JPS6392672A - Conductive thermoplastic resin composition - Google Patents

Conductive thermoplastic resin composition

Info

Publication number
JPS6392672A
JPS6392672A JP23868986A JP23868986A JPS6392672A JP S6392672 A JPS6392672 A JP S6392672A JP 23868986 A JP23868986 A JP 23868986A JP 23868986 A JP23868986 A JP 23868986A JP S6392672 A JPS6392672 A JP S6392672A
Authority
JP
Japan
Prior art keywords
fibers
stainless steel
thermoplastic resin
average fiber
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23868986A
Other languages
Japanese (ja)
Inventor
Masatoshi Sakai
酒井 昌利
Masamitsu Murayama
村山 政充
Akira Sakamoto
晃 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Monsanto Chemical Co
Priority to JP23868986A priority Critical patent/JPS6392672A/en
Publication of JPS6392672A publication Critical patent/JPS6392672A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition which gives a molded article having stable conductivity and excellent electromagnetic wave shielding ability even after repeated heat cycles, by incorporating specified SUS304 stainless steel fibers and specified short metal fibers in specified weight proportions into a thermoplastic resin. CONSTITUTION:A thermoplastic resin (A) (e.g., a polystyrene) is mixed with SUS304 stainless steel fibers (B) having an average fiber diameter of 2-20mum, an average fiber length of 0.5-10mm, and an aspect ratio of 200-1,000, and short fibers (C) having an average fiber diameter of 10-100mum, an average fiber length of 0.7-7mm, and an aspect ratio of 200 or less and comprising metal fibers (e.g., aluminum fibers) and/or metal-coated fibers (e.g., nickel-coated glass fibers), in such proportions that component B comprises 2-15wt% and component C comprises 3-25wt% based on the total of components A, B, and C, the giving an objective conductive thermoplastic resin composition.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、導電性熱可塑性樹Frrt組成物に関する。[Detailed description of the invention] "Industrial application field" The present invention relates to conductive thermoplastic Frrt compositions.

さらに詳しくは、ヒートサイクルを経ても安定した導電
性と優れた電磁波遮蔽能を発揮する成形品を製造するの
に好適な導電性熱可塑性$3(Jll’1組成物に関す
るものである。
More specifically, it relates to a conductive thermoplastic $3 (Jll'1 composition) suitable for producing molded products that exhibit stable conductivity and excellent electromagnetic shielding ability even after undergoing heat cycles.

1″従来の技術1 近年、電子機器の急速な葺及とともに、電磁波障害とい
う新しい社会問題が生じてきた。すなわち、事務機器、
電子計算数、テレビ受信機などの電子機器は、他の電子
機器から発生される不要電磁波の妨害を受けるとともに
、それ自身の回路や素子からも不要電磁波を発生し、他
の電子機器に障害を与える。これら不要電磁波による、
電子機器相互の障害現東は、電磁波障害と呼称されてい
る。
1"Prior art 1 In recent years, with the rapid spread of electronic equipment, a new social problem of electromagnetic interference has arisen. Namely, office equipment,
Electronic devices such as electronic calculators and television receivers are not only subject to interference from unnecessary electromagnetic waves generated by other electronic devices, but also generate unnecessary electromagnetic waves from their own circuits and elements, which can cause interference with other electronic devices. give. Due to these unnecessary electromagnetic waves,
Interference between electronic devices is called electromagnetic interference.

電磁波障害への対策としては、不要電磁波の発生そのも
のを抑制する、いわゆる−次的手段と、発生した不要電
磁波の漏洩を防止する、あるいは、外部から来る不要電
磁波の侵入を防1トする、いわゆる二次的手段とがある
Countermeasures against electromagnetic interference include so-called secondary measures, which suppress the generation of unnecessary electromagnetic waves themselves, and so-called secondary measures, which prevent the leakage of generated unnecessary electromagnetic waves or prevent the intrusion of unnecessary electromagnetic waves coming from outside. There are secondary means.

しかし、電子機器はICからLSIへ、さらにはV l
、SIへと高速化、高11化の一途をたどっていること
から、不要電磁波の発生はむしろ増加の傾向さえあり、
−次的手段には自ずと限界がある。
However, electronic equipment has changed from IC to LSI, and furthermore, V l
, SI continues to become faster and more powerful, so the generation of unnecessary electromagnetic waves is even on the rise.
-Next methods naturally have their limits.

従って、二次的手段としての、不要電磁波遮蔽技術に対
する期待は非常に高く、現在は電磁波障害防止対策の柱
として位置づけられるに到っている。
Therefore, expectations are very high for unnecessary electromagnetic wave shielding technology as a secondary means, and it has now been positioned as a pillar of measures to prevent electromagnetic interference.

外部から来る不要電磁波を遮蔽して電磁波障害を回避す
るには、基本的には、その電子機器を適度の導電性を有
する筐体、例えば金属製の筐体で覆ってやればよい。
In order to avoid electromagnetic interference by shielding unnecessary electromagnetic waves coming from the outside, basically it is sufficient to cover the electronic device with a housing having appropriate conductivity, for example, a metal housing.

しかるに、電子機器の筐体としては、以前の板金やアル
ミニウムグイキャスト製のものに代わり、いまや熱可塑
性O(脂製の成形品がその殆どを占めるまでに至ってい
る。これは、熱可塑性樹脂材料の成形の容易さ、デザイ
ン、着色の自由さ、成形品の軽蹴性など、熱可塑性樹脂
のもつ優れた材料特性によるものである。ところが、通
常の熱可塑性樹脂は電気絶縁体であるために、電磁波遮
蔽能を全く有しない。
However, the housings of electronic devices are now mostly made of thermoplastic resin, replacing the previous ones made of sheet metal or aluminum cast. This is due to the excellent material properties of thermoplastic resins, such as ease of molding, design, freedom of coloring, and easy kickability of molded products.However, since normal thermoplastic resins are electrical insulators, , has no electromagnetic shielding ability at all.

このような背景から、従来から電磁波遮蔽能を付与した
熱可塑性O(脂製筐体の検討がなされ、表面を導電化処
理した熱可塑性樹脂成形品とする技術、および導電性材
料を配合した熱可塑性樹脂組成よりなる成形品とする技
術が提案されている。
Against this background, studies have been conducted on thermoplastic O (resin casings) with electromagnetic wave shielding ability, and technologies have been developed to make thermoplastic resin molded products with conductive surface treatment, and thermoplastic resin casings with electroconductive Techniques have been proposed to produce molded products made of plastic resin compositions.

しかしながら、従来提案されているこれら技術には次の
ような欠点があった。
However, these conventionally proposed techniques have the following drawbacks.

