JP6377268B2 - Honeycomb core, honeycomb sandwich structure, and honeycomb core manufacturing method - Google Patents

Honeycomb core, honeycomb sandwich structure, and honeycomb core manufacturing method Download PDF

Info

Publication number
JP6377268B2
JP6377268B2 JP2017519030A JP2017519030A JP6377268B2 JP 6377268 B2 JP6377268 B2 JP 6377268B2 JP 2017519030 A JP2017519030 A JP 2017519030A JP 2017519030 A JP2017519030 A JP 2017519030A JP 6377268 B2 JP6377268 B2 JP 6377268B2
Authority
JP
Japan
Prior art keywords
fiber
honeycomb core
axis direction
degrees
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017519030A
Other languages
Japanese (ja)
Other versions
JPWO2016185743A1 (en
Inventor
一史 関根
一史 関根
雅大 宮下
雅大 宮下
広紀 小林
広紀 小林
久米 将実
将実 久米
三朗 村瀬
三朗 村瀬
茂 有木
茂 有木
康三 早田
康三 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016185743A1 publication Critical patent/JPWO2016185743A1/en
Application granted granted Critical
Publication of JP6377268B2 publication Critical patent/JP6377268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D24/00Producing articles with hollow walls
    • B29D24/002Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled
    • B29D24/005Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled the structure having joined ribs, e.g. honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/462Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0089Producing honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators

Description

本発明は、ハニカムコア、そのハニカムコアを備えたハニカムサンドイッチ構造体、およびそのハニカムコアの製造方法に関するものである。   The present invention relates to a honeycomb core, a honeycomb sandwich structure including the honeycomb core, and a method for manufacturing the honeycomb core.

近年、様々な分野において、宇宙空間および地球上の高解像度の衛星画像に対する需要がますます高まっている。それに伴い、従来よりも高分解能な望遠鏡を搭載した観測衛星の開発が求められている。このような衛星において、望遠鏡の分解能を向上させるためには、鏡を大型化するだけでなく、宇宙空間への打上げ時に大型鏡を保持するために十分な剛性を有し、さらに熱的な寸法安定性を備えた望遠鏡構造が必要となる。   In recent years, there has been an increasing demand for high resolution satellite images on outer space and the earth in various fields. Along with this, the development of observation satellites equipped with telescopes with higher resolution than before has been demanded. In such a satellite, in order to improve the resolution of the telescope, not only the size of the mirror is increased, but also sufficient rigidity to hold the large mirror when launched into outer space, and the thermal dimensions A telescope structure with stability is required.

宇宙環境下において、望遠鏡構造に温度分布が発生した場合、熱的な寸法安定性が低いと望遠鏡構造にひずみが発生し、衛星画像の解像度の低下につながるので、低熱膨張の望遠鏡構造の実現が重要となる。   In the space environment, if the temperature distribution occurs in the telescope structure, if the thermal dimensional stability is low, the telescope structure will be distorted, leading to a decrease in the resolution of the satellite image. It becomes important.

ここで、先行例として、炭素繊維強化プラスチック(CFRP;Carbon Fiber Reinforced Plastics)製のハニカムコアと、ハニカムコアの両面両側を覆う一対のCFRP製の表皮とから構成されるハニカムサンドイッチ構造体が提案されている(例えば、特許文献1参照)。   Here, as a prior example, a honeycomb sandwich structure composed of a carbon fiber reinforced plastic (CFRP) honeycomb core and a pair of CFRP skins covering both sides of the honeycomb core is proposed. (For example, refer to Patent Document 1).

特許文献1に記載のハニカムサンドイッチ構造体において、一対の表皮は、表皮用炭素繊維を疑似等方に配列した表皮用CFRPで作製され、ハニカムコアは、コア用炭素繊維を疑似等方に配列したコア用CFRPで作製される。従来、ハニカムコアは、コア高さ方向に対してコア用炭素繊維を斜交に配列したコア用CFRPで作製されていた。しかしながら、特許文献1では、表皮表面と平行方向にコア用炭素繊維が配列されているだけでなく、表皮表面と直交方向にもコア用炭素繊維が配列された構成のコア用CFRPとなっている。このように構成することで、面外方向にも高剛性かつ低熱膨張性を有するハニカムサンドイッチ構造体が得られる。   In the honeycomb sandwich structure described in Patent Document 1, the pair of skins are made of skin CFRP in which skin carbon fibers are arranged in a quasi-isotropic manner, and the honeycomb core has core carbon fibers arranged in a quasi-isotropic manner. Made of core CFRP. Conventionally, a honeycomb core has been manufactured with a core CFRP in which core carbon fibers are arranged obliquely with respect to the core height direction. However, in Patent Document 1, not only the core carbon fibers are arranged in the direction parallel to the skin surface, but also the core CFRP in which the core carbon fibers are arranged in the direction orthogonal to the skin surface. . With this configuration, a honeycomb sandwich structure having high rigidity and low thermal expansion can be obtained in the out-of-plane direction.

特開2012−1013号公報JP 2012-1013 A

しかしながら、従来技術には以下のような課題がある。
特許文献1に記載の従来技術では、CFRP製のハニカムコアとCFRP製の表皮とを用いて、コア用CFRPを構成する炭素繊維の2方向の繊維方向のうちの一方を表皮表面と平行とし、他方を表皮表面と直交とするように構成している。このようにすることで、ハニカムサンドイッチ構造体の面内方向に加えて、面外方向の高剛性かつ低熱膨張性が実現可能となる。
However, the prior art has the following problems.
In the prior art described in Patent Document 1, using a CFRP honeycomb core and a CFRP skin, one of the two fiber directions of the carbon fiber constituting the core CFRP is parallel to the skin surface, The other is configured to be orthogonal to the skin surface. By doing so, in addition to the in-plane direction of the honeycomb sandwich structure, high rigidity and low thermal expansion in the out-of-plane direction can be realized.

ここで、上記のハニカムサンドイッチ構造体を製造するためには、高弾性炭素繊維をコア用炭素繊維として使用することが必須である。しかしながら、高弾性炭素繊維に樹脂を含浸させた高弾性炭素繊維プリプレグの繊維方向をハニカムコアのリボン方向と平行にしながら、高弾性炭素繊維プリプレグをハニカムコア形状の金型に敷設する場合、繊維の弾性率が大きいために金型に沿って容易に敷設することができない。その結果、高弾性炭素繊維を使用したハニカムコアを容易に成形することができない。   Here, in order to manufacture the above honeycomb sandwich structure, it is essential to use high elastic carbon fibers as carbon fibers for the core. However, when the high elastic carbon fiber prepreg is laid in a honeycomb core-shaped mold while the fiber direction of the high elastic carbon fiber prepreg obtained by impregnating the resin into the high elastic carbon fiber is parallel to the ribbon direction of the honeycomb core, Because of its high elastic modulus, it cannot be laid easily along the mold. As a result, a honeycomb core using high elastic carbon fibers cannot be easily formed.

また、専用の治具等を用いて、高弾性炭素繊維プリプレグでハニカムコア形状を作り、加圧してハニカムコアを成形することが可能である。しかしながら、このような手法でハニカムコアを成形した場合、高弾性炭素繊維プリプレグに対して局所的にシワまたはテンションが発生するので、ハニカムコアの機械特性または熱特性といった特性の低下が起こってしまう。   Further, it is possible to form a honeycomb core shape with a highly elastic carbon fiber prepreg using a dedicated jig or the like, and pressurize to form the honeycomb core. However, when the honeycomb core is formed by such a method, wrinkles or tension is locally generated with respect to the highly elastic carbon fiber prepreg, so that the characteristics such as mechanical characteristics or thermal characteristics of the honeycomb core are deteriorated.

本発明は、上記のような課題を解決するためになされたものであり、材料となる炭素繊維プリプレグの引張弾性率の大きさによらず従来よりも容易に製造可能なハニカムコア、そのハニカムコアを備えたハニカムサンドイッチ構造体、およびそのハニカムコアの製造方法を得ることを目的とする。   The present invention has been made to solve the above-described problems, and a honeycomb core that can be manufactured more easily than the conventional one regardless of the tensile elastic modulus of the carbon fiber prepreg as a material, and the honeycomb core It is an object of the present invention to obtain a honeycomb sandwich structure including the above and a method for manufacturing the honeycomb core.

本発明におけるハニカムコアは、互いに異なる4方向以上の繊維方向を有する炭素繊維を含んで構成されるハニカムコアであって、ハニカムコアのリボン方向をX軸方向、リボン方向と直交するセル幅方向をY軸方向、リボン方向およびセル幅方向と直交する方向をZ軸方向とするとき、X軸方向と平行方向のハニカムコア面における各繊維方向は、X軸方向およびZ軸方向で構成されるXZ平面と平行になり、各繊維方向のうち、X軸方向となす角度が小さい順に第1繊維方向、第2繊維方向、第3繊維方向、第4繊維方向とし、X軸方向と第1繊維方向とがなす角度が−45度であり、X軸方向と第2繊維方向とがなす角度が0度であり、X軸方向と第3繊維方向とがなす角度が45度であり、X軸方向と第4繊維方向とがなす角度が90度である状態を基準状態とするとき、各繊維方向がX軸方向と平行にならないように、各繊維方向が基準状態から一定の回転角で回転した状態となっており、ハニカムコアは、第1繊維方向と第3繊維方向とが直交するように第1の炭素繊維束が編み込まれた集合体と、第2繊維方向と第4繊維方向とが直交するように第2の炭素繊維束が編み込まれた集合体と、を含んで構成されるものである。 The honeycomb core in the present invention is a honeycomb core configured to include carbon fibers having four or more different fiber directions, the ribbon direction of the honeycomb core being the X axis direction, and the cell width direction being orthogonal to the ribbon direction. When the direction perpendicular to the Y-axis direction, the ribbon direction, and the cell width direction is the Z-axis direction, each fiber direction on the honeycomb core surface parallel to the X-axis direction is defined by the X-axis direction and the Z-axis direction. The first fiber direction, the second fiber direction, the third fiber direction, and the fourth fiber direction are set in ascending order of the angle between each fiber direction and the X-axis direction, and the X-axis direction and the first fiber direction. The angle between the X-axis direction and the second fiber direction is 0 degree, the angle between the X-axis direction and the third fiber direction is 45 degrees, and the X-axis direction is -45 degrees. And the fourth fiber direction is 9 When the in which state the reference state whenever, as the fiber direction is not parallel to the X-axis direction and a state where the fiber direction is rotated from the reference state at a constant rotation angle, the honeycomb core, the An assembly in which the first carbon fiber bundles are knitted so that the first fiber direction and the third fiber direction are orthogonal to each other, and the second carbon fiber bundle is formed so that the second fiber direction and the fourth fiber direction are orthogonal to each other. And a knitted assembly .

また、本発明におけるハニカムサンドイッチ構造体は、ハニカムコアと、ハニカムコアに接着されることでハニカムコアを挟む一対の表皮と、を備えたものである。   The honeycomb sandwich structure according to the present invention includes a honeycomb core and a pair of skins that are bonded to the honeycomb core and sandwich the honeycomb core.

また、本発明におけるハニカムコアの製造方法は、炭素繊維に樹脂を含浸させたプリプレグシートと、互いに平行に並んで形成された半六角柱形状の複数の突起を有する、第1の治具および第2の治具と、六角柱形状の複数の中子と、を用いて、互いに異なる4方向以上の繊維方向を有する炭素繊維を含んで構成されるハニカムコアを製造する方法であって、ハニカムコアのリボン方向をX軸方向、リボン方向と直交するセル幅方向をY軸方向、リボン方向およびセル幅方向と直交する方向をZ軸方向とするとき、複数の突起の短手方向は、X軸方向であり、複数の突起の長手方向がZ軸方向であり、各繊維方向のうち、X軸方向となす角度が小さい順に第1繊維方向、第2繊維方向、第3繊維方向、第4繊維方向とし、X軸方向と第1繊維方向とがなす角度が−45度であり、X軸方向と第2繊維方向とがなす角度が0度であり、X軸方向と第3繊維方向とがなす角度が45度であり、X軸方向と第4繊維方向とがなす角度が90度である状態を基準状態とするとき、複数の中子を1つずつZ軸方向と平行に並べて介在させながら、プリプレグシートに含まれる炭素繊維の繊維方向がX軸方向と平行にならないように、各繊維方向が基準状態から一定の回転角で回転した状態となるようプリプレグシートを第1の治具へ複数層分順次重ねあわせていき、第2の治具をさらに重ねあわせ、加圧下で加熱した後、複数の中子を抜き取ることで、ハニカムコアを製造するものである。   The honeycomb core manufacturing method according to the present invention includes a prepreg sheet obtained by impregnating carbon fiber with a resin and a plurality of semi-hexagonal columnar protrusions formed in parallel with each other, the first jig and the first jig A method for manufacturing a honeycomb core including carbon fibers having four or more different fiber directions by using the jig 2 and a plurality of hexagonal cores, The X direction is the X axis direction, the cell width direction orthogonal to the ribbon direction is the Y axis direction, and the ribbon direction and the direction orthogonal to the cell width direction are the Z axis direction, The first fiber direction, the second fiber direction, the third fiber direction, and the fourth fiber in ascending order of the angle formed with the X-axis direction among the fiber directions. Direction, X-axis direction and first fiber The angle formed by the direction is −45 degrees, the angle formed by the X axis direction and the second fiber direction is 0 degrees, the angle formed by the X axis direction and the third fiber direction is 45 degrees, and the X axis When a state in which the angle formed between the direction and the fourth fiber direction is 90 degrees is set as a reference state, the carbon fibers contained in the prepreg sheet are disposed while interposing a plurality of cores one by one in parallel with the Z-axis direction. In order to prevent the fiber direction from being parallel to the X-axis direction, a plurality of layers of prepreg sheets are sequentially stacked on the first jig so that each fiber direction is rotated from the reference state at a constant rotation angle. The two jigs are further overlapped and heated under pressure, and then a plurality of cores are extracted to produce a honeycomb core.

本発明によれば、材料となる炭素繊維プリプレグの引張弾性率の大きさによらず従来よりも容易に製造可能なハニカムコア、そのハニカムコアを備えたハニカムサンドイッチ構造体、およびそのハニカムコアの製造方法を得ることができる。   According to the present invention, a honeycomb core that can be manufactured more easily than before regardless of the tensile modulus of the carbon fiber prepreg as a material, a honeycomb sandwich structure including the honeycomb core, and manufacture of the honeycomb core You can get the method.

本発明の実施の形態1におけるハニカムサンドイッチ構造体の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the honeycomb sandwich structure in Embodiment 1 of this invention. 図1のハニカムコアの材料であるハニカムコア用プリプレグシートを第1の治具に敷設している状態を示す斜視図である。FIG. 2 is a perspective view showing a state in which a honeycomb core prepreg sheet that is a material of the honeycomb core of FIG. 1 is laid on a first jig. 図2の状態から、複数の中子を介しながら、ハニカムコア用プリプレグシートを第1の治具にさらに重ねていくことで形成される積層体に、第2の治具を重ねたときの状態を、Z軸方向からみたときの正面断面図である。The state when the second jig is stacked on the laminate formed by further stacking the honeycomb core prepreg sheet on the first jig through the plurality of cores from the state of FIG. It is front sectional drawing when seeing from the Z-axis direction. 本発明の実施の形態1におけるハニカムコア用プリプレグシートの第1の治具への敷設方法とは異なる敷設方法を比較例として示す説明図である。It is explanatory drawing which shows the installation method different from the installation method to the 1st jig | tool of the prepreg sheet | seat for honeycomb cores in Embodiment 1 of this invention as a comparative example. 本発明の実施の形態1におけるハニカムコア用プリプレグシートの第1の治具への敷設方法を示す説明図である。It is explanatory drawing which shows the laying method to the 1st jig | tool of the prepreg sheet for honeycomb cores in Embodiment 1 of this invention. 図4に対して二層目のハニカムコア用プリプレグシートのみを回転角θだけ回転させてハニカムコアを作製する際の回転角θと、ハニカムサンドイッチ構造体の面外方向特性との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the rotation angle θ when only the second layer prepreg sheet for honeycomb core is rotated by the rotation angle θ, and the out-of-plane direction characteristics of the honeycomb sandwich structure. It is. 図4に対して一層目および二層目のハニカムコア用プリプレグシートをともに回転角θだけ回転させてハニカムコアを作製する際の回転角θと、ハニカムサンドイッチ構造体の面外方向特性との関係を示すグラフである。Relationship between the rotation angle θ when the honeycomb core prepreg sheet is rotated by the rotation angle θ and the out-of-plane direction characteristics of the honeycomb sandwich structure with respect to FIG. It is a graph which shows. 本発明の実施の形態1におけるハニカムコアを作製するのに用いる炭素繊維の引張弾性率と熱膨張係数との関係を示すグラフである。It is a graph which shows the relationship between the tensile elasticity modulus of a carbon fiber used for producing the honeycomb core in Embodiment 1 of this invention, and a thermal expansion coefficient. 本発明の実施の形態1におけるハニカムサンドイッチ構造体の面外方向熱膨張係数を測定するための測定系の構成を示す断面図である。[Fig. 3] Fig. 3 is a cross-sectional view showing a configuration of a measurement system for measuring an out-of-plane thermal expansion coefficient of the honeycomb sandwich structure according to Embodiment 1 of the present invention. 本発明の実施の形態1におけるハニカムコアが成形可能なときのセル幅サイズと回転角θとの関係を示すグラフである。4 is a graph showing a relationship between a cell width size and a rotation angle θ when a honeycomb core in Embodiment 1 of the present invention can be formed.

以下、本発明によるハニカムコア、ハニカムサンドイッチ構造体およびハニカムコアの製造方法を、好適な実施の形態にしたがって図面を用いて説明する。なお、図面の説明においては、同一部分または相当部分には同一符号を付し、重複する説明を省略する。また、本発明によるハニカムコアおよびハニカムサンドイッチ構造体の用途としては、例えば、航空宇宙用が挙げられる。   Hereinafter, a honeycomb core, a honeycomb sandwich structure, and a method for manufacturing a honeycomb core according to the present invention will be described according to preferred embodiments with reference to the drawings. In the description of the drawings, the same portions or corresponding portions are denoted by the same reference numerals, and redundant description is omitted. In addition, examples of the use of the honeycomb core and the honeycomb sandwich structure according to the present invention include aerospace applications.

