificity |
EP3750999A1 (en) | 2012-09-04 | 2020-12-16 | The Scripps Research Institute | Chimeric polypeptides having targeted binding specificity |
EP4148134A1 (en) | 2012-09-04 | 2023-03-15 | The Scripps Research Institute | Chimeric polypeptides having targeted binding specificity |
US11466271B2 (en) | 2017-02-06 | 2022-10-11 | Novartis Ag | Compositions and methods for the treatment of hemoglobinopathies |
WO2021011936A2 (en) | 2019-07-18 | 2021-01-21 | University Of Rochester | Cell-type selective immunoprotection of cells |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170251645A1 (en) | Regulation of endogenous gene expression in cells using zinc finger proteins | |
US7013219B2 (en) | Regulation of endogenous gene expression in cells using zinc finger proteins | |
US7070934B2 (en) | Ligand-controlled regulation of endogenous gene expression | |
AU778964B2 (en) | Functional genomics using zinc finger proteins | |
US6780590B2 (en) | Gene identification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |