US20040108133A1 - Elastic conductive resin, and electronic device including elastic conductive bumps made of the elastic conductive resin - Google Patents
Elastic conductive resin, and electronic device including elastic conductive bumps made of the elastic conductive resin Download PDFInfo
- Publication number
- US20040108133A1 US20040108133A1 US10/619,632 US61963203A US2004108133A1 US 20040108133 A1 US20040108133 A1 US 20040108133A1 US 61963203 A US61963203 A US 61963203A US 2004108133 A1 US2004108133 A1 US 2004108133A1
- Authority
- US
- United States
- Prior art keywords
- electrode
- bump
- elastic conductive
- elastic
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/325—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/11—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/0502—Disposition
- H01L2224/05023—Disposition the whole internal layer protruding from the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05075—Plural internal layers
- H01L2224/0508—Plural internal layers being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/05568—Disposition the whole external layer protruding from the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05573—Single external layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/1319—Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13199—Material of the matrix
- H01L2224/1329—Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13298—Fillers
- H01L2224/13299—Base material
- H01L2224/13386—Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13298—Fillers
- H01L2224/13399—Coating material
- H01L2224/134—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13438—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13439—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13298—Fillers
- H01L2224/13399—Coating material
- H01L2224/134—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13438—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13444—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13298—Fillers
- H01L2224/13399—Coating material
- H01L2224/134—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13438—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13447—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13298—Fillers
- H01L2224/13399—Coating material
- H01L2224/134—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13438—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13455—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01009—Fluorine [F]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0102—Calcium [Ca]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01022—Titanium [Ti]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01025—Manganese [Mn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01027—Cobalt [Co]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0103—Zinc [Zn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0242—Shape of an individual particle
- H05K2201/0248—Needles or elongated particles; Elongated cluster of chemically bonded particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0302—Properties and characteristics in general
- H05K2201/0314—Elastomeric connector or conductor, e.g. rubber with metallic filler
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0364—Conductor shape
- H05K2201/0367—Metallic bump or raised conductor not used as solder bump
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/4007—Surface contacts, e.g. bumps
Definitions
- the present invention relates to an elastic conductive resin, and an electronic device in which an electronic part and a substrate are electrically connected to each other via elastic conductive bumps made of the elastic conductive resin.
- IC integrated circuit
- FIGS. 1A and 1B a plurality of bump seats 2 are provided on a bottom part of an IC chip 1 .
- Conductive adhesive agents 3 connect the bump seats 2 to elastic conductive resin bumps 4 , respectively.
- a conductive bump is a projecting electrode formed at an electrode part of a chip for wireless bonding in an integrated circuit.
- the elastic conductive resin bump 4 is made of a material in which a conductive powder (e.g., a filler) is mixed with a silicone resin.
- the volume ratio between the silicone resin and the conductive powder is two to one.
- the conductive powder is, for example, a copper powder subjected to gold plating and having a diameter in a range of 180 ⁇ m to 200 ⁇ m.
- the elastic conductive resin bump 4 adsorbs stresses due to heat and mechanical distortions.
- a plurality of part mounting seats 6 are provided on an upper part of a circuit board 5 and are electrically connected to the elastic conductive resin bumps 4 , respectively.
- FIG. 2 Another piece of background art with regard to an electronic device using an elastic conductive resin is Published Japanese patent application 10-256304.
- a conductive adhesive agent 15 having rubbery elasticity is applied to each of projecting electrodes 13 provided on a functional surface of a semiconductor integrated circuit chip 11 .
- the conductive adhesive agent 15 is made of conductive particles and a heat-curing resin.
- the semiconductor integrated circuit chip 11 is mounted on an insulating substrate 12 while positioning the projecting electrodes 13 and substrate electrodes 14 provided on the insulating substrate 12 .
- a sealing resin 16 is filled into a gap between the semiconductor integrated circuit chip 11 and the insulating substrate 12 and is cured and contracts.
- the projecting electrodes 13 and the substrate electrodes 14 are electrically connected to each other via the conductive adhesive agent 15 .
- connection part when mounting an IC chip on a substrate, the IC chip and the substrate are connected to each other by solder. In this case, under the condition of temperature changes, stresses due to the difference in thermal expansion coefficient between the IC chip and the substrate occur at the connection part between the IC chip and the substrate. Therefore, to avoid trouble such as breakage of the connection part, a resin is used for reinforcing the connection part.
- an IC chip and a substrate are connected to each other by using a conductive adhesive agent having rubbery elasticity.
- a sealing resin is necessary as a reinforcement for filling a gap between the IC chip and the substrate.
- an elastic conductive resin used for forming bumps often includes a silicone resin having rubber-like elasticity and containing spherical conductive particles or flake conductive fillers.
- the compounding ratio of the flake conductive filler in the silicone resin needs to be increased.
- the silicone resin hardens due to the flake conductive filler. In this condition, the silicone resin cannot exhibit a good rubber like elasticity property.
- the bumps need to contact with electrodes formed on the substrate with a large press-contacting force. Further, the bumps need to be controlled with high accuracy to have equal height.
- an elastic conductive element such as, an elastic conductive bump, that has high deformation ability against a compression force and high conductivity.
- an elastic conductive resin includes a resin having rubbery elasticity and an acicular conductive filler having a surface layer coated with one of gold, silver, nickel, and copper.
- an electronic device includes an electronic part including at least one first electrode, a substrate including at least one second electrode, and at least one bump formed on the at least one first electrode and formed from an elastic conductive resin including a resin having rubbery elasticity, and an acicular conductive filler including a surface layer coated with one of gold, silver, nickel, and copper.
- the at least one first electrode and the at least one second electrode are electrically connected to each other by mechanically contacting the at least one bump with the at least one second electrode.
- an electronic device includes an electronic part including at least one first electrode, a substrate including at least one second electrode, and at least one bump formed on the at least one first electrode and formed from an elastic conductive resin including a resin having rubber-like elasticity, and a tetrapod-shaped zinc oxide filler including a surface layer coated with one of gold, silver, nickel, and copper.
- the at least one first electrode and the at least one second electrode are electrically connected to each other by mechanically contacting the at least one bump with the at least one second electrode.
- the at least one bump may be formed on the at least one second electrode of the substrate instead of or in addition to the at least one first electrode of the electronic part.
- FIG. 1A is a cross section of a background integrated circuit package including an IC chip and a circuit board;
- FIG. 1B is an enlarged view of bump seats, conductive adhesive agents, elastic conductive resin bumps, and part mounting seats in the background integrated circuit package of FIG. 1A;
- FIG. 2 is a cross section of a background semiconductor device
- FIG. 3 is a graph showing a relationship between a volume resistivity of a conductive rubber-like elastic resin and a compounding ratio of a conductive filler in the conductive rubber-like elastic resin when comparing a flake conductive filler and an acicular filler based on experimental results;
- FIG. 4 is a graph showing a relationship between rubber hardness of a conductive rubber-like elastic resin and a compounding ratio of a conductive filler in the conductive rubber-like elastic resin when comparing a flake conductive filler and an acicular filler based on experimental results;
- FIG. 5 is a schematic cross section of an electronic device in which an electronic part and a substrate are electrically connected to each other via elastic conductive bumps according to one embodiment of the present invention
- FIG. 6 is a graph showing a relationship between a deformation amount of an elastic conductive bump and weight applied to the elastic conductive bump based on experimental results;
- FIG. 7 is a graph showing a relationship between an amount of repeated deformation of an elastic conductive bump and a compounding ratio of an acicular filler in a conductive rubber-like elastic resin based on experimental results;
- FIG. 8 is a graph showing a relationship between contact resistance of an elastic conductive bump and a compounding ratio of an acicular filler in a conductive rubber-like elastic resin based on experimental results;
- FIG. 9 is a schematic view of an elastic conductive bump formed from a conductive rubber-like elastic resin containing tetrapod-shape conductive fillers;
- FIG. 10A is a schematic view of a cured cup-shaped elastic conductive bump
- FIG. 10B is a view showing a state in which an elastic conductive resin is supplied onto an electrode provided on an electronic part by a screen printing method
- FIG. 11 is a schematic view of a cone-shaped elastic conductive bump according to an alternative example
- FIG. 12A is a schematic view of a connection part in which a metallic foil is attached on a cup-shaped elastic conductive bump;
- FIG. 12B is a schematic view of an elastic conductive bump with a metallic foil formed by a humidity-curing method
- FIG. 12C is a schematic view of the connection part of FIG. 12A provided on an electrode on an electronic part via solder;
- FIG. 13A is a view for explaining how an elastic conductive resin with a metallic foil is cut.
- FIG. 13B is a view for explaining how the elastic conductive resin and the metallic foil with an adhesive tape are cut according to an alternative example.
- FIG. 3 is a graph showing a relationship between a volume resistivity of a conductive rubber-like elastic resin and a compounding ratio of a conductive filler in the conductive rubber-like elastic resin when comparing a flake conductive filler and an acicular filler based on experimental results.
- FIG. 4 is a graph showing a relationship between rubber hardness prescribed in JIS A.
- a silicone resin is used as the conductive rubber-like elastic resin and contains an acicular conductive filler or a flake conductive filler.
- the silicone resin has a heat-curing property and a rubber hardness of 28 prescribed in JIS A (Japanese Industrial Standards).
- the acicular conductive filler is formed from a material in which an inorganic compound whisker is plated with silver (Ag).
- the acicular conductive filler has a diameter of about 0.5 ⁇ m and a length of about 20 ⁇ m.
- the flake conductive filler has a diameter in a range of about 10 ⁇ m to about 20 ⁇ m.
- the acicular conductive filler or flake conductive filler is mixed and dispersed in the silicone resin.
- the conductive rubber-like elastic resin containing the flake conductive filler has a greater electrically conductive and less rubber hardness.
- FIG. 5 is a schematic cross section of an electronic device in which an electronic part and a substrate are electrically connected to each other via elastic conductive bumps according to one embodiment of the present invention.
- an electronic device 20 includes an electronic part 21 and a substrate 22 electrically connected to each other.
- a plurality of electrodes 23 are provided on the lower surface of the electronic part 21 .
- a conductive rubber-like elastic resin containing an acicular conductive filler including a surface layer coated with gold, silver, nickel, or copper, is formed into a shape of a bump (hereafter referred to as an elastic conductive bump 25 ) and is provided on each of the electrodes 23 .
- the acicular conductive filler is like a fiber and provides a three-dimensional mesh construction in the conductive rubber-like elastic resin. Further, a plurality of electrodes 24 plated with gold are provided on the upper surface of the substrate 22 . The electrodes 23 provided on the electronic part 21 and the electrodes 24 provided on the substrate 22 are electrically connected to each other by mechanically contacting the elastic conductive bumps 25 with the electrodes 24 .
- the elastic conductive bump 25 formed from the conductive rubber-like elastic resin containing the acicular conductive filler has a superior deforming ability and a high electric conductive.
- the aspect ratio of the acicular conductive filler is relatively high. Therefore, when the conductive rubber-like elastic resin is deformed, the acicular conductive filler moves with the resin. Thus, the high elasticity of the resin can be maintained. Further, because the aspect ratio of the acicular conductive filler is relatively high, the acicular conductive filler can provide the resin with high conductivity even when the compounding ratio of the acicular conductive filler in the resin is low. Therefore, a content amount of a conductive filler in a resin can be decreased. As described above, the conductive rubber-like elastic resin containing the acicular conductive filler exhibits sufficient elasticity and stable and high conductivity.
- the elastic conductive bumps 25 can stably contact with the electrodes 24 on the substrate 22 with light weight. Therefore, in the electronic device 20 according to the present embodiment, the electronic part 21 and the substrate 22 can be electrically connected to each other with a high stability by mechanically contacting the elastic conductive bumps 25 with the electrodes 24 with a simple construction. Further, an allowable range of dispersion of height of elastic conductive bumps can extend.
- FIG. 7 is a graph showing a relationship between an amount of repeated deformation of an elastic conductive bump and a compounding ratio of an acicular conductive filler in a conductive rubber-like elastic resin based on experimental results.
- FIG. 6 is a graph showing a relationship between a deformation amount of an elastic conductive bump and weight applied to the elastic conductive bump based on experimental results when the amount of the acicular conductive filler added in the conductive rubber-like elastic resin is 40% by weight. As seen from FIG. 6, the elastic conductive bump elastically deforms, and the deformation amount of the elastic conductive bump under the repeated compression is stable.
- the elastic conductive bump formed from a conductive rubber-like elastic resin including acicular fillers deforms under light weight and exhibits stable elastic deformation characteristic even if compression is repeatedly applied to the elastic conductive bump. Further, it is shown that the contact resistance of the elastic conductive bump pressed against the electrode 24 on the substrate 22 is relatively low.
- the compounding ratio of acicular conductive fillers in a conductive rubber-like elastic resin may be selected according to the desired elastic deformation amount and contact resistance of an elastic conductive bump while referring to the above-described evaluation results.
- the electrodes 23 on the electronic part 21 and the electrodes 24 on the substrate 22 are electrically connected to each other by mechanically contacting the elastic conductive bumps 25 with the electrodes 24 . Therefore, the electronic part 21 on which the elastic conductive bumps 25 are formed is easily detached from and attached to the substrate 22 . Thus, the electronic part 21 can be reused.
- FIG. 9 illustrates an elastic conductive bump 30 formed from a conductive rubber-like elastic resin containing tetrapod-shape conductive fillers 31 .
- the tetrapod-shape conductive filler 31 is made of zinc oxide crystallization coated with various types of metal, such as, for example, gold, silver, nickel, and copper, to apply conductivity.
- the zinc oxide crystallization is grown from a barycenter of a regular tetrahedron towards four summits.
- the average length of an acicular portion of the tetrapod-shape conductive filler 31 is about 20 ⁇ m, and the average diameter of the acicular portion of the tetrapod-shape conductive filler 31 is about 1 ⁇ m.
- a number of acicular portions of the tetrapod-shape conductive filler 31 project from the surface of the elastic conductive bump 30 .
- the elastic conductive bump 30 is provided on an electronic part 32 via an electrode 33 .
- the elastic conductive bump 30 When the elastic conductive bump 30 is pressed against an opposite electrode (not shown) provided on a substrate (not shown), the elastic conductive bump 30 deforms, and the acicular portions of the tetrapod-shape conductive filler 31 projecting from the surface of the elastic conductive bump 30 slip on the surface of the opposite electrode on the substrate. In this condition, even if the surface of the opposite electrode is oxidized or stained, oxide films and stains on the surface of the opposite electrode are removed by the acicular portions of the tetrapod-shape conductive filler 31 , and thereby the leading edge of each of the acicular portions of the tetrapod-shape conductive filler 31 surely contacts with the conductive surface of the opposite electrode on the substrate. As Thus, the contact resistance of the elastic conductive bump 30 relative to the opposite electrode is stabilized.
- the cross-section of an elastic conductive bump may be in a shape of a round cup as illustrated in FIG. 10A.
- the same effect can be obtained if the cross-section of an elastic conductive bump made of an elastic conductive resin 40 b is in a shape of a cone as illustrated in FIG. 11.
- the aspect (length to width) ratio of the elastic conductive bump is less than 0.1, a desired compression deformation amount of the elastic conductive bump can not be obtained. In this condition, a plurality of the elastic conductive bumps cannot stably and electrically connect to a plurality of electrodes.
- the aspect ratio of the elastic conductive bump is greater than 1.0, the elastic conductive bumps are slanted, thereby increasing the dispersion of contact resistance of the elastic conductive bumps and contacting with adjacent electrodes resulting in a short circuit condition.
- the material for the cup-shaped elastic conductive bump includes a heat-curing silicone resin including acicular conductive fillers and diluent added to the heat-curing silicone resin.
- the acicular conductive filler can provide the resin with high conductivity even when the compounding ratio of the acicular conductive filler in the resin is low. For this reason, a compounding ratio of resin is relatively high in this heat-curing silicone resin.
- an elastic conductive resin 40 a is supplied onto an electrode 41 provided on an electronic part 42 by a screen printing method.
- the elastic conductive resin 40 a is formed into a shape of a bump, and thereby an elastic conductive bump 40 is obtained as illustrated in FIG. 10A.
- the cup-shaped elastic conductive bump 40 can be formed under the action of surface tension of the resin and the diluent because viscosity of the elastic conductive resin 40 a lowers at an initial stage of a high temperature condition during the heat-curing process.
- the cup-shaped elastic conductive bump 40 having high elasticity can be efficiently formed by supplying the elastic conductive-resin 40 a on the electrode 41 by a screen printing method.
- bumps can be mass-produced by using the screen printing method, bumps can be formed at low costs.
- the elastic conductive resin due to the diluent contained in the elastic conductive resin, if the elastic conductive resin is cured by heat while raising the temperature of the elastic conductive resin to complete curing temperature, voids are formed in the elastic conductive bump, thereby making the elastic conductive bump into a high resistance state. Therefore, it is preferable that the elastic conductive resin be heated at a temperature lower than the complete curing temperature at the initial stage of a heat-curing process while evaporating the diluent slowly. Then, the elastic conductive resin should be cured until the temperature of the elastic conductive resin reaches the complete curing temperature.
- FIGS. 12A and 12B illustrate an elastic conductive element, i.e., an elastic conductive bump on which a metallic foil is attached according to another embodiment.
- a metallic foil 51 is attached on one side of an elastic conductive bump 50 formed from an elastic conductive resin 50 a in which diluent is added to a heat-curing silicone resin including acicular conductive fillers.
- the material for the elastic conductive bump 50 is the same as that of the elastic conductive bump 40 in FIG. 10A.
- the metallic foil 51 may include a copper foil. However, to reduce the contact resistance between the metallic foil 51 and the elastic conductive bump 50 , it is preferable that the surface layer of the metallic foil 51 be plated with gold or silver.
- the elastic conductive bump 50 with the metallic foil 51 is effective when forming an elastic conductive bump on a three-dimensional construction, especially in a construction in which it is difficult to form a bump by directly supplying an elastic conductive resin onto an electrode.
- the connection part 52 can be provided on a three-dimensional construction by soldering or by using conductive adhesive agent.
- the connection part 52 constructed from the elastic conductive bump 50 with the metallic foil 51 is provided on an electrode 55 via solder 54 .
- the electrode 55 is provided on an electronic part 56 .
- a cured elastic conductive bump When a cured elastic conductive bump is connected to an electrode in a three-dimensional construction, the cured elastic conductive bump cannot be connected to the electrode by soldering. Further, because an elastic resin in the cured elastic conductive bump has inferior adhesion property, even if the cured elastic conductive bump is connected to the electrode by using conductive adhesive agent, the elastic conductive bump cannot be connected to the electrode sufficiently. However, with a connection part constructed from an elastic conductive bump with a metallic foil, the elastic conductive bump can be efficiently and fixedly connected to an electrode.
- an elastic conductive element i.e., an elastic conductive bump
- An elastic conductive resin is coated on the metallic foil 51 at a predetermined thickness and is cured.
- known methods such as, a heat-curing method and a humidity-curing method, may be employed according to the kinds of rubber-like elastic resin.
- the elastic conductive resin 50 a is supplied onto the metallic foil 51 by a screen printing method. By heat-curing the elastic conductive resin 50 a on the metallic foil 51 , the elastic conductive resin 50 a is formed into the cup-shaped bump 50 as illustrated in FIG. 12A.
- an elastic conductive resin 53 a is coated on the metallic foil 51 at a predetermined thickness and is cured by a humidity-curing method. As a result, an elastic conductive bump 53 is obtained as illustrated in FIG. 12B.
- the elastic conductive resin 53 a and the metallic foil 51 are cut together with a cutter blade 60 in a predetermined size as illustrated in FIG. 13A.
- a connection part constructed from an elastic conductive bump with a metallic foil is formed.
- an adhesive tape 57 in which an adhesion force is lost by ultraviolet radiation, may be attached on a rear surface of the metallic foil 51 .
- the adhesive tape 57 is cut such that a part of the adhesive tape 57 remains (i.e., the adhesive tape 57 is not cut completely).
- cut pieces of the elastic conductive bump 53 with the metallic foil 51 are prevented from separating each other after a cutting process.
- the elastic conductive bump 53 with the metallic foil 51 can be separated from the adhesive tape 57 as one connection part, by radiating an ultraviolet ray from the rear surface side of the adhesive tape 57 .
- the adhesive tape 57 the workability of forming a connection part constructed from an elastic conductive bump with a metallic foil can be enhanced.
- an elastic conductive resin may include a silicone resin having an ultraviolet-curing property and a humidity-curing property and containing acicular fillers.
- This alternative elastic conductive resin can obtain high conductivity even if the content amount of conductive filler is small.
- the alternative elastic conductive resin contains acicular filler, as compared to an elastic conductive resin containing a flake conductive filler, an ultraviolet ray can penetrate into the inside of an elastic conductive bump made of the elastic conductive resin.
- UV curing silicone resin 3164 (trademark) made by ThreeBond Co., Ltd. may be used as the alternative elastic conductive resin. After supplying this elastic conductive resin onto an electrode, the elastic conductive resin is irradiated with an ultraviolet ray, thereby completely curing the overall elastic conductive resin.
- the alternative elastic conductive resin first, only its surface layer is cured by ultraviolet radiation, and then the elastic conductive resin is left in a normal temperature/humidity environmental condition. In this condition, the elastic conductive resin is completely cured due to its humidity-curing property.
- the alternative elastic conductive resin at least its surface layer can be completely cured in a short period of time. Further, by using this elastic conductive resin, an elastic conductive bump can be easily formed on an electronic part that is easily affected by heat.
- the acicular conductive filler may be, for example, a conductive filler including an inorganic whisker as a core material, such as, a metallic whisker, a calcium carbonate whisker, and a calcium titanate whisker.
- the surface layer of the inorganic whisker is coated with metal. Because the core material of the acicular conductive filler can be a whisker, a conductive filler having a small diameter and a high aspect ratio can be easily made.
- the core material of the acicular conductive filler may be a high polymer whisker.
- the high polymer whisker may have a diameter in a range of about 0.5 ⁇ m to about 2.0 ⁇ m, a length in a range of about 10 ⁇ m to 100 ⁇ m, and an aspect ratio in a range of about 5 to about 200.
- the material of the high polymer whisker include poly (p-oxybenzoyl) and poly (2-oxy-6-naphthoyl).
- the above-described conductive rubber-like elastic resin is not limited to a silicone resin. Any resin may be used for the conductive rubber-like elastic resin so long as the resin has rubbery elasticity.
- an elastic conductive bump is provided on an electrode on an electronic part.
- an elastic conductive bump may be provided on an electrode on a substrate.
- Particularly preferred resins useful herein are those having relatively small elasticity.
- such resins deform when external force is applied, but has sufficient restoring force.
- examples include silicone resins, and other resins, having an elasticity of preferably 10 MPa or less.
- conductive filler is used herein, a preferred embodiment thereof is a compounding ratio of the filler in the resin of from 40-80 wt. %, more preferably 60-75 wt. %.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Metallurgy (AREA)
- Conductive Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Wire Bonding (AREA)
Abstract
An electronic device includes an electronic part including at least one first electrode, a substrate including at least one second electrode, and at least one bump formed on the at least one first electrode and formed from an elastic conductive resin including a resin having rubbery elasticity, and an acicular conductive filler including a surface layer coated with one of gold, silver, nickel, and copper. The at least one first electrode and the at least one second electrode are electrically connected to each other by mechanically contacting the at least one bump with the at least one second electrode.
Description
- The present application claims priority to Japanese Patent Application No. 2002-210181 filed in the Japanese Patent Office on Jul. 18, 2002, the disclosure of which is incorporated herein by reference.
- 1. Field of the Invention
- The present invention relates to an elastic conductive resin, and an electronic device in which an electronic part and a substrate are electrically connected to each other via elastic conductive bumps made of the elastic conductive resin.
- 2. Discussion of the Background
- Published Japanese patent application 10-242616 describes an integrated circuit (IC) package in which a circuit board and an IC chip are connected to each other with high reliability without filling a sealing resin into a gap between the circuit board and the IC chip. Specifically, as illustrated in FIGS. 1A and 1B, a plurality of
bump seats 2 are provided on a bottom part of anIC chip 1. Conductive adhesive agents 3 connect thebump seats 2 to elastic conductive resin bumps 4, respectively. Generally, a conductive bump is a projecting electrode formed at an electrode part of a chip for wireless bonding in an integrated circuit. The elastic conductive resin bump 4 is made of a material in which a conductive powder (e.g., a filler) is mixed with a silicone resin. The volume ratio between the silicone resin and the conductive powder is two to one. The conductive powder is, for example, a copper powder subjected to gold plating and having a diameter in a range of 180 μm to 200 μm. The elastic conductive resin bump 4 adsorbs stresses due to heat and mechanical distortions. A plurality ofpart mounting seats 6 are provided on an upper part of acircuit board 5 and are electrically connected to the elastic conductive resin bumps 4, respectively. - Another piece of background art with regard to an electronic device using an elastic conductive resin is Published Japanese patent application 10-256304. Specifically, in a semiconductor device illustrated in FIG. 2, a conductive
adhesive agent 15 having rubbery elasticity is applied to each ofprojecting electrodes 13 provided on a functional surface of a semiconductor integratedcircuit chip 11. The conductiveadhesive agent 15 is made of conductive particles and a heat-curing resin. The semiconductor integratedcircuit chip 11 is mounted on aninsulating substrate 12 while positioning theprojecting electrodes 13 andsubstrate electrodes 14 provided on theinsulating substrate 12. Asealing resin 16 is filled into a gap between the semiconductor integratedcircuit chip 11 and theinsulating substrate 12 and is cured and contracts. The projectingelectrodes 13 and thesubstrate electrodes 14 are electrically connected to each other via the conductiveadhesive agent 15. - According to Published Japanese patent application 10-256304, after the conductive
adhesive agent 15 is cured, even if a shearing stress is imposed on the conductiveadhesive agent 15 caused by the difference of the thermal expansion coefficient between the semiconductor integratedcircuit chip 11 and theinsulating substrate 12 as they are cooling, the conductiveadhesive agent 15 does not break and separate from thesubstrate electrodes 14 because the conductiveadhesive agent 15 moderates the shearing stress. Further, because the conductiveadhesive agent 15 does not prevent a longitudinal stress caused by the cured and contacted sealingresin 16, the projectingelectrodes 13 andsubstrate electrodes 14 are press-contacted to each other through the conductive particles in the conductiveadhesive agent 15, thereby achieving a good electrical connection. - Generally, when mounting an IC chip on a substrate, the IC chip and the substrate are connected to each other by solder. In this case, under the condition of temperature changes, stresses due to the difference in thermal expansion coefficient between the IC chip and the substrate occur at the connection part between the IC chip and the substrate. Therefore, to avoid trouble such as breakage of the connection part, a resin is used for reinforcing the connection part.
- In an electronic device having multiple pins and a large size, an IC chip and a substrate are connected to each other by using a conductive adhesive agent having rubbery elasticity. In this type of the electronic device, to ensure moderation in the stress due to the difference in thermal expansion coefficient between the IC chip and the substrate, a sealing resin is necessary as a reinforcement for filling a gap between the IC chip and the substrate.
- In an electronic device in which a plurality of bumps made of an elastic conductive resin are formed on an IC chip, and the IC chip and a substrate are electrically connected to each other by press-contacting the bumps with electrodes provided on the substrate; the bumps need to contact with the electrodes formed on the substrate, especially, in an area array state, with a large press-contacting force. Further, if the bumps have uneven height, press-contacting forces are not equally exerted on the bumps, thereby causing an unstable electrical connection between the IC chip and the substrate.
- In the background electronic devices, an elastic conductive resin used for forming bumps often includes a silicone resin having rubber-like elasticity and containing spherical conductive particles or flake conductive fillers. To obtain high conductivity by using the spherical conductive particles or flake conductive fillers, the compounding ratio of the flake conductive filler in the silicone resin needs to be increased. However, if the amount of the flake conductive filler increases in the silicone resin, the silicone resin hardens due to the flake conductive filler. In this condition, the silicone resin cannot exhibit a good rubber like elasticity property. If an IC chip and a substrate are electrically connected to each other via the bumps made of the silicone resin without having a sufficient rubber-like elasticity property, the bumps need to contact with electrodes formed on the substrate with a large press-contacting force. Further, the bumps need to be controlled with high accuracy to have equal height.
- Therefore, it is desirable to provide an elastic conductive element, such as, an elastic conductive bump, that has high deformation ability against a compression force and high conductivity.
- According to one aspect of the present invention, an elastic conductive resin includes a resin having rubbery elasticity and an acicular conductive filler having a surface layer coated with one of gold, silver, nickel, and copper.
- According to another aspect of the present invention, an electronic device includes an electronic part including at least one first electrode, a substrate including at least one second electrode, and at least one bump formed on the at least one first electrode and formed from an elastic conductive resin including a resin having rubbery elasticity, and an acicular conductive filler including a surface layer coated with one of gold, silver, nickel, and copper. The at least one first electrode and the at least one second electrode are electrically connected to each other by mechanically contacting the at least one bump with the at least one second electrode.
- According to further aspect of the present invention, an electronic device includes an electronic part including at least one first electrode, a substrate including at least one second electrode, and at least one bump formed on the at least one first electrode and formed from an elastic conductive resin including a resin having rubber-like elasticity, and a tetrapod-shaped zinc oxide filler including a surface layer coated with one of gold, silver, nickel, and copper. The at least one first electrode and the at least one second electrode are electrically connected to each other by mechanically contacting the at least one bump with the at least one second electrode.
- The at least one bump may be formed on the at least one second electrode of the substrate instead of or in addition to the at least one first electrode of the electronic part.
- A more complete appreciation of the present invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
- FIG. 1A is a cross section of a background integrated circuit package including an IC chip and a circuit board;
- FIG. 1B is an enlarged view of bump seats, conductive adhesive agents, elastic conductive resin bumps, and part mounting seats in the background integrated circuit package of FIG. 1A;
- FIG. 2 is a cross section of a background semiconductor device;
- FIG. 3 is a graph showing a relationship between a volume resistivity of a conductive rubber-like elastic resin and a compounding ratio of a conductive filler in the conductive rubber-like elastic resin when comparing a flake conductive filler and an acicular filler based on experimental results;
- FIG. 4 is a graph showing a relationship between rubber hardness of a conductive rubber-like elastic resin and a compounding ratio of a conductive filler in the conductive rubber-like elastic resin when comparing a flake conductive filler and an acicular filler based on experimental results;
- FIG. 5 is a schematic cross section of an electronic device in which an electronic part and a substrate are electrically connected to each other via elastic conductive bumps according to one embodiment of the present invention;
- FIG. 6 is a graph showing a relationship between a deformation amount of an elastic conductive bump and weight applied to the elastic conductive bump based on experimental results;
- FIG. 7 is a graph showing a relationship between an amount of repeated deformation of an elastic conductive bump and a compounding ratio of an acicular filler in a conductive rubber-like elastic resin based on experimental results;
- FIG. 8 is a graph showing a relationship between contact resistance of an elastic conductive bump and a compounding ratio of an acicular filler in a conductive rubber-like elastic resin based on experimental results;
- FIG. 9 is a schematic view of an elastic conductive bump formed from a conductive rubber-like elastic resin containing tetrapod-shape conductive fillers;
- FIG. 10A is a schematic view of a cured cup-shaped elastic conductive bump;
- FIG. 10B is a view showing a state in which an elastic conductive resin is supplied onto an electrode provided on an electronic part by a screen printing method;
- FIG. 11 is a schematic view of a cone-shaped elastic conductive bump according to an alternative example;
- FIG. 12A is a schematic view of a connection part in which a metallic foil is attached on a cup-shaped elastic conductive bump;
- FIG. 12B is a schematic view of an elastic conductive bump with a metallic foil formed by a humidity-curing method;
- FIG. 12C is a schematic view of the connection part of FIG. 12A provided on an electrode on an electronic part via solder;
- FIG. 13A is a view for explaining how an elastic conductive resin with a metallic foil is cut; and
- FIG. 13B is a view for explaining how the elastic conductive resin and the metallic foil with an adhesive tape are cut according to an alternative example.
- Preferred embodiments of the present invention are described in detail referring to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views. FIG. 3 is a graph showing a relationship between a volume resistivity of a conductive rubber-like elastic resin and a compounding ratio of a conductive filler in the conductive rubber-like elastic resin when comparing a flake conductive filler and an acicular filler based on experimental results. FIG. 4 is a graph showing a relationship between rubber hardness prescribed in JIS A. (Japanese Industrial Standards) of a conductive rubber-like elastic resin and a compounding ratio of a conductive filler in the conductive rubber-like elastic resin when comparing a flake conductive filler and an acicular filler based on experimental results.
- In this embodiment, a silicone resin is used as the conductive rubber-like elastic resin and contains an acicular conductive filler or a flake conductive filler. The silicone resin has a heat-curing property and a rubber hardness of28 prescribed in JIS A (Japanese Industrial Standards). The acicular conductive filler is formed from a material in which an inorganic compound whisker is plated with silver (Ag). The acicular conductive filler has a diameter of about 0.5 μm and a length of about 20 μm. The flake conductive filler has a diameter in a range of about 10 μm to about 20 μm. The acicular conductive filler or flake conductive filler is mixed and dispersed in the silicone resin.
- As seen from FIGS. 3 and 4, as compared to the conductive rubber-like elastic resin containing the flake conductive filler, the conductive rubber-like elastic resin containing the acicular filler has a greater electrically conductive and less rubber hardness.
- FIG. 5 is a schematic cross section of an electronic device in which an electronic part and a substrate are electrically connected to each other via elastic conductive bumps according to one embodiment of the present invention. In this embodiment, an
electronic device 20 includes anelectronic part 21 and asubstrate 22 electrically connected to each other. Specifically, a plurality ofelectrodes 23 are provided on the lower surface of theelectronic part 21. A conductive rubber-like elastic resin containing an acicular conductive filler including a surface layer coated with gold, silver, nickel, or copper, is formed into a shape of a bump (hereafter referred to as an elastic conductive bump 25) and is provided on each of theelectrodes 23. The acicular conductive filler is like a fiber and provides a three-dimensional mesh construction in the conductive rubber-like elastic resin. Further, a plurality ofelectrodes 24 plated with gold are provided on the upper surface of thesubstrate 22. Theelectrodes 23 provided on theelectronic part 21 and theelectrodes 24 provided on thesubstrate 22 are electrically connected to each other by mechanically contacting the elasticconductive bumps 25 with theelectrodes 24. - As described above referring to FIGS. 3 and 4, the elastic
conductive bump 25 formed from the conductive rubber-like elastic resin containing the acicular conductive filler has a superior deforming ability and a high electric conductive. The aspect ratio of the acicular conductive filler is relatively high. Therefore, when the conductive rubber-like elastic resin is deformed, the acicular conductive filler moves with the resin. Thus, the high elasticity of the resin can be maintained. Further, because the aspect ratio of the acicular conductive filler is relatively high, the acicular conductive filler can provide the resin with high conductivity even when the compounding ratio of the acicular conductive filler in the resin is low. Therefore, a content amount of a conductive filler in a resin can be decreased. As described above, the conductive rubber-like elastic resin containing the acicular conductive filler exhibits sufficient elasticity and stable and high conductivity. - The elastic
conductive bump 25 formed from such a conductive rubber-like elastic resin containing the acicular conductive filler sufficiently deforms when applying a compression force to the elasticconductive bump 25. With such elasticconductive bumps 25, even when the elasticconductive bumps 25 are connected to theelectrodes 24 on thesubstrate 22 which are arranged in an area array state, the elasticconductive bumps 25 can stably contact with theelectrodes 24 on thesubstrate 22 with light weight. Therefore, in theelectronic device 20 according to the present embodiment, theelectronic part 21 and thesubstrate 22 can be electrically connected to each other with a high stability by mechanically contacting the elasticconductive bumps 25 with theelectrodes 24 with a simple construction. Further, an allowable range of dispersion of height of elastic conductive bumps can extend. - Experiments for an evaluation of compression deformation characteristic and contact resistance of an elastic conductive bump, which is formed from an elastic conductive resin and has a diameter of about 0.5 mm and a height of about 0.15 mm, were performed. Experiments were performed by repeatedly applying weight of from about 9.8 mN to about 490 mN to an elastic conductive bump by using an indenter having a diameter of about 0.5 mm. FIG. 7 is a graph showing a relationship between an amount of repeated deformation of an elastic conductive bump and a compounding ratio of an acicular conductive filler in a conductive rubber-like elastic resin based on experimental results. FIG. 6 is a graph showing a relationship between a deformation amount of an elastic conductive bump and weight applied to the elastic conductive bump based on experimental results when the amount of the acicular conductive filler added in the conductive rubber-like elastic resin is 40% by weight. As seen from FIG. 6, the elastic conductive bump elastically deforms, and the deformation amount of the elastic conductive bump under the repeated compression is stable.
- A relationship between contact resistance of the elastic conductive bump pressed against the
electrode 24 on thesubstrate 22 under the weight of about 490 mN and a compounding ratio of acicular conductive filler in a conductive rubber-like elastic resin based on experimental results is shown in a graph of FIG. 8. - According to the experimental results, it is shown that the elastic conductive bump formed from a conductive rubber-like elastic resin including acicular fillers deforms under light weight and exhibits stable elastic deformation characteristic even if compression is repeatedly applied to the elastic conductive bump. Further, it is shown that the contact resistance of the elastic conductive bump pressed against the
electrode 24 on thesubstrate 22 is relatively low. - The compounding ratio of acicular conductive fillers in a conductive rubber-like elastic resin may be selected according to the desired elastic deformation amount and contact resistance of an elastic conductive bump while referring to the above-described evaluation results. As described above, the
electrodes 23 on theelectronic part 21 and theelectrodes 24 on thesubstrate 22 are electrically connected to each other by mechanically contacting the elasticconductive bumps 25 with theelectrodes 24. Therefore, theelectronic part 21 on which the elasticconductive bumps 25 are formed is easily detached from and attached to thesubstrate 22. Thus, theelectronic part 21 can be reused. - FIG. 9 illustrates an elastic
conductive bump 30 formed from a conductive rubber-like elastic resin containing tetrapod-shapeconductive fillers 31. The tetrapod-shapeconductive filler 31 is made of zinc oxide crystallization coated with various types of metal, such as, for example, gold, silver, nickel, and copper, to apply conductivity. The zinc oxide crystallization is grown from a barycenter of a regular tetrahedron towards four summits. The average length of an acicular portion of the tetrapod-shapeconductive filler 31 is about 20 μm, and the average diameter of the acicular portion of the tetrapod-shapeconductive filler 31 is about 1 μm. A number of acicular portions of the tetrapod-shapeconductive filler 31 project from the surface of the elasticconductive bump 30. As illustrated in FIG. 9, the elasticconductive bump 30 is provided on anelectronic part 32 via anelectrode 33. - When the elastic
conductive bump 30 is pressed against an opposite electrode (not shown) provided on a substrate (not shown), the elasticconductive bump 30 deforms, and the acicular portions of the tetrapod-shapeconductive filler 31 projecting from the surface of the elasticconductive bump 30 slip on the surface of the opposite electrode on the substrate. In this condition, even if the surface of the opposite electrode is oxidized or stained, oxide films and stains on the surface of the opposite electrode are removed by the acicular portions of the tetrapod-shapeconductive filler 31, and thereby the leading edge of each of the acicular portions of the tetrapod-shapeconductive filler 31 surely contacts with the conductive surface of the opposite electrode on the substrate. As Thus, the contact resistance of the elasticconductive bump 30 relative to the opposite electrode is stabilized. - When a cross-section of an elastic conductive bump is in a shape in which the elastic conductive bump becomes gradually thin toward a tip portion of the elastic conductive bump, because the tip portion of the elastic conductive bump is thin, the deformation amount of the tip portion of the elastic conductive bump is large relative to the compression force applied to the tip portion of the elastic conductive bump. Thus, the deformation amount of the elastic conductive bump relative to the compression force applied to the overall elastic conductive bump increases. Therefore, a pressing force applied to the elastic conductive bump for mechanically contacting the elastic conductive bump with an electrode can be reduced, and thereby an allowable range of dispersion of height of elastic conductive bumps can extend.
- For example, the cross-section of an elastic conductive bump may be in a shape of a round cup as illustrated in FIG. 10A. Alternatively, the same effect can be obtained if the cross-section of an elastic conductive bump made of an elastic
conductive resin 40 b is in a shape of a cone as illustrated in FIG. 11. If the aspect (length to width) ratio of the elastic conductive bump is less than 0.1, a desired compression deformation amount of the elastic conductive bump can not be obtained. In this condition, a plurality of the elastic conductive bumps cannot stably and electrically connect to a plurality of electrodes. If the aspect ratio of the elastic conductive bump is greater than 1.0, the elastic conductive bumps are slanted, thereby increasing the dispersion of contact resistance of the elastic conductive bumps and contacting with adjacent electrodes resulting in a short circuit condition. - Next, a material and a method of forming a cup-shaped elastic conductive bump at low cost will be described.
- The material for the cup-shaped elastic conductive bump includes a heat-curing silicone resin including acicular conductive fillers and diluent added to the heat-curing silicone resin. As described above, the acicular conductive filler can provide the resin with high conductivity even when the compounding ratio of the acicular conductive filler in the resin is low. For this reason, a compounding ratio of resin is relatively high in this heat-curing silicone resin.
- Referring to FIG. 10B, an elastic
conductive resin 40 a is supplied onto anelectrode 41 provided on anelectronic part 42 by a screen printing method. By heat-curing the elasticconductive resin 40 a on theelectrode 41, the elasticconductive resin 40 a is formed into a shape of a bump, and thereby an elasticconductive bump 40 is obtained as illustrated in FIG. 10A. Even if the shape of the elasticconductive resin 40 a supplied onto theelectrode 41 is indefinite, the cup-shaped elasticconductive bump 40 can be formed under the action of surface tension of the resin and the diluent because viscosity of the elasticconductive resin 40 a lowers at an initial stage of a high temperature condition during the heat-curing process. Thus, the cup-shaped elasticconductive bump 40 having high elasticity can be efficiently formed by supplying the elastic conductive-resin 40 a on theelectrode 41 by a screen printing method. As bumps can be mass-produced by using the screen printing method, bumps can be formed at low costs. - However, due to the diluent contained in the elastic conductive resin, if the elastic conductive resin is cured by heat while raising the temperature of the elastic conductive resin to complete curing temperature, voids are formed in the elastic conductive bump, thereby making the elastic conductive bump into a high resistance state. Therefore, it is preferable that the elastic conductive resin be heated at a temperature lower than the complete curing temperature at the initial stage of a heat-curing process while evaporating the diluent slowly. Then, the elastic conductive resin should be cured until the temperature of the elastic conductive resin reaches the complete curing temperature.
- FIGS. 12A and 12B illustrate an elastic conductive element, i.e., an elastic conductive bump on which a metallic foil is attached according to another embodiment. Referring to FIG. 12A, a
metallic foil 51 is attached on one side of an elasticconductive bump 50 formed from an elasticconductive resin 50 a in which diluent is added to a heat-curing silicone resin including acicular conductive fillers. The material for the elasticconductive bump 50 is the same as that of the elasticconductive bump 40 in FIG. 10A. Themetallic foil 51 may include a copper foil. However, to reduce the contact resistance between themetallic foil 51 and the elasticconductive bump 50, it is preferable that the surface layer of themetallic foil 51 be plated with gold or silver. - The elastic
conductive bump 50 with themetallic foil 51 is effective when forming an elastic conductive bump on a three-dimensional construction, especially in a construction in which it is difficult to form a bump by directly supplying an elastic conductive resin onto an electrode. By making the elasticconductive bump 50 with themetallic foil 51 as oneconnection part 52, theconnection part 52 can be provided on a three-dimensional construction by soldering or by using conductive adhesive agent. For example, as illustrated in FIG. 12C, theconnection part 52 constructed from the elasticconductive bump 50 with themetallic foil 51 is provided on anelectrode 55 viasolder 54. Theelectrode 55 is provided on anelectronic part 56. - When a cured elastic conductive bump is connected to an electrode in a three-dimensional construction, the cured elastic conductive bump cannot be connected to the electrode by soldering. Further, because an elastic resin in the cured elastic conductive bump has inferior adhesion property, even if the cured elastic conductive bump is connected to the electrode by using conductive adhesive agent, the elastic conductive bump cannot be connected to the electrode sufficiently. However, with a connection part constructed from an elastic conductive bump with a metallic foil, the elastic conductive bump can be efficiently and fixedly connected to an electrode.
- Next, a method of forming an elastic conductive element (i.e., an elastic conductive bump) with a metallic foil will be described. An elastic conductive resin is coated on the
metallic foil 51 at a predetermined thickness and is cured. As a curing method, known methods, such as, a heat-curing method and a humidity-curing method, may be employed according to the kinds of rubber-like elastic resin. - When forming the cup-shaped elastic
conductive bump 50, the elasticconductive resin 50 a is supplied onto themetallic foil 51 by a screen printing method. By heat-curing the elasticconductive resin 50 a on themetallic foil 51, the elasticconductive resin 50 a is formed into the cup-shapedbump 50 as illustrated in FIG. 12A. Alternatively, an elasticconductive resin 53 a is coated on themetallic foil 51 at a predetermined thickness and is cured by a humidity-curing method. As a result, an elasticconductive bump 53 is obtained as illustrated in FIG. 12B. - For example, after curing the elastic
conductive resin 53 a, the elasticconductive resin 53 a and themetallic foil 51 are cut together with acutter blade 60 in a predetermined size as illustrated in FIG. 13A. As a result, a connection part constructed from an elastic conductive bump with a metallic foil is formed. - As an alternative example, referring to FIG. 13B, an
adhesive tape 57, in which an adhesion force is lost by ultraviolet radiation, may be attached on a rear surface of themetallic foil 51. When cutting the elasticconductive resin 53 a, themetallic foil 51, and theadhesive tape 57, theadhesive tape 57 is cut such that a part of theadhesive tape 57 remains (i.e., theadhesive tape 57 is not cut completely). By this cutting, cut pieces of the elasticconductive bump 53 with themetallic foil 51 are prevented from separating each other after a cutting process. When the cut piece of the elasticconductive bump 53 with themetallic foil 51 is used for providing on an electrode, the elasticconductive bump 53 with themetallic foil 51 can be separated from theadhesive tape 57 as one connection part, by radiating an ultraviolet ray from the rear surface side of theadhesive tape 57. Thus, by using theadhesive tape 57, the workability of forming a connection part constructed from an elastic conductive bump with a metallic foil can be enhanced. - As an alternative example of the above-described conductive rubber-like elastic resin, an elastic conductive resin may include a silicone resin having an ultraviolet-curing property and a humidity-curing property and containing acicular fillers. This alternative elastic conductive resin can obtain high conductivity even if the content amount of conductive filler is small. Further, because the alternative elastic conductive resin contains acicular filler, as compared to an elastic conductive resin containing a flake conductive filler, an ultraviolet ray can penetrate into the inside of an elastic conductive bump made of the elastic conductive resin.
- For example, UV curing silicone resin3164 (trademark) made by ThreeBond Co., Ltd. may be used as the alternative elastic conductive resin. After supplying this elastic conductive resin onto an electrode, the elastic conductive resin is irradiated with an ultraviolet ray, thereby completely curing the overall elastic conductive resin. As another method of curing the alternative elastic conductive resin, first, only its surface layer is cured by ultraviolet radiation, and then the elastic conductive resin is left in a normal temperature/humidity environmental condition. In this condition, the elastic conductive resin is completely cured due to its humidity-curing property.
- In the alternative elastic conductive resin, at least its surface layer can be completely cured in a short period of time. Further, by using this elastic conductive resin, an elastic conductive bump can be easily formed on an electronic part that is easily affected by heat.
- In the above-described embodiment, the acicular conductive filler may be, for example, a conductive filler including an inorganic whisker as a core material, such as, a metallic whisker, a calcium carbonate whisker, and a calcium titanate whisker. The surface layer of the inorganic whisker is coated with metal. Because the core material of the acicular conductive filler can be a whisker, a conductive filler having a small diameter and a high aspect ratio can be easily made.
- Further, the core material of the acicular conductive filler may be a high polymer whisker. For example, the high polymer whisker may have a diameter in a range of about 0.5 μm to about 2.0 μm, a length in a range of about 10 μm to 100 μm, and an aspect ratio in a range of about 5 to about 200. Examples of the material of the high polymer whisker include poly (p-oxybenzoyl) and poly (2-oxy-6-naphthoyl). When the core material of a conductive filler is the high polymer whisker, the specific gravity of the conductive filler is low, and the conductive filler dispersed in a rubber-like elastic resin does not tend to precipitate in the resin. Therefore, the distribution of the conductive filler in an elastic conductive element formed from the rubber-like elastic resin is even. Thus, the volume resistivity of the elastic conductive element is stabilized.
- The above-described conductive rubber-like elastic resin is not limited to a silicone resin. Any resin may be used for the conductive rubber-like elastic resin so long as the resin has rubbery elasticity.
- In the above-described embodiments, an elastic conductive bump is provided on an electrode on an electronic part. Alternatively, or in addition, an elastic conductive bump may be provided on an electrode on a substrate.
- Particularly preferred resins useful herein are those having relatively small elasticity. For example, such resins deform when external force is applied, but has sufficient restoring force. Examples include silicone resins, and other resins, having an elasticity of preferably 10 MPa or less.
- Where conductive filler is used herein, a preferred embodiment thereof is a compounding ratio of the filler in the resin of from 40-80 wt. %, more preferably 60-75 wt. %.
- As used herein the term “about” preferably means ±10%. Where a range or limit is stated all values and subranges therewithin are included as if specifically written out. All articles, publication, texts, patents, applications, documents, standards, etc. mentioned herein are incorporated herein by reference.
- Numerous additional modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the present invention may be practiced otherwise than as specifically described herein.
Claims (23)
1. An elastic conductive resin composition, comprising an elastic resin and an acicular conductive filler, said filler comprising a surface layer of gold, silver, nickel, or copper.
2. The elastic conductive resin composition according to claim 1 , wherein the acicular conductive filler comprises a whisker as a core material.
3. The elastic conductive resin composition according to claim 2 , wherein the acicular conductive filler comprises a high polymer whisker as a core material.
4. The elastic conductive resin composition according to claim 1 , wherein the resin is a silicone resin having an ultraviolet-curing property and a humidity-curing property.
5. An electronic device, comprising:
an electronic part comprising at least one first electrode;
a substrate comprising at least one second electrode; and
at least one bump formed on the at least one first electrode, said bump formed from the elastic conductive resin composition of claim 1 ,
wherein the at least one first electrode and the at least one second electrode are electrically connected to each other by physical contact of the at least one bump with the at least one second electrode.
6. The electronic device according to claim 5 , wherein the at least one bump has a shape that becomes gradually thin toward a tip portion of the at least one bump, and an aspect ratio of the at least one bump is in a range of about 0.1 to about 1.0.
7. The electronic device according to claim 5 , wherein the resin is a silicone resin having an ultraviolet-curing property and a humidity-curing property.
8. An electronic device, comprising:
an electronic part comprising at least one first electrode;
a substrate comprising at least one second electrode; and
at least one bump formed on the at least one second electrode, said bump formed from the elastic conductive resin composition of claim 1 ,
wherein the at least one first electrode and the at least one second electrode are electrically connected to each other by physical contact of the at least one bump with the at least one first electrode.
9. The electronic device according to claim 8 , wherein the at least one bump has a shape that becomes gradually thin toward a tip portion of the at least one bump, and an aspect ratio of the at least one bump is in a range of about 0.1 to about 1.0.
10. The electronic device according to claim 8 , wherein the resin is a silicone resin having an ultraviolet-curing property and a humidity-curing property.
11. An electronic device, comprising:
an electronic part comprising at least one first electrode;
a substrate comprising at least one second electrode;
at least one bump formed on the at least one first electrode and formed from an elastic conductive composition comprising an elastic resin and a tetrapod-shaped zinc oxide filler comprising a surface layer of gold, silver, nickel, or copper,
wherein the at least one first electrode and the at least one second electrode are electrically connected to each other by physical contact of the at least one bump with the at least one second electrode.
12. The electronic device according to claim 11 , wherein the at least one bump has a shape that becomes gradually thin toward a tip portion of the at least one bump, and an aspect ratio of the at least one bump is in a range of about 0.1 to about 1.0.
13. The electronic device according to claim 11 , wherein the resin is a silicone resin having an ultraviolet-curing property and a humidity-curing property.
14. An electronic device, comprising:
an electronic part including at least one first electrode;
a substrate including at least one second electrode;
at least one bump formed on the at least one second electrode and formed from the elastic conductive resin composition of claim 1 wherein the filler is a tetrapod-shaped zinc oxide filler comprising a surface layer of gold, silver, nickel, or copper,
wherein the at least one first electrode and the at least one second electrode are electrically connected to each other by physical contact of the at least one bump with the at least one first electrode.
15. The electronic device according to claim 14 , wherein the at least one bump has a shape that becomes gradually thin toward a tip portion of the at least one bump, and an aspect ratio of the at least one bump is in a range of about 0.1 to about 1.0.
16. The electronic device according to claim 14 , wherein the resin is a silicone resin having an ultraviolet-curing property and a humidity-curing property.
17. A connection part, comprising:
an elastic conductive element formed from the elastic conductive resin composition of claim 1 , and
a metallic foil provided onto the elastic conductive element.
18. An electronic part comprising:
at least one electrode; and
at least one bump formed on the at least one electrode, said bump formed from the elastic conductive resin composition of claim 1 .
19. A substrate comprising:
at least one electrode; and
at least one bump formed on the at least one electrode from the elastic conductive resin composition of claim 1 .
20. A method of forming a bump on an electrode, comprising:
screen-printing a conductive paste comprising a heat-curing silicone resin, a diluent, and an acicular conductive filler on said electrode;
heat-curing the conductive paste at a temperature lower than a complete curing temperature while evaporating the diluent; and
subsequently further heat-curing the conductive paste until a temperature of the conductive paste reaches the complete curing temperature.
21. A method of forming a connection part comprising an elastic conductive element formed from an elastic conductive resin composition comprising-an elastic resin-and an acicular conductive filler, and a metallic foil provided onto the elastic conductive element, comprising:
coating a metallic foil with the elastic conductive resin composition at a predetermined thickness;
curing the elastic conductive resin composition; and
cutting the cured elastic conductive resin composition and the metallic foil.
22. An electronic device, comprising:
an electronic part comprising at least one first electrode;
a substrate comprising at least one second electrode;
at least one bump formed on the at least one first electrode, and
at least one bump formed on the at least one second electrode, said bumps formed from the elastic conductive resin composition of claim 1 ,
wherein the at least one first electrode and the at least one second electrode are electrically connected to each other by physical contact a) of the at least one bump on the at least one first electrode with the at least one second electrode, and b) of the at least one bump on the at least one second electrode with the at least one first electrode.
23. An electronic device, comprising:
an electronic part comprising at least one first electrode;
a substrate comprising at least one second electrode;
at least one bump formed on the at least one first electrode and formed from an elastic conductive composition comprising an elastic resin and a tetrapod-shaped zinc oxide filler comprising a surface layer of gold, silver, nickel, or copper,
at least one bump formed on the at least one second electrode and formed from an elastic conductive composition comprising an elastic resin and a tetrapod-shaped zinc oxide filler comprising a surface layer of gold, silver, nickel, or copper,
wherein the at least one first electrode and the at least one second electrode are electrically connected to each other by physical contact of the at least one bump thereon with the other electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/673,904 US7875807B2 (en) | 2002-07-18 | 2007-02-12 | Elastic conductive resin, and electronic device including elastic conductive bumps made of the elastic conductive resin |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002210181A JP2004051755A (en) | 2002-07-18 | 2002-07-18 | Elastic electrical conductive resin and elastic electrical conductive joint structure |
JP2002-210181 | 2002-07-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/673,904 Division US7875807B2 (en) | 2002-07-18 | 2007-02-12 | Elastic conductive resin, and electronic device including elastic conductive bumps made of the elastic conductive resin |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040108133A1 true US20040108133A1 (en) | 2004-06-10 |
Family
ID=31884275
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/619,632 Abandoned US20040108133A1 (en) | 2002-07-18 | 2003-07-16 | Elastic conductive resin, and electronic device including elastic conductive bumps made of the elastic conductive resin |
US11/673,904 Expired - Fee Related US7875807B2 (en) | 2002-07-18 | 2007-02-12 | Elastic conductive resin, and electronic device including elastic conductive bumps made of the elastic conductive resin |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/673,904 Expired - Fee Related US7875807B2 (en) | 2002-07-18 | 2007-02-12 | Elastic conductive resin, and electronic device including elastic conductive bumps made of the elastic conductive resin |
Country Status (3)
Country | Link |
---|---|
US (2) | US20040108133A1 (en) |
JP (1) | JP2004051755A (en) |
CN (1) | CN100541770C (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050252398A1 (en) * | 2004-05-11 | 2005-11-17 | Hideaki Ohkura | Pattern form object and a manufacturing method thereof |
US20060250452A1 (en) * | 2005-04-28 | 2006-11-09 | Takeshi Sano | Electric component, method of forming conductive pattern, and inkjet head |
WO2007063925A1 (en) | 2005-11-30 | 2007-06-07 | Astellas Pharma Inc. | 2-aminobenzamide derivative |
US20070132098A1 (en) * | 2002-07-18 | 2007-06-14 | Takeshi Sano | Elastic conductive resin, and electronic device including elastic conductive bumps made of the elastic conductive resin |
US20080135097A1 (en) * | 2005-03-29 | 2008-06-12 | Ken Kikuchi | Paste Composition, Electrode, and Solar Cell Element Including the Same |
US20090301771A1 (en) * | 2008-06-04 | 2009-12-10 | Shozo Ochi | Conductive bump, method for forming the same, and electronic component mounting structure using the same |
US20090315178A1 (en) * | 2007-03-23 | 2009-12-24 | Daisuke Sakurai | Conductive bump, method for producing the same, and electronic component mounted structure |
US20100231543A1 (en) * | 2009-03-13 | 2010-09-16 | Seiko Epson Corporation | Display device with touch sensor function, manufacturing method of display device with touch sensor function, and electronic apparatus |
US20190239347A1 (en) * | 2018-01-31 | 2019-08-01 | Mikuni Electron Corporation | Connection structure and method for manufacturing connection structure |
US10580751B2 (en) | 2018-01-31 | 2020-03-03 | Mikuni Electron Corporation | Connection structure and method for manufacturing connection structure |
US10624215B2 (en) | 2018-01-31 | 2020-04-14 | Mikuni Electron Corporation | Connection structure and method for manufacturing connection structure |
US10763196B1 (en) * | 2019-03-22 | 2020-09-01 | Ohkuchi Materials Co., Ltd. | Lead frame |
WO2022008323A1 (en) * | 2020-07-10 | 2022-01-13 | X Display Company Technology Limited | Structures and methods for electrically connecting printed horizontal devices |
US20220039263A1 (en) * | 2018-10-16 | 2022-02-03 | Fuji Corporation | Circuit formation method |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8518304B1 (en) | 2003-03-31 | 2013-08-27 | The Research Foundation Of State University Of New York | Nano-structure enhancements for anisotropic conductive material and thermal interposers |
JP4542842B2 (en) * | 2004-07-12 | 2010-09-15 | 株式会社リコー | Interelectrode connection structure |
JP4979896B2 (en) * | 2005-04-25 | 2012-07-18 | パナソニック株式会社 | Light emitting device |
US7964963B2 (en) | 2006-10-05 | 2011-06-21 | Nec Corporation | Semiconductor package and method for manufacturing semiconductor package |
US8877565B2 (en) * | 2007-06-28 | 2014-11-04 | Intel Corporation | Method of forming a multilayer substrate core structure using sequential microvia laser drilling and substrate core structure formed according to the method |
US20090310320A1 (en) * | 2008-06-16 | 2009-12-17 | Weston Roth | Low profile solder grid array technology for printed circuit board surface mount components |
KR101054251B1 (en) * | 2009-05-18 | 2011-08-08 | 두성산업 주식회사 | Conductive Contact Terminals for Board Surface Mount |
US9875825B2 (en) * | 2012-03-13 | 2018-01-23 | Cable Components Group, Llc | Compositions, methods and devices providing shielding in communications cables |
JP2015049985A (en) * | 2013-08-30 | 2015-03-16 | 富士通株式会社 | Ic socket and connection terminal |
WO2015042805A1 (en) * | 2013-09-25 | 2015-04-02 | 吉瑞高新科技股份有限公司 | Electronic cigarette charging apparatus |
WO2015042812A1 (en) * | 2013-09-25 | 2015-04-02 | 吉瑞高新科技股份有限公司 | Electronic cigarette charging apparatus |
CN104570423A (en) * | 2015-01-23 | 2015-04-29 | 合肥鑫晟光电科技有限公司 | Display substrate, manufacturing method of display substrate, display panel and display device |
JP7076783B2 (en) * | 2018-06-06 | 2022-05-30 | 国立研究開発法人物質・材料研究機構 | Members, fluid separators, and compositions |
US20220108930A1 (en) * | 2020-10-07 | 2022-04-07 | Murata Manufacturing Co., Ltd. | Electronic component with metallic cap |
CN112672497A (en) * | 2020-11-19 | 2021-04-16 | 湖北亿咖通科技有限公司 | Vehicle-mounted circuit board, printed circuit board and preparation method thereof |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4568592A (en) * | 1982-10-05 | 1986-02-04 | Shin-Etsu Polymer Co., Ltd. | Anisotropically electroconductive film adhesive |
US4701279A (en) * | 1985-08-16 | 1987-10-20 | Shin-Etsu Polymer Co., Ltd. | Anisotropically electroconductive adhesives |
US4740657A (en) * | 1986-02-14 | 1988-04-26 | Hitachi, Chemical Company, Ltd | Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained |
US5604026A (en) * | 1993-11-03 | 1997-02-18 | W. L. Gore & Associates, Inc. | Electrically conductive adhesives |
US5624268A (en) * | 1993-11-10 | 1997-04-29 | The Whitaker Corporation | Electrical connectors using anisotropic conductive films |
US5686703A (en) * | 1994-12-16 | 1997-11-11 | Minnesota Mining And Manufacturing Company | Anisotropic, electrically conductive adhesive film |
US5738936A (en) * | 1996-06-27 | 1998-04-14 | W. L. Gore & Associates, Inc. | Thermally conductive polytetrafluoroethylene article |
US6020059A (en) * | 1997-07-24 | 2000-02-01 | Sony Chemicals Corporation | Multilayer anisotropic electroconductive adhesive and method for manufacturing same |
US6156427A (en) * | 1987-07-20 | 2000-12-05 | Hitachi, Ltd. | Electroconductive resin composition for molding and electromagnetic wave interference shield structure molded from the composition |
US6243147B1 (en) * | 1998-06-18 | 2001-06-05 | Ricoh Company, Ltd. | Liquid crystal display apparatus capable of preventing a break due to a crack caused during a manufacturing process |
US6281450B1 (en) * | 1997-06-26 | 2001-08-28 | Hitachi Chemical Company, Ltd. | Substrate for mounting semiconductor chips |
US6384128B1 (en) * | 2000-07-19 | 2002-05-07 | Toray Industries, Inc. | Thermoplastic resin composition, molding material, and molded article thereof |
US6472247B1 (en) * | 2000-06-26 | 2002-10-29 | Ricoh Company, Ltd. | Solid-state imaging device and method of production of the same |
US6884833B2 (en) * | 2001-06-29 | 2005-04-26 | 3M Innovative Properties Company | Devices, compositions, and methods incorporating adhesives whose performance is enhanced by organophilic clay constituents |
US6900550B2 (en) * | 2001-03-30 | 2005-05-31 | Lintec Corporation | Semiconductor device including adhesive agent layer with embedded conductor bodies |
US6936783B2 (en) * | 2001-05-25 | 2005-08-30 | Shin-Etsu Polymer Co., Ltd. | Push-button switch member and manufacturing method of same |
US6956072B1 (en) * | 1999-07-16 | 2005-10-18 | Polyplastics Co., Ltd. | Thermoplastic resin composition and molded object thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0757489B2 (en) | 1987-12-04 | 1995-06-21 | 株式会社日立製作所 | Method for producing conductive fiber composite resin |
JPS6423600U (en) | 1987-07-31 | 1989-02-08 | ||
JPH0751647B2 (en) | 1988-08-29 | 1995-06-05 | 松下電器産業株式会社 | Conductive resin composition |
JPH02103944A (en) | 1988-10-13 | 1990-04-17 | Matsushita Electric Ind Co Ltd | Mounting method of semiconductor chip |
JPH046841A (en) | 1990-04-24 | 1992-01-10 | Matsushita Electric Works Ltd | Mounting structure of semiconductor device |
JPH10242616A (en) | 1997-02-26 | 1998-09-11 | Nec Corp | Ic package and circuit board using it |
JPH10256304A (en) | 1997-03-07 | 1998-09-25 | Citizen Watch Co Ltd | Manufacture of semiconductor device |
US6533963B1 (en) | 1999-02-12 | 2003-03-18 | Robert A. Schleifstein | Electrically conductive flexible compositions, and materials and methods for making same |
JP4060126B2 (en) * | 2002-05-31 | 2008-03-12 | リーダー電子株式会社 | Data structure for waveform synthesis data and method and apparatus for waveform synthesis |
JP2004051755A (en) * | 2002-07-18 | 2004-02-19 | Ricoh Co Ltd | Elastic electrical conductive resin and elastic electrical conductive joint structure |
JP3879651B2 (en) * | 2002-10-21 | 2007-02-14 | ソニー株式会社 | Multilayer wiring board, touch panel, and manufacturing method thereof |
JP2004165066A (en) * | 2002-11-14 | 2004-06-10 | Ricoh Co Ltd | Conductive paste, manufacturing method of the same, and binding/separating method using the same |
-
2002
- 2002-07-18 JP JP2002210181A patent/JP2004051755A/en active Pending
-
2003
- 2003-07-16 US US10/619,632 patent/US20040108133A1/en not_active Abandoned
- 2003-07-16 CN CNB03178433XA patent/CN100541770C/en not_active Expired - Fee Related
-
2007
- 2007-02-12 US US11/673,904 patent/US7875807B2/en not_active Expired - Fee Related
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4568592A (en) * | 1982-10-05 | 1986-02-04 | Shin-Etsu Polymer Co., Ltd. | Anisotropically electroconductive film adhesive |
US4701279A (en) * | 1985-08-16 | 1987-10-20 | Shin-Etsu Polymer Co., Ltd. | Anisotropically electroconductive adhesives |
US4740657A (en) * | 1986-02-14 | 1988-04-26 | Hitachi, Chemical Company, Ltd | Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained |
US6156427A (en) * | 1987-07-20 | 2000-12-05 | Hitachi, Ltd. | Electroconductive resin composition for molding and electromagnetic wave interference shield structure molded from the composition |
US5604026A (en) * | 1993-11-03 | 1997-02-18 | W. L. Gore & Associates, Inc. | Electrically conductive adhesives |
US5624268A (en) * | 1993-11-10 | 1997-04-29 | The Whitaker Corporation | Electrical connectors using anisotropic conductive films |
US5686703A (en) * | 1994-12-16 | 1997-11-11 | Minnesota Mining And Manufacturing Company | Anisotropic, electrically conductive adhesive film |
US5738936A (en) * | 1996-06-27 | 1998-04-14 | W. L. Gore & Associates, Inc. | Thermally conductive polytetrafluoroethylene article |
US6281450B1 (en) * | 1997-06-26 | 2001-08-28 | Hitachi Chemical Company, Ltd. | Substrate for mounting semiconductor chips |
US6020059A (en) * | 1997-07-24 | 2000-02-01 | Sony Chemicals Corporation | Multilayer anisotropic electroconductive adhesive and method for manufacturing same |
US6243147B1 (en) * | 1998-06-18 | 2001-06-05 | Ricoh Company, Ltd. | Liquid crystal display apparatus capable of preventing a break due to a crack caused during a manufacturing process |
US6956072B1 (en) * | 1999-07-16 | 2005-10-18 | Polyplastics Co., Ltd. | Thermoplastic resin composition and molded object thereof |
US6472247B1 (en) * | 2000-06-26 | 2002-10-29 | Ricoh Company, Ltd. | Solid-state imaging device and method of production of the same |
US6384128B1 (en) * | 2000-07-19 | 2002-05-07 | Toray Industries, Inc. | Thermoplastic resin composition, molding material, and molded article thereof |
US6900550B2 (en) * | 2001-03-30 | 2005-05-31 | Lintec Corporation | Semiconductor device including adhesive agent layer with embedded conductor bodies |
US6936783B2 (en) * | 2001-05-25 | 2005-08-30 | Shin-Etsu Polymer Co., Ltd. | Push-button switch member and manufacturing method of same |
US6884833B2 (en) * | 2001-06-29 | 2005-04-26 | 3M Innovative Properties Company | Devices, compositions, and methods incorporating adhesives whose performance is enhanced by organophilic clay constituents |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070132098A1 (en) * | 2002-07-18 | 2007-06-14 | Takeshi Sano | Elastic conductive resin, and electronic device including elastic conductive bumps made of the elastic conductive resin |
US7875807B2 (en) * | 2002-07-18 | 2011-01-25 | Ricoh Company, Ltd. | Elastic conductive resin, and electronic device including elastic conductive bumps made of the elastic conductive resin |
US20050252398A1 (en) * | 2004-05-11 | 2005-11-17 | Hideaki Ohkura | Pattern form object and a manufacturing method thereof |
US20080135097A1 (en) * | 2005-03-29 | 2008-06-12 | Ken Kikuchi | Paste Composition, Electrode, and Solar Cell Element Including the Same |
US20060250452A1 (en) * | 2005-04-28 | 2006-11-09 | Takeshi Sano | Electric component, method of forming conductive pattern, and inkjet head |
US7748114B2 (en) | 2005-04-28 | 2010-07-06 | Ricoh Company, Ltd. | Method of forming conductive pattern |
WO2007063925A1 (en) | 2005-11-30 | 2007-06-07 | Astellas Pharma Inc. | 2-aminobenzamide derivative |
US20090315178A1 (en) * | 2007-03-23 | 2009-12-24 | Daisuke Sakurai | Conductive bump, method for producing the same, and electronic component mounted structure |
US8575751B2 (en) | 2007-03-23 | 2013-11-05 | Panasonic Corporation | Conductive bump, method for producing the same, and electronic component mounted structure |
US20090301771A1 (en) * | 2008-06-04 | 2009-12-10 | Shozo Ochi | Conductive bump, method for forming the same, and electronic component mounting structure using the same |
US20100231543A1 (en) * | 2009-03-13 | 2010-09-16 | Seiko Epson Corporation | Display device with touch sensor function, manufacturing method of display device with touch sensor function, and electronic apparatus |
US10561018B2 (en) * | 2018-01-31 | 2020-02-11 | Mikuni Electron Corporation | Connection structure and method for manufacturing connection structure |
US10580751B2 (en) | 2018-01-31 | 2020-03-03 | Mikuni Electron Corporation | Connection structure and method for manufacturing connection structure |
US10624215B2 (en) | 2018-01-31 | 2020-04-14 | Mikuni Electron Corporation | Connection structure and method for manufacturing connection structure |
US20190239347A1 (en) * | 2018-01-31 | 2019-08-01 | Mikuni Electron Corporation | Connection structure and method for manufacturing connection structure |
US10804235B2 (en) | 2018-01-31 | 2020-10-13 | Mikuni Electron Corporation | Connection structure |
US10959337B2 (en) | 2018-01-31 | 2021-03-23 | Mikuni Electron Corporation | Connection structure |
US11057992B2 (en) | 2018-01-31 | 2021-07-06 | Mikuni Electron Corporation | Connection structure |
US11133279B2 (en) | 2018-01-31 | 2021-09-28 | Mikuni Electron Corporation | Connection structure |
US11735556B2 (en) | 2018-01-31 | 2023-08-22 | Mikuni Electron Corporation | Connection structure |
US20220039263A1 (en) * | 2018-10-16 | 2022-02-03 | Fuji Corporation | Circuit formation method |
US11849545B2 (en) * | 2018-10-16 | 2023-12-19 | Fuji Corporation | Circuit formation method |
US10763196B1 (en) * | 2019-03-22 | 2020-09-01 | Ohkuchi Materials Co., Ltd. | Lead frame |
US20200303287A1 (en) * | 2019-03-22 | 2020-09-24 | Ohkuchi Materials Co., Ltd. | Lead frame |
US11316086B2 (en) | 2020-07-10 | 2022-04-26 | X Display Company Technology Limited | Printed structures with electrical contact having reflowable polymer core |
WO2022008323A1 (en) * | 2020-07-10 | 2022-01-13 | X Display Company Technology Limited | Structures and methods for electrically connecting printed horizontal devices |
US11916179B2 (en) | 2020-07-10 | 2024-02-27 | X Display Company Technology Limited | Structures and methods for electrically connecting printed horizontal components |
Also Published As
Publication number | Publication date |
---|---|
CN1477704A (en) | 2004-02-25 |
CN100541770C (en) | 2009-09-16 |
US7875807B2 (en) | 2011-01-25 |
US20070132098A1 (en) | 2007-06-14 |
JP2004051755A (en) | 2004-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7875807B2 (en) | Elastic conductive resin, and electronic device including elastic conductive bumps made of the elastic conductive resin | |
JP6380591B2 (en) | Anisotropic conductive film and connection structure | |
US5624268A (en) | Electrical connectors using anisotropic conductive films | |
KR930002935B1 (en) | Composition for circuit connection method for connection using the same and connected structure of semiconductor chips | |
CN100397963C (en) | Electronic circuit device and its manufacturing method | |
US6368704B1 (en) | Conductive paste of high thermal conductivity and electronic part using the same | |
KR102028389B1 (en) | Electroconductive particle, circuit connecting material, mounting body, and method for manufacturing mounting body | |
KR100386758B1 (en) | Anisotropic conductor film, semiconductor chip, and method of packaging | |
US6675474B2 (en) | Electronic component mounted member and repair method thereof | |
US6426021B2 (en) | Anisotropically electroconductive adhesive material and connecting method | |
JP3436170B2 (en) | Anisotropic conductive film, semiconductor device using the same, and method of manufacturing the same | |
JP3622792B2 (en) | Connection member and electrode connection structure and connection method using the connection member | |
KR20070104742A (en) | Anisotropic conductive film and method of manufacturing the same | |
JP2010251336A (en) | Anisotropic conductive film and method for manufacturing connection structure using the same | |
US20170347463A1 (en) | Conductive particle, and connection material, connection structure, and connecting method of circuit member | |
JP4542842B2 (en) | Interelectrode connection structure | |
KR20080097874A (en) | Anisotropic conductive adhesive capsule | |
JP2004006417A (en) | Connecting element and connection structure of electrode using this | |
JP2008179834A (en) | Electrically-conductive elastic resin | |
KR100624155B1 (en) | Conductive silicon powder and Method for making the same and Anisotropic conductive film and Conductive paste using the same | |
JP4735378B2 (en) | Electronic component mounting structure and manufacturing method thereof | |
JPH087957A (en) | Connecting method of circuit board and connecting structure body, and adhesive film using for it | |
JP4099475B2 (en) | Conductive silicon powder, manufacturing method thereof, anisotropic conductive film and conductive paste using the same | |
JPH1116946A (en) | Mounting method of semiconductor device | |
JP2000311731A (en) | Electric connector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RICOH COMPANY, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SANO, TAKESHI;KOBAYASHI, HIROFUMI;OHKURA, HIDEAKI;REEL/FRAME:014760/0326 Effective date: 20031106 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |