US20040167029A1 - Substituted benzoyl derivatives as herbicides - Google Patents

Substituted benzoyl derivatives as herbicides Download PDF

Info

Publication number
US20040167029A1
US20040167029A1 US10/754,081 US75408104A US2004167029A1 US 20040167029 A1 US20040167029 A1 US 20040167029A1 US 75408104 A US75408104 A US 75408104A US 2004167029 A1 US2004167029 A1 US 2004167029A1
Authority
US
United States
Prior art keywords
tetrahydropyranyl
tetrahydrofuranyl
dioxan
butyrolacton
sme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/754,081
Other languages
English (en)
Inventor
Andreas Almsick
Lothar Willms
Hermann Bieringer
Hubert Menne
Thomas Auler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer CropScience AG filed Critical Bayer CropScience AG
Assigned to BAYER CROPSCIENCE GMBH reassignment BAYER CROPSCIENCE GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AULER, THOMAS, MENNE, HUBERT, VAN ALMSICK, ANDREAS, WILLMS, LOTHAR, BIERINGER, HERMANN
Publication of US20040167029A1 publication Critical patent/US20040167029A1/en
Priority to US11/807,820 priority Critical patent/US7569519B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/18Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/18Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/20Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/08Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/10Oxygen atoms
    • C07D309/12Oxygen atoms only hydrogen atoms and one oxygen atom directly attached to ring carbon atoms, e.g. tetrahydropyranyl ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/16Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D309/18Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member containing only hydrogen and carbon atoms in addition to the ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the invention relates to the technical field of herbicides, in particular that of the herbicides from the group of the benzoylcyclohexanediones and benzoylpyrazoles for selectively controlling broad-leaved weeds and weed grasses in crops of useful plants, in particular in crops of rice.
  • WO 99/10327 and WO 99/10328 disclose benzoylcyclohexanediones and benzoylpyrazolones carrying a heterocyclyl or heteroaryl radical, attached via a multiatom bridge, in the 3-position of the phenyl ring.
  • R 1 , R 2 independently of one another are hydrogen, mercapto, nitro, halogen, cyano, thiocyanato, C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -haloalkenyl, C 2 -C 6 -alkynyl, C 3 -C 6 -haloalkynyl, C 3 -C 6 -cycloalkyl, —OR 4 , OCOR 4 , OSO 2 R 4 , S(O) n R 4 , SO 2 OR 4 , SO 2 N(R 4 ) 2 , NR 4 SO 2 R 4 , NR 4 COR 4 , C 1 -C 6 -alkyl-S(O) n R 4 , C 1 -C 6 -alkyl-OR 4 , C 1 -C 6 -alkyl-OCOR 4 , C 1
  • R 3 is hydrogen, C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl or C 2 -C 6 -alkynyl;
  • R 4 is hydrogen, C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 3 -C 6 -cycloalkyl, phenyl or phenyl-C 1 -C 6 -alkyl, where the six last-mentioned radicals are substituted by s radicals selected from the group consisting of hydroxy, mercapto, amino, cyano, nitro, thiocyanato, OR 3 , SR 3 , N(R 3 ) 2 , ⁇ NOR 3 , OCOR 3 , SCOR 3 , NR 3 COR 3 , CO 2 R 3 , COSR 3 , CON(R 3 ) 2 , C 1 -C 4 -alkyliminooxy, C 1 -C 4 -alkoxyamino, C 1 -C 4 -alkylcarbonyl, C 1 -C 4 -alkoxy-C
  • Het is a fully saturated heterocyclic group whose ring atoms consist of carbon and oxygen atoms, where
  • the number of carbon atoms is (p-r) and
  • Het may be substituted by n radicals R 5 ;
  • n 0, 1 or 2;
  • p is 5, 6 or 7;
  • r is 1 or 2;
  • s is 0, 1, 2 or 3;
  • X is O or S(O) n ;
  • R 5 is hydroxy, mercapto, amino, cyano, nitro, halogen, formyl, C 1 -C 6 -alkylamino, C 1 -C 6 -dialkylamino, C 1 -C 6 -alkoxycarbonyl, C 1 -C 6 -alkylcarbonyl, C 1 -C 4 -alkylcarbonyloxy, C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl, C 1 -C 6 -alkylthio, C 1 -C 6 -haloalkylthio, C 1 -C 6 -alkoxy, C 1 -C 6 -haloalkoxy or R 5 together with the carbon atom to which it is attached forms a carbonyl group;
  • Q is a radical of group Q1 or Q2;
  • R 6 , R 7 independently of one another are hydrogen, C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl or C 3 -C 6 -cyclopropyl;
  • R 8 is hydrogen, C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl, C 1 -C 6 -alkylcarbonyl, C 1 -C 6 -haloalkylcarbonyl, C 1 -C 6 -alkoxycarbonyl, C 1 -C 6 -alkylsulfonyl, C 1 -C 6 -haloalkylsulfonyl, phenylcarbonyl, phenylcarbonylmethyl, phenyloxycarbonyl or phenylsulfonyl, where the phenyl ring of the four last-mentioned radicals is substituted by s radicals selected from the group consisting of halogen, nitro, cyano,
  • the compounds of the formula (I) according to the invention can exist in different tautomeric structures.
  • the compounds of the formula (I) contain an acidic proton, which can be removed by reaction with a base.
  • suitable bases are hydrides, hydroxides and carbonates of alkali metals and alkaline earth metals such as lithium, sodium, potassium, magnesium and calcium, and also ammonia and organic amines such as triethylamine and pyridine.
  • Such salts are likewise provided by the invention.
  • alkyl radicals having more than two carbon atoms can be straight-chain or branched.
  • Alkyl radicals are, for example, methyl, ethyl, n- or isopropyl, n-, iso-, t- or 2-butyl, pentyls, hexyls, such as n-hexyl, isohexyl and 1,3-dimethylbutyl, preferably methyl or ethyl.
  • Cycloalkyl denotes a carbocyclic saturated ring system having three to nine carbon atoms, for example cyclopropyl, cyclopentyl or cyclohexyl.
  • cycloalkenyl denotes a monocyclic alkenyl group having three to nine carbon ring members, for example cyclopropenyl, cyclobutenyl, cyclopentenyl and cyclohexenyl, where the double bond may be located in any position.
  • the radical mentioned first may be in any position of the radical mentioned second.
  • Heterocyclic group is to be understood as meaning radicals such as 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2-hexahydrooxepanyl, 3-hexahydrooxepanyl, 4-hexahydrooxepanyl, 1,3-dioxolan4-yl, 1,3-dioxan-4-yl, 1,3-dioxan-5-yl and 1,4-dioxan-2-yl. Het is preferably unsubstituted or substituted by 1, 2, 3 or 4 methyl groups and/or 1 or 2 carbonyl groups.
  • Halogen denotes fluorine, chlorine, bromine or iodine.
  • Haloalkyl, -alkenyl and -alkynyl denote alkyl, alkenyl and alkynyl, respectively, which are partially or fully substituted by halogen, preferably by fluorine, chlorine and/or bromine, in particular by fluorine or chlorine, for example CF 3 , CHF 2 , CH 2 F, CF 3 CF 2 , CH 2 FCHCl, CCl 3 , CHCl 2 , CH 2 CH 2 Cl, CH ⁇ CHCl, CH ⁇ CCl 2 , C ⁇ CCH 2 Cl; haloalkoxy is, for example, OCF 3 , OCHF 2 , OCH 2 F, CF 3 CF 2 O, OCH 2 CF 3 or OCH 2 CH 2 Cl; this applies correspondingly to haloalkenyl and other halogen-substituted radicals.
  • the compounds of the formula (I) can exist as stereoisomers. If, for example, one or more asymmetric carbon atoms are present, enantiomers and diestereomers may occur.
  • Stereoisomers can be obtained by customary separation methods, for example by chromatographic separation methods, from the mixtures which are obtained in the preparation. It is also possible to prepare stereoisomers selectively by employing stereoselective reactions using optically active starting materials and/or auxiliaries.
  • the invention relates to all stereoisomers and their mixtures which are embraced by formula (I), but not specifically defined.
  • R 1 , R 2 independently of one another are hydrogen, nitro, halogen, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -haloalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -haloalkynyl, C 3 -C 6 -cycloalkyl, —OR 4 , S(O) n R 4 , SO 2 OR 4 , SO 2 N(R 4 ) 2 , NR 4 SO 2 R 4 or C 1 -C 6 -alkyl-S(O) n R 4 ;
  • R 4 is hydrogen, C 1 -C 4 -alkyl, C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl, C 3 -C 6 -cycloalkyl, phenyl or phenyl-C 1 -C 4 -alkyl, where the six last-mentioned radicals are substituted by s radicals selected from the group consisting of cyano, nitro, R 3 , OR 3 , SR 3 and N(R 3 ) 2 and the other substituents and indices are in each case as defined above, have been found to be advantageous.
  • R 3 is hydrogen
  • R 5 is cyano, nitro, halogen, C 1 -C 4 -alkoxycarbonyl, C 1 -C 4 -alkylcarbonyl, C 1 -C 4 -alkylcarbonyloxy, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkylthio, C 1 -C 4 -haloalkylthio, C 1 -C 6 -alkoxy, C 1 -C 6 -haloalkoxy, or R 5 together with the carbon atom to which it is attached forms a carbonyl group; R 5 is, in particular, methyl or methoxy, or R 5 together with the carbon atom to which it is attached forms a carbonyl group and the other substituents and indices are in each case as defined above.
  • R 6 , R 7 independently of one another are hydrogen or C 1 -C 4 -alkyl, in particular methyl or ethyl, or cyclopropyl;
  • R 8 is hydrogen, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkylcarbonyl, C 1 -C 4 -haloalkylcarbonyl, C 1 -C 4 -alkoxycarbonyl, C 1 -C 4 -alkylsulfonyl, C 1 -C 4 -haloalkylsulfonyl, phenylcarbonyl, phenylcarbonylmethyl, phenyloxycarbonyl or phenylsulfonyl, where the phenyl ring of the four last-mentioned radicals is substituted by s radicals selected from the group consisting of halogen, nitro, cyano, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -haloalkoxy, and
  • R 1 is chlorine, bromine, iodine, nitro, methyl, thiomethyl, thioethyl, methylsulfonyl, ethylsulfonyl or methoxy;
  • R 2 is bromine, chlorine, methylsulfonyl or ethylsulfonyl
  • R 2 is located in the 4-position of the phenyl rings
  • R 8 is hydrogen
  • Het is 3-tetrahydrofuranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 1,3-dioxan-5-yl or ⁇ -butyrolacton-2-yl,
  • the compounds of the formula (I) according to the invention have an outstanding herbicidal activity against a broad spectrum of economically important monocotyledonous and dicotyledonous harmful plants.
  • the active substances also effect good control of perennial weeds which produce shoots from rhizomes, root stocks or other perennial organs and which are difficult to control.
  • some representatives of the monocotyledonous and dicotyledonous weed flora which can be controlled by the compounds according to the invention may be mentioned by way of example, without a restriction to certain species being intended to take place as a result of the mention.
  • those on which the active substances act efficiently are, for example, Avena, Lolium, Alopecurus, Phalaris, Echinochloa, Digitaria, Setaria and Cyperus species from the annual group and, among the perennial species, Agropyron, Cynodon, Imperata and Sorghum and also perennial Cyperus species.
  • the spectrum of action extends to species such as, for example, Galium, Viola, Veronica, Lamium, Stellaria, Amaranthus, Sinapis, lpomoea, Sida, Matricaria and Abutilon among the annuals and Convolvulus, Cirsium, Rumex and Artemisia in the case of the perennial weeds. Harmful plants occurring under the specific cultivation conditions of rice such as, for example, Echinochloa, Sagittaria, Alisma, Eleocharis, Scirpus and Cyperus, are also outstandingly well controlled by the active substances according to the invention.
  • the weed seedlings are either prevented completely from emerging or the weeds grow until they have reached the cotyledon stage, but then their growth stops and they finally die completely after three to four weeks have elapsed.
  • the active substances are applied post-emergence to the green parts of the plants, growth also stops drastically a very short time after the treatment and the weed plants remain at the stage of growth at the time of application, or they die completely after a certain time, so that in this manner competition by the weeds, which is harmful to the crop plants, is eliminated at a very early stage and in a sustained manner.
  • the compounds according to the invention are highly active against Amaranthus retroflexus , Avena sp., Echinochloa sp., Cyperus serotinus, Lolium multi forum, Setaria viridis, Sagittaria pygmaea, Scirpus juncoides , Sinapis sp. and Stellaria media.
  • the compounds according to the invention have excellent herbicidal activity against monocotyledonous and dicotyledonous weeds, crop plants of economically important crops such as wheat, barley, rye, rice, corn, sugar beet, cotton and soybeans, are damaged only to an insignificant extent or not at all. In particular, they are outstandingly well-tolerated in wheat, corn and rice. For these reasons, the present compounds are very highly suitable for selectively controlling undesired vegetation in stands of agriculturally useful plants or in stands of ornamental plants.
  • the active substances can also be employed for controlling harmful plants in crops of known genetically modified plants or genetically modified plants yet to be developed.
  • the transgenic plants are distinguished by particularly advantageous properties, for example by resistances to certain pesticides, especially certain herbicides, resistances to plant diseases or plant pathogens, such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other particular properties relate, for example, to the harvested material with respect to quantity, quality, storability, composition and specific constituents.
  • transgenic plants with an increased starch content or in which the quality of the starch is altered, or those having a different fatty acid composition of the harvested material are known.
  • the compounds of the formula (I) according to the invention or their salts are preferably used in economically important transgenic crops of useful plants and ornamentals, e.g. of cereals such as wheat, barley, rye, oats, sorghum and millet, rice, cassava and maize, or else crops of sugar beet, cotton, soybeans, oil seed rape, potatoes, tomatoes, peas and other types of vegetable.
  • the compounds of the formula (I) can preferably be employed as herbicides in crops of useful plants which are resistant, or have been made resistant by recombinant methods, to the phytotoxic effect of herbicides.
  • novel plants with modified characteristics can be generated using recombinant procedures (see, for example, EP-A-0221044, EP-A-01 31624). For example, a number of cases have been described of
  • transgenic crop plants which are resistant to certain herbicides of the glufosinate type (cf., for example, EP-A-0242236, EP-A-242246) or of the glyphosate type (WO 92/00377) or of the sulfonylurea type (EP-A-0257993, U.S. Pat. No. 5,013,659),
  • transgenic crop plants for example cotton, with the capability of producing Bacillus thuringiensis toxins (Bt toxins) which make the plants resistant to certain pests (EP-A-0142924, EP-A-0193259),
  • transgenic crop plants having a modified fatty acid composition (WO 91/13972).
  • nucleic acid molecules which permit a mutagenesis or a sequence modification by recombination of DNA sequences can be introduced into plasmids.
  • base exchanges for example, it is possible with the aid of the abovementioned standard methods to carry out base exchanges, to remove subsequences or to add natural or synthetic sequences.
  • Adapters or linkers may be added in order to link the DNA fragments to each other.
  • plant cells with a reduced activity of a gene product can successfully be generated by expressing at least one suitable antisense RNA, a sense RNA to achieve a cosuppression effect or by expressing at least one suitably constructed ribozyme which specifically cleaves transcripts of the abovementioned gene product.
  • DNA sequences which have a high degree of homology with the coding sequences of a gene product which are not entirely identical thereto.
  • the protein synthesized may be localized in any compartment of the plant cell.
  • Sequences of this type are known to the person skilled in the art, (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106).
  • the transgenic plant cells can be regenerated by known techniques to give intact plants.
  • the transgenic plants can be plants of any desired plant species, i.e. both monocotyledonous and dicotyledonous plants.
  • effects which are specific for application in the particular transgenic crop for example a modified or specifically widened spectrum of weeds which can be controlled, altered application rates which can be employed for application, preferably good combining ability with the herbicides, to which the transgenic crop is resistant, and an effect on growth and yield of the transgenic crop plants, often occur in addition to the effects against harmful plants which can be observed in other crops.
  • Subject matter of the invention is therefore also the use of the compounds according to the invention as herbicides for controlling harmful plants in transgenic crop plants.
  • the substances according to the invention additionally also have outstanding growth-regulatory properties in crop plants. They engage in the plants' metabolism in a regulatory fashion and can thus be employed for the targeted control of plant constituents and for facilitating harvesting, such as, for example, triggering desiccation and stunted growth. Moreover, they are also suitable for generally controlling and inhibiting undesired vegetative growth without destroying the plants in the process. Inhibiting the vegetative growth plays an important role in many monocotyledonous and dicotyledonous crops since lodging can be reduced, or prevented completely, hereby.
  • the compounds according to the invention can be employed in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules in the customary preparations. Accordingly, the invention also provides herbicidal agents comprising compounds of the formula (I).
  • the compounds of the formula (I) can be formulated in various ways, depending on the prevailing biological and/or chemico-physical parameters.
  • wettable powders WP
  • water-soluble powders SP
  • water-soluble concentrates EC
  • emulsions EW
  • SC suspension concentrates
  • capsule suspensions CS
  • dusts DP
  • seed-dressing products granules for spreading and soil application
  • granules GR
  • WG water-dispersible granules
  • SG water-soluble granules
  • the formulation auxiliaries required are likewise known and are described, for example, in: Watkins, “Handbook of Insecticide Dust Diluents and Carriers”, 2nd Ed., Darland Books, Caldwell N.J., H. v. Olphen, “Introduction to Clay Colloid Chemistry”; 2nd Ed., J. Wiley & Sons, N.Y.; C. Marsden, “Solvents Guide”; 2nd Ed., Interscience, N.Y. 1963; McCutcheon's “Detergents and Emulsifiers Annual”, MC Publ.
  • Wettable powders are preparations which are uniformly dispersible in water and which, in addition to the active substance, also contain ionic and/or nonionic surfactants (wetters, dispersants), for example polyoxyethylated alkylphenols, polyoxethylated fatty alcohols, polyoxyethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkanesulfonates, alkylbenzenesulfonates, sodium 2,2′-dinaphthylmethane-6,6′-disulfonate, sodium lignosulfonate, sodium dibutyinaphthalenesulfonate or else sodium oleoylmethyltaurate, in addition to a diluent or-inert substance.
  • the herbicidal active substances are ground finely, for example in customary equipment such as hammer mills, blowing mills and air-jet mills,
  • Emulsifiable concentrates are prepared by dissolving the active substance in an organic solvent, e.g. butanol, cyclohexanone, dimethylformamide, xylene or else higher-boiling aromatics or hydrocarbons or mixtures of the organic solvents with addition of one or more ionic and/or nonionic surfactants (emulsifiers).
  • organic solvent e.g. butanol, cyclohexanone, dimethylformamide, xylene or else higher-boiling aromatics or hydrocarbons or mixtures of the organic solvents with addition of one or more ionic and/or nonionic surfactants (emulsifiers).
  • emulsifiers which can be used are: calcium alkylarylsulfonates such as calcium dodecylbenzenesulfonate, or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide/ethylene oxide condensates, alkyl polyethers, sorbitan esters such as, for example, sorbitan fatty acid esters or polyoxyethylene sorbitan esters such as, for example, polyoxyethylene sorbitan fatty acid esters.
  • Dusts are obtained by grinding the active substance with finely divided solid materials, for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • finely divided solid materials for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates can be water-based or oil-based. They can be prepared for example by wet-grinding by means of customary bead mills, if appropriate with addition of surfactants, as have already been listed for example above in the case of the other formulation types.
  • Emulsions for example oil-in-water emulsions (EW)
  • EW oil-in-water emulsions
  • Granules can be prepared either by spraying the active substance onto adsorptive, granulated inert material or by applying active substance concentrates to the surface of carriers such as sand, kaolinites or granulated inert material with the aid of stickers, for example polyvinyl alcohol, sodium polyacrylate or else mineral oils. Suitable active substances can also be granulated in the fashion which is conventional for the production of fertilizer granules, if desired as a mixture with fertilizers.
  • Water-dispersible granules are generally prepared by customary methods such as spray drying, fluidized-bed granulation, disk granulation, mixing with high-speed stirrers and extrusion without solid inert material.
  • the agrochemical preparations comprise 0.1 to 99% by weight, in particular 0.1 to 95% by weight, of active substance of the formula (I).
  • the active substance concentration is, for example, approximately 10 to 90% by weight, the remainder to 100% by weight being composed of customary formulation constituents.
  • the active substance concentration can amount to approximately 1 to 90, preferably 5 to 80% by weight.
  • Formulations in the form of dusts comprise 1 to 30% by weight of active substance, preferably in most cases 5 to 20% by weight of active substance, and sprayable solutions comprise approximately 0.05 to 80, preferably 2 to 50% by weight of active substance.
  • the active substance content depends partly on whether the active compound is in liquid or solid form and on the granulation auxiliaries, fillers and the like which are being used.
  • the active substance content is between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active substance formulations mentioned comprise, if appropriate, the auxiliaries which are conventional in each case, such as stickers, wetters, dispersants, emulsifiers, penetrants, preservatives, antifreeze agents, solvents, fillers, carriers, colorants, antifoams, evaporation inhibitors, and pH and viscosity regulators.
  • the auxiliaries which are conventional in each case, such as stickers, wetters, dispersants, emulsifiers, penetrants, preservatives, antifreeze agents, solvents, fillers, carriers, colorants, antifoams, evaporation inhibitors, and pH and viscosity regulators.
  • Active substances which can be employed in combination with the active substances according to the invention in mixed formulations or in the tank mix are, for example, known active substances as are described, for example, in Weed Research 26, 441-445 (1986) or “The Pesticide Manual”, 11th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 1997 and literature cited therein.
  • Herbicides which must be mentioned, and can be combined with the compounds of the formula (I) are, for example, the following active substances (note: the compounds are either designated by the common name according to the International Organization for Standardization (ISO) or using the chemical name, if appropriate together with a customary code number):
  • the formulations which are present in commercially available form, are diluted in the customary manner, for example using water in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules. Preparations in the form of dusts, soil granules, granules for spreading and sprayable solutions are usually not diluted any further with other inert substances prior to use.
  • the application rate required of the compounds of the formula (I) varies with the external conditions such as, inter alia, temperature, humidity and the nature of the herbicide used. It can vary within wide limits, for example between 0.001 and 1.0 kg/ha or more of active substance, but it is preferably between 0.005 and 750 g/ha.
  • Step 3 2-(2-Chloro-3-(3-tetrahydrofuranyl)oxymethyl-4-methylsulfonylbenzoyl)-cyclohexane-1,3-dione
  • the aquoeus solution was then acidified with 2N HCl and extracted with 2 ⁇ 50 ml of EA. The solution was washed with NaHCO 3 solution. The organic solution was dried with MgSO 4 , filtered and concentrated using a rotary evaporator. The product slowly crystallized out from the concentrated solution. The solid was filtered off with suction and washed with cold EA. This gave 6.81 g (15.9 mmol) of product of a purity of 99.8% according to HPLC and a melting point of 126° C. The yield was 85%.
  • a dust is obtained by mixing 10 parts by weight of a compound of the formula (I) and 90 parts by weight of talc as inert substance and comminuting the mixture in a hammer mill.
  • a wettable powder which is readily dispersible in water is obtained by mixing 25 parts by weight of a compound of the formula (I), 64 parts by weight of kaolin-containing quartz as inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of sodium oleoylmethyltaurate as wetter and dispersant and grinding the mixture in a pinned-disk mill.
  • a dispersion concentrate which is readily dispersible in water is obtained by mixing 20 parts by weight of a compound of the formula (I), 6 parts by weight of alkylphenol polyglycol ether (®Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO) and 71 parts by weight of paraffinic mineral oil (boiling range, for example, approx. 255 to over 277° C.) and grinding the mixture in a friction ball mill to a fineness of below 5 microns.
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I), 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of oxethylated nonylphenol as emulsifier.
  • Water-dispersible granules are obtained by mixing 75 parts by weight of a compound of the formula(I), 10 parts by weight of calcium lignosulfonate, 5 parts by weight of sodium lauryl sulfate, 3 parts by weight of polyvinyl alcohol and 7 parts by weight of kaolin, grinding the mixture in a pinned-disk mill and granulating the powder in a fluidized bed by spraying on water as granulating fluid.
  • Water-dispersible granules are also obtained by homogenizing and precomminuting 25 parts by weight of a compound of the formula (I), 5 parts by weight of sodium 2,2′-dinaphthylmethane-6,6′-disulfonate, 2 parts by weignt of sodium oleoylmethyltaurate, 1 part by weight of polyvinyl alcohol, 17 parts by weight of calcium carbonate and 50 parts by weight of water in a colloid mill, subsequently grinding the mixture in a bead mill and atomizing and drying the suspension obtained in a spray tower by means of a single-substance nozzle.
  • a compound of the formula (I) 25 parts by weight of a compound of the formula (I)
  • 5 parts by weight of sodium 2,2′-dinaphthylmethane-6,6′-disulfonate 2 parts by weignt of sodium oleoylmethyltaurate
  • 1 part by weight of polyvinyl alcohol 17 parts by weight of calcium carbon
  • Seeds of mono- and dicotyledonous harmful plants are put into sandy loam in cardboard pots and covered with soil.
  • the compounds according to the invention which are formulated in the form of wettable powders or emulsion concentrates, are then applied to the surface of the soil cover as an aqueous suspension or emulsion at an application rate of 600 to 800 l/ha (converted) in various dosages.
  • the pots are placed in a greenhouse and kept under good growth conditions for the weeds.
  • Visual scoring of the plant damage or emergence damage is carried out after the test plants have emerged after a test period of 3 to 4 weeks in comparison with untreated controls. After the test plants have stood in the greenhouse under optimum growth conditions for 3 to 4 weeks, the effect of the compounds is scored.
  • the compounds accoridng to the invention have excellent activity against a broad spectrum of economically important mono- and dicotyledonous harmful plants.
  • the compound according to the invention of No. 1.1 shows, at a dosage of 320 g/ha, at least 90% action against the harmful plants Galium aparine, Matricaria inodora, Stellaria media, Chenopodium album, Veronica persica and Abutilon theophrasti.
  • the compound according to the invention of No. 3.1 shows, at a dosage of 320 g/ha, an action of at least 80% against the harmful plants Sinapis arvensis, Avena fatua, Amaranthus retroflexus and Setaria viridis.
  • the compound according to the invention of No. 1.1 shows, at a dosage of 50 g/ha, at least 95% action against the harmful plants Echinochloa crus galli, Sagittaria pygmaea, Cyperus serotinus and Scirpus juncoides , while at the same time, the crop plant rice is not damaged.
  • the compound according to the invention of No. 1.85 shows at least 90% action against the harmful plants Stellaria media, Veronica persica, Chenopodium album and Abutilon theophrasti, while at the same time no damage is caused to the crop plants rice, wheat and corn.
US10/754,081 2003-01-09 2004-01-08 Substituted benzoyl derivatives as herbicides Abandoned US20040167029A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/807,820 US7569519B2 (en) 2003-01-09 2007-05-30 Substituted benzoyl derivatives as herbicides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEDE10301110.2 2003-01-09
DE10301110A DE10301110A1 (de) 2003-01-09 2003-01-09 Substituierte Benzoylderivate als Herbizide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/807,820 Continuation US7569519B2 (en) 2003-01-09 2007-05-30 Substituted benzoyl derivatives as herbicides

Publications (1)

Publication Number Publication Date
US20040167029A1 true US20040167029A1 (en) 2004-08-26

Family

ID=32519950

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/754,081 Abandoned US20040167029A1 (en) 2003-01-09 2004-01-08 Substituted benzoyl derivatives as herbicides
US11/807,820 Expired - Fee Related US7569519B2 (en) 2003-01-09 2007-05-30 Substituted benzoyl derivatives as herbicides

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/807,820 Expired - Fee Related US7569519B2 (en) 2003-01-09 2007-05-30 Substituted benzoyl derivatives as herbicides

Country Status (26)

Country Link
US (2) US20040167029A1 (fr)
EP (1) EP1585742B1 (fr)
JP (1) JP4592424B2 (fr)
KR (1) KR101126950B1 (fr)
CN (1) CN100349889C (fr)
AR (1) AR042716A1 (fr)
AT (1) ATE369358T1 (fr)
AU (1) AU2003293859B2 (fr)
BR (1) BR0317970B1 (fr)
CA (1) CA2513000C (fr)
CO (1) CO5700821A2 (fr)
DE (2) DE10301110A1 (fr)
DK (1) DK1585742T3 (fr)
EA (1) EA009609B1 (fr)
ES (1) ES2290542T3 (fr)
HR (1) HRP20050628A2 (fr)
IL (1) IL169542A0 (fr)
MX (1) MXPA05007409A (fr)
MY (1) MY136628A (fr)
PL (1) PL378542A1 (fr)
PT (1) PT1585742E (fr)
RS (1) RS20050519A (fr)
TW (1) TW200505337A (fr)
UA (1) UA81796C2 (fr)
WO (1) WO2004063187A1 (fr)
ZA (1) ZA200504896B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050282709A1 (en) * 2004-06-17 2005-12-22 Bayer Cropscience Gmbh Substituted benzoylpyrazoles as herbicides
US20050282710A1 (en) * 2004-06-17 2005-12-22 Bayer Cropscience Gmbh Substituted benzoylcyclohexanediones as herbicides
US8481749B2 (en) 2010-09-01 2013-07-09 Bayer Cropscience Ag N-(tetrazol-5-yl)- and N-(triazol-5-yl)arylcarboxamides and their use as herbicides

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102464630B (zh) * 2010-11-19 2015-05-13 中国中化股份有限公司 含氮杂环取代的苯甲酰基类化合物及其应用
PT2688885T (pt) 2011-03-22 2016-09-06 Bayer Ip Gmbh Amidas de ácido n-(1,3,4-oxadiazol-2-il)-arilcarboxílico e a utilização das mesmas como herbicidas
EA201391302A1 (ru) 2011-03-25 2014-04-30 Байер Интеллектуэль Проперти Гмбх Применение n-(1,2,5-оксадиазол-3-ил)бензамидов для борьбы с нежелательными растениями в районах произрастания трансгенных культурных растений, устойчивых к гербицидам - ингибиторам hppd
PL2739611T3 (pl) 2011-08-03 2015-09-30 Bayer Ip Gmbh Amidy kwasu N-(tetrazol-5-ilo)- i N-(terazol-5-ilo)arylokarboksylowego i ich zastosowanie jako herbicydy
UA116532C2 (uk) 2011-12-13 2018-04-10 Байєр Інтеллектуал Проперті Гмбх Аміди n-(1,2,5-оксадіазол-3-іл)-, n-(1,3,4-оксадіазол-2-іл)- або n-(тетразол-5-іл)арилкарбоксильної кислоти й застосування їх як гербіцидів
WO2013104705A1 (fr) 2012-01-11 2013-07-18 Bayer Intellectual Property Gmbh Composés de tétrazol-5-ylaryle et tirazol-5-ylaryle et utilisation desdits composés comme herbicides
CN104125949B (zh) * 2012-02-21 2016-04-13 拜耳知识产权有限责任公司 除草的3-(亚磺酰亚氨基/磺酰亚氨基)-苯甲酰胺
JP6267721B2 (ja) 2012-12-06 2018-01-24 バイエル・クロップサイエンス・アクチェンゲゼルシャフト N−(オキサゾール−2−イル)−アリール−カルボン酸アミド類及び除草剤としてのそれらの使用
EA201890829A1 (ru) 2015-09-28 2018-10-31 Байер Кропсайенс Акциенгезельшафт Ацилированные n-(1,2,5-оксадиазол-3-ил)-, n-(1,3,4-оксадиазол-2-ил)-, n-(тетразол-5-ил)- и n-(триазол-5-ил)арилкарбоксамиды и их применение в качестве гербицидов
CN105601548A (zh) * 2016-01-18 2016-05-25 黑龙江大学 苯甲酰类化合物、含有该化合物的组合物及其应用
WO2017144402A1 (fr) 2016-02-24 2017-08-31 Bayer Cropscience Aktiengesellschaft Amides d'acide n-(5-halogèn-1,3,4-oxadiazol-2-yl)arylcarboxylique et leur utilisation comme herbicides
CN108264484A (zh) * 2016-12-30 2018-07-10 浙江省化工研究院有限公司 一种带醚结构的取代的苯基酮类化合物、其制备方法及应用
AU2018241490B2 (en) 2017-03-30 2022-07-21 Bayer Cropscience Aktiengesellschaft Substituted N-(-1,3,4-oxadiazole-2-yl)aryl carboxamides and the use thereof as herbicides
AU2020209871A1 (en) 2019-01-14 2021-08-05 Bayer Aktiengesellschaft Herbicidal substituted n-tetrazolyl aryl carboxamides
CN111559965B (zh) * 2019-02-14 2022-11-18 东莞市东阳光农药研发有限公司 取代的苯甲酰类化合物及其在农业中的应用
CN111808024B (zh) * 2019-04-11 2023-06-27 郑州手性药物研究院有限公司 一种苯基吡唑酮类化合物或其盐、制备方法和应用
CN112645853A (zh) * 2019-10-10 2021-04-13 江西天宇化工有限公司 一种2-氯-3-烷氧基甲基-4-甲磺酰基苯甲酸的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207618B1 (en) * 1997-08-07 2001-03-27 Basf Aktiengesellschaft Heterocyclic substituted 4-benzoyl-pyrazole as herbicides
US6274600B1 (en) * 1995-06-05 2001-08-14 The Regents Of The University Of California Heteroatom substituted benzoyl derivatives that enhance synaptic responses mediated by AMPA receptors
US6432881B1 (en) * 1997-08-07 2002-08-13 Basf Aktiengesellschaft 2-benzoylcyclohexane-1,3-dione as herbicides

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789105A (fr) * 1971-09-21 1973-03-21 Fmc Corp Dioxannes substitues et leur application comme
DE2709144A1 (de) * 1977-03-03 1978-09-07 Bayer Ag Tetrahydrofuranaether-derivate, verfahren zu ihrer herstellung sowie ihre verwendung als herbizide
ZA829035B (en) * 1981-12-16 1983-09-28 Shell Res Ltd Oxabicycloalkane herbicides
DE3738536A1 (de) * 1987-11-13 1989-05-24 Basf Ag Benzylether, verfahren zu ihrer herstellung und ihre verwendung zur bekaempfung unerwuenschten pflanzenwachstums
WO2000037437A1 (fr) * 1998-12-21 2000-06-29 Syngenta Participations Ag Nouveaux herbicides
DE19961466A1 (de) * 1998-12-21 2000-07-06 Novartis Ag Neue Herbizide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274600B1 (en) * 1995-06-05 2001-08-14 The Regents Of The University Of California Heteroatom substituted benzoyl derivatives that enhance synaptic responses mediated by AMPA receptors
US6207618B1 (en) * 1997-08-07 2001-03-27 Basf Aktiengesellschaft Heterocyclic substituted 4-benzoyl-pyrazole as herbicides
US6432881B1 (en) * 1997-08-07 2002-08-13 Basf Aktiengesellschaft 2-benzoylcyclohexane-1,3-dione as herbicides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050282709A1 (en) * 2004-06-17 2005-12-22 Bayer Cropscience Gmbh Substituted benzoylpyrazoles as herbicides
US20050282710A1 (en) * 2004-06-17 2005-12-22 Bayer Cropscience Gmbh Substituted benzoylcyclohexanediones as herbicides
US8481749B2 (en) 2010-09-01 2013-07-09 Bayer Cropscience Ag N-(tetrazol-5-yl)- and N-(triazol-5-yl)arylcarboxamides and their use as herbicides

Also Published As

Publication number Publication date
EP1585742B1 (fr) 2007-08-08
ATE369358T1 (de) 2007-08-15
HRP20050628A2 (en) 2006-07-31
CA2513000C (fr) 2011-11-22
CN1735608A (zh) 2006-02-15
IL169542A0 (en) 2007-07-04
KR20050092732A (ko) 2005-09-22
JP2006514958A (ja) 2006-05-18
DE50307914D1 (de) 2007-09-20
MY136628A (en) 2008-11-28
CN100349889C (zh) 2007-11-21
ES2290542T3 (es) 2008-02-16
AU2003293859A1 (en) 2004-08-10
PT1585742E (pt) 2007-11-09
WO2004063187A1 (fr) 2004-07-29
DK1585742T3 (da) 2007-12-03
EA200501049A1 (ru) 2005-12-29
AU2003293859B2 (en) 2009-11-19
PL378542A1 (pl) 2006-05-02
TW200505337A (en) 2005-02-16
US7569519B2 (en) 2009-08-04
KR101126950B1 (ko) 2012-03-20
JP4592424B2 (ja) 2010-12-01
BR0317970B1 (pt) 2015-01-13
EP1585742A1 (fr) 2005-10-19
US20070244008A1 (en) 2007-10-18
UA81796C2 (uk) 2008-02-11
AR042716A1 (es) 2005-06-29
CA2513000A1 (fr) 2004-07-29
ZA200504896B (en) 2006-11-29
MXPA05007409A (es) 2005-09-12
DE10301110A1 (de) 2004-07-22
RS20050519A (en) 2008-04-04
CO5700821A2 (es) 2006-11-30
EA009609B1 (ru) 2008-02-28
BR0317970A (pt) 2005-11-29

Similar Documents

Publication Publication Date Title
US7569519B2 (en) Substituted benzoyl derivatives as herbicides
US7312180B2 (en) Substituted 4-(4-trifluoromethylpyrazolyl)pyrimidines
US7211673B2 (en) 4-trifluoromethylpyrazolyl-substituted pyridines and pyrimidines
US6420317B1 (en) Benzoylpyrazoles and their use as herbicides
US7282469B2 (en) 4-trifluoromethylpyrazolyl-substituted pyridines and pyrimidines
US6211216B1 (en) Isoxazolyl- and isoxazolinyl-substituted benzoylcyclohexanediones, process for their preparation and their use as herbicides and plant growth regulators
US7189679B2 (en) Herbicidal 3-amino-2-thiomethylbenzoylpyrazoles
US20050282709A1 (en) Substituted benzoylpyrazoles as herbicides
US6448201B1 (en) Benzoylcyclohexanediones and benzoylpyrazoles, their preparation, and their use as herbicides and plant growth regulators
US7943550B2 (en) 4-(3-Aminobenzoyl)-1 methylpyrazoles and their use as herbicides
US20050282710A1 (en) Substituted benzoylcyclohexanediones as herbicides
US20050282707A1 (en) Pyridinylisoxazoles and their use as herbicides
US6768025B2 (en) Benzoylcyclohexanedione derivatives and their use as herbicides
US7939467B2 (en) 4-(3-aminobenzoyl)-1-ethylpyrazoles and their use as herbicides
US8178695B2 (en) 4-(3-aminobenzoyl)-1,3-dimethylpyrazoles and their use as herbicides
AU2002340859B2 (en) 3-amino carbonyl-substituted benzoylcyclohexanediones that can be used as herbicides
US6828276B2 (en) Herbicidally active benzoylcyclohexanediones

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER CROPSCIENCE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN ALMSICK, ANDREAS;WILLMS, LOTHAR;BIERINGER, HERMANN;AND OTHERS;REEL/FRAME:014878/0716;SIGNING DATES FROM 20031210 TO 20031218

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION