US20050123534A1 - Humanised antibodies - Google Patents

Humanised antibodies Download PDF

Info

Publication number
US20050123534A1
US20050123534A1 US10/937,971 US93797104A US2005123534A1 US 20050123534 A1 US20050123534 A1 US 20050123534A1 US 93797104 A US93797104 A US 93797104A US 2005123534 A1 US2005123534 A1 US 2005123534A1
Authority
US
United States
Prior art keywords
variable region
chain variable
light chain
heavy chain
human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/937,971
Inventor
John Adair
Diljeet Athwal
John Emtage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCB Pharma SA
Original Assignee
Celltech R&D Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10668300&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050123534(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/303,569 external-priority patent/US5859205A/en
Application filed by Celltech R&D Ltd filed Critical Celltech R&D Ltd
Priority to US10/937,971 priority Critical patent/US20050123534A1/en
Assigned to CELLTECH THERAPEUTICS LIMITED reassignment CELLTECH THERAPEUTICS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EMTAGE, JOHN SPENCER, ATHWAL, DILJEET SINGH, ADAIR, JOHN ROBERT
Assigned to CELLTECH R&D LIMITED reassignment CELLTECH R&D LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CELLTECH CHIROSCIENCE LIMITED
Assigned to CELLTECH CHIROSCIENCE LIMITED reassignment CELLTECH CHIROSCIENCE LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CELLTECH THERAPEUTICS LIMITED
Publication of US20050123534A1 publication Critical patent/US20050123534A1/en
Assigned to UCB S.A. reassignment UCB S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CELLTECH R & D LIMITED
Assigned to UCB PHARMA S.A. reassignment UCB PHARMA S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UCB S.A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/241Tumor Necrosis Factors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2812Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • C07K16/464Igs containing CDR-residues from one specie grafted between FR-residues from another
    • C07K16/465Igs containing CDR-residues from one specie grafted between FR-residues from another with additional modified FR-residues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence

Definitions

  • the present invention relates to humanised antibody molecules, to processes for their production using recombinant DNA technology, and to their therapeutic uses.
  • humanised antibody molecule is used to describe a molecule having an antigen binding site derived from an immunoglobulin from a non-human species, and remaining immunoglobulin-derived parts of the molecule being derived from a human immunoglobulin.
  • the antigen binding site typically comprises complementarity determining regions (CDRs) which determine the binding specificity of the antibody molecule and which are carried on appropriate framework regions in the variable domains.
  • CDRs complementarity determining regions
  • Natural immunoglobulins have been known for many years, as have the various fragments thereof, such as the Fab, (Fab′) 2 and Fc fragments, which can be derived by enzymatic cleavage. Natural immunoglobulins comprise a generally Y-shaped molecule having an antigen-binding site towards the end of each upper arm. The remainder of the structure, and particularly the stem of the Y, mediates the effector functions associated with immunoglobulins.
  • Natural immunoglobulins have been used in assay, diagnosis and, to a more limited extent, therapy. However, such uses, especially in therapy, were hindered until recently by the polyclonal nature of natural immunoglobulins.
  • a significant step towards the realisation of the potential of immunoglobulins as therapeutic agents was the discovery of procedures for the production of monoclonal antibodies (MAbs) of defined specificity (1).
  • MAbs are produced by hybridomas which are fusions of rodent spleen cells with rodent myeloma cells. They are therefore essentially rodent proteins. There are very few reports of the production of human MAbs.
  • HAMA Human Anti-Mouse Antibody
  • OKT3 a mouse IgG2a/k MAb which recognises an antigen in the T-cell receptor-CD3 complex has been approved for use in many countries throughout the world as an immunosuppressant in the treatment of acute allograft rejection [Chatenoud et al (2) and Jeffers et al (3)].
  • a significant HAMA response which may include a major anti-idiotype component, may build up on use.
  • Such humanised chimeric antibodies still contain a significant proportion of non-human amino acid sequence, i.e. the complete non-human variable domains, and thus may still elicit some HAMA response, particularly if administered over a prolonged period [Regent et al (ref. 4)].
  • CDRs complementarity determining regions
  • the present invention relates to humanised antibody molecules prepared according to this alternative approach, i.e. CDR-grafted humanised antibody molecules.
  • CDR-grafted humanised antibodies are much less likely to give rise to a HAMA response than humanised chimeric antibodies in view of the much lower proportion of non-human amino acid sequence which they contain.
  • the first criterion is to use as the human acceptor the framework from a particular human immunoglobulin that is unusually homologous to the non-human donor immunoglobulin to be humanised, or to use a consensus framework from many human antibodies.
  • the second criterion is to use the donor amino acid rather than the acceptor if the human acceptor residue is unusual and the donor residue is typical for human sequences at a specific residue of the framework.
  • the third criterion is to use the donor framework amino acid residue rather than the acceptor at positions immediately adjacent to the CDRs.
  • the fourth criterion is to use the donor amino acid residue at framework positions at which the amino acid is predicted to have a side chain atom within about 3 ⁇ of the CDRs in a three-dimensional immunoglobulin model and to be capable of interacting with the antigen or with the CDRs of the humanised immunoglobulin. It is proposed that criteria two, three or four may be applied in addition or alternatively to criterion one, and may be applied singly or in any combination.
  • WO 90/07861 describes in detail the preparation of a single CDR-grafted humanised antibody, a humanised antibody having specificity for the p55 Tac protein of the IL-2 receptor.
  • the donor CDRs were as defined by Kabat et al (7 and 8) and in addition the mouse donor residues were used in place of the human acceptor residues, at positions 27, 30, 48, 66, 67, 89, 91, 94, 103, 104, 105 and 107 in the heavy chain and at positions 48, 60 and 63 in the light chain, of the variable region frameworks.
  • the humanised anti-Tac antibody obtained is reported to have an affinity for p55 of 3 ⁇ 10 9 M ⁇ 1 , about one-third of that of the murine MAb.
  • the invention provides a CDR-grafted antibody heavy chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of positions 6, 23 and/or 24, 48 and/or 49, 71 and/or 73, 75 and/or 76 and/or 78 and 88 and/or 91.
  • the heavy chain framework comprises donor residues at positions 23, 24, 49, 71, 73 and 78 or at positions 23, 24 and 49.
  • the residues at positions 71, 73 and 78 of the, heavy chain framework are preferably either all acceptor or all donor residues.
  • the heavy chain framework additionally comprises donor residues at one, some or all of positions 6, 37, 48 and 94. Also it is particularly preferred that residues at positions of the heavy chain framework which are commonly conserved across species, i.e. positions 2, 4, 25, 36, 39, 47, 93, 103, 104, 106 and 107, if not conserved between donor and acceptor, additionally comprise donor residues. Most preferably the heavy chain framework additionally comprises donor residues at positions 2, 4, 6, 25, 36, 37, 39, 47, 48, 93, 94, 103, 104, 106 and 107.
  • heavy chain framework optionally comprises donor residues at one, some or ail of positions:
  • CDR-grafted antibody products comprising acceptor framework and donor antigen binding regions.
  • the invention is widely applicable to the CDR-grafting of antibodies in general.
  • the donor and acceptor antibodies may be derived from animals of the some species and even same antibody class or sub-class. More usually, however, the donor and acceptor antibodies are derived from animals of different species.
  • the donor antibody is a non-human antibody, such as a rodent MAb, and the acceptor antibody is a human antibody.
  • the donor antigen binding region typically comprises at least one CDR from the donor antibody.
  • the donor antigen binding region comprises at least two and preferably all three CDRs of each of the heavy chain and/or light chain variable regions.
  • the CDRs may comprise the Kabat CDRs, the structural loop CDRs or a composite of the Kabat and structural loop CDRs and any combination of any of these.
  • the antigen binding regions of the CDR-grafted heavy chain variable domain comprise CDRs corresponding to the Kabat CDRs at CDR2 (residues 50-65) and CDR3 (residues 95-100) and a composite of the Kabat and structural loop CDRs at CDR1 (residues 26-35).
  • residue designations given above and elsewhere in the present application are numbered according to the Kabat numbering [refs. (7) and (8)]. Thus the residue designations do not always correspond directly with the linear numbering of the amino acid residues.
  • the actual linear amino acid sequence may contain fewer or additional amino acids than in the strict Kabat numbering corresponding to a shortening of, or insertion into, a structural component, whether framework or CDR, of the basic variable domain structure.
  • the heavy chain variable region of the anti-Tac antibody described by Queen et al contains a single amino acid insert (residue 52a) after residue 52 of CDR2 and a three amino acid insert (residues 82a, 82b and 82c) after framework residue 82, in the Kabat numbering.
  • the correct Kabat numbering of residues may be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a *standard; Kabat numbered sequence.
  • the invention also provides in a second aspect a CDR-grafted antibody light chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of positions 1 and/or 3 and 46 and/or 47.
  • the CDR grafted light chain of the second aspect comprises donor residues at positions 46 and/or 47.
  • the invention also provides in a third aspect a CDR-grafted antibody light chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of positions 46, 48, 58 and 71.
  • the framework comprises donor residues at all of positions 46, 48, 58 and 71.
  • the framework additionally comprises donor residues at positions 36, 44, 47, 85 and 87.
  • positions of the light chain framework which are commonly conserved across species, i.e. positions 2, 4, 6, 35, 49, 62, 64-69, 98, 99, 101 and 162, if not conserved between donor and acceptor, additionally comprise donor residues.
  • the light chain framework additionally comprises donor residues at positions 2, 4, 6, 35, 36, 38, 44, 47, 49, 62, 64-69, 85, 87, 98, 99, 101 and 102.
  • framework of the second or third aspects optionally comprises donor residues at one, some or all of positions:
  • the antigen binding regions of the CDR-grafted light chain variable domain comprise CDRs corresponding to the Kabat CDRs at CDR1 (residue 24-34), CDR2 (residues 50-56) and CDR3 (residues. 89-97).
  • the invention further provides in a fourth aspect a CDR-grafted antibody molecule comprising at least one CDR-grafted heavy chain and at least one CDR-grafted light chain according to the first and second or first and third aspects of the invention.
  • the humanised antibody molecules and chains of the present invention may comprise: a complete antibody molecule, having full length heavy and light chains; a fragment thereof, such as a Fab, (Fab′) 2 or FV fragment; a light chain or heavy chain monomer or dimer; or a single chain antibody, e.g. a single chain FV in which heavy and light chain variable regions are joined by a peptide linker; or any other CDR-grafted molecule with the same specificity as the original donor antibody.
  • the CDR-grafted heavy and light chain variable region may be combined with other antibody domains as appropriate.
  • the heavy or light chains or humanised antibody molecules of the present invention may have attached to them an effector or reporter molecule.
  • it may have a macrocycle, for chelating a heavy metal atom, or a toxin, such as ricin, attached to it by a covalent bridging structure.
  • the procedures of recombinant DNA technology may be used to produce an immunoglobulin molecule in which the Fc fragment or CH3 domain of a complete immunoglobulin molecule has been replaced by, or has attached thereto by peptide linkage, a functional non-immunoglobulin protein, such as an enzyme or toxin molecule.
  • acceptor variable region framework sequences may be used having regard to class/type of the donor antibody from which the antigen binding regions are derived.
  • the type of acceptor framework used is of the same/similar class/type as the donor antibody.
  • the framework may be chosen to maximise/optimise homology with the donor antibody sequence particularly at positions close or adjacent to the CDRs.
  • a high level of homology between donor and acceptor sequences is not important for application of the present invention.
  • the present invention identifies a hierarchy of framework residue positions at which donor residues may be important or desirable for obtaining a CDR-grafted antibody product having satisfactory binding properties.
  • the CDR-grafted products usually have binding affinities of at least 10 5 M ⁇ 1 , preferably at least about 10 8 M ⁇ 1 , or especially in the range 10 8 -10 12 M ⁇ 1 .
  • the present invention is applicable to any combination of donor and acceptor antibodies irrespective of the level of homology between their sequences.
  • a protocol for applying the invention to any particular donor-acceptor antibody pair is given hereinafter.
  • human frameworks which may be used are KOL, NEWN, REI, EU, LAY and POM (refs. 4 and 5) and the like; for instance KOL and NEWN for the heavy chain and REI for the light chain and EU, LAY and POM for both the heavy chain and the light chain.
  • the constant region domains of the products of the invention may be selected having regard to the proposed function of the antibody in particular the effector functions which may be required.
  • the constant region domains may be human IgA, IgE, IgG or IgM domains.
  • IgG human constant region domains may be used, especially of the IgG1 and IgG3 isotypes, when the humanised antibody molecule is intended for therapeutic uses, and antibody effector functions are required.
  • IgG2 and IgG4 isotypes may be used when the humanised antibody molecule is intended for therapeutic purposes and antibody effector functions are not required, e.g. for simple blocking of lymphokine activity.
  • the remainder of the antibody molecules need not comprise only protein sequences from immunoglobulins.
  • a gene may be constructed in which a DNA sequence encoding part of a human immunoglobulin chain is fused to a DNA sequence encoding the amino acid sequence of a functional polypeptide such as an effector or reporter molecule.
  • the CDR-grafted antibody heavy and light chain and antibody molecule products are produced by recombinant DNA technology.
  • the invention also includes DNA sequences coding for the CDR-grafted heavy and light chains, cloning and expression vectors containing the DNA sequences, host cells transformed with the DNA sequences and processes for producing the CDR-grafted chains and antibody molecules comprising expressing the DNA sequences in the transformed host cells.
  • the DNA sequences which encode the donor amino acid sequence may be obtained by methods well known in the art.
  • the donor coding sequences may be obtained by genomic cloning, or cDNA cloning from suitable hybridoma cell lines. Positive clones may be screened using appropriate probes for the heavy and light chain genes in question. Also PCR cloning may be used.
  • DNA coding for acceptor e.g. human acceptor
  • sequences may be obtained in any appropriate way.
  • DNA sequences coding for preferred human acceptor frameworks such as KOL, REI, EU and NEWM, are widely available to workers in the art.
  • DNA sequences coding for the CDR-grafted products may be synthed completely or in part using oligonucleotide synthesis techniques. Site-directed mutagenesis and polymerase chain reaction (PCR) techniques may be used as appropriate. For example oligonucleotide directed synthesis as described by Jones et al (ref. 20) may be used. Also oligonucleotide directed mutagenesis of a pre-exising variable region as, for example, described by Verhoeyen et al (ref. 5) or Riechmann et al (ref. 6) may be used. Also enzymatic filling in of gapped oligonucleotides using T 4 DNA polymerase as, for example, described by. Queen et al (ref. 9) may be used.
  • PCR polymerase chain reaction
  • Any suitable host cell/vector system may be used for expression of the DNA sequences coding for the CDR-grafted heavy and light chains.
  • Bacterial e.g. E. coli, and other microbial systems may be used, in particular for expression of antibody fragments such as FAb and (Fab′) 2 fragments, and especially FV fragments and single chain antibody fragments e.g. single chain FVs.
  • Eucaryotic e.g. mammalian host cell expression systems may be used for production of larger CDR-grafted antibody products, including complete antibody molecules.
  • Suitable mammalian host cells include CHO cells and myeloma or hybridoma cell lines.
  • the present invention provides a process for producing a CDR-grafted antibody product comprising:
  • the CDR-grafted product may comprise only heavy or light chain derived polypeptide, in which case only a heavy chain or light chain polypeptide coding sequence is used to transfect the host cells.
  • the cell line may be transfected with two vectors, the first vector may contain an operon encoding a light chain-derived polypeptide and the second vector containing an operon encoding a heavy chain-derived polypeptide.
  • the vectors are identical, except in so far as the coding sequences and selectable markers are concerned, so as to ensure as far as possible that each polypeptide chain is equally expressed.
  • a single vector may be used, the vector including the sequences encoding both light chain- and heavy chain-derived polypeptides.
  • the DNA in the coding sequences for the light and heavy chains may comprise cDNA or genomic DNA or both. However, it is preferred that the DNA sequence encoding the heavy or light chain comprises at least partially, genomic DNA, preferably a fusion of cDNA and genomic DNA.
  • the present invention is applicable to antibodies of any appropriate specificity.
  • the invention may be applied to the humanisation of non-human antibodies which are used for in vivo therapy or diagnosis.
  • the antibodies may be site-specific antibodies such as tumour-specific or cell surface-specific antibodies, suitable for use in in vivo therapy or diagnosis, e.g. tumour imaging.
  • cell surface-specific antibodies are anti-T cell antibodies, such as anti-CD3, and CD4 and adhesion molecules, such as CR3, ICAM and ELAM.
  • the antibodies may have specificity for interleukins (including lymphokines, growth factors and stimulating factors), hormones and other biologically active compound, and receptors for any of these.
  • the antibodies may have specificity for any of the following: Interferons or, IL1, IL2, IL3, or IL4, etc., TNF, GCSF, GMCSF, EPO, hGH, or insulin, etc.
  • the present invention also includes therapeutic and diagnostic compositions comprising the CDR-grafted products of the invention and uses of such compositions in therapy and diagnosis.
  • the invention provides a therapeutic or diagnostic composition
  • a therapeutic or diagnostic composition comprising a CDR-grafted antibody heavy or light chain or molecule according to previous aspects of the invention in combination with a pharmaceutically acceptable carrier, diluent or excipient.
  • the invention provides a method of therapy or diagnosis comprising administering an effective amount of a CDR-grafted antibody heavy or light chain or molecule according to previous aspects of the invention to a human or animal subject.
  • donor residues are substituted for acceptor residues in the CDRs.
  • the CDRs are preferably defined as follows:
  • the CDRs (Complementary Determining Regions) were defined by Wu and Kabat (refs. 4 and 5) on the basis of an analysis of the variability of different regions of antibody variable regions. Three regions per domain were recognised. In the light chain the sequences are 24-34, 50-56, 89-97 (numbering according to Kabat (ref. 4), Eu Index) inclusive and in the heavy chain the sequences are 31-35, 50-65 and 95-102 inclusive.
  • Variable-Constant region interface The elbow angle between variable and constant regions may be affected by alterations in packing of key residues in the variable region against the constant region which may affect the position of V L and V H with respect to one another.
  • variable region contact residues may influence the V-C interaction.
  • amino acids found at a number of the constant region contact points vary, and the V & C regions are not in such close proximity as the heavy chain. Therefore the influences of the light chain V-C interface may be minor.
  • FIGS. 1-13 The present invention is now described, by way of example only, with reference to the accompanying FIGS. 1-13 .
  • FIG. 1 shows DNA and amino acid sequences of the OKT3 light chain
  • FIG. 2 shows DNA and amino acid sequences of the OKT3 heavy chain
  • FIG. 3 shows the alignment of the OKT3 light variable region amino acid sequence with that of the light variable region of the human antibody REI;
  • FIG. 4 shows the alignment of the OKT3 heavy variable region amino acid sequence with that of the heavy variable region of the human antibody KOL
  • FIG. 5 shows the heavy variable region amino acid sequences of OKT3, KOL and various corresponding CDR grafts
  • FIG. 6 shows the light variable region amino acid sequences of OKT3, REI and various corresponding CDR grafts
  • FIG. 7 shows a graph of binding assay results for various grafted OKT3 antibodies'
  • FIG. 8 shows a graph of blocking assay results for various grafted OKT3 antibodies
  • FIG. 9 shows a similar graph of blocking assay results
  • FIG. 10 shown similar graphs for both binding assay and blocking assay results
  • FIG. 11 shows further similar graphs for both binding assay and blocking assay results
  • FIG. 12 shows a graph of competition assay results for a minimally grafted OKT3 antibody compared with the OKT3 murine reference standard
  • FIG. 13 shows a similar graph of competition assay results comparing a fully grafted OKT3 antibody with the murine reference standard.
  • Hybridoma cells producing antibody OKT3 were provided by Ortho (seedlot 4882.1) and were grown up in antibiotic free Dulbecco's Modified Eagles Medium (DMEM) supplemented with glutamine and 5% foetal calf serum, and divided to provide both an overgrown supernatant for evaluation and cells for extraction of RNA.
  • the overgrown supernatant was shown to contain 250 ug/mL marine IgG2a/kappa antibody.
  • the supernatant was negative for murine lambda light chain and IgG1, IgG2b, IgG3, IgA and IgM heavy chain. 20 mL of supernatant was assayed to confirm that the antibody present was OKT3.
  • the assembly assay for intact mouse IgG in COS cell supernatants was an ELISA with the following formats
  • the assembly assay for chimeric or CDR-grafted antibody in COS cell supernatants was an ELISA with the following format:
  • 96 well microtitre plates were coated with F(ab′) 2 goat anti-human IgG Fc. The plates were washed and samples added and incubated for 1 hour at room temperature. The plates were washed and monoclonal mouse anti-human kappa chain was added for 1 hour at room temperature.
  • HUT 78 cells human T cell line, CD3 positive
  • Monolayers of MUM 78 cells were prepared onto 96 well ELISA plates using poly-L-lysine and glutaraldehyde. Samples were added to the monolayers,for 1 hour at room temperature.
  • F(ab′) 2 goat anti-human IgG Fc (HRPO conjugated) or F(ab′) 2 goat anti-mouse IgG Fc (HRPO conjugated) was added as appropriate for humanised or mouse samples.
  • the negative control for the cell-based assay was chimeric B72.3.
  • the positive control was mouse Orthomune OKT3 or chimeric OKT3, when available. This cell-based assay was difficult to perform, and an alternative assay was developed for CDR-grafted OKT3 which was more sensitive and easier to carry out.
  • HPB-ALL human peripheral blood acute lymphocytic leukemia
  • Binding was measured by the following procedure: HPB-ALL cells were harvested from tissue culture. Cells were incubated at 4° C. for 1 hour with various dilutions of test antibody, positive control antibody, or negative control antibody. The cells were washed once and incubated at 4° C. for 1 hour with an FITC-labelled goat anti-human IgG (Fc-specific, mouse absorbed). The cells were washed twice and analysed by cytofluorography.
  • Chimeric OKT3 was used as a positive control for direct binding.
  • the UPS-ALL cells were incubated at 40C for 1 hour with various dilutions of test antibody or control antibody.
  • a fixed saturating amount of FITC OKT3 was added. The samples were incubated for 1 hour at 4° C., washed twice and analysed by cytofluorography.
  • FITC-labelled OKT3 was used as a positive control to determine maximum binding.
  • Unlabelled marine OKT3 served as a reference standard for blocking.
  • Negative controls were unstained cells with or without mock-transfected cell supernatant.
  • the ability of the CDR-grafted OKT3 light chain to bind CD3-positive cells and block the binding of murine OKT3 was initially tested in combination with the chimeric OKT3 heavy chain.
  • the chimeric OKT3 heavy chain is composed of the murine OKT3 variable region and the human IgG4 constant region.
  • the chimeric heavy chain gene is expressed in the same expression vector used for the CDR-grafted genes.
  • the CDR-grafted light chain expression vector and the chimeric heavy chain expression vector were co-transfected into COS cells.
  • the fully chimeric OKT3 antibody chimeric light chain and chimeric heavy chain ⁇ was found to be fully capable of binding to CD3 positive cells and blocking the binding of murine OKT3 to these cells.
  • the relative binding affinities of CDR-grafted anti-CD3 monoclonal antibodies were determined by competition binding (ref. 6) using the HPB-ALL human T cell line as a source of CD3 antigen, and fluorescein-conjugated marine OKT3 (Fl-OKT3) of known binding affinity as a tracer antibody.
  • the binding affinity of Fl-OKT3 tracer antibody was determined by a direct binding assay in which increasing amounts of Fl-OKT3 were incubated with HPB-ALL (5 ⁇ 10 5 ) in PBS with 5% foetal calf serum for 60 min. at 4° C.
  • Fluorescence intensity per antibody molecule was determined by using microbeads which have a predetermined number of mouse IgG antibody binding sites (Simply Cellular beads, Flow Cytometry Standards). F/P equals the fluorescence,intensity of beads saturated with Fl-OKT3 divided by the number of binding sites per bead. The amount of bound and free Fl-OKT3 was calculated from the mean fluorescence intensity per cell, and the ratio of bound/free was plotted against the number of moles of antibody bound. A linear fit was used to determine the affinity of binding (absolute value of the slope).
  • OKT3 producing cells were grown as described above and 1.2 ⁇ 10 9 cells harvested and mRNA extracted using the guanidinium/LiCl extraction procedure.
  • cDNA was prepared by priming from Oligo-dT to generate full length cDNA. The cDNA was methylated and EcoRl linkers added for cloning.
  • the cDNA library was ligated to pSP65 vector DNA which had been EcoRl cut and the 5′ phosphate groups removed by calf intestinal phosphatase (EcoRl/CIP). The ligation was used to transform high transformation efficiency Escherichia coli ( E.coli ) HB101.
  • a cDNA library was prepared. 3600 colonies were screened for the light chain and 1,0000 colonies were screened for the heavy chain.
  • E.coli colonies positive for either heavy or light chain probes were identified by oligonucleotide screening using the oligonucleotides:
  • 12 light chain and 9 heavy chain clones were identified and taken for second round screening. Positive clones from the second round of screening were grown up and DNA prepared. The sizes of the gene inserts were estimated by gel electrophoresis and inserts of a size capable of containing a full length cDNA were subcloned into M13 for DNA sequencing.
  • Clones representing four size classes for both heavy and light chains were obtained in M13.
  • DNA sequence for the 5′ untranslated regions, signal sequences, variable regions and 3′ untranslated regions of full length cDNAs [FIGS. 1 ( a ) and 2 ( a )] were obtained and the corresponding amino acid sequences predicted [(FIGS. 1 ( b ) and 2 ( b )].
  • FIG. 1 ( a ) the untranslated DNA regions are shown in uppercase, and in both FIGS. 1 and 2 the signal sequences are underlined.
  • Celltech expression vectors are based on the plasmid pEE6hCMV (ref. 14).
  • a polylinker for the insertion of genes to be expressed has been introduced after the major immediate early promoter/enhancer of the human Cytomegalovirus (hCMV).
  • Marker genes for selection of the plasmid in transfected eukaryotic cells can be inserted as BamH1 cassettes in the unique BamH1 site of pEE6 hCMV; for instance, the neo marker to provide pEE6 hCMV neo. It is usual practice to insert the neo and gpt markers prior to insertion of the gene of interest, whereas the GS marker is inserted last because of the presence of internal EcoR1 sites in the cassette.
  • the selectable markers are expressed from the SV40 late promoter which also provide an origin of replication so that the vectors can be used for expression in the COS cell transient expression system.
  • mice sequences were excised from the M13 based vectors described above as EcoRl fragments and cloned into either pEE6-hCMV-neo for the heavy chain and into EE6-hCMV-gpt for the light chain to yield vectors pJA136 and pJA135 respectively.
  • Plasmids pJA135 and pJA136 were co-transfected into COS cells and supernatant from the transient expression experiment was shown to contain assembled antibody which bound to T-cell enriched lymphocytes. Metabolic labelling experiments using 35 S methionine showed expression and assembly of heavy and light chains.
  • variable domain sequence A restriction site near the 3′ end of the variable domain sequence is identified and used to attach an oligonucleotide adapter coding for the remainder of the mouse variable region and a suitable restriction site for attachment to the constant region of choice.
  • the mouse light chain cDNA sequence contains an Ava1 site near the 3′ end of the variable region [ FIG. 1 ( a )]. The majority of the sequence of the variable region was isolated as a 396 bp.
  • An oligonucleotide adapter was designed to replace the remainder of the 3′ region of the variable region from the Aval site and to include the 5′ residues of the human constant region up to and including a unique Narl site which had been previously engineered into the constant region.
  • HindIII site was introduced to act as a marker for insertion of the linker.
  • the linker was ligated to the V L fragment and the 413 bp EcoR1-Nar1 adapted fragment was purified from the ligation mixture.
  • the constant region was isolated as an Nar1-BamH1 fragment from an M13. clone NW361 and was ligated with the variable region DNA into an EcoR1/BamH1/ClP pSP65 treated vector in a three way reaction to yield plasmid JA143. Clones were isolated after transformation into E.coli and the linker and junction sequences were confirmed by the presence of the Hind111 site and by DNA sequencing.
  • the construction of the first chimeric light chain gene produces a fusion of mouse and human amino acid sequences at the variable-constant region junction.
  • the amino acids at the chimera junction are: ... ⁇ ⁇ Leu ⁇ - ⁇ Glu ⁇ - ⁇ Ile ⁇ - ⁇ Asn ⁇ - ⁇ Arg / ⁇ - / Thr _ ⁇ - ⁇ Val ⁇ - ⁇ Ala ⁇ ⁇ - ⁇ Ala ⁇ ⁇ ⁇ VARIABLE ⁇ ⁇ CONSTANT
  • a second version of the chimeric light chain oligonucleotide adapter was designed in which the threonine (Thr), the first amino acid of the human constant region, was replaced with the equivalent amino acid from the mouse constant region, Alanine (Ala).
  • variable region fragment was isolated as a 376 bp EcoRl-Aval fragment.
  • the oligonucleotide linker was ligated to Nar1 cut pNW361 and then the adapted 396 bp constant region was isolated after recutting the modified pNW361 with EcoR1.
  • the variable region fragment and the modified constant region fragment were ligated directly into EcoR1/ClP treated pEE6hCKVneo to yield pJA137.
  • the constant region isotype chosen for the heavy chain was human IqG4.
  • the heavy chain cDNA sequence showed a Ban1 site near the 3′ end of the variable region [ FIG. 2 ( a )].
  • variable region The majority of the sequence of the variable region was isolated as a 426 bp. EcoR1/ClP/Ban1 fragment.
  • An oligonucleotide adapter was designated to replace the remainder of the 3′ region of the variable region from the Ban1 site up to and including a unique HindIII site which had been previously engineered into the first two amino acids of the constant region.
  • the linker was ligated to the V H fragment and the EcoR1-Hind111 adapted fragment was purified from the ligation mixture.
  • variable region was ligated to the constant region by cutting pJA91 with EcoR1 and Hind111 removing the intron fragment and replacing it with the V H to yield pJA142. Clones were isolated after transformation into E.coli JM101 and the linker and junction sequences were confirmed by DNA sequencing. (N.B. The Hind111 site is lost on cloning).
  • the chimeric light chain (version 1) was removed from pJA143 as an EcoRl fragment and cloned into EcoR1/C1P treated pEE6hCMVneo expression vector to yield pJA145. Clones with the insert in the correct orientation were identified by restriction mapping.
  • the chimeric light chain (version 2) was constructed as described above.
  • the chimeric heavy chain gene was isolated from pJA142 as a 2.5 Kbp EcoR1/BamH1 fragment and cloned into the EcoR1/Bc11/C1P treated vector fragment of a derivative of pEE6hCMVgpt to yield plasmid pJA144.
  • GS versions of pJA141 and pJA144 were constructed by replacing the neo and gpt cassettes by a BamH1/Sa11/C1P treatment of the plasmids, isolation of the vector fragment and ligation to a GS-containing fragment from the plasmid pRO49 to yield the light chain vector pJA179 and the heavy chain vector pJA180.
  • plasmids were made by treating pJA179 or pJA180 with BamH1/C1P and ligating in a Bg111/Hind111 hCMV promoter cassette along with either the Hind111/BamH1 fragment from pJA141 into pJA180 to give the cH-cL-GS plasmid pJA182 or the Hind111/BamH1 fragment from pJA144 into pJA179 to give the cL-cH-GS plasmid pJA181.
  • the chimeric antibody plasmid pJA145 (cL) and pJA144 (cH) were co-transfected into COS cells and supernatant from the transient expression experiment was shown to contain assembled antibody which bound to the RUT 78 human T-cell line. Metabolic labelling experiments using 35 S methionine showed expression and assembly of heavy and light chains. However the light chain mobility seen on reduced gels suggested that the potential glycosylation site was being glycosylated. Expression in COS cells in the presence of tunicamycin showed a reduction in size of the light chain to that shown for control chimeric antibodies and the OKT3 mouse light chain. Therefore JA141 was constructed and expressed.
  • Stable cell lines have been prepared from plasmids PJA141/pJA144 and from pJA179/pJA180, pJA181 and pJA182 by transfection into CHO cells.
  • the approach taken was to try to introduce sufficient mouse residues into a human variable region framework to generate antigen binding activity comparable to the mouse and chimeric antibodies.
  • residues chosen for transfer can be identified in a number of ways:
  • FIG. 3 shows an alignment of sequences for the human framework region RE1 and the OKT3 light variable region.
  • the structural loops (LOOP) and CDRs (KABAT) believed to correspond to the antigen binding region are marked. Also marked are a number of other residues which may also contribute to antigen binding as described in 13.1(c).
  • the residue type indicates the spatial location of each residue side chain, derived by examination of resolved structures from X-ray crystallography analysis.
  • the key to this residue type designation is as follows: N near to CDR (From X-ray Structures) P Packing B Buried Non-Packing S Surface E Exposed I Interface * Interface Packing/Part Exposed ? Non-CDR Residues which may require to be left as Mouse sequence.
  • Residues underlined in FIG. 3 are Amino acids.
  • RE1 was chosen as the human framework because the light chain is a kappa chain and the kappa variable regions show higher homology with the mouse sequences than a lambda light variable region, e.g. KOL (see below).
  • RE1 was chosen in preference to another kappa light chain because the X-ray structure of the light chain has been determined so that a structural examination of individual residues could be made.
  • FIG. 4 shows an alignment of sequences for the human framework region KOL and the OKT3 heavy variable region.
  • the structural loops and CDRs believed to correspond to the antigen binding region are marked.
  • Also marked are a number of other residues which may also contribute to antigen binding as described in 12.1(c).
  • the residue type key and other indicators used in FIG. 4 are the same as those used in FIG. 3 .
  • KOL was chosen as the heavy chain framework because the X-ray structure has been determined to a better resolution than, for example, NEWM and also the sequence alignment of OKT3 heavy variable region showed a slightly better homology to KOL than to NEWM.
  • variable region domains were designed with mouse variable region optimal codon usage [Grantham and Perrin (ref. 15)] and used the B72.3 signal sequences (Whittle et al (ref. 13)).
  • the sequences were designed to be attached to the constant region in the same way as for the chimeric genes described above.
  • Some constructs contained the “Kozak consensus sequence” (Kozak (ref. 16)] directly linked to the 5′ of the signal sequence in the gene. This sequence motif is believed to have a beneficial role in translation initiation in eukaryotes.
  • sequence may be assembled by using oligonucleotides in a manner similar to Jones et al (ref. 17) or by simultaneously replacing all of the CDRs or loop regions by oligonucleotide directed site specific mutagenesis in a manner similar to Verhoeyen et al (ref. 2).
  • a construct designed to include mouse sequence based on loop length did not lead to active antibody in association with mH or cH.
  • a construct designed to include mouse sequence based on Kabat CDRs demonstrated some weak binding in association with mH or cH.
  • framework residues 1, 3, 46, 47 were changed from the human to the murine OKT3 equivalents based on the arguments outlined in Section 12.1 antigen binding was demonstrated when both of the new constructs, which were termed 121A and 221A were co-expressed with cH.
  • residues 1 and 3 are not major contributing residues as the product of the gL221B gene shows little detectable binding-activity in association with cH.
  • gH341 gene co-expression of the gH341 gene with cL or mL has been variable and has tended to produce lower amounts of antibody than the cH/cL or ma/mL combinations.
  • the kgL221A gene was co-expressed with kgH341, kgH341A or kgH341B.
  • kgH221A/kgH341 very little material was produced in a normal COS cell expression.
  • kgL221A/kgH341A or kgH221A/kgH341B amounts of antibody similar to gL/cH was produced.
  • Antigen binding was detected when kgL221A/kgH341A or kgH221A/kgH341B combinations were expressed.
  • CDRs Complementarity Determining Regions
  • OKT3 amino acids 89, 90 and 97 are the same between OKT3 and RE1 ( FIG. 3 ).
  • constructs based on the loop choice for CDR1 (gL121) and the Kabat choice (gL221) were made and co-expressed with mH or cH no evidence for antigen binding activity could be found for gL121, but trace activity could be detected for the gL221, suggesting that a single extra mouse residue in the grafted variable region could have some detectable effect. Both gene constructs were reasonably well expressed in the transient expression system.
  • Additional CDR-grafted heavy chain genes were prepared substantially as described above. With reference to Table 2 the further heavy chain genes were based upon the gh341 (plasmid pJA178) and gH341A (plasmid pJA185) with either mouse OKT3 or human KOL residues at 6, 23, 24, 48, 49, 63, 71, 73, 76, 78, 88 and 91, as indicated.
  • the CDR-grafted light chain genes used in these further experiments were gL221, gL221A, gL221B and gL221C as described above. TABLE 2 OKT3 HEAVY CHAIN CDR GRAFTS RES NUM 6 23 24 48 49 63 71 73 76 78 88 91 1.
  • the CDR-grafted heavy and light chain genes were co-expressed in COS cells either with one another in various combinations but also with the corresponding murine and chimeric heavy and light chain genes substantially as described above.
  • the resultant antibody products were then assayed in binding and blocking assays with HPB-ALL cells as described above.
  • FIGS. 7 and 8 The results of the assays for various grafted heavy chains co-expressed with the gL221C light chain are given in FIGS. 7 and 8 (for the JA184, JA185, JA197 and JA198 constructs—see Table 2), in FIG. 9 (for the JA183, JA184, JA18S and JA197,constructs) in FIG. 10 (for the chimeric, JA185, JA199, JA204, JA205, JA207, JA208 and JA209 constructs) and in FIG. 11 (for the JA183, JA184, JA185, JA198, JA203, JA205 and JA206 constructs).
  • the basic grafted product without any human to murine changes in the variable frameworks i.e. gL221 co-expressed with gh341 (JA178)
  • the “fully grafted” product having most human to marine changes in the grafted heavy chain framework, i.e. gL221C co-expressed with gh341A (JA185)
  • the assay used was as described above in section 3.3.
  • the results obtained are given in FIG. 12 for the basic grafted product and in FIG. 13 for the fully grafted product.
  • binding and blocking assay results indicate the following:
  • the JA198 and JA207 constructs appear to have the best binding characteristics and similar binding abilities, both substantially the same as the chimeric and fully grafted gH341A products. This indicates that positions 88 and 91 and position 76 are not highly critical for maintaining the OKT3 binding ability; whereas at least some of positions 6, 23, 24, 48, 49, 71, 73 and 78 are more important.
  • Anti OKT4A CDR-grafted heavy and light chain genes were prepared, expressed and tested substantially as described above in Example 1 for CDR-grafted OKT3.
  • the CDR grafting of OKT4A is described in detail in Ortho patent application PCT/GB 90 . . . of even date herewith entitled “Humanised Antibodies”.
  • the disclosure of this Ortho patent application PCT/GB 90 . . . is incorporated herein by reference.
  • a number of CDR-4rafted OKT4 antibodies have been prepared.
  • the CDR-grafted OKT4A of choice is the combination of the grafted light chain LCDR2 and the grafted heavy chain HCDR10.
  • the human acceptor framework used for the grafted light chains was RE1.
  • the preferred LCDR2 light chain has human to mouse changes at positions 33, 34, 38, 49 and 89 in addition to the structural loop CDRs. Of these changed positions, positions 33, 34 and 89 fall within the preferred extended CDRs of the present invention (positions 33 and 34 in CDR1 and position 89 in CDR3).
  • the human to murine changes at positions 38 and 49 corresponds to positions at which the amino acid residues are preferably donor murine amino acid residues in accordance with the present invention.
  • a comparison of the amino acid sequences of the donor murine light chain variable domain and the RE1 human acceptor light chain variable further reveals that the murine and human residues are identical at all of positions 46, 48 and 71 and at all of positions 2, 4, 6, 35, 36, 44, 47, 62, 64-69, 8s, 87, 98, 99 and 101 and 102.
  • the amino acid residue at position 58 in LCDR2 is the human RE1 framework residue not the mouse OKT4 residue as would be preferred in accordance with the present invention.
  • the human acceptor framework used for the grafted heavy chains was KOL.
  • the preferred CDR graft HCDR10 heavy chain has human to mouse changes at positions 24, 35, 57, 58, 60, 88 and 91 in addition to the structural loop CDRs.
  • positions 35 (CDR1) and positions 57, 58 and 60 (CDR2) fall within the preferred extended CDRs of the present invention.
  • the human to mouse change at position 24 corresponds to a position at which the amino acid residue is a donor murine residue in accordance with the present invention.
  • the human to mouse changes at positions 88 and 91 correspond to positions at which the amino acid residues are optionally donor murine residues.
  • murine OKT4A and human KOL heavy chain variable amino acid sequences reveals that the murine and human residues are identical at all of positions 23, 49, 71, 73 and 78 and at all of positions 2, 4, 6, 25, 36, 37, 39, 47, 48, 93, 94, 103, 104, 106 and 107.
  • OKT4A CDR-grafted heavy chain HCDR10 corresponds to a particularly preferred embodiment according to the present invention.
  • the activity of the resulting grafted light chain was assessed by co-expression in COS cells, of genes for the combinations:
  • grafted heavy chain genes containing all human framework regions with either gL or cL genes produced a grafted antibody with little ability to bind to mucin.
  • the grafted antibody had about 1% the activity of the chimeric antibody. In these experiments, however, it was noted that the activity of the grafted antibody could be increased to 10% of B72.3 by exposure to pHs of 2-3.5.
  • Position 73 is close to both CDRs 1 and 3 of the heavy chain and, in this position it was possible to envisage that a K to E change in this region could have a detrimental effect on antigen binding.
  • mutated CDR-grafted B72.3 heavy chain corresponds to a preferred embodiment of the present invention.
  • a murine antibody, R6-5-D6 (EP 0314863) having specificity for Intercellular Adhesion Molecule 1 (ICAM-1) was CDR-grafted substantially as described above in previous examples. This work is described in greater detail in co-pending application, British Patent Application No. 9009549.8, the disclosure of which is incorporated herein by reference.
  • the human EU framework was used as the acceptor framework for both heavy and light chains.
  • the CDR-grafted antibody currently of choice is provided by co-expression of grafted light chain gL22LA and grafted heavy chain gH343D which has a binding affinity for ICAM 1 of about 75% of that of the corresponding mouse-human chimeric antibody.
  • gL221A has marine CDRs at positions 24-34 (CDR1), 50-56 (CDR2) and 89-97 (CDR3).
  • CDR1 CDR1
  • CDR2 CDR2
  • CDR3 CDR3
  • framework residues are also the marine amino acid. These residues were chosen after consideration of the possible contribution of these residues to domain packing and stability of the conformation of the antigen binding region. The residues which have been retained as mouse are at positions 2, 3, 48 (?), 60, 84, 85 and 87.
  • gH341D has murine CDRs at positions 26-35 (CDR1), 50-56 (CDR2) and 94-100B (CDR3).
  • murine residues were used in gH341D at positions 24, 48, 69, 71, 73, 80, 88 and 91.
  • Comparison of the murine anti-ICAM 1 and human EU heavy chain amino acid sequences are identical at positions 23, 49 and 78.
  • a number of murine anti-TNF ⁇ monoclonal antibodies were CDR-grafted substantially as described above in previous examples. These antibodies include the murine monoclonal antibodies designated 61 B71, hTNF1, hTNF3 and 101.4 A brief summary of the CDR-grafting of each of these antibodies is given below.
  • the gL221/gH341(6) antibody was assessed in an L929 cell competition assay in which the antibody competes against the TNF receptor on L929 cells for binding to TNF in solution.
  • the gL221/gH341(6) antibody was approximately 10% as active as murine 61E71.
  • hTNF1 is a monoclonal antibody which recognises an epitope on human TNF-.
  • the EU human framework was used for CDR-grafting of both the heavy and light variable domains.
  • mice CDR-grafted heavy chain were used at positions 26-35 (CDR1), 50-65 (CDR2) and 95-102 (CDR3).
  • Mouse residues were also used in the frameworks at positions 48, 67, 69, 71, 73, 76, 89, 91, 94 and 108.
  • Comparison of the TNF1 mouse and EU human heavy chain residues reveals that these are identical at positions 23, 24, 29 and 78.
  • mice CDR-grafted light chain In the CDR-grafted light chain (gLhTNF1) mouse CDRs wre used at positions 24-34 (CDR1), 50-56 (CDR2) and 89-97 (CDR3). In addition mouse residues were used in the frameworks at positions 3, 42, 48, 49, 83, 106 and 108. Comparison of the hTNF1 mouse and EU human light chain residues reveals that these are identical at positions 46, 58 and 71.
  • the grafted hTNF1 heavy chain was co-expressed with the chimeric light chain and the binding ability of the product compared with that of the chimeric light chain/chimeric heavy chain product in a TNF binding assay.
  • the grafted heavy chain product appeared to have binding ability for TNF slightly better than the fully chimeric product.
  • a grafted heavy chain/grafted light chain product was co-expressed and compared with the fully chimeric product and found to have closely similar binding properties to the latter product.
  • hTNF3 recognises an epitope on human TNP-.
  • the sequence of hTNF3 shows only 21 differences compared to 61E71 in the light and heavy chain variable regions, 10 in the light chain (2 in the CDRs at positions 50, 96 and 8 in the framework at 1, 19, 40, 45, 46, 76, 103 and 106) and 11 in the heavy chain (3 in the CDR regions at positions 52, 60 and 95 and 8 in the framework at 1, 10, 38, 40, 67, 73, 87 and 105).
  • the light and heavy chains of the 61E71 and hTNP3 chimeric antibodies can be exchanged without loss of activity in the direct binding assay.
  • 61E71 is an order of magnitude less able to compete with the TNF receptor on L929 cells for TNF-a compared to hTNF3.
  • gL221 and gH341(+23, 24, 48, 49 71 and 73 as mouse) genes have been built for hTNF3 and tested and the resultant grafted antibody binds well to TNF-a, but competes very poorly in the L929 assay. It is possible that in this case also the framework residues identified for OKT3 programme may improve the competitive binding ability of this antibody.
  • 101.4 is a further marine monoclonal antibody able to recognise human TNF-a.
  • the heavy chain of this antibody shows good homology to KOL and so the CDR-grafting has been based on RE1 for the light chain and KOL for the heavy chain.
  • Several grafted heavy chain genes have been constructed with conservative choices for the CDR's (gH341) and which have one or a small number of non-CDR residues at positions 73, 78 or 77-79 inclusive, as the mouse amino acids. These have been co-expressed with cL or gL221. In all cases binding to TN? equivalent to the chimeric antibody is seen and when co-expressed with cL the resultant antibodies are able to compete well in the L929 assay. However, with gL221 the resultant antibodies are at least an order of magnitude less able to compete for TNF against the TNF receptor on L929 cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

CDR-grafted antibody heavy and light chains comprise acceptor framework and donor antigen binding regions, the heavy chains comprising donor residues at at least one of positions (6, 23) and/or (24, 48) and/or (49, 71) and/or (73, 75) and/or (76) and/or (78) and (88) and/or (91). The CDR-grafted light chains comprise donor residues at at least one of positions (1) and/or (3) and (46) and/or (47) or at at least one of positions (46,48, 58) and (71). The CDR-grafted antibodies are preferably humanised antibodies, having non human, e.g. rodent, donor and human acceptor frameworks, and may be used for in vivo therapy and diagnosis. A generally applicable protocol is disclosed for obtaining CDR-grafted antibodies.

Description

    FIELD OF THE INVENTION
  • The present invention relates to humanised antibody molecules, to processes for their production using recombinant DNA technology, and to their therapeutic uses.
  • The term “humanised antibody molecule” is used to describe a molecule having an antigen binding site derived from an immunoglobulin from a non-human species, and remaining immunoglobulin-derived parts of the molecule being derived from a human immunoglobulin. The antigen binding site typically comprises complementarity determining regions (CDRs) which determine the binding specificity of the antibody molecule and which are carried on appropriate framework regions in the variable domains. There are 3 CDRs (CDR1, CDR2 and CDR3) in each of the heavy and light chain variable domains.
  • In the description, reference is made to a number of publications by number. The publications are listed in numerical order at the end of the description.
  • BACKGROUND OF THE INVENTION
  • Natural immunoglobulins have been known for many years, as have the various fragments thereof, such as the Fab, (Fab′)2 and Fc fragments, which can be derived by enzymatic cleavage. Natural immunoglobulins comprise a generally Y-shaped molecule having an antigen-binding site towards the end of each upper arm. The remainder of the structure, and particularly the stem of the Y, mediates the effector functions associated with immunoglobulins.
  • Natural immunoglobulins have been used in assay, diagnosis and, to a more limited extent, therapy. However, such uses, especially in therapy, were hindered until recently by the polyclonal nature of natural immunoglobulins. A significant step towards the realisation of the potential of immunoglobulins as therapeutic agents was the discovery of procedures for the production of monoclonal antibodies (MAbs) of defined specificity (1).
  • However, most MAbs are produced by hybridomas which are fusions of rodent spleen cells with rodent myeloma cells. They are therefore essentially rodent proteins. There are very few reports of the production of human MAbs.
  • Since most available MAbs are of rodent origin, they are naturally antigenic in humans and thus can give rise to an undesirable immune response termed the HAMA (Human Anti-Mouse Antibody) response. Therefore, the use of rodent MAbs as therapeutic agents in humans is inherently limited by the fact that the human subject will mount an immunological response to the MAb and will either remove it entirely or at least reduce its effectiveness. In practice, MAbs of rodent origin may not be used in patients for more than one or a few treatments as a HAMA response soon develops rendering the MAb ineffective as well as giving rise to undesirable reactions. For instance, OKT3 a mouse IgG2a/k MAb which recognises an antigen in the T-cell receptor-CD3 complex has been approved for use in many countries throughout the world as an immunosuppressant in the treatment of acute allograft rejection [Chatenoud et al (2) and Jeffers et al (3)]. However, in view of the rodent nature of this and other such MAbs, a significant HAMA response which may include a major anti-idiotype component, may build up on use. Clearly, it would be highly desirable to diminish or abolish this undesirable HAMA response and thus enlarge the areas of use of these very useful antibodies.
  • Proposals have therefore been made to render non-human MAbs less antigenic in humans. Such techniques can be generically termed “humanisation” techniques. These techniques typically involve the use of recombinant DNA technology to manipulate DNA sequences encoding the polypeptide chains of the antibody molecule.
  • Early methods for humanising MAbs involved production of chimeric antibodies in which an antigen binding site comprising the complete variable domains of one antibody is linked to constant domains derived from another antibody. Methods for carrying out such chimerisation procedures are described in EP0120694 (Celltech Limited), EP0125023 (Genentech Inc. and City of Hope), EP-A-0 171496 (Res. Dev. Corp. Japan), EP-A-0 173 494 (Stanford University), and WO 86/01533 (Celltech Limited).. This latter Celltech application (WO 86/01533) discloses a process for preparing an antibody molecule having the variable domains from a mouse MAb and the constant domains from a human immunoglobulin. Such humanised chimeric antibodies, however, still contain a significant proportion of non-human amino acid sequence, i.e. the complete non-human variable domains, and thus may still elicit some HAMA response, particularly if administered over a prolonged period [Regent et al (ref. 4)].
  • In an alternative approach, described in EP-A-0239400 (Winter), the complementarity determining regions (CDRs) of a mouse MAb have been grafted onto the framework regions of the variable domains of a human immunoglobulin by site directed mutagenesis using long oligonucleotides. The present invention relates to humanised antibody molecules prepared according to this alternative approach, i.e. CDR-grafted humanised antibody molecules. Such CDR-grafted humanised antibodies are much less likely to give rise to a HAMA response than humanised chimeric antibodies in view of the much lower proportion of non-human amino acid sequence which they contain.
  • The earliest work on humanising MAbs by CDR-grafting was carried out on MAbs recognising synthetic antigens, such as the NP or NIP antigens. However, examples in which a mouse MAb recognising lysozyme and a rat MAb recognising an antigen on human T-cells were humanised by CDR-grafting have been described by Verhoeyen et al (5) and Riechmann et al (6) respectively. The preparation of CDR-grafted antibody to the antigen on human T calls is also described in WO 89107452 (Medical Research Council).
  • In Riechmann et al/Medical Research Council it was found that transfer of the CDR regions alone [as defined by Kabat refs. (7) and (8)] was not sufficient to provide satisfactory antigen binding activity in the CDR-grafted product. Riechmann et al found that it was necessary to convert a serine residue at position 27 of the human sequence to the corresponding rat phenylalanine residue to obtain a CDR-grafted product having improved antigen binding activity. This residue at position 27 of the heavy chain is within the structural loop adjacent to CDR1. A further construct which additionally contained a human serine to rat tyrosine change at position 30 of the heavy chain did not have a significantly altered binding activity over the humanized antibody with the serine to phenylalanine change at position 27 alone. These results indicate that changes to residues of the human sequence outside the CDR regions, in particular in the structural loop adjacent to CDR1, may be necessary to obtain effective antigen binding activity for CDR-grafted antibodies which recognise more complex antigens. Even so the binding affinity of the best CDR-grafted antibodies obtained was still significantly less than the original MAb.
  • Very recently Queen et al (9) have described the preparation of a humanised antibody that binds to the interleukin 2 receptor, by combining the CDRs of a murine MAb (anti-Tac) with human immunoglobulin framework and constant regions. The human framework regions were chosen to maximise homology with the anti-Tac MAb sequence. In addition computer modelling was used to identify framework amino acid residues which were likely to interact with the CDRs or antigen, and mouse amino acids were used at these positions in the humanised antibody.
  • In WO 90/07861 Queen et al propose four criteria for designing humanised immunoglobulins. The first criterion is to use as the human acceptor the framework from a particular human immunoglobulin that is unusually homologous to the non-human donor immunoglobulin to be humanised, or to use a consensus framework from many human antibodies. The second criterion is to use the donor amino acid rather than the acceptor if the human acceptor residue is unusual and the donor residue is typical for human sequences at a specific residue of the framework. The third criterion is to use the donor framework amino acid residue rather than the acceptor at positions immediately adjacent to the CDRs. The fourth criterion is to use the donor amino acid residue at framework positions at which the amino acid is predicted to have a side chain atom within about 3 Å of the CDRs in a three-dimensional immunoglobulin model and to be capable of interacting with the antigen or with the CDRs of the humanised immunoglobulin. It is proposed that criteria two, three or four may be applied in addition or alternatively to criterion one, and may be applied singly or in any combination.
  • WO 90/07861 describes in detail the preparation of a single CDR-grafted humanised antibody, a humanised antibody having specificity for the p55 Tac protein of the IL-2 receptor. The combination of all four criteria, as above, were employed in designing this humanised antibody, the variable region frameworks of the human antibody Eu (7) being used as acceptor. In the resultant humanised antibody the donor CDRs were as defined by Kabat et al (7 and 8) and in addition the mouse donor residues were used in place of the human acceptor residues, at positions 27, 30, 48, 66, 67, 89, 91, 94, 103, 104, 105 and 107 in the heavy chain and at positions 48, 60 and 63 in the light chain, of the variable region frameworks. The humanised anti-Tac antibody obtained is reported to have an affinity for p55 of 3×109 M−1, about one-third of that of the murine MAb.
  • We have further investigated the preparation of CDR-grafted humanised antibody molecules and have identified a hierarchy of positions within the framework of the variable regions (i.e. outside both the Kabat CDRs and structural loops of the variable regions) at which the amino acid identities of the residues are important for obtaining CDR-grafted products with satisfactory binding affinity. This has enabled us to establish a protocol for obtaining satisfactory CDR-grafted products which may be applied very widely irrespective of the level of homology between the donor immunoglobulin and acceptor framework. The set of residues which we have identified as being of critical importance does not coincide with the residues identified by Queen et al (9).
  • SUMMARY OF THE INVENTION
  • Accordingly, in a first aspect the invention provides a CDR-grafted antibody heavy chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of positions 6, 23 and/or 24, 48 and/or 49, 71 and/or 73, 75 and/or 76 and/or 78 and 88 and/or 91.
  • In preferred embodiments, the heavy chain framework comprises donor residues at positions 23, 24, 49, 71, 73 and 78 or at positions 23, 24 and 49. The residues at positions 71, 73 and 78 of the, heavy chain framework are preferably either all acceptor or all donor residues.
  • In particularly preferred embodiments the heavy chain framework additionally comprises donor residues at one, some or all of positions 6, 37, 48 and 94. Also it is particularly preferred that residues at positions of the heavy chain framework which are commonly conserved across species, i.e. positions 2, 4, 25, 36, 39, 47, 93, 103, 104, 106 and 107, if not conserved between donor and acceptor, additionally comprise donor residues. Most preferably the heavy chain framework additionally comprises donor residues at positions 2, 4, 6, 25, 36, 37, 39, 47, 48, 93, 94, 103, 104, 106 and 107.
  • In addition the heavy chain framework optionally comprises donor residues at one, some or ail of positions:
      • 1 and 3,
      • 72 and 76,
      • 69 (if 48 is different between donor and acceptor),
      • 38 and 46 (if 48 is the donor residue),
      • 80 and 20 (if 69 is the donor residue),
      • 67,
      • 82 and 18 (if 67 is the donor residue),
      • 91,
      • 88, and
      • any one or more of 9, 11, 41, 87, 108, 110 and 112.
  • In the first and other aspects of the present invention reference is made to CDR-grafted antibody products comprising acceptor framework and donor antigen binding regions. It will be appreciated that the invention is widely applicable to the CDR-grafting of antibodies in general. Thus, the donor and acceptor antibodies may be derived from animals of the some species and even same antibody class or sub-class. More usually, however, the donor and acceptor antibodies are derived from animals of different species. Typically the donor antibody is a non-human antibody, such as a rodent MAb, and the acceptor antibody is a human antibody.
  • In the first and other aspects of the present invention, the donor antigen binding region typically comprises at least one CDR from the donor antibody. Usually the donor antigen binding region comprises at least two and preferably all three CDRs of each of the heavy chain and/or light chain variable regions. The CDRs may comprise the Kabat CDRs, the structural loop CDRs or a composite of the Kabat and structural loop CDRs and any combination of any of these. Preferably, the antigen binding regions of the CDR-grafted heavy chain variable domain comprise CDRs corresponding to the Kabat CDRs at CDR2 (residues 50-65) and CDR3 (residues 95-100) and a composite of the Kabat and structural loop CDRs at CDR1 (residues 26-35).
  • The residue designations given above and elsewhere in the present application are numbered according to the Kabat numbering [refs. (7) and (8)]. Thus the residue designations do not always correspond directly with the linear numbering of the amino acid residues. The actual linear amino acid sequence may contain fewer or additional amino acids than in the strict Kabat numbering corresponding to a shortening of, or insertion into, a structural component, whether framework or CDR, of the basic variable domain structure. For example, the heavy chain variable region of the anti-Tac antibody described by Queen et al (9) contains a single amino acid insert (residue 52a) after residue 52 of CDR2 and a three amino acid insert (residues 82a, 82b and 82c) after framework residue 82, in the Kabat numbering. The correct Kabat numbering of residues may be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a *standard; Kabat numbered sequence.
  • The invention also provides in a second aspect a CDR-grafted antibody light chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of positions 1 and/or 3 and 46 and/or 47. Preferably the CDR grafted light chain of the second aspect comprises donor residues at positions 46 and/or 47.
  • The invention also provides in a third aspect a CDR-grafted antibody light chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of positions 46, 48, 58 and 71.
  • In a preferred embodiment of the third aspect, the framework comprises donor residues at all of positions 46, 48, 58 and 71.
  • In particularly preferred embodiments of the second and third aspects, the framework additionally comprises donor residues at positions 36, 44, 47, 85 and 87. Similarly positions of the light chain framework which are commonly conserved across species, i.e. positions 2, 4, 6, 35, 49, 62, 64-69, 98, 99, 101 and 162, if not conserved between donor and acceptor, additionally comprise donor residues. Most preferably the light chain framework additionally comprises donor residues at positions 2, 4, 6, 35, 36, 38, 44, 47, 49, 62, 64-69, 85, 87, 98, 99, 101 and 102.
  • In addition the framework of the second or third aspects optionally comprises donor residues at one, some or all of positions:
      • 1 and 3,
      • 63,
      • 60 (if 60 and 54 are able to form at potential saltbridge),
      • 70 (if 70 and 24 are able to form a potential saltbridge),
      • 73 and 21 (if 47 is different between donor and acceptor),
      • 37 and 45 (if 47 is different between donor and acceptor), and
      • any one or more of 10, 12, 40, 80, 103 and 105.
  • Preferably, the antigen binding regions of the CDR-grafted light chain variable domain comprise CDRs corresponding to the Kabat CDRs at CDR1 (residue 24-34), CDR2 (residues 50-56) and CDR3 (residues. 89-97).
  • The invention further provides in a fourth aspect a CDR-grafted antibody molecule comprising at least one CDR-grafted heavy chain and at least one CDR-grafted light chain according to the first and second or first and third aspects of the invention.
  • The humanised antibody molecules and chains of the present invention may comprise: a complete antibody molecule, having full length heavy and light chains; a fragment thereof, such as a Fab, (Fab′)2 or FV fragment; a light chain or heavy chain monomer or dimer; or a single chain antibody, e.g. a single chain FV in which heavy and light chain variable regions are joined by a peptide linker; or any other CDR-grafted molecule with the same specificity as the original donor antibody. Similarly the CDR-grafted heavy and light chain variable region may be combined with other antibody domains as appropriate.
  • Also the heavy or light chains or humanised antibody molecules of the present invention may have attached to them an effector or reporter molecule. For instance, it may have a macrocycle, for chelating a heavy metal atom, or a toxin, such as ricin, attached to it by a covalent bridging structure. Alternatively, the procedures of recombinant DNA technology may be used to produce an immunoglobulin molecule in which the Fc fragment or CH3 domain of a complete immunoglobulin molecule has been replaced by, or has attached thereto by peptide linkage, a functional non-immunoglobulin protein, such as an enzyme or toxin molecule.
  • Any appropriate acceptor variable region framework sequences may be used having regard to class/type of the donor antibody from which the antigen binding regions are derived. Preferably, the type of acceptor framework used is of the same/similar class/type as the donor antibody. Conveniently, the framework may be chosen to maximise/optimise homology with the donor antibody sequence particularly at positions close or adjacent to the CDRs. However, a high level of homology between donor and acceptor sequences is not important for application of the present invention. The present invention identifies a hierarchy of framework residue positions at which donor residues may be important or desirable for obtaining a CDR-grafted antibody product having satisfactory binding properties. The CDR-grafted products usually have binding affinities of at least 105 M−1, preferably at least about 108 M−1, or especially in the range 108-1012 M−1. In principle, the present invention is applicable to any combination of donor and acceptor antibodies irrespective of the level of homology between their sequences. A protocol for applying the invention to any particular donor-acceptor antibody pair is given hereinafter. Examples of human frameworks which may be used are KOL, NEWN, REI, EU, LAY and POM (refs. 4 and 5) and the like; for instance KOL and NEWN for the heavy chain and REI for the light chain and EU, LAY and POM for both the heavy chain and the light chain.
  • Also the constant region domains of the products of the invention may be selected having regard to the proposed function of the antibody in particular the effector functions which may be required. For example, the constant region domains may be human IgA, IgE, IgG or IgM domains. In particular, IgG human constant region domains may be used, especially of the IgG1 and IgG3 isotypes, when the humanised antibody molecule is intended for therapeutic uses, and antibody effector functions are required. Alternatively, IgG2 and IgG4 isotypes may be used when the humanised antibody molecule is intended for therapeutic purposes and antibody effector functions are not required, e.g. for simple blocking of lymphokine activity.
  • However, the remainder of the antibody molecules need not comprise only protein sequences from immunoglobulins. For instance, a gene may be constructed in which a DNA sequence encoding part of a human immunoglobulin chain is fused to a DNA sequence encoding the amino acid sequence of a functional polypeptide such as an effector or reporter molecule.
  • Preferably the CDR-grafted antibody heavy and light chain and antibody molecule products are produced by recombinant DNA technology.
  • Thus in further aspects the invention also includes DNA sequences coding for the CDR-grafted heavy and light chains, cloning and expression vectors containing the DNA sequences, host cells transformed with the DNA sequences and processes for producing the CDR-grafted chains and antibody molecules comprising expressing the DNA sequences in the transformed host cells.
  • The general methods by which the vectors may be constructed, transfection methods and culture methods are well known per se and form no part of the invention. Such methods are shown, for instance, in references 10 and 11.
  • The DNA sequences which encode the donor amino acid sequence may be obtained by methods well known in the art. For example the donor coding sequences may be obtained by genomic cloning, or cDNA cloning from suitable hybridoma cell lines. Positive clones may be screened using appropriate probes for the heavy and light chain genes in question. Also PCR cloning may be used.
  • DNA coding for acceptor, e.g. human acceptor, sequences may be obtained in any appropriate way. For example DNA sequences coding for preferred human acceptor frameworks such as KOL, REI, EU and NEWM, are widely available to workers in the art.
  • The standard techniques of molecular biology may be used to prepare DNA sequences coding for the CDR-grafted products. Desired DNA sequences may be synthesised completely or in part using oligonucleotide synthesis techniques. Site-directed mutagenesis and polymerase chain reaction (PCR) techniques may be used as appropriate. For example oligonucleotide directed synthesis as described by Jones et al (ref. 20) may be used. Also oligonucleotide directed mutagenesis of a pre-exising variable region as, for example, described by Verhoeyen et al (ref. 5) or Riechmann et al (ref. 6) may be used. Also enzymatic filling in of gapped oligonucleotides using T4 DNA polymerase as, for example, described by. Queen et al (ref. 9) may be used.
  • Any suitable host cell/vector system may be used for expression of the DNA sequences coding for the CDR-grafted heavy and light chains. Bacterial e.g. E. coli, and other microbial systems may be used, in particular for expression of antibody fragments such as FAb and (Fab′)2 fragments, and especially FV fragments and single chain antibody fragments e.g. single chain FVs. Eucaryotic e.g. mammalian host cell expression systems may be used for production of larger CDR-grafted antibody products, including complete antibody molecules. Suitable mammalian host cells include CHO cells and myeloma or hybridoma cell lines.
  • Thus, in a further aspect the present invention provides a process for producing a CDR-grafted antibody product comprising:
      • (a) producing in an expression vector an operon having a DNA sequence which encodes an antibody heavy chain according to the first aspect of the invention; and/or
      • (b) producing in an expression vector an operon having a DNA sequence which encodes a complementary antibody light chain according to the second or third aspect of the invention;
      • (c) transfecting a host cell with the or each vector; and
      • (d) culturing the transfected cell line to produce the CDR-grafted antibody product.
  • The CDR-grafted product may comprise only heavy or light chain derived polypeptide, in which case only a heavy chain or light chain polypeptide coding sequence is used to transfect the host cells.
  • For production of products comprising both heavy and light chains, the cell line may be transfected with two vectors, the first vector may contain an operon encoding a light chain-derived polypeptide and the second vector containing an operon encoding a heavy chain-derived polypeptide. Preferably, the vectors are identical, except in so far as the coding sequences and selectable markers are concerned, so as to ensure as far as possible that each polypeptide chain is equally expressed. Alternatively, a single vector may be used, the vector including the sequences encoding both light chain- and heavy chain-derived polypeptides.
  • The DNA in the coding sequences for the light and heavy chains may comprise cDNA or genomic DNA or both. However, it is preferred that the DNA sequence encoding the heavy or light chain comprises at least partially, genomic DNA, preferably a fusion of cDNA and genomic DNA.
  • The present invention is applicable to antibodies of any appropriate specificity. Advantageously, however, the invention may be applied to the humanisation of non-human antibodies which are used for in vivo therapy or diagnosis. Thus the antibodies may be site-specific antibodies such as tumour-specific or cell surface-specific antibodies, suitable for use in in vivo therapy or diagnosis, e.g. tumour imaging. Examples of cell surface-specific antibodies are anti-T cell antibodies, such as anti-CD3, and CD4 and adhesion molecules, such as CR3, ICAM and ELAM. The antibodies may have specificity for interleukins (including lymphokines, growth factors and stimulating factors), hormones and other biologically active compound, and receptors for any of these. For example, the antibodies may have specificity for any of the following: Interferons or, IL1, IL2, IL3, or IL4, etc., TNF, GCSF, GMCSF, EPO, hGH, or insulin, etc.
  • The the present invention also includes therapeutic and diagnostic compositions comprising the CDR-grafted products of the invention and uses of such compositions in therapy and diagnosis.
  • Accordingly in a further aspect the invention provides a therapeutic or diagnostic composition comprising a CDR-grafted antibody heavy or light chain or molecule according to previous aspects of the invention in combination with a pharmaceutically acceptable carrier, diluent or excipient.
  • Accordingly also the invention provides a method of therapy or diagnosis comprising administering an effective amount of a CDR-grafted antibody heavy or light chain or molecule according to previous aspects of the invention to a human or animal subject.
  • A preferred protocol for obtaining CDR-grafted antibody heavy and light chains in accordance with the present invention is set out below together with the rationale by which we have derived this protocol. This protocol and rationale are given without prejudice to the generality of the invention as hereinbefore described and defined.
  • Protocol
  • It is first of all necessary to sequence the DNA coding for the heavy and light chain variable regions of the donor antibody, to determine their amino acid sequences. It is also necessary to choose appropriate acceptor heavy and light chain variable regions, of known amino acid sequence. The CDR-grafted chain is then designed starting from the basis of the acceptor sequence. It will be appreciated that in some cases the donor and acceptor amino acid residues may be identical at a particular position and thus no change of acceptor framework residue is required.
  • 1. As a first step donor residues are substituted for acceptor residues in the CDRs. For this purpose the CDRs are preferably defined as follows:
  • Heavy chain—CDR1: residues 26-35
      • —CDR2: residues 50-65
      • —CDR3: residues 95-102
  • Light chain—CDR1: residues 24-34
      • CDR2: residues 50-56
      • CDR3: residues 89-97
  • The positions at which donor residues are to be substituted for acceptor in the framework are then chosen as follows, first of all with respect to the heavy chain and subsequently with respect to the light chain.
  • 2. Heavy Chain
  • 2.1 Choose donor residues at all of positions 23, 24, 49, 71, 73 and 78 of the heavy chain or all of positions 23, 24 and 49 (71, 73 and 78 are always either all donor or all acceptor).
  • 2.2 Check that the following have the same amino acid in donor and acceptor sequences, and if not preferably choose the donor: 2, 4, 6, 25, 36, 37, 39, 47, 48, 93, 94, 103, 104, 106 and 107.
  • 2.3 To further optimise affinity consider choosing donor residues at one, some or any of:
  • i. 1, 3
  • ii. 72, 76
  • iii. If 48 is different between donor and acceptor sequences, consider 69
  • iv. If at 48 the donor residue is chosen, consider 38 and 46
  • v. If at 69 the donor residue is chosen, consider 80 and then 20
  • vi. 67
  • vii. If at 67 the donor residue is chosen, consider 82 and then 18
  • viii. 91
  • ix. 88
  • x. 9, 11, 41, 87, 108, 110, 112
  • 3. Light Chain
  • 3.1 Choose donor at 46, 48, 58 and 71
  • 3.2 Check that the following have the same amino acid in donor and acceptor sequences, if not preferably choose donor:
  • 2, 4, 6, 35, 38, 44, 47, 49, 62, 64-69 inclusive, 85, 87, 98, 99, 101 and 102
  • 3.3 To further optimise affinity consider choosing donor residues at one, some or any of:
  • i. 1, 3
  • ii. 63
  • iii. 60, if 60 and 54 are able to form potential saltbridge
  • iv. 70, if 70 and 24 are able to form potential saltbridge
  • v. 73, and 21 if 47 is different between donor and acceptor
  • vi. 37, and 45 if 47 is different between donor and acceptor
  • vii. 10, 12, 40, 80, 103, 105
  • Rationale
  • In order to transfer the binding site of an antibody into a different acceptor framework, a number of factors need to be considered.
  • 1. The extent of the CDRs
  • The CDRs (Complementary Determining Regions) were defined by Wu and Kabat (refs. 4 and 5) on the basis of an analysis of the variability of different regions of antibody variable regions. Three regions per domain were recognised. In the light chain the sequences are 24-34, 50-56, 89-97 (numbering according to Kabat (ref. 4), Eu Index) inclusive and in the heavy chain the sequences are 31-35, 50-65 and 95-102 inclusive.
  • When antibody structures became available it became apparent that these CDR regions corresponded in the main to loop regions which extended from the barrel framework of the light and heavy variable domains. For H1 there was a discrepancy in that the loop was from 26 to 32 inclusive and for H2 the loop was 52 to 56 and for L2 from 50 to 53. However, with the exception of H1 the CDR regions encompassed the loop regions and extended into the strand frameworks. In H1 residue 26 tends to be a serine and 27 a phenylalanine or tyrosine, residue 29 is a phenylalanine in most cases. Residues 28 and 30 which are surface residues exposed to solvent might be involved in antigen-binding. A prudent definition of the H1 CDR therefore would include residues 26-35 to include both the loop region and the hypervariable residues 33-35.
  • It is of interest to note the example of Riechmann et al (ref. 3), who used the residue 31-35 choice for CDR-H1. In order to produce efficient antigen binding, residue 27 also needed to be recruited from the donor (rat) antibody.
  • 2. Non-CDR residues which contribute to antigen binding
  • By examination of available X-ray structures we have identified a number of residues which may have an effect on net antigen binding and which can be demonstrated by experiment. These residues can be sub-divided into a number of groups.
  • 2.1 Surface residues near CDR [all numbering as in Kabat et al (ref. 7)].
  • 2.1.1.—Heavy Chain—Key residues are 23, 71 and 73.
  • Other residues which may contribute to a lesser extent are 1, 3 and 76. Finally 25 is usually conserved but the murine residue should be used if there is a difference.
  • 2.1.2 Light Chain—Many residues close to the CDRs, e.g. 63, 65, 67 and 69 are conserved. If conserved none of the surface residues in the light chain are likely to have a major effect. However, if the urine residue at these positions is unusual, then it would be of benefit to analyse the likely contribution more closely. Other residues which may also contribute to binding are 1 and 3, and also 60 and 70 if the residues at these positions and at 54 and 24 respectively are potentially able to form a salt bridge i.e. 60+54; 70+24.
  • 2.2 Packing residues near the CDRs.
  • 2.2.1. Heavy Chain—Key residues are 24, 49 and 78.
  • Other key residues would be 36 if not a tryptophan, 94 if not an arginine, 104 and 106 if not glycines and 107 if not a threonine. Residues which may make a further contribution to stable packing of the heavy chain and hence improved affinity are 2, 4, 6, 38, 46, 67 and 69. 67 packs against the CDR residue 63 and this pair could be either both mouse or both human. Finally, residues which contribute to packing in this region but from a longer range are 18, 20, 80, 82 and 86. 82 packs against 67 and in turn 18 packs against 82. 80 packs against 69 and in turn 20 packs against 80. 86 forms an H bond network with 38 and 46. Many of the mouse-human differences appear minor e.g. Leu-Ile, but could have an minor impact on correct packing which could translate into altered positioning of the CDRs.
  • 2.2.2. Light Chain—Key residues are 48, 58 and 71.
  • Other key residues would be 6 if not glutamine, 35 if not tryptophan, 62 if not phenylalanine or tryosine, 64, 66, 68, 99 and 101 if not glycines and 102 if not a threonine. Residues which make a further contribution are 2, 4, 37, 45 and 47. Finally residues 73 and 21 and 19 may make long distance packing contributions of a minor nature.
  • 2.3. Residues at the variable domain interface between heavy and light chains—In both the light and heavy chains most of the non-CDR interface residues are conserved. If a conserved residue is replaced by a residue of different character, e.g. size or charge, it should be considered for retention as the murine residue.
  • 2.3.1. Heavy Chain—Residues which need to be considered are 37 if the residue is not a valine but is of larger side chain volume or has a charge or polarity. Other residues are 39 if not a glutamine, 45 if not a leucine, 47 if not a tryptophan, 91 if not a phenylalanine or tyrosine, 93 if not an alanine and 103 if not a tryptophan. Residue 89 is also at the interface but is not in a position where the side chain could be of great impact.
  • 2.3.2. Light Chain—Residues which need to be considered are 36, if not a tyrosine, 38 if not a glutamine, 44 if not a praline, 46, 49 if not a tyrosine, residue 85, residue 87 if not a tyrosine and 98 if not a phenylalanine.
  • 2.4. Variable-Constant region interface—The elbow angle between variable and constant regions may be affected by alterations in packing of key residues in the variable region against the constant region which may affect the position of VL and VH with respect to one another.
  • Therefore it is worth noting the residues likely to be in contact with the constant region. In the heavy chain the surface residues potentially in contact with the variable region are conserved between mouse and human antibodies therefore the variable region contact residues may influence the V-C interaction. In the light chain the amino acids found at a number of the constant region contact points vary, and the V & C regions are not in such close proximity as the heavy chain. Therefore the influences of the light chain V-C interface may be minor.
  • 2.4.1. Heavy Chain—Contact residues are 7, 11, 41, 87, 108, 110, 112.
  • 2.4.2. Light Chain—In the light chain potentially contacting residues are 10, 12, 40, 80, 83, 103 and 105.
  • The above analysis coupled with our considerable practical experimental experience in the CDR-grafting of a number of different antibodies have lead us to the protocol given above.
  • The present invention is now described, by way of example only, with reference to the accompanying FIGS. 1-13.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows DNA and amino acid sequences of the OKT3 light chain;
  • FIG. 2 shows DNA and amino acid sequences of the OKT3 heavy chain;
  • FIG. 3 shows the alignment of the OKT3 light variable region amino acid sequence with that of the light variable region of the human antibody REI;
  • FIG. 4 shows the alignment of the OKT3 heavy variable region amino acid sequence with that of the heavy variable region of the human antibody KOL;
  • FIG. 5 shows the heavy variable region amino acid sequences of OKT3, KOL and various corresponding CDR grafts;
  • FIG. 6 shows the light variable region amino acid sequences of OKT3, REI and various corresponding CDR grafts;
  • FIG. 7 shows a graph of binding assay results for various grafted OKT3 antibodies'
  • FIG. 8 shows a graph of blocking assay results for various grafted OKT3 antibodies;
  • FIG. 9 shows a similar graph of blocking assay results;
  • FIG. 10 shown similar graphs for both binding assay and blocking assay results;
  • FIG. 11 shows further similar graphs for both binding assay and blocking assay results;
  • FIG. 12 shows a graph of competition assay results for a minimally grafted OKT3 antibody compared with the OKT3 murine reference standard, and
  • FIG. 13 shows a similar graph of competition assay results comparing a fully grafted OKT3 antibody with the murine reference standard.
  • DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION EXAMPLE 1
  • CDR-Grafting of OKT3
  • Material and Methods
  • 1. Incoming Cells
  • Hybridoma cells producing antibody OKT3 were provided by Ortho (seedlot 4882.1) and were grown up in antibiotic free Dulbecco's Modified Eagles Medium (DMEM) supplemented with glutamine and 5% foetal calf serum, and divided to provide both an overgrown supernatant for evaluation and cells for extraction of RNA. The overgrown supernatant was shown to contain 250 ug/mL marine IgG2a/kappa antibody. The supernatant was negative for murine lambda light chain and IgG1, IgG2b, IgG3, IgA and IgM heavy chain. 20 mL of supernatant was assayed to confirm that the antibody present was OKT3.
  • 2. Molecular Biology Procedures
  • Basic molecular biology procedures were as described in Maniatis et al (ref. 9) with, in some cases, minor modifications. DNA sequencing was performed as described in Sanger et al (ref. 11) and the Amersham International Plc sequencing handbook. Site directed mutagenesis was as described in Kramer et al (ref. 12) and the Anglian Biotechnology Ltd. handbook. COS cell expression and metabolic labelling studies were as described in Whittle et al (ref. 13)
  • 3. Research Assays
  • 3.1. Assembly Assays
  • Assembly assays were performed on supernatants from transfected COS cells to determine the amount of intact IgG present.
  • 3.1.1. COS Cells Transfected with Mouse OKT3 Genes
  • The assembly assay for intact mouse IgG in COS cell supernatants was an ELISA with the following formats
  • 96 well microtitre plates were coated with F(ab′)2 goat anti-mouse IgG Fc. The plates were washed in water and samples added for 1 hour at room temperature. The plates were washed and F(ab′)2 goat anti-mouse IgG F(ab′)2 (HRPO conjugated) was then added. Substrate was added to reveal the reaction. UPC10, a mouse IgG2a myeloma, was used as a standard.
  • 3.1.2. COS and CHO Cells Transfected with Chimeric or CDR-Grafted OKT3 Genes
  • The assembly assay for chimeric or CDR-grafted antibody in COS cell supernatants was an ELISA with the following format:
  • 96 well microtitre plates were coated with F(ab′)2 goat anti-human IgG Fc. The plates were washed and samples added and incubated for 1 hour at room temperature. The plates were washed and monoclonal mouse anti-human kappa chain was added for 1 hour at room temperature.
  • The plates were washed and F(ab′)2 goat anti-mouse IgG Fc (HRPO conjugated) was added. Enzyme substrate was added to reveal the reaction. Chimeric B72.3 (IgG4) (ref. 13) was used as a standard. The use of a monoclonal anti-kappa chain in this assay allows grafted antibodies to be read from the chimeric standard.
  • 3.2. Assay for Antigen Binding Activity
  • Material from COS cell supernatants was assayed for OKT3 antigen binding activity onto CD3 positive cells in a direct assay. The procedure was as follows:
  • HUT 78 cells (human T cell line, CD3 positive) were maintained in culture. Monolayers of MUM 78 cells were prepared onto 96 well ELISA plates using poly-L-lysine and glutaraldehyde. Samples were added to the monolayers,for 1 hour at room temperature.
  • The plates were washed gently using PBS. F(ab′)2 goat anti-human IgG Fc (HRPO conjugated) or F(ab′)2 goat anti-mouse IgG Fc (HRPO conjugated) was added as appropriate for humanised or mouse samples.
  • Substrate was added to reveal the reaction.
  • The negative control for the cell-based assay was chimeric B72.3. The positive control was mouse Orthomune OKT3 or chimeric OKT3, when available. This cell-based assay was difficult to perform, and an alternative assay was developed for CDR-grafted OKT3 which was more sensitive and easier to carry out.
  • In this system CDR-grafted OKT3 produced by COS cells was tested for its ability to bind to the CD3-positive HPB-ALL (human peripheral blood acute lymphocytic leukemia) cell line. It was also tested for its ability to block the binding of marine OKT3 to these cells. Binding was measured by the following procedure: HPB-ALL cells were harvested from tissue culture. Cells were incubated at 4° C. for 1 hour with various dilutions of test antibody, positive control antibody, or negative control antibody. The cells were washed once and incubated at 4° C. for 1 hour with an FITC-labelled goat anti-human IgG (Fc-specific, mouse absorbed). The cells were washed twice and analysed by cytofluorography. Chimeric OKT3 was used as a positive control for direct binding. Cells incubated with mock transfected COS cell supernatant followed by the FITC-labelled goat anti-human IgG, provided the negative control. To test the ability of CDR-grafted OKT3 to block murine OKT3 binding, the UPS-ALL cells were incubated at 40C for 1 hour with various dilutions of test antibody or control antibody. A fixed saturating amount of FITC OKT3 was added. The samples were incubated for 1 hour at 4° C., washed twice and analysed by cytofluorography.
  • FITC-labelled OKT3 was used as a positive control to determine maximum binding. Unlabelled marine OKT3 served as a reference standard for blocking. Negative controls were unstained cells with or without mock-transfected cell supernatant. The ability of the CDR-grafted OKT3 light chain to bind CD3-positive cells and block the binding of murine OKT3 was initially tested in combination with the chimeric OKT3 heavy chain. The chimeric OKT3 heavy chain is composed of the murine OKT3 variable region and the human IgG4 constant region. The chimeric heavy chain gene is expressed in the same expression vector used for the CDR-grafted genes. The CDR-grafted light chain expression vector and the chimeric heavy chain expression vector were co-transfected into COS cells. The fully chimeric OKT3 antibody (chimeric light chain and chimeric heavy chain} was found to be fully capable of binding to CD3 positive cells and blocking the binding of murine OKT3 to these cells.
  • 3.3 Determination of Relative Binding Affinity
  • The relative binding affinities of CDR-grafted anti-CD3 monoclonal antibodies were determined by competition binding (ref. 6) using the HPB-ALL human T cell line as a source of CD3 antigen, and fluorescein-conjugated marine OKT3 (Fl-OKT3) of known binding affinity as a tracer antibody. The binding affinity of Fl-OKT3 tracer antibody was determined by a direct binding assay in which increasing amounts of Fl-OKT3 were incubated with HPB-ALL (5×105) in PBS with 5% foetal calf serum for 60 min. at 4° C. Cells were washed, and the fluorescence intensity was determined on a FACScan flow cytometer calibrated with quantitative microbead standards (Flow Cytometry Standards, Research Triangle Park, N.C.). Fluorescence intensity per antibody molecule (F/P ratio) was determined by using microbeads which have a predetermined number of mouse IgG antibody binding sites (Simply Cellular beads, Flow Cytometry Standards). F/P equals the fluorescence,intensity of beads saturated with Fl-OKT3 divided by the number of binding sites per bead. The amount of bound and free Fl-OKT3 was calculated from the mean fluorescence intensity per cell, and the ratio of bound/free was plotted against the number of moles of antibody bound. A linear fit was used to determine the affinity of binding (absolute value of the slope).
  • For competitive binding, increasing amounts of competitor antibody were added to a sub-saturating dose of Fl-OKT3 and incubated with 5×105 HPB-ALL in 200 ml of PBS with 5% foetal calf serum, for 60 min at 4° C. The fluorescence intensities of the cells were measured on a FACScan flow cytometer calibrated with quantitative microbead standards. The concentrations of bound and free Fl-OKT3 were calculated. The affinities of competing anti-bodies were calculated from the equation [X]-[OKT3]=(1/Kx)−(1/Ka), where Ka is the affinity of marine OKT3, Kx is the affinity of competitor X, [ ] is the concentration of competitor antibody at which bound/free binding is R/2, and R is the maximal bound/free binding.
  • 4. cDNA Library Construction
  • 4.1. mRNA Preparation and cDNA Synthesis
  • OKT3 producing cells were grown as described above and 1.2×109 cells harvested and mRNA extracted using the guanidinium/LiCl extraction procedure. cDNA was prepared by priming from Oligo-dT to generate full length cDNA. The cDNA was methylated and EcoRl linkers added for cloning.
  • 4.2. Library Construction
  • The cDNA library was ligated to pSP65 vector DNA which had been EcoRl cut and the 5′ phosphate groups removed by calf intestinal phosphatase (EcoRl/CIP). The ligation was used to transform high transformation efficiency Escherichia coli (E.coli) HB101. A cDNA library was prepared. 3600 colonies were screened for the light chain and 1,0000 colonies were screened for the heavy chain.
  • 5. Screening
  • E.coli colonies positive for either heavy or light chain probes were identified by oligonucleotide screening using the oligonucleotides:
  • 5′ TCCAGATGTTAACTGCTCAC for the light chain, which is complementary to a sequence in the mouse kappa constant region, and 5′ CAGGGGCCAGTGGATGGATAGAC for the heavy chain which is complementary to a sequence in the mouse IgG2a constant CR1 domain region. 12 light chain and 9 heavy chain clones were identified and taken for second round screening. Positive clones from the second round of screening were grown up and DNA prepared. The sizes of the gene inserts were estimated by gel electrophoresis and inserts of a size capable of containing a full length cDNA were subcloned into M13 for DNA sequencing.
  • 6. DNA Sequencing
  • Clones representing four size classes for both heavy and light chains were obtained in M13. DNA sequence for the 5′ untranslated regions, signal sequences, variable regions and 3′ untranslated regions of full length cDNAs [FIGS. 1(a) and 2(a)] were obtained and the corresponding amino acid sequences predicted [(FIGS. 1(b) and 2(b)]. In FIG. 1(a) the untranslated DNA regions are shown in uppercase, and in both FIGS. 1 and 2 the signal sequences are underlined.
  • 7. Construction of cDNA Expression Vectors
  • Celltech expression vectors are based on the plasmid pEE6hCMV (ref. 14). A polylinker for the insertion of genes to be expressed has been introduced after the major immediate early promoter/enhancer of the human Cytomegalovirus (hCMV). Marker genes for selection of the plasmid in transfected eukaryotic cells can be inserted as BamH1 cassettes in the unique BamH1 site of pEE6 hCMV; for instance, the neo marker to provide pEE6 hCMV neo. It is usual practice to insert the neo and gpt markers prior to insertion of the gene of interest, whereas the GS marker is inserted last because of the presence of internal EcoR1 sites in the cassette.
  • The selectable markers are expressed from the SV40 late promoter which also provide an origin of replication so that the vectors can be used for expression in the COS cell transient expression system.
  • The mouse sequences were excised from the M13 based vectors described above as EcoRl fragments and cloned into either pEE6-hCMV-neo for the heavy chain and into EE6-hCMV-gpt for the light chain to yield vectors pJA136 and pJA135 respectively.
  • 8. Expression of cDNAS in COS Cells
  • Plasmids pJA135 and pJA136 were co-transfected into COS cells and supernatant from the transient expression experiment was shown to contain assembled antibody which bound to T-cell enriched lymphocytes. Metabolic labelling experiments using 35S methionine showed expression and assembly of heavy and light chains.
  • 9. Construction of Chimeric Genes
  • Construction of chimeric genes followed a previously described strategy [Whittle et al (ref. 13)]. A restriction site near the 3′ end of the variable domain sequence is identified and used to attach an oligonucleotide adapter coding for the remainder of the mouse variable region and a suitable restriction site for attachment to the constant region of choice.
  • 9.1. Light Chain Gene Construction
  • The mouse light chain cDNA sequence contains an Ava1 site near the 3′ end of the variable region [FIG. 1(a)]. The majority of the sequence of the variable region was isolated as a 396 bp.
  • EcoR1-Aval fragment. An oligonucleotide adapter was designed to replace the remainder of the 3′ region of the variable region from the Aval site and to include the 5′ residues of the human constant region up to and including a unique Narl site which had been previously engineered into the constant region.
  • A HindIII site was introduced to act as a marker for insertion of the linker.
  • The linker was ligated to the VL fragment and the 413 bp EcoR1-Nar1 adapted fragment was purified from the ligation mixture.
  • The constant region was isolated as an Nar1-BamH1 fragment from an M13. clone NW361 and was ligated with the variable region DNA into an EcoR1/BamH1/ClP pSP65 treated vector in a three way reaction to yield plasmid JA143. Clones were isolated after transformation into E.coli and the linker and junction sequences were confirmed by the presence of the Hind111 site and by DNA sequencing.
  • 9.2 Light Chain Gene Construction—Version 2
  • The construction of the first chimeric light chain gene produces a fusion of mouse and human amino acid sequences at the variable-constant region junction. In the case of the OKT3 light chain the amino acids at the chimera junction are: Leu - Glu - Ile - Asn - Arg / - / Thr _ - Val - Ala - Ala VARIABLE CONSTANT
  • This arrangement of sequence introduces a potential site for Asparagine (Asn) linked (N-linked) glycosylation at the V-C junction. Therefore, a second version of the chimeric light chain oligonucleotide adapter was designed in which the threonine (Thr), the first amino acid of the human constant region, was replaced with the equivalent amino acid from the mouse constant region, Alanine (Ala).
  • An internal Hind111 site was not included in this adapter, to differentiate the two chimeric light chain genes.
  • The variable region fragment was isolated as a 376 bp EcoRl-Aval fragment. The oligonucleotide linker was ligated to Nar1 cut pNW361 and then the adapted 396 bp constant region was isolated after recutting the modified pNW361 with EcoR1. The variable region fragment and the modified constant region fragment were ligated directly into EcoR1/ClP treated pEE6hCKVneo to yield pJA137.
  • Initially all clones examined had the insert in the incorrect orientation. Therefore, the insert was re-isolated and recloned to turn the insert round and yield plasmid pJA141. Several clones with the insert in the correct orientation were obtained and the adapter sequence of one was confirmed by DNA sequencing
  • 9.3. Heavy Chain Gene Construction
  • 9.3.1. Choice of Heavy Chain Gene Isotype
  • The constant region isotype chosen for the heavy chain was human IqG4.
  • 9.3.2. Gene Construction
  • The heavy chain cDNA sequence showed a Ban1 site near the 3′ end of the variable region [FIG. 2(a)].
  • The majority of the sequence of the variable region was isolated as a 426 bp. EcoR1/ClP/Ban1 fragment. An oligonucleotide adapter was designated to replace the remainder of the 3′ region of the variable region from the Ban1 site up to and including a unique HindIII site which had been previously engineered into the first two amino acids of the constant region.
  • The linker was ligated to the VH fragment and the EcoR1-Hind111 adapted fragment was purified from the ligation mixture.
  • The variable region was ligated to the constant region by cutting pJA91 with EcoR1 and Hind111 removing the intron fragment and replacing it with the VH to yield pJA142. Clones were isolated after transformation into E.coli JM101 and the linker and junction sequences were confirmed by DNA sequencing. (N.B. The Hind111 site is lost on cloning).
  • 10. Construction of Chimeric Expression Vectors
  • 10.1. neo and gpt Vectors
  • The chimeric light chain (version 1) was removed from pJA143 as an EcoRl fragment and cloned into EcoR1/C1P treated pEE6hCMVneo expression vector to yield pJA145. Clones with the insert in the correct orientation were identified by restriction mapping.
  • The chimeric light chain (version 2) was constructed as described above.
  • The chimeric heavy chain gene was isolated from pJA142 as a 2.5 Kbp EcoR1/BamH1 fragment and cloned into the EcoR1/Bc11/C1P treated vector fragment of a derivative of pEE6hCMVgpt to yield plasmid pJA144.
  • 10.2. GS Separate Vectors
  • GS versions of pJA141 and pJA144 were constructed by replacing the neo and gpt cassettes by a BamH1/Sa11/C1P treatment of the plasmids, isolation of the vector fragment and ligation to a GS-containing fragment from the plasmid pRO49 to yield the light chain vector pJA179 and the heavy chain vector pJA180.
  • 10.3. GS Single Vector Construction
  • Single vector constructions containing the cL (chimeric light), cH (chimeric heavy) and GS genes on one plasmid in the order cL-cH-GS, or cH-cL-GS and with transcription of the genes being head to tail e.g. cL>cH>GS were constructed. These plasmids were made by treating pJA179 or pJA180 with BamH1/C1P and ligating in a Bg111/Hind111 hCMV promoter cassette along with either the Hind111/BamH1 fragment from pJA141 into pJA180 to give the cH-cL-GS plasmid pJA182 or the Hind111/BamH1 fragment from pJA144 into pJA179 to give the cL-cH-GS plasmid pJA181.
  • 11. Expression of Chimeric Genes
  • 11.1. Expression in COS Cells
  • The chimeric antibody plasmid pJA145 (cL) and pJA144 (cH) were co-transfected into COS cells and supernatant from the transient expression experiment was shown to contain assembled antibody which bound to the RUT 78 human T-cell line. Metabolic labelling experiments using 35S methionine showed expression and assembly of heavy and light chains. However the light chain mobility seen on reduced gels suggested that the potential glycosylation site was being glycosylated. Expression in COS cells in the presence of tunicamycin showed a reduction in size of the light chain to that shown for control chimeric antibodies and the OKT3 mouse light chain. Therefore JA141 was constructed and expressed. In this case the light chain did not show an aberrant mobility or a size shift in the presence or absence of tunicamycin. This second version of the chimeric light chain, when expressed in association with chimeric heavy (cH) chain, produced antibody which showed good binding to HUT 78 cells. In both cases antigen binding was equivalent to that of the mouse antibody.
  • 11.2 Expression in Chinese Hamster Ovary (CHO) Cells
  • Stable cell lines have been prepared from plasmids PJA141/pJA144 and from pJA179/pJA180, pJA181 and pJA182 by transfection into CHO cells.
  • 12. CDR-Grafting
  • The approach taken was to try to introduce sufficient mouse residues into a human variable region framework to generate antigen binding activity comparable to the mouse and chimeric antibodies.
  • 12.1. Variable Region Analysis
  • From an examination of a small database of structures of antibodies and antigen-antibody complexes it is clear that only a small number of antibody residues make direct contact with antigen. Other residues may contribute to antigen binding by positioning the contact residues in favourable configurations and also by inducing a stable packing of the individual variable domains and stable interaction of the light and heavy chain variable domains.
  • The residues chosen for transfer can be identified in a number of ways:
      • (a) By examination of antibody X-ray crystal structures the antigen binding surface can be predominantly located on a series of loops, three per domain, which extend from the B-barrel framework.
      • (b) By analysis of antibody variable domain sequences regions of hypervariability [termed the Complementarity Determining Regions (CDRs) by Wu and Kabat (ref. 5)] can be identified. In the most but not all cases these CDRs correspond to, but extend a short way beyond, the loop regions noted above.
      • (c) Residues not identified by (a) and (b) may contribute to antigen binding directly or indirectly by affecting antigen binding site topology, or by inducing a stable packing of the individual variable domains and stabilising the inter-variable domain interaction. These residues may be identified either by superimposing the sequences for a given antibody on a known structure and looking at key residues for their contribution, or by sequence alignment analysis and noting “idiosyncratic” residues followed by examination of their structural location and likely effects.
        12.1.1. Light Chain
  • FIG. 3 shows an alignment of sequences for the human framework region RE1 and the OKT3 light variable region. The structural loops (LOOP) and CDRs (KABAT) believed to correspond to the antigen binding region are marked. Also marked are a number of other residues which may also contribute to antigen binding as described in 13.1(c).
  • Above the sequence in FIG. 3 the residue type indicates the spatial location of each residue side chain, derived by examination of resolved structures from X-ray crystallography analysis. The key to this residue type designation is as follows:
    N near to CDR
    (From X-ray Structures)
    P Packing B Buried Non-Packing
    S Surface E Exposed
    I Interface * Interface
    Packing/Part Exposed
    ? Non-CDR Residues which
    may require to be left
    as Mouse sequence.
  • Residues underlined in FIG. 3 are Amino acids. RE1 was chosen as the human framework because the light chain is a kappa chain and the kappa variable regions show higher homology with the mouse sequences than a lambda light variable region, e.g. KOL (see below). RE1 was chosen in preference to another kappa light chain because the X-ray structure of the light chain has been determined so that a structural examination of individual residues could be made.
  • 12.1.2. Heavy Chain
  • Similarly FIG. 4 shows an alignment of sequences for the human framework region KOL and the OKT3 heavy variable region. The structural loops and CDRs believed to correspond to the antigen binding region are marked. Also marked are a number of other residues which may also contribute to antigen binding as described in 12.1(c). The residue type key and other indicators used in FIG. 4 are the same as those used in FIG. 3. KOL was chosen as the heavy chain framework because the X-ray structure has been determined to a better resolution than, for example, NEWM and also the sequence alignment of OKT3 heavy variable region showed a slightly better homology to KOL than to NEWM.
  • 12.2. Design of Variable Genes
  • The variable region domains were designed with mouse variable region optimal codon usage [Grantham and Perrin (ref. 15)] and used the B72.3 signal sequences (Whittle et al (ref. 13)). The sequences were designed to be attached to the constant region in the same way as for the chimeric genes described above. Some constructs contained the “Kozak consensus sequence” (Kozak (ref. 16)] directly linked to the 5′ of the signal sequence in the gene. This sequence motif is believed to have a beneficial role in translation initiation in eukaryotes.
  • 12.3. Gene Construction
  • To build the variable regions, various strategies are available. The sequence may be assembled by using oligonucleotides in a manner similar to Jones et al (ref. 17) or by simultaneously replacing all of the CDRs or loop regions by oligonucleotide directed site specific mutagenesis in a manner similar to Verhoeyen et al (ref. 2).
  • Both strategies were used and a list of constructions is set out in Tables 1 and 2 and FIGS. 4 and 5. It was noted in several cases that the mutagenesis approach led to deletions and rearrangements in the gene being remodelled, while the success of the assembly approach was very sensitive to the quality of the oligonucleotides.
  • 13. Construction of Expression Vectors
  • Genes were isolated from M13 or SP65 based intermediate vectors and cloned into pEE6hCMVneo for the light chains and pEE6hCMgpt for the heavy chains in a manner similar to that for the chimeric genes as described above.
    TABLE 1
    CDR-GRAFTED GENE CONSTRUCTS
    KOZAK
    MOUSE SEQUENCE METHOD OF SEQUENCE
    CODE CONTENT CONSTRUCTION +
    LIGHT CHAIN ALL HUMAN FRAMEWORK RE1
    121 26-32, 50-56, 91-96 inclusive SDM and gene assembly + n.d.
    121A 26-32, 50-56, 91-96 inclusive +1, Partial gene assembly n.d. +
    3, 46, 47
    121B 26-32, 50-56, 91-96 inclusive +46, Partial gene assembly n.d. +
    47
    221 24-24, 50-56, 91-96 inclusive Partial gene assembly + +
    221A 24-34, 50-56, 91-96 inclusive +1, Partial gene assembly + +
    3, 46, 47
    221B 24-34, 50-56, 91-96 inclusive +1, Partial gene assembly + +
    3
    221C 24-34, 50-56, 91-96 inclusive Partial gene assembly + +
    HEAVY CHAIN ALL HUMAN FRAMEWORK KOL
    121 26-32, 50-56, 95-100B inclusive Gene assembly n.d. +
    131 26-32, 50-58, 95-100B inclusive Gene assembly n.d. +
    141 26-32, 50-65, 95-100B inclusive Partial gene assembly + n.d.
    321 26-35, 50-56, 95-100B inclusive Partial gene assembly + n.d.
    331 26-35, 50-58, 95-100B inclusive Partial gene assembly +
    Gene assembly +
    341 26-35, 50-65, 95-100B inclusive SDM +
    Partial gene assembly +
    341A 26-35, 50-65, 95-100B inclusive +6, Gene assembly n.d. +
    23, 24, 48, 49, 71, 73, 76,
    78, 88, 91 (+63 = human)
    341B 26-35, 50-65, 95-100B inclusive +48, Gene assembly n.d. +
    49, 71, 73, 76, 78, 88, 91
    (+63 + human)
    KEY
    n.d. not done
    SDM Site directed mutagenesis
    Gene assembly Variable region assembled entirely from oligonucleotides
    Partial gene Variable region assembled by combination of restriction fragments either from other
    assembly genes originally created by SDM and gene assembly or by oligonucleotide assembly
    of part of the variable region and reconstruction with restriction
    fragments from other genes originally created by SDM and gene assembly

    14. Expression of CDR-Grafted Genes
    14.1. Production of antibody Consisting of Grafted Light (gL) Chains with Mouse Heavy (mH) or Chimeric Heavy (cH) Chains
  • All gL chains, in association with mH or cH produced reasonable amounts of antibody. Insertion of the Kozak consensus sequence at a position 5′ to the ATG (kgL constructs) however, led to a 2-5 fold improvement in net expression. Over an extended series of experiments expression levels were raised from approximately 200 ng/ml to approximately 500 ng/ml for kgL/cH or kgL/mH combinations.
  • When direct binding to antigen on HUT 78 cells was measured, a construct designed to include mouse sequence based on loop length (gL121) did not lead to active antibody in association with mH or cH. A construct designed to include mouse sequence based on Kabat CDRs (gL221) demonstrated some weak binding in association with mH or cH. However, when framework residues 1, 3, 46, 47 were changed from the human to the murine OKT3 equivalents based on the arguments outlined in Section 12.1 antigen binding was demonstrated when both of the new constructs, which were termed 121A and 221A were co-expressed with cH. When the effects of these residues were examined in more detail, it appears that residues 1 and 3 are not major contributing residues as the product of the gL221B gene shows little detectable binding-activity in association with cH. The light chain product of gL221C, in which mouse sequences are present at 46 and 47, shows good binding activity in association with cH.
  • 14.2 Production of Antibody Consisting of Grafted Heavy (gH) Chains with Mouse Light (mL) or Chimeric Light (cL) Chains
  • Expression of the gH genes proved to be more difficult to achieve than for gL. First, inclusion of the Kozak sequence appeared to have no marked effect on expression of gH genes. Expression appears to be slightly improved but not to the same degree as seen for the grafted light chain.
  • Also, it proved difficult to demonstrate production of expected quantities of material when the loop choice (amino acid 26-32) for CDR1 is used, e.g. gH121, 131, 141 and no conclusions can be drawn about these constructs.
  • Moreover, co-expression of the gH341 gene with cL or mL has been variable and has tended to produce lower amounts of antibody than the cH/cL or ma/mL combinations. The alterations to gH341 to produce gH341A and gH341B lead to improved levels of expression.
  • This may be due either to a general increase in the fraction of mouse sequence in the variable region; or to the alteration at position 63 where the residue is returned to the human amino acid Valine (Val) from Phenylalanine (Phe) to avoid possible internal packing problems with the rest of the human framework. This arrangement also occurs in gH331 and gH321.
  • When gH321 or gH331 were expressed in association with cL, antibody was produced but antibody binding activity was not detected.
  • When the more conservative gH341 gene was used antigen binding could be detected in association with CL or mL, but the activity was only marginally above the background level.
  • When further mouse residues were substituted based on the arguments in 12.1, antigen binding could be clearly demonstrated for the antibody produced when kgH341A and kgH341B were expressed in association with cL.
  • 14.3 Production of Fully CDR-Grafted Antibody
  • The kgL221A gene was co-expressed with kgH341, kgH341A or kgH341B. For the combination kgH221A/kgH341 very little material was produced in a normal COS cell expression.
  • For the combinations kgL221A/kgH341A or kgH221A/kgH341B amounts of antibody similar to gL/cH was produced.
  • In several experiments no antigen binding activity could be detected with kgH221A/gH341 or kgH221A/kgH341 combinations, although expression levels were very low.
  • Antigen binding was detected when kgL221A/kgH341A or kgH221A/kgH341B combinations were expressed.
  • In the case of the antibody produced from the kgL221A/kgH341A combination the antigen binding was very similar to that of the chimeric antibody.
  • An analysis of the above results is given below.
  • 15. Discussion of CDR-Grafting Results
  • In the design of the fully humanised antibody the aim was to transfer the minimum number of mouse amino acids that would confer antigen binding onto a human antibody framework.
  • 15.1. Light Chain
  • 15.1.1. Extent of the CDRs
  • For the light chain the regions defining the loops known from structural studies of other antibodies to contain the antigen contacting residues, and those hypervariable sequences defined by Kabat et al (ref a. 4 and 5) as Complementarity Determining Regions (CDRs) are equivalent for CDR2. For CDR1 the hypervariable region extends from residues 24-34 inclusive while the structural loop extends from 26-32 inclusive. In the case of OKT3 there is only one amino acid difference between the two options, at amino acid 24, where the mouse sequence is a serine and the human framework RE1 has glutamine. Far CDR3 the loop extends from residues 91-96 inclusive while the Kabat hypervariability extends from residues 89-97 inclusive. For OKT3 amino acids 89, 90 and 97 are the same between OKT3 and RE1 (FIG. 3). When constructs based on the loop choice for CDR1 (gL121) and the Kabat choice (gL221) were made and co-expressed with mH or cH no evidence for antigen binding activity could be found for gL121, but trace activity could be detected for the gL221, suggesting that a single extra mouse residue in the grafted variable region could have some detectable effect. Both gene constructs were reasonably well expressed in the transient expression system.
  • 15.1.2. Framework Residues
  • The remaining framework residues were then further examined, in particular amino acids known from X-ray analysis of other antibodies to be close to the CDRs and also those amino acids which in OKT3 showed differences from the consensus framework for the mouse subgroup (subgroup VI) to which OKT3 shows most homology. Four positions 1, 3, 46 and 47 were identified and their possible contribution was examined by substituting the mouse amino acid for the human amino acid at each position. Therefore gL221A (gL221+D1Q, Q3V, L46R, L47W, see FIG. 3 and Table 1) was made, cloned in EE6hCMVneo and co-expressed with cH (pJA144). The resultant antibody was well expressed and showed good binding activity. When the related genes gL221B (gL221+D1Q, Q3V) and gL221C (gL221+L46R, L47W) were made and similarly tested, while both genes produced antibody when co-expressed with cH, only the gL221C/cH combination showed good antigen binding. When the gL121A (gL121+D1Q, Q3V, L46R, L47W) gene was made and co-expressed with cH, antibody was produced which also bound to antigen.
  • 15.2. Heavy Chain
  • 15.2.1. Extent of the CDRs
  • For the heavy chain the loop and hypervariability analyses agree only in CDR3. For CDR1 the loop region extends from residues 26-32 inclusive whereas the Kabat CDR extends from residues 31-35 inclusive. For CDR2 the loop region is from 50-58 inclusive while the hypervariable region covers amino acids 50-65 inclusive. Therefore humanised heavy chains were constructed using the framework from antibody KOL and with various combinations of these CDR choices, including a shorter choice for CDR2 of 50-56 inclusive as there was some uncertainty as to the definition of the end point for the CDR2 loop around residues 56 to 58. The genes were co-expressed with mL or cL initially. In the case of the gH genes with loop choices for CDR1 e.g. gH121, gH131, gH141 very little antibody was produced in the culture supernatants. As no free light chain was detected it was presumed that the antibody was being made and assembled inside the cell but that the heavy chain was aberrant in some way, possibly incorrectly folded, and therefore the antibody was being degraded internally. In some experiments trace amounts of antibody could be detected in 35S labelling studies.
  • As no net antibody was produced, analysis of these constructs was not pursued further. When, however, a combination of the loop choice and the Kabat choice for CDR1 was tested (mouse amino acids 26-35 inclusive) and in which residues 31 (Ser to Arg), 33 (Ala to Thr), and 35 (Tyr to His) were changed from the human residues to the mouse residue and compared to the first series, antibody was produced for gH321, kgH331 and kgH341 when co-expressed with cL. Expression was generally low and could not be markedly improved by the insertion of the Kozak consensus sequence 5′ to the ATG of the signal sequence of the gene, as distinct from the case of the gL genes where such insertion led to a 2-5 fold increase in net antibody production. However, only in the case of gH341/mL or kgH341/cL could marginal antigen binding activity be demonstrated. When the kgH341 gene was co-expressed with kgL221A, the net yield of antibody was too low to give a signal above the background level in the antigen binding assay.
  • 15.2.2. Framework Residues
  • As in the case of the light chain the heavy chain frameworks were re-examined. Possibly because of the lower initial homology between the mouse and human heavy variable domains compared to the light chains, more amino acid positions proved to be of interest. Two genes kgH341A and kgH341B were constructed, with 11 or 8 human residues respectively substituted by mouse residues compared to gH341, and with the CDR2 residue 63 returned to the human amino acid potentially to improve domain packing. Both showed antigen binding when combined with cL or kgL221A, the kgH341A gene with all 11 changes appearing to be the superior choice.
  • 15.3 Interim Conclusions
  • It has been demonstrated, therefore, for OKT3 that to transfer antigen binding ability to the humanised antibody, mouse residues outside the CDR regions defined by the Kabat hypervariability or structural loop choices are required for both the light and heavy chains. Fewer extra residues are needed for the light chain, possibly due to the higher initial homology between the mouse and human kappa variable regions.
  • Of the changes seven (1 and 3 from the light chain and 6, 23, 71, 73 and 76 from the heavy chain) are predicted from a knowledge of other antibody structures to be either partly exposed or on the antibody surface. It has been shown here that residues 1 and 3 in the light chain are not absolutely required to be the mouse sequence; and for the heavy chain the gH341B heavy chain in combination with the 221A light chain generated only weak binding activity. Therefore the presence of the 6, 23 and 24 changes are important to maintain a binding affinity similar to that of the marine antibody. It was important, therefore, to further study the individual contribution of the other 8 mouse residues of the kgH341A gene compared to kgH341.
  • 16. Further CDR-Grafting Experiments
  • Additional CDR-grafted heavy chain genes were prepared substantially as described above. With reference to Table 2 the further heavy chain genes were based upon the gh341 (plasmid pJA178) and gH341A (plasmid pJA185) with either mouse OKT3 or human KOL residues at 6, 23, 24, 48, 49, 63, 71, 73, 76, 78, 88 and 91, as indicated. The CDR-grafted light chain genes used in these further experiments were gL221, gL221A, gL221B and gL221C as described above.
    TABLE 2
    OKT3 HEAVY CHAIN CDR GRAFTS
    RES NUM
    6 23 24 48 49 63 71 73 76 78 88 91
    1. gH341 and derivatives
    OKT3vh Q  K  A  I  G  F  T  K  S  A  A  Y
    gH341 E  S  S  V  A  F  R  N  N  L  G  F JA178
    gH341A Q  K  A  I  G  V  T  K  S  A  A  Y JA185
    gH341E Q  K  A  I  G  V  T  K  S  A  G  G JA198
    gH341* Q  K  A  I  G  V  T  K  N  A  G  F JA207
    gH341* Q  K  A  I  G  V  R  N  N  A  G  F JA209
    gH341D Q  K  A  I  G  V  T  K  N  L  G  F JA197
    gH341* Q  K  A  I  G  V  R  N  N  L  G  F JA199
    gH341C Q  K  A  V  A  F  R  N  N  L  G  F JA184
    gH341* Q  S  A  I  G  V  T  K  S  A  A  Y JA203
    gH341* E  S  A  I  G  V  T  K  S  A  A  Y JA205
    gH341B E  S  S  I  G  V  T  K  S  A  A  Y JA183
    gH341* Q  S  A  I  G  V  T  K  S  A  G  F JA204
    gH341* E  S  A  I  G  V  T  K  S  A  G  F JA206
    gH341* Q  S  A  I  G  V  T  K  N  A  G  F JA208
    KOL E  S  S  V  A     R  N  N  L  G  F
    OKT3 LIGHT CHAIN CDR GRAFTS
    RES NUM
    1 3 46  47
    2. gL221 and derivatives
    OKT3v1 Q V R  W
    GL221 D Q L   L DA221
    gL221A Q V R   W DA221A
    gL221B Q V L   L DA221B
    GL221C D Q R   W DA221C
    RE1 D Q L   L

    MURINE RESIDUES ARE UNDERLINED
  • The CDR-grafted heavy and light chain genes were co-expressed in COS cells either with one another in various combinations but also with the corresponding murine and chimeric heavy and light chain genes substantially as described above. The resultant antibody products were then assayed in binding and blocking assays with HPB-ALL cells as described above.
  • The results of the assays for various grafted heavy chains co-expressed with the gL221C light chain are given in FIGS. 7 and 8 (for the JA184, JA185, JA197 and JA198 constructs—see Table 2), in FIG. 9 (for the JA183, JA184, JA18S and JA197,constructs) in FIG. 10 (for the chimeric, JA185, JA199, JA204, JA205, JA207, JA208 and JA209 constructs) and in FIG. 11 (for the JA183, JA184, JA185, JA198, JA203, JA205 and JA206 constructs).
  • The basic grafted product without any human to murine changes in the variable frameworks, i.e. gL221 co-expressed with gh341 (JA178), and also the “fully grafted” product, having most human to marine changes in the grafted heavy chain framework, i.e. gL221C co-expressed with gh341A (JA185), were assayed for relative binding affinity in a competition assay against murine OKT3 reference standard, using HPB-ALL cells. The assay used was as described above in section 3.3. The results obtained are given in FIG. 12 for the basic grafted product and in FIG. 13 for the fully grafted product. These results indicate that the basic grafted product has neglibible binding ability as compared with the OKT3 murine reference standard; whereas the “fully grafted” product has a binding ability very similar to that of the OKT3 murine reference standard.
  • The binding and blocking assay results indicate the following:
  • The JA198 and JA207 constructs appear to have the best binding characteristics and similar binding abilities, both substantially the same as the chimeric and fully grafted gH341A products. This indicates that positions 88 and 91 and position 76 are not highly critical for maintaining the OKT3 binding ability; whereas at least some of positions 6, 23, 24, 48, 49, 71, 73 and 78 are more important.
  • This is borne out by the finding that the JA209 and JA199, although of similar binding ability to one another, are of lower binding ability than the JA198 and JA207 constructs. This indicates the importance of having mouse residues at positions 71, 73 and 78, which are either completely or partially human in the JA199 and JA209 constructs respectively.
  • Moreover, on comparing the results obtained for the JA205 and JA183 constructs it is seen that there is a decrease in binding going from the JA205 to the JA183 constructs. This indicates the importance of retaining a mouse residue at position 23, the only position changed between JA205 and JA183.
  • These and other results lead us to the conclusion that of the 11 mouse framework residues used in the gH341A (JA185) construct, it is important to retain mouse residues at all of positions 6, 23, 24, 48 and 49, and possibly for maximum binding affinity at 71, 73 and 78.
  • Similar Experiments were carried out to CDR-graft a number of the rodent antibodies including antibodies having specificity for CD4 (OKT4), ICAM-1 (R6-5), TAG72 (B72.3), and TNF (61E71, 101.4, hTNF1, hTNF2 and hTNF3).
  • EXAMPLE 2
  • CDR-Grafting of a Murine Anti-CD4 T Cell Receptor Antibody, OKT4A
  • Anti OKT4A CDR-grafted heavy and light chain genes were prepared, expressed and tested substantially as described above in Example 1 for CDR-grafted OKT3. The CDR grafting of OKT4A is described in detail in Ortho patent application PCT/GB 90 . . . of even date herewith entitled “Humanised Antibodies”. The disclosure of this Ortho patent application PCT/GB 90 . . . is incorporated herein by reference. A number of CDR-4rafted OKT4 antibodies have been prepared. Presently the CDR-grafted OKT4A of choice is the combination of the grafted light chain LCDR2 and the grafted heavy chain HCDR10.
  • The Light Chain
  • The human acceptor framework used for the grafted light chains was RE1. The preferred LCDR2 light chain has human to mouse changes at positions 33, 34, 38, 49 and 89 in addition to the structural loop CDRs. Of these changed positions, positions 33, 34 and 89 fall within the preferred extended CDRs of the present invention (positions 33 and 34 in CDR1 and position 89 in CDR3).
  • The human to murine changes at positions 38 and 49 corresponds to positions at which the amino acid residues are preferably donor murine amino acid residues in accordance with the present invention.
  • A comparison of the amino acid sequences of the donor murine light chain variable domain and the RE1 human acceptor light chain variable further reveals that the murine and human residues are identical at all of positions 46, 48 and 71 and at all of positions 2, 4, 6, 35, 36, 44, 47, 62, 64-69, 8s, 87, 98, 99 and 101 and 102. However the amino acid residue at position 58 in LCDR2 is the human RE1 framework residue not the mouse OKT4 residue as would be preferred in accordance with the present invention.
  • The Heavy Chain
  • The human acceptor framework used for the grafted heavy chains was KOL.
  • The preferred CDR graft HCDR10 heavy chain has human to mouse changes at positions 24, 35, 57, 58, 60, 88 and 91 in addition to the structural loop CDRs.
  • Of these positions, positions 35 (CDR1) and positions 57, 58 and 60 (CDR2) fall within the preferred extended CDRs of the present invention. Also the human to mouse change at position 24 corresponds to a position at which the amino acid residue is a donor murine residue in accordance with the present invention. Moreover,.the human to mouse changes at positions 88 and 91 correspond to positions at which the amino acid residues are optionally donor murine residues.
  • Moreover, a comparison of the murine OKT4A and human KOL heavy chain variable amino acid sequences reveals that the murine and human residues are identical at all of positions 23, 49, 71, 73 and 78 and at all of positions 2, 4, 6, 25, 36, 37, 39, 47, 48, 93, 94, 103, 104, 106 and 107.
  • Thus the OKT4A CDR-grafted heavy chain HCDR10 corresponds to a particularly preferred embodiment according to the present invention.
  • EXAMPLE 3
  • CDR-Grafting of an Anti-Mucin Specific Murine Antibody, B72.3
  • The cloning of the genes coding for the anti-mucin specific murine monoclonal antibody B72.3 and the preparation of B72.3 mouse-human chimeric antibodies has been described previously (ref. 13 and WO 89/01783). CDR-grafted versions of B72.3 were prepared as follows.
  • (a) B72.3 Light Chain
  • CDR-grafting of this light chain was accomplished by direct transfer of the murine CDRs into the framework of the human light chain RE1.
  • The regions transferred were:
    CDR Number Residues
    1 24-34
    2 50-56
    3 90-96
  • The activity of the resulting grafted light chain was assessed by co-expression in COS cells, of genes for the combinations:
      • B72.3 cH/B72.3 cL
      • and B72.3 cH/B72.3 gL
  • Supernatants were assayed for antibody concentration and for the ability to bind to microtitre plates coated with mucin. The results obtained indicated that, in combination with the B72.3 cH chain, B72.3 cL and B72.3 gL had similar binding properties.
  • Comparison of the murine B72.3 and REI light chain amino acid sequences reveals that the residues are identical at positions 46, 58 and 71 but are different at position 48.
  • Thus changing the human residue to the donor mouse residue at position 48 may further improve the binding characteristics of the CDR-grafted light chain, (B72.3 gL) in accordance with the present invention.
  • (b) B72.3 Heavy Chain
  • i. Choice of Framework
  • At the outset it was necessary to make a choice of human framework. Simply put, the question was as follows: Was it necessary to use the framework regions from an antibody whose crystal structure was known or could the choice be made on some other criteria?
  • For B72.3 heavy chain, it was reasoned that, while knowledge of structure was important, transfer of the CDRs from mouse to human frameworks might be facilitated if the overall homology between the donor and receptor frameworks was maximised.
  • Comparison of the B72.3 heavy chain sequence with those in Kabat (ref. 4) for human heavy chains showed clearly that B72.3 had poor homology for KOL and NEWM (for which crystal structures are available) but was very homologous to the heavy chain for EU.
  • On this basis, EU was chosen for the CDR-grafting and the following residues transferred as CDRs.
    CDR Number Residues
    1 27-36
    2 50-63
    3  93-102
  • Also it was noticed that the FR4 region of EU was unlike that of any other human (or mouse) antibody. Consequently, in the grafted heavy chain genes this was also changed to produce a “consensus” human sequence. (Preliminary experiments showed that grafted heavy chain genes containing the EU PR4 sequence expressed very poorly in transient expression systems.)
  • ii. Results with Grafted Heavy Chain Genes
  • Expression of grafted heavy chain genes containing all human framework regions with either gL or cL genes produced a grafted antibody with little ability to bind to mucin. The grafted antibody had about 1% the activity of the chimeric antibody. In these experiments, however, it was noted that the activity of the grafted antibody could be increased to 10% of B72.3 by exposure to pHs of 2-3.5.
  • This observation provided a clue as to how the activity of the grafted antibody could be improved without acid treatment. It was postulated that acid exposure brought: about the protonation of an acidic residue (pKa of aspartic acid=3.86 and of glutamine acid=4.25) which in turn caused a change in structure of the CDR loops, or allowed better access of antigen.
  • From comparison of the sequences of B72.3 (ref. 13) and EU (refs. 4 and 5), it was clear that, in going from the mouse to human frameworks, only two positions had been changed in such a way that acidic residues had been introduced. These positions are at residues 73 and 81, where K to E and Q to E changes had boon made, respectively.
  • Which of these positions might be important was determined by examining the crystal structure of the KOL antibody. In KOL heavy chain, position 81 is far removed from either of the CDR loops.
  • Position 73, however, is close to both CDRs 1 and 3 of the heavy chain and, in this position it was possible to envisage that a K to E change in this region could have a detrimental effect on antigen binding.
  • iii. Framework Changes in B72.3 gH Gene
  • On the basis of the above analysis, E73 was mutated to a lysine (K). It was found that this change had a dramatic effect on the ability of the grafted Ab to bind to mucin. Further the ability of the grafted B72.3 produced by the mutated gH/gL combination to bind to mucin was similar to that of the B72.3 chimeric antibody.
  • iv. Other Framework Changes
  • In the course of the above experiments, other changes were made in the heavy chain framework regions. Within the accuracy of the assays used, none of the changes, either alone or together, appeared beneficial.
  • v. Other
  • All assays used measured the ability of the grafted Ab to bind to mucin and, as a whole, indicated that the single framework change at position 73 is sufficient to generate an antibody with similar binding properties to B72.3.
  • Comparison of the B72.3 murine and EU heavy chain sequences reveals that the mouse and human residues are identical at positions 23, 24, 71 and 78.
  • Thus the mutated CDR-grafted B72.3 heavy chain corresponds to a preferred embodiment of the present invention.
  • EXAMPLE 4
  • CDR-Grafting of a Murine Anti-ICAM-1 Monoclonal Antibody
  • A murine antibody, R6-5-D6 (EP 0314863) having specificity for Intercellular Adhesion Molecule 1 (ICAM-1) was CDR-grafted substantially as described above in previous examples. This work is described in greater detail in co-pending application, British Patent Application No. 9009549.8, the disclosure of which is incorporated herein by reference.
  • The human EU framework was used as the acceptor framework for both heavy and light chains. The CDR-grafted antibody currently of choice is provided by co-expression of grafted light chain gL22LA and grafted heavy chain gH343D which has a binding affinity for ICAM 1 of about 75% of that of the corresponding mouse-human chimeric antibody.
  • Light Chain
  • gL221A has marine CDRs at positions 24-34 (CDR1), 50-56 (CDR2) and 89-97 (CDR3). In addition several framework residues are also the marine amino acid. These residues were chosen after consideration of the possible contribution of these residues to domain packing and stability of the conformation of the antigen binding region. The residues which have been retained as mouse are at positions 2, 3, 48 (?), 60, 84, 85 and 87.
  • Comparison of the murine anti-ICAM 1 and human EU light chain amino acid sequences reveals that the murine and human residues are identical at positions 46, 58 and 71.
  • Heavy Chain
  • gH341D has murine CDRs at positions 26-35 (CDR1), 50-56 (CDR2) and 94-100B (CDR3). In addition murine residues were used in gH341D at positions 24, 48, 69, 71, 73, 80, 88 and 91. Comparison of the murine anti-ICAM 1 and human EU heavy chain amino acid sequences are identical at positions 23, 49 and 78.
  • EXAMPLE 5
  • CDR-Grafting of Murine Anti-TNFα Antibodies
  • A number of murine anti-TNFα monoclonal antibodies were CDR-grafted substantially as described above in previous examples. These antibodies include the murine monoclonal antibodies designated 61 B71, hTNF1, hTNF3 and 101.4 A brief summary of the CDR-grafting of each of these antibodies is given below.
  • 61E71
  • A similar analysis as described above (Example 1, Section 12.1.) was done for 61E71 and for the heavy chain 10 residues were identified at 23, 24, 48, 49, 68, 69, 71, 73, 75 and 88 as residues to potentially retain as murine. The human frameworks chosen for CDR-grafting of this antibody, and the hTNF3 and 101.4 antibodies were RE1 for the light chain and KOL for the heavy chain.
  • Three genes were built, the first of which contained 23, 24, 48, 49, 71 and 73 [gB341(6)] as murine residues. The second gene also had 75 and 88 as murine residues [gH341(8)] while the third gene additionally had 68, 69, 75 and 88 as murine residues [gH341(10)]. Each was co-expressed with gL221, the minimum grafted light chain (CDRs only). The gL221/gH341(6) and gL221/gH341(8) antibodies both bound as well to TNF as murine 61E71. The gL221/gH341(10) antibody did not express and this combination was not taken further.
  • Subsequently the gL221/gH341(6) antibody was assessed in an L929 cell competition assay in which the antibody competes against the TNF receptor on L929 cells for binding to TNF in solution. In this assay the gL221/gH341(6) antibody was approximately 10% as active as murine 61E71.
  • hTNF1
  • hTNF1 is a monoclonal antibody which recognises an epitope on human TNF-. The EU human framework was used for CDR-grafting of both the heavy and light variable domains.
  • Heavy Chain
  • In the CDR-grafted heavy chain (ghTNF1) mouse CDRs were used at positions 26-35 (CDR1), 50-65 (CDR2) and 95-102 (CDR3). Mouse residues were also used in the frameworks at positions 48, 67, 69, 71, 73, 76, 89, 91, 94 and 108. Comparison of the TNF1 mouse and EU human heavy chain residues reveals that these are identical at positions 23, 24, 29 and 78.
  • Light Chain
  • In the CDR-grafted light chain (gLhTNF1) mouse CDRs wre used at positions 24-34 (CDR1), 50-56 (CDR2) and 89-97 (CDR3). In addition mouse residues were used in the frameworks at positions 3, 42, 48, 49, 83, 106 and 108. Comparison of the hTNF1 mouse and EU human light chain residues reveals that these are identical at positions 46, 58 and 71.
  • The grafted hTNF1 heavy chain was co-expressed with the chimeric light chain and the binding ability of the product compared with that of the chimeric light chain/chimeric heavy chain product in a TNF binding assay. The grafted heavy chain product appeared to have binding ability for TNF slightly better than the fully chimeric product.
  • Similarly, a grafted heavy chain/grafted light chain product was co-expressed and compared with the fully chimeric product and found to have closely similar binding properties to the latter product.
  • hTNF3
  • hTNF3 recognises an epitope on human TNP-. The sequence of hTNF3 shows only 21 differences compared to 61E71 in the light and heavy chain variable regions, 10 in the light chain (2 in the CDRs at positions 50, 96 and 8 in the framework at 1, 19, 40, 45, 46, 76, 103 and 106) and 11 in the heavy chain (3 in the CDR regions at positions 52, 60 and 95 and 8 in the framework at 1, 10, 38, 40, 67, 73, 87 and 105). The light and heavy chains of the 61E71 and hTNP3 chimeric antibodies can be exchanged without loss of activity in the direct binding assay. However 61E71 is an order of magnitude less able to compete with the TNF receptor on L929 cells for TNF-a compared to hTNF3. Based on the 61E71 CDR grafting data gL221 and gH341(+23, 24, 48, 49 71 and 73 as mouse) genes have been built for hTNF3 and tested and the resultant grafted antibody binds well to TNF-a, but competes very poorly in the L929 assay. It is possible that in this case also the framework residues identified for OKT3 programme may improve the competitive binding ability of this antibody.
  • 101.4
  • 101.4 is a further marine monoclonal antibody able to recognise human TNF-a. The heavy chain of this antibody shows good homology to KOL and so the CDR-grafting has been based on RE1 for the light chain and KOL for the heavy chain. Several grafted heavy chain genes have been constructed with conservative choices for the CDR's (gH341) and which have one or a small number of non-CDR residues at positions 73, 78 or 77-79 inclusive, as the mouse amino acids. These have been co-expressed with cL or gL221. In all cases binding to TN? equivalent to the chimeric antibody is seen and when co-expressed with cL the resultant antibodies are able to compete well in the L929 assay. However, with gL221 the resultant antibodies are at least an order of magnitude less able to compete for TNF against the TNF receptor on L929 cells.
  • Mouse residues at other positions in the heavy chain, for example, at 23 and 24 together or at 76 have been demonstrated to provide no improvement to the competitive ability of the grafted antibody in the L929 assay.
  • A number of other antibodies including antibodies having specificity for interleukins e.g. IL1 and cancer markers such as carcinoembryonic antigen (CEA) e.g. the monoclonal antibody A5B7 (ref. 21), have been successfully CDR-grafted according to the present invention. It will be appreciated that the foregoing examples are given by way of illustration only and are not intended to limit the scope of the claimed invention. Changes and modifications may be made to the methods described whilst still falling within the spirit and scope of the invention.
  • References
    • 1. Kohler & Milstein, Nature, 265, 295-497, 1975.
    • 2. Chatenoud et al, (1986), J. Immunol. 137, 830-838.
    • 3. Jeffers et al, (1986), Transplantation, 41, 572-578.
    • 4. Begent et al, Br. J. Cancer 62: 487 (1990).
    • 5. Verhoeyen et al, Science, 239, 1534-1536, 1988.
    • 6. Riechmann et al, Nature, 332, 323-324, 1988.
    • 7. Kabat, E. A., Wu, T. T., Reid-Miller, M., Perry, H. M., Gottesman, K. S., 1987, in Sequences of Proteins of Immnological Interest, US Department of Health and Human Services, NIB, USA.
    • 8. Wu, T. T., and Kabat, E. A., 1970, J. Exp. Med. 132 211-250.
    • 9. Queen et al, (1989), Proc. Natl. Acad. Sci. USA, 86, 10029-10033 and WO 90/07861
    • 10. Maniatis et al, Molecular Cloning, Cold Spring Harbor, N.Y., 1989.
    • 11. Primrose and Old, Principles of Gene Manipulation, Blackwell, Oxford, 1980.
    • 12. Sanger, F., Nicklen, S., Coulson, A. R., 1977, Proc. Natl. Acad. Sci. USA, 74 5463
    • 13. Kramer, W., Drutsa, V., Jansen, H.-W., Kramer, B., Plugfelder, M., Fritz, B.-J., 1984, Nucl. Acids Res. 12, 9441
    • 14. Whittle, N., Adair, J., Lloyd, J. C., Jenkins, E., Devine, J., Schlom, J., Raubitshek, A., Colcher, D., Bodmer, H., 1987, Protein Engineering 1, 499.
    • 15. Sikder, S. S., Akolkar, P. N., Kaledas, P. M., Morrison, S. L., Kabat, E. A., 1985, J. Immunol. 135, 4215.
    • 16. Wallick, S. C., Kabat, E. A., Morrison, S. L., 1988, J. Exp. Med. 168, 1099
    • 17. Bebbington, C. R., Published International Patent Application WO 89/01036.
    • 18. Granthan and Perrin 1986, Immunology Today 7, 160.
    • 19. Kozak, M., 1987, J. Mol. Biol. 196, 947.
    • 20. Jones, T. P., Dear, P. H., Foote, J., Neuberger, M. S., Winter, G., 1986, Nature, 321, 522
    • 21. Harwood et al, Br. J. Cancer, 54, 75-82 (1986).

