JPH06306201A - Electromagnetic wave shielding resin composition - Google Patents

Electromagnetic wave shielding resin composition

Info

Publication number
JPH06306201A
JPH06306201A JP5097946A JP9794693A JPH06306201A JP H06306201 A JPH06306201 A JP H06306201A JP 5097946 A JP5097946 A JP 5097946A JP 9794693 A JP9794693 A JP 9794693A JP H06306201 A JPH06306201 A JP H06306201A
Authority
JP
Japan
Prior art keywords
weight
electromagnetic wave
parts
wave shielding
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5097946A
Other languages
Japanese (ja)
Inventor
Susumu Miyashita
進 宮下
Makoto Sugiura
真 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP5097946A priority Critical patent/JPH06306201A/en
Publication of JPH06306201A publication Critical patent/JPH06306201A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent shielding effects of an electromagnetic wave shielding resin composition from being deteriorated even in a cold-heat shock environment of repetitive high and low temperatures by blending a thermoplastic resin with carbon back and stainless steel fiber. CONSTITUTION:The electromagnetic wave shielding resin composition comprises 100 pts.wt. thermoplastic resin blended with 1-80 pts.wt. carbon black and 1-40 pts.wt. stainless steel fiber. The shielding effects thereof are not deteriorated even in a cold-heat shock environment of repetitive high and low temperatures.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,高温,低温が繰り返さ
れる屋外環境下で使用されても,シールド特性の低下の
少ない電磁波遮蔽性樹脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave shielding resin composition having a small decrease in shielding property even when used in an outdoor environment where high and low temperatures are repeated.

【0002】[0002]

【従来の技術】近年,電子機器の発展に伴い,OA事務
機,FA制御機器,AV機器,通信機器,家電機器等に
IC,LSIを搭載した製品が大量に使用されるように
なり,それらの機器から発せられる電磁波による誤動作
や,人体に対する影響などの障害が懸念されるようにな
った。不要電磁波の発生を防止する方法として,ノイズ
フィルター,フェライトコア,パスコンデンサ等の回路
自体から発生する電磁波の強度を小さくする対策が施さ
れている。しかしながら,このような回路対策を施すと
高速処理のためのデジタル信号に影響が生じることもあ
り、回路対策以外のシールド対策が必要な場合が多くな
っている。
2. Description of the Related Art In recent years, with the development of electronic equipment, a large number of products equipped with ICs and LSIs have been used in office automation machines, FA control equipment, AV equipment, communication equipment, home appliances, etc. There is a growing concern about malfunctions caused by electromagnetic waves emitted from these devices, and obstacles such as effects on the human body. As a method of preventing the generation of unnecessary electromagnetic waves, measures have been taken to reduce the intensity of electromagnetic waves generated from the circuit itself such as noise filters, ferrite cores, and pass capacitors. However, if such circuit measures are taken, digital signals for high-speed processing may be affected, and shield measures other than circuit measures are often required.

【0003】回路対策の他に電磁波障害を防止する方法
として、電子機器のハウジングに鍍金、亜鉛溶射、真空
蒸着、スパッタリング、導電塗装等を施して電磁波を遮
断する機能を付与したり、ハウジングを形成する樹脂中
に導電性フィラーを充填して電磁波を遮断する方法があ
る。熱可塑性樹脂中に配合する導電性フィラーとして
は、金属繊維、金属フレーク、炭素繊維、金属メッキガ
ラス繊維等が知られているが、中でも、直径8μm程度
のステンレス繊維は、その優れた延伸性により数ミクロ
ンの非常に細い繊維に加工できること、ならびに優れた
耐食性により僅か数重量%(およそ0.2〜2容量%)
の添加により実用に供するシールド効果が得られる点で
他の導電性フィラーより優れた材料である。
In addition to circuit measures, as a method of preventing electromagnetic interference, the housing of electronic equipment may be plated, zinc sprayed, vacuum deposited, sputtered, conductive coated, or the like to impart the function of blocking electromagnetic waves, or to form a housing. There is a method in which a conductive filler is filled in the resin to block electromagnetic waves. Metal fibers, metal flakes, carbon fibers, metal-plated glass fibers and the like are known as conductive fillers to be mixed in the thermoplastic resin, but among them, stainless fibers having a diameter of about 8 μm are excellent in stretchability. Only a few weight% (approximately 0.2-2% by volume) due to the ability to process very fine fibers of a few microns and excellent corrosion resistance
It is a material superior to other conductive fillers in that it has a shielding effect for practical use.

