JP2007258623A - Radio wave absorbing material, radio wave absorption laminated wood, radio wave absorber, and manufacturing method thereof - Google Patents

Radio wave absorbing material, radio wave absorption laminated wood, radio wave absorber, and manufacturing method thereof Download PDF

Info

Publication number
JP2007258623A
JP2007258623A JP2006084380A JP2006084380A JP2007258623A JP 2007258623 A JP2007258623 A JP 2007258623A JP 2006084380 A JP2006084380 A JP 2006084380A JP 2006084380 A JP2006084380 A JP 2006084380A JP 2007258623 A JP2007258623 A JP 2007258623A
Authority
JP
Japan
Prior art keywords
uncured
radio wave
resin
fiber assembly
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006084380A
Other languages
Japanese (ja)
Other versions
JP5105043B2 (en
Inventor
Hiroshi Kurihara
弘 栗原
Koji Takizawa
幸治 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006084380A priority Critical patent/JP5105043B2/en
Publication of JP2007258623A publication Critical patent/JP2007258623A/en
Application granted granted Critical
Publication of JP5105043B2 publication Critical patent/JP5105043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a radio wave absorbing material capable of realizing designed radio wave absorption characteristics precisely and obtaining improved radio wave absorption characteristics. <P>SOLUTION: The non-cured radio wave absorbing material is formed by mixing a non-cured compound resin 1 containing the radio wave absorber and a first non-cured resin, and a fiber assembly 2. A second non-cured resin is allowed to soak into the fiber assembly 2 before the mixture. In this case, assuming that the second non-cured resin is not allowed to soak in, the second non-cured resin having a volume approximated to the volume of the first non-cured resin allowed to soak into the fiber assembly 2 is preferably allowed to soak into the fiber assembly. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、繊維強化プラスチック(FRP、Fiber Reinforced Plastics)型の電波吸収材、電波吸収積層材、電波吸収体及び電波吸収体の製造方法に関する。   The present invention relates to a fiber reinforced plastic (FRP) type radio wave absorber, a radio wave absorber laminate, a radio wave absorber, and a method of manufacturing the radio wave absorber.

電波吸収体の強度を向上するために、樹脂等の基材に電波吸収材料を混合した複合樹脂に繊維を内含させたFRP型の電波吸収体や、複合樹脂を層状にした複合樹脂層と繊維からなる層(以下、「繊維層」という。)とを交互に積層するFRP型電波吸収体がある(例えば、下記特許文献1参照)。
特開昭58−6200号公報
In order to improve the strength of the radio wave absorber, an FRP type radio wave absorber in which fibers are included in a composite resin in which a radio wave absorbing material is mixed with a base material such as a resin, or a composite resin layer having a composite resin layered, There is an FRP type electromagnetic wave absorber in which layers made of fibers (hereinafter referred to as “fiber layers”) are alternately stacked (for example, see Patent Document 1 below).
JP 58-6200 A

これらのFRP型電波吸収体で、繊維が集合した繊維集合部が存在する場合、複合樹脂の基材成分の少なくとも一部が繊維集合部に流れ出る、あるいは、繊維集合部が複合樹脂層の基材成分の少なくとも一部を吸い取ることによって、繊維集合部近傍であるほど電波吸収材料の密度が増加する偏在現象が生じる。とりわけ、複合樹脂層の基材が熱硬化型等の未硬化樹脂であり、電波吸収体の硬化過程において、未硬化樹脂が液状化する場合においては、複合樹脂層から繊維層への基材成分の流れ出しが顕著であることを本発明者は見出した。   In these FRP type wave absorbers, when there is a fiber assembly part where the fibers are aggregated, at least a part of the base component of the composite resin flows out to the fiber assembly part, or the fiber aggregate part is a base material of the composite resin layer. Absorbing at least a part of the component causes an uneven distribution phenomenon in which the density of the radio wave absorbing material increases as the position near the fiber assembly portion. In particular, when the base material of the composite resin layer is an uncured resin such as a thermosetting type and the uncured resin liquefies during the curing process of the radio wave absorber, the base material component from the composite resin layer to the fiber layer The present inventor has found that the flow of is remarkable.

図8は電波吸収材料を含む複合樹脂と繊維集合体とを混合した電波吸収材において、その偏在現象を模式的に説明するものであり、繊維集合体と未硬化複合樹脂とを混合した場合、図8(A)の硬化前に電波吸収材料の偏在現象が発生していなくとも、同図(B)の硬化後は、硬化過程において未硬化樹脂が液状化して複合樹脂層から繊維集合体へ基材成分が流出し、電波吸収材料が繊維集合体近傍に偏在してしまう。   FIG. 8 schematically illustrates the uneven distribution phenomenon in the radio wave absorber in which the composite resin containing the radio wave absorber material and the fiber assembly are mixed. When the fiber assembly and the uncured composite resin are mixed, Even if the phenomenon of uneven distribution of the radio wave absorbing material does not occur before the curing of FIG. 8A, after the curing of FIG. 8B, the uncured resin liquefies during the curing process and changes from the composite resin layer to the fiber assembly. The base material component flows out, and the radio wave absorbing material is unevenly distributed in the vicinity of the fiber assembly.

図9は電波吸収積層材における前記偏在現象を模式的に説明するものであり、繊維集合層と未硬化複合樹脂層とを積層した場合、図9(A)の硬化前に偏在現象が発生していなくとも、同図(B)の硬化後は、硬化過程において未硬化樹脂が液状化して複合樹脂層から繊維集合層へ基材成分が流出し、電波吸収材料が繊維集合層近傍に偏在してしまう。   FIG. 9 schematically illustrates the uneven distribution phenomenon in the radio wave absorbing laminated material. When the fiber assembly layer and the uncured composite resin layer are stacked, the uneven distribution phenomenon occurs before curing in FIG. 9A. Even if not, after curing in FIG. 5B, the uncured resin liquefies during the curing process, the base component flows out from the composite resin layer to the fiber assembly layer, and the radio wave absorbing material is unevenly distributed in the vicinity of the fiber assembly layer. End up.

本発明者は、上記偏在現象が、設計した電波吸収特性と、製作された電波吸収体の電波吸収特性とのずれを大きくする原因となることを見出した。すなわち、本発明者は、上記偏在現象により複合樹脂の複素比誘電率、複素比透磁率及び導電率等の電気定数が繊維集合部近傍であるほど大きく変化し、これにより、設計した電波吸収特性と、製作された電波吸収体の電波吸収特性とのずれが大きくなることを見出した。   The inventor has found that the uneven distribution phenomenon causes a large difference between the designed radio wave absorption characteristics and the radio wave absorption characteristics of the manufactured radio wave absorber. That is, the inventor found that the electric constants such as complex relative dielectric constant, complex relative magnetic permeability and electrical conductivity of the composite resin change greatly as the fiber assembly is near due to the uneven distribution phenomenon. And found that the deviation from the radio wave absorption characteristics of the produced radio wave absorber becomes large.

特に、繊維が多く、かつ、繊維集合部が多い場合には、複合樹脂から繊維集合部に流れ出る基材成分が多くなるため、複合樹脂の電気定数の変化が大きくなり、設計した電波吸収特性との乖離が大きくなる。また、電波吸収材料の混合量が多く、上記偏在現象によって、電波吸収材料(電波吸収材料は、粒子、粉体、粉砕体や繊維等の形状をしている。)の間の距離が著しく接近する場合にも、電波吸収材料の電気定数の変化が大きくなるため、設計した電波吸収特性との乖離が大きくなる。   In particular, when there are many fibers and there are many fiber assembly parts, since the base material component flowing out from the composite resin to the fiber assembly part increases, the change in the electrical constant of the composite resin increases, and the designed radio wave absorption characteristics The divergence increases. In addition, the amount of mixing of the radio wave absorbing material is large, and due to the uneven distribution phenomenon, the distance between the radio wave absorbing material (the wave absorbing material is in the shape of particles, powder, pulverized bodies, fibers, etc.) is extremely close. Also in this case, since the change in the electric constant of the radio wave absorbing material becomes large, the deviation from the designed radio wave absorption characteristic becomes large.

本発明はこうした状況を認識してなされたものであり、その目的は、設計した電波吸収特性を精度よく実現でき、良好な電波吸収特性を得ることが可能な電波吸収材、電波吸収積層材、電波吸収体及び電波吸収体の製造方法を提供することにある。   The present invention has been made in view of such a situation, the purpose of which is to achieve the designed radio wave absorption characteristics with high accuracy, the radio wave absorption material, the radio wave absorption laminate, capable of obtaining good radio wave absorption characteristics, The object is to provide a radio wave absorber and a method of manufacturing the radio wave absorber.

本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、本発明の第1の態様の未硬化電波吸収材は、電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂と、繊維が集合した繊維集合体とを混合したものであって、混合の前に、前記繊維集合体に第2の未硬化樹脂を染み込ませたことを特徴としている。   In order to achieve the above object, an uncured radio wave absorber according to the first aspect of the present invention comprises an uncured composite resin including a radio wave absorber and a first uncured resin, and a fiber assembly in which fibers are aggregated. A mixture is characterized in that a second uncured resin is impregnated into the fiber assembly before mixing.

前記第1の態様の未硬化電波吸収材において、前記第2の未硬化樹脂を染み込ませないと仮定したときに、前記繊維集合体に染み込む前記第1の未硬化樹脂の体積量に近似した体積量の前記第2の未硬化樹脂を、前記繊維集合体に染み込ませてもよい。   In the uncured radio wave absorber of the first aspect, when it is assumed that the second uncured resin is not soaked, the volume approximates the volume of the first uncured resin soaked into the fiber assembly. An amount of the second uncured resin may be soaked into the fiber assembly.

本発明の第2の態様の未硬化電波吸収材は、電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂と、繊維が集合した繊維集合体とを混合したものであって、混合の前に、前記繊維集合体を第2の未硬化樹脂で包んだことを特徴としている。   The uncured radio wave absorber of the second aspect of the present invention is a mixture of an uncured composite resin containing a radio wave absorber material and a first uncured resin, and a fiber assembly in which fibers are aggregated. Before the step, the fiber assembly is wrapped with a second uncured resin.

前記第2の態様の未硬化電波吸収材において、前記第2の未硬化樹脂で包まないと仮定したときに、前記繊維集合体に染み込む前記第1の未硬化樹脂の体積量に近似した体積量の前記第2の未硬化樹脂で、前記繊維集合体を包んでもよい。   In the uncured radio wave absorber of the second aspect, a volume amount approximate to the volume amount of the first uncured resin soaked into the fiber assembly when it is assumed that the second uncured resin does not wrap the material. The fiber assembly may be wrapped with the second uncured resin.

本発明の第3の態様の電波吸収体は、前記未硬化電波吸収材を硬化させた電波吸収材を含むことを特徴としている。   The radio wave absorber of the third aspect of the present invention is characterized by including a radio wave absorber obtained by curing the uncured radio wave absorber.

本発明の第4の態様の電波吸収体の製造方法は、繊維が集合した繊維集合体に第2の未硬化樹脂を染み込ませる工程と、電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂と、前記第2の未硬化樹脂が染み込んだ繊維集合体とを混合して未硬化電波吸収材を作製する工程と、前記未硬化電波吸収材を硬化させる硬化工程とを備えることを特徴としている。   The method for manufacturing a radio wave absorber according to the fourth aspect of the present invention includes a step of impregnating a second uncured resin into a fiber assembly in which fibers are aggregated, and an uncured material including the radio wave absorbing material and the first uncured resin. It comprises a step of mixing a composite resin and a fiber assembly soaked with the second uncured resin to produce an uncured radio wave absorber, and a curing step of curing the uncured radio wave absorber. It is said.

本発明の第5の態様の電波吸収体の製造方法は、繊維が集合した繊維集合体を第2の未硬化樹脂で包む工程と、電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂と、前記第2の未硬化樹脂で包んだ繊維集合体とを混合して未硬化電波吸収材を作製する工程と、前記未硬化電波吸収材を硬化させる硬化工程とを備えることを特徴としている。   The method for manufacturing a radio wave absorber according to the fifth aspect of the present invention includes a step of wrapping a fiber aggregate in which fibers are aggregated with a second uncured resin, an uncured composite including the radio wave absorber and the first uncured resin. Characterized in that it comprises a step of mixing a resin and a fiber assembly wrapped with the second uncured resin to produce an uncured radio wave absorber, and a curing step of curing the uncured radio wave absorber. Yes.

前記第5の態様の電波吸収体の製造方法の前記硬化工程において、前記第2の未硬化樹脂が前記繊維集合体に染み込むようにしてもよい。   In the curing step of the method of manufacturing the radio wave absorber according to the fifth aspect, the second uncured resin may permeate the fiber assembly.

本発明の第6の態様の未硬化電波吸収積層材は、繊維が集合した繊維集合層と、前記繊維集合層の片側又は両側に積層され、電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂を層状にした未硬化複合樹脂層とを有し、積層の前に、前記繊維集合層に第2の未硬化樹脂を染み込ませたことを特徴としている。   The uncured radio wave absorption laminated material of the sixth aspect of the present invention is a fiber aggregate layer in which fibers are aggregated, laminated on one side or both sides of the fiber aggregate layer, and includes a radio wave absorption material and a first uncured resin. And an uncured composite resin layer in which the cured composite resin is layered, and the second uncured resin is infiltrated into the fiber assembly layer before lamination.

前記第6の態様の未硬化電波吸収積層材において、前記第2の未硬化樹脂を染み込ませないと仮定したときに、前記繊維集合層に染み込む前記第1の未硬化樹脂の体積量に近似した体積量の前記第2の未硬化樹脂を、前記繊維集合層に染み込ませてもよい。また、前記第2の未硬化樹脂は、未硬化複合樹脂であってもよく、該未硬化複合樹脂を、積層の前に硬化させてもよい。   In the uncured radio wave absorption laminate of the sixth aspect, when it is assumed that the second uncured resin does not soak, it approximates the volume of the first uncured resin soaked into the fiber assembly layer. A volume amount of the second uncured resin may be soaked into the fiber assembly layer. Further, the second uncured resin may be an uncured composite resin, and the uncured composite resin may be cured before lamination.

本発明の第7の態様の電波吸収積層材は、繊維が集合した繊維集合層と、前記繊維集合層の片側又は両側に積層され、電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂を層状にした未硬化複合樹脂層とを有し、前記繊維集合層と前記未硬化複合樹脂層との間に、第2の未硬化樹脂を層状にした未硬化樹脂層を配したことを特徴としている。   The radio wave absorption laminated material according to the seventh aspect of the present invention is an uncured composite including a fiber aggregate layer in which fibers are aggregated and one or both sides of the fiber aggregate layer, the radio wave absorbent material and the first uncured resin. An uncured composite resin layer having a resin layer, and an uncured resin layer having a second uncured resin layered between the fiber assembly layer and the uncured composite resin layer. It is a feature.

本発明の第8の態様の電波吸収体は、前記未硬化電波吸収積層材を硬化させた電波吸収積層材を少なくとも1層含むことを特徴としている。   The radio wave absorber according to the eighth aspect of the present invention is characterized in that it includes at least one radio wave absorption laminate obtained by curing the uncured radio wave absorption laminate.

本発明の第9の態様の電波吸収体の製造方法は、繊維が集合した繊維集合層に第2の未硬化樹脂を染み込ませる工程と、電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂を層状にした未硬化複合樹脂層を、前記第2の未硬化樹脂を染み込ませた繊維集合層の片側又は両側に積層し、未硬化電波吸収積層材を作製する工程と、前記未硬化電波吸収積層材を硬化させる硬化工程とを備えることを特徴としている。   The method for manufacturing a radio wave absorber according to the ninth aspect of the present invention includes a step of impregnating a second uncured resin into a fiber aggregate layer in which fibers are aggregated, and an uncured material including the radio wave absorbing material and the first uncured resin. Laminating a composite resin layered uncured composite resin layer on one side or both sides of a fiber assembly layer impregnated with the second uncured resin to produce an uncured radio wave absorption laminate, and the uncured And a curing step for curing the radio wave absorbing laminated material.

本発明の第10の態様の電波吸収体の製造方法は、繊維が集合した繊維集合層の片側又は両側に、電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂を層状にした未硬化複合樹脂層を、第2の未硬化樹脂を層状にした未硬化樹脂層を介在させて積層し、未硬化電波吸収積層材を作製する工程と、前記未硬化電波吸収積層材を硬化させる硬化工程とを備えることを特徴としている。   In the method for manufacturing a radio wave absorber according to the tenth aspect of the present invention, an uncured composite resin containing a radio wave absorbing material and a first uncured resin is layered on one side or both sides of a fiber aggregate layer in which fibers are aggregated. A step of laminating a cured composite resin layer with an uncured resin layer formed by laminating a second uncured resin to produce an uncured radio wave absorbing laminated material, and curing to cure the uncured radio wave absorbing laminated material And a process.

前記第10の態様の電波吸収体の製造方法の前記硬化工程において、前記未硬化樹脂層の第2の未硬化樹脂は、前記繊維集合層に染み込むようにしてもよい。   In the curing step of the radio wave absorber manufacturing method according to the tenth aspect, the second uncured resin of the uncured resin layer may soak into the fiber assembly layer.

なお、以上の構成要素の任意の組合せや、本発明の表現を、方法等の間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, or a conversion of the expression of the present invention between methods or the like is also effective as an aspect of the present invention.

本発明によれば、電波吸収材料の偏在現象を解消して、設計した電波吸収特性を精度よく実現できる電波吸収材、電波吸収積層材、及びそれらを構成部材として有する電波吸収体が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the radio wave absorber which can eliminate the uneven distribution phenomenon of a radio wave absorption material, can implement | achieve the designed radio wave absorption characteristic accurately, a radio wave absorption laminated material, and a wave absorber which has them as a structural member is obtained.

以下、本発明を実施するための最良の形態として、電波吸収材、電波吸収積層材、電波吸収体及び電波吸収体の製造方法の実施の形態を図面に従って説明する。   Hereinafter, as the best mode for carrying out the present invention, embodiments of a radio wave absorber, a radio wave absorption laminate, a radio wave absorber, and a radio wave absorber manufacturing method will be described with reference to the drawings.

図1は本発明の実施の形態1を示す。図1(A)は電波吸収材料及び基材である第1の未硬化樹脂を含む未硬化複合樹脂1と、繊維が集合した繊維集合体2とを混合した未硬化電波吸収材であるが、混合の前に、繊維集合体2に第2の未硬化樹脂を予め染み込ませてある。前記第2の未硬化樹脂を染み込ませる量は、前記第2の未硬化樹脂を染み込ませないと仮定したときに、繊維集合体2に染み込む(流れ出る)前記第1の未硬化樹脂の体積量と同量の体積とすることが最も好ましいが、近似した体積量(概ね同量)であれば、硬化させるときの電波吸収材料の偏在現象を防止して未硬化複合樹脂1の部分の電気定数の変化を抑制でき、電波吸収性能の低下も抑制できる。ここで、電気定数(複素比誘電率、複素比透磁率、導電率)の夫々は、周波数によって異なるものである。   FIG. 1 shows Embodiment 1 of the present invention. FIG. 1A shows an uncured radio wave absorber in which an uncured composite resin 1 including a radio wave absorbing material and a first uncured resin as a base material and a fiber assembly 2 in which fibers are aggregated are mixed. Prior to mixing, the second uncured resin is impregnated in the fiber assembly 2 in advance. The amount of the second uncured resin soaked is the volume amount of the first uncured resin soaked (flowed out) into the fiber assembly 2 when it is assumed that the second uncured resin is not soaked. Although it is most preferable to set the volume to the same amount, if the approximate volume amount (approximately the same amount) is used, the uneven distribution phenomenon of the radio wave absorbing material at the time of curing is prevented and the electric constant of the portion of the uncured composite resin 1 is reduced. The change can be suppressed and the deterioration of the radio wave absorption performance can also be suppressed. Here, each of the electrical constants (complex relative permittivity, complex relative permeability, conductivity) varies depending on the frequency.

前記電波吸収材料は、磁性体又は誘電損失体からなる粒子、粉体、粉砕体、繊維から選ばれた少なくとも1つであってよい。磁性体としては、フェライト、金属磁性体、酸化金属磁性体が挙げられる。誘電損失体としては、カーボン(カーボンブラック、カーボングラファイト、カーボン繊維)、金属、酸化金属が挙げられる。   The radio wave absorbing material may be at least one selected from particles, powders, pulverized bodies, and fibers made of a magnetic body or a dielectric loss body. Examples of the magnetic material include ferrite, metal magnetic material, and metal oxide magnetic material. Examples of the dielectric loss body include carbon (carbon black, carbon graphite, carbon fiber), metal, and metal oxide.

前記電波吸収材料を含む未硬化複合樹脂としては、電波吸収材料を基材となる第1の未硬化樹脂に混合したものが挙げられる。前記第1の未硬化樹脂としては、熱硬化型樹脂、紫外線硬化型樹脂が挙げられる。熱硬化型樹脂としては、エポキシ系樹脂が挙げられる。紫外線硬化型樹脂としては、エポキシ系樹脂が挙げられる。さらに、電波吸収材料を含む未硬化複合樹脂は、誘電体からなる粒子、粉体、粉砕体、繊維から選ばれた少なくとも1つを含んでいてもよい。誘電体としては、ガラス、シリカ、チタン、珪砂が挙げられる。   Examples of the uncured composite resin containing the radio wave absorbing material include those obtained by mixing the radio wave absorbing material with the first uncured resin as the base material. Examples of the first uncured resin include a thermosetting resin and an ultraviolet curable resin. An example of the thermosetting resin is an epoxy resin. An example of the ultraviolet curable resin is an epoxy resin. Furthermore, the uncured composite resin containing the radio wave absorbing material may contain at least one selected from particles made of dielectric, powder, pulverized material, and fiber. Examples of the dielectric include glass, silica, titanium, and silica sand.

前記繊維集合体を構成する繊維は、誘電体繊維であることが好ましく、ガラス繊維、樹脂繊維(ポリエステル繊維、アラミド繊維、ポリパラフェニレン・ベンゾビス・オキサゾール(PBO)繊維)から選ばれた少なくとも1つであってよい。   The fiber constituting the fiber assembly is preferably a dielectric fiber, and is at least one selected from glass fiber and resin fiber (polyester fiber, aramid fiber, polyparaphenylene benzobis oxazole (PBO) fiber). It may be.

前記第2の未硬化樹脂は前記第1の未硬化樹脂は同等材質であっても、異なるものであってもよい。但し、硬化工程を考慮すると、硬化条件(熱硬化型樹脂では、硬化工程で掛ける温度およびその時間変化など)が同じ材質であることが最も好ましく、硬化条件が同等の材質であることが好ましいと言える。   The second uncured resin may be the same material or different from the first uncured resin. However, in consideration of the curing process, it is most preferable that the curing conditions (in the thermosetting resin, the temperature applied in the curing process and the time change thereof) are the same material, and the curing conditions are preferably the same material. I can say that.

前記第2の未硬化樹脂を染み込ませない場合に、前記未硬化複合樹脂から繊維集合体2に流れ出る第1の未硬化樹脂の体積は、繊維集合体2内の空隙部分の体積で概ね表される。また、繊維集合体2に、液状の樹脂等を染み込ませることによって、その体積を事前に把握することが可能である。   In the case where the second uncured resin is not soaked, the volume of the first uncured resin flowing out from the uncured composite resin into the fiber assembly 2 is approximately represented by the volume of the void portion in the fiber assembly 2. The Moreover, the volume can be grasped in advance by making the fiber assembly 2 soaked with a liquid resin or the like.

図1(A)のように繊維集合体2に第2の未硬化樹脂を予め染み込ませてから、未硬化複合樹脂1と、繊維集合体2とを混合して未硬化電波吸収材を作製後、未硬化電波吸収材を硬化工程で硬化処理すれば、硬化過程において第1の未硬化樹脂が液状化しても繊維集合体2に第1の未硬化樹脂が流れ出ることはなく、硬化後の電波吸収材においても図1(B)のように電波吸収材料の偏在現象は発生しない。従って、所望の設計通りの電波吸収特性を精度よく実現できる電波吸収材、ひいてはこれを構成部材として有する電波吸収体が得られる。   After the second uncured resin is pre-impregnated into the fiber assembly 2 as shown in FIG. 1A, the uncured composite resin 1 and the fiber assembly 2 are mixed to produce an uncured radio wave absorber. If the uncured radio wave absorber is cured in the curing process, the first uncured resin does not flow into the fiber assembly 2 even if the first uncured resin liquefies during the curing process, and the cured radio wave Even in the absorbing material, the uneven distribution phenomenon of the radio wave absorbing material does not occur as shown in FIG. Therefore, it is possible to obtain a radio wave absorber that can accurately realize a radio wave absorption characteristic as desired, and thus a radio wave absorber having this as a constituent member.

前記電波吸収体は、電波反射体によって裏打ちされたものであってもよい。電波反射体としては、金属板、導電性繊維集合体、導電性繊維集合体と未硬化樹脂を積層した未硬化電波反射材が挙げられる。導電性繊維集合体は、導電性繊維をメッシュ状、不織布状、又は、一方向配列したものであってよい。導電性繊維は、金属繊維、金属酸化物繊維、カーボン繊維、樹脂繊維の表面に金属膜を形成したものであってよい。未硬化電波反射材の未硬化樹脂は、未硬化電波吸収材の未硬化樹脂と異なる未硬化樹脂であってもよい。さらに、前記電波吸収体に塗装を施してもよい。   The radio wave absorber may be backed by a radio wave reflector. Examples of the radio wave reflector include a metal plate, a conductive fiber aggregate, and an uncured radio wave reflector made by laminating a conductive fiber aggregate and an uncured resin. The conductive fiber assembly may be a conductive fiber aggregate in a mesh shape, a nonwoven fabric shape, or a unidirectional arrangement. The conductive fiber may be a metal fiber, metal oxide fiber, carbon fiber, or resin fiber formed with a metal film. The uncured resin of the uncured radio wave reflecting material may be an uncured resin different from the uncured resin of the uncured radio wave absorber. Further, the radio wave absorber may be coated.

図2は本発明の実施の形態2を示す。図2(A)は電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂1と、繊維が集合した繊維集合体2とを混合した未硬化電波吸収材であるが、混合の前に、繊維集合体2を第2の未硬化樹脂3で包んである。ここで、包むために用いる第2の未硬化樹脂3の量は、第2の未硬化樹脂3で包まない場合に、繊維集合体2に染み込む前記第1の未硬化樹脂の体積量と同量の体積とすることが最も好ましいが、近似した体積量(概ね同量)であれば、硬化させるときの電波吸収材料の偏在現象を防止して未硬化複合樹脂1の部分の電気定数の変化を抑制でき、電波吸収性能の低下も抑制できる。   FIG. 2 shows a second embodiment of the present invention. FIG. 2A shows an uncured radio wave absorber obtained by mixing an uncured composite resin 1 including a radio wave absorbing material and a first uncured resin, and a fiber assembly 2 in which fibers are aggregated. The fiber assembly 2 is wrapped with the second uncured resin 3. Here, the amount of the second uncured resin 3 used for wrapping is the same as the volume amount of the first uncured resin soaked into the fiber assembly 2 when not wrapped with the second uncured resin 3. Although it is most preferable to use a volume, an approximate volume (approximately the same amount) prevents the phenomenon of uneven distribution of the radio wave absorbing material during curing and suppresses changes in the electrical constant of the uncured composite resin 1 portion. It is possible to suppress a decrease in radio wave absorption performance.

繊維集合体2を包む第2の未硬化樹脂3と、未硬化複合樹脂1の基材である第1の未硬化樹脂は同等材質であっても、異なるものであってもよい。但し、硬化工程を考慮すると、硬化条件(熱硬化型樹脂では、硬化工程で掛ける温度およびその時間変化など)が同じ材質であることが最も好ましく、硬化条件が同等の材質であることが好ましいと言える。   The second uncured resin 3 wrapping the fiber assembly 2 and the first uncured resin that is the base material of the uncured composite resin 1 may be the same material or different. However, in consideration of the curing process, it is most preferable that the curing conditions (in the thermosetting resin, the temperature applied in the curing process and the time change thereof) are the same material, and the curing conditions are preferably the same material. I can say that.

図2(A)のように繊維集合体2を第2の未硬化樹脂3で包んでから、未硬化複合樹脂1と、繊維集合体2とを混合して未硬化電波吸収材を作製後、未硬化電波吸収材を硬化工程で硬化処理すれば、硬化過程において第1の未硬化樹脂が液状化しても繊維集合体2に第1の未硬化樹脂が流れ出ることはなく、硬化後の電波吸収材においても図2(B)のように電波吸収材料の偏在現象は発生しない。   After wrapping the fiber assembly 2 with the second uncured resin 3 as shown in FIG. 2A, the uncured composite resin 1 and the fiber assembly 2 are mixed to produce an uncured radio wave absorber, If the uncured radio wave absorber is cured in the curing process, the first uncured resin does not flow out to the fiber assembly 2 even if the first uncured resin liquefies during the curing process, and the radio wave absorption after curing. Also in the material, the uneven distribution phenomenon of the radio wave absorbing material does not occur as shown in FIG.

