JP5040107B2 - Method for producing molded product made of conductive thermoplastic resin - Google Patents

Method for producing molded product made of conductive thermoplastic resin Download PDF

Info

Publication number
JP5040107B2
JP5040107B2 JP2005350310A JP2005350310A JP5040107B2 JP 5040107 B2 JP5040107 B2 JP 5040107B2 JP 2005350310 A JP2005350310 A JP 2005350310A JP 2005350310 A JP2005350310 A JP 2005350310A JP 5040107 B2 JP5040107 B2 JP 5040107B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
conductive
weight
melting point
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005350310A
Other languages
Japanese (ja)
Other versions
JP2007154015A (en
Inventor
賢一 東
雅男 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005350310A priority Critical patent/JP5040107B2/en
Publication of JP2007154015A publication Critical patent/JP2007154015A/en
Application granted granted Critical
Publication of JP5040107B2 publication Critical patent/JP5040107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、導電性熱可塑性樹脂製成形品の製造方法に関する。   The present invention relates to a method for producing a molded product of a conductive thermoplastic resin.

熱可塑性樹脂に種々の導電性フィラーを添加した導電性樹脂組成物が様々な分野で使用されている。このような導電性樹脂組成物としては、ポリカーボネート樹脂とメタアクリレート樹脂に炭素繊維を配合した樹脂組成物が知られている(特許文献1参照)。   Conductive resin compositions obtained by adding various conductive fillers to thermoplastic resins are used in various fields. As such a conductive resin composition, a resin composition in which carbon fiber is blended with a polycarbonate resin and a methacrylate resin is known (see Patent Document 1).

特開2002−265768号公報JP 2002-265768 A

しかしながら従来の導電性樹脂組成物を用いて得られる成形品は、導電性が不十分であった。特に厳しい環境下で使用した場合、例えば低温雰囲気下での使用と高温雰囲気下での使用を繰り返した場合に、導電性が損なわれることが多かった。   However, the molded product obtained using the conventional conductive resin composition has insufficient conductivity. When used in a particularly severe environment, for example, when the use under a low temperature atmosphere and the use under a high temperature atmosphere are repeated, the conductivity is often impaired.

本発明の目的は、導電性に優れる導電性熱可塑性樹脂製成形品の製造方法を提供することである。   An object of the present invention is to provide a method for producing a molded product made of a conductive thermoplastic resin having excellent conductivity.

すなわち本発明は、導電性熱可塑性樹脂製成形品の製造方法であって、導電性繊維(A)、前記導電性繊維(A)よりも融点が低い棒状の低融点金属(B)およびポリプロピレン樹脂(C)からなり、下記の要件(1)および(2)を満たすポリプロピレン樹脂被覆導電性組成物(E)5〜60重量%と、下記の要件(3)を満たす熱可塑性樹脂(D)95〜40重量%とを混合して、射出成形する導電性熱可塑性樹脂製成形品の製造方法である。
(1)導電性繊維(A)と低融点金属(B)とが、ポリプロピレン樹脂(C)に被覆されてなる
(2)熱可塑性樹脂被覆導電性組成物(E)の重量を100%としたときの導電性繊維(A)の含有量が35〜95重量%、低融点金属(B)の含有量が4〜45重量%、ポリプロピレン樹脂(C)の含有量が1〜20重量%である
(3)ポリプロピレン樹脂(C)について、示差走査熱量計(DSC)を用い、昇温速度10℃/分で測定して得られる吸熱曲線において、50〜300℃の範囲に観測されるピークのうち、最高温度を示すピーク(Pc)と、熱可塑性樹脂(D)について、示差走査熱量計(DSC)を用い、昇温速度10℃/分で測定して得られる吸熱曲線において、50〜300℃の範囲に観測されるピークのうち、最高温度を示すピーク(Pd)とが、Pc+20≦Pd(℃)である
That is, the present invention relates to a method for producing a molded article made of a conductive thermoplastic resin, comprising a conductive fiber (A), a rod-shaped low melting point metal (B) having a melting point lower than that of the conductive fiber (A), and a polypropylene resin. 5 to 60% by weight of a polypropylene resin- coated conductive composition (E) satisfying the following requirements (1) and (2), and a thermoplastic resin (D) 95 satisfying the following requirement (3): This is a method for producing a molded part made of a conductive thermoplastic resin, which is mixed with ˜40% by weight and injection molded.
(1) The conductive fiber (A) and the low melting point metal (B) are coated with the polypropylene resin (C). (2) The weight of the thermoplastic resin-coated conductive composition (E) is 100%. When the conductive fiber (A) content is 35 to 95% by weight, the low melting point metal (B) content is 4 to 45% by weight, and the polypropylene resin (C) content is 1 to 20% by weight. (3) Of the peaks observed in the range of 50 to 300 ° C. in the endothermic curve obtained by measuring the polypropylene resin (C) with a differential scanning calorimeter (DSC) at a temperature rising rate of 10 ° C./min. In an endothermic curve obtained by measuring a peak (Pc) indicating the maximum temperature and a thermoplastic resin (D) using a differential scanning calorimeter (DSC) at a temperature rising rate of 10 ° C./min, 50 to 300 ° C. The highest temperature among the peaks observed in the range Peak (Pd) indicating a, but with Pc + 20 ≦ Pd (℃)

本発明の導電性熱可塑性樹脂製成形品の製造方法によれば、導電性に優れる熱可塑性樹脂製成形品を得ることができる。本発明により得られる導電性熱可塑性樹脂製成形品は、特に厳しい環境下で使用した場合、例えば低温雰囲気下での使用と高温雰囲気下での使用を繰り返した場合であっても、優れた導電性を維持することができる。   According to the method for producing a molded product of a conductive thermoplastic resin of the present invention, a molded product of a thermoplastic resin having excellent conductivity can be obtained. The molded product made of the conductive thermoplastic resin obtained by the present invention has excellent conductivity even when used in particularly severe environments, for example, when used in a low temperature atmosphere and repeated use in a high temperature atmosphere. Sex can be maintained.

以下、本発明を詳細に説明する。本発明では、導電性繊維(A)と、前記導電性繊維(A)よりも融点が低い棒状の低融点金属(B)とが、熱可塑性樹脂(C)に被覆されてなる熱可塑性樹脂被覆導電性組成物(E)を用いる。   Hereinafter, the present invention will be described in detail. In the present invention, a thermoplastic resin coating in which a conductive fiber (A) and a rod-shaped low melting point metal (B) having a melting point lower than that of the conductive fiber (A) are coated with a thermoplastic resin (C). A conductive composition (E) is used.

本発明における導電性繊維(A)は、長繊維状の金属繊維であることが好ましい。導電性繊維に用いられる繊維種としては、例えば、ステンレス、黄銅、銅、アルミニウム、鉄、金、銀、ニッケル、チタン、錫、亜鉛、マグネシウム、白金、ベリリウム、これらの金属種の合金、これらの金属種とリンとの化合物などが挙げられる。これらの金属種の中で、黄銅、銅、アルミニウム、鉄、金、銀、ニッケル、チタンが好ましく使用され、銅がより好ましく使用される。金属繊維は、上記した金属種を原材料として、伸線引き抜き法、溶融紡糸法、コイル材切削法、ワイヤ切削法等の方法により製造することができる。金属繊維は、シランカップリング剤やチタネートカップリング剤等のカップリング剤またはトリアジンチオール化合物等の表面処理剤で表面処理されていてもよい。   The conductive fiber (A) in the present invention is preferably a long metal fiber. Examples of the fiber types used for the conductive fibers include stainless steel, brass, copper, aluminum, iron, gold, silver, nickel, titanium, tin, zinc, magnesium, platinum, beryllium, alloys of these metal types, these Examples thereof include compounds of metal species and phosphorus. Among these metal species, brass, copper, aluminum, iron, gold, silver, nickel, and titanium are preferably used, and copper is more preferably used. The metal fiber can be produced by a method such as a wire drawing method, a melt spinning method, a coil material cutting method, or a wire cutting method using the above metal species as a raw material. The metal fiber may be surface-treated with a coupling agent such as a silane coupling agent or a titanate coupling agent or a surface treatment agent such as a triazine thiol compound.

また、本発明で用いられる導電性繊維(A)としては、カーボン繊維のように導電性を有する有機繊維や無機繊維、ポリエステル繊維やポリアミド繊維などの有機繊維の表面に金属層を設けたものや、ガラス繊維などの無機繊維の表面に金属層を設けたもの等が挙げられる。有機繊維または無機繊維に金属層を付与する方法は、繊維の種類に応じて適宜選択すればよいが、例えば、蒸着、メッキ、スパッタリング、イオンプレーティング等の方法が挙げられる。本発明における導電性繊維(A)は、銅繊維であることが好ましい。本発明で用いられる導電性繊維(A)は、体積抵抗値が50μΩcm以下であることが導電性の観点から好ましい。   In addition, as the conductive fiber (A) used in the present invention, a conductive organic fiber or inorganic fiber such as a carbon fiber, a metal layer provided on the surface of an organic fiber such as a polyester fiber or a polyamide fiber, And those obtained by providing a metal layer on the surface of an inorganic fiber such as glass fiber. The method for applying the metal layer to the organic fiber or the inorganic fiber may be appropriately selected according to the type of the fiber, and examples thereof include vapor deposition, plating, sputtering, ion plating, and the like. The conductive fiber (A) in the present invention is preferably a copper fiber. The conductive fiber (A) used in the present invention preferably has a volume resistance of 50 μΩcm or less from the viewpoint of conductivity.

熱可塑性樹脂被覆導電性組成物(E)中の導電性繊維(A)の含有量は、熱可塑性樹脂被覆導電性組成物(E)の重量を100%としたとき、35〜95重量%であり、50〜80重量%であることがより好ましい。導電性繊維(A)の含有量が少なすぎると導電性が不十分となる傾向があり、多すぎると導電性繊維(A)の分散不良がおこりやすくなり、該熱可塑性樹脂被覆導電性組成物を用いて得られる成形品の導電性が低下する傾向がある。   The content of the conductive fiber (A) in the thermoplastic resin-coated conductive composition (E) is 35 to 95% by weight when the weight of the thermoplastic resin-coated conductive composition (E) is 100%. More preferably, it is 50 to 80% by weight. When the content of the conductive fiber (A) is too small, the conductivity tends to be insufficient. When the content is too large, poor dispersion of the conductive fiber (A) is likely to occur, and the thermoplastic resin-coated conductive composition. There exists a tendency for the electroconductivity of the molded article obtained using this to fall.

導電性繊維(A)の断面形状は、特に限定されないが、略円形であることが好ましい。導電性繊維(A)の繊維径は、5〜100μmであることが好ましく、10〜80μmであることがより好ましく、40〜60μmであることが更に好ましい。ここで、導電性繊維(A)の繊維径とは、通常、同じ断面積を有する円に換算した時の繊維径をいう。繊維径が5〜100μmの範囲にあると、導電性繊維同士の接触が効率的に起こるため、少ない含有量で充分な導電性が得られるため好ましい。繊維径が小さすぎると繊維が切れやすくなるため、成形時に繊維長が短くなり、十分な導電性が得られないことがある。一方、繊維径が長すぎると、繊維の絡み合いが起こりにくくなり、十分な導電性が得られないことがある。   The cross-sectional shape of the conductive fiber (A) is not particularly limited, but is preferably substantially circular. The fiber diameter of the conductive fiber (A) is preferably 5 to 100 μm, more preferably 10 to 80 μm, and still more preferably 40 to 60 μm. Here, the fiber diameter of the conductive fiber (A) usually refers to the fiber diameter when converted to a circle having the same cross-sectional area. When the fiber diameter is in the range of 5 to 100 μm, contact between the conductive fibers occurs efficiently, so that sufficient conductivity can be obtained with a small content, which is preferable. If the fiber diameter is too small, the fiber is easily cut, so that the fiber length is shortened during molding, and sufficient conductivity may not be obtained. On the other hand, if the fiber diameter is too long, entanglement of fibers is difficult to occur, and sufficient conductivity may not be obtained.

導電性繊維(A)の長さは、3〜15mmであることが好ましく、より好ましくは4〜10mmである。高い導電性、電磁波シールド効果を効率よく得るためには、繊維の長さが長いほど好ましいが、繊維の長さが長すぎると成形品の外観、成形性、分散性などがよくないことがある。一方、繊維の長さが短すぎると、導電性繊維同士の接触が起こりにくくなり、導電性が低下することがある。   The length of the conductive fiber (A) is preferably 3 to 15 mm, more preferably 4 to 10 mm. In order to efficiently obtain high conductivity and electromagnetic wave shielding effect, a longer fiber length is preferable, but if the fiber length is too long, the appearance, moldability, dispersibility, etc. of the molded product may not be good. . On the other hand, if the length of the fiber is too short, contact between the conductive fibers becomes difficult to occur, and the conductivity may be lowered.

熱可塑性樹脂被覆導電性組成物(E)に含まれる導電性繊維(A)は100本以上300本以下であることが好ましく、150〜250本であることがより好ましく、180〜240本であることがさらに好ましい。導電性繊維数がこの範囲にあると、成形品中の導電性繊維の分散性が良好となり、十分な導電性繊維の接点が形成されるため、導電性が良好となり、かつ、未開繊による外観不良もなく、繊維が成形機のスクリュー等に詰まるなどの不具合が発生しにくい。導電性繊維数が多すぎると、低温雰囲気下と高温雰囲気下で繰り返し使用されることを想定した試験、いわゆるヒートショック試験を実施すると、導電性が低下したり、成形加工性の悪化、外観不良を生じることがある。   The number of conductive fibers (A) contained in the thermoplastic resin-coated conductive composition (E) is preferably from 100 to 300, more preferably from 150 to 250, and from 180 to 240. More preferably. When the number of conductive fibers is within this range, the dispersibility of the conductive fibers in the molded product is good, and sufficient conductive fiber contacts are formed, so that the conductivity is good and the appearance due to unopened fibers. There is no defect, and it is difficult for problems such as fibers to clog the screw of the molding machine. If the number of conductive fibers is too large, conducting a test that assumes repeated use in a low-temperature atmosphere and a high-temperature atmosphere, so-called heat shock test, the conductivity will decrease, the molding processability will deteriorate, and the appearance will be poor. May occur.

導電性繊維(A)は、耐腐食性の観点から、スズまたはスズ合金によって被覆されていてもよい。スズ合金としては、例えば、スズ−鉛合金、スズ−鉛−銀合金、スズ−鉛−ビスマス合金などが挙げられる。   The conductive fiber (A) may be coated with tin or a tin alloy from the viewpoint of corrosion resistance. Examples of the tin alloy include a tin-lead alloy, a tin-lead-silver alloy, and a tin-lead-bismuth alloy.

本発明で用いる低融点金属(B)は、上記の導電性繊維(A)よりも融点が低く、導電性繊維(A)と良好な融着性を示すものであることが好ましい。低融点金属(B)の融点は、300℃以下であることが好ましく、250℃以下であることがより好ましい。低融点金属(B)は鉛を含有しない金属であり、例えば、スズを主成分とし、スズと、銀、亜鉛および銅からなる群から選ばれる少なくとも1種の金属種との合金などが挙げられる。   The low melting point metal (B) used in the present invention preferably has a melting point lower than that of the conductive fiber (A) and exhibits good fusing property with the conductive fiber (A). The melting point of the low melting point metal (B) is preferably 300 ° C. or less, and more preferably 250 ° C. or less. The low melting point metal (B) is a metal that does not contain lead, and includes, for example, an alloy of tin as a main component and at least one metal species selected from the group consisting of tin, silver, zinc, and copper. .

本発明で用いられる棒状の低融点金属(B)の断面形状は、特に限定されないが、略円形であることが好ましい。低融点金属(B)の径は、0.01〜5mmの範囲にあることが好ましく、0.05〜4mmであることがより好ましい。0.1〜3mmであることが更に好ましい。ここで、低融点金属(B)の径は、通常、同じ断面積を有する円に換算した時の径をいう。低融点金属(B)の径が0.01〜5mmの範囲にあると、導電性繊維同士の接触を効率的に起こすことができ、充分な電磁波シールド特性が得られるため好ましい。低融点金属(B)の径が小さすぎると、成形品の製造時に切断されやすく、製造が困難となることがある。一方、低融点金属(B)の径が大きすぎると、成形加工時に溶融しにくくなったり、成形機のスクリューやノズルに詰まるなどの成形トラブルが発生しやすくなる傾向がある。   The cross-sectional shape of the rod-shaped low melting point metal (B) used in the present invention is not particularly limited, but is preferably substantially circular. The diameter of the low melting point metal (B) is preferably in the range of 0.01 to 5 mm, and more preferably 0.05 to 4 mm. More preferably, it is 0.1-3 mm. Here, the diameter of the low melting point metal (B) usually refers to the diameter when converted to a circle having the same cross-sectional area. When the diameter of the low melting point metal (B) is in the range of 0.01 to 5 mm, contact between the conductive fibers can be efficiently caused, and sufficient electromagnetic wave shielding characteristics can be obtained. If the diameter of the low-melting-point metal (B) is too small, it is likely to be cut at the time of manufacturing a molded product, and the manufacturing may be difficult. On the other hand, if the diameter of the low-melting-point metal (B) is too large, it tends to be difficult to melt at the time of molding, or molding troubles such as clogging with a screw or nozzle of a molding machine tend to occur.

本発明における低融点金属(B)の長さは、上述した導電性繊維(A)と同じ長さであることが好ましく、3〜15mmであることが好ましく、より好ましくは5〜10mmである。高い電磁波シールド効果を効率よく得るためには、長さが長いほど好ましいが、長すぎると成形品の外観、成形性、分散性などがよくないことがある。一方、長さが短すぎると、成形時に絡まる導電性繊維同士の接触促進効果が小さくなり、電磁波シールド効果が低下する傾向がある。   The length of the low melting point metal (B) in the present invention is preferably the same length as the above-described conductive fiber (A), preferably 3 to 15 mm, more preferably 5 to 10 mm. In order to efficiently obtain a high electromagnetic wave shielding effect, the longer the length, the better. However, if the length is too long, the appearance, moldability, dispersibility, etc. of the molded product may not be good. On the other hand, if the length is too short, the effect of promoting contact between conductive fibers entangled during molding tends to be small, and the electromagnetic shielding effect tends to be reduced.

低融点金属(B)中には、導電性繊維(A)との融着性を改善する目的で、フラックスが含有されていてもよい。フラックスが含有されている場合、その含有量は、低融点金属(B)に対して0.1〜5重量%であることが好ましい。フラックスは低融点金属(B)中に含有されていることが好ましい。フラックスとしては、例えば、ステアリン酸、乳酸、オレイン酸、グルタミン酸、ロジン、活性ロジンなどが挙げられる。   The low melting point metal (B) may contain a flux for the purpose of improving the fusibility with the conductive fiber (A). When the flux is contained, the content is preferably 0.1 to 5% by weight with respect to the low melting point metal (B). The flux is preferably contained in the low melting point metal (B). Examples of the flux include stearic acid, lactic acid, oleic acid, glutamic acid, rosin, and active rosin.

熱可塑性樹脂被覆導電性組成物(E)中の低融点金属(B)の含有量は、ヒートショック試験後の導電性を維持する観点から、4〜45重量%であり、好ましくは10〜35重量%である。低融点金属(B)の含有量が少なすぎると、ヒートショック試験後の電磁波シールド性が低下する傾向があり、多すぎると熱可塑性樹脂被覆導電性組成物の流動性が低下し、成形加工性が劣る傾向がある。   The content of the low melting point metal (B) in the thermoplastic resin-coated conductive composition (E) is 4 to 45% by weight, preferably 10 to 35%, from the viewpoint of maintaining conductivity after the heat shock test. % By weight. If the content of the low melting point metal (B) is too small, the electromagnetic shielding property after the heat shock test tends to be lowered, and if too much, the fluidity of the thermoplastic resin-coated conductive composition is lowered and the molding processability is reduced. Tend to be inferior.

熱可塑性樹脂被覆導電性組成物(E)中の導電性繊維(A)と低融点金属(B)との重量比、すなわち(B)/(A)は、0.3〜0.8であることが好ましい。該重量比がこの範囲にあると、ヒートショック試験後も導電性が維持されるという観点で好ましい。より好ましくは、0.31〜0.7である。該重量比(B)/(A)が0.3未満であると、ヒートショック試験後に導電性が低下する傾向があり、0.8を超えると、熱可塑性樹脂被覆導電性組成物の流動性が低下し、成形加工性が劣る傾向がある。   The weight ratio of the conductive fiber (A) to the low melting point metal (B) in the thermoplastic resin-coated conductive composition (E), that is, (B) / (A) is 0.3 to 0.8. It is preferable. When the weight ratio is within this range, it is preferable from the viewpoint that conductivity is maintained even after the heat shock test. More preferably, it is 0.31-0.7. If the weight ratio (B) / (A) is less than 0.3, the conductivity tends to decrease after the heat shock test, and if it exceeds 0.8, the fluidity of the thermoplastic resin-coated conductive composition. There is a tendency that molding processability is inferior.

本発明で用いる熱可塑性樹脂被覆導電性組成物(E)は、前記導電性繊維(A)と低融点金属(B)とが、熱可塑性樹脂(C)に被覆されてなる。熱可塑性樹脂(C)としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、ポリアミド樹脂、ABS、ポリスチレン、ポリフェニレンエーテル樹脂等、あるいは、これら樹脂を2種類以上からなるブレンド、アロイを挙げる事ができる。なかでも、ポリプロピレン樹脂が好ましい。   The thermoplastic resin-coated conductive composition (E) used in the present invention is formed by coating the conductive fiber (A) and the low melting point metal (B) with a thermoplastic resin (C). Examples of the thermoplastic resin (C) include polypropylene resin, polyethylene resin, polyamide resin, ABS, polystyrene, polyphenylene ether resin, and blends and alloys of two or more of these resins. Of these, polypropylene resin is preferable.

ポリプロピレン樹脂としては、例えば、プロピレン単独重合体、プロピレン−α−オレフィンランダム共重合体、プロピレン−エチレンブロック共重合体等が挙げられ、これらを単独または混合して用いることができる。ここで、α−オレフィンとしては、例えば、エチレン、ブテン−1、ヘキセン−1、オクテン−1等の炭素原子数2または4〜8のα−オレフィンなどが挙げられる。   Examples of the polypropylene resin include a propylene homopolymer, a propylene-α-olefin random copolymer, a propylene-ethylene block copolymer, and the like, and these can be used alone or in combination. Here, examples of the α-olefin include α-olefins having 2 or 4 to 8 carbon atoms such as ethylene, butene-1, hexene-1, and octene-1.

また、本発明で用いられる熱可塑性樹脂(C)は、MFRが10g/10min以上400g/10min以下であることが好ましい。MFRが10g/10min未満であると、成形時、導電性繊維の分散性が低下し、得られる成形品の導電性が十分得られない傾向がある。またMFRが400g/10minを超えると、得られる成形品の強度が低下する傾向がある。   The thermoplastic resin (C) used in the present invention preferably has an MFR of 10 g / 10 min to 400 g / 10 min. When the MFR is less than 10 g / 10 min, the dispersibility of the conductive fibers decreases during molding, and the resulting molded product tends to have insufficient conductivity. Moreover, when MFR exceeds 400 g / 10min, there exists a tendency for the intensity | strength of the molded product obtained to fall.

熱可塑性樹脂被覆導電性組成物(E)における熱可塑性樹脂(C)の含有量は、該組成物(E)の重量を100%としたとき、1〜20重量%であり、5〜15重量%であることが好ましい。熱可塑性樹脂(C)の含有量が1重量%未満では、導電性繊維の分散が損なわれるために導電性を損なう傾向があり、20重量%を超えると、成形時に導電性繊維同士の接触を妨げるために、該熱可塑性樹脂被覆導電性組成物を用いて得られる成形品の導電性が低下する傾向がある。   The content of the thermoplastic resin (C) in the thermoplastic resin-coated conductive composition (E) is 1 to 20% by weight when the weight of the composition (E) is 100%, and 5 to 15% by weight. % Is preferred. If the content of the thermoplastic resin (C) is less than 1% by weight, there is a tendency to impair the conductivity because the dispersion of the conductive fibers is impaired. If the content exceeds 20% by weight, the conductive fibers contact each other during molding. In order to prevent, there exists a tendency for the electroconductivity of the molded article obtained using this thermoplastic resin coating electrically conductive composition to fall.

本発明における熱可塑性樹脂被覆導電性組成物(E)は、導電性繊維(A)と低融点金属(B)とが、熱可塑性樹脂(C)に被覆されてなる。導電性繊維(A)と低融点金属(B)とが、熱可塑性樹脂(C)に被覆されてなる状態としては、導電性繊維(A)の束と低融点金属(B)が並んで熱可塑性樹脂(C)に被覆された状態や、低融点金属(B)の中に導電性繊維(A)が収束された状態で熱可塑性樹脂(C)に被覆されている状態であってもよいが、成形時、導電性繊維(A)と低融点金属(B)の接触が効率的に行われ、ヒートショック試験後も優れた導電性を維持することができることから、導電性繊維(A)の繊維束中に低融点金属(B)を収束した複合繊維束が熱可塑性樹脂(C)に被覆されてなる形態であることが好ましい。導電性繊維(A)の繊維束中に低融点金属(B)が収束されている状態としては、低融点金属(B)が導電性繊維(A)の束の中に完全に包まれている状態、あるいは、低融点金属(B)が導電性繊維(A)の束の中に一部入り込んでいるが、一部露出している部分も有する状態のいずれの状態であってもよい。熱可塑性樹脂被覆導電性組成物の形態が上記のようであると、成形時、導電性繊維(A)と低融点金属(B)の接触が効率的に行われ、ヒートショック試験後も優れた導電性を維持することができる。   The thermoplastic resin-coated conductive composition (E) in the present invention is formed by coating a conductive fiber (A) and a low melting point metal (B) with a thermoplastic resin (C). As a state where the conductive fiber (A) and the low melting point metal (B) are coated with the thermoplastic resin (C), the bundle of the conductive fibers (A) and the low melting point metal (B) are aligned and heated. The state covered with the thermoplastic resin (C) or the state where the conductive fiber (A) is converged in the low melting point metal (B) may be covered with the thermoplastic resin (C). However, the conductive fiber (A) and the low melting point metal (B) can be efficiently contacted during molding, and excellent conductivity can be maintained after the heat shock test. It is preferable that the composite fiber bundle in which the low melting point metal (B) is converged in the fiber bundle is coated with the thermoplastic resin (C). As a state where the low melting point metal (B) is converged in the fiber bundle of the conductive fibers (A), the low melting point metal (B) is completely wrapped in the bundle of the conductive fibers (A). Either the state or the state where the low melting point metal (B) partially enters the bundle of conductive fibers (A), but also has a part that is partially exposed. When the form of the thermoplastic resin-coated conductive composition is as described above, the conductive fibers (A) and the low melting point metal (B) are efficiently contacted during molding, and excellent after the heat shock test. Conductivity can be maintained.

熱可塑性樹脂被覆導電性組成物(E)の製造方法は、特に限定されるものではなく、溶融した熱可塑性樹脂(C)中に複合繊維束を浸漬する方法や、複合繊維束と熱可塑性樹脂とを押出機に投入して熱可塑性樹脂(C)を溶融した後ダイスより押出す方法が例示される。生産性の観点から、通常後者の方法が選択される。被覆する際の溶融熱可塑性樹脂(C)の温度は、低融点金属(B)の融点よりも20〜80℃高い温度であることが好ましく、30〜70℃高い温度であることが導電性の観点からより好ましい。   The method for producing the thermoplastic resin-coated conductive composition (E) is not particularly limited, and a method of immersing the composite fiber bundle in the molten thermoplastic resin (C), or a composite fiber bundle and a thermoplastic resin. And then extruding from a die after melting the thermoplastic resin (C). The latter method is usually selected from the viewpoint of productivity. The temperature of the molten thermoplastic resin (C) during coating is preferably 20 to 80 ° C. higher than the melting point of the low melting point metal (B), and 30 to 70 ° C. is higher. More preferable from the viewpoint.

複合繊維束と熱可塑性樹脂(C)とを押出機に投入し、複合繊維束を溶融熱可塑性樹脂で被覆する場合、複合繊維束の表面温度は50〜200℃であることが好ましく、100〜200℃であることがより好ましく、150〜200℃であることがさらに好ましい。表面温度が上記範囲の温度である複合繊維束を用いることにより、導電性繊維同士の接点への低融点金属の付着がより効率的に起こるために、導電性がより良好となる。   When the composite fiber bundle and the thermoplastic resin (C) are charged into an extruder and the composite fiber bundle is coated with a molten thermoplastic resin, the surface temperature of the composite fiber bundle is preferably 50 to 200 ° C. More preferably, it is 200 degreeC, and it is further more preferable that it is 150-200 degreeC. By using a composite fiber bundle having a surface temperature in the above range, the low melting point metal adheres more efficiently to the contact points between the conductive fibers, so that the conductivity becomes better.

熱可塑性樹脂で被覆された複合繊維束は、通常は続いて適当な大きさに切断してペレットとする。ペレットの断面形状は特に限定されるものではなく、通常円形または扁平である。   The composite fiber bundle coated with the thermoplastic resin is usually subsequently cut into an appropriate size into pellets. The cross-sectional shape of the pellet is not particularly limited, and is usually circular or flat.

本発明では、前記熱可塑性樹脂被覆導電性組成物(E)5〜60重量%と、熱可塑性樹脂(D)95〜40重量%とを混合して、射出成形することにより熱可塑性樹脂製成形品を製造する。該熱可塑性樹脂(D)は、前記熱可塑性樹脂(C)について、示差走査熱量計(DSC)を用い、昇温速度10℃/分で測定して得られる吸熱曲線において、50〜300℃の範囲に観測されるピークのうち、最高温度を示すピーク(Pc)と、熱可塑性樹脂(D)について、示差走査熱量計(DSC)を用い、昇温速度10℃/分で測定して得られる吸熱曲線において、50〜300℃の範囲に観測されるピークのうち、最高温度を示すピーク(Pd)とが、Pc+20≦Pd(℃)である熱可塑性樹脂である。各樹脂について測定した結果、50〜300℃の範囲に複数のピークが観測される場合には、最も高温を示すピークをPc、Pdとする。   In the present invention, the thermoplastic resin-coated conductive composition (E) 5 to 60% by weight and the thermoplastic resin (D) 95 to 40% by weight are mixed and injection molded to form a thermoplastic resin. Manufacturing goods. The thermoplastic resin (D) is an endothermic curve obtained by measuring the thermoplastic resin (C) with a differential scanning calorimeter (DSC) at a temperature rising rate of 10 ° C./min. Among the peaks observed in the range, the peak (Pc) indicating the maximum temperature and the thermoplastic resin (D) are obtained by using a differential scanning calorimeter (DSC) and measuring at a heating rate of 10 ° C./min. In the endothermic curve, among the peaks observed in the range of 50 to 300 ° C., the peak (Pd) indicating the maximum temperature is a thermoplastic resin satisfying Pc + 20 ≦ Pd (° C.). As a result of measuring each resin, when a plurality of peaks are observed in the range of 50 to 300 ° C., the peaks showing the highest temperature are defined as Pc and Pd.

前記条件で観測されるピークは、ガラス転移温度を示すピークであっても、融点を示すピークであってもよい。すなわち熱可塑性樹脂(C)、(D)は、いずれも非晶性樹脂であってもよく、結晶性樹脂であってもよい。たとえば熱可塑性樹脂(C)、(D)ともに結晶性樹脂または非晶性樹脂であってもよいし、いずれか一方が結晶性樹脂であり、他方が非晶性樹脂であってもよい。   The peak observed under the above conditions may be a peak showing a glass transition temperature or a peak showing a melting point. That is, the thermoplastic resins (C) and (D) may both be amorphous resins or crystalline resins. For example, both of the thermoplastic resins (C) and (D) may be a crystalline resin or an amorphous resin, or one of them may be a crystalline resin and the other may be an amorphous resin.

熱可塑性樹脂(C)としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、ポリアミド樹脂、ABS、ポリスチレン、ポリフェニレンエーテル樹脂等、あるいは、これら樹脂を2種類以上からなるブレンド、アロイを挙げる事ができる。なかでも、ポリプロピレン樹脂、ポリアミド/ポリプロピレンアロイが好ましい。   Examples of the thermoplastic resin (C) include polypropylene resin, polyethylene resin, polyamide resin, ABS, polystyrene, polyphenylene ether resin, and blends and alloys of two or more of these resins. Of these, polypropylene resin and polyamide / polypropylene alloy are preferable.

射出成形する際には、必要な物性に応じて、フィラー、酸化防止剤、銅害防止剤、紫外線吸収剤、ラジカル補足剤などの各種添加剤や、熱可塑性エラストマー、金属粉末等を添加してもよい。またこれらの添加剤を、予め熱可塑性樹脂被覆導電性組成物(E)および/または熱可塑性樹脂(D)に含有させておいてもよい。
金属粉末を添加する場合は、例えば、銅粉末、黄銅粉末、ニッケル粉末、アルミニウム粉末、亜鉛粉末、錫粉末などを用いることができる。これらは2種以上を混合して用いてもよい。これらの中で、アルミニウム粉末が好ましく使用される。金属粉末の含有量は、導電性の観点から、成形品中0.5〜10重量%となるように配合することが好ましい。金属粉末は、粉末状でそのまま用いてもよいが、燐片状やフレーク状、またはポリプロピレン、ポリエチレンなどの熱可塑性樹脂とのマスターペレットとして使用してもよい。
When performing injection molding, add various additives such as fillers, antioxidants, copper damage inhibitors, UV absorbers, radical scavengers, thermoplastic elastomers, metal powders, etc. according to the required physical properties. Also good. These additives may be contained in advance in the thermoplastic resin-coated conductive composition (E) and / or the thermoplastic resin (D).
When adding metal powder, copper powder, brass powder, nickel powder, aluminum powder, zinc powder, tin powder, etc. can be used, for example. You may use these in mixture of 2 or more types. Of these, aluminum powder is preferably used. It is preferable to mix | blend content of metal powder so that it may become 0.5 to 10 weight% in a molded article from an electroconductive viewpoint. The metal powder may be used as it is in the form of a powder, but may be used as a master pellet with a flake or flake, or a thermoplastic resin such as polypropylene or polyethylene.

射出成形時の温度は、低融点金属の融点以上とすることが好ましい。また、成形時に化学発泡剤あるいは物理発泡剤を配合し、発泡成形してもよい。   The temperature at the time of injection molding is preferably equal to or higher than the melting point of the low melting point metal. Also, a chemical foaming agent or a physical foaming agent may be blended at the time of molding to perform foam molding.

本発明の製造方法により得られる成形品の形状は特に問わない。また、得られる成形品に他の層を積層してもよい。   The shape of the molded product obtained by the production method of the present invention is not particularly limited. Moreover, you may laminate | stack another layer on the obtained molded article.

本発明の製造方法により得られる熱可塑性樹脂製成形品は、開繊が十分であることから、外観不良が少ない。また、該成形品は、電磁波シールド性を評価する方法の一つであるアドバンテスト法による磁界波2〜30MHzにおいて、30dBを越える電磁波シールド性を備えた電磁波シールド性にも優れたものである。さらに、−30℃と80℃の雰囲気下に300回以上繰り返し曝されるヒートショック試験を実施した後も、導電性を維持することができる。   Since the thermoplastic resin molded product obtained by the production method of the present invention is sufficiently opened, there are few appearance defects. In addition, the molded article is excellent in electromagnetic wave shielding properties having electromagnetic wave shielding properties exceeding 30 dB in a magnetic wave of 2 to 30 MHz by an Advantest method which is one of methods for evaluating electromagnetic wave shielding properties. Furthermore, even after conducting a heat shock test in which exposure is repeated 300 times or more in an atmosphere of −30 ° C. and 80 ° C., conductivity can be maintained.

以下、本発明を実施例を用いて説明するが、本発明が実施例により限定されるものではないことは言うまでもない。
なお、実施例で使用した射出成形機、金型、成形品形状及び評価法は、以下のとおりである。
EXAMPLES Hereinafter, although this invention is demonstrated using an Example, it cannot be overemphasized that this invention is not limited by an Example.
The injection molding machine, mold, molded product shape, and evaluation method used in the examples are as follows.

熱可塑性樹脂(C)および(D)の融点は、以下のようにして測定した。
装置:示差走査熱量系(DSC)(セイコー電子社製)
測定条件:測定温度 20℃から300℃
昇温速度 10℃/分
The melting points of the thermoplastic resins (C) and (D) were measured as follows.
Apparatus: Differential scanning calorimetry (DSC) (Seiko Electronics Co., Ltd.)
Measurement conditions: Measurement temperature 20 ° C to 300 ° C
Temperature increase rate 10 ℃ / min

導電性を評価するための試験片の成形、導電性の評価は以下のようにして実施した。
(1)射出成形機および金型、成形条件
射出成形機:日本製鋼所製 J150E 型締力 150トン
成形温度:270℃
金型:縦150×横150×厚み2mm
金型温度:40℃
(2)導電性の測定
<内部抵抗値の測定>
上記(1)で得られた成形品の4隅に銅製のねじをそれぞれ約100mm間隔になるように打ち込んだ後、2箇所のねじの間の抵抗値を、ミリオームテスターを用いて測定して内部抵抗値の測定を行った。内部抵抗値が小さいほど導電性良好である。
(3)ヒートショック試験(冷熱試験)
冷熱衝撃試験機(タバイエスペック社製)を使用。
試験条件:低温槽温度−30℃、低温さらし時間30分、高温槽温度80℃、高温さらし時間25分とし、低温槽から高温槽へ、さらに低温槽へとサンプルを移動させるサイクルを300回実施した。
Molding of test pieces for evaluating conductivity and evaluation of conductivity were performed as follows.
(1) Injection molding machine and mold, molding conditions Injection molding machine: manufactured by Nippon Steel Works J150E Clamping force 150 tons Molding temperature: 270 ° C
Mold: 150 x 150 x 2mm thickness
Mold temperature: 40 ℃
(2) Measurement of conductivity <Measurement of internal resistance value>
After driving copper screws into the four corners of the molded product obtained in the above (1) so as to be about 100 mm apart, the resistance value between the two screws was measured using a milliohm tester. The resistance value was measured. The smaller the internal resistance value, the better the conductivity.
(3) Heat shock test (cooling test)
Uses a thermal shock tester (made by Tabay Espec).
Test conditions: low temperature bath temperature -30 ° C, low temperature exposure time 30 minutes, high temperature bath temperature 80 ° C, high temperature exposure time 25 minutes, 300 cycles of moving sample from low temperature bath to high temperature bath did.

[実施例1]
導電性繊維(A)として、繊維径50μmの銅繊維216本を、低融点金属(B)として、直径500μmの鉛フリーはんだ1本を用いた。導電性繊維(A)の繊維収束中に低融点金属(B)を収束した複合繊維束を、熱可塑性樹脂(C)として、プロピレン単独重合体(MFR100g/10min、住友化学工業製、登録商標住友ノーブレンU501E1)とともに40mmφの押出機のダイスを通して押し出し、複合繊維束の表面にプロピレン単独重合体を被覆した後、ペレット長6mmの大きさに切断して熱可塑性樹脂被覆導電性組成物を製造した。得られた熱可塑性樹脂被覆導電性組成物の組成は、銅繊維67.5重量%、鉛フリーはんだ22.5重量%、プロピレン単独重合体10重量%であった。
該熱可塑性樹脂被覆導電性組成物(E)26重量%と、熱可塑性樹脂(D)として、ポリアミド/ポリプロピレン系ポリマーアロイ(住友化学製、登録商標プロパロイA14M25、MFR g/10min)74重量%、さらに前記組成物(E)および熱可塑性樹脂(D)の合計重量100重量部に対し銅害防止剤マスターバッチ(住友化学製、登録商標住友ノーブレンMB109)11重量部をドライブレンドした後、成形温度270℃、金型温度40℃の条件で射出成形し、150×150×2mm厚みの成形品を作製した。得られた成形品の内部抵抗値をヒートショック試験の前後に測定した。結果を表1に示した。
[Example 1]
As the conductive fiber (A), 216 copper fibers having a fiber diameter of 50 μm and one lead-free solder having a diameter of 500 μm were used as the low melting point metal (B). A composite fiber bundle in which the low melting point metal (B) is converged during the convergence of the conductive fiber (A) is used as a thermoplastic resin (C), and a propylene homopolymer (MFR 100 g / 10 min, manufactured by Sumitomo Chemical Co., Ltd., registered trademark Sumitomo) Extruded through a 40 mmφ extruder die together with Nobrene U501E1), the surface of the composite fiber bundle was coated with a propylene homopolymer, and then cut into a pellet length of 6 mm to produce a thermoplastic resin-coated conductive composition. The composition of the obtained thermoplastic resin-coated conductive composition was 67.5% by weight of copper fibers, 22.5% by weight of lead-free solder, and 10% by weight of propylene homopolymer.
26% by weight of the thermoplastic resin-coated conductive composition (E) and 74% by weight of a polyamide / polypropylene polymer alloy (manufactured by Sumitomo Chemical, registered trademark Propalloy A14M25, MFR g / 10 min) as the thermoplastic resin (D), Furthermore, after dry blending 11 parts by weight of a copper damage inhibitor masterbatch (manufactured by Sumitomo Chemical Co., Ltd., Sumitomo Noblen MB109) with respect to a total weight of 100 parts by weight of the composition (E) and the thermoplastic resin (D), a molding temperature was obtained. Injection molding was performed under conditions of 270 ° C. and a mold temperature of 40 ° C. to produce a molded product having a thickness of 150 × 150 × 2 mm. The internal resistance value of the obtained molded product was measured before and after the heat shock test. The results are shown in Table 1.

[比較例1]
導電性繊維(A)として、繊維径50μmの銅繊維216本を、低融点金属(B)として、直径500μmの鉛フリーはんだ1本を用いた。導電性繊維(A)の繊維収束中に低融点金属(B)を収束した複合繊維束を、熱可塑性樹脂(C)として、プロピレン−エチレンランダム共重合体(C)(MFR30g/10min、住友化学製、登録商標住友ノーブレンZ144A)とともに40mmφの押出機のダイスを通して押し出し、複合繊維束の表面にプロピレン単独重合体を被覆した後、ペレット長6mmの大きさに切断して熱可塑性樹脂被覆導電性組成物を製造した。得られた熱可塑性樹脂被覆導電性組成物の組成は、銅繊維67.5重量%、鉛フリーはんだ22.5重量%、プロピレン−エチレンランダム共重合体10重量%であった。
該熱可塑性樹脂被覆導電性組成物(E)26重量%と、熱可塑性樹脂(D)として、プロピレン−エチレン共重合体(住友化学製、登録商標住友ノーブレンAZ161T、MFR30g/10min)74重量%、さらに前記組成物(E)および熱可塑性樹脂(D)の合計重量100重量部に対し銅害防止剤マスターバッチ(住友化学製、登録商標住友ノーブレンMB109)11重量部をドライブレンドした後、成形温度270℃、金型温度40℃の条件で射出成形し、150×150×2mm厚みの成形品を作製した。得られた成形品の内部抵抗値をヒートショック試験の前後に測定した。結果を表1に示した。
[Comparative Example 1]
As the conductive fiber (A), 216 copper fibers having a fiber diameter of 50 μm and one lead-free solder having a diameter of 500 μm were used as the low melting point metal (B). The composite fiber bundle in which the low melting point metal (B) is converged during the convergence of the conductive fiber (A) is used as the thermoplastic resin (C), and the propylene-ethylene random copolymer (C) (MFR 30 g / 10 min, Sumitomo Chemical). Extruded through a 40 mmφ extruder die together with a registered trademark Sumitomo Noblen Z144A), coated with a propylene homopolymer on the surface of the composite fiber bundle, then cut into a pellet length of 6 mm, and coated with a thermoplastic resin conductive composition The thing was manufactured. The composition of the obtained thermoplastic resin-coated conductive composition was 67.5% by weight of copper fibers, 22.5% by weight of lead-free solder, and 10% by weight of propylene-ethylene random copolymer.
The thermoplastic resin-coated conductive composition (E) 26% by weight and, as the thermoplastic resin (D), propylene-ethylene copolymer (manufactured by Sumitomo Chemical, registered trademark Sumitomo Nobrene AZ161T, MFR 30 g / 10 min) 74% by weight, Furthermore, after dry blending 11 parts by weight of a copper damage inhibitor masterbatch (manufactured by Sumitomo Chemical Co., Ltd., Sumitomo Noblen MB109) with respect to a total weight of 100 parts by weight of the composition (E) and the thermoplastic resin (D), a molding temperature was obtained. Injection molding was performed under conditions of 270 ° C. and a mold temperature of 40 ° C. to produce a molded product having a thickness of 150 × 150 × 2 mm. The internal resistance value of the obtained molded product was measured before and after the heat shock test. The results are shown in Table 1.

[比較例2]
導電性繊維(A)として、繊維径50μmの銅繊維216本を、低融点金属(B)として、直径500μmの鉛フリーはんだ1本を用いた。導電性繊維(A)の繊維収束中に低融点金属(B)を収束した複合繊維束を、熱可塑性樹脂(C)として、プロピレン単独重合体(MFR100g/10min、住友化学工業製、登録商標住友ノーブレンU501E1)ともに40mmφの押出機のダイスを通して押し出し、複合繊維束の表面にプロピレン単独重合体を被覆した後、ペレット長6mmの大きさに切断して熱可塑性樹脂被覆導電性組成物を製造した。得られた熱可塑性樹脂被覆導電性組成物の組成は、銅繊維67.5重量%、鉛フリーはんだ22.5重量%、プロピレン単独重合体10重量%であった。
該熱可塑性樹脂被覆導電性組成物(E)26重量%と、熱可塑性樹脂(D)として、プロピレン−エチレン共重合体(住友化学製、登録商標住友ノーブレンAZ161T、MFR30g/10min)74重量%、さらに前記組成物(E)および熱可塑性樹脂(D)の合計重量100重量部に対し銅害防止剤マスターバッチ(住友化学製、登録商標住友ノーブレンMB109)11重量部をドライブレンドした後、成形温度270℃、金型温度40℃の条件で射出成形し、150×150×2mm厚みの成形品を作製した。得られた成形品の内部抵抗値をヒートショック試験の前後に測定した。結果を表1に示した。
[Comparative Example 2]
As the conductive fiber (A), 216 copper fibers having a fiber diameter of 50 μm and one lead-free solder having a diameter of 500 μm were used as the low melting point metal (B). A composite fiber bundle in which the low melting point metal (B) is converged during the convergence of the conductive fiber (A) is used as a thermoplastic resin (C), and a propylene homopolymer (MFR 100 g / 10 min, manufactured by Sumitomo Chemical Co., Ltd., registered trademark Sumitomo) Both Noblene U501E1) were extruded through a die of a 40 mmφ extruder, and the surface of the composite fiber bundle was coated with a propylene homopolymer, and then cut into a pellet length of 6 mm to produce a thermoplastic resin-coated conductive composition. The composition of the obtained thermoplastic resin-coated conductive composition was 67.5% by weight of copper fibers, 22.5% by weight of lead-free solder, and 10% by weight of propylene homopolymer.
The thermoplastic resin-coated conductive composition (E) 26% by weight and, as the thermoplastic resin (D), propylene-ethylene copolymer (manufactured by Sumitomo Chemical, registered trademark Sumitomo Nobrene AZ161T, MFR 30 g / 10 min) 74% by weight, Furthermore, after dry blending 11 parts by weight of a copper damage inhibitor masterbatch (manufactured by Sumitomo Chemical Co., Ltd., Sumitomo Noblen MB109) with respect to a total weight of 100 parts by weight of the composition (E) and the thermoplastic resin (D), a molding temperature was obtained. Injection molding was performed under conditions of 270 ° C. and a mold temperature of 40 ° C. to produce a molded product having a thickness of 150 × 150 × 2 mm. The internal resistance value of the obtained molded product was measured before and after the heat shock test. The results are shown in Table 1.

[比較例3]
導電性繊維(A)として、繊維径50μmの銅繊維216本を、低融点金属(B)として、直径500μmの鉛フリーはんだ1本を用いた。導電性繊維(A)の繊維収束中に低融点金属(B)を収束した複合繊維束を、熱可塑性樹脂(C)として、プロピレン単独重合体(MFR100g/10min、住友化学工業製、登録商標住友ノーブレンU501E1)ともに40mmφの押出機のダイスを通して押し出し、複合繊維束の表面にプロピレン単独重合体を被覆した後、ペレット長6mmの大きさに切断して熱可塑性樹脂被覆導電性組成物を製造した。得られた熱可塑性樹脂被覆導電性組成物の組成は、銅繊維67.5重量%、鉛フリーはんだ22.5重量%、プロピレン単独重合体10重量%であった。
該熱可塑性樹脂被覆導電性組成物(E)26重量%と、熱可塑性樹脂(D)として、プロピレン−エチレンランダム共重合体(C)(MFR30g/10min、住友化学製、登録商標住友ノーブレンZ144A)74重量%、さらに前記組成物(E)および熱可塑性樹脂(D)の合計重量100重量部に対し銅害防止剤マスターバッチ(住友化学製、登録商標住友ノーブレンMB109)11重量部をドライブレンドした後、成形温度270℃、金型温度40℃の条件で射出成形し、150×150×2mm厚みの成形品を作製した。得られた成形品の内部抵抗値をヒートショック試験の前後に測定した。結果を表1に示した。
[Comparative Example 3]
As the conductive fiber (A), 216 copper fibers having a fiber diameter of 50 μm and one lead-free solder having a diameter of 500 μm were used as the low melting point metal (B). A composite fiber bundle in which the low melting point metal (B) is converged during the convergence of the conductive fiber (A) is used as a thermoplastic resin (C), and a propylene homopolymer (MFR 100 g / 10 min, manufactured by Sumitomo Chemical Co., Ltd., registered trademark Sumitomo) Both Noblene U501E1) were extruded through a die of a 40 mmφ extruder, and the surface of the composite fiber bundle was coated with a propylene homopolymer, and then cut into a pellet length of 6 mm to produce a thermoplastic resin-coated conductive composition. The composition of the obtained thermoplastic resin-coated conductive composition was 67.5% by weight of copper fibers, 22.5% by weight of lead-free solder, and 10% by weight of propylene homopolymer.
26% by weight of the thermoplastic resin-coated conductive composition (E) and, as the thermoplastic resin (D), a propylene-ethylene random copolymer (C) (MFR 30 g / 10 min, manufactured by Sumitomo Chemical Co., Ltd., registered trademark Sumitomo Nobrene Z144A) 74% by weight, and further 11 parts by weight of a copper damage preventive masterbatch (manufactured by Sumitomo Chemical Co., Ltd., Sumitomo Nobrene MB109) was dry blended with respect to 100 parts by weight of the total weight of the composition (E) and the thermoplastic resin (D). Thereafter, injection molding was performed under conditions of a molding temperature of 270 ° C. and a mold temperature of 40 ° C. to produce a molded product having a thickness of 150 × 150 × 2 mm. The internal resistance value of the obtained molded product was measured before and after the heat shock test. The results are shown in Table 1.

Figure 0005040107
※DSC測定では、167℃と224℃にピークが観測された
Figure 0005040107
* In DSC measurement, peaks were observed at 167 ° C and 224 ° C.

Claims (1)

導電性熱可塑性樹脂製成形品の製造方法であって、導電性繊維(A)、前記導電性繊維(A)よりも融点が低い棒状の低融点金属(B)およびポリプロピレン樹脂(C)からなり、下記の要件(1)および(2)を満たすポリプロピレン樹脂被覆導電性組成物(E)5〜60重量%と、下記の要件(3)を満たす熱可塑性樹脂(D)95〜40重量%とを混合して、射出成形する導電性熱可塑性樹脂製成形品の製造方法。
(1)導電性繊維(A)と低融点金属(B)とが、ポリプロピレン樹脂(C)に被覆されてなる
(2)熱可塑性樹脂被覆導電性組成物(E)の重量を100%としたときの導電性繊維(A)の含有量が35〜95重量%、低融点金属(B)の含有量が4〜45重量%、ポリプロピレン樹脂(C)の含有量が1〜20重量%である
(3)ポリプロピレン樹脂(C)について、示差走査熱量計(DSC)を用い、昇温速度10℃/分で測定して得られる吸熱曲線において、50〜300℃の範囲に観測されるピークのうち、最高温度を示すピーク(Pc)と、熱可塑性樹脂(D)について、示差走査熱量計(DSC)を用い、昇温速度10℃/分で測定して得られる吸熱曲線において、50〜300℃の範囲に観測されるピークのうち、最高温度を示すピーク(Pd)とが、Pc+20≦Pd(℃)である
A method for producing a molded article made of a conductive thermoplastic resin, comprising a conductive fiber (A), a rod-shaped low melting point metal (B) having a melting point lower than that of the conductive fiber (A), and a polypropylene resin (C). The polypropylene resin- coated conductive composition (E) satisfying the following requirements (1) and (2): 5 to 60% by weight, and the thermoplastic resin (D) satisfying the following requirement (3): 95 to 40% by weight A method for producing a molded product made of a conductive thermoplastic resin by mixing and injection molding.
(1) The conductive fiber (A) and the low melting point metal (B) are coated with the polypropylene resin (C). (2) The weight of the thermoplastic resin-coated conductive composition (E) is 100%. When the conductive fiber (A) content is 35 to 95% by weight, the low melting point metal (B) content is 4 to 45% by weight, and the polypropylene resin (C) content is 1 to 20% by weight. (3) Of the peaks observed in the range of 50 to 300 ° C. in the endothermic curve obtained by measuring the polypropylene resin (C) with a differential scanning calorimeter (DSC) at a temperature rising rate of 10 ° C./min. In an endothermic curve obtained by measuring a peak (Pc) indicating the maximum temperature and a thermoplastic resin (D) using a differential scanning calorimeter (DSC) at a temperature rising rate of 10 ° C./min, 50 to 300 ° C. The highest temperature among the peaks observed in the range Peak (Pd) indicating a, but with Pc + 20 ≦ Pd (℃)
JP2005350310A 2005-12-05 2005-12-05 Method for producing molded product made of conductive thermoplastic resin Expired - Fee Related JP5040107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350310A JP5040107B2 (en) 2005-12-05 2005-12-05 Method for producing molded product made of conductive thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350310A JP5040107B2 (en) 2005-12-05 2005-12-05 Method for producing molded product made of conductive thermoplastic resin

Publications (2)

Publication Number Publication Date
JP2007154015A JP2007154015A (en) 2007-06-21
JP5040107B2 true JP5040107B2 (en) 2012-10-03

Family

ID=38238790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350310A Expired - Fee Related JP5040107B2 (en) 2005-12-05 2005-12-05 Method for producing molded product made of conductive thermoplastic resin

Country Status (1)

Country Link
JP (1) JP5040107B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297156B1 (en) 2008-12-10 2013-08-21 제일모직주식회사 High performance emi/rfi shielding polymer composite

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148799A (en) * 1988-11-29 1990-06-07 Toshiba Chem Corp Conductive resin composition and molded form thereof
JPH03257999A (en) * 1990-03-08 1991-11-18 Toshiba Chem Corp Conductive resin composition and its mold
JPH0763970B2 (en) * 1993-12-10 1995-07-12 東芝ケミカル株式会社 Conductive resin molding
JP2004316029A (en) * 2003-04-17 2004-11-11 Kanebo Ltd Method for producing conductive fiber, conductive fiber produced thereby and conductive fiber structure produced by using the same
JP5095072B2 (en) * 2004-03-22 2012-12-12 住友化学株式会社 Manufacturing method of resin molded products
JP4760076B2 (en) * 2004-03-22 2011-08-31 住友化学株式会社 Thermoplastic resin-coated conductive composition

Also Published As

Publication number Publication date
JP2007154015A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
CA2270980C (en) Electrically conductive compositions and methods for producing same
US20050209385A1 (en) Electrically conductive composite
TW201030767A (en) EMI/RFI shielding resin composite material and molded product made using the same
KR20010109288A (en) Electrically conductive compositions and methods for producing same
EP0874024A1 (en) Long glass fiber-reinforced conductive thermoplastic resin molding and process for preparing the same
JPH10195311A (en) Thermoplastic resin molding, material for molding and production of molding
JP4760076B2 (en) Thermoplastic resin-coated conductive composition
JP5040107B2 (en) Method for producing molded product made of conductive thermoplastic resin
JP3525071B2 (en) Conductive resin composition
CN110467811B (en) Bending-resistant laser direct forming material and preparation method thereof
JP5095072B2 (en) Manufacturing method of resin molded products
JP7127234B1 (en) Resin composition, resin molding and method for producing the same
JP2005264096A (en) Method for producing resin coating composition
JPH06306201A (en) Electromagnetic wave shielding resin composition
JP2004027098A (en) Polypropylene resin composition
JP2001261975A (en) Electroconductive thermoplastic resin composition
JP2004256568A (en) Polyproylene resin composition and molded product
CN112266597B (en) Conductive polycarbonate composition for carrier tape and carrier tape prepared from conductive polycarbonate composition
JP2004047470A (en) Conductive resin composition and method for manufacturing resin molding using it
JPS6392672A (en) Conductive thermoplastic resin composition
JP2004269768A (en) Polypropylene resin composition and molded article
JP2004027097A (en) Thermoplastic resin composition
CN116761853A (en) Resin composition, resin molded body, and method for producing same
JPS63235368A (en) Electrically conductive resin composition and molded product thereof
JPS63218310A (en) Electrically conductive resin composition and molded item made thereof

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R151 Written notification of patent or utility model registration

Ref document number: 5040107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

LAPS Cancellation because of no payment of annual fees