実施の形態1.
本実施の形態1におけるハニカムサンドイッチ構造体1は、ハニカムコア3と、ハニカムコア3に接着されることでハニカムコア3を挟む一対の表皮2とを備えて構成されている。具体的には、ハニカムサンドイッチ構造体1は、図1に示すように構成されている。図1は、本発明の実施の形態1におけるハニカムサンドイッチ構造体1の構成を示す分解斜視図である。
Embodiment 1 FIG.
A honeycomb sandwich structure 1 according to the first embodiment includes a honeycomb core 3 and a pair of skins 2 that are bonded to the honeycomb core 3 and sandwich the honeycomb core 3 therebetween. Specifically, the honeycomb sandwich structure 1 is configured as shown in FIG. FIG. 1 is an exploded perspective view showing a configuration of a honeycomb sandwich structure 1 according to Embodiment 1 of the present invention.

図1におけるハニカムサンドイッチ構造体1では、CFRPを材料とする一対の表皮2は、シート状接着剤4を介して、CFRPを材料とするハニカムコア3の高さ方向の両端面を覆うように配置されている。また、このように配置された一対の表皮2は、ハニカムコア3に固着している。   In the honeycomb sandwich structure 1 in FIG. 1, a pair of skins 2 made of CFRP is disposed so as to cover both end surfaces in the height direction of a honeycomb core 3 made of CFRP through a sheet adhesive 4. Has been. Further, the pair of skins 2 arranged in this way are fixed to the honeycomb core 3.

より具体的には、熱硬化性のシート状接着剤4を一対の表皮2の表面に敷設し、シート状接着剤4が敷設された一対の表皮2の一方の表面上にハニカムコア3に設置する。続いて、ハニカムコア3の上に、シート状接着剤4が敷設された一対の表皮2の他方を被せ、加圧下で加熱することでシート状接着剤4を硬化させることによって、ハニカムサンドイッチ構造体1を作製する。   More specifically, the thermosetting sheet adhesive 4 is laid on the surface of the pair of skins 2, and is installed on the honeycomb core 3 on one surface of the pair of skins 2 on which the sheet adhesive 4 is laid. To do. Subsequently, the honeycomb sandwich structure is formed by covering the honeycomb core 3 with the other of the pair of skins 2 on which the sheet-like adhesive 4 is laid, and heating the sheet-like adhesive 4 by heating under pressure. 1 is produced.

ここで、ハニカムサンドイッチ構造体1の面内方向のうち、ハニカムコア3のリボン方向をX軸方向、ハニカムコア3のセル幅方向をY軸方向とする。また、ハニカムサンドイッチ構造体1の面外方向をZ軸方向とする。なお、X軸方向およびY軸方向は互いに直交し、Z軸方向はX軸方向およびY軸方向と直交する。   Here, among the in-plane directions of the honeycomb sandwich structure 1, the ribbon direction of the honeycomb core 3 is defined as the X-axis direction, and the cell width direction of the honeycomb core 3 is defined as the Y-axis direction. The out-of-plane direction of the honeycomb sandwich structure 1 is the Z-axis direction. Note that the X-axis direction and the Y-axis direction are orthogonal to each other, and the Z-axis direction is orthogonal to the X-axis direction and the Y-axis direction.

また、表皮2およびハニカムコア3のそれぞれに含まれる炭素繊維の繊維方向を示すために、表皮2では、0度方向をX軸方向とし、90度方向をY軸方向とし、ハニカムコア3では、0度方向をZ軸方向とし、90度方向をX軸方向とする。   In order to indicate the fiber directions of the carbon fibers contained in each of the skin 2 and the honeycomb core 3, in the skin 2, the 0-degree direction is the X-axis direction, the 90-degree direction is the Y-axis direction, and the honeycomb core 3 is The 0 degree direction is the Z axis direction, and the 90 degree direction is the X axis direction.

次に、ハニカムサンドイッチ構造体1の表皮2の製造方法の一例について説明する。まず、例えば、長さ方向が揃えられた高弾性炭素繊維M60J(東レ製)の束を直交するように編み込んで作製された集合体に、シアネート樹脂EX1515(TENCATE製)を含浸させて、直交する二軸配向の表皮用プリプレグシートを作製する。このとき、高弾性炭素繊維M60Jは、直径5μmから7μmの長繊維(フィラメント)の束である。   Next, an example of a method for manufacturing the skin 2 of the honeycomb sandwich structure 1 will be described. First, for example, a cyanate resin EX1515 (manufactured by TENCATE) is impregnated into an assembly produced by weaving a bundle of high-elasticity carbon fibers M60J (manufactured by Toray) whose length directions are aligned so as to be orthogonal to each other. A biaxially oriented prepreg sheet for the skin is prepared. At this time, the highly elastic carbon fiber M60J is a bundle of long fibers (filaments) having a diameter of 5 μm to 7 μm.

続いて、このように作製された表皮用プリプレグシートを複数枚順次積み重ねることで形成される表皮用プリプレグシートの積層体を、3気圧程度の加圧下で、120℃から180℃程度の温度で加熱することで、硬化させる。このように表皮用プリプレグシートの積層体を硬化させることで、表皮2が作製される。   Subsequently, the laminated body of the prepreg sheets for skin formed by sequentially stacking a plurality of the prepreg sheets for skin prepared as described above is heated at a temperature of about 120 to 180 ° C. under a pressure of about 3 atm. To cure. Thus, the skin 2 is produced by hardening the laminated body of the prepreg sheet for skin.

ここで、表皮用プリプレグシートを順次積み重ねる手法として、表皮用プリプレグシートを、例えば、最初の一枚を置いた方向を基準としてこれを0度とし、0度、60度、−60度、−60度、60度、0度の順で6枚重ねる。なお、表皮用プリプレグシートを、0度、45度、−45度、90度、90度、−45度、45度、0度の順で8枚重ねてもよい。このように表皮用プリプレグシートを積み重ねることで形成される積層体を硬化させることで作製されたCFRPからなる表皮2は、表皮表面と平行な全ての方向について性質をほぼ等しくする疑似等方性を有する。   Here, as a method of sequentially stacking the prepreg sheets for the skin, for example, the prepreg sheets for the skin are set to 0 degrees with respect to the direction in which the first sheet is placed, and 0 degrees, 60 degrees, -60 degrees, -60 Stack 6 sheets in the order of degrees, 60 degrees, and 0 degrees. The prepreg sheets for the skin may be stacked in the order of 0 degree, 45 degrees, -45 degrees, 90 degrees, 90 degrees, -45 degrees, 45 degrees, and 0 degrees. The skin 2 made of CFRP produced by curing the laminate formed by stacking the prepreg sheets for the skin in this way has pseudo-isotropic properties that make the properties almost equal in all directions parallel to the skin surface. Have.

なお、表皮2を構成する高弾性炭素繊維M60Jの集合体に含浸されたシアネート樹脂EX1515が接着剤として機能する場合、シート状接着剤4を用いずに、一対の表皮2の一方、ハニカムコア3、一対の表皮2の他方の順に重ねて、加圧下で加熱することで、ハニカムサンドイッチ構造体1を作製してもよい。   Note that when the cyanate resin EX1515 impregnated in the aggregate of the high elastic carbon fibers M60J constituting the skin 2 functions as an adhesive, the honeycomb core 3 of one of the pair of skins 2 is used without using the sheet-like adhesive 4. Alternatively, the honeycomb sandwich structure 1 may be manufactured by stacking the other of the pair of skins 2 in the order of the other and heating under pressure.

次に、ハニカムサンドイッチ構造体1のハニカムコア3の製造方法の一例について、図2および図3を参照しながら説明する。図2は、図1のハニカムコア3の材料であるハニカムコア用プリプレグシート5を第1の治具6に敷設している状態を示す斜視図である。図3は、図2の状態から、複数の中子8を介しながら、ハニカムコア用プリプレグシート5を第1の治具6にさらに重ねていくことで形成される積層体に、第2の治具9を重ねたときの状態を、Z軸方向からみたときの正面断面図である。   Next, an example of a method for manufacturing the honeycomb core 3 of the honeycomb sandwich structure 1 will be described with reference to FIGS. 2 and 3. FIG. 2 is a perspective view showing a state in which the honeycomb core prepreg sheet 5 which is the material of the honeycomb core 3 of FIG. 1 is laid on the first jig 6. FIG. 3 shows a state in which a second cured product is formed from the state shown in FIG. 2 by stacking the honeycomb core prepreg sheet 5 on the first jig 6 with a plurality of cores 8 interposed therebetween. It is front sectional drawing when the state when the tool 9 is piled up is seen from the Z-axis direction.

なお、図2には、第1の治具6に形成される突起7の短手方向をX軸方向とし、突起7の長手方向をZ軸方向とする治具座標系も併せて図示されている。治具座標系におけるX軸方向およびZ軸方向は、図1におけるX軸方向およびZ軸方向と一致する。   FIG. 2 also shows a jig coordinate system in which the short direction of the protrusion 7 formed on the first jig 6 is the X-axis direction and the long direction of the protrusion 7 is the Z-axis direction. Yes. The X-axis direction and the Z-axis direction in the jig coordinate system coincide with the X-axis direction and the Z-axis direction in FIG.

まず、例えば、長さ方向が揃えられた高弾性炭素繊維YS80A(日本グラファイトファイバー製)の束を直交するように編み込んで作製された集合体に、シアネート樹脂NM−31(JX日鉱日石エネルギー製)を含浸させて、直交する二軸配向のハニカムコア用プリプレグシート5(以降では、単にプリプレグシート5と略す)を作製する。このとき、高弾性炭素繊維YS80Aは、直径7μmから10μmの長繊維(フィラメント)の束である。   First, for example, cyanate resin NM-31 (manufactured by JX Nippon Mining & Energy Co., Ltd.) is assembled into an assembly produced by weaving a bundle of high-elasticity carbon fibers YS80A (manufactured by Nippon Graphite Fiber) having the same length direction. ) Is impregnated to produce a biaxially oriented honeycomb core prepreg sheet 5 (hereinafter simply referred to as prepreg sheet 5). At this time, the highly elastic carbon fiber YS80A is a bundle of long fibers (filaments) having a diameter of 7 μm to 10 μm.

続いて、第1の治具6、複数の中子8および第2の治具9を用いて、プリプレグシート5を、ハニカムコア3の形状に成形する。第1の治具6は、互いに平行に並んで形成された半六角柱形状の複数の突起7を有する定盤である。複数の中子8のそれぞれは、六角柱形状となっている。第2の治具9は、第1の治具6と同様に、互いに平行に並んで形成された半六角柱形状の複数の突起10を有する。   Subsequently, the prepreg sheet 5 is formed into the shape of the honeycomb core 3 using the first jig 6, the plurality of cores 8, and the second jig 9. The first jig 6 is a surface plate having a plurality of semi-hexagonal columnar protrusions 7 formed in parallel with each other. Each of the plurality of cores 8 has a hexagonal column shape. Similar to the first jig 6, the second jig 9 has a plurality of semi-hexagonal columnar protrusions 10 formed in parallel with each other.

具体的には、図2に示すように、少なくとも2層のプリプレグシート5を第1の治具6の形状に合わせて敷設し、その後、複数の中子8を1つずつ、隣り合う突起7の間の溝の位置に重ねる。続いて、複数の中子8が重ねられた第1の治具6の形状に合わせて少なくとも2層のプリプレグシート5を敷設し、その後、複数の中子8を1つずつ、突起7の位置に重ねる。このように、プリプレグシート5と複数の中子8とを重ねる工程を複数回繰り返した後、第1の治具6と対をなす第2の治具9を、複数の中子8が重ねられた第1の治具6の形状に合わせて重ねると、図3に示す状態となる。   Specifically, as shown in FIG. 2, at least two prepreg sheets 5 are laid in accordance with the shape of the first jig 6, and then a plurality of cores 8 are arranged one by one on the adjacent protrusions 7. Overlap at the position of the groove between. Subsequently, at least two layers of the prepreg sheet 5 are laid in accordance with the shape of the first jig 6 on which the plurality of cores 8 are stacked, and then the plurality of cores 8 are placed one by one at the position of the protrusion 7. Overlay on. Thus, after repeating the process of overlapping the prepreg sheet 5 and the plurality of cores 8 a plurality of times, the plurality of cores 8 are stacked on the second jig 9 paired with the first jig 6. If the first jig 6 is overlapped in accordance with the shape of the first jig 6, the state shown in FIG. 3 is obtained.

続いて、図3に示す状態において、加圧下で加熱することで積層体を硬化させた後、複数の中子8を抜き取ることで、ハニカムコア3が作製される。   Subsequently, in the state illustrated in FIG. 3, the laminated body is cured by heating under pressure, and then the plurality of cores 8 are extracted, whereby the honeycomb core 3 is manufactured.

ここで、プリプレグシート5の第1の治具6への敷設方法として、プリプレグシート5は、プリプレグシート5に含まれる炭素繊維の繊維方向がX軸方向と平行とならないように、各繊維方向が後述する基準状態から後述する一定の回転角θで回転した状態となるよう第1の治具6へ敷設されている。例えば、繊維方向が0度方向および90度方向であるプリプレグシートをあらかじめ切り出すことで、繊維方向がθ度および(90+θ)度になるようなプレグシート5を用意する。同様に、繊維方向が−45度方向および45度方向であるプリプレグシートをあらかじめ切り出すことで、繊維方向が(−45+θ)度および(45+θ)度になるようなプレグシート5を用意する。続いて、これらのプリプレグシート5は、第1の治具6へ敷設される際には、シート形状に合わせて積層される。   Here, as a method for laying the prepreg sheet 5 on the first jig 6, the prepreg sheet 5 has a direction of each fiber so that the fiber direction of the carbon fibers contained in the prepreg sheet 5 is not parallel to the X-axis direction. The first jig 6 is laid so as to be in a state of being rotated at a certain rotation angle θ described later from a reference state described later. For example, a prepreg sheet 5 having a fiber direction of θ degrees and (90 + θ) degrees is prepared by cutting in advance a prepreg sheet having a fiber direction of 0 degrees and 90 degrees. Similarly, a prepreg sheet 5 having a fiber direction of (−45 + θ) degree and (45 + θ) degree is prepared by cutting in advance a prepreg sheet having a fiber direction of −45 degrees and 45 degrees. Subsequently, when these prepreg sheets 5 are laid on the first jig 6, they are laminated in accordance with the sheet shape.

換言すると、複数の中子8を1つずつZ軸方向と平行に並べて介在させながら、プリプレグシート5に含まれる炭素繊維の繊維方向がX軸方向と平行にならないように、各繊維方向が基準状態から一定の回転角θで回転した状態となるようプリプレグシート5を第1の治具6へ複数層分順次重ねあわせていき、第2の治具9をさらに重ねあわせる。続いて、加圧下で加熱した後、複数の中子8を抜き取ることで、互いに異なる4方向の繊維方向を有する炭素繊維を含んで構成されるハニカムコア3が作製される。   In other words, each fiber direction is a reference so that the fiber directions of the carbon fibers contained in the prepreg sheet 5 are not parallel to the X-axis direction while interposing a plurality of cores 8 one by one in parallel with the Z-axis direction. The prepreg sheet 5 is sequentially stacked on the first jig 6 for a plurality of layers so as to be rotated at a constant rotation angle θ from the state, and the second jig 9 is further stacked. Subsequently, after heating under pressure, a plurality of cores 8 are extracted, whereby a honeycomb core 3 including carbon fibers having four different fiber directions is manufactured.

以下、このような敷設方法によって得られる効果について、図4および図5を参照しながら説明する。図4は、本発明の実施の形態1におけるプリプレグシート5の第1の治具6への敷設方法とは異なる敷設方法を比較例として示す説明図である。図5は、本発明の実施の形態1におけるプリプレグシート5の第1の治具6への敷設方法を示す説明図である。   Hereinafter, effects obtained by such a laying method will be described with reference to FIGS. 4 and 5. FIG. 4 is an explanatory diagram showing a laying method different from the laying method of the prepreg sheet 5 on the first jig 6 in Embodiment 1 of the present invention as a comparative example. FIG. 5 is an explanatory diagram showing a method of laying the prepreg sheet 5 on the first jig 6 in Embodiment 1 of the present invention.

なお、図4および図5には、炭素繊維の繊維方向において、0度方向をZ軸方向とし、90度方向をX軸方向とする材料座標系も併せて図示されている。材料座標系におけるX軸方向およびZ軸方向は、図1におけるX軸方向およびZ軸方向と一致する。   4 and 5 also illustrate a material coordinate system in which the 0-degree direction is the Z-axis direction and the 90-degree direction is the X-axis direction in the fiber direction of the carbon fiber. The X-axis direction and the Z-axis direction in the material coordinate system coincide with the X-axis direction and the Z-axis direction in FIG.

図4の比較例は、特許文献1に記載の従来技術に対応し、XZ平面と平行に45度ピッチで配列された互いに異なる4方向の繊維方向のうちの1方向は、X軸と平行となる炭素繊維を含んでハニカムコア3が構成されている。このように構成することで、ハニカムコア3の炭素繊維が疑似等方に配列することとなる。   The comparative example of FIG. 4 corresponds to the prior art described in Patent Document 1, and one of the four different fiber directions arranged in a 45-degree pitch parallel to the XZ plane is parallel to the X axis. The honeycomb core 3 is configured to include carbon fibers. With this configuration, the carbon fibers of the honeycomb core 3 are arranged in a pseudo isotropic manner.

このような構成を有するハニカムコア3を作製するためには、プリプレグシート5に含まれる炭素繊維の繊維方向と、X軸方向とのなす角が45度および−45度となるように、第1の治具6へ一層目のプリプレグシート5を敷設する必要がある。さらに、一層目のプリプレグシート5上に、炭素繊維の繊維方向と、X軸方向とのなす角が0度および90度となるように、二層目のプリプレグシート5を敷設する必要がある。   In order to produce the honeycomb core 3 having such a configuration, the first direction is such that the angle formed by the fiber direction of the carbon fiber contained in the prepreg sheet 5 and the X-axis direction is 45 degrees and −45 degrees. It is necessary to lay the first prepreg sheet 5 on the jig 6. Furthermore, it is necessary to lay the second-layer prepreg sheet 5 on the first-layer prepreg sheet 5 so that the angles formed by the fiber direction of the carbon fiber and the X-axis direction are 0 degrees and 90 degrees.

