JPH0757489B2 - Method for producing conductive fiber composite resin - Google Patents

Method for producing conductive fiber composite resin

Info

Publication number
JPH0757489B2
JPH0757489B2 JP62305608A JP30560887A JPH0757489B2 JP H0757489 B2 JPH0757489 B2 JP H0757489B2 JP 62305608 A JP62305608 A JP 62305608A JP 30560887 A JP30560887 A JP 30560887A JP H0757489 B2 JPH0757489 B2 JP H0757489B2
Authority
JP
Japan
Prior art keywords
fiber
group
conductive
resin
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62305608A
Other languages
Japanese (ja)
Other versions
JPH01148515A (en
Inventor
昌生 後藤
研一 藁谷
誠 飯田
明一 太田
進 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62305608A priority Critical patent/JPH0757489B2/en
Priority to EP88111613A priority patent/EP0306671A1/en
Priority to CN88106014A priority patent/CN1020983C/en
Priority to KR1019880009039A priority patent/KR910007665B1/en
Publication of JPH01148515A publication Critical patent/JPH01148515A/en
Priority to US07/769,348 priority patent/US6156427A/en
Publication of JPH0757489B2 publication Critical patent/JPH0757489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電性せんい複合樹脂の製造方法に係り、特
に電磁波シールド用の導電性せんい複合樹脂の製造方法
に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a conductive fiber composite resin, and more particularly to a method for producing a conductive fiber composite resin for electromagnetic wave shielding.

〔従来の技術〕[Conventional technology]

電子機器用プラスチック筐体(ハウジング筐体の電磁波
シールド方法に関しては、種々の方法が知られており、
金属被覆膜を設けるメッキ法や溶射法,導電被膜を設け
る導電塗装法およびプラスチック筐体中に金属せんいや
フレーク等の導電性物質を混合したものなどがある。こ
れらに関連するものとして、例えば、特開昭59−22710,
特開昭59−49918,特開昭62−45659および特公昭62−440
24等がある。
Plastic housings for electronic devices (Various methods are known for electromagnetic wave shielding methods for housing housings,
There are a plating method for providing a metal coating film, a thermal spraying method, a conductive coating method for providing a conductive coating, and a method in which a conductive material such as metal fibers or flakes is mixed in a plastic housing. As those related to these, for example, JP-A-59-22710,
JP-A-59-49918, JP-A-62-45659 and JP-B-62-440
There are 24 mag.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記した従来技術は、大別して次の2つに分けられる。
一つは、プラスチック成形筐体に導電性被膜を付着する
方法であり、二つは、導電性物質を予め含有した樹脂を
用いて筐体を形成する方法である。
The above-mentioned conventional techniques are roughly classified into the following two types.
One is a method of attaching a conductive coating to a plastic molded case, and the other is a method of forming a case using a resin containing a conductive substance in advance.

前者の導電被膜付着法の問題点として、加工工程が多
く、手数がかかること、環境整備に費用と労力を要する
こと、加えて導電被膜の長期間にわたる付着力と導電性
能の維持が懸念されること等が挙げられる。
As the problems of the former conductive coating film deposition method, there are many processing steps, labor is required, cost and labor are required for environment maintenance, and in addition, there is concern that the conductive coating film may have long-term adhesion and conductive performance. There are such things.

後者の導電性物質に複合樹脂に関しては、特に性能の低
下の問題がある。その一つは、耐久信頼性試験に繰返し
熱衝撃試験(ヒートサイクルテスト)では、繰返し数を
増やして行くと、導電性能が劣化し、シールド効果が低
下することである。
Regarding the latter conductive material, there is a problem that the performance is particularly deteriorated with respect to the composite resin. One of them is that, in the durability reliability test and the repeated thermal shock test (heat cycle test), as the number of repetitions increases, the conductive performance deteriorates and the shield effect decreases.

さらにもう一つの大きな問題は、導電性せんいを樹脂に
混ぜて成形用のペレットをつくる際に、溶融樹脂との混
練工程において導電性せんいの切断を伴うため、シール
ド効果がそれに比例して低下することである。すなわ
ち、導電性せんいの本来もっている性能が、切断によっ
てそこなわれることが問題である。
Yet another major problem is that when the conductive fibers are mixed with the resin to form pellets for molding, the conductive fibers are cut in the kneading step with the molten resin, so the shielding effect is reduced proportionally. That is. That is, there is a problem that the original performance of the conductive fiber is damaged by cutting.

上記、問題点に関し、具体例を示すと、例えば導電性せ
んいとして銅せんいを用いた樹脂複合材料においては、
熱衝撃試験条件として−20℃,2時間、その後70℃,2時間
放置を1サイクルといた曝露条件下で試験した場合、シ
ールド効果は30回のサイクルで初期値の半分以下に低下
することを確認している。また導電性せんいの樹脂との
混練時の切断に関しては、通常の方法では回避できない
問題である。そこでシールド効果のレベルを維持するた
めに、導電性せんいの充填量を増やす方法もとられてい
るが、機械的強度の低下ならびに成形加工性の悪化を招
来する新たな問題が、付加されている。
Regarding the above problems, specific examples will be given. For example, in a resin composite material using copper fibers as conductive fibers,
When the test was conducted under the exposure condition that the thermal shock test condition was -20 ℃, 2 hours, and then left at 70 ℃, 2 hours for 1 cycle, the shielding effect was reduced to less than half of the initial value after 30 cycles. I'm confirming. Further, the cutting of the conductive fiber at the time of kneading with the resin is a problem that cannot be avoided by an ordinary method. Therefore, in order to maintain the level of the shield effect, a method of increasing the filling amount of the conductive fiber is taken, but a new problem that causes a decrease in mechanical strength and deterioration of molding processability is added. .

本発明の目的は、上記従来技術の諸問題ならびにシール
ド技術に関する新たな課題を解決するためになされたも
ので、電子機器の電磁波シールド用に好適な導電性せん
い複合樹脂の製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and new problems relating to the shield technology, and to provide a method for producing a conductive fiber composite resin suitable for electromagnetic wave shielding of electronic devices. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は電子機器筐体の成形用導電性せんい複合樹脂の
ペレット製造方法において、従来の諸問題を解決する新
規な組成物とその製造方法に関するもので、次の三つの
要素技術の組合せにより達成される。
The present invention relates to a method for producing pellets of a conductive fiber composite resin for molding electronic device casings, which relates to a novel composition and a method for producing the same, which are achieved by a combination of the following three elemental technologies. To be done.

(1)シールド効果の低下に影響の大きい導電性せんい
の切断の全くないペレットの製造方法で、微細素線から
成る束線を押出機を用いて連続的に供給し、熱可塑性樹
脂のマトリックス中に連続的に被覆埋設し、適性長さに
カットする新規な工法。
(1) A pellet manufacturing method that does not cause cutting of conductive fibers, which greatly affects the reduction of the shield effect, and a bundle of fine strands is continuously supplied by using an extruder, and the pellets are placed in a thermoplastic resin matrix. A new construction method in which it is continuously covered and buried in the ground and cut to an appropriate length.

(2)シールド特性に優れる鉄系金属(ステンレススチ
ール)せんいを必須成分とし、他の金属せんい(銅系ま
たはアルイニウム)または金属被覆せんいとの併用系の
導電性せんいを用いたことを特徴とする新規な組成物。
(2) Featuring an iron-based metal (stainless steel) fiber having excellent shielding properties as an essential component and a conductive fiber used in combination with another metal fiber (copper-based or aluminum) or a metal-coated fiber Novel composition.

(3)熱可塑性樹脂として応力緩和し難く、熱衝撃負荷
の影響を受け難い材料を用いたこと、即ち熱変形温度が
80〜210℃の樹脂を用いたことを特徴とする新規な導電
性せんい複合樹脂組成物。
(3) A material that is not easily stress-relieved and is not easily affected by a thermal shock load is used as the thermoplastic resin.
A novel conductive fiber composite resin composition characterized by using a resin of 80 to 210 ° C.

副次的には、熱可塑性樹脂中に必要に応じて、着色顔
料、難燃剤,内部離型剤,酸化防止剤等の併用も可能で
ある。
As a subordinate, a coloring pigment, a flame retardant, an internal mold release agent, an antioxidant and the like can be used in combination in the thermoplastic resin, if necessary.

以下、具体的に上記三つの要素技術について詳述する。Hereinafter, the above three elemental technologies will be specifically described in detail.

第1図は、本発明の構成要素の一つである押出機クロス
ヘッドの断面を示す。
FIG. 1 shows a cross section of an extruder crosshead which is one of the components of the present invention.

A−A断面を第2図から第5図に示すように、導電性せ
んいの2束〜5束線を貫通できる孔を設けている。孔径
が異なるのは、導電性せんいの材質により素線の断面径
および組合せ配合比率が異なることに対応するためであ
る。新規に開発したダイスの形状を、2束線用ダイスに
ついて第6図に、以下順次5束線用ダイスの第9図を示
す。
As shown in FIG. 2 to FIG. 5 on the AA cross section, holes for penetrating 2 to 5 bundles of conductive fibers are provided. The reason for the difference in the hole diameter is that it corresponds to the difference in the cross-sectional diameter of the strand and the combination ratio depending on the material of the conductive fiber. The shape of the newly developed die is shown in FIG. 6 for the two-bundle wire die, and subsequently in FIG. 9 for the five-bundle wire die.

本発明で用いられる導電性せんいは、金属せんいあるい
は金属被覆せんいである。即ち、より詳細に述べると、
下記A群,B群,C群,D群から選ばれた少くとも2種類から
構成されるもので、A群を必須成分とする2〜5種類の
せんいから成ることを特徴とする。
The conductive fibers used in the present invention are metal fibers or metal-coated fibers. That is, in more detail,
It is composed of at least two kinds selected from the following group A, group B, group C, and group D, and is characterized by comprising 2 to 5 kinds of fibers containing group A as an essential component.

A群:鉄系金属せんい(ステンレススチール) 断面径 5〜15μm B群:銅系金属せんい(真鍮,洋白) 断面径 15〜60μm C群:アルミニウム系金属せんい(A5052,A7075) 断面径 15〜60μm D群:金属被覆せんい(ニッケルメッキ炭素せんい,ニ
ッケル〜銅メッキガラスせんい,ニッケル〜銅メッキ高
分子せんい) 次に本発明の第3の構成要素である熱可塑性樹脂につい
て示す。特徴的なことは、熱変形温度が80〜210℃の熱
可塑性樹脂を用いることである。この理由は、最終目的
とする電子機器用筐体の電磁波シールド機能の発現とそ
の長期的維持をはかるためには、導電性せんい同士が3
次元的にからみ合い接触点をもつことにより、いわゆる
網目構造の導電回路が形成され、その接点の接触圧を維
持する為に樹脂の応力緩和特性があるレベル以上を持つ
必要性から規定されたからである。
Group A: Iron-based metal fiber (stainless steel) Section diameter 5 to 15 μm Group B: Copper-based metal fiber (brass, nickel silver) Section diameter 15 to 60 μm Group C: Aluminum-based metal fiber (A5052, A7075) Section diameter 15 to 60 μm D group: metal-coated fiber (nickel-plated carbon fiber, nickel-copper-plated glass fiber, nickel-copper-plated polymer fiber) Next, the thermoplastic resin which is the third component of the present invention will be described. A characteristic is that a thermoplastic resin having a heat distortion temperature of 80 to 210 ° C. is used. The reason for this is that in order to achieve the electromagnetic wave shielding function of the housing for electronic devices, which is the final purpose, and to maintain the electromagnetic wave shielding function for a long period of time, the conductive fibers are separated from each other by three.
Since the conductive circuit of so-called mesh structure is formed by having the entangled contact points in a dimension, it is specified from the necessity that the stress relaxation characteristic of the resin has a certain level or more in order to maintain the contact pressure of the contact. is there.

この点から熱変形温度は高い方が望ましいが、210℃を
越えると成形性が悪くなるため上限温度として制約され
る。従って、より好ましい熱変形温度範囲は100〜150
℃、特に好ましくは110〜130℃である。
From this point of view, it is desirable that the heat distortion temperature is high, but if it exceeds 210 ° C., the formability is deteriorated, so that the upper limit temperature is restricted. Therefore, the more preferable heat distortion temperature range is 100 to 150.
C., particularly preferably 110 to 130.degree.

本発明で用いられる熱可塑性樹脂は、下記の中から選ば
れるいずれか一種を用いることができる。
As the thermoplastic resin used in the present invention, any one selected from the following can be used.

これらの材料は、最終的に用いられる各種の電子機器に
要求される強度レベルに合わせて選ぶことができる。
These materials can be selected according to the strength level required for various electronic devices to be finally used.

熱可塑性樹脂:ポリフェニレンエーテル、ポリエーテル
スルホン,ポリブチレンテレフタレート,ABS樹脂,耐衝
撃性ポリスチレン,ポリカーボネート,ナイロンポリプ
ロピレンおよびポリマーアロイのポリフェニレンエーテ
ル/ポリスチレン,ポリブチレンテレフタレート/ポリ
カーボネート,ABS樹脂/ポリカーボネート,耐衝撃性ポ
リスチレン/ポリカーボネート。
Thermoplastic resin: polyphenylene ether, polyether sulfone, polybutylene terephthalate, ABS resin, high impact polystyrene, polycarbonate, nylon polypropylene and polymer alloy polyphenylene ether / polystyrene, polybutylene terephthalate / polycarbonate, ABS resin / polycarbonate, impact resistance Polystyrene / polycarbonate.

上記、熱可塑性樹脂中には、必要に応じて、着色顔料,
難燃剤,内部離型剤,酸化防止剤等の添加剤を0.5〜5wt
%含むことが望ましい。
In the above thermoplastic resin, if necessary, a coloring pigment,
0.5-5wt% of additives such as flame retardant, internal mold release agent, antioxidant, etc.
It is desirable to include%.

上記、導電性せんいおよび熱可塑性樹脂を用いて、第1
図に示すクロスヘッドを押出機にセットし、製造した多
芯状の金属束せんいを熱可塑性樹脂で被覆した連続導体
線を5〜10mmの一定長さに切断したペレットの断面を第
10図の2束線から以下順次5束線の第13図まで示す。
Using the conductive fiber and the thermoplastic resin, the first
The crosshead shown in the figure is set in the extruder, and the cross-section of the pellet obtained by cutting the continuous conductor wire coated with the thermoplastic resin on the manufactured multifilamentary metal bundle into a fixed length of 5 to 10 mm
The two bundles in FIG. 10 to the five bundles shown in FIG. 13 are shown below.

この場合、導電性せんいの熱可塑性樹脂中への配合率
は、最終的電子機器の不要電磁波のシールド能力のレベ
ルによって決められるが、米国連邦通信委員会(FCC)
の規制および我国電気業界の自主規制(VCCI)等を満足
することが必要であり、種々検討した結果、適正範囲は
次の通りである。
In this case, the compounding ratio of the conductive fiber into the thermoplastic resin is determined by the level of the shielding ability of the final electronic device against unnecessary electromagnetic waves.
It is necessary to satisfy the regulations of the above and voluntary regulations of the Japanese electric industry (VCCI), etc. As a result of various examinations, the appropriate range is as follows.

A群:鉄系金属せんい 1〜10wt% B群:銅系金属せんい 20〜30wt% C群:アルミニウム系金属せんい 2〜15wt% D群:金属被覆せんい 5〜15wt% 本発明では、鉄系金属せんいを必須成分とするところに
一つの特徴がある。鉄のみでも充分なシールド効果を得
ることは可能であるが、導電性は他の材料に比べてレベ
ルが下ること、経済性が他の材料に比べて大巾に不利で
あることの欠点をもつが、熱衝撃特性に著しく優れる長
所がある故に欠点部分を少くし、長所を生かすため他の
材料との組合せが最適であることを退出したことによ
る。
Group A: Iron-based metal fiber 1 to 10 wt% Group B: Copper-based metal fiber 20 to 30 wt% Group C: Aluminum-based metal fiber 2 to 15 wt% Group D: Metal-coated fiber 5 to 15 wt% In the present invention, iron-based metal One feature is that fiber is an essential ingredient. Although it is possible to obtain a sufficient shielding effect with iron alone, it has the drawbacks that the conductivity is lower than that of other materials and that the economic efficiency is greatly disadvantageous compared with other materials. However, because it has the advantage of being remarkably excellent in thermal shock properties, it is possible to reduce the number of defects and to optimize the combination with other materials in order to utilize the advantages.

各種の導電性せんいの組合せは、最終製品の要求レベル
に合うように選択されるが、トータルの重量分率は7〜
40wt%が好ましい。
The combination of various conductive fibers is selected to meet the required level of the final product, but the total weight fraction is 7 ~.
40 wt% is preferred.

本発明で得られる多芯状の一定長さのペレットを用い
て、電子機器用筐体の成形は、通常の射出成形機を用い
て容易に成形できる。このことは、別の強度向上等の目
的で用いられているガラスせんい強化樹脂(典型的な例
として、ガラスせんいの重量比30wt%,容積比15vol
%)に比べ、本発明の導電性せんいの容積分率は高々7v
ol%程度と半分以下の容積比であることから成形性の容
易さが示される。筐体を射出成形するときに導電性せん
いの切断が起り得る可能性は皆無とは云えないが、ペレ
ットを造るときの樹脂との溶融混練時の切断の起り得る
度合いに比べれば、はるかに小さい。
The multi-core pellets having a constant length obtained in the present invention can be used to easily mold an electronic device casing using an ordinary injection molding machine. This means that the glass fiber reinforced resin used for another purpose such as strength improvement (as a typical example, glass fiber weight ratio 30 wt%, volume ratio 15 vol
%), The volume fraction of the conductive fiber of the present invention is at most 7v
Since the volume ratio is about ol% and less than half, the moldability is easy. The possibility of cutting the conductive fibers during injection molding of the housing cannot be said to be zero, but it is much smaller than the degree of cutting that can occur during melt-kneading with the resin used to make pellets. .

本発明は、この点を工夫し、溶融混練時の切断の問題を
解消するため、多芯状の一定長さのペレットが得られる
ようにした処に大きな特徴がある。
The present invention has a great feature in devising this point, and in order to solve the problem of cutting at the time of melt-kneading, multi-core pellets having a constant length can be obtained.

比較例 第14図は、従来の導電性せんい単体系として銅せんい,
直径50μm,長さ7mmのものを押出機により15wt%を樹脂
で溶融混連したポリフェニレンエーテル樹脂50,同様に
して得た銅せんい(40wt%)複合ポリフェニレンエーテ
ル樹脂51および鉄系金属せんいとしてSUS304,直径8μ
m,長さ7mmのもの15wt%複合ポリフェニレンエーテル樹
脂52のペレットを用い射出成形した平板(200mm口×30m
m)の体積固有抵抗を示す。
Comparative Example Fig. 14 shows a copper fiber as a conventional conductive fiber system.
Polyphenylene ether resin 50 with a diameter of 50 μm and a length of 7 mm was melt-mixed with resin in an amount of 15 wt% by an extruder 50, a copper fiber (40 wt%) composite polyphenylene ether resin 51 obtained in the same manner and SUS304 as an iron-based metal fiber, Diameter 8μ
m, 7 mm long 15 wt% composite polyphenylene ether resin 52 pellets injection molded flat plate (200 mm mouth x 30 m
The volume resistivity of m) is shown.

導電性せんいの配合比率が一定(15wt%)のときは、鉄
系金属せんい(SUS304)複合材が銅系せんい複合材に比
べ体積固有抵抗は小さく、導電性に優れている。このこ
とは、鉄系金属せんいの直径が小さく接点の形成数が銅
系に比べはるかに多いことおよび混練時に銅せんいが切
断され易いことによるものと考えられる。
When the compounding ratio of the conductive fiber is constant (15 wt%), the iron-based metal fiber (SUS304) composite material has a smaller volume resistivity than the copper-based fiber composite material and is excellent in conductivity. It is considered that this is because the diameter of the iron-based metal fiber is small and the number of contacts formed is much larger than that of the copper-based metal fiber, and the copper fiber is easily cut during kneading.

銅系せんいで体積固有抵抗を下げるには、第14図51およ
び第1表に示されるように配合比率を増やす必要があ
る。但し、複合材料として比重の増大,成形性と強度の
低下を招くため得策でない。
In order to lower the volume resistivity of the copper-based fiber, it is necessary to increase the compounding ratio as shown in FIG. 14 and Table 1. However, this is not a good idea because it causes an increase in specific gravity and a decrease in moldability and strength as a composite material.

上記した複合材料の成形平板を熱衝撃試験(−20℃×2h
+70℃×2h)したあとの体積固有抵抗の変化率は、鉄系
せんいに比べ、銅系せんいの方がはるかに大きい。従っ
て、銅系せんい複合材は耐久性の点で実用的には使えな
い。
Thermal shock test (-20 ℃ x 2h)
The change rate of the volume resistivity after + 70 ℃ × 2h) is much larger in the copper-based fiber than in the iron-based fiber. Therefore, the copper fiber composite material cannot be practically used in terms of durability.

銅系せんい複合材の体積固有抵抗の変化率が大きい理由
は、熱伝導率が大きく、マトリックスの樹脂の応力緩和
を促進し、接点の接触圧力の低下を促進する効果に基づ
くものと考えられる。
It is considered that the reason why the rate of change in volume resistivity of the copper-based fiber composite material is large is that the thermal conductivity is large, the stress relaxation of the matrix resin is promoted, and the contact pressure of the contacts is lowered.

従って、マトリックス材料としては、応力緩和しにく
い、即ち熱変形温度の高いものが望まれる。
Therefore, as the matrix material, it is desirable that the stress is not easily relaxed, that is, that the heat deformation temperature is high.

一方、本発明の2束線用ダイスを用いて製造した銅系せ
んい15wt%複合ペレットによる平板試験片60の体積固有
抵抗は、同じ配合率の従来法によるペレットから得られ
たものに比べ約1/10と小さな値となり、せんい切断の影
響がないことを示している。別な云い方をすれば、従来
法は出発材料としての導電性せんいの本来具備している
特性が、混練過程で切断するため性能低下を余儀なく引
起していることになる。
On the other hand, the volume resistivity of the flat plate test piece 60 made of the copper-based fiber 15 wt% composite pellet produced by using the double bundle wire die of the present invention is about 1 as compared with that obtained from the pellet by the conventional method having the same mixing ratio. The value is as small as / 10, indicating that there is no influence of severing. In other words, in the conventional method, the inherent property of the conductive fiber as the starting material is that the performance is inevitably deteriorated because the conductive fiber is cut during the kneading process.

鉄系金属せんい複合材は、熱衝撃試験に対する変化率が
小さく、この点では大変有利な材料であるが、極細せん
いを得る過程で多くの工程を要する上銅系せんいに比
べ、体積固有抵抗の初期値は劣ることに加え、価格が数
倍と高価で、特性と経済性の点で単独系で用いること問
題である。
The iron-based metal fiber composite material has a small rate of change in the thermal shock test and is a very advantageous material in this respect, but it requires more steps in the process of obtaining ultrafine fiber, and has a volume resistivity higher than that of the copper-based fiber material. In addition to being inferior in the initial value, the price is several times more expensive, and it is a problem that it is used as a single system in terms of characteristics and economical efficiency.

そこで銅系せんい複合樹脂の導電性の初期値が優れる点
を生かし、鉄系金属せんいの熱衝撃に対する変化の少な
い利点を生かした複合併用系金属せんいが有効であるこ
とを見出した。鉄系せんいは線系が細い故に、接点数を
増やす高価を利用したものである。鉄系せんいの代りに
ニッケル複覆炭素せんいも利用できるが、製造工数,体
積固有抵抗,価格の点でやゝ問題があり鉄系せんいを凌
賀し得ない。また銅系せんいの代りに、アルミニウム系
金属せんい,ニッケル−銅メッキ高分子せんい,ニッケ
ル−銅メッキガラスせんいを用いることができ、総合的
に見て鉄系金属せんいを必須成分とする他の金属せんい
または金属被覆せんいとの組合せが有効である。
Therefore, it was found that the combined use type metal fiber, which takes advantage of the fact that the initial value of the conductivity of the copper type fiber composite resin is excellent, and the advantage that the change of the iron type metal fiber with respect to thermal shock is small, is effective. The iron-based fiber is expensive because it increases the number of contacts because the wire system is thin. Nickel-double coated carbon fiber can be used instead of iron-based fiber, but there are some problems in manufacturing man-hours, volume resistivity, and price, and it cannot surpass iron-based fiber. In addition, instead of the copper-based fiber, an aluminum-based metal fiber, a nickel-copper-plated polymer fiber, or a nickel-copper-plated glass fiber can be used. Combinations with fibers or metallized fibers are effective.

本発明により製造した導電性せんい併用系材料61に関
し、体積固有抵抗を第14図に併載した。
The volume resistivity of the combined conductive fiber material 61 produced according to the present invention is also shown in FIG.

材料組成は第2表の通りである。The material composition is as shown in Table 2.

61はポリフェニレンエーテル樹脂の熱変形温度70℃のも
のを用いた場合であり、62は同じく120℃の樹脂を用い
た場合である。応力緩和の小さい62の材料が体積固有抵
抗の熱衝撃サイクルに対する変化が小さいことがわか
る。
61 is a case where a polyphenylene ether resin having a heat distortion temperature of 70 ° C. is used, and 62 is a case where a resin of 120 ° C. is also used. It can be seen that the 62 materials with small stress relaxation show small changes in the volume resistivity with respect to the thermal shock cycle.

〔作用〕[Action]

本発明は、導電性せんい複合熱可塑性樹脂を溶融混練す
る新しいクロスヘッドのダイス構造を考案することによ
り、従来法のせんい切断の問題を解消する多芯状導電性
せんい複合樹脂の任意の適正長さを有するペレット製造
方法を確立した事により、導電性能の大巾な向上を実現
したもので、従来法に比べ作用効果上の格段の差異を生
んだものである。
The present invention devises a new crosshead die structure for melting and kneading a conductive fiber composite thermoplastic resin to solve the problem of the fiber cutting of the conventional method, and to obtain an appropriate length of the multicore conductive fiber composite resin. By establishing a pellet manufacturing method with high quality, a large improvement in the conductive performance has been realized, which is a significant difference in action and effect compared to the conventional method.

また、鉄系金属せんい(ステンレス)の極細線を用いる
ことを必須成分としたことは、多くの接点の形成能を利
用して、他の導電性せんいとの併用による導電性能の向
上の効果を奏するのみならず次の優れた効果が付加され
た。すなわち、銅系せんいとの併用では、銅の優れた導
電性を利用して、少ない配合比率で導電性能を向上で
き、その少なさ故に成形性の低下が防止でき、比重が小
さく抑えられるため最終製品の筐体を較くする効果をも
たらした。また本発明で用いられる金属被覆カーボンせ
んい等の他の導電性せんいは、本来比重が小さく、成形
性,軽量性の点で従来にない効果を奏するものである。
In addition, the fact that the use of ultrafine wires of iron-based metal fibers (stainless steel) as an essential component makes it possible to improve the conductive performance by combining with other conductive fibers by utilizing the forming ability of many contacts. In addition to playing, the following excellent effects were added. That is, when used in combination with a copper-based fiber, the excellent conductivity of copper can be used to improve the conductive performance with a small blending ratio. It brought about the effect of comparing product casings. Further, other conductive fibers such as the metal-coated carbon fibers used in the present invention originally have a small specific gravity and have an unprecedented effect in terms of moldability and light weight.

また本発明で用いられるマトリックスとしての熱可塑性
樹脂は、応力緩和の少ない材料を用いたことにより、熱
衝撃試験に対する変化率を極めて小さく抑制でき、最終
製品の筐体の電磁波シールド性能を長期にわたって維持
できる効果を奏するものである。
Further, the thermoplastic resin as the matrix used in the present invention, by using a material with less stress relaxation, it is possible to suppress the rate of change in the thermal shock test to an extremely small level, and maintain the electromagnetic wave shielding performance of the housing of the final product for a long time. It has an effect that can be achieved.

以下実施例により、さらに詳細に説明する。The present invention will be described in more detail below with reference to examples.

〔実施例〕〔Example〕

実施例を述べるに当り、代表的な素材およびペレットの
製造方法,特性の評価法について示す。
In describing the examples, typical materials, pellet manufacturing methods, and characteristic evaluation methods will be described.

導電性せんいは連続した任意の束線としていた。素線の
径は次の通りである。
The conductive fiber was a continuous arbitrary bundled wire. The diameter of the wire is as follows.

鉄系金属せんい(ステンレススチール,SUSと略記):8μ
m 銅系金属せんい(Cuと略記):50μm ニッケルメッキ炭素せんい(Ni−カーボンと略記):12
μm ニッケル−銅メッキアクリルせんい(Ni−アクリルと略
記):15μm 熱可塑性樹脂(代表例) ポリカーボネート樹脂,熱変形温度 130℃ ポリフェニレンエーテル樹脂,〃 120℃ 上記導電性せんいと熱可塑性樹脂による多芯状ペレット
の製造法は、本発明のダイス(図6〜9記載)を搭載し
たクロスヘッド(第1図)を2軸押出機(スクリュー径
32mmφ,3条ねじ,L/D=28)に設置し、導電性せんいを2
〜5束にして連続的に供給し、溶融樹脂で被覆した多芯
状連続体を冷却工程を経て適正長さ(7mm)にカッティ
ングした。
Ferrous metal fiber (abbreviated as stainless steel, SUS): 8μ
m Copper-based metal fiber (abbreviated as Cu): 50 μm Nickel plated carbon fiber (abbreviated as Ni-carbon): 12
μm Nickel-copper-plated acrylic fiber (abbreviated as Ni-acrylic): 15 μm Thermoplastic resin (typical example) Polycarbonate resin, heat distortion temperature 130 ℃ Polyphenylene ether resin, 〃120 ℃ Multi-core shape with the above conductive fiber and thermoplastic resin The pellet manufacturing method was carried out by using a crosshead (Fig. 1) equipped with the die of the present invention (described in Figs. 6 to 9) as a twin-screw extruder (screw diameter).
32mmφ, 3 thread, L / D = 28)
The bundle was continuously fed in 5 bundles, and the multifilamentary continuous body coated with the molten resin was cut to an appropriate length (7 mm) through a cooling step.

こゝで得られたペレットは熱可塑性樹脂の成形条件で試
験片(200mm口×3t)および電子機器筐体を成形した。
なお必要に応じて、導電性せんい濃度を調節用に基材熱
可塑性樹脂を混ぜて用いることも可能である。
The pellets obtained here were used to mold test pieces (200 mm mouth x 3 t) and electronic equipment casings under the molding conditions of thermoplastic resin.
If necessary, it is also possible to mix and use a base thermoplastic resin for adjusting the conductive fiber concentration.

電子機器筐体の電磁波シールド機能に関しては、電子機
器の最も過酷な稼働状態下で発生する不要電磁波に対す
るシールド能力を業界自主規制(VCCI)内容に則して実
測した。
Regarding the electromagnetic wave shielding function of the electronic equipment housing, the shielding ability against unnecessary electromagnetic waves generated under the most severe operating condition of the electronic equipment was measured according to the contents of industry voluntary regulation (VCCI).

今回は、実用的周波数30〜100MHzの放射電界強さの平均
値で示す。
This time, the average value of the radiated electric field strength at a practical frequency of 30 to 100 MHz is shown.

導電性せんい複合樹脂の耐久性の評価尺度の一つとして
行なった熱衝撃試験は、試験片および電子機器筐体を−
20℃恒温槽中に2時間放置し、すぐに次の70℃恒温槽中
に2時間放置することを1サイクルとして、30サイクル
繰返した。
The thermal shock test, which was conducted as one of the evaluation criteria for the durability of the conductive fiber composite resin, showed that
It was left for 30 hours in a 20 ° C constant temperature bath, and immediately left for 2 hours in the next 70 ° C constant temperature bath, which was repeated 30 times.

実施例1. 第3表に、本発明に基づき製造した導電性せんい複合熱
可塑性樹脂のペレットを用いて成形した試験片の体積固
有抵抗ならびに電子機器筐体の放射電界強さを示す。い
ずれの値も満足するレベルにある。比較に用いた従来法
の特性値は表1に既述した通りであり、比較例No.2の試
料と上記実施例試料No.1とを比べると、少ないで同等の
効果が示されており、本発明の有効さを裏付けるもので
ある。
Example 1. Table 3 shows the volume resistivity and the radiated electric field strength of an electronic device housing of a test piece molded using pellets of a conductive fiber composite thermoplastic resin produced according to the present invention. Both values are at satisfactory levels. The characteristic values of the conventional method used for comparison are as already described in Table 1, and comparing the sample of Comparative Example No. 2 and the above-mentioned Example Sample No. 1 showed a small amount and equivalent effect. This proves the effectiveness of the present invention.

実施例2 熱衝撃試験結果を第4表および第14図,第15図に併記し
て示す。
Example 2 The results of the thermal shock test are shown in Table 4 and FIGS. 14 and 15.

従来技術による比較例1,2については、体積固有抵抗は
急激に大きくなり、電磁波シールド機能は著しく低下
し、実用に全く供し得ないレベルまでに至る。実施例1
即ち62は、第4表,第14図,第15図に示されるように初
期値(62)および30サイクル熱衝撃負荷後(62′)の特
性変化は極めて少なく、大変優れたレベルにあることが
分かる。
In Comparative Examples 1 and 2 according to the related art, the volume resistivity suddenly increased, the electromagnetic wave shielding function was significantly reduced, and the level reached a level where it could not be put to practical use. Example 1
That is, 62 has a very small change in characteristics as shown in Table 4, Fig. 14 and Fig. 15, and its initial value (62) and after 30 cycles of thermal shock loading (62 ') are extremely excellent. I understand.

実施例3についても同様である。The same applies to the third embodiment.

〔発明の効果〕〔The invention's effect〕

本発明は導電性せんいを複合した熱可塑性樹脂組成物に
よる成形体が電子機器から発生する不要電磁波を遮蔽す
る機能を付与する最も有効な方法を具現したもので、そ
の要素技術は次の通りである。
The present invention embodies the most effective method for imparting the function of shielding the unnecessary electromagnetic waves generated from the electronic equipment by the molded product of the thermoplastic resin composition in which the conductive fiber is composited, and the elemental technology is as follows. is there.

導電性せんい複合材ペレットを製造する方法において、
せんい切断が全くない一定長さの多芯状ペレットが得ら
れ、導電機能が充分に発揮できることに加え、鉄系極細
せんいを必須成分としたことにより接点効果が大きく、
他の導電せんいとの併用による少ない配合率で導電機能
の向上が計れること、それ故に成形性が良く、比重の増
加を小さく抑制できることの効果が生れた。また応力緩
和の少ない樹脂を用いることにより耐熱衝撃特性を大巾
に向上する効果が生れた。
In the method of producing conductive fiber composite material pellets,
A multi-core pellet with a constant length without any severing can be obtained, and the conductive function can be fully exhibited.
The effect of being able to improve the conductive function with a small compounding ratio by using it in combination with other conductive fibers, and hence having good moldability and suppressing the increase in specific gravity to a small extent was produced. In addition, the effect of significantly improving the thermal shock resistance was produced by using a resin with less stress relaxation.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る製造方法において使用される多
芯状線の製造用クロスヘッドを示す断面図、第2〜5図
は、第1図のA−A′断面をそれぞれ示す断面図、第6
〜9図は、クロスヘッドに搭載するダイスを示す斜視
図、第10〜13図は2芯線〜5芯線をし一定長さにカット
したペレットを示す斜視図、第14図は体積固有抵抗の熱
衝撃サイクルとの関係を示すグラス、第15図は、電子機
器の放射電界強さの周波数特性を表わすグラフである。 1〜10…導電性せんい導入孔,30…熱可塑性樹脂,62…SU
S/Cu/PPE系導電性せんい複合樹脂筐体,70…導電性せん
いを含まない樹脂筐体。
FIG. 1 is a cross-sectional view showing a crosshead for manufacturing a multifilamentary wire used in a manufacturing method according to the present invention, and FIGS. 2 to 5 are cross-sectional views showing a cross section taken along the line AA ′ of FIG. 1, respectively. , Sixth
Fig. 9 is a perspective view showing a die mounted on the crosshead, Figs. 10 to 13 are perspective views showing pellets each having 2 to 5 cores and cut into a certain length, and Fig. 14 is a heat of volume resistivity. FIG. 15 is a graph showing the relationship with the impact cycle, and FIG. 15 is a graph showing the frequency characteristic of the radiated electric field strength of electronic equipment. 1 to 10 ... Conductive fiber introduction hole, 30 ... Thermoplastic resin, 62 ... SU
S / Cu / PPE-based conductive fiber composite resin housing, 70 ... Resin housing that does not contain conductive fiber.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 誠 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 太田 明一 神奈川県秦野市堀山下1番地 株式会社日 立製作所神奈川工場内 (72)発明者 岩井 進 神奈川県秦野市堀山下1番地 株式会社日 立製作所神奈川工場内 (56)参考文献 特開 昭61−100415(JP,A) 特開 昭60−162604(JP,A) 特開 昭59−22710(JP,A) 特開 昭53−138466(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Makoto Iida Makoto Iida, 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Inside the Hitachi, Ltd. Institute of Industrial Science (72) Inventor Akiichi Ota 1 Horiyamashita, Hadano-shi, Kanagawa Company Hiritsu Seisakusho Kanagawa Plant (72) Inventor Susumu Iwai 1 Horiyamashita, Hadano City, Kanagawa Prefecture Hiritsu Seisakusho Kanagawa Plant (56) Reference JP 61-100415 (JP, A) JP Sho 60 -162604 (JP, A) JP 59-22710 (JP, A) JP 53-138466 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】材質、断面形状の異なる2種類以上の導電
性せんいを各々束状にし、 熱可塑性樹脂中に独立に配置して多芯線状に押し出し被
覆し、 前記導電性せんいは、下記A群、B群、C群、D群から
選ばれた少なくとも2種類から構成され、かつA群を必
須成分とし、 前記多芯線状にした導電性せんいを長さ方向に連続的に
埋設することを特徴とする導電性せんい複合樹脂の製造
方法。 記 A群:鉄系金属せんい、断面径 5〜15μm B群:銅系金属せんい、断面径 15〜60μm C群:アルミニウム系金属せんい、断面径 15〜60μm D群:金属被覆せんい
1. A bundle of two or more kinds of conductive fibers having different materials and cross-sectional shapes, which are individually arranged in a thermoplastic resin and extruded and coated in a multifilamentary wire. Group B, group C, group C, and at least two types selected from group D, and group A as an essential component, and the conductive fiber in the form of multifilamentary wire is continuously embedded in the longitudinal direction. A method for producing a conductive conductive fiber composite resin. Note Group A: Iron-based metal fiber, cross-section diameter 5 to 15 μm Group B: Copper-based metal fiber, cross-section diameter 15 to 60 μm Group C: Aluminum-based metal fiber, cross-section diameter 15 to 60 μm D group: Metal-coated fiber
【請求項2】導電性せんいの少なくとも2種類の連続束
線をプラスチック押出機のクロスヘッド部に連続的に供
給し、同時に可塑化溶融した熱可塑性樹脂により、多芯
線状に被覆し、冷却工程を経たのち、長さ3〜10mmにカ
ットしてペレット化する工程において、 前記導電性せんいの重量分率を7〜40wt%としたことを
特徴とする特許請求の範囲第1項記載の導電性せんい複
合樹脂の製造方法。
2. A step of continuously feeding at least two kinds of continuous bundled wires of a conductive fiber to a crosshead portion of a plastic extruder and simultaneously coating them with a thermoplastic resin which is plasticized and melted into a multifilamentary wire, and a cooling step. In the step of cutting into a length of 3 to 10 mm and pelletizing, the weight fraction of the conductive fibers is set to 7 to 40 wt%. Manufacturing method of fiber composite resin.
【請求項3】前記熱可塑性樹脂は、ポリフェニレンエー
テル、ポリエーテルスルホン、ポリブチレンテレフタレ
ート、ABS樹脂、耐衝撃性ポリスチレンポリカーボネー
ト、ナイロンポリプロピレンおよびポリマーアロイのポ
リフェニレンエーテル/ポリスチレン、ポリブチレンテ
レフタレート/ポリカーボネート、ABS樹脂/ポリカー
ボネート、耐衝撃性ポリスチレン/ポリカーボネートか
ら成る群から選ばれたいずれか一種の熱可塑性樹脂であ
ることを特徴とする特許請求の範囲第1項記載の導電性
せんい複合樹脂の製造方法。
3. The thermoplastic resin is polyphenylene ether, polyether sulfone, polybutylene terephthalate, ABS resin, impact-resistant polystyrene polycarbonate, nylon polypropylene and polymer alloy polyphenylene ether / polystyrene, polybutylene terephthalate / polycarbonate, ABS resin. The method for producing a conductive fiber composite resin according to claim 1, wherein the thermoplastic resin is any one kind of thermoplastic resin selected from the group consisting of / polycarbonate and high impact polystyrene / polycarbonate.
JP62305608A 1987-07-20 1987-12-04 Method for producing conductive fiber composite resin Expired - Lifetime JPH0757489B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62305608A JPH0757489B2 (en) 1987-12-04 1987-12-04 Method for producing conductive fiber composite resin
EP88111613A EP0306671A1 (en) 1987-07-20 1988-07-19 Electroconductive resin composition for moulding, and shield moulded therefrom
CN88106014A CN1020983C (en) 1987-07-20 1988-07-20 Electroconductive resin composition for molding and its application
KR1019880009039A KR910007665B1 (en) 1987-07-20 1988-07-20 Electroconductive resin composition for moulding and shield moulded there from
US07/769,348 US6156427A (en) 1987-07-20 1991-10-02 Electroconductive resin composition for molding and electromagnetic wave interference shield structure molded from the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62305608A JPH0757489B2 (en) 1987-12-04 1987-12-04 Method for producing conductive fiber composite resin

Publications (2)

Publication Number Publication Date
JPH01148515A JPH01148515A (en) 1989-06-09
JPH0757489B2 true JPH0757489B2 (en) 1995-06-21

Family

ID=17947190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62305608A Expired - Lifetime JPH0757489B2 (en) 1987-07-20 1987-12-04 Method for producing conductive fiber composite resin

Country Status (1)

Country Link
JP (1) JPH0757489B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745127B2 (en) * 1990-05-25 1995-05-17 旭ファイバーグラス株式会社 Composite fiber bundle cut product for thermoplastic resin reinforcement
JP3073988B1 (en) 1999-08-12 2000-08-07 株式会社神戸製鋼所 Manufacturing method of organic fiber reinforced resin pellets
JP2004051755A (en) 2002-07-18 2004-02-19 Ricoh Co Ltd Elastic electrical conductive resin and elastic electrical conductive joint structure
US7709296B2 (en) * 2006-10-19 2010-05-04 International Business Machines Corporation Coupling metal clad fiber optics for enhanced heat dissipation
JP2017110064A (en) * 2015-12-15 2017-06-22 三菱エンジニアリングプラスチックス株式会社 Manufacturing method of resin covered metal long fiber pellet and manufacturing method of molded article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138466A (en) * 1977-05-09 1978-12-02 Ibm Pellets for thermoplastic molding
JPS5922710A (en) * 1982-07-30 1984-02-06 Toshiba Chem Corp Manufacture of electroconductive molding material
JPS60162604A (en) * 1984-02-03 1985-08-24 Seiko Epson Corp Manufacture of conductive pellet
JPS61100415A (en) * 1984-10-23 1986-05-19 Toshiba Chem Corp Electrically-conductive molding material

Also Published As

Publication number Publication date
JPH01148515A (en) 1989-06-09

Similar Documents

Publication Publication Date Title
DE60220938T2 (en) Process for the preparation of electrically conductive thermoplastic polymer compositions
CN101573767B (en) Conductive electric wire and insulating electric wire
KR20160070089A (en) Copper alloy wire, copper alloy stranded wire, coated electric wire, wire harness and manufacturing method of copper alloy wire
CN103450665A (en) Long-carbon-fiber-reinforced nylon composite material with electromagnetic shielding function and preparation method thereof
KR102518221B1 (en) Composite resin composition for shielding electromagnetic waves and high-voltage shielding cable containing the same
KR910007665B1 (en) Electroconductive resin composition for moulding and shield moulded there from
JPH0757489B2 (en) Method for producing conductive fiber composite resin
EP0304435B1 (en) Electrically conductive material for molding
JP2633920B2 (en) Molding resin composition having conductivity and electromagnetic wave shielding structure
JPS6392672A (en) Conductive thermoplastic resin composition
JPH02250203A (en) Copper alloy fiber and copper alloy fiber bundle to be added to conductive plastic
JP2005307186A (en) Thermoplastic resin coating electrically conductive composition
JPH03138330A (en) Copper alloy fiber and copper alloy fiber bundle for adding to conductive resin
JP2005264096A (en) Method for producing resin coating composition
JPH027977B2 (en)
JP2003160673A (en) Resin composition for electromagnetic wave shielding and utilization thereof
JPH0344433A (en) Copper alloy fiber and copper alloy fiber bundle for adding to conductive resin
JPH0344434A (en) Copper alloy fiber and copper alloy fiber bundle for adding to conductive resin
JPS6286053A (en) Electrically conductive resin composition
JPH06329831A (en) Electroconductive resin composition and its molded article
JP2004027097A (en) Thermoplastic resin composition
JPH06339921A (en) Conductive resin molded product
JPH0763971B2 (en) Conductive resin molding
JPS63235368A (en) Electrically conductive resin composition and molded product thereof
EP0674326A2 (en) Electrical conductor having an insulation of plastic material