まず、表面を導電化処理した熱可塑性樹脂成形品とする
技術によるものとしては、成形品の表面に導電性の塗料
を塗布、または亜鉛やアルミニウムを溶射して導電性の
コーティング層を形成したものが知られている。しかし
、これらの、表面を導電化処理した熱可塑性樹脂成形品
を得るには、成形品の表面に導電性材料のコーティング
層を形成するための工程が新たに追加されるうえ、これ
を電子8!器の筐体等として使用する場合には、導電性
材料のコーティング層に亀裂、剥離、剥離片の脱落等の
危険が常に伴ない、電子機器の信頼性に不安が残るとい
う欠、αを有する。
First, there are technologies to make thermoplastic resin molded products with conductive surface treatment, such as coating the surface of the molded product with conductive paint or spraying zinc or aluminum to form a conductive coating layer. It has been known. However, in order to obtain these thermoplastic resin molded products whose surfaces have been treated to be electrically conductive, a new process is added to form a coating layer of a conductive material on the surface of the molded product, and this process is ! When used as a casing for a device, there is always a risk that the coating layer of the conductive material may crack, peel, or come off, leaving concerns about the reliability of the electronic device. .

次に、熱可塑性樹脂に導電性を付与する技術によるもの
としては、基体となる熱可塑性樹脂材料に、金属粉、炭
′X繊維、金属i維などの導電性フィラーを配合、分散
し、複合化したものが知られている。
Next, as a technique for imparting conductivity to thermoplastic resin, conductive fillers such as metal powder, charcoal It is known that it has become

しかしながら、従来技術によって得られるこの種の導電
性熱可塑性樹脂組成物は、導電性フィラーを多く含むも
のでなければ、導電性および電磁波遮蔽能が不充分で、
他方、導電性フィラーを多く含むものは熱可塑性樹脂組
成物の物性が損われ、その成形性を悪くし、さらに得ら
れる成形品の機械的特性も劣ったものとなってしまうと
いう問題があった。
However, this type of conductive thermoplastic resin composition obtained by conventional techniques has insufficient conductivity and electromagnetic wave shielding ability unless it contains a large amount of conductive filler.
On the other hand, those containing a large amount of conductive filler have the problem of impairing the physical properties of the thermoplastic resin composition, worsening its moldability, and further resulting in poor mechanical properties of the resulting molded product. .

また、従来の導電性熱可塑性樹脂よりなる成形品は、常
態においてはほぼ満足すべき導電性と電磁波遮蔽能を示
しても、例えば0℃以下と70’C以りとのtanにお
ける反覆する温度変化の如ト、連続したヒートサイクル
処理を受けると、次第に導電性が失われ、不充分な電磁
波遮蔽能しか示さなくなってしまい、この点からも満足
すべきものとはいえなかった。
In addition, although conventional molded products made of conductive thermoplastic resin exhibit almost satisfactory conductivity and electromagnetic wave shielding ability under normal conditions, for example, when tan changes between 0°C or lower and 70'C or higher, However, when subjected to continuous heat cycle treatment, the conductivity is gradually lost and the electromagnetic wave shielding ability is insufficient, and from this point of view as well, it cannot be said to be satisfactory.

[発明が解決しようとする問題点1 そこで本発明者らは、上記従来技術の問題点に鑑み、成
形性が良好で、機械的特性の優れた成形品が得られ、し
かもこの成形品に苛酷なヒートサイクル処理を与えても
安定した導電性と優れた電磁波遮蔽能を発揮する導電性
熱可塑性O(脂組酸物を提供すべく鋭意研究を重ねた結
果、本発明を完成したものである。
[Problem to be Solved by the Invention 1] Therefore, in view of the above-mentioned problems of the prior art, the present inventors have found that a molded product with good moldability and excellent mechanical properties can be obtained, and that this molded product can be subjected to severe stress. The present invention was completed as a result of intensive research to provide a conductive thermoplastic O (fatty acid) that exhibits stable conductivity and excellent electromagnetic shielding ability even when subjected to heat cycle treatment. .

[問題点を解決するための手1′i1 しかして本発明の要肯とするところは、熱可塑性樹脂(
a)、SUS304ステンレス繊A11(+1)および
金属短繊維および/または金属被覆短繊維(c)を含有
し、(a)成分、(b)成分および(c)成分の合計量
に対する(b)成分の割合が2へ・15重駿%の範囲、
(c)I#、分の割合が3〜25重量%の範囲であり、
1肖記S tJ S 304人テンレス繊AI1.(1
))は、平均繊維径2′す20μm、平均繊維長0.5
・す10ImInでかつアスペクト比が200〜100
0のもので、t−、rl、前記金剋tσ繊維および金属
被覆短繊紺(c)は、平均繊維径10〜100μ糟、平
均繊維長0.7 % 7 mmでかつアスペクト比が2
00未満のものであることを特徴とする、導電性熱可塑
性樹脂組成物に存する。
[Measures for solving the problem 1'i1 However, the gist of the present invention is that thermoplastic resin (
a), containing SUS304 stainless steel fiber A11 (+1) and short metal fibers and/or metal-coated short fibers (c), component (b) relative to the total amount of component (a), component (b), and component (c). The ratio is in the range of 2 to 15%,
(c) I#, the proportion of minutes is in the range of 3 to 25% by weight,
1 Portrait S tJ S 304 people Stainless fiber AI1. (1
)) is an average fiber diameter of 2'20 μm and an average fiber length of 0.5
・S10ImIn and aspect ratio is 200-100
0, t-, rl, the metal-covered short fibers and metal-coated short fibers (c) have an average fiber diameter of 10 to 100 μm, an average fiber length of 0.7% 7 mm, and an aspect ratio of 2.
A conductive thermoplastic resin composition characterized in that the conductive thermoplastic resin composition has a conductive thermoplastic resin composition of less than 0.00.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係る導電性熱可塑性(j(脂組成物は、熱可塑
性樹脂(a)を基体とする。基体となし得る熱可塑性8
(脂(a)は、通常成形材料として用−1られる熱可塑
性樹脂であればよく、特に制限はなり1゜具体的には、
例えばポリスチレン、耐衝撃性ポリスチレン、 A S
Jjllm、A B S樹脂等のスチレン系樹脂; ポ
リエチレン、ポリプロピレン等のオレフィン系↑h(脂
; ポリエチレンテレフタレート、ポリブチレンテレフ
タレート等のポリエステル系樹脂; ポリアミド系O(
脂、ポリカーボネート系樹脂、塩化ビニル系樹脂等およ
びこれらの樹脂ブレンド物を挙げることができる。
The conductive thermoplastic (j) resin composition according to the present invention has a thermoplastic resin (a) as a base.
(The resin (a) may be any thermoplastic resin that is normally used as a molding material, and there are no particular restrictions.1゜Specifically,
For example, polystyrene, high impact polystyrene, A S
Styrenic resins such as Jjllm and ABS resins; Olefin ↑h (fats) such as polyethylene and polypropylene; Polyester resins such as polyethylene terephthalate and polybutylene terephthalate; Polyamide O (
Examples include resins, polycarbonate resins, vinyl chloride resins, and blends of these resins.

本発明者らの実験によれば、上記−基体となる熱可塑性
樹脂(a)に、後記金属短繊維および/まだ金属被覆短
M維(C)とともに配合する導電性フィラーとしては、
SUS31Gステンレス鋼など他のステンレス鋼よりな
るステンレス繊維よりも、SUS304ステンレス鋼よ
りなるステンレス繊維の方が格段に優れ、後記形状特性
をもった5tJS304ステンレス繊維を含有させるこ
とにより、本発明の目的を達成で・きることが分った。
According to the experiments conducted by the present inventors, the conductive filler to be added to the above-mentioned thermoplastic resin (a) serving as the base together with the metal short fibers and/or still metal-covered short M fibers (C) described below is as follows:
Stainless steel fibers made of SUS304 stainless steel are much better than stainless steel fibers made of other stainless steels such as SUS31G stainless steel, and the purpose of the present invention is achieved by incorporating 5t JS304 stainless steel fibers having the shape characteristics described below. I found out that it can be done.

本発明者らの実験によれば、さらに、S tJ S 3
04ステンレスa維(b)は、JIS  G−4303
〜8に規定するSO8304ステンレス鋼よりなり、平
均繊維径2・す20μm好ましくは4〜12μm1平均
繊維長0.5〜10mm好ましくは2〜10+smで、
かつアスペクト比<m維艮を繊Mt径で割った値)が2
00へ、1000好主しくは200□y 7 (’) 
0の特性を有するものがよいことが分った。
According to the experiments of the present inventors, furthermore, S tJ S 3
04 stainless steel a fiber (b) is JIS G-4303
It is made of SO8304 stainless steel specified in 8 to 8, with an average fiber diameter of 2·s 20 μm, preferably 4 to 12 μm, and an average fiber length of 0.5 to 10 mm, preferably 2 to 10+sm,
and aspect ratio <m fiber diameter divided by fiber Mt diameter) is 2
To 00, 1000 preferably 200□y 7 (')
It was found that one having a characteristic of 0 is good.

SUS304ステンレス繊維(b)の平均繊M1−径が
2μr自以下であるとi維自体の強度が不足し、このス
テンレス繊維を基体となる熱可塑性用&(a)に配合す
る際に、細いステンレスJa#F:同士が互いに絡み合
って毛玉状となり易いため、基体に均一に分散させるこ
とが難しく、かつ分散操作中にステンレス繊維が折損し
、組成物から得られる成形品に充分な導電性を付与する
ことができない。また平均繊ME径が20μ+6以−ヒ
であると、ステンレス#&維のig位重f当りの導電性
の付与効率が低いうえ、このステンレス繊維が配合され
た導電性熱可塑性0(脂組1&物から得られる成形品は
、表面の平滑性が劣ったものとなり、実用的でない。
If the average fiber M1-diameter of SUS304 stainless steel fiber (b) is less than 2 μr, the strength of the fiber itself will be insufficient, and when blending this stainless steel fiber into the base thermoplastic & (a), thin stainless steel Ja#F: It is difficult to uniformly disperse the stainless steel fibers on the substrate because they tend to get entangled with each other and become pill-like, and the stainless steel fibers break during the dispersion operation, making it difficult to impart sufficient conductivity to the molded product obtained from the composition. I can't. Furthermore, if the average fiber ME diameter is 20μ+6 or more, the efficiency of imparting conductivity per weight f of the stainless steel #& fiber is low, and the conductive thermoplastic 0 (fat group 1& The molded product obtained from the product has poor surface smoothness and is not practical.

5tJS 304ステンレス繊維(b)の平均繊維長が
0.5 In1s以下であると、アスペクト比が小さい
ものとなり、組成物から得られる成形品に充分な導電性
を付!テすることができず実用的でない。また平均繊維
長が1oIO+a以I−であると、二のステンレス繊維
を基体の熱可塑性樹脂(a)に配合する際に、長いステ
ンレス繊維同士が互いに絡み合って毛玉状となり易いた
め均一に分散させることが難しく、かつこのステンレス
vLMLを含む導電性熱可塑性U(脂組成物から得られ
る成形品は、表面の平滑性が劣っrこものとなり、実用
的でない。
If the average fiber length of the 5tJS 304 stainless steel fiber (b) is 0.5 In1s or less, the aspect ratio will be small, and the molded product obtained from the composition will have sufficient conductivity! It is impractical as it cannot be tested. In addition, if the average fiber length is 1oIO+a or more I-, when blending the second stainless steel fiber into the base thermoplastic resin (a), it is difficult to uniformly disperse the long stainless steel fibers because they tend to get entangled with each other and become pill-like. Molded products obtained from conductive thermoplastic resin compositions containing this stainless steel vLML have poor surface smoothness and are not practical.

また、S U S 304ステンレス繊、14t(b)
のアスペクト比が200より小さいと、組成物から得ら
れる成形品への導電性および電磁波遮蔽能の付与効率が
低く実用的でなく、アスペクト比が1000より大きい
と、このステンレスkI&itを基体の熱可塑性O(脂
(a)に配合する際に、細長いステンレス繊維同士が相
互に絡み今って毛玉状となり易いため、基体に均一に分
散させることが難しく、また分故捏作の時に加えられる
外力によって繊維が折損し、組成物から得られる成形品
に充分な導電性および電磁波遮蔽能を付!テすることか
で・きず実用的でない。
Also, SUS 304 stainless steel fiber, 14t(b)
If the aspect ratio is smaller than 200, the efficiency of imparting conductivity and electromagnetic shielding ability to the molded product obtained from the composition is low and impractical, and if the aspect ratio is larger than 1000, the stainless steel kI&IT is When blending with O (fat (a)), the long and thin stainless steel fibers tend to get entangled with each other and form pill-like shapes, making it difficult to uniformly disperse the fibers onto the substrate. The molded product obtained from the composition may be damaged and damaged, making it impractical to provide sufficient conductivity and electromagnetic shielding ability.

ノ、(体となる熱可塑性tJim(a)に配合されるS
US304ステンレス繊維(1])は、l−記特性を有
するものであれば1.+tt WL維状のものであって
も、また集束状態の繊維であってもよいが、熱可塑性樹
脂(a)への混練操作を勘案すると、後者の方が好まし
い。ここで、災東状態の繊維とは、前記規定のモ均繊維
径を有する単繊維状のS (l 8304ステンレス艮
繊維を複数本、貝6体的には数百本・−・2・数百本束
ね、集束剤を用いて集束し、この艮繊紺の集束物を前記
の平均繊維長お上びアスペクト比等の特性を具備するよ
うに切断した、いわゆるチョツプドストランV状のもの
をいう。
ノ, (S blended into the thermoplastic tJim(a) that forms the body)
US304 stainless steel fiber (1) is rated as 1. if it has the characteristics listed below. +tt WL The fibers may be in the form of fibers or in a bundled state, but the latter is preferable in consideration of the kneading operation into the thermoplastic resin (a). Here, the fiber in the Kaito state refers to a plurality of monofilament S (l 8304 stainless steel fibers) having the above-mentioned average fiber diameter, and several hundred fibers for six shells. A so-called chopped strand V-shaped product is obtained by bundling 100 fibers together, converging them using a sizing agent, and cutting this bundle of navy blue fibers to have the above-mentioned characteristics such as average fiber length and aspect ratio. means.

単繊維状のSUS304ステンレス艮wi、維を集束す
る際にf重用できる集束剤としては、基体となる熱可塑
性04脂(n)との相溶性を有し、かつこれより融点が
低く、その特性を阻害しない04脂であればよく、待に
制限はない。このような集束剤は、溶液状またはエマル
ジョン状の形態で用いることができる。
Single-filament SUS304 stainless steel fibers can be used as a sizing agent when sizing fibers, as it has compatibility with the base thermoplastic 04 resin (n) and has a lower melting point than this. There are no restrictions as long as it is a 04 fat that does not inhibit. Such sizing agents can be used in the form of solutions or emulsions.

そして、本発明に係る導電性熱可塑性υ(脂組成物は、
上記S t、J S 304ステンレス繊維(b)を、
面記熱可塑性!44脂(a)、SUS304ステンレス
繊維(b)および後記金属短繊維および/または金属被
1短yLM¥、(C)の合計型、に対して、4・す15
重量%の範囲で含有していることが必要である。
The conductive thermoplastic υ (fat composition) according to the present invention is
The above S t, J S 304 stainless steel fiber (b),
Menji thermoplasticity! 44 fat (a), SUS304 stainless steel fiber (b), metal short fiber and/or metal covering 1 short YLM\, (C) total type, 4.15
It is necessary that the content be within a range of % by weight.

上記S U S 304ステンレスV1.維(b)の含
有量が4 、i7i、 :j+、%未満であると、組成
物から得られる成形品の導電性、電磁波遮蔽能がともに
不充分なため実用的でなく、また15重礒%を超えても
成形品の導電性、電磁波遮蔽能のいずれも有意には向−
1〕せず、更に、組成物の成形加工性を悪化させ、基体
となる熱可塑性1ll(II¥Ha)本来の物性を損な
うことにもなるので好ましくない。
The above SUS 304 stainless steel V1. If the content of fiber (b) is less than 4%, the molded product obtained from the composition will have insufficient conductivity and electromagnetic shielding ability, making it impractical. %, there is no significant improvement in both the conductivity and electromagnetic shielding ability of the molded product.
1], and furthermore, it deteriorates the moldability of the composition and impairs the original physical properties of the thermoplastic 111 (II\Ha) that serves as the base, which is not preferable.

本発明における(c)成分はは、8属短繊維、金属被覆
短繊維またはこれらの混合物がらなり、平均繊維径10
〜100μ輪、平均ylL維艮0.7・し7組◎でかつ
アスペクト比が200未満好ましくは10以ト200未
満のものである。
Component (c) in the present invention consists of Group 8 short fibers, metal-coated short fibers, or a mixture thereof, and has an average fiber diameter of 10
~100μ rings, average ylL fibers of 0.7 x 7 pairs, and aspect ratio of less than 200, preferably 10 or more and less than 200.

1−記(c)成分の具体例としては、アルミニウム、ア
ルミニウム合金、銅、銅合金、鉄、鉄合金等からなる金
属i維、または〃ラス繊組7、カーボン繊維などの無ぺ
繊維の表面にアルミニウム、亜鉛、銅、ニッケル、銀等
よりなる金属の被膜を設置してなる金属被覆kl&紺で
あって、前記の形状特性を有するものを挙げることがで
きる。
Specific examples of the component (c) in 1- are metal fibers made of aluminum, aluminum alloys, copper, copper alloys, iron, iron alloys, etc., or the surface of non-penetrating fibers such as lath fibers 7 and carbon fibers. Metal coated kl&dark blue, which is formed by disposing a metal coating made of aluminum, zinc, copper, nickel, silver, etc., on the surface of the metal and has the above-mentioned shape characteristics can be mentioned.

(c)成分の平均繊維径が10μIll以下である場合
および平均繊維長0 、7 ml11以下でる場合には
導電性の付与効率が低いためこの組成物から得られる成
形品は充分な電磁波遮蔽能を発揮するものとはならず実
用的でない。また、乎均#!iL維径が100μω以1
−である場合およ1平均am艮が7mm11m以■―で
ある場合には、この組成物の成形加工性を悪化させるの
みならず、得られる成形品の表面の平滑性が劣ったもの
となるので実用的でない。
When the average fiber diameter of component (c) is 10 μIll or less and the average fiber length is 0.7 ml or less, the efficiency of imparting conductivity is low, so the molded product obtained from this composition will not have sufficient electromagnetic wave shielding ability. It will not be effective and is not practical. Also, Yuyun #! iL fiber diameter is 100μω or more1
- or when the average length is 7 mm or more than 11 m, the molding processability of this composition will not only deteriorate, but the surface smoothness of the resulting molded product will be poor. Therefore, it is not practical.

また、(c)成分の7スベクト比が200以七であると
、基材となる熱可塑性樹脂に分散させる際に、(c)成
分と前記SUS304ステンレス繊維とが絡み合って、
分散性が悪化するので好ましくない。また、アスペクト
比が5より小さいものは、組成物から得られる成形品へ
の導電性および電磁波遮蔽能の付与効率が低く好ましく
ない。
In addition, when the 7-spectral ratio of the component (c) is 200 or more, the component (c) and the SUS304 stainless steel fibers become intertwined when dispersed in the thermoplastic resin that serves as the base material.
This is not preferable because the dispersibility deteriorates. Furthermore, those having an aspect ratio of less than 5 are undesirable because the efficiency of imparting conductivity and electromagnetic wave shielding ability to a molded article obtained from the composition is low.

本発明にす5ける(c)成分、すなわち金属短繊維およ
び/または金属被覆短繊維は、短繊維状のものであって
も、また樹脂によって複数本が集束されたものであって
もよい。
Component (c) in the present invention, that is, the short metal fibers and/or the metal-coated short fibers, may be in the form of short fibers, or may be a plurality of short fibers bundled with resin.

そして、本発明に係る導電性熱可塑性Of脂組成物は1
−記(c)成分を、前記熱可塑性+34脂(a)、SU
S 304ステンレスi41[1))および(c)成分
の合計量に対して3〜25重量%の割合で含有している
ことが必要て゛ある。
And, the conductive thermoplastic Of fat composition according to the present invention has 1
- Component (c) is the thermoplastic +34 fat (a), SU
It is necessary that the content be 3 to 25% by weight based on the total amount of S304 stainless steel i41 [1)) and component (c).

に記(c)成分の含有量が3重(11:%未満であると
、組成物より得られる成形品の、ヒートサイクル処理を
受けた場合の導電性と電磁波j席蔽能が低下し、本発明
の目的を達成することができない、また、25重喰%を
超えると組成物の成形加工性を悪化させ、基体となる熱
可塑性04脂(a)本来の物性を損なうことにもなるの
で好ましくない。
If the content of component (c) is less than 3% (11:%), the conductivity and electromagnetic wave shielding ability of the molded product obtained from the composition when subjected to heat cycle treatment will decrease, The purpose of the present invention cannot be achieved, and if it exceeds 25% by weight, the molding processability of the composition will deteriorate and the original physical properties of the thermoplastic 04 fat (a), which is the base material, will be impaired. Undesirable.

本発明に係る導電性熱可塑性樹脂組成物を調製するには
、前記熱可塑性樹脂(a)、前記特性をもったS U 
S 304ステンレス繊AM(b)および前記・か属性
繊維および/または金属被覆iσ織繊維c)を、ヘンシ
ェルミキサー等を用いてドライプレンVする方法、また
はこのにライブレンドした混合物をヘンシェルミキサー
、バンバリーミキサ−、ニーグー、単袖押出磯、二紬押
出磯などのt8融混合磯を使用して、混線分散させる方
法等を採用することができる。
In order to prepare the conductive thermoplastic resin composition according to the present invention, the thermoplastic resin (a), S U having the above characteristics
Dry planing the S 304 stainless steel fiber AM (b) and the above-mentioned fibers and/or metal-coated iσ woven fibers c) using a Henschel mixer, or dry-blending the same with a Henschel mixer or Banbury mixer. It is possible to adopt a method of dispersing cross-wires by using T8 fused mixed iso such as -, Niegoo, single-sleeved extruded iso, and Nitsumugi extruded iso.

このトライブレンド扱作および混線分散毘作を円滑に逐
行するには、S U S 304ステンレス繊a (+
] >と金屈短NILMt t;上び/主だC土令属椴
窟(可E届411u(c)は、集束状態の繊維を用いる
のがよい。集束状態の繊維を用いると、トライブレンド
操作および混線分散操作の時に、繊維が飛散することが
なく従って作業環境が悪化するのを防止できる。
In order to smoothly perform this tri-blend treatment and cross-dispersion operation, SUS 304 stainless steel fiber a (+
] > and Kinkutantan NILMt t; upper/main C earth order belonging to t. During operation and cross-dispersion operation, the fibers do not fly away, so it is possible to prevent the working environment from deteriorating.

また、混練過程における繊維同士の絡み合いや折損をよ
り少なくすることができ、組成物から得られる成形品に
優れた導電性および電磁波遮蔽能を付与することができ
好適である。なお、集束状態のWL紺を用いる場合には
、集束繊維に含浸付着している樹脂(婁束削)分を除外
したS U S 304ステンレス[1および無機繊維
それぞれの純分の含有量が、i1記規定の範囲内となる
ように集束i維の配合電を決定する必要がある。
Further, it is possible to further reduce entanglement and breakage of fibers during the kneading process, and it is possible to impart excellent conductivity and electromagnetic wave shielding ability to a molded article obtained from the composition, which is preferable. In addition, when using WL navy blue in a focused state, the pure content of SUS 304 stainless steel [1] and inorganic fiber excluding the resin impregnated and attached to the focused fibers is as follows: It is necessary to determine the charge combination of the focused i-fibers so that it falls within the range specified in i1.

本発明に係る導電性熱可塑性樹脂組成物には、前記([
I)成分、(b)成分および(c)成分のほか、組成物
の特性を阻害しないかぎり、さらに必要に応じて、難燃
剤、着色剤、可塑剤、紫外線吸収剤、滑剤、熱安定剤、
帯電防市剤、その他各種の樹脂添加剤を含有させること
らでとる。
The conductive thermoplastic resin composition according to the present invention includes the above ([
In addition to component I), component (b), and component (c), flame retardants, colorants, plasticizers, ultraviolet absorbers, lubricants, heat stabilizers,
This can be done by incorporating anti-static agents and various other resin additives.

本発明に係る導電性熱可塑性樹脂組成物は、各種電子機
器の筐体、集積回路用の容器などの製造用材料として使
用可能であり、また、コンピューター室等の床材、天井
材、壁材などの形成用材料としても使用可能である。
The conductive thermoplastic resin composition according to the present invention can be used as a manufacturing material for various electronic device casings, integrated circuit containers, etc., and can also be used as flooring, ceiling, and wall materials for computer rooms, etc. It can also be used as a forming material.

1゛発明の効果1 本発明は、以−1〕詳細に説明したとおりの内容であり
、次のように特別に顕著な効果を奏するので、その産業
上の利用価値は極めて大である6(1)本発明に係る導
電性熱可塑性樹脂組成物は、SUS 304ステンレス
繊維と金属1u繊MLおよび/または金属被覆短繊維の
含有量が適切に選択されているので、良好な成形性を示
す。
1゛Effects of the Invention 1 The present invention has the contents as explained in detail below-1〉, and has particularly remarkable effects as follows, so its industrial utility value is extremely high6( 1) The conductive thermoplastic resin composition according to the present invention exhibits good moldability because the content of SUS 304 stainless steel fibers, metal 1u fibers ML and/or metal-coated staple fibers is appropriately selected.

(2)本発明に係る導電性熱可塑性樹脂組成物は、通常
用いられるトライブレンド法および/または混線分散法
によって製造することができるので、製造するのに特殊
な装置や特別な工程を必要とせず、その調製が簡単であ
る。
(2) The conductive thermoplastic resin composition according to the present invention can be manufactured by the commonly used tri-blend method and/or cross-dispersion method, so no special equipment or special process is required for manufacturing. First, it is easy to prepare.

(3)本発明に係る導電性熱可塑性樹脂組成物は、フィ
ラーとして、本発明で規定する特性をもつSUS304
ステンレス繊維と金属類wLM¥お上び/または金属被
覆短繊維を含有するので、導電性フィラーとしてのS 
U S 304ステンレス繊維の含有量が少ないにもか
かわらず、この組成物から得られる成形品は優れた導電
性と電磁波遮蔽能を示す。
(3) The conductive thermoplastic resin composition according to the present invention uses SUS304 as a filler, which has the characteristics specified in the present invention.
Since it contains stainless steel fibers and metals wLM and/or metal-coated short fibers, S as a conductive filler
Despite the low content of US 304 stainless steel fibers, molded articles obtained from this composition exhibit excellent electrical conductivity and electromagnetic shielding ability.

(4)本発明に係る導電性熱可塑性04脂組成物から得
られる成形品は、常態において良好な導電性と電磁波遮
蔽能を示すとともに、苛酷な温度条件の変化(ヒートサ
イクル)を受けても安定して良好な導電性と電磁波遮蔽
能を示す。
(4) The molded article obtained from the conductive thermoplastic 04 resin composition of the present invention exhibits good conductivity and electromagnetic wave shielding ability under normal conditions, and even when subjected to severe changes in temperature conditions (heat cycle). Shows stable and good conductivity and electromagnetic wave shielding ability.

[実施例1 次に、本発明を実施例および比較例に基づいて更に詳細
に説明するが、本発明は、その要旨を超えないかぎり、
これらの例に限定されるものではない。
[Example 1] Next, the present invention will be explained in more detail based on Examples and Comparative Examples.
It is not limited to these examples.

なお、以下の例に示す成形品の物性は、下記に記載の方
法によって測定したものである。
Note that the physical properties of the molded products shown in the following examples were measured by the method described below.

(1)熱変形温度; JIS  K−7207に準拠した。(1) Heat distortion temperature; Compliant with JIS K-7207.

(2) アイゾツト衝撃強度: J Is  K−7mm10(/ツチ付き)に準拠した
(2) Izot impact strength: Compliant with J Is K-7mm10 (with tick).

(3)体積固有抵抗; 12.7+a+aX 12,7mmX 127+111
6の試験片の100 ++ua間の抵抗値を測定し、算
出した。
(3) Volume resistivity; 12.7+a+aX 12.7mmX 127+111
The resistance value between 100 ++ ua of the test piece No. 6 was measured and calculated.

(4)電磁波遮蔽能; 同軸伝送路法によって測定した。すなわち、厚さ3II
II111直径90+amの円板の中心部に、これと同
心固状に直径25+amの孔部が形成された試験片を、
同軸伝送管内に設置して、電磁波強度の入出力を測定し
た。
(4) Electromagnetic wave shielding ability: Measured by the coaxial transmission line method. That is, thickness 3II
II111 A test piece in which a hole with a diameter of 25+ am was formed solidly and concentrically in the center of a disk with a diameter of 90+ am,
It was installed inside a coaxial transmission pipe and measured the input and output of electromagnetic wave intensity.

また、以下の例において用いたステンレス繊訛、金属短
繊維および金属被覆短繊維1土、次のような特性をもっ
たものである。
In addition, the stainless steel fibers, metal short fibers, and metal-coated short fibers used in the following examples had the following characteristics.

(1) ステンレス#a維 s u 8304 a維Lt4)+: 日本精線(株)製”ナスロン”チタノブトストランド。(1) Stainless steel #a fiber s u 8304 aV Lt4)+: "NASLON" Titanobutsu strand manufactured by Nippon Seisen Co., Ltd.

直径23μmのSO8304ステンレス旧OL約500
0本を、vL維集束物当り12.5重散%のポリエチレ
ンテレフタレートで集束したのち、この集束した艮la
訛を長さ5InI11に切断しすこもの。
SO8304 stainless steel old OL with a diameter of 23μm approx. 500
After converging 0 fibers with polyethylene terephthalate of 12.5% polydispersity per vL fiber bundle,
Cut the accent to length 5InI11.

(2)金属1σ繊維および金属被覆雉繊a黄銅hl&紺
: アイシン精機(株)製、アイシンメタル7アイパー。
(2) Metal 1σ fiber and metal coated pheasant fiber a brass HL & navy blue: manufactured by Aisin Seiki Co., Ltd., Aisin Metal 7 Eyeper.

ビビリ切削法によって調製された、平均繊維径60μm
、平均繊維長3+I1mの黄銅繊維。
Average fiber diameter 60μm prepared by chatter cutting method
, brass fiber with an average fiber length of 3+I1 m.

アルミニウム繊維: アイシン精機(株)製、アイシンメタルファイバー。Aluminum fiber: Aisin Metal Fiber manufactured by Aisin Seiki Co., Ltd.

ビビリ切削法によって調製されrこ、平均a砒径60μ
惟、平均線4U艮3τ01のアルミニウム繊維。
Prepared by chattering cutting method, average abrasive diameter 60μ
Aluminum fiber with average line 4U 3τ01.

ニッケル被覆ガラス繊維: 旭ファイバーグラス(株)製、Niコート〃ラス繊mX
EM−1,00゜ 直径23μlの二γケルメッキ〃ラス艮繊維約3000
本を、繊維集束物当り10重電%の樹脂集束剤で集束し
たのち、この集束した長繊維を長さ3+a+nに切断し
たもの。
Nickel coated glass fiber: Manufactured by Asahi Fiberglass Co., Ltd., Ni coated lath fiber mX
EM-1,00゜Diameter 23μl double gamma Kel plating〃Russei fiber approx. 3000
After books are bundled with a resin binding agent containing 10% heavy electric current per fiber bundle, the bundled long fibers are cut into lengths of 3+a+n.

実施例1.3.5.7 タフレックス410(商品名、三菱モンサント(t、+
&(4UW、ABSlfJltりト、SUS304#a
、J4j集束物t3よび黄銅繊維を、それぞれ第1表に
示す1!j合(fjS1表において0内の数値は集束剤
を除(ステンレスJa、stt分のみの割合を意味する
。)で配合し、’4om+aφベント付さJlt紬押出
磯(いすず化工磯(株)製、フルフライト式押出磯)を
用いて溶融)11合し、直径4+Il+a、Exさ約8
In+nの4種類のベレットを11)だ。     ゛ 次に、これらのベレットを原料とし、射出成形へ(東芝
機械(株)製、lS−90B型)を使用し、通常のAB
S樹脂の成形条件で試験片を成形した。
Example 1.3.5.7 Tufflex 410 (trade name, Mitsubishi Monsanto (t, +
&(4UW, ABSlfJlt, SUS304#a
, J4j bundle t3 and brass fibers are shown in Table 1, respectively. j combination (fj In the S1 table, the numbers within 0 exclude the sizing agent (meaning the proportion of stainless steel Ja, stt only). , melted using a full-flight extrusion method) 11, diameter 4 + Il + a, Ex approximately 8
11) 4 types of bullets of In+n.゛Next, using these pellets as raw materials, injection molding (manufactured by Toshiba Machinery Co., Ltd., Model 1S-90B) is used to mold ordinary AB.
A test piece was molded under the molding conditions of S resin.

得られrこ試験片について、前記のノj法に従って各種
物性を測定した。
Various physical properties of the obtained test piece were measured according to the above method.

なお、成形品の物性測定において、熱変形温度とフイゾ
ット衝撃強度は、ヒートサイクル処J+I! 而の試験
片について測定を行い、体積固有抵抗と電磁波遮蔽能は
、ヒートサイクル処理前の試験片とヒートサイクル処理
後の試験片とについて測定したものである。
In addition, in measuring the physical properties of molded products, the heat distortion temperature and Fizot impact strength were determined by heat cycle treatment J+I! The volume resistivity and electromagnetic wave shielding ability were measured for the test piece before heat cycle treatment and the test piece after heat cycle treatment.

ここでヒートサイクル処理とは、成形後の試験片を、8
5℃にて1時間、23℃にて1時間、−30°Cにて1
時間、1すび23℃にて1時間放置することを1サイク
ルとし、これを10サイクル繰返し、温度変化を与えた
ことを意味する。
Here, the heat cycle treatment means that the test piece after molding is
1 hour at 5℃, 1 hour at 23℃, 1 hour at -30℃
One cycle is defined as leaving the sample at 23° C. for 1 hour, and this is repeated 10 times to change the temperature.

これらの実施例において得られた成形品の表面はいずれ
ら平滑であった。各物性の測定結果は、配合割合ととも
にそれぞれ第1友に示す。
The surfaces of the molded products obtained in these Examples were all smooth. The measurement results for each physical property are shown in the first column along with the blending ratio.

実施例2.4.6 実施例1に記載の例において、黄銅繊維に代えて、それ
ぞれニッケル被覆プラス繊維(実施例2)、アルミニウ
ム繊MF、(実施例4.6)を用い、それぞれ第1表に
示す割合で配合した以外は同例におけると同様にして、
同例と同様の形状を有する3種類のベレットを得た。
Example 2.4.6 In the example described in Example 1, nickel-coated plus fibers (Example 2) and aluminum fibers MF (Example 4.6) were used in place of the brass fibers, and the first Same as in the same example except that it was mixed in the proportion shown in the table.
Three types of pellets having shapes similar to those of the same example were obtained.

次に、これらのベレットを原料とし、同例におけると同
様にして試験片を成形した。1)られた試験片について
、同例にす;けると同様にして各種物性を測定した。
Next, using these pellets as raw materials, test pieces were molded in the same manner as in the same example. 1) Various physical properties of the obtained test pieces were measured in the same manner as in the same example.

、:れらの″に施例にt;いで得られた成形品の表面は
、いずれも平滑であった。各物性の測定結果は、配合v
1合とともにそれぞれ第1表に示す。
The surfaces of the molded products obtained in Example t; were all smooth.The measurement results of each physical property were as follows.
They are shown in Table 1 together with 1 go.

比較例1 実施例1に記載の例において、荷銅繊維を配合せず、八
n S樹脂とSUS3044a維集束物とを第1表に示
す割合で配合した以外は同例にす;けると同様にして、
同例と同様の形状を有するベレットを得た。
Comparative Example 1 The same example as described in Example 1 was used, except that copper fiber was not blended and 8N S resin and SUS3044a fiber bundle were blended in the proportions shown in Table 1. and
A pellet having a shape similar to that of the same example was obtained.

次に、このベレットを原料とし、同例におけると同様に
して試験片を成形した。得られた試験片について、同例
におけると同様にして各種物性を測定した。測定結果は
、配合割合とともに、同じ1’s1表に示す。
Next, using this pellet as a raw material, a test piece was molded in the same manner as in the same example. Regarding the obtained test piece, various physical properties were measured in the same manner as in the same example. The measurement results are shown in the same 1's1 table along with the blending ratio.

比較例2.3 実施例1に記載の例において、S U S 3041&
紺集束物を配合せず、A B S +33脂とアルミニ
ウム繊維とを、それぞれ第1表に示す割合で配合した以
外は同例におけると同様にして、11)例と同様の形状
を有する2種類のベレットを得た。
Comparative Example 2.3 In the example described in Example 1, SUS 3041&
11) Two types having the same shapes as in Example 11) were prepared in the same manner as in the same example except that the navy blue bundle was not blended and A B S +33 fat and aluminum fiber were blended in the proportions shown in Table 1. got a beret.

次に、これらのベレットを原料とし、同例におけると同
様にして試験片を成形した。得られた試験片について、
同側におけると同様にして各種物性を測定した。それぞ
れの測定結果は、配合割合とともに、同じく第1表に示
す。
Next, using these pellets as raw materials, test pieces were molded in the same manner as in the same example. Regarding the obtained test piece,
Various physical properties were measured in the same manner as on the ipsilateral side. The respective measurement results are also shown in Table 1 along with the blending ratio.

第1人より、次のことが明らかである。The following is clear from the first person.

(1)本発明に係る導電性熱可塑性0(詣組成物より得
られる成形品は、常温においてのみならず、苛酷な温度
変化を繰返し受けても、優れた導電性と電磁波遮蔽能を
発揮する(実施例1へ・7)。
(1) The molded product obtained from the conductive thermoplastic composition of the present invention exhibits excellent conductivity and electromagnetic wave shielding ability not only at room temperature but also when subjected to repeated severe temperature changes. (Go to Example 1/7).

(2)本発明で必須要件とする金属短a紺および/また
は金属被覆[a維を含有しない組成物より得られた成形
品は、温度変化を繰返し受けると、導電性と電磁波遮蔽
能が低下する(比較例1)。
(2) Molded products obtained from compositions that do not contain metal fibers and/or metal coating [A fibers, which are essential requirements in the present invention, will decrease in conductivity and electromagnetic wave shielding ability when subjected to repeated temperature changes. (Comparative Example 1).

(3)本発明に係る導電性熱可塑性ム(脂組成物より得
うi r、−成形品は、高価なSUS304Jil[集
束物を比較的少電含有する組成物から1ニジられなもの
であっても、常温においてはもとより、苛酷な温度変化
を繰返し受けても、実用的レベルの導電性′と電磁波遮
蔽能を発揮する(実施例3〜7)。
(3) The conductive thermoplastic rubber (IR, - molded product obtained from the resin composition) according to the present invention is made of expensive SUS304Jil [which is derived from a composition containing a relatively low electrical charge in the bundle]. However, it exhibits a practical level of conductivity and electromagnetic wave shielding ability not only at room temperature but also after repeated severe temperature changes (Examples 3 to 7).

(4)本発明で必須要件とするSUS 304ステンレ
ス繊維を含有しない組成物より得られた成形品は、常温
においては実用的レベルの導電性と電磁波遮蔽能を示す
が、繰返し温度変化を受けることにより、導電性と電磁
波遮蔽能が大幅に低下し、実用に供し得ないものとなる
(比較例2.3)。
(4) Molded products obtained from compositions that do not contain SUS 304 stainless steel fibers, which are essential requirements in the present invention, exhibit practical levels of conductivity and electromagnetic wave shielding ability at room temperature, but cannot be subject to repeated temperature changes. As a result, the conductivity and electromagnetic wave shielding ability are significantly reduced, making it impossible to put it into practical use (Comparative Example 2.3).

特許出願人 三菱モンサンド化成株式会社代 Fii 
 人 弁理士 艮谷用 −・(ばか1名)
Patent applicant: Mitsubishi Monsando Kasei Co., Ltd. Fii
Person Patent Attorney Atsuya - (1 idiot)

Claims (1)

【特許請求の範囲】[Claims] 熱可塑性樹脂(a)、SUS304ステンレス繊維(b
)および金属短繊維および/または金属被覆短繊維(c
)を含有し、(a)成分、(b)成分および(c)成分
の合計量に対する(b)成分の割合が2〜15重量%の
範囲、(c)成分の割合が3〜25重量%の範囲であり
、前記SUS304ステンレス繊維(b)は、平均繊維
径2〜20μm、平均繊維長0.5〜10mmでかつア
スペクト比が200〜1000のものであり、前記金属
短繊維および金属被覆短繊維(c)は、平均繊維径10
〜100μm、平均繊維長0.7〜7mmでかつアスペ
クト比が200未満のものであることを特徴とする、導
電性熱可塑性樹脂組成物。
Thermoplastic resin (a), SUS304 stainless steel fiber (b)
) and metal short fibers and/or metal coated short fibers (c
), the ratio of component (b) to the total amount of components (a), (b) and (c) is in the range of 2 to 15% by weight, and the ratio of component (c) is in the range of 3 to 25% by weight. The SUS304 stainless steel fiber (b) has an average fiber diameter of 2 to 20 μm, an average fiber length of 0.5 to 10 mm, and an aspect ratio of 200 to 1000, and Fiber (c) has an average fiber diameter of 10
100 μm, an average fiber length of 0.7 to 7 mm, and an aspect ratio of less than 200.
JP23868986A 1986-10-07 1986-10-07 Conductive thermoplastic resin composition Pending JPS6392672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23868986A JPS6392672A (en) 1986-10-07 1986-10-07 Conductive thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23868986A JPS6392672A (en) 1986-10-07 1986-10-07 Conductive thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPS6392672A true JPS6392672A (en) 1988-04-23

Family

ID=17033834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23868986A Pending JPS6392672A (en) 1986-10-07 1986-10-07 Conductive thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS6392672A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639934A1 (en) * 1993-08-19 1995-02-22 Hoechst Aktiengesellschaft Electrical resistance heater made of thermoplastic materials
WO2003043028A3 (en) * 2001-11-13 2003-12-18 Dow Global Technologies Inc Electrically conductive thermoplastic polymer composition
US6896828B2 (en) 2001-11-13 2005-05-24 Dow Global Technologies Inc. Electrically conductive thermoplastic polymer composition
KR100706653B1 (en) * 2006-12-27 2007-04-13 제일모직주식회사 Heat-conductive resin composition and plastic article
GB2446952A (en) * 2007-02-22 2008-08-27 D C Norris & Company Ltd Scraper blade for a cooking vessel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189105A (en) * 1984-03-09 1985-09-26 東芝ケミカル株式会社 Conductive molding material
JPS6142568A (en) * 1984-08-03 1986-03-01 Fujikura Ltd Electromagnetic wave-shielding resin mixture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189105A (en) * 1984-03-09 1985-09-26 東芝ケミカル株式会社 Conductive molding material
JPS6142568A (en) * 1984-08-03 1986-03-01 Fujikura Ltd Electromagnetic wave-shielding resin mixture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639934A1 (en) * 1993-08-19 1995-02-22 Hoechst Aktiengesellschaft Electrical resistance heater made of thermoplastic materials
US5658481A (en) * 1993-08-19 1997-08-19 Hoechst Aktiengesellschaft Resistance heating element of thermoplastic materials
WO2003043028A3 (en) * 2001-11-13 2003-12-18 Dow Global Technologies Inc Electrically conductive thermoplastic polymer composition
JP2005510009A (en) * 2001-11-13 2005-04-14 ダウ グローバル テクノロジーズ インコーポレーテッド Conductive thermoplastic polymer composition
US6896828B2 (en) 2001-11-13 2005-05-24 Dow Global Technologies Inc. Electrically conductive thermoplastic polymer composition
US6936191B2 (en) 2001-11-13 2005-08-30 Doe Global Technologies Inc. Electrically conductive thermoplastic polymer composition
KR100706653B1 (en) * 2006-12-27 2007-04-13 제일모직주식회사 Heat-conductive resin composition and plastic article
GB2446952A (en) * 2007-02-22 2008-08-27 D C Norris & Company Ltd Scraper blade for a cooking vessel

Similar Documents

Publication Publication Date Title
US4816184A (en) Electrically conductive material for molding
DE60220938T2 (en) Process for the preparation of electrically conductive thermoplastic polymer compositions
US7244892B2 (en) Flame retardant ethylene family resin composite and flame retardant electric wire or cable
JP2956875B2 (en) Molding material for electromagnetic shielding
JP6460668B2 (en) Conductive resin composition and shielded cable
JPH10195311A (en) Thermoplastic resin molding, material for molding and production of molding
JPS6392672A (en) Conductive thermoplastic resin composition
EP0304435B1 (en) Electrically conductive material for molding
JPS6013516A (en) Manufacture of multilayer injection molded product with electromagnetic shielding property
JPS6386755A (en) Electrically conductive thermoplastic resin composition
JP5095072B2 (en) Manufacturing method of resin molded products
JPH06306201A (en) Electromagnetic wave shielding resin composition
JPH0673248A (en) Electromagnetic shielding resin composition
JPH0757489B2 (en) Method for producing conductive fiber composite resin
JP5040107B2 (en) Method for producing molded product made of conductive thermoplastic resin
JPH027977B2 (en)
JPS61106654A (en) Electrically conductive resin composition
JPS62212465A (en) Apparatus with built-in electronic control device placed in housing coated with high-molecular composition layer containing flaky lead
JP2633920B2 (en) Molding resin composition having conductivity and electromagnetic wave shielding structure
JPH01213365A (en) Electrically conductive composition
JPH1180468A (en) Resin molding material containing conductive filler
JP2017191698A (en) Insulated wire
JPH02155724A (en) Manufacture of molded electromagnetic shield product
JPH03200874A (en) Conductive resin composition
JPH1058446A (en) Electrically-conductive fiber-containing molding material