Claims (8)

1-23. (canceled)
24. A humanized immunoglobulin having complementarity determining regions (CDRs) from a donor immunoglobulin and heavy and light chain variable region frameworks from human acceptor immunoglobulin heavy and light chain frameworks, which humanized immunoglobulin specifically binds to an antigen with a binding affinity of at least 108 M−1, wherein the sequence of the humanized immunoglobulin heavy chain variable region framework has 66 variable region framework residues identical to the variable region framework residues of the donor immunoglobulin heavy chain variable region framework and at least 74 residues identical to an acceptor human immunoglobulin heavy chain variable region amino acid sequence:
25. A humanized immunoglobulin having complementarity determining regions (CDRs) from a donor immunoglobulin and heavy and light chain variable region frameworks from acceptor immunoglobulin heavy and light chain frameworks, which humanized immunoglobulin specifically binds to an antigen with an affinity constant of at least about 108 M−1 and a binding affinity similar to that of the donor immunoglobulin, wherein the sequence of the acceptor immunoglobulin heavy chain variable region framework is a consensus sequence of human immunoglobulin heavy chain variable region frameworks.
26. A pharmaceutical composition comprising a humanized immunoglobulin of claim 24 in a pharmaceutically acceptable carrier.
27. A method of producing a humanized immunoglobulin, comprising the steps of:
(1) comparing the sequence of a donor immunoglobulin heavy chain variable region against a collection of sequences of human heavy chain variable regions;
(2) selecting a human heavy chain variable region from the collection of human heavy chain variable regions to provide an acceptor heavy chain variable region, and to maximise homology with said donor sequence;
(3) synthesizing a DNA segment encoding a humanized heavy chain variable region, comprising CDRs from the donor immunoglobulin heavy chain variable region and a variable region framework from the selected acceptor heavy chain variable region;
(4) introducing the DNA segment encoding the humanized immunoglobulin heavy chain variable region and a DNA segment encoding a humanized immunoglobulin light chain variable region into a cell; and
(5) expressing the DNA segments in the cell to produce the humanized immunoglobulin.
28. A method of producing a humanized immunoglobulin, comprising the steps of:
(1) comparing the sequence of a donor immunoglobulin light chain variable region against a collection of sequences of human light chain variable regions;
(2) selecting a human light chain variable region from the collection of human light chain variable regions to provide an acceptor light chain variable region, and to maximise homology with said donor sequence;
(3) synthesizing a DNA segment encoding a humanized light chain variable region, comprising CDRs from the donor immunoglobulin light chain variable region and a variable region framework from the selected acceptor light chain variable region;
(4) introducing the DNA segment encoding the humanized immunoglobulin light chain variable region and a DNA segment encoding a humanized immunoglobulin heavy chain variable region into a cell; and
(5) expressing the DNA segments in the cell to produce the humanized immunoglobulin.
29. A humanized immunoglobulin having complementarity determining regions (CDRs) from a donor immunoglobulin and heavy and light chain variable region frameworks from acceptor immunoglobulin heavy and light chain frameworks, which humanized immunoglobulin specifically binds to an antigen with an affinity constant similar to that of the donor immunoglobulin, wherein the sequence of the acceptor immunoglobulin heavy chain variable region framework is a consensus sequence of human immunoglobulin heavy chain variable region frameworks.
30. A humanized immunoglobulin having complementarity determining regions (CDRs) from a donor immunoglobulin and heavy and light chain variable region frameworks from human acceptor immunoglobulin heavy and light chain frameworks, which humanized immunoglobulin specifically binds to an antigen with a binding affinity similar to that of the donor immunoglobulin, wherein the sequence of the humanized immunoglobulin heavy chain variable region framework has 66 variable region framework residues identical to the variable region framework residues of the donor immunoglobulin heavy chain variable region framework and at least 74 residues identical to an acceptor human immunoglobulin heavy chain variable region amino acid sequence.
US10/937,971 1989-12-21 2004-09-10 Humanised antibodies Abandoned US20050123534A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/937,971 US20050123534A1 (en) 1989-12-21 2004-09-10 Humanised antibodies

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
GB8928874.0 1989-12-21
GB898928874A GB8928874D0 (en) 1989-12-21 1989-12-21 Humanised antibodies
WOPCT/GB90/02017 1990-12-21
PCT/GB1990/002017 WO1991009967A1 (en) 1989-12-21 1990-12-21 Humanised antibodies
US74332991A 1991-09-17 1991-09-17
US08/303,569 US5859205A (en) 1989-12-21 1994-09-07 Humanised antibodies
US84665897A 1997-05-01 1997-05-01
US10/937,971 US20050123534A1 (en) 1989-12-21 2004-09-10 Humanised antibodies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US84665897A Continuation 1989-12-21 1997-05-01

Publications (1)

Publication Number Publication Date
US20050123534A1 true US20050123534A1 (en) 2005-06-09

Family

ID=10668300

Family Applications (10)

Application Number Title Priority Date Filing Date
US08/116,247 Expired - Lifetime US5929212A (en) 1989-12-21 1993-09-03 CD3 specific recombinant antibody
US10/704,071 Expired - Fee Related US7244615B2 (en) 1989-12-21 2003-11-07 Humanized antibodies
US10/704,352 Expired - Fee Related US7241877B2 (en) 1989-12-21 2003-11-07 Humanised antibodies
US10/703,963 Expired - Fee Related US7244832B2 (en) 1989-12-21 2003-11-07 Humanised antibodies
US10/703,344 Expired - Fee Related US7262050B2 (en) 1989-12-21 2003-11-07 Humanised antibodies
US10/937,971 Abandoned US20050123534A1 (en) 1989-12-21 2004-09-10 Humanised antibodies
US10/938,117 Abandoned US20060029593A1 (en) 1989-12-21 2004-09-10 Humanised antibodies
US10/937,949 Abandoned US20050136054A1 (en) 1989-12-21 2004-09-10 Humanised antibodies
US11/284,260 Abandoned US20060073136A1 (en) 1989-12-21 2005-11-21 Humanised antibodies
US11/284,261 Abandoned US20060073137A1 (en) 1989-12-21 2005-11-21 Humanised antibodies

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US08/116,247 Expired - Lifetime US5929212A (en) 1989-12-21 1993-09-03 CD3 specific recombinant antibody
US10/704,071 Expired - Fee Related US7244615B2 (en) 1989-12-21 2003-11-07 Humanized antibodies
US10/704,352 Expired - Fee Related US7241877B2 (en) 1989-12-21 2003-11-07 Humanised antibodies
US10/703,963 Expired - Fee Related US7244832B2 (en) 1989-12-21 2003-11-07 Humanised antibodies
US10/703,344 Expired - Fee Related US7262050B2 (en) 1989-12-21 2003-11-07 Humanised antibodies

Family Applications After (4)

Application Number Title Priority Date Filing Date
US10/938,117 Abandoned US20060029593A1 (en) 1989-12-21 2004-09-10 Humanised antibodies
US10/937,949 Abandoned US20050136054A1 (en) 1989-12-21 2004-09-10 Humanised antibodies
US11/284,260 Abandoned US20060073136A1 (en) 1989-12-21 2005-11-21 Humanised antibodies
US11/284,261 Abandoned US20060073137A1 (en) 1989-12-21 2005-11-21 Humanised antibodies

Country Status (21)

Country Link
US (10) US5929212A (en)
EP (5) EP0626390B1 (en)
JP (4) JP3242913B2 (en)
KR (3) KR100197956B1 (en)
AT (4) ATE129017T1 (en)
AU (4) AU649645B2 (en)
BG (1) BG60462B1 (en)
BR (1) BR9007197A (en)
CA (3) CA2046904C (en)
DE (4) DE69033857T2 (en)
DK (4) DK0460178T3 (en)
ES (4) ES2079638T3 (en)
FI (4) FI108917B (en)
GB (4) GB8928874D0 (en)
GR (2) GR3017734T3 (en)
HU (4) HU217693B (en)
NO (5) NO913229L (en)
RO (3) RO114980B1 (en)
RU (1) RU2112037C1 (en)
WO (3) WO1991009968A1 (en)
ZA (1) ZA9110129B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030165496A1 (en) * 2000-12-06 2003-09-04 Elan Pharmaceuticals, Inc. Humanized antibodies that recognize beta amyloid peptide
US20040082762A1 (en) * 2002-03-12 2004-04-29 Elan Pharmaceuticals, Inc. Humanized antibodies that recognize beta amyloid peptide
US20040087777A1 (en) * 2000-12-06 2004-05-06 Elan Pharmaceuticals, Inc. Humanized antibodies that recognize beta amyloid peptide
US20040171815A1 (en) * 1997-12-02 2004-09-02 Schenk Dale B. Humanized antibodies that recognize beta amyloid peptide
US20040213800A1 (en) * 2003-02-01 2004-10-28 Seubert Peter A. Active immunization to generate antibodies to soluble A-beta
US20040247591A1 (en) * 2000-05-26 2004-12-09 Neuralab Limited Prevention and treatment of amyloidogenic disease
US20050118651A1 (en) * 2003-05-30 2005-06-02 Neuralab Limited Humanized antibodies that recognize beta amyloid peptide
US20060165682A1 (en) * 2004-12-15 2006-07-27 Guriq Basi Humanized antibodies that recognize beta amyloid peptide
US20060257396A1 (en) * 2004-12-15 2006-11-16 Jacobsen Jack S Abeta antibodies for use in improving cognition
US7700751B2 (en) 2000-12-06 2010-04-20 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize β-amyloid peptide
US7790856B2 (en) 1998-04-07 2010-09-07 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize beta amyloid peptide
US7893214B2 (en) 1997-12-02 2011-02-22 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize beta amyloid peptide
US7964192B1 (en) 1997-12-02 2011-06-21 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidgenic disease
US8003097B2 (en) 2007-04-18 2011-08-23 Janssen Alzheimer Immunotherapy Treatment of cerebral amyloid angiopathy
US8491901B2 (en) 2010-11-19 2013-07-23 Toshio Imai Neutralizing anti-CCL20 antibodies
US8613920B2 (en) 2007-07-27 2013-12-24 Janssen Alzheimer Immunotherapy Treatment of amyloidogenic diseases
US8784810B2 (en) 2006-04-18 2014-07-22 Janssen Alzheimer Immunotherapy Treatment of amyloidogenic diseases
US8916165B2 (en) 2004-12-15 2014-12-23 Janssen Alzheimer Immunotherapy Humanized Aβ antibodies for use in improving cognition
US9067981B1 (en) 2008-10-30 2015-06-30 Janssen Sciences Ireland Uc Hybrid amyloid-beta antibodies
US9644025B2 (en) 2007-10-17 2017-05-09 Wyeth Llc Immunotherapy regimes dependent on ApoE status

Families Citing this family (1285)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800815A (en) * 1903-05-05 1998-09-01 Cytel Corporation Antibodies to P-selectin and their uses
CU22545A1 (en) * 1994-11-18 1999-03-31 Centro Inmunologia Molecular OBTAINING A CHEMICAL AND HUMANIZED ANTIBODY AGAINST THE RECEPTOR OF THE EPIDERMAL GROWTH FACTOR FOR DIAGNOSTIC AND THERAPEUTIC USE
US6054561A (en) * 1984-02-08 2000-04-25 Chiron Corporation Antigen-binding sites of antibody molecules specific for cancer antigens
US6548640B1 (en) * 1986-03-27 2003-04-15 Btg International Limited Altered antibodies
US5449760A (en) * 1987-12-31 1995-09-12 Tanox Biosystems, Inc. Monoclonal antibodies that bind to soluble IGE but do not bind IGE on IGE expressing B lymphocytes or basophils
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
CA2071478A1 (en) * 1989-10-27 1991-04-28 Jeffery A. Bluestone Methods and compositions for promoting immunopotentiation
US6406696B1 (en) 1989-10-27 2002-06-18 Tolerance Therapeutics, Inc. Methods of stimulating the immune system with anti-CD3 antibodies
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
US6750325B1 (en) * 1989-12-21 2004-06-15 Celltech R&D Limited CD3 specific recombinant antibody
GB8928874D0 (en) 1989-12-21 1990-02-28 Celltech Ltd Humanised antibodies
US7037496B2 (en) 1989-12-27 2006-05-02 Centocor, Inc. Chimeric immunoglobulin for CD4 receptors
GB9014932D0 (en) 1990-07-05 1990-08-22 Celltech Ltd Recombinant dna product and method
US5770429A (en) * 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
GB9020282D0 (en) * 1990-09-17 1990-10-31 Gorman Scott D Altered antibodies and their preparation
GB9021679D0 (en) * 1990-10-05 1990-11-21 Gorman Scott David Antibody preparation
GB9022543D0 (en) * 1990-10-17 1990-11-28 Wellcome Found Antibody production
US6399062B1 (en) * 1990-11-06 2002-06-04 The United States Of America As Represented By The Secretary Of The Navy Murine monoclonal antibody protective against Plasmodium vivax malaria
DE69126301T2 (en) * 1990-11-27 1998-01-02 Biogen, Inc., Cambridge, Mass. HIV-INDUCED SYNCYTIA BLOCKING ANTI-CD-4 ANTIBODIES
US5994510A (en) * 1990-12-21 1999-11-30 Celltech Therapeutics Limited Recombinant antibodies specific for TNFα
GB9109645D0 (en) * 1991-05-03 1991-06-26 Celltech Ltd Recombinant antibodies
GB9104498D0 (en) * 1991-03-04 1991-04-17 Ks Biomedix Ltd Antibody
US7192584B2 (en) 1991-03-18 2007-03-20 Centocor, Inc. Methods of treating psoriasis with anti-TNF antibodies
US5919452A (en) * 1991-03-18 1999-07-06 New York University Methods of treating TNFα-mediated disease using chimeric anti-TNF antibodies
US6277969B1 (en) 1991-03-18 2001-08-21 New York University Anti-TNF antibodies and peptides of human tumor necrosis factor
US5656272A (en) * 1991-03-18 1997-08-12 New York University Medical Center Methods of treating TNF-α-mediated Crohn's disease using chimeric anti-TNF antibodies
US6284471B1 (en) 1991-03-18 2001-09-04 New York University Medical Center Anti-TNFa antibodies and assays employing anti-TNFa antibodies
DK0610201T4 (en) * 1991-03-18 2008-02-04 Centocor Inc Monoclonal and chimeric antibodies specific for human tumor necrosis factor
US5698195A (en) * 1991-03-18 1997-12-16 New York University Medical Center Methods of treating rheumatoid arthritis using chimeric anti-TNF antibodies
AU668349B2 (en) 1991-04-25 1996-05-02 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human interleukin 6 receptor
US6797492B2 (en) 1991-05-17 2004-09-28 Merck & Co., Inc. Method for reducing the immunogenicity of antibody variable domains
WO1994004679A1 (en) * 1991-06-14 1994-03-03 Genentech, Inc. Method for making humanized antibodies
CA2103059C (en) 1991-06-14 2005-03-22 Paul J. Carter Method for making humanized antibodies
US6800738B1 (en) * 1991-06-14 2004-10-05 Genentech, Inc. Method for making humanized antibodies
GB9115364D0 (en) 1991-07-16 1991-08-28 Wellcome Found Antibody
US6329509B1 (en) 1991-08-14 2001-12-11 Genentech, Inc. Anti-IgE antibodies
US6685939B2 (en) 1991-08-14 2004-02-03 Genentech, Inc. Method of preventing the onset of allergic disorders
DK0528767T3 (en) * 1991-08-21 2000-04-17 Novartis Ag antibody derivatives
AU669124B2 (en) 1991-09-18 1996-05-30 Kyowa Hakko Kirin Co., Ltd. Process for producing humanized chimera antibody
GB9120467D0 (en) * 1991-09-26 1991-11-06 Celltech Ltd Anti-hmfg antibodies and process for their production
GB9122820D0 (en) * 1991-10-28 1991-12-11 Wellcome Found Stabilised antibodies
JPH05244982A (en) * 1991-12-06 1993-09-24 Sumitomo Chem Co Ltd Humanized b-b10
GB9125979D0 (en) * 1991-12-06 1992-02-05 Wellcome Found Antibody
WO1993012220A1 (en) * 1991-12-12 1993-06-24 Berlex Laboratories, Inc. RECOMBINANT AND CHIMERIC ANTIBODIES TO c-erbB-2
US5635177A (en) 1992-01-22 1997-06-03 Genentech, Inc. Protein tyrosine kinase agonist antibodies
US5837822A (en) * 1992-01-27 1998-11-17 Icos Corporation Humanized antibodies specific for ICAM related protein
CA2129663C (en) * 1992-02-06 2005-07-05 James S. Huston Biosynthetic binding protein for cancer marker
GB9206422D0 (en) 1992-03-24 1992-05-06 Bolt Sarah L Antibody preparation
US7381803B1 (en) * 1992-03-27 2008-06-03 Pdl Biopharma, Inc. Humanized antibodies against CD3
EP0563487A1 (en) 1992-03-31 1993-10-06 Laboratoire Europeen De Biotechnologie S.A. Monoclonal antibodies against the interferon receptor, with neutralizing activity against type I interferon
US5646253A (en) * 1994-03-08 1997-07-08 Memorial Sloan-Kettering Cancer Center Recombinant human anti-LK26 antibodies
US6033667A (en) * 1992-05-05 2000-03-07 Cytel Corporation Method for detecting the presence of P-selectin
DE4225853A1 (en) * 1992-08-05 1994-02-10 Behringwerke Ag Granulocyte-binding antibody fragments, their production and use
US6042828A (en) * 1992-09-07 2000-03-28 Kyowa Hakko Kogyo Co., Ltd. Humanized antibodies to ganglioside GM2
US5639641A (en) * 1992-09-09 1997-06-17 Immunogen Inc. Resurfacing of rodent antibodies
US5958708A (en) * 1992-09-25 1999-09-28 Novartis Corporation Reshaped monoclonal antibodies against an immunoglobulin isotype
US6066718A (en) * 1992-09-25 2000-05-23 Novartis Corporation Reshaped monoclonal antibodies against an immunoglobulin isotype
GB9221654D0 (en) * 1992-10-15 1992-11-25 Scotgen Ltd Recombinant human anti-cytomegalovirus antibodies
GB9223377D0 (en) * 1992-11-04 1992-12-23 Medarex Inc Humanized antibodies to fc receptors for immunoglobulin on human mononuclear phagocytes
US5804187A (en) * 1992-11-16 1998-09-08 Cancer Research Fund Of Contra Costa Modified antibodies with human milk fat globule specificity
DE69419721T2 (en) 1993-01-12 2000-04-27 Biogen Inc RECOMBINANT ANTI-VLA4 ANTIBODY MOLECULES
US5885573A (en) * 1993-06-01 1999-03-23 Arch Development Corporation Methods and materials for modulation of the immunosuppressive activity and toxicity of monoclonal antibodies
US6491916B1 (en) 1994-06-01 2002-12-10 Tolerance Therapeutics, Inc. Methods and materials for modulation of the immunosuppresive activity and toxicity of monoclonal antibodies
US6180377B1 (en) * 1993-06-16 2001-01-30 Celltech Therapeutics Limited Humanized antibodies
WO1995001997A1 (en) * 1993-07-09 1995-01-19 Smithkline Beecham Corporation RECOMBINANT AND HUMANIZED IL-1β ANTIBODIES FOR TREATMENT OF IL-1 MEDIATED INFLAMMATORY DISORDERS IN MAN
CA2176237A1 (en) * 1993-11-10 1995-05-18 Richard P. Darveau Treatment of bacterially-induced inflammatory diseases
AU7949394A (en) 1993-11-19 1995-06-06 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human medulloblastomatous cell
GB9325182D0 (en) * 1993-12-08 1994-02-09 T Cell Sciences Inc Humanized antibodies or binding proteins thereof specific for t cell subpopulations exhibiting select beta chain variable regions
US5707622A (en) * 1994-03-03 1998-01-13 Genentech, Inc. Methods for treating ulcerative colitis
US5597710A (en) * 1994-03-10 1997-01-28 Schering Corporation Humanized monoclonal antibodies against human interleukin-4
NZ282849A (en) 1994-03-29 1998-05-27 Celltech Therapeutics Ltd Antibodies against e-selectin; whole antibodies of neutral isotype, being variants of natural antibodies altered in the fc region
WO1995031546A1 (en) * 1994-04-28 1995-11-23 Scotgen Biopharmaceuticals, Inc. Recombinant human anti-varicella zoster virus antibodies
US5773001A (en) * 1994-06-03 1998-06-30 American Cyanamid Company Conjugates of methyltrithio antitumor agents and intermediates for their synthesis
GB9412230D0 (en) * 1994-06-17 1994-08-10 Celltech Ltd Interleukin-5 specific recombiant antibodies
USRE39548E1 (en) * 1994-06-17 2007-04-03 Celltech R&D Limited Interleukin-5 specific recombinant antibodies
US8771694B2 (en) * 1994-08-12 2014-07-08 Immunomedics, Inc. Immunoconjugates and humanized antibodies specific for B-cell lymphoma and leukemia cells
US5874540A (en) * 1994-10-05 1999-02-23 Immunomedics, Inc. CDR-grafted type III anti-CEA humanized mouse monoclonal antibodies
GB9424449D0 (en) * 1994-12-02 1995-01-18 Wellcome Found Antibodies
CA2182946A1 (en) * 1994-12-23 1996-07-04 Raymond John Owens Human phosphodiesterase type ivc, and its production and use
ATE235514T1 (en) * 1994-12-28 2003-04-15 Univ Kentucky MONOCLONAL ANTI-IDIOTYPIC ANTIBODY 3H1 FROM MOUSE
US6949244B1 (en) * 1995-12-20 2005-09-27 The Board Of Trustees Of The University Of Kentucky Murine monoclonal anti-idiotype antibody 11D10 and methods of use thereof
US6551593B1 (en) 1995-02-10 2003-04-22 Millennium Pharmaceuticals, Inc. Treatment of Inflammatory bowel disease by inhibiting binding and/or signalling through α 4 β 7 and its ligands and madcam
US7803904B2 (en) 1995-09-01 2010-09-28 Millennium Pharmaceuticals, Inc. Mucosal vascular addressing and uses thereof
US5795961A (en) * 1995-02-14 1998-08-18 Ludwig Institute For Cancer Research Recombinant human anti-Lewis b antibodies
US5705154A (en) * 1995-03-08 1998-01-06 Schering Corporation Humanized monoclonal antibodies against human interleukin-4
US7429646B1 (en) 1995-06-05 2008-09-30 Human Genome Sciences, Inc. Antibodies to human tumor necrosis factor receptor-like 2
CA2221350A1 (en) * 1995-05-18 1996-11-21 Ortho Pharmaceutical Corporation Induction of immunological tolerance by the use of non-depleting anti-cd4 antibodies
US5712374A (en) * 1995-06-07 1998-01-27 American Cyanamid Company Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates
US7060808B1 (en) 1995-06-07 2006-06-13 Imclone Systems Incorporated Humanized anti-EGF receptor monoclonal antibody
PT833911E (en) 1995-06-07 2004-09-30 Ortho Mcneil Pharm Inc ANTI-FACTOR ANTI-FACTOR ANTI-FACTOR CUTTED WITH CDR AND METHODS FOR THEIR USE
CA2245835A1 (en) * 1995-06-14 1997-01-03 The Regents Of The University Of California Novel high affinity human antibodies to tumor antigens
DE19543039C1 (en) * 1995-11-08 1996-11-21 Medac Klinische Spezialpraep DNA mols. encoding CD30-specific immunoglobulin variable regions
US6090382A (en) * 1996-02-09 2000-07-18 Basf Aktiengesellschaft Human antibodies that bind human TNFα
US7888466B2 (en) 1996-01-11 2011-02-15 Human Genome Sciences, Inc. Human G-protein chemokine receptor HSATU68
MA24512A1 (en) * 1996-01-17 1998-12-31 Univ Vermont And State Agrienl PROCESS FOR THE PREPARATION OF ANTICOAGULATING AGENTS USEFUL IN THE TREATMENT OF THROMBOSIS
HU228630B1 (en) * 1996-02-09 2013-04-29 Abbott Biotech Ltd Use of human anti bodies that bind human tnf-alpha and process for inhibiting of human tnf-alpha activity
US7964190B2 (en) 1996-03-22 2011-06-21 Human Genome Sciences, Inc. Methods and compositions for decreasing T-cell activity
US6635743B1 (en) 1996-03-22 2003-10-21 Human Genome Sciences, Inc. Apoptosis inducing molecule II and methods of use
US6136311A (en) * 1996-05-06 2000-10-24 Cornell Research Foundation, Inc. Treatment and diagnosis of cancer
US6107090A (en) * 1996-05-06 2000-08-22 Cornell Research Foundation, Inc. Treatment and diagnosis of prostate cancer with antibodies to extracellur PSMA domains
EP1378525A3 (en) 1996-06-07 2004-01-14 Neorx Corporation Humanized antibodies that bind to the antigen bound by antibody NR-LU-13 and their use in pretargeting methods
US7147851B1 (en) 1996-08-15 2006-12-12 Millennium Pharmaceuticals, Inc. Humanized immunoglobulin reactive with α4β7 integrin
JP2001515345A (en) * 1996-09-20 2001-09-18 ザ・ジェネラル・ホスピタル・コーポレイション Compositions and methods for enhancing fibrinolysis using antibodies to alpha-2-antiplasmin
UA76934C2 (en) * 1996-10-04 2006-10-16 Chugai Pharmaceutical Co Ltd Reconstructed human anti-hm 1.24 antibody, coding dna, vector, host cell, method for production of reconstructed human antibody, pharmaceutical composition and drug for treating myeloma containing reconstructed human anti-hm 1.24 antibody
US7883872B2 (en) 1996-10-10 2011-02-08 Dyadic International (Usa), Inc. Construction of highly efficient cellulase compositions for enzymatic hydrolysis of cellulose
US6037454A (en) 1996-11-27 2000-03-14 Genentech, Inc. Humanized anti-CD11a antibodies
US6737057B1 (en) * 1997-01-07 2004-05-18 The University Of Tennessee Research Corporation Compounds, compositions and methods for the endocytic presentation of immunosuppressive factors
US6455040B1 (en) 1997-01-14 2002-09-24 Human Genome Sciences, Inc. Tumor necrosis factor receptor 5
US6433147B1 (en) 1997-01-28 2002-08-13 Human Genome Sciences, Inc. Death domain containing receptor-4
US8329179B2 (en) 1997-01-28 2012-12-11 Human Genome Sciences, Inc. Death domain containing receptor 4 antibodies and methods
US7452538B2 (en) 1997-01-28 2008-11-18 Human Genome Sciences, Inc. Death domain containing receptor 4 antibodies and methods
PT1012274E (en) 1997-01-28 2007-08-14 Craig A Rosen Death domain containing receptor 4 (dr4: death receptor 4), member of the tnf-receptor superfamily and binding to trail (ap0-2l)
US6541212B2 (en) 1997-03-10 2003-04-01 The Regents Of The University Of California Methods for detecting prostate stem cell antigen protein
US6872568B1 (en) 1997-03-17 2005-03-29 Human Genome Sciences, Inc. Death domain containing receptor 5 antibodies
CN1184315C (en) * 1997-03-17 2005-01-12 人类基因组科学公司 Death domain containing receptor 5
DE69842174D1 (en) * 1997-04-07 2011-04-21 Genentech Inc Method of producing humanized antibodies by randomized mutagenesis
ES2273415T3 (en) * 1997-04-07 2007-05-01 Genentech, Inc. ANTI-VEGF ANTIBODIES.
US20020032315A1 (en) 1997-08-06 2002-03-14 Manuel Baca Anti-vegf antibodies
US6884879B1 (en) 1997-04-07 2005-04-26 Genentech, Inc. Anti-VEGF antibodies
US20070059302A1 (en) 1997-04-07 2007-03-15 Genentech, Inc. Anti-vegf antibodies
JP2002512624A (en) 1997-05-21 2002-04-23 バイオベーション リミテッド Method for producing non-immunogenic protein
US7052873B2 (en) * 1997-10-03 2006-05-30 Chugai Seiyaku Kabushiki Kaisha Natural human antibody
EP1093457B8 (en) 1998-03-19 2011-02-02 Human Genome Sciences, Inc. Cytokine receptor common gamma chain like
IL138801A0 (en) * 1998-04-03 2001-10-31 Chugai Pharmaceutical Co Ltd Humanized antibody against human tissue factor and process for the preparation thereof
IL138857A0 (en) 1998-04-21 2001-10-31 Micromet Ges For Biomedizinisc Cd19xcd3 specific polypeptides and uses thereof
US7244826B1 (en) 1998-04-24 2007-07-17 The Regents Of The University Of California Internalizing ERB2 antibodies
ES2230848T3 (en) * 1998-04-28 2005-05-01 Smithkline Beecham Corporation MONOCLONAL ANTIBODIES WITH REDUCED IMMUNOGENICITY.
US6455677B1 (en) * 1998-04-30 2002-09-24 Boehringer Ingelheim International Gmbh FAPα-specific antibody with improved producibility
GB9812545D0 (en) 1998-06-10 1998-08-05 Celltech Therapeutics Ltd Biological products
GB9815909D0 (en) * 1998-07-21 1998-09-16 Btg Int Ltd Antibody preparation
US6312689B1 (en) 1998-07-23 2001-11-06 Millennium Pharmaceuticals, Inc. Anti-CCR2 antibodies and methods of use therefor
US6696550B2 (en) 1998-07-23 2004-02-24 Millennium Pharmaceuticals, Inc. Humanized anti-CCR2 antibodies and methods of use therefor
US6727349B1 (en) 1998-07-23 2004-04-27 Millennium Pharmaceuticals, Inc. Recombinant anti-CCR2 antibodies and methods of use therefor
KR100618495B1 (en) 1998-10-06 2006-08-31 마크 아론 에말파브 Transformation system in the field of filamentous fungal hosts: in chrysosporium
US6160099A (en) * 1998-11-24 2000-12-12 Jonak; Zdenka Ludmila Anti-human αv β3 and αv β5 antibodies
DK1133558T4 (en) 1998-11-27 2016-05-17 Ucb Sa Compositions and methods for increasing bone mineralization
US20040009535A1 (en) 1998-11-27 2004-01-15 Celltech R&D, Inc. Compositions and methods for increasing bone mineralization
WO2000050620A2 (en) 1999-02-26 2000-08-31 Human Genome Sciences, Inc. Human endokine alpha and methods of use
US6492497B1 (en) * 1999-04-30 2002-12-10 Cambridge Antibody Technology Limited Specific binding members for TGFbeta1
US20040013667A1 (en) * 1999-06-25 2004-01-22 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US6949245B1 (en) * 1999-06-25 2005-09-27 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
US20030086924A1 (en) * 1999-06-25 2003-05-08 Genentech, Inc. Treatment with anti-ErbB2 antibodies
AU782115B2 (en) * 1999-09-22 2005-07-07 Ortho-Mcneil Pharmaceutical, Inc. Cell based assay
CA2386197A1 (en) * 1999-09-30 2001-04-05 Kyowa Hakko Kogyo Co., Ltd. Complementarity determining region-grafted antibody against ganglioside gd3 and derivative of antibody against ganglioside gd3
US6346249B1 (en) * 1999-10-22 2002-02-12 Ludwig Institute For Cancer Research Methods for reducing the effects of cancers that express A33 antigen using A33 antigen specific immunoglobulin products
US6342587B1 (en) * 1999-10-22 2002-01-29 Ludwig Institute For Cancer Research A33 antigen specific immunoglobulin products and uses thereof
CU22921A1 (en) * 1999-11-16 2004-02-20 Centro Inmunologia Molecular CHEMICAL, HUMANIZED ANTIBODIES AND THE SIMPLE CHAIN FV TYPE FRAGMENT RECOGNIZING ANTIGEN C2. ITS USE IN THE DIAGNOSIS AND TREATMENT OF COLORECTURAL TUMORS
GB0001448D0 (en) 2000-01-21 2000-03-08 Novartis Ag Organic compounds
WO2002043660A2 (en) 2000-11-28 2002-06-06 Mediummune, Inc Methods of administering/dosing anti-rsv antibodies for prophylaxis and treatment
ATE474854T1 (en) * 2000-01-27 2010-08-15 Medimmune Llc RSV NEUTRALIZING ANTIBODIES WITH VERY HIGH AFFINITY
US7229619B1 (en) 2000-11-28 2007-06-12 Medimmune, Inc. Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment
EP1255844B1 (en) * 2000-02-03 2007-09-19 Millennium Pharmaceuticals, Inc. Humanized anti-ccr2 antibodies and methods of use therefor
EP1783227A1 (en) * 2000-02-03 2007-05-09 Millennium Pharmaceuticals, Inc. Humanized anti-CCR2 antibodies and methods of use therefor
AU3495301A (en) 2000-02-11 2001-08-20 Biogen Inc Heterologous polypeptide of the tnf family
DK1481992T3 (en) 2000-02-24 2017-01-30 Washington Univ St Louis Humanized antibodies which sequester amyloid beta peptide
CA2401652A1 (en) * 2000-03-01 2001-09-07 Medimmune, Inc. High potency recombinant antibodies and method for producing them
CA2401993A1 (en) * 2000-03-02 2001-09-07 Abgenix, Inc. Human monoclonal antibodies against oxidized ldl receptor and pharmaceutical uses thereof
JP2003527439A (en) 2000-03-17 2003-09-16 ミレニアム・ファーマシューティカルズ・インコーポレイテッド Method for suppressing stenosis and restenosis using a mixture of anti-CD18 antibody and anti-CCR2 antibody
AU2001259063A1 (en) 2000-04-12 2001-10-30 Human Genome Sciences, Inc. Albumin fusion proteins
US20030158382A1 (en) 2000-04-21 2003-08-21 Nobutaka Wakamiya Novel collectins
GB0013810D0 (en) 2000-06-06 2000-07-26 Celltech Chiroscience Ltd Biological products
US20030031675A1 (en) 2000-06-06 2003-02-13 Mikesell Glen E. B7-related nucleic acids and polypeptides useful for immunomodulation
AU2001282856A1 (en) 2000-06-15 2001-12-24 Human Genome Sciences, Inc. Human tumor necrosis factor delta and epsilon
EP2281843B1 (en) 2000-06-16 2016-10-12 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to BLyS
UA81743C2 (en) 2000-08-07 2008-02-11 Центокор, Инк. HUMAN MONOCLONAL ANTIBODY WHICH SPECIFICALLY BINDS TUMOR NECROSIS FACTOR ALFA (TNFα), PHARMACEUTICAL MIXTURE CONTAINING THEREOF, AND METHOD FOR TREATING ARTHRITIS
GB0020685D0 (en) 2000-08-22 2000-10-11 Novartis Ag Organic compounds
US7060802B1 (en) 2000-09-18 2006-06-13 The Trustees Of Columbia University In The City Of New York Tumor-associated marker
JP2004532608A (en) 2000-10-13 2004-10-28 バイオジェン・アイデック・エムエイ・インコーポレイテッド Humanized anti-LT-β-R antibody
US7179900B2 (en) * 2000-11-28 2007-02-20 Medimmune, Inc. Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment
US6989247B2 (en) 2000-11-28 2006-01-24 Celltech R & D, Inc. Compositions and methods for diagnosing or treating psoriasis
US6855493B2 (en) 2000-11-28 2005-02-15 Medimmune, Inc. Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment
DK1355919T3 (en) 2000-12-12 2011-03-14 Medimmune Llc Molecules with longer half-lives, compositions and uses thereof
OA12589A (en) 2001-01-05 2006-06-08 Abgenix Inc Antibodies to insulin-like growth factor i receptor.
US7754208B2 (en) 2001-01-17 2010-07-13 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
US20020147312A1 (en) * 2001-02-02 2002-10-10 O'keefe Theresa Hybrid antibodies and uses thereof
AU2002250032B2 (en) 2001-02-09 2008-06-05 Human Genome Sciences, Inc. Human G-protein chemokine receptor (CCR5) HDGNR10
KR100899970B1 (en) 2001-02-19 2009-05-28 메르크 파텐트 게엠베하 Method for identification of t-cell epitopes and use for preparing molecules with reeduced immunogenicity
DK1411962T3 (en) 2001-03-15 2011-04-04 Neogenix Oncology Inc Pancreatic cancer therapy with monoclonal drug
US8981061B2 (en) 2001-03-20 2015-03-17 Novo Nordisk A/S Receptor TREM (triggering receptor expressed on myeloid cells) and uses thereof
US8231878B2 (en) 2001-03-20 2012-07-31 Cosmo Research & Development S.P.A. Receptor trem (triggering receptor expressed on myeloid cells) and uses thereof
DK1385864T3 (en) 2001-04-13 2010-08-16 Human Genome Sciences Inc Anti-VEGF-2 antibodies
DK1572874T3 (en) 2001-05-25 2013-12-16 Human Genome Sciences Inc Antibodies that immunospecifically bind to TRAIL receptors
US7348003B2 (en) 2001-05-25 2008-03-25 Human Genome Sciences, Inc. Methods of treating cancer using antibodies that immunospecifically bind to TRAIL receptors
US7361341B2 (en) 2001-05-25 2008-04-22 Human Genome Sciences, Inc. Methods of treating cancer using antibodies that immunospecifically bind to trail receptors
CA2868614A1 (en) 2001-06-08 2002-12-08 Abbott Laboratories (Bermuda) Ltd. Methods of administering anti-tnf.alpha. antibodies
US6867189B2 (en) 2001-07-26 2005-03-15 Genset S.A. Use of adipsin/complement factor D in the treatment of metabolic related disorders
TWI327597B (en) 2001-08-01 2010-07-21 Centocor Inc Anti-tnf antibodies, compositions, methods and uses
DE60226036T9 (en) * 2001-08-03 2016-09-29 Medical & Biological Laboratories Co., Ltd. ANTIBODY THAT DETERMINES THE GM1-GANGLIOSID-BOUND AMYLOID-B PROTEIN AND DNA THAT CODES FOR THIS ANTIBODY
ES2391905T3 (en) 2001-08-17 2012-11-30 Washington University Test method for Alzheimer's disease
US8129504B2 (en) 2001-08-30 2012-03-06 Biorexis Technology, Inc. Oral delivery of modified transferrin fusion proteins
WO2003025124A2 (en) * 2001-09-14 2003-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Immunoglobulin having particular framework scaffold and methods of making and using
GB0124317D0 (en) 2001-10-10 2001-11-28 Celltech R&D Ltd Biological products
CN1604910A (en) * 2001-10-15 2005-04-06 免疫医疗公司 Affinity enhancement agents
EP1441766B1 (en) * 2001-10-16 2011-09-14 MacroGenics West, Inc. Antibodies that bind to cancer-associated antigen cd46 and methods of use thereof
US20040151721A1 (en) 2001-10-19 2004-08-05 O'keefe Theresa Humanized anti-CCR2 antibodies and methods of use therefor
AU2002365926A1 (en) * 2001-10-25 2003-09-02 Euro-Celtique S.A. Compositions and methods directed to anthrax toxin
EP1466177A4 (en) * 2001-12-03 2005-08-17 Abgenix Inc Discovery of therapeutic products
WO2003048731A2 (en) * 2001-12-03 2003-06-12 Abgenix, Inc. Antibody categorization based on binding characteristics
ATE374944T1 (en) * 2001-12-03 2007-10-15 Abgenix Inc IDENTIFICATION OF HIGH-AFFINE MOLECULES THROUGH LIMITED DILUTION SCREENING
GB0129105D0 (en) 2001-12-05 2002-01-23 Celltech R&D Ltd Expression control using variable intergenic sequences
EP1463751B1 (en) 2001-12-21 2013-05-22 Human Genome Sciences, Inc. Albumin fusion proteins
CA2481747A1 (en) 2002-04-12 2003-10-23 Medimmune, Inc. Recombinant anti-interleukin-9 antibodies
US20040009172A1 (en) * 2002-04-26 2004-01-15 Steven Fischkoff Use of anti-TNFalpha antibodies and another drug
AU2003225237A1 (en) 2002-05-01 2003-11-17 Human Genome Sciences, Inc. Antibodies that specifically bind to chemokine beta-4
AU2012244218C1 (en) * 2002-05-02 2016-12-15 Wyeth Holdings Llc. Calicheamicin derivative-carrier conjugates
GB0210121D0 (en) 2002-05-02 2002-06-12 Celltech R&D Ltd Biological products
EP1507556B1 (en) * 2002-05-02 2016-07-27 Wyeth Holdings LLC Calicheamicin derivative-carrier conjugates
IL149820A0 (en) * 2002-05-23 2002-11-10 Curetech Ltd Humanized immunomodulatory monoclonal antibodies for the treatment of neoplastic disease or immunodeficiency
WO2003099226A2 (en) 2002-05-28 2003-12-04 Celltech R & D Limited Antibody peg positional isomers, compositions comprising same, and use thereof
US7563882B2 (en) 2002-06-10 2009-07-21 University Of Rochester Polynucleotides encoding antibodies that bind to the C35 polypeptide
US7425618B2 (en) 2002-06-14 2008-09-16 Medimmune, Inc. Stabilized anti-respiratory syncytial virus (RSV) antibody formulations
US7132100B2 (en) 2002-06-14 2006-11-07 Medimmune, Inc. Stabilized liquid anti-RSV antibody formulations
WO2003105782A2 (en) 2002-06-17 2003-12-24 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Specificity grafting of a murine antibody onto a human framework
US9321832B2 (en) 2002-06-28 2016-04-26 Domantis Limited Ligand
EP1539793A4 (en) 2002-07-01 2006-02-01 Humanized anti-lymphotoyin beta receptor antibodies
MXPA05000815A (en) * 2002-07-19 2005-04-28 Abbott Biotech Ltd TREATMENT OF TNFalpha RELATED DISORDERS.
ATE536188T1 (en) 2002-08-14 2011-12-15 Macrogenics Inc FCGAMMARIIB-SPECIFIC ANTIBODIES AND METHODS OF USE THEREOF
WO2004019886A2 (en) 2002-08-29 2004-03-11 Cytocure Llc Methods for up-regulating antigen expression in tumors
KR20050065587A (en) 2002-10-08 2005-06-29 이뮤노메딕스, 인코오포레이티드 Antibody therapy
CA2502367C (en) 2002-10-16 2013-12-10 Euro-Celtique S.A. Antibodies that bind cell-associated ca 125/o772p and methods of use thereof
MY150740A (en) * 2002-10-24 2014-02-28 Abbvie Biotechnology Ltd Low dose methods for treating disorders in which tnf? activity is detrimental
AU2003304203A1 (en) * 2002-10-29 2005-01-04 Pharmacia Corporation Differentially expressed genes involved in cancer, the polypeptides encoded thereby, and methods of using the same
AU2002368305A1 (en) * 2002-10-31 2004-05-25 Universita'degli Studi Di Roma "La Sapienza" Antimicrobial lipase antibodies their nucleotide and aminoacid sequences and uses thereof
WO2004041865A2 (en) 2002-11-08 2004-05-21 Ablynx N.V. Stabilized single domain antibodies
US7405061B2 (en) * 2002-11-13 2008-07-29 Raven Biotechnologies, Inc. Antigen PIPA and antibodies that bind thereto
EP2258724A1 (en) 2002-11-21 2010-12-08 Celltech R & D, Inc. Modulating immune responses using multimerized anti-CD83 antibodies
CN100369930C (en) 2002-11-26 2008-02-20 Pdl生物制药股份有限公司 Chimeric and humanized antibodies to alpha5beta1 integrin that modulate angiogenesis
CA2510315C (en) 2002-12-20 2014-01-28 Protein Design Labs, Inc. Antibodies against gpr64 and uses thereof
WO2004063351A2 (en) 2003-01-09 2004-07-29 Macrogenics, Inc. IDENTIFICATION AND ENGINEERING OF ANTIBODIES WITH VARIANT Fc REGIONS AND METHODS OF USING SAME
WO2004065417A2 (en) * 2003-01-23 2004-08-05 Genentech, Inc. Methods for producing humanized antibodies and improving yield of antibodies or antigen binding fragments in cell culture
DE10303974A1 (en) 2003-01-31 2004-08-05 Abbott Gmbh & Co. Kg Amyloid β (1-42) oligomers, process for their preparation and their use
WO2004071408A2 (en) * 2003-02-10 2004-08-26 Applied Molecular Evolution, Inc. Aβ BINDING MOLECULES
GB0303337D0 (en) 2003-02-13 2003-03-19 Celltech R&D Ltd Biological products
EP1638587A4 (en) 2003-02-14 2007-04-18 Univ Missouri Contraceptive methods and compositions related to proteasomal interference
CA2516455C (en) 2003-02-20 2012-05-01 Seattle Genetics, Inc. Anti-cd70 antibody-drug conjugates and their use for the treatment of cancer and immune disorders
PT2248899E (en) 2003-03-19 2015-09-23 Biogen Ma Inc Nogo receptor binding protein
EP1460088A1 (en) * 2003-03-21 2004-09-22 Biotest AG Humanized anti-CD4 antibody with immunosuppressive properties
KR20120035234A (en) 2003-04-11 2012-04-13 메디뮨 엘엘씨 Recombinant il-9 antibodies and uses thereof
NZ542866A (en) 2003-04-23 2009-07-31 Medarex Inc Compositions and methods for the therapy of inflammatory bowel disease
US9708410B2 (en) 2003-05-30 2017-07-18 Janssen Biotech, Inc. Anti-tissue factor antibodies and compositions
US7605235B2 (en) 2003-05-30 2009-10-20 Centocor, Inc. Anti-tissue factor antibodies and compositions
GB0312481D0 (en) 2003-05-30 2003-07-09 Celltech R&D Ltd Antibodies
WO2004106381A1 (en) 2003-05-31 2004-12-09 Micromet Ag Pharmaceutical compositions comprising bispecific anti-cd3, anti-cd19 antibody constructs for the treatment of b-cell related disorders
JP4688802B2 (en) 2003-06-16 2011-05-25 セルテック アール アンド ディー, インコーポレイテッド Sclerostin specific antibodies and methods for increasing bone mineralization
US20050163782A1 (en) 2003-06-27 2005-07-28 Biogen Idec Ma Inc. Modified binding molecules comprising connecting peptides
AU2004259727A1 (en) 2003-07-15 2005-02-03 Barros Research Institute Compositions and methods for immunotherapy of cancer and infectious diseases.
CN103880955A (en) * 2003-07-18 2014-06-25 安姆根有限公司 Specific binding agents to hepatocyte growth factor
US7834155B2 (en) 2003-07-21 2010-11-16 Immunogen Inc. CA6 antigen-specific cytotoxic conjugate and methods of using the same
US20050123549A1 (en) * 2003-07-21 2005-06-09 Immunogen Inc. CA6 antigen-specific cytotoxic conjugate and methods of using the same
US7727752B2 (en) 2003-07-29 2010-06-01 Life Technologies Corporation Kinase and phosphatase assays
US20050221383A1 (en) 2003-08-08 2005-10-06 Choong-Chin Liew Osteoarthritis biomarkers and uses thereof
WO2005016967A2 (en) 2003-08-13 2005-02-24 Pfizer Products Inc. Modified human igf-1r antibodies
CA2536238C (en) 2003-08-18 2015-04-07 Medimmune, Inc. Humanization of antibodies
US20060228350A1 (en) * 2003-08-18 2006-10-12 Medimmune, Inc. Framework-shuffling of antibodies
US20050042664A1 (en) * 2003-08-22 2005-02-24 Medimmune, Inc. Humanization of antibodies
GB0321100D0 (en) 2003-09-09 2003-10-08 Celltech R&D Ltd Biological products
NZ546173A (en) * 2003-10-16 2009-04-30 Micromet Ag Multispecific deimmunized CD3-binders
CN1871359B (en) 2003-10-22 2010-11-17 凯克研究生院 Methods of synthesizing heteromultimeric polypeptides in yeast using a haploid mating strategy
EP2251357A1 (en) 2003-11-07 2010-11-17 Ablynx N.V. Camelidae single domain antibodies VHH directed against epidermal growth factor receptor and uses therefor
US7943740B2 (en) * 2003-12-05 2011-05-17 Multimmune Gmbh Compositions and methods for the treatment and diagnosis of neoplastic and infectious diseases
EP1703893B1 (en) 2003-12-23 2012-04-11 Genentech, Inc. Novel anti-il 13 antibodies and uses thereof
PT2311873T (en) 2004-01-07 2018-11-20 Novartis Vaccines & Diagnostics Inc M-csf-specific monoclonal antibody and uses thereof
EP1712566A4 (en) 2004-01-19 2007-09-12 Medical & Biol Lab Co Ltd Inflammatory cytokine inhibitor
EP1729795B1 (en) 2004-02-09 2016-02-03 Human Genome Sciences, Inc. Albumin fusion proteins
CA2561531C (en) 2004-02-10 2017-05-02 The Regents Of The University Of Colorado Inhibition of factor b, the alternative complement pathway and methods related thereto
AU2005227322A1 (en) 2004-03-23 2005-10-06 Biogen Idec Ma Inc. Receptor coupling agents and therapeutic uses thereof
US7973139B2 (en) 2004-03-26 2011-07-05 Human Genome Sciences, Inc. Antibodies against nogo receptor
TW201705980A (en) 2004-04-09 2017-02-16 艾伯維生物技術有限責任公司 Multiple-variable dose regimen for treating TNF[alpha]-related disorders
AU2005258077C1 (en) 2004-06-21 2012-10-25 E. R. Squibb & Sons, L.L.C. Interferon alpha receptor 1 antibodies and their uses
ES2395094T3 (en) 2004-06-24 2013-02-08 Biogen Idec Ma Inc. Treatment of conditions that involve demyelination
US20060019342A1 (en) * 2004-06-25 2006-01-26 Medimmune, Inc. Increasing the production of recombinant antibodies in mammalian cells by site-directed mutagenesis
GB0414886D0 (en) 2004-07-02 2004-08-04 Neutec Pharma Plc Treatment of bacterial infections
WO2006008639A1 (en) 2004-07-16 2006-01-26 Pfizer Products Inc. Combination treatment for non-hematologic malignancies using an anti-igf-1r antibody
PL1781321T3 (en) * 2004-08-02 2014-07-31 Zenyth Operations Pty Ltd A method of treating cancer comprising a vegf-b antagonist
CA2576193A1 (en) 2004-08-03 2006-02-16 Biogen Idec Ma Inc. Taj in neuronal function
US7741299B2 (en) 2004-08-16 2010-06-22 Quark Pharmaceuticals, Inc. Therapeutic uses of inhibitors of RTP801
CA2486285C (en) 2004-08-30 2017-03-07 Viktor S. Goldmakher Immunoconjugates targeting syndecan-1 expressing cells and use thereof
AU2005286770A1 (en) 2004-09-21 2006-03-30 Medimmune, Llc Antibodies against and methods for producing vaccines for respiratory syncytial virus
WO2006041970A2 (en) * 2004-10-08 2006-04-20 Abbott Biotechnology Ltd. Treatment of respiratory syncytial virus (rsv) infection
CA2585717A1 (en) 2004-10-27 2006-05-04 Medimmune Inc. Modulation of antibody specificity by tailoring the affinity to cognate antigens
EP1812068A4 (en) * 2004-10-29 2010-06-09 Medimmune Inc Methods of preventing and treating rsv infections and related conditions
GB0426146D0 (en) 2004-11-29 2004-12-29 Bioxell Spa Therapeutic peptides and method
WO2006061723A2 (en) 2004-12-06 2006-06-15 Kirin Beer Kabushiki Kaisha Human monoclonal antibodies to influenza m2 protein and methods of making and using same
WO2006074399A2 (en) 2005-01-05 2006-07-13 Biogen Idec Ma Inc. Multispecific binding molecules comprising connecting peptides
US20090196850A1 (en) 2005-01-06 2009-08-06 Novo Nordisk A/S Anti-Kir Combination Treatments and Methods
WO2006086242A2 (en) 2005-02-07 2006-08-17 Genenews, Inc. Mild osteoarthritis biomarkers and uses thereof
HUE025945T2 (en) 2005-02-15 2016-07-28 Univ Duke Anti-cd19 antibodies and uses in oncology
EP1858545A2 (en) 2005-03-04 2007-11-28 Curedm Inc. Methods and pharmaceutical compositions for treating type 1 diabetes mellitus and other conditions
AU2006227377B2 (en) 2005-03-18 2013-01-31 Medimmune, Llc Framework-shuffling of antibodies
EP1863531A1 (en) 2005-03-19 2007-12-12 Medical Research Council Improvements in or relating to treatment and prevention of viral infections
CN112480257A (en) 2005-03-23 2021-03-12 根马布股份公司 CD38 antibodies for the treatment of multiple myeloma
EP1868650B1 (en) 2005-04-15 2018-10-03 MacroGenics, Inc. Covalent diabodies and uses thereof
JP5122441B2 (en) 2005-04-19 2013-01-16 シアトル ジェネティックス, インコーポレイテッド Humanized anti-CD70 binding agents and uses thereof
WO2006117910A1 (en) 2005-04-28 2006-11-09 Mochida Pharmaceutical Co., Ltd. Monoclonal antibody against platelet membrane glycoprotein vi
JP5047947B2 (en) 2005-05-05 2012-10-10 デューク ユニバーシティ Anti-CD19 antibody treatment for autoimmune disease
EP2301969B1 (en) 2005-05-06 2015-12-23 ZymoGenetics, Inc. IL-31 monoclonal antibodies and methods of use
WO2006121159A1 (en) * 2005-05-12 2006-11-16 Kyowa Hakko Kogyo Co., Ltd. Humanized cdr-grafted antibody specifically reacting with cd10 and antibody fragment of the same
CN102961746B (en) 2005-05-16 2016-06-15 艾伯维生物技术有限公司 The purposes of TNF α inhibitor for treatment of erosive polyarthritis
EP2365000A3 (en) 2005-05-18 2013-01-16 Ablynx N.V. Improved nanobodiesTM against tumor necrosis factor-alpha
EP1915394B1 (en) 2005-05-20 2021-01-27 Lonza Biologics plc. High-level expression of recombinant antibody in a mammalian host cell
PL3415535T3 (en) 2005-05-20 2021-06-14 Ablynx N.V. Improved nanobodies tm for the treatment of aggregation-mediated disorders
EP2295066B1 (en) 2005-05-25 2016-04-27 CureDM Group Holdings, LLC Peptides, derivatives and analogs thereof, and methods of using same
CN103505728A (en) 2005-05-26 2014-01-15 科罗拉多大学评议会法人机构 Inhibition of alternative complement pathway for treatment of traumatic brain injury, spinal cord injury and related conditions
DK2390267T3 (en) * 2005-06-07 2013-08-26 Esbatech A Novartis Co Llc Stable and soluble antibodies that inhibit TNF (alpha)
KR20080025174A (en) 2005-06-23 2008-03-19 메디뮨 인코포레이티드 Antibody formulations having optimized aggregation and fragmentation profiles
CN101379085B (en) 2005-06-30 2013-03-27 Abbvie公司 IL-12/P40 binding proteins
EP2238986A3 (en) 2005-07-08 2010-11-03 Biogen Idec MA Inc. Sp35 antibodies and uses thereof
WO2007008604A2 (en) 2005-07-08 2007-01-18 Bristol-Myers Squibb Company Single nucleotide polymorphisms associated with dose-dependent edema and methods of use thereof
CA2614640A1 (en) 2005-07-11 2007-01-18 Macrogenics, Inc. Methods for the treatment of autoimmune disorders using immunosuppressive monoclonal antibodies with reduced toxicity
PT2298815E (en) 2005-07-25 2015-07-16 Emergent Product Dev Seattle B-cell reduction using cd37-specific and cd20-specific binding molecules
EP2311876A3 (en) 2005-07-28 2011-04-27 Novartis AG M-CSF-specific monoclonal antibody and uses thereof
ES2526811T3 (en) 2005-08-10 2015-01-15 Macrogenics, Inc. Identification and modification of antibodies with Fc regions variants and methods of use of these
EP2500359A3 (en) 2005-08-19 2012-10-17 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
US7612181B2 (en) 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
US20070041905A1 (en) * 2005-08-19 2007-02-22 Hoffman Rebecca S Method of treating depression using a TNF-alpha antibody
BRPI0615026A8 (en) 2005-08-19 2018-03-06 Abbott Lab double variable domain immunoglobulin and its uses
ES2400520T3 (en) 2005-09-29 2013-04-10 Eisai R&D Management Co., Ltd. Adhesion molecule to T cells and antibody against the molecule
EP1928905B1 (en) 2005-09-30 2015-04-15 AbbVie Deutschland GmbH & Co KG Binding domains of proteins of the repulsive guidance molecule (rgm) protein family and functional fragments thereof, and their use
AU2006301492B2 (en) 2005-10-11 2011-06-09 Amgen Research (Munich) Gmbh Compositions comprising cross-species-specific antibodies and uses thereof
EP1945816B1 (en) 2005-10-21 2011-07-27 GeneNews Inc. Method and apparatus for correlating levels of biomarker products with disease
CN107929731A (en) 2005-11-04 2018-04-20 健泰科生物技术公司 Utilize complement pathway inhibitors to treat ocular diseases
EP1959979A4 (en) 2005-11-04 2010-01-27 Biogen Idec Inc Methods for promoting neurite outgrowth and survival of dopaminergic neurons
WO2007056352A2 (en) 2005-11-07 2007-05-18 The Scripps Research Institute Compositions and methods for controlling tissue factor signaling specificity
TWI461436B (en) 2005-11-25 2014-11-21 Kyowa Hakko Kirin Co Ltd Human monoclonal antibody human cd134 (ox40) and methods of making and using same
KR101667623B1 (en) 2005-11-30 2016-10-19 애브비 인코포레이티드 Monoclonal antibodies against amyloid beta protein and uses thereof
PL1954718T3 (en) 2005-11-30 2015-04-30 Abbvie Inc Anti-a globulomer antibodies, antigen-binding moieties thereof, corresponding hybridomas, nucleic acids, vectors, host cells, methods of producing said antibodies, compositions comprising said antibodies, uses of said antibodies and methods of using said antibodies
CA2631181A1 (en) 2005-12-02 2007-06-07 Biogen Idec Ma Inc. Treatment of conditions involving demyelination
EA018044B1 (en) 2005-12-09 2013-05-30 Юсб Фарма С.А. Antibody molecules having specificity for human il-6
GB0525214D0 (en) 2005-12-12 2006-01-18 Bioinvent Int Ab Biological materials and uses thereof
US8394926B2 (en) 2005-12-21 2013-03-12 Micromet Ag Pharmaceutical compositions with resistance to soluble CEA
DOP2007000015A (en) 2006-01-20 2007-08-31 Quark Biotech Inc THERAPEUTIC USES OF RTP801 INHIBITORS
WO2007082352A1 (en) 2006-01-20 2007-07-26 Child Health Research Institute Inc Method of treatment, prophylaxis and diagnosis of pathologies of the bone
BRPI0707276B1 (en) 2006-01-27 2021-08-31 Biogen Ma Inc NOGO RECEPTOR ANTAGONIST FUSION POLYPEPTIDE
EP2650306A1 (en) 2006-03-06 2013-10-16 Aeres Biomedical Limited Humanized Anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
EP1994055B1 (en) 2006-03-10 2014-07-02 Wyeth LLC Anti-5t4 antibodies and uses thereof
PL2423230T3 (en) 2006-03-27 2013-10-31 Medimmune Ltd Binding member for GM-CSF receptor
CA2911000A1 (en) * 2006-04-05 2007-10-18 Min W. Wan Antibody purification
US9101670B2 (en) 2006-04-07 2015-08-11 Nektar Therapeutics Conjugates of an anti-TNF-α antibody
EP2010214A4 (en) 2006-04-10 2010-06-16 Abbott Biotech Ltd Uses and compositions for treatment of rheumatoid arthritis
US20080118496A1 (en) * 2006-04-10 2008-05-22 Medich John R Uses and compositions for treatment of juvenile rheumatoid arthritis
EP2666472A3 (en) 2006-04-10 2014-04-02 Abbott Biotechnology Ltd Uses and compositions for treatment of psoriatic arthritis
US9605064B2 (en) 2006-04-10 2017-03-28 Abbvie Biotechnology Ltd Methods and compositions for treatment of skin disorders
US20090317399A1 (en) * 2006-04-10 2009-12-24 Pollack Paul F Uses and compositions for treatment of CROHN'S disease
US20080131374A1 (en) * 2006-04-19 2008-06-05 Medich John R Uses and compositions for treatment of rheumatoid arthritis
US8377448B2 (en) 2006-05-15 2013-02-19 The Board Of Trustees Of The Leland Standford Junior University CD47 related compositions and methods for treating immunological diseases and disorders
EP2433650A3 (en) * 2006-06-06 2012-12-19 Tolerrx Inc. Administration of anti-CD3 antibodies in the treatment of autoimmune diseases
AT503690A1 (en) 2006-06-09 2007-12-15 Biomay Ag HYPOALLERGENIC MOLECULES
SG177907A1 (en) 2006-06-14 2012-02-28 Macrogenics Inc Methods for the treatment of autoimmune disorders using immunosuppressive monoclonal antibodies with reduced toxicity
CA2656224C (en) 2006-06-26 2018-01-09 Macrogenics, Inc. Combination of fc.gamma.riib antibodies and cd20-specific antibodies and methods of use thereof
JP5764290B2 (en) * 2006-06-26 2015-08-19 マクロジェニクス,インコーポレーテッド FcγRIIB specific antibodies and methods of use thereof
US7572618B2 (en) 2006-06-30 2009-08-11 Bristol-Myers Squibb Company Polynucleotides encoding novel PCSK9 variants
NO346945B1 (en) 2006-06-30 2023-03-13 Novo Nordisk As Anti-NKG2A antibodies and uses thereof
JP5535623B2 (en) 2006-06-30 2014-07-02 アッヴィ バイオテクノロジー リミテッド Automatic injection device
GB0613209D0 (en) * 2006-07-03 2006-08-09 Ucb Sa Methods
ES2673822T3 (en) 2006-07-18 2018-06-25 Sanofi Antagonist antibody against EphA2 for cancer treatment
JP5102833B2 (en) 2006-07-24 2012-12-19 バイオレクシス ファーマシューティカル コーポレーション Exendin fusion protein
GB0614780D0 (en) 2006-07-25 2006-09-06 Ucb Sa Biological products
CN101626783A (en) 2006-08-04 2010-01-13 诺华有限公司 EPHB3-specific antibody and its application
TW200817438A (en) 2006-08-17 2008-04-16 Hoffmann La Roche A conjugate of an antibody against CCR5 and an antifusogenic peptide
EP2059535B1 (en) 2006-08-18 2013-11-06 Novartis AG Prlr-specific antibody and uses thereof
MX2009002151A (en) 2006-08-28 2009-07-03 Kirin Pharma Kk Antagonistic human light-specific human monoclonal antibodies.
ES2519375T3 (en) 2006-09-01 2014-11-06 Zymogenetics, Inc. IL-31 monoclonal antibodies and use procedures
CN101512008B (en) 2006-09-08 2015-04-01 艾伯维巴哈马有限公司 Interleukin-13 binding proteins
US20100143254A1 (en) 2006-10-16 2010-06-10 Medimmune, Llc Molecules with reduced half-lives, compositions and uses thereof
GB0620729D0 (en) 2006-10-18 2006-11-29 Ucb Sa Biological products
EP1914242A1 (en) 2006-10-19 2008-04-23 Sanofi-Aventis Novel anti-CD38 antibodies for the treatment of cancer
CN101626785A (en) 2006-11-17 2010-01-13 财团法人阪大微生物病研究会 Nerve elongation promoter and elongation inhibitor
WO2008064306A2 (en) 2006-11-22 2008-05-29 Curedm, Inc. Methods and compositions relating to islet cell neogenesis
WO2008152446A2 (en) 2006-11-27 2008-12-18 Patrys Limited Novel glycosylated peptide target in neoplastic cells
TW200831528A (en) 2006-11-30 2008-08-01 Astrazeneca Ab Compounds
US8455626B2 (en) 2006-11-30 2013-06-04 Abbott Laboratories Aβ conformer selective anti-aβ globulomer monoclonal antibodies
PL2099823T5 (en) 2006-12-01 2023-02-20 Seagen Inc. Variant target binding agents and uses thereof
CN101678100A (en) 2006-12-06 2010-03-24 米迪缪尼有限公司 methods of treating systemic lupus erythematosus
WO2008070780A1 (en) 2006-12-07 2008-06-12 Novartis Ag Antagonist antibodies against ephb3
WO2008073914A2 (en) 2006-12-10 2008-06-19 Dyadic International Inc. Expression and high-throughput screening of complex expressed dna libraries in filamentous fungi
AR064388A1 (en) 2006-12-18 2009-04-01 Genentech Inc ANTI-NOTCH3 ANTAGONIST ANTIBODIES AND ITS USE IN THE PREVENTION AND TREATMENT OF DISEASES RELATED TO THE NOTCH3 RECEIVER
EP2557090A3 (en) 2006-12-19 2013-05-29 Ablynx N.V. Amino acid sequences directed against GPCRs and polypeptides comprising the same for the treatment of GPCR-related diseases and disorders
WO2008074840A2 (en) 2006-12-19 2008-06-26 Ablynx N.V. Amino acid sequences directed against a metalloproteinase from the adam family and polypeptides comprising the same for the treatment of adam-related diseases and disorders
SG177966A1 (en) 2007-01-09 2012-02-28 Biogen Idec Inc Sp35 antibodies and uses thereof
US8128926B2 (en) 2007-01-09 2012-03-06 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
ES2825718T3 (en) 2007-02-01 2021-05-17 Univ Der Johannes Gutenberg Univ Mainz Specific activation of a regulatory T cell and its use for the treatment of asthma, allergic diseases, autoimmune diseases, graft rejection and for the induction of tolerance
WO2008098139A2 (en) 2007-02-07 2008-08-14 The Regents Of The University Of Colorado Axl tyrosine kinase inhibitors and methods of making and using the same
EP1958645A1 (en) 2007-02-13 2008-08-20 Biomay AG Peptides derived from the major allergen of ragweed (Ambrosia artemisiifolia) and uses thereof
AR065368A1 (en) 2007-02-15 2009-06-03 Astrazeneca Ab ANTIBODIES FOR IGE MOLECULES
US8114606B2 (en) 2007-02-16 2012-02-14 The Board Of Trustees Of Southern Illinois University ARL-1 specific antibodies
US8685666B2 (en) 2007-02-16 2014-04-01 The Board Of Trustees Of Southern Illinois University ARL-1 specific antibodies and uses thereof
EP2124952A2 (en) 2007-02-27 2009-12-02 Abbott GmbH & Co. KG Method for the treatment of amyloidoses
CL2008000707A1 (en) 2007-03-13 2008-09-22 Hoffmann La Roche CONJUGATE OF ANTIFUSOGENIC POLYPEPTIDES AND POLYPEPTIDES DERIVED FROM THE GLOBULAR HEAD OF THE COMPLEMENT FACTOR C1Q; PHARMACEUTICAL COMPOSITION THAT UNDERSTANDS IT; ITS USE TO TREAT VIRIC INFECTIONS; AND PRODUCTION METHOD.
GEP20146112B (en) 2007-03-22 2014-06-25 Ucb Pharma Sa Binding proteins, including antibodies, antibody derivatives and antibody fragments, that specifically bind cd154 and usage thereof
US8557588B2 (en) * 2007-03-27 2013-10-15 Schlumberger Technology Corporation Methods and apparatus for sampling and diluting concentrated emulsions
EP2077859A4 (en) 2007-03-30 2010-11-24 Medimmune Llc Antibody formulation
ES2540807T3 (en) 2007-05-04 2015-07-13 Technophage, Investigação E Desenvolvimento Em Biotecnologia, Sa Variable domains of rabbit antibodies modified by genetic engineering and uses thereof
NO3072525T3 (en) 2007-05-14 2018-06-30
AU2007353779B2 (en) 2007-05-17 2013-11-07 Genentech, Inc. Crystal structures of neuropilin fragments and neuropilin-antibody complexes
CA2688146C (en) 2007-05-21 2018-03-06 Alder Biopharmaceuticals, Inc. Antibodies to il-6 and use thereof
US7906117B2 (en) 2007-05-21 2011-03-15 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat cachexia, weakness, fatigue, and/or fever
US8062864B2 (en) 2007-05-21 2011-11-22 Alderbio Holdings Llc Nucleic acids encoding antibodies to IL-6, and recombinant production of anti-IL-6 antibodies
NZ601583A (en) * 2007-05-21 2013-08-30 Bristol Myers Squibb Co Novel rabbit antibody humanization methods and humanized rabbit antibodies
US8404235B2 (en) 2007-05-21 2013-03-26 Alderbio Holdings Llc Antagonists of IL-6 to raise albumin and/or lower CRP
US8178101B2 (en) 2007-05-21 2012-05-15 Alderbio Holdings Inc. Use of anti-IL-6 antibodies having specific binding properties to treat cachexia
US8252286B2 (en) 2007-05-21 2012-08-28 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US9701747B2 (en) 2007-05-21 2017-07-11 Alderbio Holdings Llc Method of improving patient survivability and quality of life by anti-IL-6 antibody administration
EP1997830A1 (en) 2007-06-01 2008-12-03 AIMM Therapeutics B.V. RSV specific binding molecules and means for producing them
WO2008154543A2 (en) 2007-06-11 2008-12-18 Abbott Biotechnology Ltd. Methods for treating juvenile idiopathic arthritis
US8613923B2 (en) 2007-06-12 2013-12-24 Ac Immune S.A. Monoclonal antibody
US8048420B2 (en) 2007-06-12 2011-11-01 Ac Immune S.A. Monoclonal antibody
PL2158221T3 (en) 2007-06-21 2019-02-28 Macrogenics, Inc. Covalent diabodies and uses thereof
GB0712503D0 (en) 2007-06-27 2007-08-08 Therapeutics Pentraxin Ltd Use
CL2008002092A1 (en) 2007-07-20 2009-05-29 Hoffmann La Roche Conjugate containing two or more antifusogenic peptides and an anti-cd-4 antibody; Method of production; pharmaceutical composition comprising it; antifusogenic polypeptides and use of the conjugate to treat viral infections.
NO2195023T3 (en) 2007-08-29 2018-08-04
MX337147B (en) 2007-08-30 2016-02-15 Curedm Group Holdings Llc Compositions and methods of using proislet peptides and analogs thereof.
US8840906B2 (en) * 2007-08-31 2014-09-23 The University Of Chicago Methods and compositions related to immunizing against Staphylococcal lung disease and conditions
GB0717337D0 (en) 2007-09-06 2007-10-17 Ucb Pharma Sa Method of treatment
EP2197893B1 (en) 2007-09-07 2013-07-24 Dyadic International, Inc. Novel fungal enzymes
JP2010539243A (en) 2007-09-18 2010-12-16 ラ ホヤ インスティテュート フォア アラージー アンド イムノロジー LIGHT inhibitors for the treatment of asthma, lung and airway inflammation, respiratory, interstitial, pulmonary and fibrotic diseases
ES2622460T3 (en) 2007-09-26 2017-07-06 Ucb Biopharma Sprl Fusions of antibodies with double specificity
BRPI0818623A2 (en) * 2007-10-05 2017-05-23 Ac Immune Sa pharmaceutical composition, and methods for reducing plaque burden in an animal's retinal ganglion cell layer, for reducing the amount of plaque in an animal's retinal ganglion cell layer, for decreasing the total amount of soluble beta-amyloid retinal ganglion cell layer of an animal to prevent, treat and / or alleviate the effects of eye disease associated with pathological abnormalities / changes in visual system tissue, to monitor minimal residual eye disease associated with pathological abnormalities / changes in visual system tissues, to predict a patient's responsiveness, and to retain or decrease eye pressure in an animal's eyes
AU2008311367B2 (en) 2007-10-05 2014-11-13 Ac Immune S.A. Use of anti-amyloid beta antibody in ocular diseases
EP2050764A1 (en) 2007-10-15 2009-04-22 sanofi-aventis Novel polyvalent bispecific antibody format and uses thereof
DK2219452T3 (en) 2007-11-05 2016-01-11 Medimmune Llc PROCESSES FOR THE TREATMENT OF scleroderma.
CA2703519C (en) 2007-11-09 2017-04-18 The Salk Institute For Biological Studies Use of tam receptor inhibitors as immunoenhancers and tam activators as immunosuppressors
WO2009070648A2 (en) 2007-11-27 2009-06-04 Medtronic, Inc. Humanized anti-amyloid beta antibodies
JP5490714B2 (en) 2007-11-28 2014-05-14 メディミューン,エルエルシー Protein preparation
AU2008333131B2 (en) 2007-12-07 2013-10-24 Merck Serono S/A Humanized antibody molecules specific for IL-31
BRPI0821658B8 (en) 2007-12-14 2021-05-25 Novo Nordisk As human monoclonal antibody or an antigen-binding fragment thereof that binds to hnkg2d and its uses
MX2010007101A (en) 2007-12-26 2011-07-01 Biotest Ag Methods and agents for improving targeting of cd138 expressing tumor cells.
KR101642846B1 (en) 2007-12-26 2016-07-26 백시넥스 인코포레이티드 Anti-C35 antibody combination therapies and methods
WO2009080831A1 (en) 2007-12-26 2009-07-02 Biotest Ag Method of decreasing cytotoxic side-effects and improving efficacy of immunoconjugates
JP5990365B2 (en) 2007-12-26 2016-09-14 バイオテスト・アクチエンゲゼルシヤフト Agents targeting CD138 and uses thereof
JP5817034B2 (en) 2007-12-26 2015-11-18 バイオテスト・アクチエンゲゼルシヤフト Immune complex targeting CD138 and use thereof
GB0800277D0 (en) 2008-01-08 2008-02-13 Imagination Tech Ltd Video motion compensation
EP2388323B1 (en) * 2008-01-11 2016-04-13 Gene Techno Science Co., Ltd. Humanized anti-9 integrin antibodies and the uses thereof
KR20100120289A (en) 2008-01-15 2010-11-15 애보트 게엠베하 운트 콤파니 카게 Powdered protein compositions and methods of making same
MX2010007767A (en) 2008-01-18 2010-08-09 Medimmune Llc Cysteine engineered antibodies for site-specific conjugation.
MX2010007935A (en) 2008-01-24 2010-08-23 Novo Nordisk As Humanized anti-human nkg2a monoclonal antibody.
ES2618292T3 (en) 2008-01-31 2017-06-21 Inserm - Institut National De La Sante Et De La Recherche Medicale Antibodies against and use of human CD39 to inhibit the activity of regulatory T cells
WO2009100309A2 (en) 2008-02-08 2009-08-13 Medimmune, Llc Anti-ifnar1 antibodies with reduced fc ligand affinity
US8962803B2 (en) 2008-02-29 2015-02-24 AbbVie Deutschland GmbH & Co. KG Antibodies against the RGM A protein and uses thereof
KR20100135257A (en) 2008-03-13 2010-12-24 바이오테스트 아게 Agent for treating disease
CA2718191C (en) 2008-03-13 2018-05-15 Biotest Ag Agent for treating disease
AU2009224690B2 (en) 2008-03-13 2014-10-09 Biotest Ag Agent for treating disease
EP2260102A1 (en) 2008-03-25 2010-12-15 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating cancer by down-regulating frizzled-4 and/or frizzled-1
WO2009119794A1 (en) 2008-03-27 2009-10-01 タカラバイオ株式会社 Prophylactic/therapeutic agent for infectious disease
US9908943B2 (en) 2008-04-03 2018-03-06 Vib Vzw Single domain antibodies capable of modulating BACE activity
EP2281005B1 (en) 2008-04-03 2013-11-20 Vib Vzw Single domain antibodies capable of modulating bace1 activity
EP2947097A1 (en) 2008-04-07 2015-11-25 Ablynx N.V. Amino acid sequences directed against the Notch pathways and uses thereof
WO2009126944A1 (en) 2008-04-11 2009-10-15 Trubion Pharmaceuticals, Inc. Cd37 immunotherapeutic and combination with bifunctional chemotherapeutic thereof
GB0807413D0 (en) 2008-04-23 2008-05-28 Ucb Pharma Sa Biological products
US8614296B2 (en) 2008-04-24 2013-12-24 Gene Techno Science Co., Ltd. Humanized antibodies specific for amino acid sequence RGD of an extracellular matrix protein and the uses thereof
US9029508B2 (en) 2008-04-29 2015-05-12 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
CN102076865B (en) 2008-05-02 2016-03-16 西雅图基因公司 The antibody reduced for the manufacture of core fucosylation and the method and composition of antibody derivatives
ES2579554T3 (en) 2008-05-09 2016-08-12 Abbvie Deutschland Gmbh & Co Kg Antibodies for the recipient of advanced glycation terminal products (RAGE) and uses thereof
US9212226B2 (en) 2008-05-16 2015-12-15 Ablynx N.V. Amino acid sequences directed against CXCR4 and other GPCRs and compounds comprising the same
EP2304439A4 (en) 2008-05-29 2012-07-04 Nuclea Biotechnologies Llc Anti-phospho-akt antibodies
EP2297186B1 (en) 2008-05-29 2018-08-29 The Government of The United States of America, as represented by the Secretary, Department of Health and Human Services, Expression and assembly of human group c rotavirus-like particles and uses thereof
PE20100092A1 (en) 2008-06-03 2010-03-12 Abbott Lab IMMUNOGLOBULIN WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
PE20100054A1 (en) 2008-06-03 2010-03-03 Abbott Lab DUAL VARIABLE DOMAIN IMMUNOGLOBULIN
CA2728347A1 (en) 2008-06-16 2010-01-14 Patrys Limited Lm-1 antibodies, functional fragments, lm-1 target antigen, and methods for making and using same
AU2009264567B2 (en) * 2008-06-25 2014-06-12 Novartis Ag Humanization of rabbit antibodies using a universal antibody framework
CN102143976B (en) 2008-06-25 2015-11-25 艾斯巴技术-诺华有限责任公司 Suppress the stable of VEGF and soluble antibodies
WO2009155723A2 (en) * 2008-06-25 2009-12-30 Esbatech, An Alcon Biomedical Research Unit Llc STABLE AND SOLUBLE ANTIBODIES INHIBITING TNFα
RU2011104348A (en) 2008-07-08 2012-08-20 Эбботт Лэборетриз (Us) IMMUNOGLOBULINS WITH DOUBLE VARIABLE DOMAIN AGAINST PROSTAGLANDINE E2 AND THEIR APPLICATION
EP2810654A1 (en) 2008-07-08 2014-12-10 AbbVie Inc. Prostaglandin E2 binding proteins and uses thereof
WO2010005570A2 (en) 2008-07-09 2010-01-14 Biogen Idec Ma Inc. Compositions comprising antibodies to lingo or fragments thereof
EP2324852B1 (en) 2008-08-07 2015-07-08 Nagasaki University Therapeutic or prophylactic agent for generalized pain syndrome
JP5611210B2 (en) 2008-09-07 2014-10-22 グリコネックス インコーポレイテッド Anti-expanded type I glycosphingolipid antibodies, derivatives and uses thereof
US8937046B2 (en) 2008-09-22 2015-01-20 The Regents Of The University Of Colorado, A Body Corporate Modulating the alternative complement pathway
CA2738565C (en) 2008-10-01 2023-10-10 Micromet Ag Cross-species-specific psmaxcd3 bispecific single chain antibody
EP2352765B1 (en) 2008-10-01 2018-01-03 Amgen Research (Munich) GmbH Cross-species-specific single domain bispecific single chain antibody
US8481033B2 (en) 2008-10-07 2013-07-09 INSERM (Institute National de la Santé et de la Recherche Médicale) Neutralizing antibodies and fragments thereof directed against platelet factor-4 variant 1 (PF4V1)
US20120251502A1 (en) 2008-10-24 2012-10-04 The Government of the US as Represented by the Secretary of the Dept. of health Human Ebola Virus Species and Compositions and Methods Thereof
US8415291B2 (en) 2008-10-31 2013-04-09 Centocor Ortho Biotech Inc. Anti-TNF alpha fibronectin type III domain based scaffold compositions, methods and uses
US8642280B2 (en) 2008-11-07 2014-02-04 Novartis Forschungsstiftung Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Teneurin and cancer
US8298533B2 (en) 2008-11-07 2012-10-30 Medimmune Limited Antibodies to IL-1R1
US8323649B2 (en) 2008-11-25 2012-12-04 Alderbio Holdings Llc Antibodies to IL-6 and use thereof
US8992920B2 (en) 2008-11-25 2015-03-31 Alderbio Holdings Llc Anti-IL-6 antibodies for the treatment of arthritis
US9212223B2 (en) 2008-11-25 2015-12-15 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US8420089B2 (en) 2008-11-25 2013-04-16 Alderbio Holdings Llc Antagonists of IL-6 to raise albumin and/or lower CRP
US9452227B2 (en) 2008-11-25 2016-09-27 Alderbio Holdings Llc Methods of treating or diagnosing conditions associated with elevated IL-6 using anti-IL-6 antibodies or fragments
US8337847B2 (en) 2008-11-25 2012-12-25 Alderbio Holdings Llc Methods of treating anemia using anti-IL-6 antibodies
EP2191843A1 (en) 2008-11-28 2010-06-02 Sanofi-Aventis Antitumor combinations containing antibodies recognizing specifically CD38 and cyclophosphamide
EP2191841A1 (en) 2008-11-28 2010-06-02 Sanofi-Aventis Antitumor combinations containing antibodies recognizing specifically CD38 and vincristine
EP2191842A1 (en) 2008-11-28 2010-06-02 Sanofi-Aventis Antitumor combinations containing antibodies recognizing specifically CD38 and cytarabine
EP2191840A1 (en) 2008-11-28 2010-06-02 Sanofi-Aventis Antitumor combinations containing antibodies recognizing specifically CD38 and melphalan
EP2198884A1 (en) 2008-12-18 2010-06-23 Centre National de la Recherche Scientifique (CNRS) Monoclonal antibodies directed against LG4-5 domain of alpha3 chain of human laminin-5
AU2009335798B2 (en) 2008-12-19 2014-11-27 Macrogenics, Inc. Covalent diabodies and uses thereof
AU2009334498A1 (en) 2008-12-31 2011-07-21 Biogen Idec Ma Inc. Anti-lymphotoxin antibodies
GB0900425D0 (en) 2009-01-12 2009-02-11 Ucb Pharma Sa Biological products
WO2010082134A1 (en) 2009-01-14 2010-07-22 Iq Therapeutics Bv Combination antibodies for the treatment and prevention of disease caused by bacillus anthracis and related bacteria and their toxins
KR101245929B1 (en) 2009-01-20 2013-03-22 호메이욘 에이치. 자데흐 Antibody mediated osseous regeneration
TW201031421A (en) 2009-01-29 2010-09-01 Abbott Lab IL-1 binding proteins
US8852608B2 (en) 2009-02-02 2014-10-07 Medimmune, Llc Antibodies against and methods for producing vaccines for respiratory syncytial virus
US20110014190A1 (en) 2009-02-12 2011-01-20 Human Genome Sciences, Inc. Use of b lymphocyte stimulator protein antagonists to promote transplantation tolerance
ES2712732T3 (en) 2009-02-17 2019-05-14 Cornell Res Foundation Inc Methods and kits for the diagnosis of cancer and the prediction of therapeutic value
JP5782385B2 (en) 2009-02-17 2015-09-24 ユーシービー ファーマ ソシエテ アノニム Antibody molecule having specificity for human OX40
GB0902916D0 (en) 2009-02-20 2009-04-08 Fusion Antibodies Ltd Antibody therapy
US8030026B2 (en) 2009-02-24 2011-10-04 Abbott Laboratories Antibodies to troponin I and methods of use thereof
RU2015132478A (en) 2009-03-05 2015-12-10 Эббви Инк. BINDING IL-17 PROTEINS
WO2010100247A1 (en) 2009-03-06 2010-09-10 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Novel therapy for anxiety
CN102333791B (en) 2009-03-10 2014-06-25 株式会社遗传科技 Generation, expression and characterization of the humanized k33n monoclonal antibody
GB0904214D0 (en) 2009-03-11 2009-04-22 Ucb Pharma Sa Biological products
MA33194B1 (en) * 2009-03-16 2012-04-02 Cephalon Australia Pty Ltd HUMANIZED ANTIBODIES HAVING ANTITUMOR ACTIVITY
EP3002296B1 (en) 2009-03-17 2020-04-29 Université d'Aix-Marseille Btla antibodies and uses thereof
JPWO2010110346A1 (en) 2009-03-24 2012-10-04 独立行政法人理化学研究所 Leukemia stem cell marker
JP2012521216A (en) 2009-03-24 2012-09-13 テバ バイオファーマスーティカルズ ユーエスエー,インコーポレーテッド Humanized antibodies against LIGHT and uses thereof
EP2417163B1 (en) 2009-04-10 2019-02-27 Ablynx N.V. Improved amino acid sequences directed against il-6r and polypeptides comprising the same for the treatment of il-6r related diseases and disorders
ES2571235T3 (en) 2009-04-10 2016-05-24 Kyowa Hakko Kirin Co Ltd Procedure for the treatment of a blood tumor that uses the anti-TIM-3 antibody
EP2241323A1 (en) 2009-04-14 2010-10-20 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Tenascin-W and brain cancers
US8722860B2 (en) 2009-04-16 2014-05-13 Abbvie Biotherapeutics Inc. Anti-TNF-α antibodies and their uses
PT2426148E (en) 2009-04-27 2015-10-26 Kyowa Hakko Kirin Co Ltd Anti-il-3ra antibody for use in treatment of blood tumor
US9309325B2 (en) 2009-05-07 2016-04-12 The Regents Of The University Of California Antibodies and methods of use thereof
FR2945538B1 (en) 2009-05-12 2014-12-26 Sanofi Aventis HUMANIZED ANTIBODIES SPECIFIC TO THE PROTOFIBRILLARY FORM OF THE BETA-AMYLOID PEPTIDE.
HUE035773T2 (en) 2009-06-05 2018-05-28 Ablynx Nv Trivalent anti human respiratory syncytial virus (hrsv) nanobody constructs for the prevention and/or treatment of respiratory tract infections
EP2440934B1 (en) 2009-06-08 2014-07-16 Vib Vzw Screening for compounds that modulate gpr3-mediated beta-arrestin signaling and amyloid beta peptide generation
US8609097B2 (en) * 2009-06-10 2013-12-17 Hoffmann-La Roche Inc. Use of an anti-Tau pS422 antibody for the treatment of brain diseases
EP2443149B1 (en) 2009-06-15 2016-08-10 Vib Vzw Bace1 inhibitory antibodies
MX346002B (en) 2009-06-17 2017-03-01 Abbvie Biotherapeutics Inc Anti-vegf antibodies and their uses.
EP2711018A1 (en) 2009-06-22 2014-03-26 MedImmune, LLC Engineered Fc regions for site-specific conjugation
ME01699B (en) 2009-07-02 2014-09-20 Musc Found For Res Dev Methods of stimulating liver regeneration
CN102711791A (en) 2009-07-03 2012-10-03 比奥诺尔免疫有限公司 HIV related peptides combination or fusion for use in HIV vaccine composition or as diagnostic means
US8840889B2 (en) 2009-08-13 2014-09-23 The Johns Hopkins University Methods of modulating immune function
CA2770737C (en) 2009-08-13 2020-05-12 Crucell Holland B.V. Antibodies against human respiratory syncytial virus (rsv) and methods of use
EP2292266A1 (en) 2009-08-27 2011-03-09 Novartis Forschungsstiftung, Zweigniederlassung Treating cancer by modulating copine III
CN102002104A (en) 2009-08-28 2011-04-06 江苏先声药物研究有限公司 Anti-VEGF monoclonal antibody and medicinal composition containing same
EP3029070A1 (en) 2009-08-29 2016-06-08 AbbVie Inc. Therapeutic dll4 binding proteins
US20110053209A1 (en) 2009-08-31 2011-03-03 Facet Biotech Corporation Use of an immunoregulatory nk cell population for monitoring the efficacy of anti-il-2r antibodies in multiple sclerosis patients
NZ598929A (en) 2009-09-01 2014-05-30 Abbvie Inc Dual variable domain immunoglobulins and uses thereof
EP2480573A1 (en) 2009-09-22 2012-08-01 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating cancer by modulating mex-3
GB201005063D0 (en) 2010-03-25 2010-05-12 Ucb Pharma Sa Biological products
TW201116297A (en) 2009-10-02 2011-05-16 Sanofi Aventis Antibodies that specifically bind to the EphA2 receptor
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
SI2486141T1 (en) 2009-10-07 2018-06-29 Macrogenics, Inc. Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and methods for their use
WO2011045352A2 (en) 2009-10-15 2011-04-21 Novartis Forschungsstiftung Spleen tyrosine kinase and brain cancers
AR078651A1 (en) 2009-10-15 2011-11-23 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
CN102791735B (en) 2009-10-16 2016-05-18 瑟维尔实验室 Monoclonal antibody of anti-progastrin and uses thereof
GB0922434D0 (en) 2009-12-22 2010-02-03 Ucb Pharma Sa antibodies and fragments thereof
CA2778673A1 (en) 2009-10-27 2011-05-05 Karen Margrete Miller Function modifying nav 1.7 antibodies
GB0922435D0 (en) 2009-12-22 2010-02-03 Ucb Pharma Sa Method
US9234037B2 (en) 2009-10-27 2016-01-12 Ucb Biopharma Sprl Method to generate antibodies to ion channels
US8658175B2 (en) 2009-10-28 2014-02-25 Abbvie Biotherapeutics Inc. Anti-EGFR antibodies and their uses
UY32979A (en) 2009-10-28 2011-02-28 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
US9273283B2 (en) 2009-10-29 2016-03-01 The Trustees Of Dartmouth College Method of producing T cell receptor-deficient T cells expressing a chimeric receptor
WO2011059836A2 (en) 2009-10-29 2011-05-19 Trustees Of Dartmouth College T cell receptor-deficient t cell compositions
US20120213801A1 (en) 2009-10-30 2012-08-23 Ekaterina Gresko Phosphorylated Twist1 and cancer
CA2774286A1 (en) 2009-10-30 2011-05-05 Abbott Biotherapeutics Corp. Use of immunoregulatory nk cell populations for predicting the efficacy of anti-il-2r antibodies in multiple sclerosis patients
TW201121568A (en) 2009-10-31 2011-07-01 Abbott Lab Antibodies to receptor for advanced glycation end products (RAGE) and uses thereof
EP2496257A4 (en) * 2009-11-05 2013-02-27 Cephalon Australia Pty Ltd Treatment of cancer involving mutated kras or braf genes
EP2496604B1 (en) 2009-11-06 2017-08-23 IDEXX Laboratories, Inc. Canine anti-cd20 antibodies
EP2504031A4 (en) 2009-11-24 2013-06-26 Alderbio Holdings Llc Antibodies to il-6 and use thereof
US9775921B2 (en) 2009-11-24 2017-10-03 Alderbio Holdings Llc Subcutaneously administrable composition containing anti-IL-6 antibody
GB0920944D0 (en) 2009-11-30 2010-01-13 Biotest Ag Agents for treating disease
EP2506869A1 (en) 2009-12-04 2012-10-10 VIB vzw Arf6 as a new target for treating alzheimer's disease
MX2012006560A (en) 2009-12-08 2012-10-05 Abbott Gmbh & Co Kg Monoclonal antibodies against the rgm a protein for use in the treatment of retinal nerve fiber layer degeneration.
WO2011084496A1 (en) 2009-12-16 2011-07-14 Abbott Biotherapeutics Corp. Anti-her2 antibodies and their uses
SG181901A1 (en) 2009-12-23 2012-08-30 4Antibody Ag Binding members for human cytomegalovirus
US8900817B2 (en) 2010-01-08 2014-12-02 Les Laboratories Servier Progastrin and liver pathologies
US9217032B2 (en) 2010-01-08 2015-12-22 Les Laboratoires Servier Methods for treating colorectal cancer
US9487582B2 (en) 2010-01-08 2016-11-08 Institut National De La Sante Et De La Recherche Medicale (Inserm) Methods for treating pancreatic cancer
GB201001791D0 (en) 2010-02-03 2010-03-24 Ucb Pharma Sa Process for obtaining antibodies
MY160628A (en) 2010-03-02 2017-03-15 Abbvie Inc Therapeutic DLL4 Binding Proteins
US9434716B2 (en) 2011-03-01 2016-09-06 Glaxo Group Limited Antigen binding proteins
WO2011107586A1 (en) 2010-03-05 2011-09-09 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research, Smoc1, tenascin-c and brain cancers
EP2545078A1 (en) 2010-03-11 2013-01-16 UCB Pharma, S.A. Pd-1 antibody
TW201134488A (en) 2010-03-11 2011-10-16 Ucb Pharma Sa PD-1 antibodies
KR101570404B1 (en) 2010-03-24 2015-11-20 르 라보레또레 쎄르비에르 Prophylaxis of colorectal and gastrointestinal cancer
EP2550297B1 (en) 2010-03-25 2019-01-23 UCB Biopharma SPRL Disulfide stabilized dvd-lg molecules
GB201005064D0 (en) 2010-03-25 2010-05-12 Ucb Pharma Sa Biological products
TWI653333B (en) 2010-04-01 2019-03-11 安進研究(慕尼黑)有限責任公司 Cross-species specific PSMAxCD3 bispecific single chain antibody
EP2558503B1 (en) 2010-04-14 2015-12-09 National Research Council of Canada Compositions and methods for brain delivery of analgesic peptides
MX336196B (en) 2010-04-15 2016-01-11 Abbvie Inc Amyloid-beta binding proteins.
LT2558499T (en) 2010-04-16 2017-07-25 Biogen Ma Inc. Anti-vla-4 antibodies
EP2561076A1 (en) 2010-04-19 2013-02-27 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Modulating xrn1
KR101539683B1 (en) 2010-05-14 2015-07-30 애브비 인코포레이티드 Il-1 binding proteins
WO2011149461A1 (en) 2010-05-27 2011-12-01 Medtronic, Inc. Anti-amyloid beta antibodies conjugated to sialic acid-containing molecules
US20130089538A1 (en) 2010-06-10 2013-04-11 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute forBiomedical Researh Treating cancer by modulating mammalian sterile 20-like kinase 3
NZ603581A (en) 2010-06-19 2015-05-29 Sloan Kettering Inst Cancer Anti-gd2 antibodies
EP3459558B1 (en) 2010-06-25 2020-07-29 Aston University Glycoproteins having lipid mobilizing properties and therapeutic uses thereof
WO2012006500A2 (en) 2010-07-08 2012-01-12 Abbott Laboratories Monoclonal antibodies against hepatitis c virus core protein
UY33492A (en) 2010-07-09 2012-01-31 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
NZ703035A (en) 2010-07-09 2016-06-24 Crucell Holland Bv Anti-human respiratory syncytial virus (rsv) antibodies and methods of use
WO2012010696A1 (en) 2010-07-23 2012-01-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for cancer management targeting co-029
AU2011284908B2 (en) 2010-07-26 2015-05-21 Centre National De La Recherche Scientifique (Cnrs) Methods and compositions for liver cancer therapy
GB201012599D0 (en) 2010-07-27 2010-09-08 Ucb Pharma Sa Process for purifying proteins
CA2806909C (en) 2010-07-30 2019-12-17 Ac Immune S.A. Safe and functional humanized antibodies
MX339622B (en) 2010-08-02 2016-06-02 Macrogenics Inc Covalent diabodies and uses thereof.
MY160445A (en) 2010-08-03 2017-03-15 Abbvie Inc Dual Variable Domain Immunoglobulins And Uses Thereof
MX358739B (en) 2010-08-14 2018-09-03 Abbvie Inc Star Amyloid-beta binding proteins.
ES2910305T3 (en) 2010-08-19 2022-05-12 Zoetis Belgium S A Anti-NGF antibodies and their use
GB201014033D0 (en) 2010-08-20 2010-10-06 Ucb Pharma Sa Biological products
JP2013539364A (en) 2010-08-26 2013-10-24 アッヴィ・インコーポレイテッド Dual variable domain immunoglobulins and uses thereof
EP2614080A1 (en) 2010-09-10 2013-07-17 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Phosphorylated twist1 and metastasis
ES2664989T3 (en) 2010-10-01 2018-04-24 National Research Council Of Canada ANTI-CEACAM6 antibodies and their uses
UY33679A (en) 2010-10-22 2012-03-30 Esbatech STABLE AND SOLUBLE ANTIBODIES
WO2012055030A1 (en) 2010-10-25 2012-05-03 National Research Council Of Canada Clostridium difficile-specific antibodies and uses thereof
EP3708586A1 (en) 2010-10-29 2020-09-16 Perseus Proteomics Inc. Anti-cdh3 antibody having high internalization capacity
EP2640738A1 (en) 2010-11-15 2013-09-25 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Anti-fungal agents
US20130273055A1 (en) 2010-11-16 2013-10-17 Eric Borges Agents and methods for treating diseases that correlate with bcma expression
CA2818814A1 (en) 2010-11-23 2012-05-31 Alder Biopharmaceuticals, Inc. Anti-il-6 antibodies for the treatment of anemia
US9249217B2 (en) 2010-12-03 2016-02-02 Secretary, DHHS Bispecific EGFRvIII x CD3 antibody engaging molecules
UA112170C2 (en) 2010-12-10 2016-08-10 Санофі ANTI-TUMOR COMBINATION CONTAINING AN ANTIBODY SPECIFICALLY RECOGNIZING CD38 AND BORTESOMB
WO2012080769A1 (en) 2010-12-15 2012-06-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-cd277 antibodies and uses thereof
AU2011347354A1 (en) 2010-12-20 2013-08-01 Medimmune Limited Anti-IL-18 antibodies and their uses
TW201307388A (en) 2010-12-21 2013-02-16 Abbott Lab IL-1 binding proteins
BR112013015944A2 (en) 2010-12-21 2018-06-19 Abbvie Inc Bispecific double-domain alpha and beta variable domain immunoglobulins and their uses.
PT2654790T (en) 2010-12-22 2019-05-16 Teva Pharmaceuticals Australia Pty Ltd Modified antibody with improved half-life
ES2684602T3 (en) 2010-12-22 2018-10-03 Orega Biotech Antibodies against human CD39 and use thereof
US20120171195A1 (en) 2011-01-03 2012-07-05 Ravindranath Mepur H Anti-hla-e antibodies, therapeutic immunomodulatory antibodies to human hla-e heavy chain, useful as ivig mimetics and methods of their use
CA2823812C (en) 2011-01-14 2017-02-14 Ucb Pharma S.A. Antibody molecules which bind il-17a and il-17f
WO2012101125A1 (en) 2011-01-24 2012-08-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Specific antibodies against human cxcl4 and uses thereof
WO2012103165A2 (en) 2011-01-26 2012-08-02 Kolltan Pharmaceuticals, Inc. Anti-kit antibodies and uses thereof
WO2012110500A1 (en) 2011-02-15 2012-08-23 Vib Vzw Means and methods for improvement of synaptic dysfunction disorders
AR085302A1 (en) 2011-02-24 2013-09-18 Sanofi Sa METHOD OF PRODUCTION OF STIRATED ANTIBODIES
CN103402542B (en) 2011-02-28 2017-05-03 独立行政法人国立循环器病研究中心 Medicinal agent for inhibiting metastasis of malignant tumor
WO2012119989A2 (en) 2011-03-04 2012-09-13 Oryzon Genomics, S.A. Methods and antibodies for the diagnosis and treatment of cancer
WO2012122528A1 (en) 2011-03-10 2012-09-13 Hco Antibody, Inc. Bispecific three-chain antibody-like molecules
US8722044B2 (en) 2011-03-15 2014-05-13 Janssen Biotech, Inc. Human tissue factor antibody and uses thereof
EP2686014A1 (en) 2011-03-16 2014-01-22 Sanofi Uses of a dual v region antibody-like protein
BR112013025045B1 (en) 2011-03-31 2020-10-27 INSERM (Institut National de la Santé et de la Recherche Médicale) antibodies directed against icos and their uses
SI2699264T1 (en) 2011-04-20 2018-08-31 Medimmune Llc Antibodies and other molecules that bind b7-h1 and pd-1
US20140161800A1 (en) 2011-04-22 2014-06-12 John W. Blankenship Prostate-Specific Membrane Antigen Binding Proteins and Related Compositions and Methods
EP2702077A2 (en) 2011-04-27 2014-03-05 AbbVie Inc. Methods for controlling the galactosylation profile of recombinantly-expressed proteins
UA116189C2 (en) 2011-05-02 2018-02-26 Мілленніум Фармасьютікалз, Інк. FORMULATION FOR ANTI-α4β7 ANTIBODY
KR102014512B1 (en) 2011-05-02 2019-08-26 밀레니엄 파머슈티컬스 인코퍼레이티드 FORMULATION FOR ANTI-α4β7 ANTIBODY
WO2012156532A1 (en) 2011-05-19 2012-11-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-human-her3 antibodies and uses thereof
JP6145088B2 (en) 2011-05-21 2017-06-07 マクロジェニクス,インコーポレーテッド Deimmunized serum binding domain and its use to extend serum half-life
AR086543A1 (en) 2011-05-25 2014-01-08 Bg Medicine Inc GALECTIN-3 INHIBITORS AND METHODS OF USE OF THE SAME, PHARMACEUTICAL COMPOSITION
WO2012166555A1 (en) 2011-05-27 2012-12-06 Nektar Therapeutics Water - soluble polymer - linked binding moiety and drug compounds
EP2714736A1 (en) 2011-05-27 2014-04-09 Ablynx N.V. Inhibition of bone resorption with rankl binding peptides
EP2717911A1 (en) 2011-06-06 2014-04-16 Novartis Forschungsstiftung, Zweigniederlassung Protein tyrosine phosphatase, non-receptor type 11 (ptpn11) and triple-negative breast cancer
WO2012170740A2 (en) 2011-06-07 2012-12-13 University Of Hawaii Biomarker of asbestos exposure and mesothelioma
WO2012170742A2 (en) 2011-06-07 2012-12-13 University Of Hawaii Treatment and prevention of cancer with hmgb1 antagonists
US9309305B2 (en) 2011-06-10 2016-04-12 National Research Council Of Canada Anti-ricin antibodies and uses thereof
JP6058645B2 (en) 2011-06-10 2017-01-11 メディミューン,エルエルシー Anti-Pseudomonas Psl binding molecules and uses thereof
AU2012273954A1 (en) 2011-06-22 2014-01-09 Inserm (Institut National De La Sante Et De La Recherche Medicale) Anti-Axl antibodies and uses thereof
ES2677367T3 (en) 2011-06-22 2018-08-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-Axl antibodies and uses thereof
EP2543677A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the treatment and prevention of thrombosis
EP2543678A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the treatment and prevention of thrombosis
EP2543679A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the treatment and prevention of thrombosis
MX2014000531A (en) 2011-07-13 2014-12-05 Abbvie Inc Methods and compositions for treating asthma using anti-il-13 antibodies.
WO2013025779A1 (en) 2011-08-15 2013-02-21 Amplimmune, Inc. Anti-b7-h4 antibodies and their uses
WO2013033626A2 (en) 2011-08-31 2013-03-07 Trustees Of Dartmouth College Nkp30 receptor targeted therapeutics
WO2013036872A1 (en) 2011-09-09 2013-03-14 Amgen Inc. Use of c-met protein for predicting the efficacy of anti-hepatocyte growth factor ("hgf") antibodies in esophageal and gastric cancer patients
US20130108641A1 (en) 2011-09-14 2013-05-02 Sanofi Anti-gitr antibodies
PL2758432T3 (en) 2011-09-16 2019-08-30 Ucb Biopharma Sprl Neutralising antibodies to the major exotoxins tcda and tcdb of clostridium difficile
US9599608B2 (en) 2011-09-21 2017-03-21 Fujirebio Inc. Antibody against affinity complex
EP2758422A1 (en) 2011-09-23 2014-07-30 Technophage, Investigação E Desenvolvimento Em Biotecnologia, SA Modified albumin-binding domains and uses thereof to improve pharmacokinetics
AU2012322991B2 (en) 2011-10-10 2018-02-15 Medimmune Limited Treatment for rheumatoid arthritis
SG11201401791WA (en) 2011-10-24 2014-08-28 Abbvie Inc Immunobinders directed against sclerostin
US9272002B2 (en) 2011-10-28 2016-03-01 The Trustees Of The University Of Pennsylvania Fully human, anti-mesothelin specific chimeric immune receptor for redirected mesothelin-expressing cell targeting
EP2773667A1 (en) 2011-11-01 2014-09-10 Bionomics, Inc. Anti-gpr49 antibodies
EP2773664A1 (en) 2011-11-01 2014-09-10 Bionomics, Inc. Anti-gpr49 antibodies
EP2773665A1 (en) 2011-11-01 2014-09-10 Bionomics, Inc. Antibodies and methods of treating cancer
WO2013067055A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Methods of blocking cancer stem cell growth
ES2861435T3 (en) 2011-11-03 2021-10-06 Univ Pennsylvania Specific compositions of isolated B7-H4 and methods of using them
WO2013070821A1 (en) 2011-11-08 2013-05-16 Quark Pharmaceuticals, Inc. Methods and compositions for treating diseases, disorders or injury of the nervous system
WO2013068432A1 (en) 2011-11-08 2013-05-16 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Early diagnostic of neurodegenerative diseases
WO2013070468A1 (en) 2011-11-08 2013-05-16 The Trustees Of The University Of Pennsylvania Glypican-3-specific antibody and uses thereof
US20140314787A1 (en) 2011-11-08 2014-10-23 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute Treatment for neurodegenerative diseases
WO2013068571A1 (en) 2011-11-11 2013-05-16 Ucb Pharma S.A. Albumin binding antibodies and binding fragments thereof
UA112203C2 (en) 2011-11-11 2016-08-10 Юсб Фарма С.А. Fusion protein of a biospecific antibody that binds to human OX40 and serum human albumin
EP2599496A1 (en) 2011-11-30 2013-06-05 Kenta Biotech AG Novel targets of Acinetobacter baumannii
TWI640537B (en) 2011-12-05 2018-11-11 X 染色體有限公司 Pdgf receptor beta binding polypeptides
MX358680B (en) 2011-12-08 2018-08-31 Biotest Ag Uses of immunoconjugates targeting cd138.
CA2859755C (en) 2011-12-23 2021-04-20 Pfizer Inc. Engineered antibody constant regions for site-specific conjugation and methods and uses therefor
US20150030602A1 (en) 2011-12-23 2015-01-29 Phenoquest Ag Antibodies for the treatment and diagnosis of affective and anxiety disorders
US9717803B2 (en) 2011-12-23 2017-08-01 Innate Pharma Enzymatic conjugation of polypeptides
EP2797955A2 (en) 2011-12-30 2014-11-05 AbbVie Inc. Dual variable domain immunoglobulins against il-13 and/or il-17
WO2013102825A1 (en) 2012-01-02 2013-07-11 Novartis Ag Cdcp1 and breast cancer
US20130177574A1 (en) 2012-01-11 2013-07-11 Paul I. Terasaki Foundation Laboratory ANTI-HLA CLASS-Ib ANTIBODIES MIMIC IMMUNOREACTIVITY AND IMMUNOMODULATORY FUNCTIONS OF INTRAVENOUS IMMUNOGLOBULIN (IVIg) USEFUL AS THERAPEUTIC IVIg MIMETICS AND METHODS OF THEIR USE
US10800847B2 (en) 2012-01-11 2020-10-13 Dr. Mepur Ravindranath Anti-HLA class-IB antibodies mimic immunoreactivity and immunomodulatory functions of intravenous immunoglobulin (IVIG) useful as therapeutic IVIG mimetics and methods of their use
HUE041900T2 (en) 2012-01-20 2019-06-28 Genzyme Corp Anti-cxcr3 antibodies
GB201201332D0 (en) 2012-01-26 2012-03-14 Imp Innovations Ltd Method
IL297229A (en) 2012-01-27 2022-12-01 Abbvie Inc Composition and method for diagnosis and treatment of diseases associated with neurite degeneration
AU2013216863B2 (en) 2012-02-10 2018-09-06 Seagen Inc. Detection and treatment of CD30+ cancers
US9550830B2 (en) 2012-02-15 2017-01-24 Novo Nordisk A/S Antibodies that bind and block triggering receptor expressed on myeloid cells-1 (TREM-1)
EP3456742A1 (en) 2012-02-15 2019-03-20 Novo Nordisk A/S Antibodies that bind peptidoglycan recognition protein 1
PL2814844T3 (en) 2012-02-15 2017-12-29 Novo Nordisk A/S Antibodies that bind and block triggering receptor expressed on myeloid cells-1 (trem-1)
GB201203051D0 (en) 2012-02-22 2012-04-04 Ucb Pharma Sa Biological products
GB201203071D0 (en) 2012-02-22 2012-04-04 Ucb Pharma Sa Biological products
FR2987627B1 (en) 2012-03-05 2016-03-18 Splicos USE OF RBM39 AS A BIOMARKER
US9592289B2 (en) 2012-03-26 2017-03-14 Sanofi Stable IgG4 based binding agent formulations
KR102166083B1 (en) 2012-03-28 2020-10-16 사노피 Antibodies to bradykinin b1 receptor ligands
EP2831112A1 (en) 2012-03-29 2015-02-04 Friedrich Miescher Institute for Biomedical Research Inhibition of interleukin- 8 and/or its receptor cxcrl in the treatment her2/her3 -overexpressing breast cancer
WO2013151649A1 (en) 2012-04-04 2013-10-10 Sialix Inc Glycan-interacting compounds
US9181572B2 (en) 2012-04-20 2015-11-10 Abbvie, Inc. Methods to modulate lysine variant distribution
US9067990B2 (en) 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
US9334319B2 (en) 2012-04-20 2016-05-10 Abbvie Inc. Low acidic species compositions
WO2013166043A1 (en) 2012-05-02 2013-11-07 Children's Hospital Medical Center Rejuvenation of precursor cells
WO2013166290A1 (en) 2012-05-04 2013-11-07 Abbvie Biotherapeutics Inc. P21 biomarker assay
CN110511278A (en) 2012-05-07 2019-11-29 达特茅斯大学理事会 Anti- B7-H6 antibody, fusion protein and its application method
EA030716B1 (en) 2012-05-14 2018-09-28 Байоджен Ма Инк. Lingo-2 antagonists for treatment of conditions involving motor neurons
GB201208370D0 (en) 2012-05-14 2012-06-27 Ucb Pharma Sa Antibodies
BR112014028306A2 (en) 2012-05-15 2018-04-17 Morphotek, Inc. methods for treating gastric cancer.
WO2013175276A1 (en) 2012-05-23 2013-11-28 Argen-X B.V Il-6 binding molecules
US9249182B2 (en) 2012-05-24 2016-02-02 Abbvie, Inc. Purification of antibodies using hydrophobic interaction chromatography
WO2013177386A1 (en) 2012-05-24 2013-11-28 Abbvie Biotherapeutics Inc. Biomarkers for predicting response to tweak receptor (tweakr) agonist therapy
IN2014KN02774A (en) 2012-06-06 2015-05-08 Bionor Immuno As
EP2859018B1 (en) 2012-06-06 2021-09-22 Zoetis Services LLC Caninized anti-ngf antibodies and methods thereof
EP2864355B1 (en) 2012-06-25 2016-10-12 Orega Biotech Il-17 antagonist antibodies
US10048253B2 (en) 2012-06-28 2018-08-14 Ucb Biopharma Sprl Method for identifying compounds of therapeutic interest
EP2866831A1 (en) 2012-06-29 2015-05-06 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating diseases by modulating a specific isoform of mkl1
US10656156B2 (en) 2012-07-05 2020-05-19 Mepur Ravindranath Diagnostic and therapeutic potential of HLA-E monospecific monoclonal IgG antibodies directed against tumor cell surface and soluble HLA-E
US20150184154A1 (en) 2012-07-05 2015-07-02 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Resear New treatment for neurodegenerative diseases
WO2014006115A1 (en) 2012-07-06 2014-01-09 Novartis Ag Combination of a phosphoinositide 3-kinase inhibitor and an inhibitor of the il-8/cxcr interaction
AR091755A1 (en) 2012-07-12 2015-02-25 Abbvie Inc PROTEINS OF UNION TO IL-1
WO2014009426A2 (en) 2012-07-13 2014-01-16 Innate Pharma Screening of conjugated antibodies
KR20150029714A (en) 2012-07-13 2015-03-18 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 Enhancing activity of car t cells by co-introducing a bispecific antibody
NZ630363A (en) 2012-07-25 2018-09-28 Celldex Therapeutics Inc Anti-kit antibodies and uses thereof
KR20150043523A (en) 2012-09-02 2015-04-22 애브비 인코포레이티드 Methods to control protein heterogeneity
US9512214B2 (en) 2012-09-02 2016-12-06 Abbvie, Inc. Methods to control protein heterogeneity
US9695247B2 (en) 2012-09-03 2017-07-04 Inserm (Institut National De La Sante Et De La Recherche Medicale) Antibodies directed against ICOS for treating graft-versus-host disease
AR092745A1 (en) 2012-10-01 2015-04-29 Univ Pennsylvania COMPOSITIONS THAT INCLUDE AN ANTI-FAP UNION DOMAIN AND METHODS TO MAKE WHITE IN STROMAL CELLS FOR THE TREATMENT OF CANCER
NO2760138T3 (en) 2012-10-01 2018-08-04
US9598489B2 (en) 2012-10-05 2017-03-21 The Trustees Of The Univeristy Of Pennsylvania Human alpha-folate receptor chimeric antigen receptor
HUE051127T2 (en) 2012-10-15 2021-03-01 Medimmune Ltd Antibodies to amyloid beta
CA2889398C (en) 2012-10-24 2023-08-01 National Research Council Of Canada Anti-campylobacter jejuni antibodies and uses therefor
KR20210111353A (en) 2012-11-01 2021-09-10 애브비 인코포레이티드 Anti-vegf/dll4 dual variable domain immunoglobulins and uses thereof
US10036010B2 (en) 2012-11-09 2018-07-31 Innate Pharma Recognition tags for TGase-mediated conjugation
CA2890190A1 (en) 2012-11-12 2014-05-15 Redwood Bioscience, Inc. Compounds and methods for producing a conjugate
EP2733153A1 (en) 2012-11-15 2014-05-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the preparation of immunoconjugates and uses thereof
US9310374B2 (en) 2012-11-16 2016-04-12 Redwood Bioscience, Inc. Hydrazinyl-indole compounds and methods for producing a conjugate
JP2016505528A (en) 2012-11-16 2016-02-25 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Picte-Spengler ligation for chemical modification of proteins
SI3199552T1 (en) 2012-11-20 2020-06-30 Sanofi Anti-ceacam5 antibodies and uses thereof
US20140154255A1 (en) 2012-11-30 2014-06-05 Abbvie Biotherapeutics Inc. Anti-vegf antibodies and their uses
EP2925779A1 (en) 2012-11-30 2015-10-07 Institut Pasteur Use of anti-fcyri and/or anti-fcyriia antibodies for treating arthritis, inflammation, thrombocytopenia and allergic shock
UA118255C2 (en) 2012-12-07 2018-12-26 Санофі Compositions comprising anti-cd38 antibodies and lenalidomide
US10342869B2 (en) 2012-12-07 2019-07-09 The Regents Of The University Of California Compositions comprising anti-CD38 antibodies and lenalidomide
CA2894689A1 (en) 2012-12-19 2014-06-26 Amplimmune, Inc. Anti-human b7-h4 antibodies and their uses
GB201223276D0 (en) 2012-12-21 2013-02-06 Ucb Pharma Sa Antibodies and methods of producing same
US9550986B2 (en) 2012-12-21 2017-01-24 Abbvie Inc. High-throughput antibody humanization
BR112015014621A2 (en) 2012-12-21 2017-10-03 Amplimmune Inc ANTI-H7CR ANTIBODIES
EA201690004A1 (en) 2012-12-27 2016-07-29 Санофи ANTIBODIES AGAINST LAMP1 AND CONJUGATES ANTIBODIES AND MEDICINES AND THEIR APPLICATION
WO2014115430A1 (en) 2013-01-28 2014-07-31 株式会社イーベック Humanized anti-hmgb1 antibody or antigen-binding fragment thereof
EP2951199A4 (en) 2013-01-31 2016-07-20 Univ Jefferson Fusion proteins for modulating regulatory and effector t cells
RU2708032C2 (en) 2013-02-20 2019-12-03 Новартис Аг CANCER TREATMENT USING CHIMERIC ANTIGEN-SPECIFIC RECEPTOR BASED ON HUMANISED ANTI-EGFRvIII ANTIBODY
WO2014130635A1 (en) 2013-02-20 2014-08-28 Novartis Ag Effective targeting of primary human leukemia using anti-cd123 chimeric antigen receptor engineered t cells
SG11201507230PA (en) 2013-03-12 2015-10-29 Abbvie Inc Human antibodies that bind human tnf-alpha and methods of preparing the same
MY175418A (en) 2013-03-13 2020-06-24 Sanofi Sa Compositions comprising anti-cd38 antibodies and carfilzomib
US8921526B2 (en) 2013-03-14 2014-12-30 Abbvie, Inc. Mutated anti-TNFα antibodies and methods of their use
MX2015012824A (en) 2013-03-14 2016-06-24 Abbott Lab Hcv ns3 recombinant antigens and mutants thereof for improved antibody detection.
CN105228649B (en) 2013-03-14 2019-01-18 雅培制药有限公司 HCV Ag-Ab combination measurement is with method and used in composition therein
US9499614B2 (en) 2013-03-14 2016-11-22 Abbvie Inc. Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosaccharides
US9017687B1 (en) 2013-10-18 2015-04-28 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same using displacement chromatography
US9371374B2 (en) 2013-03-14 2016-06-21 Abbott Laboratories HCV core lipid binding domain monoclonal antibodies
US10611824B2 (en) 2013-03-15 2020-04-07 Innate Pharma Solid phase TGase-mediated conjugation of antibodies
WO2014144763A2 (en) 2013-03-15 2014-09-18 Memorial Sloan Kettering Cancer Center High affinity anti-gd2 antibodies
BR112015023084A2 (en) 2013-03-15 2017-11-21 Abbvie Biotechnology Ltd monoclonal anti-cd25 antibody or anti-cd25 binding fragment of a monoclonal antibody, antibody-drug conjugate, pharmaceutical composition, nucleic acid, vector, prokaryotic and eukaryotic host cell, method for producing an anti-cd25 antibody or binding fragment anti-cd25, and use of a monoclonal anti-cd25 antibody from an antibody-drug conjugate or pharmaceutical composition
EP2970459A2 (en) 2013-03-15 2016-01-20 AbbVie Inc. Dual specific binding proteins directed against il-1beta and il-17
EP2970426B1 (en) 2013-03-15 2019-08-28 Michael C. Milone Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
US9446105B2 (en) 2013-03-15 2016-09-20 The Trustees Of The University Of Pennsylvania Chimeric antigen receptor specific for folate receptor β
US20140377253A1 (en) 2013-03-15 2014-12-25 Abbvie Biotherapeutics Inc. Fc variants
MX2015012563A (en) 2013-03-15 2016-10-26 Abbvie Biotechnology Ltd Anti-cd25 antibodies and their uses.
UY35468A (en) 2013-03-16 2014-10-31 Novartis Ag CANCER TREATMENT USING AN ANTI-CD19 CHEMERIC ANTIGEN RECEIVER
TWI679019B (en) 2013-04-29 2019-12-11 法商賽諾菲公司 Anti-il-4/anti-il-13 bispecific antibody formulations
LT2981822T (en) 2013-05-06 2020-12-28 Scholar Rock, Inc. Compositions and methods for growth factor modulation
WO2014183885A1 (en) 2013-05-17 2014-11-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Antagonist of the btla/hvem interaction for use in therapy
KR20160129698A (en) 2013-05-24 2016-11-09 메디뮨 엘엘씨 Anti-b7-h5 antibodies and their uses
US10100123B2 (en) 2013-06-06 2018-10-16 Pierre Fabre Medicament Anti-C10orf54 antibodies and uses thereof
US9499628B2 (en) 2013-06-14 2016-11-22 Children's Hospital Medical Center Method of boosting the immune response in neonates
US10071169B2 (en) 2013-06-20 2018-09-11 Innate Pharma Enzymatic conjugation of polypeptides
JP6744212B2 (en) 2013-06-21 2020-08-19 イナート・ファルマ・ソシエテ・アノニムInnate Pharma Pharma S.A. Enzymatic binding of polypeptides
WO2015007337A1 (en) 2013-07-19 2015-01-22 Bionor Immuno As Method for the vaccination against hiv
WO2015013671A1 (en) 2013-07-25 2015-01-29 Cytomx Therapeutics, Inc. Multispecific antibodies, multispecific activatable antibodies and methods of using the same
EP3030902B1 (en) 2013-08-07 2019-09-25 Friedrich Miescher Institute for Biomedical Research New screening method for the treatment friedreich's ataxia
TW201722994A (en) 2013-08-13 2017-07-01 賽諾菲公司 Antibodies to Plasminogen Activator Inhibitor-1 (PAI-1) and uses thereof
ES2770507T3 (en) 2013-08-13 2020-07-01 Sanofi Sa Antibodies directed against plasminogen activator inhibitor type 1 (PAI-1) and uses thereof
GB201315487D0 (en) 2013-08-30 2013-10-16 Ucb Pharma Sa Antibodies
EP3042667A4 (en) 2013-09-04 2017-04-05 Osaka University Dpp-4-targeting vaccine for treating diabetes
WO2015035044A2 (en) 2013-09-04 2015-03-12 Abbvie Biotherapeutics Inc. Fc VARIANTS WITH IMPROVED ANTIBODY-DEPENDENT CELL-MEDIATED CYTOTOXICITY
CN104418947A (en) 2013-09-11 2015-03-18 香港大学 Anti-her2 and anti-igf-ir bi-specific antibodies and uses thereof
CN111606998B (en) * 2013-09-16 2024-05-24 健康与环境慕尼黑德国研究中心赫姆霍茨中心(有限责任公司) Bispecific or multispecific polypeptides for treating HBV infection and related disorders
US9598667B2 (en) 2013-10-04 2017-03-21 Abbvie Inc. Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins
US9181337B2 (en) 2013-10-18 2015-11-10 Abbvie, Inc. Modulated lysine variant species compositions and methods for producing and using the same
US9085618B2 (en) 2013-10-18 2015-07-21 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same
US8946395B1 (en) 2013-10-18 2015-02-03 Abbvie Inc. Purification of proteins using hydrophobic interaction chromatography
RS57043B1 (en) 2013-10-25 2018-05-31 Psioxus Therapeutics Ltd Oncolytic adenoviruses armed with heterologous genes
WO2015066027A2 (en) 2013-10-28 2015-05-07 Dots Devices, Inc. Allergen detection
TN2016000142A1 (en) 2013-10-31 2017-10-06 Sanofi Sa Specific anti-cd38 antibodies for treating human cancers.
US9580504B1 (en) 2013-11-07 2017-02-28 Curetech Ltd. Pidilizumab monoclonal antibody therapy following stem cell transplantation
PL3066124T4 (en) 2013-11-07 2021-08-16 Inserm - Institut National De La Santé Et De La Recherche Médicale Anticorps allosteriques de la neureguline, dirigés contre her3
GB201320066D0 (en) 2013-11-13 2013-12-25 Ucb Pharma Sa Biological products
US20150139988A1 (en) 2013-11-15 2015-05-21 Abbvie, Inc. Glycoengineered binding protein compositions
JP6745218B2 (en) 2013-11-27 2020-08-26 レッドウッド バイオサイエンス, インコーポレイテッド Methods for producing hydrazinyl-pyrrolo compounds and conjugates
US9944694B2 (en) 2013-12-13 2018-04-17 Rijksuniversiteit Groningen Antibodies against Staphylococcus aureus and uses therof
JP6685225B2 (en) * 2013-12-16 2020-04-22 ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル Depletion of plasmacytoid dendritic cells
US9045545B1 (en) 2014-07-15 2015-06-02 Kymab Limited Precision medicine by targeting PD-L1 variants for treatment of cancer
US8986694B1 (en) 2014-07-15 2015-03-24 Kymab Limited Targeting human nav1.7 variants for treatment of pain
US9067998B1 (en) 2014-07-15 2015-06-30 Kymab Limited Targeting PD-1 variants for treatment of cancer
US8992927B1 (en) 2014-07-15 2015-03-31 Kymab Limited Targeting human NAV1.7 variants for treatment of pain
US9914769B2 (en) 2014-07-15 2018-03-13 Kymab Limited Precision medicine for cholesterol treatment
CA2932958A1 (en) 2013-12-20 2015-06-25 F. Hoffmann-La Roche Ag Humanized anti-tau(ps422) antibodies and methods of use
EP3087101B1 (en) 2013-12-20 2024-06-05 Novartis AG Regulatable chimeric antigen receptor
WO2015099167A1 (en) 2013-12-27 2015-07-02 国立大学法人大阪大学 Vaccine targeting il-17a
EP2893939A1 (en) 2014-01-10 2015-07-15 Netris Pharma Anti-netrin-1 antibody
WO2015112626A1 (en) 2014-01-21 2015-07-30 June Carl H Enhanced antigen presenting ability of car t cells by co-introduction of costimulatory molecules
WO2015130416A1 (en) 2014-02-25 2015-09-03 Immunomedics, Inc. Humanized rfb4 anti-cd22 antibody
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
EA035472B1 (en) 2014-03-06 2020-06-22 Нэшнл Рисеч Каунсил Оф Канада Insulin-like growth factor 1 receptor-specific antibodies and uses thereof
EA035517B1 (en) 2014-03-06 2020-06-29 Нэшнл Рисеч Каунсил Оф Канада Insulin-like growth factor 1 receptor-specific antibodies and uses thereof
CN106559993B (en) 2014-03-06 2020-12-15 加拿大国家研究委员会 Insulin-like growth factor 1 receptor specific antibodies and uses thereof
US9738702B2 (en) 2014-03-14 2017-08-22 Janssen Biotech, Inc. Antibodies with improved half-life in ferrets
EP3811970A1 (en) 2014-03-15 2021-04-28 Novartis AG Regulatable chimeric antigen receptor
JP2017513818A (en) 2014-03-15 2017-06-01 ノバルティス アーゲー Treatment of cancer using chimeric antigen receptors
WO2015143271A1 (en) 2014-03-21 2015-09-24 X-Body, Inc. Bi-specific antigen-binding polypeptides
MX2016012873A (en) 2014-04-04 2017-03-07 Bionomics Inc Humanized antibodies that bind lgr5.
HUE054588T2 (en) 2014-04-07 2021-09-28 Novartis Ag Treatment of cancer using anti-cd19 chimeric antigen receptor
GB201406608D0 (en) 2014-04-12 2014-05-28 Psioxus Therapeutics Ltd Virus
US10544231B2 (en) 2014-04-16 2020-01-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the prevention or the treatment of bleeding episodes
WO2015164364A2 (en) 2014-04-25 2015-10-29 The Brigham And Women's Hospital, Inc. Methods to manipulate alpha-fetoprotein (afp)
PL3137114T3 (en) 2014-04-30 2021-06-28 Pfizer Inc. Anti-ptk7 antibody-drug conjugates
US20170267780A1 (en) 2014-05-16 2017-09-21 Medimmune, Llc Molecules with altered neonate fc receptor binding having enhanced therapeutic and diagnostic properties
PL3148579T3 (en) 2014-05-28 2021-07-19 Agenus Inc. Anti-gitr antibodies and methods of use thereof
GB201409558D0 (en) 2014-05-29 2014-07-16 Ucb Biopharma Sprl Method
EP3151830A4 (en) 2014-06-06 2018-02-07 Redwood Bioscience, Inc. Anti-her2 antibody-maytansine conjugates and methods of use thereof
WO2015189816A1 (en) 2014-06-13 2015-12-17 Friedrich Miescher Institute For Biomedical Research New treatment against influenza virus
NL2013661B1 (en) 2014-10-21 2016-10-05 Ablynx Nv KV1.3 Binding immunoglobulins.
US10308935B2 (en) 2014-06-23 2019-06-04 Friedrich Miescher Institute For Biomedical Research Methods for triggering de novo formation of heterochromatin and or epigenetic silencing with small RNAS
GB201411320D0 (en) 2014-06-25 2014-08-06 Ucb Biopharma Sprl Antibody construct
AR100978A1 (en) 2014-06-26 2016-11-16 Hoffmann La Roche ANTI-Tau HUMANIZED ANTIBODY BRAIN LAUNCHERS (pS422) AND USES OF THE SAME
EP3164129A1 (en) 2014-07-01 2017-05-10 Friedrich Miescher Institute for Biomedical Research Combination of a brafv600e inhibitor and mertk inhibitor to treat melanoma
US9139648B1 (en) 2014-07-15 2015-09-22 Kymab Limited Precision medicine by targeting human NAV1.9 variants for treatment of pain
GB201412658D0 (en) 2014-07-16 2014-08-27 Ucb Biopharma Sprl Molecules
GB201412659D0 (en) 2014-07-16 2014-08-27 Ucb Biopharma Sprl Molecules
PE20170192A1 (en) 2014-07-17 2017-03-16 Novo Nordisk As MUTAGENESIS TARGETED TO THE TRIGGERING RECEPTOR ANTIBODY SITE EXPRESSED IN TYPE 1 MELOID (TREM-1) TO REDUCE VISCOSITY
US11542488B2 (en) 2014-07-21 2023-01-03 Novartis Ag Sortase synthesized chimeric antigen receptors
MY181834A (en) 2014-07-21 2021-01-08 Novartis Ag Treatment of cancer using humanized anti-bcma chimeric antigen receptor
CA2955154C (en) 2014-07-21 2023-10-31 Novartis Ag Treatment of cancer using a cd33 chimeric antigen receptor
EP3193915A1 (en) 2014-07-21 2017-07-26 Novartis AG Combinations of low, immune enhancing. doses of mtor inhibitors and cars
EP3172235A2 (en) 2014-07-25 2017-05-31 Cytomx Therapeutics Inc. Anti-cd3 antibodies, activatable anti-cd3 antibodies, multispecific anti-cd3 antibodies, multispecific activatable anti-cd3 antibodies, and methods of using the same
ES2876925T3 (en) 2014-07-29 2021-11-15 Cellectis ROR1-specific chimeric antigen receptors (NTRKR1) for cancer immunotherapy
EP3194432B1 (en) 2014-07-31 2019-04-10 Cellectis Ror1 specific multi-chain chimeric antigen receptor
EP4205749A1 (en) 2014-07-31 2023-07-05 Novartis AG Subset-optimized chimeric antigen receptor-containing cells
CA2958200A1 (en) 2014-08-14 2016-02-18 Novartis Ag Treatment of cancer using a gfr alpha-4 chimeric antigen receptor
PL3183268T3 (en) 2014-08-19 2020-09-07 Novartis Ag Anti-cd123 chimeric antigen receptor (car) for use in cancer treatment
MA42561A (en) 2014-09-02 2018-04-25 Immunogen Inc METHODS FOR FORMULATING ANTIBODY-DRUG CONJUGATE COMPOSITIONS
CA2959694C (en) 2014-09-04 2023-11-21 Cellectis Trophoblast glycoprotein (5t4, tpbg) specific chimeric antigen receptors for cancer immunotherapy
EA037647B1 (en) 2014-09-05 2021-04-27 Янссен Фармацевтика Нв Cd123 binding agents and uses thereof
WO2016043577A1 (en) 2014-09-16 2016-03-24 Academisch Medisch Centrum Ig-like molecules binding to bmp4
WO2016044605A1 (en) 2014-09-17 2016-03-24 Beatty, Gregory Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
WO2016044588A1 (en) 2014-09-19 2016-03-24 The Regents Of The University Of Michigan Staphylococcus aureus materials and methods
US20170298360A1 (en) 2014-09-24 2017-10-19 Friedrich Miescher Institute For Biomedical Research Lats and breast cancer
WO2016054354A1 (en) 2014-10-02 2016-04-07 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating malignancies
CA3001724A1 (en) 2014-10-10 2016-04-14 National Research Council Of Canada Anti-tau antibody and uses thereof
EP3209769B1 (en) 2014-10-24 2020-08-05 The Board of Trustees of the Leland Stanford Junior University Compositions and methods for inducing phagocytosis of mhc class i positive cells and countering anti-cd47/sirpa resistance
CA2966005C (en) 2014-10-31 2021-04-27 Abbvie Biotherapeutics Inc. Anti-cs1 antibodies and antibody drug conjugates
CN107106609A (en) 2014-10-31 2017-08-29 宾夕法尼亚大学董事会 Stimulate and extend the composition and method of T cell
AU2015339744B2 (en) 2014-10-31 2021-03-25 The Trustees Of The University Of Pennsylvania Altering gene expression in CART cells and uses thereof
US9879087B2 (en) 2014-11-12 2018-01-30 Siamab Therapeutics, Inc. Glycan-interacting compounds and methods of use
ES2941897T3 (en) 2014-11-12 2023-05-26 Seagen Inc Compounds that interact with glycans and procedures for use
AU2015344769B2 (en) 2014-11-12 2020-07-09 Allogene Therapeutics, Inc. Inhibitory chimeric antigen receptors
EP3227341A1 (en) 2014-12-02 2017-10-11 CeMM - Forschungszentrum für Molekulare Medizin GmbH Anti-mutant calreticulin antibodies and their use in the diagnosis and therapy of myeloid malignancies
US20180334490A1 (en) 2014-12-03 2018-11-22 Qilong H. Wu Methods for b cell preconditioning in car therapy
EP3029137B1 (en) 2014-12-06 2019-01-02 GEMoaB Monoclonals GmbH Genetic modified pluri- or multipotent stem cells and uses thereof
WO2016094505A1 (en) 2014-12-09 2016-06-16 Abbvie Inc. Antibody drug conjugates with cell permeable bcl-xl inhibitors
MX2017007629A (en) 2014-12-09 2018-05-17 Abbvie Inc Bcl xl inhibitory compounds having low cell permeability and antibody drug conjugates including the same.
US10793642B2 (en) 2014-12-11 2020-10-06 Inbiomotion S.L. Binding members for human c-MAF
ES2834739T3 (en) 2014-12-11 2021-06-18 Pf Medicament Anti-C10orf54 antibodies and their uses
US10093733B2 (en) 2014-12-11 2018-10-09 Abbvie Inc. LRP-8 binding dual variable domain immunoglobulin proteins
JP6827928B2 (en) 2014-12-19 2021-02-10 ユニヴェルシテ・ドゥ・ナント Anti-IL-34 antibody
WO2016097408A1 (en) * 2014-12-19 2016-06-23 Biotecnol Limited Fusion protein comprising three binding domains to 5t4 and cd3
EP3237450B1 (en) 2014-12-22 2021-03-03 The Rockefeller University Anti-mertk agonistic antibodies and uses thereof
US10435467B2 (en) 2015-01-08 2019-10-08 Biogen Ma Inc. LINGO-1 antagonists and uses for treatment of demyelinating disorders
GB2557389B (en) 2015-01-14 2020-12-23 Brigham & Womens Hospital Inc Treatment of cancer with anti-lap monoclonal antibodies
CN107428835B (en) 2015-01-23 2021-11-26 赛诺菲 anti-CD 3 antibodies, anti-CD 123 antibodies, and bispecific antibodies that specifically bind to CD3 and/or CD123
US11014989B2 (en) 2015-01-26 2021-05-25 Cellectis Anti-CLL1 specific single-chain chimeric antigen receptors (scCARs) for cancer immunotherapy
CA2975147A1 (en) 2015-01-31 2016-08-04 Yangbing Zhao Compositions and methods for t cell delivery of therapeutic molecules
WO2016126608A1 (en) 2015-02-02 2016-08-11 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
WO2016128349A1 (en) 2015-02-09 2016-08-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies specific to glycoprotein (gp) of ebolavirus and uses for the treatment and diagnosis of ebola virus infection
PL3265123T3 (en) 2015-03-03 2023-03-13 Kymab Limited Antibodies, uses & methods
US11155601B2 (en) 2015-03-06 2021-10-26 CSL Behring Lengnau AG Modified von Willebrand factor having improved half-life
EP3268125A4 (en) 2015-03-13 2018-08-15 President and Fellows of Harvard College Determination of cells using amplification
CN107667120B (en) 2015-03-17 2022-03-08 纪念斯隆-凯特林癌症中心 anti-MUC 16 antibodies and uses thereof
WO2016154585A1 (en) 2015-03-26 2016-09-29 Charles Sentman Anti-mica antigen binding fragments, fusion molecules, cells which express and methods of using
US20180071413A1 (en) 2015-04-07 2018-03-15 Inserm (Institut National De La Sante Et De La Recherche Medicale) Non-invasive imaging of tumor pd-l1 expression
EP4056588A1 (en) 2015-04-08 2022-09-14 Novartis AG Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car)- expressing cell
GB201506870D0 (en) 2015-04-22 2015-06-03 Ucb Biopharma Sprl Method
GB201506869D0 (en) 2015-04-22 2015-06-03 Ucb Biopharma Sprl Method
EP3286211A1 (en) 2015-04-23 2018-02-28 Novartis AG Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
EP3584260A1 (en) 2015-04-28 2019-12-25 Mitsubishi Tanabe Pharma Corporation Rgma binding protein and use thereof
AU2016254215A1 (en) 2015-04-30 2017-10-26 President And Fellows Of Harvard College Anti-aP2 antibodies and antigen binding agents to treat metabolic disorders
WO2016177833A1 (en) 2015-05-04 2016-11-10 Bionor Immuno As Dosage regimen for hiv vaccine
EP3291836A4 (en) 2015-05-06 2018-11-14 Janssen Biotech, Inc. Prostate specific membrane antigen (psma) bispecific binding agents and uses thereof
US10259882B2 (en) 2015-05-07 2019-04-16 Agenus Inc. Anti-OX40 antibodies
GB201508180D0 (en) 2015-05-13 2015-06-24 Ucb Biopharma Sprl Antibodies
CN107849142B (en) 2015-05-15 2022-04-26 综合医院公司 Antagonistic anti-tumor necrosis factor receptor superfamily antibodies
CA2986254A1 (en) 2015-05-18 2016-11-24 TCR2 Therapeutics Inc. Compositions and methods for tcr reprogramming using fusion proteins
US10752670B2 (en) 2015-05-20 2020-08-25 Cellectis Anti-GD3 specific chimeric antigen receptors for cancer immunotherapy
IL274151B (en) 2015-05-21 2022-07-01 Harpoon Therapeutics Inc Trispecific binding proteins and methods of use
US10316097B2 (en) 2015-05-27 2019-06-11 Ucb Biopharma Sprl Method for the treatment of epilepsy, epileptogenesis, seizures or convulsions by an anti-colony-stimulating factor 1 receptor (CSF-1R) antibody
SI3303395T1 (en) 2015-05-29 2020-03-31 Abbvie Inc. Anti-cd40 antibodies and uses thereof
CN113603784A (en) 2015-05-29 2021-11-05 艾吉纳斯公司 anti-CTLA-4 antibodies and methods of use thereof
TW201710286A (en) 2015-06-15 2017-03-16 艾伯維有限公司 Binding proteins against VEGF, PDGF, and/or their receptors
GB201510758D0 (en) 2015-06-18 2015-08-05 Ucb Biopharma Sprl Novel TNFa structure for use in therapy
PL3313877T3 (en) 2015-06-24 2020-11-02 F. Hoffmann-La Roche Ag Humanized anti-tau(ps422) antibodies and methods of use
UA124616C2 (en) 2015-07-06 2021-10-20 Юсб Біофарма Срл Tau-binding antibodies
CA2991264C (en) 2015-07-06 2023-10-10 Ucb Biopharma Sprl Tau-binding antibodies
JP2018525029A (en) 2015-07-07 2018-09-06 インセルム(インスティチュート ナショナル デ ラ サンテ エ デ ラ リシェルシェ メディカル) Antibody having specificity for myosin 18A and use thereof
GB201601073D0 (en) 2016-01-20 2016-03-02 Ucb Biopharma Sprl Antibodies
GB201601075D0 (en) 2016-01-20 2016-03-02 Ucb Biopharma Sprl Antibodies molecules
GB201601077D0 (en) 2016-01-20 2016-03-02 Ucb Biopharma Sprl Antibody molecule
WO2017025458A1 (en) 2015-08-07 2017-02-16 Gamamabs Pharma Antibodies, antibody drug conjugates and methods of use
WO2017027392A1 (en) 2015-08-07 2017-02-16 Novartis Ag Treatment of cancer using chimeric cd3 receptor proteins
CN108495641A (en) 2015-08-11 2018-09-04 塞勒克提斯公司 The cell for immunotherapy for targeting CD38 antigens and the engineering inactivated for CD38 genes
EP3340998B1 (en) 2015-08-28 2023-01-11 The Trustees of the University of Pennsylvania Methods and compositions for cells expressing a chimeric intracellular signaling molecule
EP3340995A4 (en) 2015-08-28 2019-04-03 The Trustees Of The University Of Pennsylvania Methods and compositions for cells expressing a chimeric intracellular signaling molecule
MX2018002315A (en) 2015-09-01 2018-04-11 Agenus Inc Anti-pd-1 antibodies and methods of use thereof.
MY197562A (en) 2015-09-21 2023-06-23 Aptevo Res & Development Llc Cd3 binding polypeptides
WO2017060397A1 (en) 2015-10-09 2017-04-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of subjects suffering from melanoma metastases
US10149887B2 (en) 2015-10-23 2018-12-11 Canbas Co., Ltd. Peptides and peptidomimetics in combination with t cell activating and/or checkpoint inhibiting agents for cancer treatment
CN116059350A (en) 2015-10-27 2023-05-05 Ucb生物制药有限责任公司 Methods of treatment using anti-IL-17A/F antibodies
US20180348224A1 (en) 2015-10-28 2018-12-06 Friedrich Miescher Institute For Biomedical Resear Ch Tenascin-w and biliary tract cancers
CA3003252C (en) 2015-10-28 2024-06-25 Yale University Humanized anti-dkk2 antibody and uses thereof
TW201720459A (en) 2015-11-02 2017-06-16 妮翠斯製藥公司 Combination therapy of NTN1 neutralizing agent with drugs inhibiting epigenetic control
EP3371223B1 (en) 2015-11-03 2021-03-10 Merck Patent GmbH Bi-specific antibodies for enhanced tumor selectivity and inhibition and uses thereof
WO2017079419A1 (en) 2015-11-05 2017-05-11 The Regents Of The University Of California Cells labelled with lipid conjugates and methods of use thereof
IL258768B2 (en) 2015-11-12 2023-11-01 Siamab Therapeutics Inc Glycan-interacting compounds and methods of use
JP2019501139A (en) 2015-11-25 2019-01-17 イミュノジェン・インコーポレーテッド Pharmaceutical formulations and uses thereof
EP3383910A1 (en) 2015-11-30 2018-10-10 AbbVie Inc. ANTI-huLRRC15 ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE
US10188660B2 (en) 2015-11-30 2019-01-29 Abbvie Inc. Anti-huLRRC15 antibody drug conjugates and methods for their use
CN114470194A (en) 2015-12-02 2022-05-13 斯特库伯株式会社 Antibodies and molecules that immunospecifically bind to BTN1A1 and therapeutic uses thereof
CN108925136B (en) 2015-12-02 2022-02-01 斯特赛恩斯公司 Antibodies specific for glycosylated BTLA (B and T lymphocyte attenuating factor)
GB201521382D0 (en) 2015-12-03 2016-01-20 Ucb Biopharma Sprl Antibodies
GB201521383D0 (en) 2015-12-03 2016-01-20 Ucb Biopharma Sprl And Ucb Celltech Method
GB201521391D0 (en) 2015-12-03 2016-01-20 Ucb Biopharma Sprl Antibodies
GB201521393D0 (en) 2015-12-03 2016-01-20 Ucb Biopharma Sprl Antibodies
GB201521389D0 (en) 2015-12-03 2016-01-20 Ucb Biopharma Sprl Method
US20180271998A1 (en) 2015-12-04 2018-09-27 Merrimack Pharmaceuticals, Inc. Disulfide-stabilized fabs
US11052111B2 (en) 2015-12-08 2021-07-06 Chimera Bioengineering, Inc. Smart CAR devices and DE CAR polypeptides for treating disease and methods for enhancing immune responses
MY186974A (en) 2015-12-15 2021-08-26 Oncoc4 Inc Chimeric and humanized anti-human ctla4 monoclonal antibodies and uses thereof
GB201522394D0 (en) 2015-12-18 2016-02-03 Ucb Biopharma Sprl Antibodies
EP3184544A1 (en) 2015-12-23 2017-06-28 Julius-Maximilians-Universität Würzburg Glycoprotein v inhibitors for use as coagulants
SG11201804629XA (en) 2015-12-31 2018-07-30 Syncerus S A R L Compositions and methods for assessing the risk of cancer occurrence
EP3851457A1 (en) 2016-01-21 2021-07-21 Novartis AG Multispecific molecules targeting cll-1
US10465003B2 (en) 2016-02-05 2019-11-05 Janssen Biotech, Inc. Anti-TNF antibodies, compositions, methods and use for the treatment or prevention of type 1 diabetes
GB201602413D0 (en) 2016-02-10 2016-03-23 Nascient Ltd Method
EP3419999B1 (en) 2016-02-26 2021-08-04 (INSERM) Institut National de la Santé et de la Recherche Médicale Antibodies having specificity for btla and uses thereof
US10725052B2 (en) 2016-03-02 2020-07-28 Idexx Laboratories, Inc. Methods and compositions for the detection and diagnosis of renal disease and periodontal disease
US20200281973A1 (en) 2016-03-04 2020-09-10 Novartis Ag Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
EP3429620A1 (en) 2016-03-15 2019-01-23 AstraZeneca AB Combination of a bace inhibitor and an antibody or antigen-binding fragment for the treatment of a disorder associated with the accumulation of amyloid beta
JP7049311B2 (en) 2016-03-17 2022-04-06 ヌマブ イノヴェイション アーゲー Anti-TNFα antibodies and their functional fragments
KR102571700B1 (en) 2016-03-17 2023-08-29 누맙 세러퓨틱스 아게 Anti-TNFα antibodies and functional fragments thereof
RS61374B1 (en) 2016-03-17 2021-02-26 Tillotts Pharma Ag Anti-tnf alpha-antibodies and functional fragments thereof
KR102449711B1 (en) 2016-03-17 2022-09-30 누맙 이노베이션 아게 Anti-TNFα-antibodies and functional fragments thereof
RS61412B1 (en) 2016-03-17 2021-03-31 Tillotts Pharma Ag Anti-tnf alpha-antibodies and functional fragments thereof
KR20220004226A (en) 2016-03-22 2022-01-11 바이오노믹스 리미티드 Administration of an anti-lgr5 monoclonal antibody
WO2017165683A1 (en) 2016-03-23 2017-09-28 Novartis Ag Cell secreted minibodies and uses thereof
JP7208010B2 (en) 2016-03-29 2023-01-18 ユニバーシティ オブ サザン カリフォルニア Chimeric antigen receptor targeting cancer
KR20180134385A (en) 2016-04-15 2018-12-18 노파르티스 아게 Compositions and methods for selective protein expression
BR112018072263A2 (en) 2016-04-27 2019-02-12 Abbvie Inc. methods of treating diseases in which il-13 activity is harmful using anti-il-13 anti-antibodies
US11466076B2 (en) 2016-05-01 2022-10-11 UCB Biopharma SRL Binding domain or antibody specific to a human serum albumin (HSA)
WO2017194568A1 (en) 2016-05-11 2017-11-16 Sanofi Treatment regimen using anti-muc1 maytansinoid immunoconjugate antibody for the treatment of tumors
PT3458102T (en) 2016-05-17 2020-08-17 Abbvie Inc Anti-cmet antibody drug conjugates and methods for their use
JP7101621B2 (en) 2016-05-20 2022-07-15 ハープーン セラピューティクス,インク. Single domain serum albumin binding protein
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
WO2017205465A2 (en) 2016-05-24 2017-11-30 Griswold Karl Edwin Antibodies and methods of making same
WO2017205742A1 (en) 2016-05-27 2017-11-30 Abbvie Biotherapeutics Inc. Anti-cd40 antibodies and their uses
JP7267012B2 (en) 2016-05-27 2023-05-01 アジェナス インコーポレイテッド Anti-TIM-3 antibody and method of use thereof
EP3464362B1 (en) 2016-05-27 2020-12-09 AbbVie Biotherapeutics Inc. Anti-4-1bb antibodies and their uses
US20210177896A1 (en) 2016-06-02 2021-06-17 Novartis Ag Therapeutic regimens for chimeric antigen receptor (car)- expressing cells
TWI762487B (en) 2016-06-08 2022-05-01 美商艾伯維有限公司 Anti-b7-h3 antibodies and antibody drug conjugates
CN109563167A (en) 2016-06-08 2019-04-02 艾伯维公司 Anti- B7-H3 antibody and antibody drug conjugates
AU2017279554A1 (en) 2016-06-08 2019-01-03 Abbvie Inc. Anti-B7-H3 antibodies and antibody drug conjugates
GB201610198D0 (en) 2016-06-10 2016-07-27 Ucb Biopharma Sprl Anti-ige antibodies
CN113773387B (en) 2016-06-13 2024-06-21 天境生物科技(上海)有限公司 PD-L1 antibodies and uses thereof
KR102379464B1 (en) 2016-06-20 2022-03-29 키맵 리미티드 anti-PD-L1 antibody
IL299221A (en) 2016-06-21 2023-02-01 Teneobio Inc Cd3 binding antibodies
JP2019525772A (en) 2016-07-08 2019-09-12 スターテン・バイオテクノロジー・ベー・フェー Anti-APOC3 antibody and method of use thereof
US20190233534A1 (en) 2016-07-14 2019-08-01 Fred Hutchinson Cancer Research Center Multiple bi-specific binding domain constructs with different epitope binding to treat cancer
JP7219376B2 (en) 2016-07-15 2023-02-08 ノバルティス アーゲー Treatment and prevention of cytokine release syndrome using chimeric antigen receptors in combination with kinase inhibitors
AU2017299854A1 (en) 2016-07-18 2019-01-31 Helix Biopharma Corp. CAR immune cells directed to carcinoembryonic antigen related cell adhesion molecule 6 to treat cancer
TWI790206B (en) 2016-07-18 2023-01-21 法商賽諾菲公司 Bispecific antibody-like binding proteins specifically binding to cd3 and cd123
CN118021943A (en) 2016-07-28 2024-05-14 诺华股份有限公司 Combination therapy of chimeric antigen receptor and PD-1 inhibitor
JP7219207B2 (en) 2016-07-29 2023-02-07 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Antibodies targeting tumor-associated macrophages and uses thereof
EP3490590A2 (en) 2016-08-01 2019-06-05 Novartis AG Treatment of cancer using a chimeric antigen receptor in combination with an inhibitor of a pro-m2 macrophage molecule
JP7109789B2 (en) 2016-08-02 2022-08-01 ティーシーアール2 セラピューティクス インク. Compositions and methods for TCR reprogramming using fusion proteins
WO2018038684A1 (en) 2016-08-26 2018-03-01 Agency For Science, Technology And Research Macrophage stimulating protein receptor (or ron - recepteur d' origine nantais) antibodies and uses thereof
EP4273252A3 (en) 2016-08-29 2024-04-17 Akamis Bio Limited Adenovirus armed with bispecific t cell engager (bite)
JP7030109B2 (en) 2016-09-14 2022-03-04 テネオバイオ, インコーポレイテッド CD3 binding antibody
EP3778643A1 (en) 2016-09-14 2021-02-17 AbbVie Biotherapeutics Inc. Pharmaceutical uses of anti-pd-1(cd279) antibodies
EP3512880A1 (en) 2016-09-15 2019-07-24 Ablynx NV Immunoglobulin single variable domains directed against macrophage migration inhibitory factor
AU2017328383B2 (en) 2016-09-19 2022-10-27 I-Mab Biopharma (Hangzhou) Co., Ltd. Anti-GM-CSF antibodies and uses thereof
EP4360714A2 (en) 2016-09-21 2024-05-01 Nextcure, Inc. Antibodies for siglec-15 and methods of use thereof
KR102644544B1 (en) 2016-09-21 2024-03-11 넥스트큐어 인코포레이티드 Antibodies for SIGLEC-15 and methods of using the same
GB201616596D0 (en) 2016-09-29 2016-11-16 Nascient Limited Epitope and antibodies
JP7217970B2 (en) 2016-10-07 2023-02-06 ティーシーアール2 セラピューティクス インク. Compositions and methods for reprogramming T-cell receptors using fusion proteins
CN117866991A (en) 2016-10-07 2024-04-12 诺华股份有限公司 Chimeric antigen receptor for the treatment of cancer
MX2019003683A (en) 2016-10-11 2019-08-22 Agenus Inc Anti-lag-3 antibodies and methods of use thereof.
US11007254B2 (en) 2016-10-17 2021-05-18 Musc Foundation For Research Development Compositions and methods for treating central nervous system injury
RU2019114863A (en) 2016-11-02 2020-12-03 Иммуноджен, Инк. COMBINED TREATMENT WITH ANTIBODY-DRUG CONJUGATES AND PARP INHIBITORS
WO2018083258A1 (en) 2016-11-03 2018-05-11 Psioxus Therapeutics Limited Oncolytic adenovirus encoding at least three transgenes
EP3534947A1 (en) 2016-11-03 2019-09-11 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses & methods
WO2018083257A1 (en) 2016-11-03 2018-05-11 Psioxus Therapeutics Limited Oncolytic adenovirus encoding transgenes
JP7045724B2 (en) 2016-11-07 2022-04-01 ニューラクル サイエンス カンパニー リミテッド Anti-Family 19, member A5 antibody with sequence similarity and its uses
EP3541847A4 (en) 2016-11-17 2020-07-08 Seattle Genetics, Inc. Glycan-interacting compounds and methods of use
US11773163B2 (en) 2016-11-21 2023-10-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the prophylactic treatment of metastases
WO2018098365A2 (en) 2016-11-22 2018-05-31 TCR2 Therapeutics Inc. Compositions and methods for tcr reprogramming using fusion proteins
EA201991168A1 (en) 2016-11-23 2019-12-30 Харпун Терапьютикс, Инк. PROTEIN BINDING PROSTATIC SPECIFIC MEMBRANE ANTIGEN
KR20190087539A (en) 2016-11-23 2019-07-24 하푼 테라퓨틱스, 인크. PSMA-targeted triple specific proteins and methods of use
CN108367075B (en) 2016-11-23 2022-08-09 免疫方舟医药技术股份有限公司 4-1BB binding proteins and uses thereof
JP7106538B2 (en) 2016-12-07 2022-07-26 アジェナス インコーポレイテッド Antibodies and methods of their use
MD3551660T2 (en) 2016-12-07 2024-03-31 Agenus Inc Anti-CTLA-4 antibodies and methods of use thereof
ES2813057T3 (en) 2016-12-15 2021-03-22 Abbvie Biotherapeutics Inc Anti-ox40 antibodies and their uses
GB201621635D0 (en) 2016-12-19 2017-02-01 Ucb Biopharma Sprl Crystal structure
EP4215548A1 (en) 2016-12-21 2023-07-26 Teneobio, Inc. Anti-bcma heavy chain-only antibodies
TW201840585A (en) 2016-12-22 2018-11-16 法商賽諾菲公司 Anti-human cxcr3 antibodies for treatment of vitiligo
UY37544A (en) 2016-12-22 2018-07-31 Sanofi Sa HUMANIZED ANTIBODIES AGAINST CXCR3 WITH MERMADORA ACTIVITY AND METHODS OF USE OF THE SAME
EP3565837B1 (en) 2017-01-05 2024-04-10 Netris Pharma Combined treatment with netrin-1 interfering drug and immune checkpoint inhibitors drugs
WO2018127791A2 (en) 2017-01-06 2018-07-12 Biosion, Inc. Erbb2 antibodies and uses therefore
WO2018133842A1 (en) 2017-01-20 2018-07-26 大有华夏生物医药集团有限公司 Monoclonal antibody of human programmed death receptor pd-1 and fragment thereof
PE20191208A1 (en) 2017-01-24 2019-09-10 I Mab ANTI-CD73 ANTIBODIES AND USES OF THEM
EP4043485A1 (en) 2017-01-26 2022-08-17 Novartis AG Cd28 compositions and methods for chimeric antigen receptor therapy
KR20240038146A (en) 2017-01-30 2024-03-22 얀센 바이오테크 인코포레이티드 Anti-tnf antibodies, compositions, and methods for the treatment of active psoriatic arthritis
JP2020506700A (en) 2017-01-31 2020-03-05 ノバルティス アーゲー Cancer treatment using multispecific chimeric T cell receptor protein
EP3354278A1 (en) 2017-01-31 2018-08-01 Sanofi Neuronal cell protective effect of antibodies specific for the protofibrillar form of the beta-amyloid peptide
CN110418652A (en) 2017-02-07 2019-11-05 詹森生物科技公司 For treating the anti-TNF antibodies, composition and method of activity ankylosing spondylitis
CA3053774A1 (en) 2017-02-17 2018-08-23 Sanofi Multispecific binding molecules having specificity to dystroglycan and laminin-2
US10626169B2 (en) 2017-02-17 2020-04-21 Sanofi Multispecific binding molecules having specificity to dystroglycan and laminin-2
US11535668B2 (en) 2017-02-28 2022-12-27 Harpoon Therapeutics, Inc. Inducible monovalent antigen binding protein
JP2020510432A (en) 2017-03-02 2020-04-09 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Antibodies with specificity for NECTIN-4 and uses thereof
KR20240044544A (en) 2017-03-03 2024-04-04 씨젠 인크. Glycan-interacting compounds and methods of use
KR102584011B1 (en) 2017-03-16 2023-09-27 이나뜨 파르마 에스.에이. Compositions and methods for treating cancer
TWI808963B (en) 2017-03-22 2023-07-21 法商賽諾菲公司 Treatment of lupus using humanized anti-cxcr5 antibodies
MX2019011624A (en) 2017-03-27 2019-12-05 Celgene Corp Methods and compositions for reduction of immunogenicity.
WO2018183366A1 (en) 2017-03-28 2018-10-04 Syndax Pharmaceuticals, Inc. Combination therapies of csf-1r or csf-1 antibodies and a t-cell engaging therapy
AU2018253176B2 (en) 2017-04-13 2023-02-02 Agenus Inc. Anti-CD137 antibodies and methods of use thereof
US20230227566A1 (en) 2017-04-14 2023-07-20 Gamamabs Pharma Amhrii-binding compounds for preventing or treating lung cancers
CN110891970B (en) 2017-04-14 2024-05-10 埃克塞里艾克西斯公司 AMHRII-binding compounds for preventing or treating cancer
AU2018255938A1 (en) 2017-04-21 2019-10-31 Staten Biotechnology B.V. Anti-ApoC3 antibodies and methods of use thereof
WO2018196782A1 (en) 2017-04-27 2018-11-01 The University Of Hong Kong Use of hcn inhibitors for treatment of cancer
US20200055948A1 (en) 2017-04-28 2020-02-20 Novartis Ag Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
SI3618863T1 (en) 2017-05-01 2023-12-29 Agenus Inc. Anti-tigit antibodies and methods of use thereof
KR102455340B1 (en) * 2017-05-10 2022-10-18 더 위스타 인스티튜트 오브 아나토미 앤드 바이올로지 Optimized Nucleic Acid Antibody Constructs
CN115028727A (en) 2017-05-12 2022-09-09 哈普恩治疗公司 MSLN-targeting trispecific proteins and methods of use
BR112019023855B1 (en) 2017-05-12 2021-11-30 Harpoon Therapeutics, Inc MESOTHELIN BINDING PROTEINS
JOP20190256A1 (en) 2017-05-12 2019-10-28 Icahn School Med Mount Sinai Newcastle disease viruses and uses thereof
CN110662760A (en) 2017-05-12 2020-01-07 奥古斯塔大学研究所公司 Human alpha-fetoprotein specific T cell receptor and uses thereof
EP3624848A1 (en) 2017-05-19 2020-03-25 Syndax Pharmaceuticals, Inc. Combination therapies
AU2018277838A1 (en) 2017-05-31 2019-12-19 Stcube & Co., Inc. Antibodies and molecules that immunospecifically bind to BTN1A1 and the therapeutic uses thereof
US20200131266A1 (en) 2017-05-31 2020-04-30 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1
EP3409688A1 (en) 2017-05-31 2018-12-05 Tillotts Pharma Ag Topical treatment of inflammatory bowel disease using anti-tnf-alpha antibodies and fragments thereof
PT3630143T (en) 2017-06-01 2023-08-29 Akamis Bio Ltd Oncolytic virus and method
BR112019025392A2 (en) 2017-06-02 2020-07-07 Ablynx N.V. aggrecan-binding immunoglobulins
JP2020522562A (en) 2017-06-06 2020-07-30 ストキューブ アンド シーオー., インコーポレイテッド Methods of treating cancer with antibodies and molecules that bind to BTN1A1 or BTN1A1 ligand
US20210079057A1 (en) 2017-06-13 2021-03-18 TCR2 Therapeutics Inc. Compositions and methods for tcr reprogramming using fusion proteins
AU2018288803A1 (en) 2017-06-20 2020-02-06 Teneoone, Inc. Anti-BCMA heavy chain-only antibodies
EP3642237A2 (en) 2017-06-20 2020-04-29 Teneobio, Inc. Anti-bcma heavy chain-only antibodies
EP3642229A1 (en) 2017-06-21 2020-04-29 Gilead Sciences, Inc. Multispecific antibodies that target hiv gp120 and cd3
US11613588B2 (en) 2017-06-28 2023-03-28 The Rockefeller University Anti-mertk agonistic antibodies and uses thereof
WO2019018647A1 (en) 2017-07-20 2019-01-24 Pfizer Inc. Anti-gd3 antibodies and antibody-drug conjugates
US11174322B2 (en) 2017-07-24 2021-11-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies and peptides to treat HCMV related diseases
US20210032364A1 (en) 2017-07-27 2021-02-04 Nomocan Pharmaceuticals Llc Antibodies to m(h)dm2/4 and their use in diagnosing and treating cancer
EP3625254B1 (en) 2017-07-31 2023-12-13 F. Hoffmann-La Roche AG Three-dimensional structure-based humanization method
US11208495B2 (en) 2017-08-28 2021-12-28 Angiex, Inc. Anti-TM4SF1 antibodies and methods of using same
MX2020002612A (en) 2017-09-07 2020-07-13 Univ Res Inst Inc Augusta Antibodies to programmed cell death protein 1.
EP3456739A1 (en) 2017-09-19 2019-03-20 Tillotts Pharma Ag Use of anti-tnfalpha antibodies for treating wounds
EP3459528B1 (en) 2017-09-20 2022-11-23 Tillotts Pharma Ag Preparation of solid dosage forms comprising antibodies by solution/suspension layering
EP3459529A1 (en) 2017-09-20 2019-03-27 Tillotts Pharma Ag Preparation of sustained release solid dosage forms comprising antibodies by spray drying
ES2938608T3 (en) 2017-09-20 2023-04-13 Tillotts Pharma Ag Method for preparing a solid dosage form comprising antibodies by wet granulation, extrusion and spheronization
US11572409B2 (en) 2017-09-21 2023-02-07 Imcheck Therapeutics Sas Antibodies having specificity for BTN2 and uses thereof
US20200271657A1 (en) 2017-10-04 2020-08-27 Opko Pharmaceuticals, Llc Articles and methods directed to personalized therapy of cancer
WO2019075090A1 (en) 2017-10-10 2019-04-18 Tilos Therapeutics, Inc. Anti-lap antibodies and uses thereof
WO2019074124A1 (en) 2017-10-12 2019-04-18 Keio University Anti aqp3 monoclonal antibody specifically binding to extracellular domain of aquaporin 3 (aqp3) and use thereof
CN111630070A (en) 2017-10-13 2020-09-04 哈普恩治疗公司 Trispecific proteins and methods of use
AU2018346955A1 (en) 2017-10-13 2020-04-30 Harpoon Therapeutics, Inc. B cell maturation antigen binding proteins
PE20210119A1 (en) 2017-10-31 2021-01-19 Staten Biotechnology B V ANTI-APOC3 ANTIBODIES AND METHODS OF USE OF THEM
US20190160089A1 (en) 2017-10-31 2019-05-30 Immunogen, Inc. Combination treatment with antibody-drug conjugates and cytarabine
WO2019094595A2 (en) 2017-11-09 2019-05-16 Pinteon Therapeutics Inc. Methods and compositions for the generation and use of humanized conformation-specific phosphorylated tau antibodies
CA3082410A1 (en) 2017-11-14 2019-05-23 Arcellx, Inc. Multifunctional immune cell therapies
CN111727075B (en) 2017-11-27 2024-04-05 普渡制药公司 Humanized antibodies targeting human tissue factor
JP2021508479A (en) 2017-12-27 2021-03-11 テネオバイオ, インコーポレイテッド CD3 delta and CD3 epsilon on heterodimer-specific antibodies
GB201802486D0 (en) 2018-02-15 2018-04-04 Ucb Biopharma Sprl Methods
US20210085715A1 (en) 2018-02-23 2021-03-25 Cartherics Pty. Ltd. T cell disease treatment targeting tag-72
US20210002373A1 (en) 2018-03-01 2021-01-07 Nextcure, Inc. KLRG1 Binding Compositions and Methods of Use Thereof
AU2019234213A1 (en) 2018-03-12 2020-09-03 Zoetis Services Llc Anti-NGF antibodies and methods thereof
GB201804701D0 (en) 2018-03-23 2018-05-09 Gammadelta Therapeutics Ltd Lymphocytes expressing heterologous targeting constructs
MA52190A (en) 2018-04-02 2021-02-17 Bristol Myers Squibb Co ANTI-TREM-1 ANTIBODIES AND ASSOCIATED USES
CN112004558A (en) 2018-04-12 2020-11-27 米迪亚制药有限责任公司 LGALS3BP antibody-drug-conjugate and its use for the treatment of cancer
WO2019207159A1 (en) 2018-04-27 2019-10-31 Fondazione Ebri Rita Levi-Montalcini Antibody directed against a tau-derived neurotoxic peptide and uses thereof
US20210047405A1 (en) 2018-04-27 2021-02-18 Novartis Ag Car t cell therapies with enhanced efficacy
EP3788369A1 (en) 2018-05-01 2021-03-10 Novartis Ag Biomarkers for evaluating car-t cells to predict clinical outcome
KR102661891B1 (en) 2018-05-10 2024-05-23 주식회사 뉴라클사이언스 Anti-family with sequence similarity 19, member A5 antibody and methods of use thereof
TW202003048A (en) 2018-05-15 2020-01-16 美商伊繆諾金公司 Combination treatment with antibody-drug conjugates and FLT3 inhibitors
SG11202011633SA (en) 2018-05-24 2020-12-30 Janssen Biotech Inc Psma binding agents and uses thereof
US20210213063A1 (en) 2018-05-25 2021-07-15 Novartis Ag Combination therapy with chimeric antigen receptor (car) therapies
JP7398396B2 (en) 2018-06-01 2023-12-14 ノバルティス アーゲー Binding molecules for BCMA and their uses
JP7500442B2 (en) 2018-06-18 2024-06-17 イナート・ファルマ・ソシエテ・アノニム Compositions and methods for treating cancer
WO2019243801A1 (en) 2018-06-18 2019-12-26 UCB Biopharma SRL Gremlin-1 antagonist for the prevention and treatment of cancer
US20210277118A1 (en) 2018-06-21 2021-09-09 Daiichi Sankyo Company, Limited Compositions including cd3 antigen binding fragments and uses thereof
JP2021527693A (en) 2018-06-21 2021-10-14 ユマニティ セラピューティクス,インコーポレーテッド Compositions and Methods for the Treatment and Prevention of Neurological Disorders
EP3841124A4 (en) 2018-06-29 2022-03-23 ApitBio, Inc. Anti-l1cam antibodies and uses thereof
WO2020002592A1 (en) 2018-06-29 2020-01-02 Stichting Het Nederlands Kanker Instituut - Antoni Van Leeuwenhoek Ziekenhuis Traf2 inhibitors for use in the treatment of a cancer
AU2019301336B2 (en) 2018-07-10 2022-11-24 Mitsubishi Tanabe Pharma Corporation Prevention or treatment method for peripheral neuropathy or pain accompanying disease in which peripheral neuropathy or astrocyte disorder is recognized
MX2021000786A (en) 2018-07-20 2021-06-15 Pf Medicament Receptor for vista.
CA3107383A1 (en) 2018-07-23 2020-01-30 Magenta Therapeutics, Inc. Use of anti-cd5 antibody drug conjugate (adc) in allogeneic cell therapy
TW202026006A (en) 2018-08-30 2020-07-16 美商Tcr2療法股份有限公司 Compositions and methods for tcr reprogramming using fusion proteins
EP3849565A4 (en) 2018-09-12 2022-12-28 Fred Hutchinson Cancer Research Center Reducing cd33 expression to selectively protect therapeutic cells
CA3153959A1 (en) 2018-09-18 2020-03-26 Merrimack Pharmaceuticals, Inc. Anti-tnfr2 antibodies and uses thereof
CA3114038A1 (en) 2018-09-25 2020-04-02 Harpoon Therapeutics, Inc. Dll3 binding proteins and methods of use
WO2020069409A1 (en) 2018-09-28 2020-04-02 Novartis Ag Cd19 chimeric antigen receptor (car) and cd22 car combination therapies
EP3856773A1 (en) 2018-09-28 2021-08-04 Kyowa Kirin Co., Ltd. Il-36 antibodies and uses thereof
US20220047633A1 (en) 2018-09-28 2022-02-17 Novartis Ag Cd22 chimeric antigen receptor (car) therapies
CA3113575A1 (en) 2018-10-03 2020-04-09 Staten Biotechnology B.V. Antibodies specific for human and cynomolgus apoc3 and methods of use thereof
EP3863722A2 (en) 2018-10-10 2021-08-18 Tilos Theapeutics, Inc. Anti-lap antibody variants and uses thereof
SG11202103801UA (en) 2018-10-16 2021-05-28 UCB Biopharma SRL Method for the treatment of myasthenia gravis
GB201817311D0 (en) 2018-10-24 2018-12-05 Ucb Biopharma Sprl Antibodies
GB201817309D0 (en) 2018-10-24 2018-12-05 Ucb Biopharma Sprl Antibodies
WO2020092455A2 (en) 2018-10-29 2020-05-07 The Broad Institute, Inc. Car t cell transcriptional atlas
US20220025058A1 (en) 2018-11-06 2022-01-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of acute myeloid leukemia by eradicating leukemic stem cells
US20220026445A1 (en) 2018-12-07 2022-01-27 Georgia Tech Research Corporation Antibodies that bind to natively folded myocilin
WO2020114616A1 (en) 2018-12-07 2020-06-11 Tillotts Pharma Ag Topical treatment of immune checkpoint inhibitor induced diarrhoea, colitis or enterocolitis using antibodies and fragments thereof
CA3123004A1 (en) 2018-12-11 2020-06-18 Q32 Bio Inc. Fusion protein constructs for complement associated disease
US20220064260A1 (en) 2018-12-14 2022-03-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Isolated mhc-derived human peptides and uses thereof for stimulating and activating the suppressive function of cd8+cd45rclow tregs
CA3124356A1 (en) 2018-12-20 2020-06-25 Kyowa Kirin Co., Ltd. Fn14 antibodies and uses thereof
GB201900732D0 (en) 2019-01-18 2019-03-06 Ucb Biopharma Sprl Antibodies
AU2019427766A1 (en) 2019-01-30 2021-09-16 Nomocan Pharmaceuticals Llc Antibodies to M(H)DM2/4 and their use in diagnosing and treating cancer
CN113631574A (en) 2019-01-31 2021-11-09 努玛治疗有限公司 Multispecific antibodies specific for TNF alpha and IL-17A, antibodies targeting IL-17A, and methods of use thereof
JP6821230B2 (en) 2019-02-04 2021-01-27 国立大学法人愛媛大学 How to make CAR library and scFv
WO2020169472A2 (en) 2019-02-18 2020-08-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of inducing phenotypic changes in macrophages
CN116178547A (en) 2019-02-22 2023-05-30 武汉友芝友生物制药股份有限公司 CD3 antigen binding fragments and uses thereof
EP3927371A1 (en) 2019-02-22 2021-12-29 Novartis AG Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors
US20220098307A1 (en) 2019-02-22 2022-03-31 Wuhan Yzy Biopharma Co., Ltd. Modified fc fragment, antibody comprising same, and application thereof
MA55080A (en) 2019-02-26 2022-01-05 Inspirna Inc HIGH AFFINITY ANTI-MERTK ANTIBODIES AND ASSOCIATED USES
WO2020180712A1 (en) 2019-03-01 2020-09-10 Merrimack Pharmaceuticals, Inc. Anti-tnfr2 antibodies and uses thereof
WO2020188086A1 (en) 2019-03-20 2020-09-24 Imcheck Therapeutics Sas Antibodies having specificity for btn2 and uses thereof
US20220177558A1 (en) 2019-03-25 2022-06-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Treatment of taupathy disorders by targeting new tau species
KR20210143788A (en) 2019-03-26 2021-11-29 아슬란 파마슈티컬스 피티이 엘티디 Treatment with an anti-IL-13R antibody or binding fragment thereof
US20220169706A1 (en) 2019-03-28 2022-06-02 Danisco Us Inc Engineered antibodies
WO2020213084A1 (en) 2019-04-17 2020-10-22 Keio University Anti aqp3 monoclonal antibody specifically binding to extracellular domain of aquaporin 3 (aqp3) and use thereof
AU2020279974A1 (en) 2019-05-21 2021-11-18 Novartis Ag CD19 binding molecules and uses thereof
WO2020236797A1 (en) 2019-05-21 2020-11-26 Novartis Ag Variant cd58 domains and uses thereof
MX2021014302A (en) 2019-05-23 2022-01-04 Janssen Biotech Inc Method of treating inflammatory bowel disease with a combination therapy of antibodies to il-23 and tnf alpha.
CA3140816A1 (en) 2019-06-14 2020-12-17 Nathan Trinklein Multispecific heavy chain antibodies binding to cd22 and cd3
BR112021026832A2 (en) 2019-07-02 2022-05-10 Hutchinson Fred Cancer Res Recombinant ad35 vectors and related gene therapy enhancements
EP3998286A4 (en) 2019-07-11 2023-04-26 Wuhan Yzy Biopharma Co., Ltd. Tetravalent symmetric bispecific antibody
EP4004050A2 (en) 2019-07-30 2022-06-01 QLSF Biotherapeutics Inc. Multispecific binding compound that bind to lfrrc15 and cd3
US20220281967A1 (en) 2019-08-02 2022-09-08 Orega Biotech Novel il-17b antibodies
MX2022001882A (en) 2019-08-12 2022-05-30 Aptevo Res & Development Llc 4-1bb and ox40 binding proteins and related compositions and methods, antibodies against 4-1bb, antibodies against ox40.
WO2021035170A1 (en) 2019-08-21 2021-02-25 Precision Biosciences, Inc. Compositions and methods for tcr reprogramming using fusion proteins
TW202122420A (en) 2019-08-30 2021-06-16 美商艾吉納斯公司 Anti-cd96 antibodies and methods of use thereof
JP2022547850A (en) 2019-09-03 2022-11-16 バイオ - テラ ソリューションズ、リミテッド Anti-TIGIT immune inhibitor and application
JP2022549504A (en) 2019-09-26 2022-11-25 エスティーキューブ アンド カンパニー Antibodies specific for glycosylated CTLA-4 and methods of use thereof
WO2021058729A1 (en) 2019-09-27 2021-04-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance type i receptor antibodies and uses thereof
EP4034560A1 (en) 2019-09-27 2022-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance antibodies and uses thereof
US20220356248A1 (en) 2019-10-09 2022-11-10 Stcube & Co Antibodies specific to glycosylated lag3 and methods of use thereof
EP3812008A1 (en) 2019-10-23 2021-04-28 Gamamabs Pharma Amh-competitive antagonist antibody
EP3825330A1 (en) 2019-11-19 2021-05-26 International-Drug-Development-Biotech Anti-cd117 antibodies and methods of use thereof
JP2023503429A (en) 2019-11-22 2023-01-30 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Adrenomedullin inhibitors for the treatment of acute myeloid leukemia by eradicating leukemic stem cells
GB201917480D0 (en) 2019-11-29 2020-01-15 Univ Oxford Innovation Ltd Antibodies
US11897950B2 (en) 2019-12-06 2024-02-13 Augusta University Research Institute, Inc. Osteopontin monoclonal antibodies
US20230040928A1 (en) 2019-12-09 2023-02-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to her4 and uses thereof
WO2021116277A1 (en) 2019-12-10 2021-06-17 Institut Pasteur New antibody blocking human fcgriiia and fcgriiib
GB201919061D0 (en) 2019-12-20 2020-02-05 Ucb Biopharma Sprl Multi-specific antibody
GB201919062D0 (en) 2019-12-20 2020-02-05 Ucb Biopharma Sprl Antibody
GB201919058D0 (en) 2019-12-20 2020-02-05 Ucb Biopharma Sprl Multi-specific antibodies
AR120898A1 (en) 2019-12-26 2022-03-30 Univ Osaka AGENT TO TREAT OR PREVENT ACUTE NEUROMYELITIS OPTICA
TW202138388A (en) 2019-12-30 2021-10-16 美商西根公司 Methods of treating cancer with nonfucosylated anti-cd70 antibodies
EP4087657A1 (en) 2020-01-08 2022-11-16 Synthis Therapeutics, Inc. Alk5 inhibitor conjugates and uses thereof
US20230055626A1 (en) 2020-01-15 2023-02-23 Osaka University Agent for prevention or treatment of diabetic autonomic neuropathy
CA3168209A1 (en) 2020-01-15 2021-07-22 Osaka University Prophylactic or therapeutic agent for dementia
GB202001447D0 (en) 2020-02-03 2020-03-18 Ucb Biopharma Sprl Antibodies
US20230061973A1 (en) 2020-02-05 2023-03-02 Larimar Therapeutics, Inc. Tat peptide binding proteins and uses thereof
EP4103611B1 (en) 2020-02-13 2024-03-27 UCB Biopharma SRL Bispecific antibodies binding hvem and cd9
WO2021160267A1 (en) 2020-02-13 2021-08-19 UCB Biopharma SRL Bispecific antibodies against cd9 and cd7
WO2021160269A1 (en) 2020-02-13 2021-08-19 UCB Biopharma SRL Anti cd44-ctla4 bispecific antibodies
US20230151108A1 (en) 2020-02-13 2023-05-18 UCB Biopharma SRL Bispecific antibodies against cd9 and cd137
US20230151109A1 (en) 2020-02-13 2023-05-18 UCB Biopharma SRL Bispecific antibodies against cd9
CA3170833A1 (en) 2020-02-21 2021-08-26 Harpoon Therapeutics, Inc. Flt3 binding proteins and methods of use
EP4110404A1 (en) 2020-02-28 2023-01-04 Genzyme Corporation Modified binding polypeptides for optimized drug conjugation
WO2021175954A1 (en) 2020-03-04 2021-09-10 Imcheck Therapeutics Sas Antibodies having specificity for btnl8 and uses thereof
US20230126689A1 (en) 2020-03-06 2023-04-27 Go Therapeutics, Inc. Anti-glyco-cd44 antibodies and their uses
BR112022017924A2 (en) 2020-03-10 2022-12-20 Massachusetts Inst Technology COMPOSITIONS AND METHODS FOR NPM1C-POSITIVE CANCER IMMUNOTHERAPY
US20230203191A1 (en) 2020-03-30 2023-06-29 Danisco Us Inc Engineered antibodies
CN115362171A (en) 2020-03-31 2022-11-18 百奥泰生物制药股份有限公司 Antibody for treating coronavirus, fusion protein and application thereof
WO2021207449A1 (en) 2020-04-09 2021-10-14 Merck Sharp & Dohme Corp. Affinity matured anti-lap antibodies and uses thereof
IL297207A (en) 2020-04-24 2022-12-01 Sanofi Sa Antitumor combinations containing anti-ceacam5 antibody conjugates, trifluridine and tipiracil
CA3181005A1 (en) 2020-04-24 2021-10-28 Sanofi Antitumor combinations containing anti-ceacam5 antibody conjugates and folfox
CN115427083A (en) 2020-04-24 2022-12-02 赛诺菲 Antitumor combination comprising anti-CEACAM 5 antibody conjugate and cetuximab
US20230087871A1 (en) 2020-04-24 2023-03-23 Sanofi Antitumor combinations containing anti-ceacam5 antibody conjugates and folfiri
CN113637082A (en) 2020-04-27 2021-11-12 启愈生物技术(上海)有限公司 Bispecific antibody targeting human claudin and human PDL1 protein and application thereof
CN115894703A (en) 2020-04-29 2023-04-04 特尼奥生物股份有限公司 Multispecific heavy chain antibodies with modified heavy chain constant regions
JP2023525053A (en) 2020-05-12 2023-06-14 インサーム(インスティテュ ナシオナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシェ メディカル) A new method to treat cutaneous T-cell lymphoma and TFH-derived lymphoma
EP3915641A1 (en) 2020-05-27 2021-12-01 International-Drug-Development-Biotech Anti-cd5 antibodies and methods of use thereof
US20230332104A1 (en) 2020-06-11 2023-10-19 Novartis Ag Zbtb32 inhibitors and uses thereof
JP2023530919A (en) 2020-06-17 2023-07-20 ヤンセン バイオテツク,インコーポレーテツド Materials and methods for production of pluripotent stem cells
JPWO2022014703A1 (en) 2020-07-17 2022-01-20
US20230287126A1 (en) 2020-08-07 2023-09-14 Bio-Thera Solutions, Ltd. Anti-pd-l1 antibody and use thereof
EP4208481A1 (en) 2020-09-04 2023-07-12 Merck Patent GmbH Anti-ceacam5 antibodies and conjugates and uses thereof
EP4225788A2 (en) 2020-10-07 2023-08-16 Zoetis Services LLC Anti-ngf antibodies and methods of use thereof
EP3981789A1 (en) 2020-10-12 2022-04-13 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives Anti-lilrb antibodies and uses thereof
WO2022081436A1 (en) 2020-10-15 2022-04-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Antibody specific for sars-cov-2 receptor binding domain and therapeutic methods
WO2022079199A1 (en) 2020-10-15 2022-04-21 UCB Biopharma SRL Binding molecules that multimerise cd45
US20240084014A1 (en) 2020-10-16 2024-03-14 Qlsf Biotherapeutics, Inc. Multispecific binding compounds that bind to pd-l1
WO2022087274A1 (en) 2020-10-21 2022-04-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Antibodies that neutralize type-i interferon (ifn) activity
WO2022089767A1 (en) 2020-11-02 2022-05-05 UCB Biopharma SRL Use of anti-trem1 neutralizing antibodies for the treatment of motor neuron neurodegenerative disorders
WO2022095970A1 (en) 2020-11-06 2022-05-12 百奥泰生物制药股份有限公司 Bispecific antibody and use thereof
IL302412A (en) 2020-11-06 2023-06-01 Novartis Ag Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies
EP4240491A1 (en) 2020-11-06 2023-09-13 Novartis AG Cd19 binding molecules and uses thereof
AU2021378316A1 (en) 2020-11-13 2023-06-01 Novartis Ag Combination therapies with chimeric antigen receptor (car)-expressing cells
AU2021390501A1 (en) 2020-12-01 2023-06-29 Aptevo Research And Development Llc Heterodimeric psma and cd3-binding bispecific antibodies
IL303295A (en) 2020-12-07 2023-07-01 UCB Biopharma SRL Multi-specific antibodies and antibody combinations
IL303294A (en) 2020-12-07 2023-07-01 UCB Biopharma SRL Antibodies against interleukin-22
TW202237639A (en) 2020-12-09 2022-10-01 日商武田藥品工業股份有限公司 Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof
TW202237638A (en) 2020-12-09 2022-10-01 日商武田藥品工業股份有限公司 Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof
CN114685660A (en) 2020-12-30 2022-07-01 百奥泰生物制药股份有限公司 anti-CLDN 18.2 antibody and preparation method and application thereof
WO2022148736A1 (en) 2021-01-05 2022-07-14 Transgene Vectorization of muc1 t cell engager
EP4277665A1 (en) 2021-01-13 2023-11-22 Memorial Sloan Kettering Cancer Center Anti-dll3 antibody-drug conjugate
KR20230146521A (en) 2021-01-13 2023-10-19 메모리얼 슬로안 케터링 캔서 센터 Antibody-pyrrolobenzodiazepine derivative conjugate
AR124681A1 (en) 2021-01-20 2023-04-26 Abbvie Inc ANTI-EGFR ANTIBODY-DRUG CONJUGATES
EP4281187A1 (en) 2021-01-20 2023-11-29 Bioentre LLC Ctla4-binding proteins and methods of treating cancer
EP4288455A1 (en) 2021-02-03 2023-12-13 Mozart Therapeutics, Inc. Binding agents and methods of using the same
WO2022186772A1 (en) 2021-03-01 2022-09-09 Aslan Pharmaceuticals Pte Ltd TREATMENT OF ATOPIC DERMATITIS EMPLOYING ANTI-IL-13Rα1 ANTIBODY OR BINDING FRAGMENT THEREOF
WO2022186773A1 (en) 2021-03-01 2022-09-09 Aslan Pharmaceuticals Pte Ltd TREATMENT OF ATOPIC DERMATITIS EMPLOYING ANTI-IL-13Rα1 ANTIBODY OR BINDING FRAGMENT THEREOF IN AN ALLERGIC POPULATION
EP4301776A1 (en) 2021-03-04 2024-01-10 Centre National de la Recherche Scientifique (CNRS) Use of a periostin antibody for treating inflammation, fibrosis and lung diseases
WO2022187591A1 (en) 2021-03-05 2022-09-09 Go Therapeutics, Inc. Anti-glyco-cd44 antibodies and their uses
CA3208011A1 (en) 2021-03-17 2022-09-22 Sarah Harris Methods of treating atopic dermatitis with anti il-13 antibodies
EP4314059A1 (en) 2021-03-26 2024-02-07 Janssen Biotech, Inc. Humanized antibodies against paired helical filament tau and uses thereof
EP4067381A1 (en) 2021-04-01 2022-10-05 Julius-Maximilians-Universität Würzburg Novel tnfr2 binding molecules
JP2024514530A (en) 2021-04-02 2024-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Antibodies against truncated CDCP1 and uses thereof
CA3218933A1 (en) 2021-05-03 2022-11-10 UCB Biopharma SRL Antibodies
JP2024517844A (en) 2021-05-04 2024-04-23 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Multispecific FGF21 receptor agonists and uses thereof
EP4334354A1 (en) 2021-05-06 2024-03-13 Dana-Farber Cancer Institute, Inc. Antibodies against alk and methods of use thereof
CA3218481A1 (en) 2021-06-14 2022-12-22 argenx BV Anti-il-9 antibodies and methods of use thereof
CN117957256A (en) 2021-06-17 2024-04-30 勃林格殷格翰国际有限公司 Novel trispecific binding molecules
US20230174651A1 (en) 2021-06-23 2023-06-08 Janssen Biotech, Inc. Materials and methods for hinge regions in functional exogenous receptors
TW202317190A (en) 2021-06-29 2023-05-01 美商思進公司 Methods of treating cancer with a combination of a nonfucosylated anti-cd70 antibody and a cd47 antagonist
WO2023006919A1 (en) 2021-07-29 2023-02-02 Institut National De La Sante Et De La Recherche Medicale (Inserm) HUMANIZED ANTI-HUMAN βIG-H3 PROTEIN AND USES THEREOF
EP4377335A1 (en) 2021-07-29 2024-06-05 Takeda Pharmaceutical Company Limited Engineered immune cell that specifically targets mesothelin and uses thereof
CA3228178A1 (en) 2021-08-05 2023-02-09 Go Therapeutics, Inc. Anti-glyco-muc4 antibodies and their uses
WO2023012343A1 (en) 2021-08-06 2023-02-09 Institut Du Cancer De Montpellier Methods for the treatment of cancer
AU2022325950A1 (en) 2021-08-11 2024-02-22 Viela Bio, Inc. Inebilizumab and methods of using the same in the treatment or prevention of igg4-related disease
GB202111905D0 (en) 2021-08-19 2021-10-06 UCB Biopharma SRL Antibodies
AU2022339819A1 (en) 2021-09-03 2024-04-11 Go Therapeutics, Inc. Anti-glyco-lamp1 antibodies and their uses
TW202328188A (en) 2021-09-03 2023-07-16 美商Go治療公司 Anti-glyco-cmet antibodies and their uses
WO2023048651A1 (en) 2021-09-27 2023-03-30 Aslan Pharmaceuticals Pte Ltd Method for treatment of moderate to severe atoptic dematitis
WO2023048650A1 (en) 2021-09-27 2023-03-30 Aslan Pharmaceuticals Pte Ltd TREATMENT OF PRURITIS EMPLOYING ANTI-IL13Rα1 ANTIBODY OR BINDING FRAGMENT THEREOF
WO2023051663A1 (en) 2021-09-30 2023-04-06 百奥泰生物制药股份有限公司 Anti-b7-h3 antibody and application thereof
WO2023056069A1 (en) 2021-09-30 2023-04-06 Angiex, Inc. Degrader-antibody conjugates and methods of using same
GB202115122D0 (en) 2021-10-21 2021-12-08 Dualyx Nv Binding molecules targeting IL-2 receptor
WO2023076876A1 (en) 2021-10-26 2023-05-04 Mozart Therapeutics, Inc. Modulation of immune responses to viral vectors
TW202333784A (en) 2021-10-29 2023-09-01 新加坡商亞獅康私人有限公司 Anti-il-13r antibody formulation
WO2023079057A1 (en) 2021-11-05 2023-05-11 Sanofi Antitumor combinations containing anti-ceacam5 antibody-drug conjugates and anti-vegfr-2 antibodies
CA3238936A1 (en) 2021-11-24 2023-06-01 Wayne A. Marasco Antibodies against ctla-4 and methods of use thereof
WO2023114543A2 (en) 2021-12-17 2023-06-22 Dana-Farber Cancer Institute, Inc. Platform for antibody discovery
WO2023114544A1 (en) 2021-12-17 2023-06-22 Dana-Farber Cancer Institute, Inc. Antibodies and uses thereof
TW202337904A (en) 2022-01-07 2023-10-01 美商壯生和壯生企業創新公司 Materials and methods of il-1β binding proteins
WO2023140780A1 (en) 2022-01-24 2023-07-27 Aslan Pharmaceuticals Pte Ltd. Method of treating inflammatory disease
WO2023163659A1 (en) 2022-02-23 2023-08-31 Aslan Pharmaceuticals Pte Ltd Glycosylated form of anti-il13r antibody
WO2023170239A1 (en) 2022-03-09 2023-09-14 Merck Patent Gmbh Methods and tools for conjugation to antibodies
WO2023172968A1 (en) 2022-03-09 2023-09-14 Merck Patent Gmbh Anti-gd2 antibodies, immunoconjugates and therapeutic uses thereof
TW202346355A (en) 2022-03-11 2023-12-01 比利時商健生藥品公司 Multispecific antibodies and uses thereof
WO2023170295A1 (en) 2022-03-11 2023-09-14 Janssen Pharmaceutica Nv Multispecific antibodies and uses thereof
TW202400636A (en) 2022-03-11 2024-01-01 比利時商健生藥品公司 Multispecific antibodies and uses thereof
EP4245772A1 (en) 2022-03-18 2023-09-20 Netris Pharma Anti-netrin-1 antibody to treat liver inflammation
EP4249509A1 (en) 2022-03-22 2023-09-27 Netris Pharma Anti-netrin-1 antibody against arthritis-associated pain
WO2023186968A1 (en) 2022-03-29 2023-10-05 Netris Pharma Novel mcl-1 inhibitor and combination of mcl-1 and a bh3 mimetic, such as a bcl-2 inhibitor
GB202205203D0 (en) 2022-04-08 2022-05-25 UCB Biopharma SRL Combination with inhibitor
GB202205200D0 (en) 2022-04-08 2022-05-25 Ucb Biopharma Sprl Combination with chemotherapy
WO2023215498A2 (en) 2022-05-05 2023-11-09 Modernatx, Inc. Compositions and methods for cd28 antagonism
WO2023239803A1 (en) 2022-06-08 2023-12-14 Angiex, Inc. Anti-tm4sf1 antibody-drug conjugates comprising cleavable linkers and methods of using same
WO2023240287A1 (en) 2022-06-10 2023-12-14 Bioentre Llc Combinations of ctla4 binding proteins and methods of treating cancer
WO2024015953A1 (en) 2022-07-15 2024-01-18 Danisco Us Inc. Methods for producing monoclonal antibodies
WO2024013727A1 (en) 2022-07-15 2024-01-18 Janssen Biotech, Inc. Material and methods for improved bioengineered pairing of antigen-binding variable regions
GB202210679D0 (en) 2022-07-21 2022-09-07 Dualyx Nv Binding molecules targeting il-12rb2
GB202210680D0 (en) 2022-07-21 2022-09-07 Dualyx Nv Binding molecules targeting il-35r
WO2024018426A1 (en) 2022-07-22 2024-01-25 Janssen Biotech, Inc. Enhanced transfer of genetic instructions to effector immune cells
WO2024039672A2 (en) 2022-08-15 2024-02-22 Dana-Farber Cancer Institute, Inc. Antibodies against msln and methods of use thereof
WO2024039670A1 (en) 2022-08-15 2024-02-22 Dana-Farber Cancer Institute, Inc. Antibodies against cldn4 and methods of use thereof
WO2024043837A1 (en) 2022-08-26 2024-02-29 Aslan Pharmaceuticals Pte Ltd High concentration anti-il13r antibody formulation
WO2024050354A1 (en) 2022-08-31 2024-03-07 Washington University Alphavirus antigen binding antibodies and uses thereof
WO2024050524A1 (en) 2022-09-01 2024-03-07 University Of Georgia Research Foundation, Inc. Compositions and methods for directing apolipoprotein l1 to induce mammalian cell death
WO2024054157A1 (en) 2022-09-06 2024-03-14 Aslan Pharmaceuticals Pte Ltd Treatment for sleep loss or sleep disturbance in patients with dermatitis
WO2024056668A1 (en) 2022-09-12 2024-03-21 Institut National de la Santé et de la Recherche Médicale New anti-itgb8 antibodies and its uses thereof
WO2024056861A1 (en) 2022-09-15 2024-03-21 Avidicure Ip B.V. Multispecific antigen binding proteins for stimulating nk cells and use thereof
WO2024062082A1 (en) 2022-09-21 2024-03-28 Domain Therapeutics Anti-ccr8 monoclonal antibodies and their therapeutic use
WO2024062072A2 (en) 2022-09-21 2024-03-28 Domain Therapeutics Anti-ccr8 monoclonal antibodies and their therapeutic use
WO2024062076A1 (en) 2022-09-21 2024-03-28 Domain Therapeutics Anti-ccr8 monoclonal antibodies and their therapeutic use
GB202214132D0 (en) 2022-09-27 2022-11-09 Coding Bio Ltd CLL1 binding molecules
WO2024068996A1 (en) 2022-09-30 2024-04-04 Centre Hospitalier Universitaire Vaudois (C.H.U.V.) Anti-sars-cov-2 antibodies and use thereof in the treatment of sars-cov-2 infection
EP4353253A1 (en) 2022-10-10 2024-04-17 Charité - Universitätsmedizin Berlin Purification of tcr-modified t cells using tcr-specific car-nk cells
WO2024097639A1 (en) 2022-10-31 2024-05-10 Modernatx, Inc. Hsa-binding antibodies and binding proteins and uses thereof
WO2024115393A1 (en) 2022-11-28 2024-06-06 UCB Biopharma SRL Treatment of fibromyalgia
GB202217923D0 (en) 2022-11-29 2023-01-11 Univ Oxford Innovation Ltd Antibodies
WO2024118866A1 (en) 2022-12-01 2024-06-06 Modernatx, Inc. Gpc3-specific antibodies, binding domains, and related proteins and uses thereof
WO2024133052A1 (en) 2022-12-19 2024-06-27 Universität Basel Vizerektorat Forschung T-cell receptor fusion protein
WO2024133858A1 (en) 2022-12-22 2024-06-27 Julius-Maximilians-Universität-Würzburg Antibodies for use as coagulants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530101A (en) * 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5859205A (en) * 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4348376A (en) * 1980-03-03 1982-09-07 Goldenberg Milton David Tumor localization and therapy with labeled anti-CEA antibody
GB8308235D0 (en) 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4695459A (en) * 1984-12-26 1987-09-22 The Board Of Trustees Of Leland Stanford Junior University Method of treating autoimmune diseases that are mediated by Leu3/CD4 phenotype T cells
US5618920A (en) * 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
GB8607679D0 (en) * 1986-03-27 1986-04-30 Winter G P Recombinant dna product
AU625613B2 (en) * 1988-01-05 1992-07-16 Novartis Ag Novel chimeric antibodies
DE68909441T2 (en) * 1988-02-12 1994-02-10 British Tech Group Modified antibodies.
EP0365209A3 (en) * 1988-10-17 1990-07-25 Becton, Dickinson and Company Anti-leu 3a amino acid sequence
IL162181A (en) 1988-12-28 2006-04-10 Pdl Biopharma Inc A method of producing humanized immunoglubulin, and polynucleotides encoding the same
CA2018248A1 (en) * 1989-06-07 1990-12-07 Clyde W. Shearman Monoclonal antibodies against the human alpha/beta t-cell receptor, their production and use
US5062934A (en) * 1989-12-18 1991-11-05 Oronzio Denora S.A. Method and apparatus for cathodic protection
GB8928874D0 (en) * 1989-12-21 1990-02-28 Celltech Ltd Humanised antibodies
GB9014932D0 (en) * 1990-07-05 1990-08-22 Celltech Ltd Recombinant dna product and method
GB9019812D0 (en) * 1990-09-11 1990-10-24 Scotgen Ltd Novel antibodies for treatment and prevention of infection in animals and man
GB9021679D0 (en) * 1990-10-05 1990-11-21 Gorman Scott David Antibody preparation
CZ282603B6 (en) * 1991-03-06 1997-08-13 Merck Patent Gesellschaft Mit Beschränkter Haftun G Humanized and chimeric monoclonal antibody, expression vector and pharmaceutical preparation
DK0610201T4 (en) * 1991-03-18 2008-02-04 Centocor Inc Monoclonal and chimeric antibodies specific for human tumor necrosis factor
JPH06202412A (en) * 1992-12-26 1994-07-22 Canon Inc Image forming device
US6180377B1 (en) * 1993-06-16 2001-01-30 Celltech Therapeutics Limited Humanized antibodies
US5535089A (en) * 1994-10-17 1996-07-09 Jing Mei Industrial Holdings, Ltd. Ionizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530101A (en) * 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5859205A (en) * 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893214B2 (en) 1997-12-02 2011-02-22 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize beta amyloid peptide
US9051363B2 (en) 1997-12-02 2015-06-09 Janssen Sciences Ireland Uc Humanized antibodies that recognize beta amyloid peptide
US8642044B2 (en) 1997-12-02 2014-02-04 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidogenic disease
US20040171815A1 (en) * 1997-12-02 2004-09-02 Schenk Dale B. Humanized antibodies that recognize beta amyloid peptide
US20040171816A1 (en) * 1997-12-02 2004-09-02 Schenk Dale B. Humanized antibodies that recognize beta amyloid peptide
US8535673B2 (en) 1997-12-02 2013-09-17 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidogenic disease
US8034339B2 (en) 1997-12-02 2011-10-11 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidogenic disease
US8034348B2 (en) 1997-12-02 2011-10-11 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidogenic disease
US20050048049A1 (en) * 1997-12-02 2005-03-03 Neuralab Limited Prevention and treatment of amyloidogenic disease
US7964192B1 (en) 1997-12-02 2011-06-21 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidgenic disease
US20050191314A1 (en) * 1997-12-02 2005-09-01 Neuralab Limited Prevention and treatment of amyloidogenic disease
US20050196399A1 (en) * 1997-12-02 2005-09-08 Schenk Dale B. Prevention and treatment of amyloidogenic disease
US20050249727A1 (en) * 1997-12-02 2005-11-10 Neuralab Limited Prevention and treatment of amyloidogenic disease
US7790856B2 (en) 1998-04-07 2010-09-07 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize beta amyloid peptide
US20050009150A1 (en) * 1998-11-30 2005-01-13 Elan Pharmaceuticals, Inc. Humanized antibodies that recognize beta amyloid peptide
US20040247591A1 (en) * 2000-05-26 2004-12-09 Neuralab Limited Prevention and treatment of amyloidogenic disease
US20040087777A1 (en) * 2000-12-06 2004-05-06 Elan Pharmaceuticals, Inc. Humanized antibodies that recognize beta amyloid peptide
US20060280743A1 (en) * 2000-12-06 2006-12-14 Neuralab Limited Humanized antibodies that recognize beta amyloid peptide
US20030165496A1 (en) * 2000-12-06 2003-09-04 Elan Pharmaceuticals, Inc. Humanized antibodies that recognize beta amyloid peptide
US7700751B2 (en) 2000-12-06 2010-04-20 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize β-amyloid peptide
US20040082762A1 (en) * 2002-03-12 2004-04-29 Elan Pharmaceuticals, Inc. Humanized antibodies that recognize beta amyloid peptide
US8128928B2 (en) 2002-03-12 2012-03-06 Wyeth Llc Humanized antibodies that recognize beta amyloid peptide
US20040213800A1 (en) * 2003-02-01 2004-10-28 Seubert Peter A. Active immunization to generate antibodies to soluble A-beta
US20060188512A1 (en) * 2003-02-01 2006-08-24 Ted Yednock Active immunization to generate antibodies to solble a-beta
US7871615B2 (en) 2003-05-30 2011-01-18 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize beta amyloid peptide
US20050118651A1 (en) * 2003-05-30 2005-06-02 Neuralab Limited Humanized antibodies that recognize beta amyloid peptide
US20060165682A1 (en) * 2004-12-15 2006-07-27 Guriq Basi Humanized antibodies that recognize beta amyloid peptide
US20060257396A1 (en) * 2004-12-15 2006-11-16 Jacobsen Jack S Abeta antibodies for use in improving cognition
US8916165B2 (en) 2004-12-15 2014-12-23 Janssen Alzheimer Immunotherapy Humanized Aβ antibodies for use in improving cognition
US8784810B2 (en) 2006-04-18 2014-07-22 Janssen Alzheimer Immunotherapy Treatment of amyloidogenic diseases
US8003097B2 (en) 2007-04-18 2011-08-23 Janssen Alzheimer Immunotherapy Treatment of cerebral amyloid angiopathy
US8613920B2 (en) 2007-07-27 2013-12-24 Janssen Alzheimer Immunotherapy Treatment of amyloidogenic diseases
US9644025B2 (en) 2007-10-17 2017-05-09 Wyeth Llc Immunotherapy regimes dependent on ApoE status
US9067981B1 (en) 2008-10-30 2015-06-30 Janssen Sciences Ireland Uc Hybrid amyloid-beta antibodies
US8491901B2 (en) 2010-11-19 2013-07-23 Toshio Imai Neutralizing anti-CCL20 antibodies
US9133273B2 (en) 2010-11-19 2015-09-15 Eisai R&D Management Co., Ltd. Nucleic acids encoding neutralizing anti-CCL20 antibodies
US9809647B2 (en) 2010-11-19 2017-11-07 Eisai R&D Management Co., Ltd. Neutralizing anti-CCL20 antibodies

Also Published As

Publication number Publication date
ES2079638T3 (en) 1996-01-16
WO1991009967A1 (en) 1991-07-11
DE69033857D1 (en) 2001-12-20
HU912752D0 (en) 1992-01-28
ES2165864T3 (en) 2002-04-01
JPH11243955A (en) 1999-09-14
US7244832B2 (en) 2007-07-17
US20060073136A1 (en) 2006-04-06
US7262050B2 (en) 2007-08-28
ATE208794T1 (en) 2001-11-15
NO985468D0 (en) 1998-11-23
JP3242913B2 (en) 2001-12-25
US20040076627A1 (en) 2004-04-22
NO985468L (en) 1991-10-21
FI108917B (en) 2002-04-30
JPH05500312A (en) 1993-01-28
ZA9110129B (en) 1993-06-23
ES2074701T3 (en) 1995-09-16
NO316074B1 (en) 2003-12-08
FI913927A0 (en) 1991-08-20
FI109768B (en) 2002-10-15
DE69031591T2 (en) 1998-03-12
AU631481B2 (en) 1992-11-26
GB9318911D0 (en) 1993-10-27
US20060073137A1 (en) 2006-04-06
KR100191152B1 (en) 1999-06-15
EP0626390B1 (en) 2001-11-14
DE69022982D1 (en) 1995-11-16
CA2050479C (en) 1997-03-25
DE69031591D1 (en) 1997-11-20
FI990875A0 (en) 1999-04-19
FI913926A0 (en) 1991-08-20
JPH04505398A (en) 1992-09-24
EP0460167B1 (en) 1995-10-11
AU664801B2 (en) 1995-11-30
EP0460171B1 (en) 1995-06-28
EP0460167A1 (en) 1991-12-11
DK0460171T3 (en) 1995-08-28
NO913271L (en) 1991-08-20
AU6974091A (en) 1991-07-24
GB2246570A (en) 1992-02-05
NO913271D0 (en) 1991-08-20
CA2046904C (en) 2003-12-02
CA2037607A1 (en) 1992-09-07
HU912751D0 (en) 1992-01-28
AU649645B2 (en) 1994-06-02
KR920701465A (en) 1992-08-11
US20050136054A1 (en) 2005-06-23
WO1991009966A1 (en) 1991-07-11
HUT58824A (en) 1992-03-30
GB2268744B (en) 1994-05-11
DK0460178T3 (en) 1997-12-22
FI913932A0 (en) 1991-08-20
NO913229D0 (en) 1991-08-19
EP0460171A1 (en) 1991-12-11
NO913228D0 (en) 1991-08-19
US20040202662A1 (en) 2004-10-14
RO114298B1 (en) 1999-03-30
HUT60786A (en) 1992-10-28
JP3452062B2 (en) 2003-09-29
DK0460167T3 (en) 1995-11-20
GB9117612D0 (en) 1991-11-20
AU646009B2 (en) 1994-02-03
ATE129017T1 (en) 1995-10-15
DK0626390T3 (en) 2002-03-11
US7244615B2 (en) 2007-07-17
KR100197956B1 (en) 1999-06-15
FI108776B (en) 2002-03-28
EP0626390A1 (en) 1994-11-30
US7241877B2 (en) 2007-07-10
RU2112037C1 (en) 1998-05-27
NO985467L (en) 1991-10-21
DE69022982T2 (en) 1996-03-28
DE69033857T2 (en) 2002-09-12
GR3025781T3 (en) 1998-03-31
AU7033091A (en) 1991-07-24
RO114232B1 (en) 1999-02-26
GB2246781A (en) 1992-02-12
KR100198478B1 (en) 1999-06-15
BR9007197A (en) 1992-01-28
BG60462B1 (en) 1995-04-28
NO985467D0 (en) 1998-11-23
ATE124459T1 (en) 1995-07-15
CA2037607C (en) 2005-05-24
EP0460178B1 (en) 1997-10-15
EP0620276A1 (en) 1994-10-19
FI108777B (en) 2002-03-28
HUT58372A (en) 1992-02-28
NO310560B1 (en) 2001-07-23
GB2268744A (en) 1994-01-19
US20050202529A1 (en) 2005-09-15
HU215383B (en) 2000-03-28
GB8928874D0 (en) 1990-02-28
AU7048691A (en) 1991-07-24
DE69020544D1 (en) 1995-08-03
GB9117611D0 (en) 1991-10-02
US20040071693A1 (en) 2004-04-15
HU217693B (en) 2000-03-28
EP0460178A1 (en) 1991-12-11
NO316076B1 (en) 2003-12-08
NO913229L (en) 1991-10-21
GB2246781B (en) 1994-05-11
DE69020544T2 (en) 1996-01-18
RO114980B1 (en) 1999-09-30
ATE159299T1 (en) 1997-11-15
NO913228L (en) 1991-10-21
ES2112270T3 (en) 1998-04-01
AU6461294A (en) 1994-12-22
GB2246570B (en) 1994-05-11
CA2050479A1 (en) 1991-06-22
BG95018A (en) 1993-12-24
GR3017734T3 (en) 1996-01-31
CA2046904A1 (en) 1991-06-22
FI990875A (en) 1999-04-19
US20060029593A1 (en) 2006-02-09
WO1991009968A1 (en) 1991-07-11
JPH04506458A (en) 1992-11-12
US5929212A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
USRE48787E1 (en) Humanised antibodies
US7262050B2 (en) Humanised antibodies
US6750325B1 (en) CD3 specific recombinant antibody
CA2129219C (en) Humanised antibodies
GB2268745A (en) Humanised antibodies.

Legal Events

Date Code Title Description
AS Assignment

Owner name: CELLTECH CHIROSCIENCE LIMITED, UNITED KINGDOM

Free format text: CHANGE OF NAME;ASSIGNOR:CELLTECH THERAPEUTICS LIMITED;REEL/FRAME:015408/0325

Effective date: 20000516

Owner name: CELLTECH R&D LIMITED, UNITED KINGDOM

Free format text: CHANGE OF NAME;ASSIGNOR:CELLTECH CHIROSCIENCE LIMITED;REEL/FRAME:015408/0329

Effective date: 20010402

Owner name: CELLTECH THERAPEUTICS LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ADAIR, JOHN ROBERT;ATHWAL, DILJEET SINGH;EMTAGE, JOHN SPENCER;REEL/FRAME:015408/0278;SIGNING DATES FROM 19980402 TO 19980416

AS Assignment

Owner name: UCB S.A., BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CELLTECH R & D LIMITED;REEL/FRAME:022364/0738

Effective date: 20090304

Owner name: UCB PHARMA S.A., BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UCB S.A.;REEL/FRAME:022364/0894

Effective date: 20090305

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION