US20040174754A1 - Precise CMOS imager transfer function control for expanded dynamic range imaging using variable-height multiple reset pulses - Google Patents

Precise CMOS imager transfer function control for expanded dynamic range imaging using variable-height multiple reset pulses Download PDF

Info

Publication number
US20040174754A1
US20040174754A1 US10/751,562 US75156204A US2004174754A1 US 20040174754 A1 US20040174754 A1 US 20040174754A1 US 75156204 A US75156204 A US 75156204A US 2004174754 A1 US2004174754 A1 US 2004174754A1
Authority
US
United States
Prior art keywords
reset
voltage
period
integration
sense node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/751,562
Other languages
English (en)
Other versions
US7417678B2 (en
Inventor
Hae-Seung Lee
Keith Fife
Lane Brooks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smal Camera Technologies Inc
Original Assignee
Smal Camera Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smal Camera Technologies Inc filed Critical Smal Camera Technologies Inc
Priority to US10/751,562 priority Critical patent/US7417678B2/en
Assigned to SMAL CAMERA TECHNOLOGIES reassignment SMAL CAMERA TECHNOLOGIES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROOKS, LANE G., FIFE, KEITH GLEN, LEE, HAE-SEUNG
Publication of US20040174754A1 publication Critical patent/US20040174754A1/en
Assigned to SMAL CAMERA TECHNOLOGIES reassignment SMAL CAMERA TECHNOLOGIES CORRECTED ASSIGNMENT DOCUMENT, REEL 015349 FRAME 0483. Assignors: LEE, HAE-SEUNG, BROOKS, LANE G., FIFE, KEITH GLEN
Application granted granted Critical
Publication of US7417678B2 publication Critical patent/US7417678B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/571Control of the dynamic range involving a non-linear response
    • H04N25/575Control of the dynamic range involving a non-linear response with a response composed of multiple slopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/7795Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/155Control of the image-sensor operation, e.g. image processing within the image-sensor

Definitions

  • the present invention relates to imaging devices and, in particular, to complementary metal-oxide semiconductor (CMOS) image sensors having expanded dynamic range imaging by using variable-height multiple reset pulses.
  • CMOS complementary metal-oxide semiconductor
  • the present invention relates to CMOS imagers, and more particularly relates to techniques for increasing the dynamic range of a CMOS imager.
  • CMOS imagers are characterized by a linear voltage-to-light response, or transfer function; that is, the imager output voltage is approximately linearly related to light incident on the imager.
  • the output voltage transfer function is linearly proportional to the intensity of the light incident on the imager.
  • This linear transfer function can be characterized by a dynamic range, given as the ratio of the highest detectable illumination intensity of the imager to the lowest detectable illumination intensity of the imager. It is well understood that the dynamic range of the transfer function sets the overall dynamic range of the imager. If the dynamic range of a scene exceeds the dynamic range of an imager, portions of the scene will saturate the imager and appear either completely black or completely white. This can be problematic for imaging large dynamic range scenes, such as outdoor scenes.
  • a CMOS imager pixel includes a phototransistor or photodiode as a light detecting element.
  • the pixel photodiode is first reset with a reset voltage that places an electronic charge across the capacitance associated with the diode.
  • Electronic charge produced by the photodiode when exposed to illumination then causes charge of the diode capacitance to dissipate in proportion to the incident illumination intensity.
  • the change in diode capacitance charge is detected and the photodiode is reset.
  • the amount of light detected by the photodiode is computed as the difference between the reset voltage and the voltage corresponding to the final capacitance charge.
  • the illumination intensity that causes the photodiode capacitance charge to be completely dissipated prior to the end of the exposure period, thereby saturating the pixel, sets the upper end of the pixel dynamic range, while thermally generated photodiode charge and other noise factors set the lower end of the pixel dynamic range.
  • FIG. 1 provides a schematic diagram of the pixel.
  • This example pixel configuration employs a photodiode.
  • a photodiode 11 of the pixel produces a current of photogenerated electrical charge in response to light incident on the pixel.
  • the resulting photocurrent is directed to a charge-sensing capacitor 13 .
  • the charge-sensing capacitor 13 is in practice provided as a collection of parasitic capacitances that are associated with a charge sense node 27 of the photodiode.
  • a MOS transistor 15 operates as a source follower that buffers the voltage on the capacitor 13 nondestructively to a column line 23 for read out of the voltage.
  • a row select MOS switch 17 activates the source follower transistor 15 when the particular row is selected to thereby enable the capacitor voltage measurement.
  • the row select MOS switch 17 of the row is turned ON, and a current source 25 is connected to the source of the MOS transistor 15 , the MOS transistor 15 and the current source 25 operate as a source-follower configuration to buffer the voltage on the photodiode capacitor 13 to the column line 23 for determining the capacitor voltage at the end of an exposure period.
  • FIG. 3 shows a typical reset voltage waveform V R (t) applied to the gate 21 of the reset transistor 19 and the voltage waveform V P (t) at the sense node 27 .
  • V R (t) the steady-state gate-to-source voltage of the reset transistor 19 is assumed to be zero when turned ON although in practice this voltage is non-zero.
  • the reset voltage V R (t) is raised to a voltage V RESET for a duration of time referred to as reset period, indicated as T R in FIG. 3. During this reset period, the reset transistor 19 resets the voltage V P (t) at the sense node 27 to V RESET .
  • the actual voltage that the sense node is reset to is a few hundred millivolts below V RESET due to the non-zero gate-to-source voltage of reset transistor 19 .
  • the reset transistor 19 turns OFF.
  • the photo-generated current I P proportional to the incident light intensity, is now integrated on the sense capacitor, lowering the sense node voltage linearly with time assuming the light intensity is constant.
  • the period of time between the end of the reset period T 1 and the time T 2 when the sense node voltage is measured, typically just before the beginning of the next reset period, is referred to as integration period T IN .
  • C S is the value of the sense capacitor 13 . Since the photocurrent I P is proportional to the incident light intensity, the output voltage V OUT is proportional to the incident light intensity.
  • the maximum output voltage is limited because the sense node voltage cannot drop below ground by more than a few hundred millivolts because the photodiode is forward biased. Typically, the maximum output voltage that can be measured is limited by the subsequent signal processing circuits such as the correlated double sampling (CDS) circuit and the A/D converter. This maximum measurable output voltage is indicated as V MAX in FIG. 3.
  • CDS correlated double sampling
  • One technique uses double exposures, where two successive frames of the image are taken, one with a long exposure followed by at another with shorter exposure time as illustrated in FIG. 4 where typical reset voltage waveform V R (t) applied to the gate 21 of the reset transistor 19 and the voltage waveform V P (t) at the sense node 27 are shown.
  • V R (t) applied to the gate 21 of the reset transistor 19
  • V P (t) at the sense node 27
  • the steady-state gate-to-source voltage of the reset transistor 19 is assumed to be zero when turned ON although in practice this voltage is non-zero.
  • the pixel is reset during the first reset period T R1 and integrated for the first integration period T IN1 , producing a first output voltage V OUT1 .
  • This output voltage is sampled and stored in a sample-and hold circuit or converted into a digital value and stored in digital registers.
  • the pixel is reset again during the second reset period T R2 and integrated for the second integration period T IN2 , producing a second output voltage V OUT2 .
  • This second output voltage is sampled and stored in a sample-and hold circuit or converted into a digital value and stored in digital registers.
  • the outputs V OUT1 and V OUT2 are added with appropriate scaling factor.
  • V OUT1 is obtained with a long integration time T IN1 , details in the dark areas are captured. However, the bright areas will saturate as shown in the dotted line, V P2 (t), and details in these areas are lost. Since V OUT2 is obtained with a short integration time T IN2 , the bright areas do not saturate, but the dark areas do not produce enough response so that the details are not visible.
  • V OUT 0.9( V OUT1 +V OUT2 )
  • the illumination intensity versus the output voltage relation in FIG. 17 is obtained.
  • the dotted line extension of the first segment indicates the output of a conventional pixel with a single integration time.
  • the double integration method produces a piecewise linear characteristic which compresses the pixel output voltage in the bright illumination, and extends the dynamic range.
  • the output saturates at the illumination intensity of I 1
  • the output saturates at the illumination intensity of 9.9 I 1 , roughly a factor of 10 improvement in dynamic range.
  • the voltage-to-light transfer function of the imager is modified to be a nonlinear function of illumination intensity, with transfer function slope increasing linearly as a function of illumination intensity.
  • This transfer function modification is typically implemented as a photodiode capacitance charge control function within a CMOS imager pixel.
  • a control voltage is applied to the photodiode to control charge capacity of the sense capacitance.
  • the charge control voltage is typically decreased from the starting pixel reset voltage value to, e.g., electrical ground, with each control voltage value at a given time during the exposure period setting the maximum charge dissipation of the photodiode.
  • This control voltage decrease acts to increase the photodiode charge dissipation capability, whereby the pixel can accommodate a higher illumination intensity before saturating, and the dynamic range of the pixel is thusly increased.
  • This charge dissipation control overrides the conventional linear voltage-to-charge transfer function of the pixel to produce a nonlinear transfer function, generally referred to as a compressed transfer function, and a correspondingly expanded dynamic range of the pixel and the imager.
  • the charge dissipation control voltage applied to a pixel photodiode is preferably continuously adjusted over the course of an exposure period. This enables the production of almost any desired transfer function compression characteristic. For many applications, this theoretical condition is not practical, however.
  • CMOS imagers include an array of pixel columns and rows and typically do not include pixel memory. Therefore, at the end of an exposure period each row of pixel values must be immediately read out. But in general, only one row of pixel values can be read out at a time.
  • the exposure periods of the pixel rows are typically staggered in a time sequence corresponding to the sequential pixel row read out.
  • the desired pixel charge control voltage waveform must also be applied to the pixel rows in a staggered sequence; the same control voltage waveform is applied to every pixel row but is staggered in time between rows.
  • One of the disadvantages of this technique is that the control voltage levels are applied continuously during the exposure period.
  • the prescribed discrete-time analog control voltages are generated off-chip from the imager array and the barrier voltages must not have any positive glitches then delivered to each pixel row on-chip in a staggered sequence controlled by, e.g., a digital controller. It has been found that this scenario enables good pixel control as well as timing control and additionally provides the ability to modify the transfer function compression characteristic.
  • the discrete analog voltages produced to impose imager transfer function control preferably are regulated to be precise and noise free, and preferably are maintained free of glitches, where a “glitch” is here defined as a rapid excursion, or spike, in the voltage.
  • control voltages are particularly important as the voltages are switched from one pixel row to the next. Specifically, when a given control voltage is applied from one pixel row to the next, a voltage excursion, or glitch, is produced due to an inherent row switching capacitance. Such an excursion in a voltage source could cause rows of pixels already connected to that voltage to dissipate charge or accumulate charge in a manner not consistent with the desired transfer function. Since the control voltages determine the charge capacity of pixels at any time, the control voltages must be maintained glitch-free; i.e., the control voltages must be generated in such way the glitches do not affect the charge capacity.
  • Another disadvantage of this technique is the fact that the effective charge capacity is not constant even when the control voltage is kept constant.
  • the maximum current through the reset transistor on whose gate the control voltage is applied is the photo current. Since the photocurrent is typically on the order of 1 pA or less, the gate-to-source voltage can change only slowly with time. If a pixel is very bright, the pixel voltage hits the barrier voltage sooner, causing the pixel voltage to go down lower compared with the less bright pixel whose pixel voltage hits the barrier at a later time.
  • the compression characteristic is not static function, and hence becomes a complex function of the control voltage waveforn, pixel capacitance, and photo current, among other tings. Therefore, the compression characteristic becomes difficult to control precisely.
  • the first barrier level in relation to the reset level which determines the first inflection point of the compression curve, can be most severely affected because the duration of the reset period is typically different from the duration of any barrier level.
  • a first aspect of the present invention is a method for measuring a sense node voltage associated with a light-detecting element, the sense node voltage being related to light intensity incident upon the light-detecting element.
  • the method generates a first integration reset pulse to enable a resetting of the sense node voltage to a voltage value substantially equal to a reset voltage value associated with the first integration reset pulse, an edge of the first integration reset pulse triggering a beginning of a first integration period; generates a second integration reset pulse to enable a resetting of the sense node voltage to a voltage value substantially equal to a reset voltage value associated with the second integration reset pulse, an edge of the second integration reset pulse triggering a beginning of a second integration period; generates, subsequent to the generation of the first integration reset pulse and prior to the generation of the second integration reset pulse, a plurality of intra-period reset pulses to enable resetting of the sense node voltage to a plurality of voltage values, each voltage value being substantially equal to a reset voltage value associated with the generated intra-period
  • a second aspect of the present invention is a method for measuring a sense node voltage associated with a light-detecting element, the sense node voltage being related to light intensity incident upon the light-detecting element.
  • the method initiates an integration period for the light-detecting element; resets, a plurality of times, the voltage level of the sense node after initiating the integration period; and measures, only once during the integration period, the sense node voltage generated in response to incident light intensity, the sense node voltage being measured subsequent to the plural resettings of the voltage level of the sense node and prior to initiating a next integration period.
  • a third aspect of the present invention is a method for capturing a frame of image data associated with a scene using an array of light-detecting elements, each light-detecting element having an associated sense node.
  • the method initiates an integration period for the array of light-detecting elements, the integration period being associated with the frame of image data; generates a plurality of intra-period reset pulses during the integration period such that voltage levels of the sense nodes associated with a portion of the array of light-detecting elements are enabled to be set a plurality of times during the integration period; and measures, only once during the integration period, the voltage levels of the sense nodes voltages generated in response to incident light intensities, the sense node voltages being measured subsequent to a final resetting of the voltage levels of the sense nodes associated with the portion of the array of light-detecting elements and prior to initiating a next integration period.
  • a fourth aspect of the present invention is a method for measuring a sense node voltage associated with a light detecting element, the sense node voltage being related to light intensity incident upon the light detecting element.
  • the method initiates an integration period for the light-detecting element; resets, a first number of times during the integration period, the voltage level of the sense node after initiating the integration period; and measures the sense node voltage generated in response to incident light intensity, the sense node voltage being measured a second number of times during the integration period, the second number of times being less than the first number of times.
  • a fifth aspect of the present invention is a method for measuring a sense node voltage associated with a light-detecting element, the sense node voltage being related to light intensity incident upon the light-detecting element, the light-detecting element having a reset switch associated therewith so as to set a voltage level of the sense node.
  • the method generates a first integration reset pulse to enable a resetting of the sense node voltage to a voltage value substantially equal to a reset voltage value associated with the first integration reset pulse, an edge of the first integration reset pulse triggering a beginning of a first integration period; generates a second integration reset pulse to enable a resetting of the sense node voltage to a voltage value substantially equal to a reset voltage value associated with the second integration reset pulse, an edge of the second integration reset pulse triggering a beginning of a second integration period; generates, subsequent to the generation of the first integration reset pulse and prior to the generation of the second integration reset pulse, a train of progressively decreasing intra-period reset pulses to enable resetting of the sense node voltage to a plurality of voltage values, each voltage value being substantially equal to a reset voltage value associated with the generated intra-period reset pulse; and measures, only once during an integration period, the sense node voltage generated in response to incident light intensity, the sense node voltage being measured subsequent to the generation of the train of progressively decreasing reset pulses
  • a sixth aspect of the present invention is a method for measuring a sense node voltage associated with a light-detecting element, the sense node voltage being related to light intensity incident upon the light-detecting element.
  • the method generates a first integration reset pulse to enable a resetting of the sense node voltage to a voltage value substantially equal to a reset voltage value associated with the first integration reset pulse, an edge of the first integration reset pulse triggering a beginning of a first integration period; generates a second integration reset pulse to enable a resetting of the sense node voltage to a voltage value substantially equal to a reset voltage value associated with the second integration reset pulse, an edge of the second integration reset pulse triggering a beginning of a second integration period; generates, subsequent to the generation of the first integration reset pulse and prior to the generation of the second integration reset pulse, a plurality of intra-period reset pulses to selectively reset the sense node voltage to a plurality of voltage values, each voltage value being substantially equal to a reset voltage value associated with the generated intra-period reset pulse
  • FIG. 1 is a schematic diagram of a pixel provided in accordance with the present invention for enabling expanded imager dynamic range
  • FIG. 2 is a plot of an example discrete-time charge control voltage profile, as a function of time, as provided by the present invention
  • FIG. 3 is a plot of the reset and the pixel voltage waveform, as provided by the present invention.
  • FIG. 4 is a plot of the reset and the pixel voltage waveform in accordance with prior art double reset method
  • FIG. 5 is a plot of output voltage versus illumination characteristic provided by the prior art double reset method
  • FIG. 6 is an example of the reset and the pixel voltage waveforms in accordance with the concepts of the present invention.
  • FIG. 7 is another example of the reset waveforms in accordance with the concepts of the present invention.
  • FIG. 8 is a schematic of a low noise reset circuit waveforms in accordance with the concepts of the present invention.
  • a pixel 10 provided by the present invention for enabling expanded dynamic range by application of stepped charge control voltages is described.
  • This example pixel configuration employs a photodiode 11 , but it is to be recognized that in general, the pixel can include other light collecting configurations, embodied as, e.g., a phototransistor, a photogate, or other selected configuration.
  • a photodiode 11 of the pixel 10 produces a current of photogenerated electrical charge in response to light incident on the pixel 10 .
  • the resulting photocurrent is directed to a charge-sensing capacitor 13 .
  • the charge-sensing capacitor 13 is in practice provided as a collection of parasitic capacitances that are associated with a charge sense node 27 of the photodiode 11 .
  • a MOS transistor 15 operates as a source follower that buffers the voltage on the capacitor 13 nondestructively to a column line 23 for read out of the voltage.
  • a row select MOS switch 17 activates the source follower transistor 15 when the particular row is selected to thereby enable the capacitor voltage measurement.
  • the row select MOS switch 17 of the row is turned ON, and a current source 25 is connected to the source of the MOS transistor 15 , the MOS transistor 15 and the current source 25 operate as a source-follower configuration to buffer the voltage on the photodiode capacitor 13 to the column line 23 for determining the capacitor voltage at the end of an exposure period.
  • a stepped, i.e., discrete-time, charge control voltage profile, V(t), is applied to the gate 21 of a reset transistor 19 of the pixel over the course of an exposure period for control of the charge dissipation from the photodiode capacitance.
  • the gate 21 of the reset transistor 19 thereby operates as a reset node for delivering charge control voltages to the pixel photodiode. While this reset node is shown in this example as a MOS transistor gate, it is to be recognized that other reset node configurations can be accommodated by the control technique of the present invention.
  • V 1 , V 2 , V 3 are shown along with the pixel reset voltage, V RESET , but it is to be recognized that additional voltage levels can be provided as prescribed by a desired transfer function compression characteristic.
  • double reset pulses V R (t) are applied to the gate 21 of the reset transistor 19 in a manner similar to the prior art double reset method.
  • the second reset pulse has a lower height than the first reset such that it rises only to V 1 instead of V RESET .
  • This performs conditional reset of the pixel depending on the pixel voltage just prior to the application of the second reset. Since the reset transistor 19 can only source current but cannot sink current, the pixel is not affected if its voltage just prior to the application of the second reset is higher than V 1 . This is indicated as V P1 (t). On the other hand, if voltage just prior to the application of the second reset is lower than V 1, as indicated for V P2 (t), the pixel voltage is reset to V 1 .
  • the method can be easily extended to multiple reset pulses in order to provide an arbitrary output versus illumination characteristic in a monotonically increasing piecewise linear fashion.
  • a multiple reset pulses, V R (t) is applied to the gate 21 of a reset transistor 19 of the pixel over the course of an exposure period.
  • the spacing between the reset pulses and the height of individual reset pulses determine the compression characteristic.
  • the height of the reset pulses get progressively lower over the course of an integration period. While this reset node is shown in this example as a MOS transistor gate, it is to be recognized that other reset node configurations can be accommodated by the control technique of the present invention.
  • the present invention does not require addition of outputs nor does it require the capture and storage of multiple output values, making the system much simpler.
  • the present invention employs short reset pulses. For this reason, the reset level is required to be accurate only for a short duration. For this reason, the present invention exhibit more tolerance to glitches in reset level voltages compared with stepped barrier method's tolerance to the glitches in the barrier levels.
  • the compression characteristic can be more precisely controlled because the period of the reset pulses is constant.
  • the present invention is particularly advantageous when used in conjunction with a low noise reset circuit, as illustrated in FIG. 8.
  • FIG. 8 shows a pixel 310 and an amplifier 330 .
  • Amplifier 330 may, for example, be a differential amplifier.
  • the dashed line represents the pixel 310 .
  • the structure of the pixel 310 is substantially identical to the pixel illustrated in FIG. 1, except the first terminal 350 , the drain of reset transistor 370 , is connected to the output of the amplifier 330 instead of V DD .
  • the second terminal of reset transistor 370 is the source and is the same as NODE 1 270 .
  • the first and second terminal's 350 and 270 being designated as a drain or source may be interchange depending on the transistor type and design.
  • the select signal RS 400 (in this case a row select signal) on the gate for 410 of row select transistor 430 is brought high typically to V DD , and a reset voltage V RESET , typically V DD , is applied to RESET 450 .
  • V RESET typically V DD
  • the voltage V R applied to the non-inverting input 490 of the amplifier 330 is determine such that NODE 1 270 is servoed to a voltage V T ⁇ V below the reset voltage by the negative feedback loop, the output of amplifier 330 to the drain 350 of the reset transistor 370 .
  • a low noise reset circuit is capable of resetting any pixel to a desired reset voltage precisely with much less reset noise compared with conventional reset methods.
  • the pixels can be reset to different reset levels (e.g. V RESET , V 1 , V 2 , and V 3 ,) by a single low-noise reset circuit per column (or per row if so arranged) of the imaging array. Since the each reset level lasts only for a short period of time, the low-noise reset circuit can be time-multiplexed among all pixels in a column (or in a row), so the complexity of the imager is not significantly increased.
  • the present invention in combination with a low noise reset circuit, can provide much more precise control of the compression function of the imager. This is because the effect of the time and photo current dependence of the gate-to-source voltage of the reset transistor 19 is eliminated by the feedback provided by the low noise reset circuit.
  • the voltage generation circuit be fabricated monolithically, on-chip with the imager array.
  • the substrate on which the imaging array and voltage generation circuitry are integrated can be provided as a silicon or other semiconductor substrate.
  • the substrate is compatible with CMOS fabrication processes, which can be preferred for producing a MOS imager and corresponding electronics.
  • the resistors of the voltage generation circuitry preferably are fabricated as polysilicon resistors, produced by the MOS fabrication process.
  • Monolithic integration of the voltage generation circuit is also advantageous in that such enables efficient monolithic integration of the digital voltage switching control circuitry described above. The present invention therefore contemplates that for most applications, monolithic single-chip integration of an imager array with the voltage generation circuitry and switching circuitry is preferred.
  • the present invention contemplates that monolithic integration of the imager array and voltage generation circuitry can optionally include monolithically-integrated bypass capacitors, if desired for a particular application, but such is not required, given the voltage spike control technique of the present invention described above. It is a common practice to utilize unused areas of a chip for on-chip bypass capacitors for various circuit voltages that are desired to stay quiet. The present invention does not inhibit following such conventional practice to bypass on-chip control voltages with on-chip capacitors. If such is carried out, however, caution must be exercised. While the addition of the on-chip bypass capacitors generally reduces the magnitude of glitches, such capacitors increase the RC time constant of the decay of glitches. Thus, to meet the requirements of the present invention, the Thevenin resistance of the voltage generation circuitry must be made correspondingly smaller, following the considerations given above.
  • the present invention does not require bypass capacitors and can most advantageously be employed by eliminating bypass capacitors.
  • the voltage spikes, or glitches, associated with sequential charge control voltage application to pixel rows of an imager are controlled to substantially completely decay during the characteristic pixel array row access time. This control ensures that any glitches appearing in the control voltage waveforms will have no effect on pixel readout data.
  • this eliminates the need for large bypass capacitors for removing glitches in the conventional manner, and thereby enables monolithic integration of the voltage generation circuitry in a manner that was conventionally understood to not be feasible.
  • the present invention provides the ability to effectively implement a compressive CMOS imager transfer function, to expand imager dynamic range, in a manner that effectuates precise control over the imager transfer function by employing variable height multiple reset pulses.
  • the present invention avoids complicated analog or digital addition, and is much more tolerant to control voltage glitches, thereby allowing the usage of simpler control voltage generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
US10/751,562 2003-01-08 2004-01-05 Precise CMOS imager transfer function control for expanded dynamic range imaging using variable-height multiple reset pulses Expired - Fee Related US7417678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/751,562 US7417678B2 (en) 2003-01-08 2004-01-05 Precise CMOS imager transfer function control for expanded dynamic range imaging using variable-height multiple reset pulses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43868303P 2003-01-08 2003-01-08
US10/751,562 US7417678B2 (en) 2003-01-08 2004-01-05 Precise CMOS imager transfer function control for expanded dynamic range imaging using variable-height multiple reset pulses

Publications (2)

Publication Number Publication Date
US20040174754A1 true US20040174754A1 (en) 2004-09-09
US7417678B2 US7417678B2 (en) 2008-08-26

Family

ID=32713366

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/751,562 Expired - Fee Related US7417678B2 (en) 2003-01-08 2004-01-05 Precise CMOS imager transfer function control for expanded dynamic range imaging using variable-height multiple reset pulses

Country Status (2)

Country Link
US (1) US7417678B2 (US20040174754A1-20040909-M00001.png)
WO (1) WO2004064386A1 (US20040174754A1-20040909-M00001.png)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1796373A1 (fr) * 2005-12-12 2007-06-13 The Swatch Group Research and Development Ltd. Pocédé d'obtention d'une image à l'aide d'un capteur d'images à gamme dynamique etendue
US7277129B1 (en) * 2002-10-31 2007-10-02 Sensata Technologies, Inc. Pixel design including in-pixel correlated double sampling circuit
US20080316347A1 (en) * 2004-06-01 2008-12-25 Abbas El Gamal Adaptive pixel for high dynamic range and disturbance detection and correction
US20160093654A1 (en) * 2014-09-29 2016-03-31 SK Hynix Inc. Image sensor and method for operating the same
US20170264841A1 (en) * 2014-05-26 2017-09-14 Sony Corporation Signal processing device, controlling method, image sensing device, and electronic device
US9812201B2 (en) * 2016-03-14 2017-11-07 SK Hynix Inc. Electronic device including variable resistance element and method for operating the same
EP3319311A1 (fr) * 2016-11-03 2018-05-09 Commissariat à l'Energie Atomique et aux Energies Alternatives Capteur d'images synchrone à codage temporel
US20180227522A1 (en) * 2016-06-30 2018-08-09 Sony Corporation Active reset circuit for reset spread reduction in single-slope adc
US20200099846A1 (en) * 2018-09-25 2020-03-26 Taiwan Semiconductor Manufacturing Co., Ltd. Image Sensor for Sensing LED Light with Reduced Flickering

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7920193B2 (en) 2007-10-23 2011-04-05 Aptina Imaging Corporation Methods, systems and apparatuses using barrier self-calibration for high dynamic range imagers
US20100271517A1 (en) * 2009-04-24 2010-10-28 Yannick De Wit In-pixel correlated double sampling pixel
FR2954034B1 (fr) 2009-12-16 2012-07-20 St Microelectronics Grenoble 2 Commande d'un capteur dynamique d'image

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040570A (en) * 1998-05-29 2000-03-21 Sarnoff Corporation Extended dynamic range image sensor system
US6348681B1 (en) * 2000-06-05 2002-02-19 National Semiconductor Corporation Method and circuit for setting breakpoints for active pixel sensor cell to achieve piecewise linear transfer function
US20020043610A1 (en) * 2000-07-28 2002-04-18 Smal Camera Technologies, Inc. Precise MOS imager transfer function control for expanded dynamic range imaging
US6532040B1 (en) * 1998-09-09 2003-03-11 Pictos Technologies, Inc. Low-noise active-pixel sensor for imaging arrays with high speed row reset
US20030174226A1 (en) * 2002-03-12 2003-09-18 Hyun-Joo Ahn Image sensor capable of controlling reset voltage automatically and control method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040570A (en) * 1998-05-29 2000-03-21 Sarnoff Corporation Extended dynamic range image sensor system
US6441852B1 (en) * 1998-05-29 2002-08-27 Sarnoff Corporation Extended dynamic range image sensor system
US6532040B1 (en) * 1998-09-09 2003-03-11 Pictos Technologies, Inc. Low-noise active-pixel sensor for imaging arrays with high speed row reset
US6348681B1 (en) * 2000-06-05 2002-02-19 National Semiconductor Corporation Method and circuit for setting breakpoints for active pixel sensor cell to achieve piecewise linear transfer function
US20020043610A1 (en) * 2000-07-28 2002-04-18 Smal Camera Technologies, Inc. Precise MOS imager transfer function control for expanded dynamic range imaging
US20030174226A1 (en) * 2002-03-12 2003-09-18 Hyun-Joo Ahn Image sensor capable of controlling reset voltage automatically and control method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277129B1 (en) * 2002-10-31 2007-10-02 Sensata Technologies, Inc. Pixel design including in-pixel correlated double sampling circuit
US20080316347A1 (en) * 2004-06-01 2008-12-25 Abbas El Gamal Adaptive pixel for high dynamic range and disturbance detection and correction
US7492400B2 (en) * 2004-06-01 2009-02-17 The Board Of Trustees Of The Leland Stanford Junior University Adaptive pixel for high dynamic range and disturbance detection and correction
US20070132869A1 (en) * 2005-12-12 2007-06-14 The Swatch Group Research And Development Ltd Method of obtaining an image using an image sensor with a broad dynamic range
US7583304B2 (en) * 2005-12-12 2009-09-01 The Swatch Group Research And Development Ltd Method of obtaining an image using an image sensor with a broad dynamic range
EP1796373A1 (fr) * 2005-12-12 2007-06-13 The Swatch Group Research and Development Ltd. Pocédé d'obtention d'une image à l'aide d'un capteur d'images à gamme dynamique etendue
US10044955B2 (en) * 2014-05-26 2018-08-07 Sony Corporation Signal processing device, controlling method, image sensing device, and electronic device
US20170264841A1 (en) * 2014-05-26 2017-09-14 Sony Corporation Signal processing device, controlling method, image sensing device, and electronic device
US20160093654A1 (en) * 2014-09-29 2016-03-31 SK Hynix Inc. Image sensor and method for operating the same
US9865634B2 (en) * 2014-09-29 2018-01-09 SK Hynix Inc. Image sensor with a reset transistor having spontaneous polarization characteristcs and method for operating the same
US9812201B2 (en) * 2016-03-14 2017-11-07 SK Hynix Inc. Electronic device including variable resistance element and method for operating the same
US20180227522A1 (en) * 2016-06-30 2018-08-09 Sony Corporation Active reset circuit for reset spread reduction in single-slope adc
CN113660436A (zh) * 2016-06-30 2021-11-16 索尼公司 光检测装置和图像处理方法
EP3319311A1 (fr) * 2016-11-03 2018-05-09 Commissariat à l'Energie Atomique et aux Energies Alternatives Capteur d'images synchrone à codage temporel
US10484635B2 (en) 2016-11-03 2019-11-19 Commissariat à l'Energie Atomique et aux Energies Alternatives Synchronous time code image sensor
US20200099846A1 (en) * 2018-09-25 2020-03-26 Taiwan Semiconductor Manufacturing Co., Ltd. Image Sensor for Sensing LED Light with Reduced Flickering
US11172142B2 (en) * 2018-09-25 2021-11-09 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor for sensing LED light with reduced flickering
US20220060614A1 (en) * 2018-09-25 2022-02-24 Taiwan Semiconductor Manufacturing Co., Ltd. Image Sensor for Sensing LED Light with Reduced Flickering
US11956553B2 (en) * 2018-09-25 2024-04-09 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor for sensing LED light with reduced flickering

Also Published As

Publication number Publication date
US7417678B2 (en) 2008-08-26
WO2004064386A1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
US7446805B2 (en) CMOS active pixel with hard and soft reset
US6600471B2 (en) Precise MOS imager transfer function control for expanded dynamic range imaging
JP3493405B2 (ja) 固体撮像装置
Decker et al. A 256/spl times/256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output
JP4374115B2 (ja) アクティブピクセルセンサ
US7746398B2 (en) Wide dynamic range active pixel with knee response
JP2008258973A (ja) 熱型赤外線固体撮像素子及び赤外線カメラ
US20080315272A1 (en) Image sensor with gain control
JP4360041B2 (ja) 撮像装置
US7417678B2 (en) Precise CMOS imager transfer function control for expanded dynamic range imaging using variable-height multiple reset pulses
JP3724188B2 (ja) 固体撮像装置
US6995797B2 (en) Charge detecting device for a solid state imaging device
JP3664035B2 (ja) 固体撮像装置
JP4300635B2 (ja) 固体撮像装置
JP4300654B2 (ja) 固体撮像装置
JP4735684B2 (ja) 固体撮像装置及びその駆動方法
JP4320693B2 (ja) 固体撮像装置
JP4345145B2 (ja) 固体撮像装置
US20040223064A1 (en) Image pickup element, image pickup device, and differential amplifying circuit
JP2001036059A (ja) 固体撮像装置
JP2001218112A (ja) 固体撮像装置
JP4352571B2 (ja) 固体撮像装置
JP2004112438A (ja) 固体撮像装置
JP2001250933A (ja) 固体撮像装置
JP2001197377A (ja) 電荷結合素子及び電荷結合素子の信号処理回路

Legal Events

Date Code Title Description
AS Assignment

Owner name: SMAL CAMERA TECHNOLOGIES, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, HAE-SEUNG;FIFE, KEITH GLEN;BROOKS, LANE G.;REEL/FRAME:015349/0483;SIGNING DATES FROM 20040514 TO 20040517

AS Assignment

Owner name: SMAL CAMERA TECHNOLOGIES, MASSACHUSETTS

Free format text: CORRECTED ASSIGNMENT DOCUMENT, REEL 015349 FRAME 0483.;ASSIGNORS:LEE, HAE-SEUNG;FIFE, KEITH GLEN;BROOKS, LANE G.;REEL/FRAME:017296/0369;SIGNING DATES FROM 20040514 TO 20040517

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20200826