【0004】熱可塑性樹脂とステンレス繊維の優れた点
を生かして電磁波遮蔽材料とすることを試みたが、以下
のような問題点があることが判明した。すなわち、特に
屋外で使用する機器のハウジングとして使用する場合、
低温、高温環境を繰り返すような酷しい使用温度環境に
置かれると、熱可塑性樹脂自体の熱変形が大きいためス
テンレス繊維同志の接触が弱まって導電性が低下し、電
磁波遮蔽効果も低下してしまう。特に、軽量化、低コス
ト化を保持して、電磁波遮蔽特性を維持しようとする
と、この傾向は顕著である。
Attempts have been made to make an electromagnetic wave shielding material by taking advantage of the advantages of the thermoplastic resin and the stainless fiber, but it has been found that there are the following problems. That is, especially when used as a housing for equipment used outdoors,
When exposed to severe operating temperature environments such as repeated low and high temperature environments, the thermal deformation of the thermoplastic resin itself causes the stainless steel fibers to weaken contact, weakening the electrical conductivity and reducing the electromagnetic wave shielding effect. . This tendency is remarkable especially when it is attempted to maintain the electromagnetic wave shielding property while keeping the weight and cost down.

【0005】[0005]

【発明が解決しようとする課題】本発明は、熱可塑性樹
脂にステンレス繊維を配合した電磁波遮蔽性樹脂組成物
が、高温、低温が繰り返えされる冷熱衝撃環境下にあっ
ても、シールド効果が低下せず、かつ優れた機械特性を
維持し得るようにするものである。
DISCLOSURE OF THE INVENTION According to the present invention, an electromagnetic wave shielding resin composition obtained by blending a thermoplastic resin with stainless fiber has a shielding effect even under a high temperature and low temperature repeated thermal shock environment. It is intended to maintain excellent mechanical properties without deteriorating.

【0006】[0006]

【課題を解決するための手段】本発明に従う電磁波遮蔽
樹脂組成物は、(A)熱可塑性樹脂100重量部に対
し、(B)1〜80重量部のカーボンブラックおよび
(C)1〜40重量部のステンレス繊維を配合してなる
ものである。なお、本発明の熱可塑性樹脂組成物に対し
ては、各種の無機充填剤を配合することができる。配合
する無機充填剤としては、ガラス繊維、カーボン繊維等
の繊維状無機充填剤、グラファイト、雲母、滑石等の珪
酸塩化合物、硫酸バリウム、炭酸カルシウム、チタン酸
カリウム、酸化マグネシウム、酸化亜鉛等の粉体状無機
充填剤がある。繊維状無機充填剤は、等価直径が4〜1
5μm、D/Lが0.0004〜0.02のものが好ま
しい。粉体状無機充填剤は、平均粒径が0.5〜20μ
mのものが好ましい。
The electromagnetic wave shielding resin composition according to the present invention comprises (A) 100 parts by weight of a thermoplastic resin, (B) 1 to 80 parts by weight of carbon black and (C) 1 to 40 parts by weight. Part of the stainless fiber is mixed. In addition, various inorganic fillers can be blended with the thermoplastic resin composition of the present invention. As the inorganic filler to be blended, glass fiber, fibrous inorganic filler such as carbon fiber, silicate compound such as graphite, mica, talc, powder of barium sulfate, calcium carbonate, potassium titanate, magnesium oxide, zinc oxide, etc. There is a body-shaped inorganic filler. The fibrous inorganic filler has an equivalent diameter of 4 to 1
It is preferably 5 μm and D / L is 0.0004 to 0.02. The powdery inorganic filler has an average particle size of 0.5 to 20 μm.
m is preferable.

【0007】無機充填剤を配合する場合、その配合量
は、熱可塑性樹脂100重量部に対して10〜90重量
部、好ましくは、20〜60重量部であり、無機充填剤
の配合量が20重量部、特に、10重量部より少なくな
ると、曲げ弾性率、引張り強度等の機械的特性が低下し
てくるので好ましくなく、又、逆に60重量部、特に9
0重量部より多くなると比重が大きくなり過ぎ、衝撃強
度の低下も激しくなるので好ましくない。本発明に使用
するカーボンブラックとしては、導電性カーボンブラッ
クである必要はなく、ゴム用カーボンブラック、アセチ
レンカーボンブラック、チャンネルカーボンブラック、
ファーネスカーボンブラック、サーマルカーボンブラッ
ク、ランプブラック等を使用することができる。特に、
窒素吸着比表面積が20〜300のものはコスト的に有
利であり、冷熱衝撃環境下におけるシールド効果の低下
が少なくなるので好ましい。
When the inorganic filler is compounded, the compounding amount thereof is 10 to 90 parts by weight, preferably 20 to 60 parts by weight, relative to 100 parts by weight of the thermoplastic resin, and the compounding amount of the inorganic filler is 20. If it is less than 10 parts by weight, the mechanical properties such as flexural modulus and tensile strength will be deteriorated, which is not preferable, and conversely 60 parts by weight, especially 9 parts by weight.
If the amount is more than 0 parts by weight, the specific gravity becomes too large, and the impact strength deteriorates sharply, which is not preferable. The carbon black used in the present invention does not have to be a conductive carbon black, but is a rubber carbon black, an acetylene carbon black, a channel carbon black,
Furnace carbon black, thermal carbon black, lamp black and the like can be used. In particular,
A nitrogen adsorption specific surface area of 20 to 300 is advantageous in terms of cost and is preferable because the reduction of the shielding effect in a cold shock environment is reduced.

【0008】カーボンブラックの配合量は、熱可塑性樹
脂100重量部を基準として1〜80重量部、好ましく
は、2〜50重量部である。カーボンブラックの配合量
が2重量部、特に1重量部より少ないと低温、高温の繰
り返し環境において電磁波遮蔽特性が低下するので好ま
しくなく、逆に50重量部、特に80重量部を越えて配
合すると機械強度が低下してくるので好ましくない。。
本発明に用いるステンレス繊維としては、D/Lが0.
0005〜0.008で、等価直径が2〜15μmのも
のが繊維の分散性、シールド特性の点から好ましい。ス
テンレス繊維の配合量は、熱可塑性樹脂100重量部を
基準として1〜40重量部、好ましくは、2〜20重量
部である。更に、熱可塑性樹脂100重量部に対するカ
ーボンブラックとステンレス繊維の合計の配合量は10
0重量部以下であることが好ましい。
The amount of carbon black compounded is 1 to 80 parts by weight, preferably 2 to 50 parts by weight, based on 100 parts by weight of the thermoplastic resin. If the blending amount of carbon black is less than 2 parts by weight, particularly less than 1 part by weight, the electromagnetic wave shielding property is deteriorated in a repeated environment of low temperature and high temperature, which is not preferable. It is not preferable because the strength decreases. .
The stainless fiber used in the present invention has a D / L of 0.
0005 to 0.008 and an equivalent diameter of 2 to 15 μm are preferable from the viewpoint of fiber dispersibility and shielding properties. The blending amount of the stainless fiber is 1 to 40 parts by weight, preferably 2 to 20 parts by weight, based on 100 parts by weight of the thermoplastic resin. Furthermore, the total blending amount of carbon black and stainless fiber with respect to 100 parts by weight of the thermoplastic resin is 10
It is preferably 0 parts by weight or less.

【0009】本発明の樹脂組成物は、任意の方法で製造
することができる。例えば、無機充填剤とカーボンブラ
ックを配合した熱可塑性樹脂のペレットと、ステンレス
繊維のマスターバッチを用意しておき、両者を所定量混
合して、射出成形、押出成形等により成形物とすること
ができる。ステンレス繊維のマスターバッチは、ステン
レス繊維を1000〜35000本の束として、この束
に熱可塑性ポリエステル等の熱可塑性樹脂を含浸させ、
さらにこの繊維束の周囲を熱可塑性ポリエステルやポリ
エチレンワックス等の熱可塑性樹脂で被覆して、ステン
レス繊維/熱可塑性樹脂が重量比で95/5〜60/4
0のストランドを形成し、これを2〜6mmに切断した
柱状部材として供給することができる。
The resin composition of the present invention can be manufactured by any method. For example, it is possible to prepare pellets of a thermoplastic resin containing an inorganic filler and carbon black and a masterbatch of stainless fibers, mix them in a predetermined amount, and form a molded product by injection molding, extrusion molding, or the like. it can. The master batch of stainless fibers is made by bundling 1000 to 35,000 stainless fibers and impregnating the bundle with a thermoplastic resin such as thermoplastic polyester.
Further, the periphery of the fiber bundle is coated with a thermoplastic resin such as thermoplastic polyester or polyethylene wax, and the weight ratio of stainless fiber / thermoplastic resin is 95/5 to 60/4.
0 strands can be formed and cut into 2 to 6 mm to be supplied as a columnar member.

【0010】また、予め熱可塑性樹脂中にカーボンブラ
ックを高濃度で配合したもの(いわゆるカラーマスター
バッチ)と熱可塑性樹脂の両者を所定量配合し、押し出
し機で溶融混合したぺレット状混合物と、前記ステンレ
ス繊維のマスターバッチを配合して射出成形、押出成形
等により成形物とすることもできる。本発明の樹脂組成
物には、安定剤、老化防止剤、銅害防止剤、難燃剤、離
型剤、染料、結晶化防止剤等の添加剤を添加してもよ
い。
Further, a pellet-like mixture prepared by preliminarily blending a high concentration of carbon black in a thermoplastic resin (so-called color masterbatch) and a predetermined amount of both of the thermoplastic resins, and melt-mixing with an extruder. It is also possible to mix the master batch of the stainless fiber and to form a molded product by injection molding, extrusion molding or the like. You may add additives, such as a stabilizer, an antioxidant, a copper damage inhibitor, a flame retardant, a mold release agent, a dye, and a crystallization inhibitor, to the resin composition of this invention.

【0011】[0011]

【実施例】以下、実施例に基づきさらに詳細に説明す
る。 実施例1 PET樹脂(三井ペット樹脂(株)製、商品名ミツイペ
ットJ120)を100重量部に対し、カーボンブラッ
ク(三菱化成(株)製、商品名ミツビシカーボン30)
33重量部とを予めヘンシェルミキサーを用いて10分
間攪拌した。得られた混合物を押出機(スクリュー径5
0mm,L/D=32、樹脂温度=260℃)を用いて
溶融混合し、ペレット化しカーボンブラックマスターバ
ッチとして用いた。
EXAMPLES The present invention will be described in more detail below with reference to examples. Example 1 100 parts by weight of PET resin (Mitsui Pet Resin Co., Ltd., trade name Mitsuipet J120) was added to carbon black (Mitsubishi Kasei Co., Ltd., trade name Mitsubishi Carbon 30).
33 parts by weight was previously stirred for 10 minutes using a Henschel mixer. The obtained mixture was extruded (screw diameter 5
0 mm, L / D = 32, resin temperature = 260 ° C.) was melt-mixed, pelletized and used as a carbon black masterbatch.

【0012】ガラスファイバーおよびミネラル強化PE
T樹脂(デュポンジャパンリミテッド社製、商品名ライ
ナイトR935−ガラスファイバー添加量15重量%、
マイカ添加量20重量%)を100重量部に対し、前記
カーボンブラックマスターバッチ12.6重量部、およ
び直径8μm収束本数12000本のステンレス繊維
(ベカルトN.V.S.A社製、商品名Beki−sh
ield BU)を75重量%と熱可塑性樹脂25重量
%からなるステンレスマスターバッチ(東洋インキ製造
(株)製、商品名リオコンダクトEMI−SGR−30
434)を13.5重量部加え、タンブラーにより10
分間ドライブレンドした。
Glass fiber and mineral reinforced PE
T resin (manufactured by DuPont Japan Limited, trade name Rinite R935-glass fiber addition amount 15% by weight,
The amount of mica added is 20% by weight), 12.6 parts by weight of the above carbon black masterbatch, and 12000 stainless steel fibers having a diameter of 8 μm and a convergent number of 12000 (Bekaert NVSA, trade name Beki). -Sh
(Yellow BU) 75% by weight and thermoplastic resin 25% by weight (manufactured by Toyo Ink Mfg. Co., Ltd., trade name Rio Conduct EMI-SGR-30)
13.5 parts by weight of 434) and add 10 by tumbler.
Dry blended for minutes.

【0013】この様にして得られたペレット状ブレンド
物を、東芝機械製7オンス射出成形機(IS80A)を
用い、樹脂温度260℃で厚さ3mm縦横150mmの
試験片を作成した。得られた試験片のシールド効果を
(株)アドバンテスト社製スペクトラムアナライザーT
R4172およびシールド測定用ジグTR17301A
を用いて測定した。また、体積抵抗率を横河電機社製ホ
イートストンブリッジTYPE2759を用いて測定し
た。次に測定した試験片をタバイエスペック製冷熱衝撃
試験機TSR−103中で−30℃(30分),+12
0℃(30分)の環境下に繰り返し10サイクル放置し
た後、同様にシールド効果,体積抵抗率の測定を行っ
た。
Using the pellet-shaped blend thus obtained, a test piece having a thickness of 3 mm and a length of 150 mm was prepared at a resin temperature of 260 ° C. using a 7 ounce injection molding machine (IS80A) manufactured by Toshiba Machine. The shield effect of the obtained test piece was measured by Advantest Corp. Spectrum Analyzer T
R4172 and shield measuring jig TR17301A
Was measured using. Further, the volume resistivity was measured using Wheatstone Bridge TYPE2759 manufactured by Yokogawa Electric Corporation. Next, the measured test piece was placed in Tabai Espec's thermal shock tester TSR-103 at −30 ° C. (30 minutes), +12.
After repeatedly standing for 10 cycles in an environment of 0 ° C. (30 minutes), the shield effect and the volume resistivity were measured in the same manner.

【0014】更に引き続き、90サイクル(合計100
サイクル)冷熱衝撃試験機内に放置した後、同様の測定
を行った。更に引き続き、400サイクル(合計500
サイクル)冷熱衝撃試験機内に放置した後、同様の測定
を行った。更に引き続き、500サイクル(合計100
0サイクル)冷熱衝撃試験機内に放置した後、同様の測
定を行った。それらの測定結果を表1に示す。 実施例2〜6 実施例1の配合内容を表1の様に変更し、同様にして試
験片を作成し測定を行った。それらの測定結果を表1に
示す。
Further, subsequently, 90 cycles (total of 100
(Cycle) The same measurement was carried out after leaving in the thermal shock tester. Continuing further, 400 cycles (total 500
(Cycle) The same measurement was carried out after leaving in the thermal shock tester. Further on, 500 cycles (total 100
(0 cycle) After leaving in the thermal shock tester, the same measurement was performed. Table 1 shows the measurement results. Examples 2 to 6 The contents of the composition of Example 1 were changed as shown in Table 1, and test pieces were prepared and measured in the same manner. Table 1 shows the measurement results.

【0015】[0015]

【表1】 [Table 1]

【0016】比較例1〜4 カーボンブラックの配合量,ステンレス繊維の配合量等
が請求項の範囲を越える場合に関して、表2の様な配合
内容の混合物を実施例1と同様にして作成し、各測定を
行った。測定結果は表2に示す。
Comparative Examples 1 to 4 When the blending amount of carbon black, the blending amount of stainless fiber, etc., exceeds the scope of the claims, a mixture having the blending contents shown in Table 2 was prepared in the same manner as in Example 1, Each measurement was performed. The measurement results are shown in Table 2.

【0017】[0017]

【表2】 [Table 2]

【0018】実施例7 ガラスファイバー強化PBT樹脂(デュポンジャパンリ
ミテッド社製,商品名ライナイトRE7003−ガラス
ファイバー添加量30重量%)を95重量%に対し,カ
ーボンブラック(三菱化成(株)製,商品名ミツビシカ
ーボン30)5.0重量%とを予めヘンシェルミキサー
を用いて10分間攪拌した。得られた混合物を押出機
(スクリュー径50mm,L/D=32、樹脂温度=2
50℃)を用いて溶融混合し,ペレット化した。このペ
レット状混合物100重量部に対し,直径8μm収束本
数12000本のステンレス繊維(ベカルトN.V.
S.A社製、商品名Beki−shield BU)を
75重量%と熱可塑性樹脂25重量%からなるステンレ
スマスターバッチ(東洋インキ製造(株)製、商品名リ
オコンダクトEMI−SGR−30434)を12.0
重量部加え,タンブラーにより10分間ドライブレンド
した。 この様にして得られたペレット状ブレンド物
を、東芝機械製7オンス射出成形機(IS80A)を用
い、樹脂温度250℃で厚さ3mm縦横150mmの試
験片を作成した。
Example 7 95% by weight of glass fiber reinforced PBT resin (manufactured by DuPont Japan Ltd., trade name: Rinite RE7003-glass fiber addition amount: 30% by weight), carbon black (manufactured by Mitsubishi Kasei Co., Ltd., trade name) 5.0% by weight of Mitsubishi Carbon 30) was previously stirred for 10 minutes using a Henschel mixer. The obtained mixture is an extruder (screw diameter 50 mm, L / D = 32, resin temperature = 2
50 ° C.) was melt mixed and pelletized. With respect to 100 parts by weight of the pellet-like mixture, stainless fibers having a diameter of 8 μm and a convergent number of 12,000 (Bekaert NV
S. 12.0 A stainless steel masterbatch (manufactured by Toyo Ink Mfg. Co., Ltd., trade name Rio Conduct EMI-SGR-30434) consisting of 75% by weight of Company A, trade name Beki-shield BU) and 25% by weight of thermoplastic resin.
Parts by weight were added and dry blended for 10 minutes with a tumbler. Using the pellet-shaped blend thus obtained, a test piece having a thickness of 3 mm and a length of 150 mm was prepared at a resin temperature of 250 ° C. using a 7 ounce injection molding machine (IS80A) manufactured by Toshiba Machine.

【0019】得られた試験片のシールド効果を(株)ア
ドバンテスト社製スペクトラムアナライザーTR417
2およびシールド測定用ジグTR17301Aを用いて
測定した。また、体積抵抗率を横河電機社製ホイートス
トンブリッジTYPE2759を用いて測定した。次に
測定した試験片をタバイエスペック製冷熱衝撃試験機T
SR−103中で−30℃(30分),+120℃(3
0分)の環境下に繰り返し10サイクル放置した後、同
様にシールド効果,体積抵抗率の測定を行った。更に引
き続き、90サイクル(合計100サイクル)冷熱衝撃
試験機内に放置した後、同様の測定を行った。
The shield effect of the obtained test piece was measured by ADVANTEST CORPORATION spectrum analyzer TR417.
2 and shield measurement jig TR17301A. Further, the volume resistivity was measured using Wheatstone Bridge TYPE2759 manufactured by Yokogawa Electric Corporation. Next, the measured test piece is used as a thermal shock tester T manufactured by Tabai Espec.
-30 ° C (30 minutes), + 120 ° C (3
After repeatedly standing for 10 cycles in an environment of 0 minutes), the shield effect and the volume resistivity were measured in the same manner. Further, subsequently, after leaving it in the thermal shock tester for 90 cycles (100 cycles in total), the same measurement was performed.

【0020】更に引き続き、400サイクル(合計50
0サイクル)冷熱衝撃試験機内に放置した後、同様の測
定を行った。更に引き続き、500サイクル(合計10
00サイクル)冷熱衝撃試験機内に放置した後、同様の
測定を行った。それらの測定結果を表3に示す。 実施例8〜11 実施例7の配合内容を表3の様に変更し、同様にして試
験片を作成し測定を行った。それらの測定結果を表3に
示す。なお,実施例10,11においては,初期測定を
終えた試験片をタバイエスペック製冷熱衝撃試験機TS
R−103中で−30℃(30分),+80℃(30
分)の環境下に繰り返し所定の回数放置した後,同様に
シールド効果,体積抵抗値の測定を行った。それらの測
定結果を表3に示す。
Further, subsequently, 400 cycles (50 in total)
(0 cycle) After leaving in the thermal shock tester, the same measurement was performed. Continuing further, 500 cycles (total 10
(00 cycle) After leaving it in the thermal shock tester, the same measurement was performed. Table 3 shows the measurement results. Examples 8 to 11 The content of Example 7 was changed as shown in Table 3, and test pieces were prepared and measured in the same manner. Table 3 shows the measurement results. In addition, in Examples 10 and 11, the test piece after the initial measurement was used as a thermal shock tester TS manufactured by Tabai Espec.
-30 ° C (30 minutes), + 80 ° C (30 minutes in R-103
After repeatedly leaving it for a predetermined number of times in the environment of (1), the shield effect and the volume resistance value were measured in the same manner. Table 3 shows the measurement results.

【0021】[0021]

【表3】 [Table 3]

【0022】比較例5〜9 カーボンブラックの配合量,ステンレス繊維の配合量等
が請求項の範囲を越える場合に関して、表4の様な配合
内容の混合物を実施例7と同様にして作成し、各測定を
行った。測定結果は表4に示す。
Comparative Examples 5 to 9 When the blending amount of carbon black, the blending amount of stainless fiber, etc. exceeds the scope of the claims, a mixture having the blending content as shown in Table 4 was prepared in the same manner as in Example 7, Each measurement was performed. The measurement results are shown in Table 4.

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【発明の効果】本発明の電磁波遮蔽性樹脂組成物は、数
kHz〜2GHzの領域の電磁波に対して、初期値にお
いて42dB以上の高い電磁波シールド効果を有する。
しかもこのシールド効果は−30℃から120℃(AB
S系樹脂の場合−30℃から+80℃)の低温、高温ヒ
ートサイクルを繰り返した場合シールド効果の保持率が
カーボンブラックを添加しない物に比べて大きく向上し
ており、本発明の電磁波遮蔽用樹脂組成物を屋外環境下
で使用しても長期間電磁波シールド効果を維持できる。
The electromagnetic wave shielding resin composition of the present invention has a high electromagnetic wave shielding effect of 42 dB or more in the initial value with respect to electromagnetic waves in the range of several kHz to 2 GHz.
Moreover, this shielding effect is from -30 ° C to 120 ° C (AB
In the case of the S-based resin, the retention rate of the shielding effect is greatly improved when the low temperature and high temperature heat cycles of -30 ° C. to + 80 ° C.) are repeated, as compared with the case where the carbon black is not added, and the electromagnetic wave shielding resin of the present invention Even if the composition is used in an outdoor environment, the electromagnetic wave shielding effect can be maintained for a long time.

【0025】又、ステンレス繊維の含有率が小さいので
軽量化することができるのみならず、溶融樹脂の流動性
が良いので成形性がよく、複雑な形状の成形物を製造す
ることができる。
Further, since the stainless fiber content is small, not only can the weight be reduced, but also because the molten resin has a good fluidity, the moldability is good, and a molded product having a complicated shape can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/00 C H05K 9/00 7128−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location H01F 1/00 C H05K 9/00 7128-4E

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (A)熱可塑性樹脂100重量部に対
し,(B)1〜80重量部のカーボンブラックおよび
(C)1〜40重量部のステンレス繊維を配合してなる
ことを特徴とする電磁波遮蔽性樹脂組成物。
1. A blend of 100 parts by weight of a thermoplastic resin (A) with 1 to 80 parts by weight of carbon black and (C) 1 to 40 parts by weight of a stainless fiber. Electromagnetic wave shielding resin composition.
JP5097946A 1993-04-23 1993-04-23 Electromagnetic wave shielding resin composition Pending JPH06306201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5097946A JPH06306201A (en) 1993-04-23 1993-04-23 Electromagnetic wave shielding resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5097946A JPH06306201A (en) 1993-04-23 1993-04-23 Electromagnetic wave shielding resin composition

Publications (1)

Publication Number Publication Date
JPH06306201A true JPH06306201A (en) 1994-11-01

Family

ID=14205843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5097946A Pending JPH06306201A (en) 1993-04-23 1993-04-23 Electromagnetic wave shielding resin composition

Country Status (1)

Country Link
JP (1) JPH06306201A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050093235A (en) * 2004-03-18 2005-09-23 주식회사 우성기업 Manufacturing method of housings of cases with effects of emi shielding
JP2007258623A (en) * 2006-03-27 2007-10-04 Tdk Corp Radio wave absorbing material, radio wave absorption laminated wood, radio wave absorber, and manufacturing method thereof
JP2009532867A (en) * 2006-03-31 2009-09-10 パーカー.ハニフィン.コーポレイション Conductive article
JP2011086930A (en) * 2009-09-18 2011-04-28 Toyo Ink Mfg Co Ltd Electromagnetic wave shielding film and wiring board
JP2011525703A (en) * 2008-06-23 2011-09-22 パーカー・ハニフィン・コーポレーション EMI shielding material
WO2018038072A1 (en) * 2016-08-23 2018-03-01 ウィンテックポリマー株式会社 Method for producing thermoplastic aromatic polyester resin composition, method for producing insert-molded article, and method for inhibiting reduction in heat shock resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050093235A (en) * 2004-03-18 2005-09-23 주식회사 우성기업 Manufacturing method of housings of cases with effects of emi shielding
JP2007258623A (en) * 2006-03-27 2007-10-04 Tdk Corp Radio wave absorbing material, radio wave absorption laminated wood, radio wave absorber, and manufacturing method thereof
JP2009532867A (en) * 2006-03-31 2009-09-10 パーカー.ハニフィン.コーポレイション Conductive article
KR101329425B1 (en) * 2006-03-31 2013-11-14 파커-한니핀 코포레이션 Electrically conductive article
JP2011525703A (en) * 2008-06-23 2011-09-22 パーカー・ハニフィン・コーポレーション EMI shielding material
JP2011086930A (en) * 2009-09-18 2011-04-28 Toyo Ink Mfg Co Ltd Electromagnetic wave shielding film and wiring board
WO2018038072A1 (en) * 2016-08-23 2018-03-01 ウィンテックポリマー株式会社 Method for producing thermoplastic aromatic polyester resin composition, method for producing insert-molded article, and method for inhibiting reduction in heat shock resistance

Similar Documents

Publication Publication Date Title
US6034162A (en) Wear-resistant and flame-retardant resin composition, method of manufacturing resin composition, and insulated electric wire
JP2956875B2 (en) Molding material for electromagnetic shielding
EP0062252B1 (en) Polyolefin composition
CN107177176A (en) High-modulus PBT composition with heat conduction and conducting function and preparation method thereof
JPS61155451A (en) Electrically conductive resin composition
JPH10195311A (en) Thermoplastic resin molding, material for molding and production of molding
JPH06306201A (en) Electromagnetic wave shielding resin composition
KR100276152B1 (en) Crystalline Polyolefin Resin Composition And Electrical Insulation Component Containing The Composition
JP2732986B2 (en) Resin composition for shielding electromagnetic waves
JPS60124654A (en) Electrically conductive resin composition
JPH0673248A (en) Electromagnetic shielding resin composition
KR950012656B1 (en) Electric conductive resin product for shielding electromagnetic wave
CN110467811B (en) Bending-resistant laser direct forming material and preparation method thereof
JPS59223735A (en) Electroconductive resin composition
EP0085438A1 (en) Styrene-based resin composition
JP2000038497A (en) Black polyester resin composition and its molded product
JP2819506B2 (en) Resin composition for shielding electromagnetic waves
JP2000103910A (en) Flame-retardant polyolefin-based resin composition and molded product
JPS59219352A (en) Propylene polymer composition
JPH01318068A (en) Polyarylene sulfide resin composition
JPH0264158A (en) Polyarylene sulfide resin composition
JPS6392672A (en) Conductive thermoplastic resin composition
JP3410033B2 (en) Resin composition
JPS61115943A (en) Flame-retardant, electromagnetic wave shielding composition
JPS6151059A (en) Electrical conductive thermoplastic resin composition