例えば、第1及び第2の未硬化樹脂として、熱硬化型の未硬化樹脂を用いた場合においては、加熱によって、未硬化複合樹脂層の第1の未硬化樹脂及び第2の未硬化樹脂が液状化する。繊維集合体2のより近傍にある第2の未硬化樹脂3が、繊維集合体2に染み込むことによって、第1の未硬化樹脂は繊維集合体2に染み込むことがなくなり、未硬化複合樹脂部分の電気定数の変化を抑制でき、電波吸収性能の低下も抑制できる。   For example, in the case where a thermosetting uncured resin is used as the first and second uncured resins, the first uncured resin and the second uncured resin of the uncured composite resin layer are formed by heating. Liquefaction. When the second uncured resin 3 located closer to the fiber assembly 2 soaks into the fiber assembly 2, the first uncured resin does not soak into the fiber assembly 2, and the uncured composite resin portion A change in electrical constant can be suppressed, and a decrease in radio wave absorption performance can also be suppressed.

従って、所望の設計通りの電波吸収特性を精度よく実現できる電波吸収材、ひいてはこれを構成部材として有する電波吸収体が得られる。この電波吸収体は、電波反射体によって裏打ちされたものであってもよいし、さらに、電波吸収体に塗装を施してもよい。   Therefore, it is possible to obtain a radio wave absorber that can accurately realize a radio wave absorption characteristic as desired, and thus a radio wave absorber having this as a constituent member. The radio wave absorber may be backed by a radio wave reflector, or the radio wave absorber may be coated.

なお、実施の形態2の電波吸収材料、繊維、樹脂等の各構成材料は前記実施の形態1と同様であり、同一又は相当部分に同一符号を付して詳細な説明は省略する。   The constituent materials such as the radio wave absorbing material, fiber, resin, and the like of the second embodiment are the same as those of the first embodiment, and the same or corresponding parts are denoted by the same reference numerals and detailed description thereof is omitted.

図3は本発明の実施の形態3を示す。図3(A)は、繊維が層状に集合した繊維集合層10と、繊維集合層10の両側(又は片側)に積層され、電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂を層状にした未硬化複合樹脂層11(ゲル状である)とを有する未硬化電波吸収積層材であるが、積層の前に、繊維集合層10に第2の未硬化樹脂を予め染み込ませてある。ここで、前記第2の未硬化樹脂を染み込ませる量は、前記第2の未硬化樹脂を染み込ませない場合に、繊維集合層10に染み込む前記第1の未硬化樹脂の量と同量の体積とすることが最も好ましいが、近似した体積量(概ね同量)であれば、硬化させるときの電波吸収材料の偏在現象を防止して未硬化複合樹脂層11の部分の電気定数の変化を抑制でき、電波吸収性能の低下も抑制できる。   FIG. 3 shows a third embodiment of the present invention. FIG. 3A illustrates a fiber aggregate layer 10 in which fibers are gathered in layers, and an uncured composite resin that is laminated on both sides (or one side) of the fiber aggregate layer 10 and includes a radio wave absorbing material and a first uncured resin. Although it is an uncured radio wave absorption laminate having a layered uncured composite resin layer 11 (in the form of a gel), the fiber assembly layer 10 is pre-impregnated with the second uncured resin before lamination. . Here, the amount of the second uncured resin soaked is the same volume as the amount of the first uncured resin soaked into the fiber assembly layer 10 when the second uncured resin is not soaked. However, if the volume is approximate (approximately the same amount), the uneven distribution phenomenon of the radio wave absorbing material when cured is prevented and the change in the electric constant of the uncured composite resin layer 11 is suppressed. It is possible to suppress a decrease in radio wave absorption performance.

繊維集合層10は、前記実施の形態1で例示した繊維又は繊維からなる糸が、複数一方向に並んだものであって良い。また、繊維又は繊維からなる糸からなる織布乃至不織布であってよい。   The fiber assembly layer 10 may be one in which a plurality of fibers exemplified in the first embodiment or yarns made of fibers are arranged in one direction. Further, it may be a woven fabric or a nonwoven fabric made of fibers or yarns made of fibers.

また、未硬化電波吸収積層材が、未硬化複合樹脂層11を繊維集合層10の両側に積層してなる場合において、未硬化複合樹脂層11の厚さ及び電気定数は、繊維集合層10の両側において異なるものであってもよい。   In the case where the uncured radio wave absorption laminate is formed by laminating the uncured composite resin layer 11 on both sides of the fiber assembly layer 10, the thickness and electric constant of the uncured composite resin layer 11 are the same as those of the fiber assembly layer 10. It may be different on both sides.

また、前記第2の未硬化樹脂は、未硬化複合樹脂であってもよい。その場合、前記第2の未硬化樹脂は、未硬化複合樹脂層11と同材質又は異なる未硬化複合樹脂であってもよい。但し、硬化工程を考慮すると、硬化条件(熱硬化型樹脂では、硬化工程で掛ける温度およびその時間変化など)が同じ材質であることが最も好ましく、硬化条件が同等の材質であることが好ましいと言える。   The second uncured resin may be an uncured composite resin. In that case, the second uncured resin may be the same material as or different from the uncured composite resin layer 11. However, in consideration of the curing process, it is most preferable that the curing conditions (in the thermosetting resin, the temperature applied in the curing process and the time change thereof) are the same material, and the curing conditions are preferably the same material. I can say that.

図3(A)のように繊維集合層10に第2の未硬化樹脂を予め染み込ませてから、未硬化複合樹脂層11と、繊維集合層10とを積層して未硬化電波吸収積層材を作製後、未硬化電波吸収積層材を硬化工程で硬化処理すれば、硬化過程において第1の未硬化樹脂が液状化しても繊維集合層10に第1の未硬化樹脂が流れ出ることはなく、硬化後の電波吸収積層材においても図3(B)のように電波吸収材料の偏在現象は発生しない。従って、所望の設計通りの電波吸収特性を精度よく実現できる電波吸収積層材、ひいてはこれを構成部材として有する電波吸収体が得られる。   As shown in FIG. 3 (A), the fiber assembly layer 10 is pre-impregnated with the second uncured resin, and then the uncured composite resin layer 11 and the fiber assembly layer 10 are laminated to form an uncured radio wave absorption laminate. After the production, if the uncured radio wave absorbing laminated material is cured in the curing process, the first uncured resin does not flow out to the fiber assembly layer 10 even if the first uncured resin is liquefied in the curing process. Even in the later radio wave absorbing laminated material, the uneven distribution phenomenon of the radio wave absorbing material does not occur as shown in FIG. Therefore, it is possible to obtain a radio wave absorption laminate material that can accurately realize the radio wave absorption characteristics as desired and, in turn, a radio wave absorber having this as a constituent member.

なお、実施の形態3において、繊維集合層10に染み込ませる第2の未硬化樹脂が未硬化複合樹脂である場合、前記第2の未硬化複合樹脂を、積層の前に硬化させることが好ましい。通常、未硬化複合樹脂層11と繊維集合層10は、ローラー等で加圧しながら積層する。この場合、加圧によって、未硬化複合樹脂層11の一部が繊維集合層10に食い込み、簡単には、未硬化複合樹脂層11と繊維集合層10を剥離できなくなる。しかし、繊維集合層10に未硬化複合樹脂を染み込ませた後に、未硬化複合樹脂層11と繊維集合層10を積層すると、食い込んだ未硬化複合樹脂層11と繊維集合層10間の摩擦が減り、容易に未硬化複合樹脂層11と繊維集合層10が剥離し、未硬化電波吸収積層材が一体でなくなってしまう。そこで、前記第2の未硬化樹脂が未硬化複合樹脂である場合には、未硬化電波吸収積層材の積層前に、繊維集合層10に染み込ませた未硬化複合樹脂を硬化させることが好ましい。その結果、未硬化複合樹脂層11と繊維集合層10を積層した際に、食い込む未硬化複合樹脂層11と繊維集合層10間の摩擦が大きくなり、未硬化電波吸収積層材を一体に保つことができる。   In the third embodiment, when the second uncured resin soaked into the fiber assembly layer 10 is an uncured composite resin, it is preferable to cure the second uncured composite resin before lamination. Usually, the uncured composite resin layer 11 and the fiber assembly layer 10 are laminated while being pressed with a roller or the like. In this case, a part of the uncured composite resin layer 11 bites into the fiber assembly layer 10 due to pressurization, and the uncured composite resin layer 11 and the fiber assembly layer 10 cannot be peeled off easily. However, if the uncured composite resin layer 11 and the fiber assembly layer 10 are laminated after the fiber assembly layer 10 has been impregnated with the uncured composite resin, the friction between the bite uncured composite resin layer 11 and the fiber assembly layer 10 is reduced. The uncured composite resin layer 11 and the fiber assembly layer 10 are easily peeled off, and the uncured radio wave absorption laminate is not integrated. Therefore, when the second uncured resin is an uncured composite resin, it is preferable to cure the uncured composite resin soaked in the fiber assembly layer 10 before the uncured radio wave absorption laminate is laminated. As a result, when the uncured composite resin layer 11 and the fiber assembly layer 10 are laminated, the friction between the uncured composite resin layer 11 and the fiber assembly layer 10 that bites in increases, and the uncured radio wave absorption laminate is kept integral. Can do.

実施の形態3の電波吸収積層材を用いて電波吸収体を作製する場合、電波吸収体は、前記未硬化電波吸収積層材が複数重ねられて硬化した電波吸収体であってもよい。積層する未硬化複合樹脂積層材は、すべて同一のものであってもよいし、厚さや電気定数、繊維集合層の種類が異なるものを組合わせてもよい。また、未硬化電波吸収積層材と未硬化電波反射材を積層した後に、硬化した電波吸収体であってもよい。さらに、未硬化電波吸収積層材が硬化した電波吸収積層材や、未硬化電波反射材が硬化した電波反射材を保護するための保護層が設けられていてもよい。また、保護層が、未硬化樹脂と誘電体繊維集合層からなる未硬化保護層であってもよい。この場合には、未硬化保護層、未硬化電波吸収積層材及び未硬化電波反射材とを積層した後に、硬化した電波吸収体であってもよい。必要に応じ、電波吸収体に塗装を施すこともできる。   When a radio wave absorber is manufactured using the radio wave absorption laminate of Embodiment 3, the radio wave absorber may be a radio wave absorber obtained by stacking and curing a plurality of the uncured radio wave absorption laminates. The uncured composite resin laminates to be laminated may all be the same, or may be a combination of materials having different thicknesses, electrical constants, and types of fiber assembly layers. Further, it may be a radio wave absorber that is cured after laminating an uncured radio wave absorption laminate and an uncured radio wave reflection material. Furthermore, a protective layer may be provided for protecting the radio wave absorbing laminated material obtained by curing the uncured radio wave absorbing laminated material and the radio wave reflecting material obtained by curing the uncured radio wave reflecting material. The protective layer may be an uncured protective layer composed of an uncured resin and a dielectric fiber assembly layer. In this case, it may be a radio wave absorber that is cured after laminating an uncured protective layer, an uncured radio wave absorption laminate, and an uncured radio wave reflection material. If necessary, the electromagnetic wave absorber can be coated.

実施の形態3において、電波吸収材料、繊維、樹脂等の各構成材料は前記実施の形態1と同様であればよい。   In the third embodiment, each constituent material such as a radio wave absorbing material, fiber, and resin may be the same as that in the first embodiment.

図4は本発明の実施の形態4を示す。図4(A)は、繊維が層状に集合した繊維集合層20と、繊維集合層20の両側(又は片側)に積層され、電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂を層状にした未硬化複合樹脂層21(ゲル状)とを有する未硬化電波吸収積層材であるが、繊維集合層20と未硬化複合樹脂層21との間に、第2の未硬化樹脂を層状にした未硬化樹脂層22(ゲル状)を配して積層したものである。ここで、前記未硬化樹脂層22の体積は、この未硬化樹脂層が存在しない場合において、未硬化電波吸収積層材の積層後(硬化過程を含む)に、未硬化複合樹脂層21から繊維集合層20に染み込む(流れ出る)第1の未硬化樹脂と同量の体積であることが好ましいが、近似した体積量(概ね同量)であれば、硬化させるときの電波吸収材料の偏在現象を防止して未硬化複合樹脂層部分の電気定数の変化を抑制でき、電波吸収性能の低下も抑制できる。   FIG. 4 shows a fourth embodiment of the present invention. FIG. 4A shows a fiber aggregate layer 20 in which fibers are gathered in layers, and an uncured composite resin that is laminated on both sides (or one side) of the fiber aggregate layer 20 and includes a radio wave absorbing material and a first uncured resin. Although it is an uncured radio wave absorption laminate having a layered uncured composite resin layer 21 (gel), a second uncured resin is layered between the fiber assembly layer 20 and the uncured composite resin layer 21. The uncured resin layer 22 (gel form) is arranged and laminated. Here, the volume of the uncured resin layer 22 is the fiber assembly from the uncured composite resin layer 21 after the uncured radio wave absorption laminate is laminated (including the curing process) when the uncured resin layer is not present. The volume of the first uncured resin that permeates (flows out) into the layer 20 is preferably the same volume, but the approximate volume (approximately the same) prevents the uneven distribution of the radio wave absorbing material when cured. Thus, a change in the electric constant of the uncured composite resin layer portion can be suppressed, and a decrease in radio wave absorption performance can also be suppressed.

繊維集合層や未硬化複合樹脂層の材質は前記実施の形態3と同様であればよい。また、未硬化樹脂層22をなす第2の未硬化樹脂と、未硬化複合樹脂層21の基材である第1の未硬化樹脂は同材質又は異なる材質であってもよい。但し、硬化工程を考慮すると、硬化条件(熱硬化型樹脂では、硬化工程で掛ける温度およびその時間変化など)が同じ材質であることが最も好ましく、硬化条件が同等の材質であることが好ましいと言える。   The material of the fiber assembly layer and the uncured composite resin layer may be the same as in the third embodiment. The second uncured resin that forms the uncured resin layer 22 and the first uncured resin that is the base material of the uncured composite resin layer 21 may be the same material or different materials. However, in consideration of the curing process, it is most preferable that the curing conditions (in the thermosetting resin, the temperature applied in the curing process and the time change thereof) are the same material, and the curing conditions are preferably the same material. I can say that.

図4(A)のように繊維集合層20に、未硬化樹脂層22を介在させて未硬化複合樹脂層21を積層して未硬化電波吸収積層材を作製後、未硬化電波吸収積層材を硬化工程で硬化処理すれば、硬化過程において未硬化樹脂層22が繊維集合層20に先に染み込み、この結果、第1の未硬化樹脂が流れ出ることはなく、硬化後の電波吸収積層材においても図4(B)のように電波吸収材料の偏在現象は発生しない。   As shown in FIG. 4 (A), an uncured radio wave absorbing laminate material is produced by laminating an uncured composite resin layer 21 with an uncured resin layer 22 interposed in the fiber assembly layer 20, and then preparing the uncured radio wave absorbing laminate material. If the curing process is performed in the curing process, the uncured resin layer 22 penetrates into the fiber assembly layer 20 in the curing process, and as a result, the first uncured resin does not flow out. The uneven distribution phenomenon of the electromagnetic wave absorbing material does not occur as shown in FIG.

例えば、未硬化複合樹脂層21の第1の未硬化樹脂及び未硬化樹脂層22の第2の未硬化樹脂として、熱硬化型の未硬化樹脂を用いた場合においては、加熱によって、未硬化複合樹脂層21の第1の未硬化樹脂及び未硬化樹脂層22をなす第2の未硬化樹脂が液状化する。繊維集合層20のより近傍にある第2の未硬化樹脂が、繊維集合層20に染み込むことによって、第1の未硬化樹脂は繊維集合層20に染み込むことがなくなり、未硬化複合樹脂層部分の電気定数の変化を抑制でき、電波吸収性能の低下も抑制できる。   For example, in the case where a thermosetting uncured resin is used as the first uncured resin of the uncured composite resin layer 21 and the second uncured resin of the uncured resin layer 22, the uncured composite is heated. The first uncured resin of the resin layer 21 and the second uncured resin forming the uncured resin layer 22 are liquefied. When the second uncured resin closer to the fiber assembly layer 20 soaks into the fiber assembly layer 20, the first uncured resin does not soak into the fiber assembly layer 20, and the uncured composite resin layer portion A change in electrical constant can be suppressed, and a decrease in radio wave absorption performance can also be suppressed.

従って、所望の設計通りの電波吸収特性を精度よく実現できる電波吸収積層材、ひいてはこれを構成部材として有する電波吸収体が得られる。この電波吸収体は、電波反射体によって裏打ちされたものであってもよいし、さらに、電波吸収体に塗装を施してもよい。   Therefore, it is possible to obtain a radio wave absorption laminate material that can accurately realize the radio wave absorption characteristics as desired and, in turn, a radio wave absorber having this as a constituent member. The radio wave absorber may be backed by a radio wave reflector, or the radio wave absorber may be coated.

実施の形態4の電波吸収積層材を用いて電波吸収体を作製する場合、電波吸収体は、前記未硬化電波吸収積層材が複数重ねられて硬化した電波吸収体であってもよい。積層する未硬化複合樹脂積層材は、すべて同一のものであってもよいし、厚さや電気定数、繊維集合層の種類が異なるものを組合わせてもよい。また、未硬化電波吸収積層材と未硬化電波反射材を積層した後に、硬化した電波吸収体であってもよい。さらに、未硬化電波吸収積層材が硬化した電波吸収積層材や、未硬化電波反射材が硬化した電波反射材を保護するための保護層が設けられていてもよい。また、保護層が、未硬化樹脂と誘電体繊維集合層からなる未硬化保護層であってもよい。この場合には、未硬化保護層、未硬化電波吸収積層材及び未硬化電波反射材とを積層した後に、硬化した電波吸収体であってもよい。必要に応じ、電波吸収体に塗装を施すこともできる。   In the case where a radio wave absorber is manufactured using the radio wave absorption laminate of the fourth embodiment, the radio wave absorber may be a radio wave absorber in which a plurality of the uncured radio wave absorption laminates are stacked and cured. The uncured composite resin laminates to be laminated may all be the same, or may be a combination of materials having different thicknesses, electrical constants, and types of fiber assembly layers. Further, it may be a radio wave absorber that is cured after laminating an uncured radio wave absorption laminate and an uncured radio wave reflection material. Furthermore, a protective layer may be provided for protecting the radio wave absorbing laminated material obtained by curing the uncured radio wave absorbing laminated material and the radio wave reflecting material obtained by curing the uncured radio wave reflecting material. The protective layer may be an uncured protective layer composed of an uncured resin and a dielectric fiber assembly layer. In this case, it may be a radio wave absorber that is cured after laminating an uncured protective layer, an uncured radio wave absorption laminate, and an uncured radio wave reflector. If necessary, the electromagnetic wave absorber can be coated.

実施の形態4において、電波吸収材料、繊維、樹脂等の各構成材料は前記実施の形態1と、繊維集合層は前記実施の形態3と同様であればよい。   In the fourth embodiment, each constituent material such as a radio wave absorbing material, fiber, and resin may be the same as that in the first embodiment, and the fiber assembly layer may be the same as in the third embodiment.

図5は、FRP型電波吸収体で、繊維が集合した繊維集合部が存在する場合において、繊維集合部近傍であるほど電波吸収材料の密度が増加する偏在現象、及び本発明の実施の形態4によって、この偏在を防止する例を説明するものである。   FIG. 5 is an FRP type electromagnetic wave absorber, and when there is a fiber aggregate part in which fibers are aggregated, the uneven distribution phenomenon in which the density of the radio wave absorbing material increases as it is near the fiber aggregate part, and Embodiment 4 of the present invention Thus, an example of preventing this uneven distribution will be described.

まず、硬化前の図5(A−1)は、未硬化複合樹脂層と繊維集合層とを積層した未硬化電波吸収積層材の積層後(硬化過程を含む)に、未硬化複合樹脂層の未硬化樹脂の一部が繊維集合層に染み出すことを考慮し、未硬化複合樹脂の未硬化樹脂の量を、前記染み出す分だけ多くした未硬化電波吸収材の断面図である。硬化前の図5(A−1)の未硬化電波吸収積層材が硬化すると、硬化後の図5(A−2)になるものと考えられるが、実際には、積層後(硬化過程を含む)において、繊維集合層近傍であるほど、未硬化複合樹脂層の未硬化樹脂は繊維集合層に染み出すので、硬化後の図5(B)に示した断面図のようになる。   First, FIG. 5 (A-1) before curing shows the uncured composite resin layer after lamination (including the curing process) of the uncured radio wave absorption laminate in which the uncured composite resin layer and the fiber assembly layer are laminated. FIG. 4 is a cross-sectional view of an uncured radio wave absorber in which the amount of uncured resin of the uncured composite resin is increased by the amount of the uncured resin in consideration that part of the uncured resin oozes out into the fiber assembly layer. When the uncured radio wave absorbing laminated material of FIG. 5 (A-1) before curing is cured, it is considered that it becomes FIG. 5 (A-2) after curing, but actually, after lamination (including the curing process) ), The closer to the fiber assembly layer, the more the uncured resin of the uncured composite resin layer oozes out to the fiber assembly layer, so that the cross-sectional view shown in FIG.

つまり、硬化前の図5(A−1)状態(電波吸収材料間の間隔L1とL2がほぼ等しい)から、硬化後の図5(A−2)状態(電波吸収材料間の間隔L1’(<L1)とL2’(<L2)がほぼ等しい)に変化せず、硬化後は図5(B)状態(電波吸収材料間の間隔L1”(≦L1)よりもL2”(<L2)が狭い)となってしまい、単に未硬化複合樹脂中の未硬化樹脂の量を染み出し相当量分多くしても電波吸収材料の偏在現象を回避できない。   That is, from the state of FIG. 5A-1 before curing (intervals L1 and L2 between the radio wave absorbing materials are substantially equal), the state of FIG. 5A-2 after curing (interval L1 ′ between radio wave absorbing materials ( <L1) and L2 ′ (<L2) are substantially equal), and after curing, the state of FIG. 5B (L2 ″ (<L2) is greater than the distance L1 ″ (≦ L1) between the radio wave absorbing materials) Even if the amount of the uncured resin in the uncured composite resin is simply exuded and increased by a considerable amount, the uneven distribution phenomenon of the radio wave absorbing material cannot be avoided.

図5(C−1),(C−2)は本発明の実施の形態4の場合であり、繊維集合層の両側に未硬化樹脂層を介在させて未硬化複合樹脂層が積層されている。この未硬化樹脂層の体積は、この未硬化樹脂層が存在しない場合において、未硬化電波吸収積層材の積層後(硬化過程を含む)に、未硬化複合樹脂層から繊維集合層に流れ出る未硬化樹脂と同量の体積量乃至それに近似した体積量となっている。そのため、硬化前の図5(C−1)状態と硬化後の図5(C−2)状態において、電波吸収材料間の間隔L1’とL2’を殆ど同じとすることができる。   FIGS. 5C-1 and 5C-2 show the case of Embodiment 4 of the present invention, in which an uncured composite resin layer is laminated on both sides of the fiber assembly layer with an uncured resin layer interposed therebetween. . The volume of the uncured resin layer is the amount of uncured resin that flows out from the uncured composite resin layer to the fiber assembly layer after the uncured radio wave absorption laminate is laminated (including the curing process) in the absence of the uncured resin layer. The volume amount is the same as that of the resin or a volume amount close to it. Therefore, in the state of FIG. 5 (C-1) before curing and the state of FIG. 5 (C-2) after curing, the distances L1 'and L2' between the radio wave absorbing materials can be made almost the same.

図6は本発明の実施の形態5であって、実施の形態4で述べた電波吸収積層材を複数層備える電波吸収体を示す。図6(A)の硬化前においては、繊維集合層20の両側に未硬化樹脂層22を介在させて未硬化複合樹脂層21を積層した未硬化電波吸収積層材30を4層重ね、電波到来方向の反対側に電波反射体として、未硬化電波反射材40を積層し、さらに電波到来方向側に未硬化保護層50を積層した未硬化の電波吸収体である。硬化過程において、未硬化電波吸収積層材30中の未硬化樹脂層22は繊維集合層20に染み込み、電波反射材と未硬化複合樹脂との積層構造である未硬化電波反射材40や、誘電体繊維集合層と未硬化複合樹脂との積層構造である未硬化保護層50の未硬化複合樹脂も、電波反射材や誘電体繊維集合層に染み込むため、硬化後の電波吸収体の厚さは、硬化前よりも薄いものとなっている。   FIG. 6 is a fifth embodiment of the present invention, and shows a radio wave absorber including a plurality of radio wave absorption laminates described in the fourth embodiment. Before the curing of FIG. 6A, four layers of uncured radio wave absorption laminates 30 in which the uncured composite resin layer 21 is laminated with the uncured resin layer 22 interposed on both sides of the fiber assembly layer 20 are stacked, and radio waves arrive. An uncured radio wave absorber in which an uncured radio wave reflector 40 is laminated as a radio wave reflector on the opposite side of the direction, and an uncured protective layer 50 is further laminated on the radio wave arrival direction side. In the curing process, the uncured resin layer 22 in the uncured radio wave absorption laminate 30 soaks into the fiber assembly layer 20, and the uncured radio wave reflector 40, which is a laminate structure of the radio wave reflector and the uncured composite resin, or a dielectric Since the uncured composite resin of the uncured protective layer 50, which is a laminated structure of the fiber assembly layer and the uncured composite resin, also soaks into the radio wave reflector and the dielectric fiber assembly layer, the thickness of the cured radio wave absorber is It is thinner than before curing.

なお、図6において、電波吸収積層材を構成する繊維集合層の斜線の向きが異なっているが、これは繊維の向きが異なることを示している。格子状に織られた繊維であれば、平面内で45°傾けて積層することによって、等方性に近いの強度を実現することが可能である。   In addition, in FIG. 6, although the direction of the oblique line of the fiber assembly layer which comprises an electromagnetic wave absorption laminated material differs, this has shown that the direction of a fiber differs. In the case of fibers woven in a lattice shape, it is possible to realize strength close to isotropic by laminating at an angle of 45 ° in a plane.

図7は、図6の本発明に係る実施の形態5で述べたような、電波反射体で裏打ちした電波吸収体の電波吸収特性の例を示す。この図において、点線で示す特性(偏在防止なし)は、図5(A−1)から(A−2)となるように、未硬化電波吸収積層材の積層後(硬化過程を含む)に、未硬化複合樹脂層の未硬化樹脂の一部が繊維集合層に染み出すことを考慮するが、図5(B)のように、硬化後に電波吸収材料が偏在することは考慮せずに、周波数fc付近で電波吸収特性が良好になるように設計したとき、実際には図5(B)のように電波吸収材料の偏在が生じた場合の電波吸収特性を示している。電波吸収特性が最大となる周波数が、fcよりも低周波側にシフトし、電波吸収特性の最大値も低下している。   FIG. 7 shows an example of radio wave absorption characteristics of a radio wave absorber backed by a radio wave reflector as described in the fifth embodiment of the present invention in FIG. In this figure, the characteristic indicated by the dotted line (without uneven distribution prevention) is as shown in FIG. 5 (A-1) to (A-2) after lamination of the uncured radio wave absorbing laminate material (including the curing process), Considering that a part of the uncured resin of the uncured composite resin layer oozes out to the fiber assembly layer, as shown in FIG. 5B, the frequency absorbing material is not considered to be unevenly distributed after curing. When designed so that the radio wave absorption characteristics are good near fc, the radio wave absorption characteristics when the radio wave absorbing material is unevenly distributed as shown in FIG. The frequency at which the radio wave absorption characteristic is maximum is shifted to a lower frequency side than fc, and the maximum value of the radio wave absorption characteristic is also reduced.

図7の実線で示す特性(偏在防止)は、図5(A−1)のように、未硬化電波吸収積層材の積層後(硬化過程を含む)に、未硬化複合樹脂層の未硬化樹脂の一部が繊維集合層に染み出すことを考慮し、図5(C−1)から(C−2)となるように、繊維集合層の両側に未硬化樹脂層を介在させて未硬化複合樹脂層を積層した未硬化電波吸収積層材を用いて、周波数fc付近で電波吸収特性が良好になるように設計した例である。実際に周波数fc付近で電波吸収特性が良好となり、所望の(予め、計算設計において予測した通りの)電波吸収特性を実現している。   The characteristic shown by the solid line in FIG. 7 (prevention of uneven distribution) is the uncured resin of the uncured composite resin layer after the uncured radio wave absorbing laminate material is laminated (including the curing process) as shown in FIG. In consideration of the fact that a part of the fiber oozes out into the fiber aggregate layer, an uncured composite is obtained by interposing an uncured resin layer on both sides of the fiber aggregate layer as shown in FIGS. 5 (C-1) to (C-2). This is an example in which an uncured radio wave absorption laminated material in which a resin layer is laminated is used so as to improve the radio wave absorption characteristics near the frequency fc. Actually, the radio wave absorption characteristic is good in the vicinity of the frequency fc, and a desired radio wave absorption characteristic (as previously predicted in the calculation design) is realized.

また、図5(A−1),(A−2)のように、未硬化電波吸収積層材の積層後(硬化過程を含む)に、未硬化複合樹脂層の未硬化樹脂の一部が繊維集合層に染み出すことを考慮し、かつ図5(B)のように、硬化後に電波吸収材料が偏在することも考慮して設計した場合には、図7の実線で示す特性(偏在防止)とほぼ同等の電波吸収特性を実現し得る場合(上記偏在現象による複合樹脂の電気定数の変化が比較的小さい場合)もあるが、電波吸収体の総厚さは本発明を適用した場合よりも厚くなってしまう。   Further, as shown in FIGS. 5A-1 and 5A-2, after the uncured radio wave absorption laminate is laminated (including the curing process), a part of the uncured resin of the uncured composite resin layer is a fiber. In the case of designing in consideration of oozing into the aggregate layer and considering that the radio wave absorbing material is unevenly distributed after curing as shown in FIG. 5 (B), the characteristic shown by the solid line in FIG. 7 (preventing uneven distribution) In some cases (when the change in the electrical constant of the composite resin due to the uneven distribution phenomenon is relatively small), the total thickness of the wave absorber is more than that when the present invention is applied. It will be thick.

以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。   Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.

本発明の実施の形態1であって、未硬化電波吸収材の硬化前と硬化後を示す模式的拡大平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is Embodiment 1 of this invention, Comprising: It is a typical enlarged plan view which shows before hardening after an unhardened electromagnetic wave absorber. 本発明の実施の形態2であって、未硬化電波吸収材の硬化前と硬化後を示す模式的拡大平面図である。It is Embodiment 2 of this invention, Comprising: It is a typical enlarged plan view which shows after hardening of an uncured electromagnetic wave absorber, and after hardening. 本発明の実施の形態3であって、未硬化電波吸収積層材の硬化前と硬化後を示す断面図である。It is Embodiment 3 of this invention, Comprising: It is sectional drawing which shows before hardening after an unhardened electromagnetic wave absorption laminated material, and after hardening. 本発明の実施の形態4であって、未硬化電波吸収積層材の硬化前と硬化後を示す断面図である。It is Embodiment 4 of this invention, Comprising: It is sectional drawing which shows before hardening after an unhardened electromagnetic wave absorption laminated material. 繊維集合部が存在する場合に電波吸収材料の偏在現象が生じるが、本発明の実施の形態4によって、この偏在を防止する例を説明する説明図である。FIG. 10 is an explanatory diagram for explaining an example in which the uneven distribution phenomenon of the radio wave absorbing material occurs when a fiber assembly portion is present, according to the fourth embodiment of the present invention. 本発明の実施の形態5であり、実施の形態4の電波吸収積層材を複数層有する電波吸収体の例であって、硬化前と硬化後を示す断面図である。It is Embodiment 5 of this invention, is an example of the electromagnetic wave absorber which has multiple layers of the electromagnetic wave absorption laminated material of Embodiment 4, Comprising: It is sectional drawing which shows before hardening and after hardening. 電波反射体で裏打ちした電波吸収体の電波吸収特性であり、本発明の偏在防止を図った場合と偏在防止無しの場合とを対比して示す周波数特性図である。It is a radio wave absorption characteristic of a radio wave absorber backed by a radio wave reflector, and is a frequency characteristic diagram showing a comparison between the case of preventing uneven distribution and the case of preventing uneven distribution of the present invention. 従来の未硬化電波吸収材の硬化前と硬化後を示す模式的拡大平面図である。It is a typical enlarged plan view which shows before the hardening of the conventional uncured wave absorber, and after hardening. 従来の未硬化電波吸収積層材の硬化前と硬化後を示す断面図である。It is sectional drawing which shows before the hardening of the conventional uncured electromagnetic wave absorption laminated material, and after hardening.

符号の説明Explanation of symbols

1 未硬化複合樹脂
2 繊維集合体
3 未硬化樹脂
10,20 繊維集合層
11,21 未硬化複合樹脂層
22 未硬化樹脂層
30 未硬化電波吸収積層材
40 未硬化電波反射材
50 未硬化保護層
DESCRIPTION OF SYMBOLS 1 Uncured composite resin 2 Fiber assembly 3 Uncured resin 10,20 Fiber assembly layer
11, 21 Uncured composite resin layer 22 Uncured resin layer 30 Uncured radio wave absorbing laminate 40 Uncured radio wave reflector 50 Uncured protective layer

Claims (16)

電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂と、繊維が集合した繊維集合体とを混合した未硬化電波吸収材であって、
混合の前に、前記繊維集合体に第2の未硬化樹脂を染み込ませたことを特徴とする未硬化電波吸収材。
An uncured radio wave absorber in which an uncured composite resin including a radio wave absorbing material and a first uncured resin and a fiber assembly in which fibers are aggregated are mixed,
An uncured radio wave absorber, wherein a second uncured resin is impregnated into the fiber assembly before mixing.
前記第2の未硬化樹脂を染み込ませないと仮定したときに、前記繊維集合体に染み込む前記第1の未硬化樹脂の体積量に近似した体積量の前記第2の未硬化樹脂を、前記繊維集合体に染み込ませたことを特徴とする請求項1記載の未硬化電波吸収材。   When it is assumed that the second uncured resin is not soaked, the volume of the second uncured resin approximated to the volume of the first uncured resin soaked into the fiber assembly is the fiber. The uncured radio wave absorber according to claim 1, wherein the uncured radio wave absorber is infiltrated into the aggregate. 電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂と、繊維が集合した繊維集合体とを混合した未硬化電波吸収材であって、
混合の前に、前記繊維集合体を第2の未硬化樹脂で包んだことを特徴とする未硬化電波吸収材。
An uncured radio wave absorber in which an uncured composite resin including a radio wave absorbing material and a first uncured resin and a fiber assembly in which fibers are aggregated are mixed,
An uncured radio wave absorber, wherein the fiber assembly is wrapped with a second uncured resin before mixing.
前記第2の未硬化樹脂で包まないと仮定したときに、前記繊維集合体に染み込む前記第1の未硬化樹脂の体積量に近似した体積量の前記第2の未硬化樹脂で、前記繊維集合体を包んだことを特徴とする請求項3記載の未硬化電波吸収材。   When it is assumed that the second uncured resin is not encased, the fiber assembly is composed of the second uncured resin in a volume amount approximate to the volume amount of the first uncured resin soaking into the fiber assembly. The uncured radio wave absorber according to claim 3, wherein the body is wrapped. 請求項1,2,3又は4記載の未硬化電波吸収材を硬化させた電波吸収材を含むことを特徴とする電波吸収体。   A radio wave absorber comprising a radio wave absorber obtained by curing the uncured radio wave absorber according to claim 1, 2, 3, or 4. 繊維が集合した繊維集合体に第2の未硬化樹脂を染み込ませる工程と、
電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂と、前記第2の未硬化樹脂が染み込んだ繊維集合体とを混合して未硬化電波吸収材を作製する工程と、
前記未硬化電波吸収材を硬化させる硬化工程とを備えることを特徴とする電波吸収体の製造方法。
Soaking the second uncured resin into the fiber assembly in which the fibers are assembled;
A step of mixing an uncured composite resin containing a radio wave absorbing material and a first uncured resin and a fiber assembly infiltrated with the second uncured resin to produce an uncured radio wave absorber;
And a curing step of curing the uncured radio wave absorber.
繊維が集合した繊維集合体を第2の未硬化樹脂で包む工程と、
電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂と、前記第2の未硬化樹脂で包んだ繊維集合体とを混合して未硬化電波吸収材を作製する工程と、
前記未硬化電波吸収材を硬化させる硬化工程とを備えることを特徴とする電波吸収体の製造方法。
Wrapping a fiber assembly in which fibers are aggregated with a second uncured resin;
A step of producing an uncured radio wave absorber by mixing an uncured composite resin containing a radio wave absorber material and a first uncured resin and a fiber assembly wrapped with the second uncured resin;
And a curing step of curing the uncured radio wave absorber.
前記硬化工程において、前記第2の未硬化樹脂が前記繊維集合体に染み込むことを特徴とする請求項7記載の電波吸収体の製造方法。   The method of manufacturing a radio wave absorber according to claim 7, wherein in the curing step, the second uncured resin soaks into the fiber assembly. 繊維が集合した繊維集合層と、
前記繊維集合層の片側又は両側に積層され、電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂を層状にした未硬化複合樹脂層とを有し、
積層の前に、前記繊維集合層に第2の未硬化樹脂を染み込ませたことを特徴とする未硬化電波吸収積層材。
A fiber assembly layer in which fibers are assembled;
An uncured composite resin layer laminated on one side or both sides of the fiber assembly layer and layered with an uncured composite resin containing a radio wave absorbing material and a first uncured resin;
An uncured radio wave absorbing laminate material, wherein a second uncured resin is impregnated into the fiber assembly layer before lamination.
前記第2の未硬化樹脂を染み込ませないと仮定したときに、前記繊維集合層に染み込む前記第1の未硬化樹脂の体積量に近似した体積量の前記第2の未硬化樹脂を、前記繊維集合層に染み込ませたことを特徴とする請求項9記載の未硬化電波吸収積層材。   When it is assumed that the second uncured resin is not soaked, the volume of the second uncured resin approximated to the volume of the first uncured resin soaked into the fiber assembly layer is changed to the fiber. The uncured radio wave absorption laminate according to claim 9, wherein the uncured radio wave absorption laminate is infiltrated into the aggregate layer. 前記第2の未硬化樹脂は、未硬化複合樹脂であり、該未硬化複合樹脂を、積層の前に硬化させたことを特徴とする請求項9又は10記載の未硬化電波吸収積層材。   The uncured radio wave absorption laminate according to claim 9 or 10, wherein the second uncured resin is an uncured composite resin, and the uncured composite resin is cured before lamination. 繊維が集合した繊維集合層と、
前記繊維集合層の片側又は両側に積層され、電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂を層状にした未硬化複合樹脂層とを有し、
前記繊維集合層と前記未硬化複合樹脂層との間に、第2の未硬化樹脂を層状にした未硬化樹脂層を配したことを特徴とする未硬化電波吸収積層材。
A fiber assembly layer in which fibers are assembled;
An uncured composite resin layer laminated on one side or both sides of the fiber assembly layer and layered with an uncured composite resin containing a radio wave absorbing material and a first uncured resin;
An uncured radio wave absorption laminate, wherein an uncured resin layer in which a second uncured resin is layered is disposed between the fiber assembly layer and the uncured composite resin layer.
請求項9,10,11又は12記載の未硬化電波吸収積層材を硬化させた電波吸収積層材を少なくとも1層含むことを特徴とする電波吸収体。   13. A radio wave absorber comprising at least one radio wave absorbing laminate material obtained by curing the uncured radio wave absorbing laminate material according to claim 9, 10, 11 or 12. 繊維が集合した繊維集合層に第2の未硬化樹脂を染み込ませる工程と、
電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂を層状にした未硬化複合樹脂層を、前記第2の未硬化樹脂を染み込ませた繊維集合層の片側又は両側に積層し、未硬化電波吸収積層材を作製する工程と、
前記未硬化電波吸収積層材を硬化させる硬化工程とを備えることを特徴とする電波吸収体の製造方法。
Soaking the second uncured resin into the fiber assembly layer in which the fibers are assembled;
An uncured composite resin layer formed by laminating an uncured composite resin containing a radio wave absorbing material and a first uncured resin is laminated on one or both sides of the fiber assembly layer soaked with the second uncured resin, Producing a cured radio wave absorbing laminate;
And a curing step of curing the uncured radio wave absorbing laminate material.
繊維が集合した繊維集合層の片側又は両側に、電波吸収材料及び第1の未硬化樹脂を含む未硬化複合樹脂を層状にした未硬化複合樹脂層を、第2の未硬化樹脂を層状にした未硬化樹脂層を介在させて積層し、未硬化電波吸収積層材を作製する工程と、
前記未硬化電波吸収積層材を硬化させる硬化工程とを備えることを特徴とする電波吸収体の製造方法。
An uncured composite resin layer in which an uncured composite resin containing a radio wave absorbing material and a first uncured resin is layered on one side or both sides of a fiber aggregate layer in which fibers are aggregated, and a second uncured resin is layered Laminating with an uncured resin layer interposed, and producing an uncured radio wave absorption laminate,
And a curing step of curing the uncured radio wave absorbing laminate material.
前記硬化工程において、前記未硬化樹脂層の第2の未硬化樹脂は、前記繊維集合層に染み込むことを特徴とする請求項15記載の電波吸収体の製造方法。   16. The method for manufacturing a radio wave absorber according to claim 15, wherein in the curing step, the second uncured resin of the uncured resin layer soaks into the fiber assembly layer.
JP2006084380A 2006-03-27 2006-03-27 Radio wave absorbing laminate, radio wave absorber, and method of manufacturing radio wave absorber Active JP5105043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006084380A JP5105043B2 (en) 2006-03-27 2006-03-27 Radio wave absorbing laminate, radio wave absorber, and method of manufacturing radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006084380A JP5105043B2 (en) 2006-03-27 2006-03-27 Radio wave absorbing laminate, radio wave absorber, and method of manufacturing radio wave absorber

Publications (2)

Publication Number Publication Date
JP2007258623A true JP2007258623A (en) 2007-10-04
JP5105043B2 JP5105043B2 (en) 2012-12-19

Family

ID=38632529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006084380A Active JP5105043B2 (en) 2006-03-27 2006-03-27 Radio wave absorbing laminate, radio wave absorber, and method of manufacturing radio wave absorber

Country Status (1)

Country Link
JP (1) JP5105043B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521204A (en) * 1978-08-01 1980-02-15 Sumitomo Bakelite Co Thermal hardening resin laminated structure and its preparation
JPS586200A (en) * 1981-07-02 1983-01-13 防衛庁技術研究本部長 Radio wave absorber
JPS6268731A (en) * 1985-09-20 1987-03-28 Dynic Corp Electromagnetic wave shielding material
JPH06232581A (en) * 1993-02-01 1994-08-19 Yokohama Rubber Co Ltd:The Absorber for millimeter radiowave
JPH06306201A (en) * 1993-04-23 1994-11-01 Toyo Ink Mfg Co Ltd Electromagnetic wave shielding resin composition
JPH1022683A (en) * 1996-07-01 1998-01-23 Matsushita Electric Works Ltd Electromagnetic wave shielding sheet, electromagnetic wave shielding material, printed circuit board, and electromagnetic wave shielding method
JP2000244178A (en) * 1999-02-23 2000-09-08 Hitachi Maxell Ltd Electromagnetic wave interference preventive body
JP2005150461A (en) * 2003-11-17 2005-06-09 Yuka Denshi Co Ltd Wave absorber
JP2006080414A (en) * 2004-09-13 2006-03-23 Nec Tokin Corp Radio wave absorber
JP2006097304A (en) * 2004-09-29 2006-04-13 Toray Kensetsu Kk Radio wave absorbing frp panel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521204A (en) * 1978-08-01 1980-02-15 Sumitomo Bakelite Co Thermal hardening resin laminated structure and its preparation
JPS586200A (en) * 1981-07-02 1983-01-13 防衛庁技術研究本部長 Radio wave absorber
JPS6268731A (en) * 1985-09-20 1987-03-28 Dynic Corp Electromagnetic wave shielding material
JPH06232581A (en) * 1993-02-01 1994-08-19 Yokohama Rubber Co Ltd:The Absorber for millimeter radiowave
JPH06306201A (en) * 1993-04-23 1994-11-01 Toyo Ink Mfg Co Ltd Electromagnetic wave shielding resin composition
JPH1022683A (en) * 1996-07-01 1998-01-23 Matsushita Electric Works Ltd Electromagnetic wave shielding sheet, electromagnetic wave shielding material, printed circuit board, and electromagnetic wave shielding method
JP2000244178A (en) * 1999-02-23 2000-09-08 Hitachi Maxell Ltd Electromagnetic wave interference preventive body
JP2005150461A (en) * 2003-11-17 2005-06-09 Yuka Denshi Co Ltd Wave absorber
JP2006080414A (en) * 2004-09-13 2006-03-23 Nec Tokin Corp Radio wave absorber
JP2006097304A (en) * 2004-09-29 2006-04-13 Toray Kensetsu Kk Radio wave absorbing frp panel

Also Published As

Publication number Publication date
JP5105043B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
US20160023433A1 (en) Thermoplastic composite prepreg for automated fiber placement
CN105751590A (en) Honeycomb sandwiched composite material with wave absorbing function and preparation method of honeycomb core composite material
RU2420407C2 (en) Thin-layer laminates
JP5172983B2 (en) Bonding structure between fiber reinforced resin and metal, and bonding method between fiber reinforced resin and metal
KR20110017843A (en) Reinforced stiffeners and method for making the same
CN104051145A (en) Inductor and method for manufacturing the same
US11600929B2 (en) Method and apparatus for moldable material for terrestrial, marine, aeronautical and space applications which includes an ability to reflect radio frequency energy and which may be moldable into a parabolic or radio frequency reflector to obviate the need for reflector construction techniques which produce layers susceptible to layer separation and susceptible to fracture under extreme circumstances
KR101578474B1 (en) Method of manufacturing customized radar absorbing structure having variable electromagnetic characteristics using single composite and Radar absorbing structure thereby
CN111186186A (en) Double-layer skin wave-absorbing composite material sandwich structure and preparation method thereof
WO2016194671A1 (en) Resin composite material, curing method thereof, and resin molded product
KR101491129B1 (en) Lightweight multi-layer and method for making the same
WO2015153475A1 (en) Systems and methods of producing a structural and non-structural homogeneous and hybrid composite panels, prepregs, hand layup panels with &#34;basalt&#34; fiber, various composite materials, and additives
CN108091998A (en) A kind of V-type Radome Antenna Structure and preparation method
JP6377268B2 (en) Honeycomb core, honeycomb sandwich structure, and honeycomb core manufacturing method
JP5105043B2 (en) Radio wave absorbing laminate, radio wave absorber, and method of manufacturing radio wave absorber
WO2015005125A1 (en) Method for producing reinforcing structure
JP2007031165A (en) Electrical bonding structure of carbon fiber-reinforced plastic product, and its production method
JPWO2019203893A5 (en)
JP2019199062A5 (en)
JP2009019089A (en) Fiber-reinforced plastic and reinforced heat-insulating composite material using the same
JP2006192629A (en) Structural member and its forming method
CN113400680A (en) Method for manufacturing multilayer glass fiber reinforced epoxy composite bushing
JPS62265799A (en) Manufacture of multilayer wave absorber
CN106340715A (en) Antenna device and manufacturing method thereof
CN106340721A (en) Antenna casing manufacturing method, antenna system and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5105043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3