ここで、一層目および二層目の各プリプレグシート5に着目したところ、以下のような知見を得ることができた。すなわち、一層目のプリプレグシート5は、X軸方向の伸縮性が良好(図中、白抜き矢印で示す)であるので、第1の治具6の型に沿って、第1の治具6へ敷設することができるものの、二層目のプリプレグシート5は、X軸方向に伸縮し難いので、第1の治具6の型に沿わせることが困難であるということを見出した。この場合、ハニカムコア3を容易に成形することができない。また、専用の治具を用いて、大きな荷重を負荷して二層目のプリプレグシート5を第1の治具6へ敷設したところ、二層目のプリプレグシート5中の炭素繊維が破断してしまった。この場合、ハニカムコア3を成形できるものの、機械特性または熱特性といった特性が低下してしまう。   Here, when attention was paid to the prepreg sheets 5 of the first layer and the second layer, the following knowledge could be obtained. That is, the first prepreg sheet 5 has good stretchability in the X-axis direction (indicated by a white arrow in the figure), and therefore the first jig 6 along the mold of the first jig 6. The second prepreg sheet 5 is difficult to expand and contract in the X-axis direction, but it is difficult to follow the mold of the first jig 6. In this case, the honeycomb core 3 cannot be easily formed. Moreover, when a large load was applied using a dedicated jig and the second-layer prepreg sheet 5 was laid on the first jig 6, the carbon fibers in the second-layer prepreg sheet 5 were broken. Oops. In this case, although the honeycomb core 3 can be formed, characteristics such as mechanical characteristics or thermal characteristics are deteriorated.

これに対して、本願発明では、X軸方向と平行方向のハニカムコア面における4方向の繊維方向のそれぞれは、XZ平面と平行になり、かつX軸方向と方向が異なる炭素繊維を含んでハニカムコア3が構成されている。このようにハニカムコア3を構成することで、プリプレグシート5に含まれる炭素繊維の繊維方向と、X軸方向とのなす角が0度とならないので、第1の治具6へプリプレグシート5を敷設する際に、第1の治具6の型に沿わせることができる。したがって、ハニカムコア3を容易に成形することができる。また、上記と異なり、一層目および二層目のいずれのプリプレグシート5中の炭素繊維の破断も起こらず、機械特性または熱特性といった特性が低下してしまうことも無い。   On the other hand, in the present invention, each of the four fiber directions on the honeycomb core surface parallel to the X-axis direction is parallel to the XZ plane and includes carbon fibers having different directions from the X-axis direction. A core 3 is configured. By configuring the honeycomb core 3 in this way, the angle formed by the fiber direction of the carbon fibers contained in the prepreg sheet 5 and the X-axis direction does not become 0 degrees, so the prepreg sheet 5 is attached to the first jig 6. When laying, it can be made to follow the mold of the first jig 6. Therefore, the honeycomb core 3 can be easily formed. In addition, unlike the above, the carbon fibers in the first and second prepreg sheets 5 do not break, and characteristics such as mechanical characteristics or thermal characteristics are not deteriorated.

このように、互いに異なる4方向の繊維方向を有する炭素繊維を含んで構成されるハニカムコア3において、X軸方向と平行方向のハニカムコア面における各繊維方向がX軸方向と平行にならないように、各繊維方向が基準状態から一定の回転角θで回転した状態となるよう構成する。これにより、第1の治具6へプリプレグシート5を敷設する際において、第1の治具6の型に沿わせることができ、ハニカムコア3を容易に成形することができる。   As described above, in the honeycomb core 3 including carbon fibers having four different fiber directions, the fiber directions on the honeycomb core surface parallel to the X-axis direction are not parallel to the X-axis direction. Each fiber direction is configured to be rotated from the reference state by a constant rotation angle θ. Thus, when the prepreg sheet 5 is laid on the first jig 6, the prepreg sheet 5 can be placed along the mold of the first jig 6, and the honeycomb core 3 can be easily formed.

なお、図4および図5では、ハニカムコア3に含まれる炭素繊維の各繊維方向のうち、X軸方向となす角度が小さい順に第1繊維方向、第2繊維方向、第3繊維方向、第4繊維方向とするとき、第1繊維方向と第3繊維方向とがなす角度と、第2繊維方向と第4繊維方向とがなす角度とは、いずれも90度であるように構成する場合を例示している。また、図4に示すように、X軸方向と第1繊維方向とがなす角度が−45度であり、X軸方向と第2繊維方向とがなす角度が0度であり、X軸方向と第3繊維方向とがなす角度が45度であり、X軸方向と第4繊維方向とがなす角度が90度である状態を基準状態と呼ぶこととする。   4 and 5, the first fiber direction, the second fiber direction, the third fiber direction, the fourth fiber direction of the carbon fibers included in the honeycomb core 3 in ascending order of the angle with the X-axis direction. When the fiber direction is set, the angle formed by the first fiber direction and the third fiber direction and the angle formed by the second fiber direction and the fourth fiber direction are both 90 degrees. doing. Further, as shown in FIG. 4, the angle formed by the X-axis direction and the first fiber direction is −45 degrees, the angle formed by the X-axis direction and the second fiber direction is 0 degrees, and the X-axis direction A state where the angle formed by the third fiber direction is 45 degrees and the angle formed by the X-axis direction and the fourth fiber direction is 90 degrees is referred to as a reference state.

また、図4および図5では、第1繊維方向と第3繊維方向とが直交するように第1の炭素繊維束を編み込んで作製された集合体と、第2繊維方向と第4繊維方向とが直交するように第2の炭素繊維束を編み込んで作製された集合体とを含んでハニカムコア3を構成する場合を例示している。   4 and 5, an assembly produced by weaving the first carbon fiber bundle so that the first fiber direction and the third fiber direction are orthogonal to each other, and the second fiber direction and the fourth fiber direction. The case where the honeycomb core 3 is configured including the aggregate produced by weaving the second carbon fiber bundle so that the two are orthogonal to each other is illustrated.

ここで、特に、図5に示すように、図4に示す炭素繊維の繊維方向を、X軸方向に対して回転角θだけ回転するように、一層目および二層目の各プリプレグシート5を第1の治具6へ敷設する。すなわち、一層目のプリプレグシート5に含まれる炭素繊維の繊維方向と、X軸方向とのなす角度が(45+θ)度および(−45+θ)度となり、かつ二層目のプリプレグシート5に含まれる炭素繊維の繊維方向と、X軸方向とのなす角度がθ度および(90+θ)度となるようにする。つまり、各繊維方向がX軸方向と平行にならないように、各繊維方向が基準状態から一定の回転角θで回転した状態となっている。   Here, in particular, as shown in FIG. 5, the first and second prepreg sheets 5 are rotated so that the fiber direction of the carbon fiber shown in FIG. 4 is rotated by the rotation angle θ with respect to the X-axis direction. Lay it on the first jig 6. That is, the angle formed between the fiber direction of the carbon fiber contained in the first prepreg sheet 5 and the X-axis direction is (45 + θ) degrees and (−45 + θ) degrees, and the carbon contained in the second prepreg sheet 5. The angles formed by the fiber direction of the fiber and the X-axis direction are set to θ degrees and (90 + θ) degrees. That is, each fiber direction is rotated from the reference state at a constant rotation angle θ so that each fiber direction is not parallel to the X-axis direction.

この場合、炭素繊維の互いに異なる各繊維方向がX軸方向と平行とならないだけでなく、さらに、一層目の炭素繊維の繊維方向が互いに直交するとともに、二層目の炭素繊維の繊維方向も互いに直交する。このように工夫することで、第1の治具6へプリプレグシート5を敷設する際に、第1の治具6の型に沿わせることができ、ハニカムコア3を容易に成形可能であるとともに、さらに、炭素繊維が疑似等方に配列したハニカムコア3を作製することができる。   In this case, not only the different fiber directions of the carbon fibers are not parallel to the X-axis direction, but also the fiber directions of the first-layer carbon fibers are orthogonal to each other and the fiber directions of the second-layer carbon fibers are also mutually Orthogonal. By devising in this way, when the prepreg sheet 5 is laid on the first jig 6, it can be made to follow the mold of the first jig 6, and the honeycomb core 3 can be easily formed. Furthermore, a honeycomb core 3 in which carbon fibers are arranged in a pseudo isotropic manner can be produced.

なお、鋭意検討の結果、プリプレグシート5の第1の治具6への敷設可能な回転角θの範囲は、ハニカムコア3のセル幅サイズによって変化することが分かった。具体例として、プリプレグシート5に含まれる炭素繊維が、引張弾性率が500GPa以上の高弾性炭素繊維である場合、ハニカムコア3のセル幅サイズが9.5mmのときには、回転角θが12度以上33度以下の範囲となり、ハニカムコア3のセル幅サイズが6.4mmのときには、回転角θが17度以上28度以下の範囲となることを確認した。また、ハニカムコア3のセル幅サイズが4.8mmのときには、回転角θが20度以上25度以下の範囲となることを確認した。図10は、本発明の実施の形態1におけるハニカムコア3が成形可能なときのセル幅サイズと回転角θとの関係を示すグラフである。図10では、上記の結果、すなわち、ハニカムコア3が成形可能なときのセル幅サイズおよび回転角θをプロットすることで、CFRP製のハニカムコア3が成形可能な領域を図示している。なお、図中、この領域をCFRPハニカムコア成形可能領域と表記している。   As a result of intensive studies, it was found that the range of the rotation angle θ that can be laid on the first jig 6 of the prepreg sheet 5 varies depending on the cell width size of the honeycomb core 3. As a specific example, when the carbon fiber contained in the prepreg sheet 5 is a high elastic carbon fiber having a tensile modulus of 500 GPa or more, when the cell width size of the honeycomb core 3 is 9.5 mm, the rotation angle θ is 12 degrees or more. When the honeycomb core 3 has a cell width size of 6.4 mm, it was confirmed that the rotation angle θ is in the range of 17 degrees to 28 degrees. Moreover, when the cell width size of the honeycomb core 3 was 4.8 mm, it was confirmed that the rotation angle θ was in the range of 20 degrees to 25 degrees. FIG. 10 is a graph showing the relationship between the cell width size and the rotation angle θ when the honeycomb core 3 in the first embodiment of the present invention can be formed. In FIG. 10, the above results, that is, the cell width size and the rotation angle θ when the honeycomb core 3 can be formed are plotted, thereby illustrating the region where the CFRP honeycomb core 3 can be formed. In the figure, this region is indicated as a CFRP honeycomb core moldable region.

次に、ハニカムコア3を作製する際の回転角θと、そのハニカムコア3を備えたハニカムサンドイッチ構造体1の面外方向特性との関係について、図6および図7を参照しながら説明する。   Next, the relationship between the rotation angle θ when the honeycomb core 3 is produced and the out-of-plane direction characteristics of the honeycomb sandwich structure 1 including the honeycomb core 3 will be described with reference to FIGS. 6 and 7.

図6は、図4に対して二層目のプリプレグシート5のみを回転角θだけ回転させてハニカムコア3を作製する際の回転角θと、ハニカムサンドイッチ構造体1の面外方向特性との関係を示すグラフである。図7は、図4に対して一層目および二層目のプリプレグシート5をともに回転角θだけ回転させてハニカムコア3を作製する際の回転角θと、ハニカムサンドイッチ構造体1の面外方向特性との関係を示すグラフである。なお、図6および図7では、ハニカムサンドイッチ構造体1の面外方向特性の変化として、引張弾性率および熱膨張係数のそれぞれの変化を示している。   6 shows the rotation angle θ when the honeycomb core 3 is manufactured by rotating only the second-layer prepreg sheet 5 with respect to FIG. 4 by the rotation angle θ, and the out-of-plane characteristics of the honeycomb sandwich structure 1. It is a graph which shows a relationship. 7 shows the rotation angle θ when the honeycomb core 3 is manufactured by rotating both the first and second prepreg sheets 5 with respect to FIG. 4 by the rotation angle θ, and the out-of-plane direction of the honeycomb sandwich structure 1. It is a graph which shows the relationship with a characteristic. 6 and 7 show changes in the tensile modulus and the thermal expansion coefficient as changes in the out-of-plane characteristics of the honeycomb sandwich structure 1.

ここで、第1の治具6への敷設が困難な二層目のプリプレグシート5、すなわち、炭素繊維の繊維方向とX軸方向とのなす角度が0度および90度のプリプレグシート5のみを回転角θだけ回転させてハニカムコア3を作製する場合を考える。この場合、第1の治具6へプリプレグシート5を敷設する際に、第1の治具6の型に沿わせることができ、ハニカムコア3を容易に成形することができる。ただし、図6に示すように、回転角θの大きさによって、ハニカムサンドイッチ構造体1の面外方向の引張弾性率が低下している。   Here, only the second-layer prepreg sheet 5 that is difficult to be laid on the first jig 6, that is, the prepreg sheet 5 having an angle between the fiber direction of the carbon fiber and the X-axis direction of 0 degrees and 90 degrees. Consider a case where the honeycomb core 3 is manufactured by rotating it by the rotation angle θ. In this case, when the prepreg sheet 5 is laid on the first jig 6, it can be placed along the mold of the first jig 6, and the honeycomb core 3 can be easily formed. However, as shown in FIG. 6, the tensile elastic modulus in the out-of-plane direction of the honeycomb sandwich structure 1 is lowered depending on the magnitude of the rotation angle θ.

そこで、ハニカムサンドイッチ構造体1の面外方向の引張弾性率の低下を抑制するために、一層目および二層目のプリプレグシート5をともに回転角θだけ回転させてハニカムコア3を作製する。この場合も、第1の治具6へプリプレグシート5を敷設する際に、第1の治具6の型に沿わせることができ、ハニカムコア3を容易に成形することができる。さらに、炭素繊維が疑似等方に配列したハニカムコア3が作製されるので、図7に示すように、回転角θの大きさによって、ハニカムサンドイッチ構造体1の面外方向の引張弾性率は、低下することなく、一定に保たれる。   Therefore, in order to suppress a decrease in the tensile elastic modulus in the out-of-plane direction of the honeycomb sandwich structure 1, the first and second prepreg sheets 5 are rotated by the rotation angle θ to produce the honeycomb core 3. Also in this case, when the prepreg sheet 5 is laid on the first jig 6, it can follow the mold of the first jig 6, and the honeycomb core 3 can be easily formed. Furthermore, since the honeycomb core 3 in which carbon fibers are arranged in a pseudo isotropic manner is produced, as shown in FIG. 7, the tensile elastic modulus in the out-of-plane direction of the honeycomb sandwich structure 1 depends on the rotation angle θ. It remains constant without degrading.

このように、X軸方向と平行方向のハニカムコア面における炭素繊維の各繊維方向がX軸方向と平行にならないように、各繊維方向が基準状態から一定の回転角θで回転した状態となるようハニカムコア3を構成する。これにより、ハニカムコア3を容易に成形可能であるとともに、さらに、炭素繊維が疑似等方に配列したハニカムコア3を作製することができる。   Thus, each fiber direction is rotated from the reference state at a constant rotation angle θ so that the fiber directions of the carbon fibers on the honeycomb core surface parallel to the X-axis direction are not parallel to the X-axis direction. The honeycomb core 3 is configured as described above. Thereby, the honeycomb core 3 can be easily formed, and the honeycomb core 3 in which the carbon fibers are arranged in a pseudo isotropic manner can be manufactured.

次に、ハニカムコア3に含まれる炭素繊維について、図8を参照しながら説明する。図8は、本発明の実施の形態1におけるハニカムコア3を作製するのに用いる炭素繊維の引張弾性率と熱膨張係数との関係を示すグラフである。図8に示すように、炭素繊維は、引張弾性率が大きくなるにつれて、熱膨張係数がマイナス方向に大きくなる特徴を有している。   Next, the carbon fibers contained in the honeycomb core 3 will be described with reference to FIG. FIG. 8 is a graph showing the relationship between the tensile elastic modulus and the thermal expansion coefficient of the carbon fiber used to produce the honeycomb core 3 in the first embodiment of the present invention. As shown in FIG. 8, the carbon fiber has a characteristic that the thermal expansion coefficient increases in the negative direction as the tensile elastic modulus increases.

ここで、ハニカムサンドイッチ構造体1の面外方向熱膨張係数は、二枚の表皮2の面外方向熱膨張係数と板厚との積と、二枚のシート状接着剤4の面外方向熱膨張係数と板厚との積と、ハニカムコア3の面外方向熱膨張係数と高さとの積との和を、ハニカムサンドイッチ構造体1の高さで除して求めた値である。   Here, the out-of-plane thermal expansion coefficient of the honeycomb sandwich structure 1 is the product of the out-of-plane thermal expansion coefficient and the plate thickness of the two skins 2 and the out-of-plane heat of the two sheet-like adhesives 4. This is a value obtained by dividing the sum of the product of the expansion coefficient and the plate thickness and the product of the out-of-plane thermal expansion coefficient and the height of the honeycomb core 3 by the height of the honeycomb sandwich structure 1.

このとき、表皮2の面内方向熱膨張係数は、上記のように負の熱膨張係数である炭素繊維と正の熱膨張係数である樹脂とで相殺されてゼロに近い値になる。一方、表皮2の面外方向熱膨張係数は、炭素繊維が連続的に配列されていないために樹脂の熱膨張が支配的となり、正の熱膨張係数となる。また、シート状接着剤4の面内および面外熱膨張係数も正の熱膨張係数である。   At this time, the in-plane thermal expansion coefficient of the skin 2 is offset by the carbon fiber having the negative thermal expansion coefficient and the resin having the positive thermal expansion coefficient as described above, and becomes a value close to zero. On the other hand, the thermal expansion coefficient in the out-of-plane direction of the skin 2 becomes a positive thermal expansion coefficient because the thermal expansion of the resin is dominant because the carbon fibers are not continuously arranged. Further, the in-plane and out-of-plane thermal expansion coefficients of the sheet adhesive 4 are also positive thermal expansion coefficients.

そのため、二枚の表皮2およびシート状接着剤4の面外熱膨張係数は、例えば20ppm/℃から70ppm/℃程度の範囲の正値となる。したがって、ハニカムサンドイッチ構造体1の面外方向熱膨張係数をゼロに近づけるためには、ハニカムコア3の面外方向熱膨張係数をできるだけ大きな負値にする必要がある。   Therefore, the out-of-plane thermal expansion coefficients of the two skins 2 and the sheet-like adhesive 4 are positive values in a range of about 20 ppm / ° C. to 70 ppm / ° C., for example. Therefore, in order to make the out-of-plane thermal expansion coefficient of the honeycomb sandwich structure 1 close to zero, the out-of-plane thermal expansion coefficient of the honeycomb core 3 needs to be as negative as possible.

そこで、本願発明では、高弾性炭素繊維、すなわち大きな負の熱膨張係数を有する炭素繊維を用いてハニカムコア3を作製し、そのハニカムコア3を備えてハニカムサンドイッチ構造体1を作製している。これにより、面外方向に高剛性かつ低熱膨張性を有するハニカムサンドイッチ構造体1が実現可能となる。   Therefore, in the present invention, the honeycomb core 3 is manufactured using high elastic carbon fibers, that is, carbon fibers having a large negative thermal expansion coefficient, and the honeycomb sandwich structure 1 is manufactured including the honeycomb core 3. Thereby, the honeycomb sandwich structure 1 having high rigidity and low thermal expansion in the out-of-plane direction can be realized.

また、ハニカムサンドイッチ構造体1の面内方向熱膨張係数は、二枚の表皮2と二枚のシート状接着剤4とハニカムコア3との、引張弾性率と面内方向熱膨張係数との関係で決まる値であり、面外方向熱膨張係数との調整をすることで、面内方向および面外方向に高剛性かつ低熱膨張性を有するハニカムサンドイッチ構造体1を実現することができる。   The in-plane thermal expansion coefficient of the honeycomb sandwich structure 1 is the relationship between the tensile modulus and the in-plane thermal expansion coefficient of the two skins 2, the two sheet-like adhesives 4, and the honeycomb core 3. The honeycomb sandwich structure 1 having high rigidity and low thermal expansion in the in-plane direction and the out-of-plane direction can be realized by adjusting the coefficient of thermal expansion in the out-of-plane direction.

次に、ハニカムサンドイッチ構造体1の面外方向熱膨張係数を測定した結果の一例について、図9を参照しながら説明する。図9は、本発明の実施の形態1におけるハニカムサンドイッチ構造体1の面外方向熱膨張係数を測定するための測定系の構成を示す断面図である。   Next, an example of the result of measuring the out-of-plane thermal expansion coefficient of the honeycomb sandwich structure 1 will be described with reference to FIG. FIG. 9 is a cross-sectional view showing a configuration of a measurement system for measuring the out-of-plane thermal expansion coefficient of honeycomb sandwich structure 1 in Embodiment 1 of the present invention.

図9に示すように、ハニカムサンドイッチ構造体1は、レーザ反射鏡13を一対の表皮2に接着固定されてサンプル支持台11に載置され、恒温槽12内に配置される。恒温槽12内の温度を制御することで、ハニカムサンドイッチ構造体1の温度を変化させることが可能となる。また、レーザフォーカス変位計14からレーザ光を照射し、レーザ反射鏡13からの反射光を受光し、加熱によるハニカムサンドイッチ構造体1の変位量を測定することで、熱膨張係数を算出する。   As shown in FIG. 9, the honeycomb sandwich structure 1 is mounted on the sample support 11 with the laser reflecting mirror 13 bonded and fixed to the pair of skins 2 and placed in the thermostatic chamber 12. By controlling the temperature in the thermostatic chamber 12, the temperature of the honeycomb sandwich structure 1 can be changed. Further, the thermal expansion coefficient is calculated by irradiating the laser beam from the laser focus displacement meter 14, receiving the reflected light from the laser reflecting mirror 13, and measuring the displacement amount of the honeycomb sandwich structure 1 by heating.

なお、図9に示す測定系の測定対象であるハニカムサンドイッチ構造体1において、表皮2の厚さは0.72mmであり、シート状接着剤4の厚さは0.06mmである。   In the honeycomb sandwich structure 1 that is a measurement target of the measurement system shown in FIG. 9, the thickness of the skin 2 is 0.72 mm, and the thickness of the sheet adhesive 4 is 0.06 mm.

また、測定対象のハニカムサンドイッチ構造体1のハニカムコア3は、図5に示す材料座標系において、一層目および二層目のプリプレグシート5をともに回転角θとして22.5度だけ回転させて作製されている。すなわち、一層目のプリプレグシート5に含まれる炭素繊維の繊維方向と、X軸方向とのなす角度が(45+22.5)度および(−45+22.5)度となり、かつ二層目のプリプレグシート5に含まれる炭素繊維の繊維方向と、X軸方向とのなす角度が(0+22.5)度および(90+22.5)度となるように、各プリプレグシート5が第1の治具6へ敷設されて、ハニカムコア3が作製されている。さらに、ハニカムコアのセルサイズが1/4インチ、高さが122.0mmである。   Further, the honeycomb core 3 of the honeycomb sandwich structure 1 to be measured is manufactured by rotating the first and second prepreg sheets 5 by 22.5 degrees as the rotation angle θ in the material coordinate system shown in FIG. Has been. That is, the angle formed between the fiber direction of the carbon fibers contained in the first-layer prepreg sheet 5 and the X-axis direction is (45 + 22.5) degrees and (−45 + 22.5) degrees, and the second-layer prepreg sheet 5 Each prepreg sheet 5 is laid on the first jig 6 so that the angle formed by the fiber direction of the carbon fibers contained in the X-axis direction is (0 + 22.5) degrees and (90 + 22.5) degrees. Thus, the honeycomb core 3 is produced. Further, the honeycomb core has a cell size of 1/4 inch and a height of 122.0 mm.

図9に示す測定系によって、このようなハニカムサンドイッチ構造体1の面外方向膨張係数を測定した結果、0.08ppm/℃であった。   The result of measuring the out-of-plane expansion coefficient of such a honeycomb sandwich structure 1 by the measurement system shown in FIG. 9 was 0.08 ppm / ° C.

また、ハニカムサンドイッチ構造体1において、ハニカムコア3のセルサイズを1/4インチから3/8インチに変化させた場合であっても、同様に、面外熱膨張係数は0.08ppm/℃であった。なお、通常、ハニカムコア3のセルサイズは、1/4インチまたは3/8インチとすることが多いが、これらの中間のサイズとしても、ほぼ同様の熱膨張係数を期待することができる。   Further, in the honeycomb sandwich structure 1, even when the cell size of the honeycomb core 3 is changed from 1/4 inch to 3/8 inch, the out-of-plane thermal expansion coefficient is 0.08 ppm / ° C. there were. Normally, the cell size of the honeycomb core 3 is often set to 1/4 inch or 3/8 inch, but almost the same thermal expansion coefficient can be expected as an intermediate size.

このように、ハニカムサンドイッチ構造体1のハニカムコア3について、高弾性炭素繊維が含まれるプリプレグシートを用いてハニカムコア3を成形しても、局所的なシワやテンションを発生させることがない。そのため、ハニカムサンドイッチ構造体1の高剛性化を図るとともに、熱膨張係数をほぼゼロにすることができる。したがって、本願発明におけるハニカムコア3の構成によって、面外方向に高剛性かつ低熱膨張性を有するハニカムサンドイッチ構造体1が実現可能となる。   As described above, even if the honeycomb core 3 of the honeycomb sandwich structure 1 is formed using a prepreg sheet containing high elastic carbon fibers, local wrinkles and tension are not generated. Therefore, it is possible to increase the rigidity of the honeycomb sandwich structure 1 and to make the thermal expansion coefficient substantially zero. Therefore, the honeycomb sandwich structure 1 having high rigidity and low thermal expansion in the out-of-plane direction can be realized by the configuration of the honeycomb core 3 in the present invention.

なお、本実施の形態1では、ハニカムコア3に含まれる炭素繊維として、引張弾性率が約785GPaの高弾性炭素繊維YS80Aを用いた場合を例示したが、これに限定されず、ハニカムコア3に含まれる炭素繊維の引張弾性率の大きさによらず、本願発明を適用することができる。   In the first embodiment, the case where the high elastic carbon fiber YS80A having a tensile elastic modulus of about 785 GPa is used as the carbon fiber contained in the honeycomb core 3 is not limited to this. The present invention can be applied regardless of the tensile modulus of the carbon fiber contained.

特に、図8に示すように、引張弾性率が500GPa以上の高弾性炭素繊維の熱膨張係数はほぼ一定である。したがって、引張弾性率が500GPa以上の高弾性炭素繊維を材料とするハニカムコア3を用いれば、ハニカムサンドイッチ構造体1の面外方向熱膨張係数をほぼゼロにすることができる。そこで、ハニカムコア3に含まれる炭素繊維として、500GPa以上の引張弾性率を有する炭素繊維を用いることが好ましい。   In particular, as shown in FIG. 8, the coefficient of thermal expansion of a highly elastic carbon fiber having a tensile elastic modulus of 500 GPa or more is substantially constant. Therefore, if the honeycomb core 3 made of a high elastic carbon fiber having a tensile elastic modulus of 500 GPa or more is used, the out-of-plane thermal expansion coefficient of the honeycomb sandwich structure 1 can be made substantially zero. Therefore, it is preferable to use carbon fibers having a tensile modulus of 500 GPa or more as the carbon fibers contained in the honeycomb core 3.

なお、本実施の形態1では、ハニカムコア3は、互いに異なる4方向の繊維方向を有する炭素繊維を含んで構成される場合を例示したが、これに限定されず、互いに異なる4方向以上の繊維方向を有する炭素繊維を含んで構成してもよい。例えば、図5において、一層目および二層目のプリプレグシート5に含まれる炭素繊維の繊維方向と一致しないように、三層目としてプリプレグシート5がさらに敷設されれば、ハニカムコア3に含まれる炭素繊維が互いに異なる6方向の繊維方向を有するようにすることが可能である。このように、ハニカムコア3に含まれる炭素繊維が、互いに異なる4方向以上の繊維方向を有するように構成される場合であっても、X軸方向と平行方向のハニカムコア面における4方向以上の繊維方向の各繊維方向は、XZ平面と平行になり、さらに、各繊維方向がX軸方向と平行にならないように、各繊維方向が基準状態から一定の回転角θで回転した状態となるよう構成する。   In the first embodiment, the honeycomb core 3 is exemplified to include carbon fibers having four different fiber directions. However, the present invention is not limited to this, and the four or more different fibers are different from each other. You may comprise including the carbon fiber which has a direction. For example, in FIG. 5, if the prepreg sheet 5 is further laid as the third layer so as not to coincide with the fiber directions of the carbon fibers contained in the first and second prepreg sheets 5, the honeycomb core 3 is included. It is possible for the carbon fibers to have six different fiber directions. In this way, even when the carbon fibers included in the honeycomb core 3 are configured to have four or more different fiber directions, the four or more directions on the honeycomb core surface parallel to the X-axis direction can be used. Each fiber direction of the fiber direction is parallel to the XZ plane, and further, each fiber direction is rotated from the reference state by a constant rotation angle θ so that each fiber direction is not parallel to the X-axis direction. Configure.

なお、本実施の形態1では、炭素繊維の束を直交するように編み込んで作製された集合体が含まれる二軸配向のプリプレグシート5を用いる場合を例示したが、これに限定されない。すなわち、二軸配向のプリプレグシートであれば、炭素繊維の束を直交するように編み込んで作製された集合体が含まれるプリプレグシート5に限らず、どのようなプリプレグシートを用いてもよい。また、二軸配向のプリプレグシートにおいて、各繊維方向が互いに直交していなくてもよい。   In the first embodiment, the case where the biaxially oriented prepreg sheet 5 including an assembly produced by braiding carbon fiber bundles so as to be orthogonal to each other is illustrated, but the present invention is not limited to this. That is, as long as it is a biaxially oriented prepreg sheet, not only the prepreg sheet 5 including an assembly produced by braiding carbon fiber bundles so as to be orthogonal to each other, any prepreg sheet may be used. In the biaxially oriented prepreg sheet, the fiber directions do not have to be orthogonal to each other.

なお、本実施の形態1では、二軸配向のプリプレグシート5を用いて、互いに異なる4方向の繊維方向を有する炭素繊維を含んでハニカムコア3が構成される場合を例示したが、これに限定されない。すなわち、一軸方向のプリプレグシートを用いて、互いに異なる4方向の繊維方向を有する炭素繊維を含んでハニカムコア3を構成してもよい。この場合、図5とは異なり、一軸方向のプリプレグシートを4層分用いることで、ハニカムコア3に含まれる炭素繊維が互いに異なる4方向の繊維方向を有するようにする。   In the first embodiment, the case where the honeycomb core 3 is configured to include carbon fibers having four different fiber directions using the biaxially oriented prepreg sheet 5 is illustrated, but the present invention is not limited thereto. Not. That is, the honeycomb core 3 may be configured using carbon fibers having four different fiber directions by using a uniaxial prepreg sheet. In this case, unlike FIG. 5, four layers of uniaxial prepreg sheets are used so that the carbon fibers contained in the honeycomb core 3 have four different fiber directions.

なお、本実施の形態1では、一対の表皮2のそれぞれは、炭素繊維の繊維方向がZ軸方向に対称となるように表皮用プリプレグシートを積層して構成される場合を例示したが、一対の表皮2は、炭素繊維の繊維方向がハニカムコア3を中心にしてZ軸方向に対称となるように表皮用プリプレグシートを積層して構成されてもよい。   In the first embodiment, the case where each of the pair of skins 2 is configured by stacking the prepreg sheets for the skin so that the fiber directions of the carbon fibers are symmetric with respect to the Z-axis direction is illustrated. The skin 2 may be configured by laminating prepreg sheets for skin so that the fiber direction of the carbon fibers is symmetrical with respect to the Z-axis direction about the honeycomb core 3.

以上、本実施の形態1によれば、互いに異なる4方向以上の繊維方向を有する炭素繊維を含んで構成されるハニカムコアにおいて、X軸方向と炭素繊維の繊維方向とがなす角度をそれぞれ−45度、0度、45度、90度である状態を基準状態とするとき、各繊維方向がX軸方向と平行にならないように、各繊維方向が基準状態から一定の回転角で回転した状態となるよう構成する。   As described above, according to the first embodiment, in the honeycomb core configured to include carbon fibers having four or more different fiber directions, the angles formed by the X-axis direction and the fiber direction of the carbon fibers are each −45. When a state of degrees, 0 degrees, 45 degrees, and 90 degrees is set as a reference state, each fiber direction is rotated from the reference state at a constant rotation angle so that each fiber direction is not parallel to the X-axis direction; Configure to be

このような構成を有するハニカムコアは、材料となる炭素繊維プリプレグの引張弾性率の大きさによらず従来よりも容易にハニカムコアを製造される。また、第1の治具、すなわち、ハニカムコア形状の金型にプリプレグシートを敷設してもシワやテンションを発生させること無く、プリプレグシートの金型への敷設を容易にし、その結果、ハニカムコアの容易な成形を可能にする。   A honeycomb core having such a configuration can be manufactured more easily than the conventional one regardless of the tensile modulus of the carbon fiber prepreg as a material. In addition, even if the prepreg sheet is laid on the first jig, that is, the honeycomb core-shaped mold, it is easy to lay the prepreg sheet on the mold without generating wrinkles or tension. Enables easy molding.

Claims (5)

互いに異なる4方向以上の繊維方向を有する炭素繊維を含んで構成されるハニカムコアであって、
前記ハニカムコアのリボン方向をX軸方向、前記リボン方向と直交するセル幅方向をY軸方向、前記リボン方向および前記セル幅方向と直交する方向をZ軸方向とするとき、
前記X軸方向と平行方向のハニカムコア面における各繊維方向は、前記X軸方向および前記Z軸方向で構成されるXZ平面と平行になり、
各繊維方向のうち、前記X軸方向となす角度が小さい順に第1繊維方向、第2繊維方向、第3繊維方向、第4繊維方向とし、
前記X軸方向と前記第1繊維方向とがなす角度が−45度であり、前記X軸方向と前記第2繊維方向とがなす角度が0度であり、前記X軸方向と前記第3繊維方向とがなす角度が45度であり、前記X軸方向と前記第4繊維方向とがなす角度が90度である状態を基準状態とするとき、
各繊維方向が前記X軸方向と平行にならないように、各繊維方向が前記基準状態から一定の回転角で回転した状態となっており、
前記ハニカムコアは、
前記第1繊維方向と前記第3繊維方向とが直交するように第1の炭素繊維束が編み込まれた集合体と、
前記第2繊維方向と前記第4繊維方向とが直交するように第2の炭素繊維束が編み込まれた集合体と、
を含んで構成される
ハニカムコア。
A honeycomb core comprising carbon fibers having four or more different fiber directions,
When the ribbon direction of the honeycomb core is the X-axis direction, the cell width direction orthogonal to the ribbon direction is the Y-axis direction, and the ribbon direction and the direction orthogonal to the cell width direction are the Z-axis direction,
Each fiber direction in the honeycomb core surface parallel to the X-axis direction is parallel to an XZ plane constituted by the X-axis direction and the Z-axis direction,
Among the fiber directions, the first fiber direction, the second fiber direction, the third fiber direction, and the fourth fiber direction in ascending order of the angle with the X-axis direction,
The angle formed by the X-axis direction and the first fiber direction is −45 degrees, the angle formed by the X-axis direction and the second fiber direction is 0 degrees, and the X-axis direction and the third fiber When the angle formed by the direction is 45 degrees and the state where the angle formed by the X-axis direction and the fourth fiber direction is 90 degrees is set as a reference state,
Each fiber direction is rotated from the reference state at a certain rotation angle so that each fiber direction is not parallel to the X-axis direction ,
The honeycomb core is
An assembly in which the first carbon fiber bundle is knitted so that the first fiber direction and the third fiber direction are orthogonal to each other;
An assembly in which a second carbon fiber bundle is knitted so that the second fiber direction and the fourth fiber direction are orthogonal to each other;
Honeycomb core composed of containing .
前記回転角は、12度以上33度以下の範囲に含まれる
請求項1に記載のハニカムコア。
The honeycomb core according to claim 1, wherein the rotation angle is included in a range of 12 degrees to 33 degrees.
前記炭素繊維は、引張弾性率が500GPa以上である
請求項1または2に記載のハニカムコア。
The honeycomb core according to claim 1 or 2 , wherein the carbon fiber has a tensile modulus of 500 GPa or more.
請求項1からのいずれか1項に記載のハニカムコアと、
前記ハニカムコアに接着されることで前記ハニカムコアを挟む一対の表皮と、
を備えたハニカムサンドイッチ構造体。
The honeycomb core according to any one of claims 1 to 3 ,
A pair of skins sandwiching the honeycomb core by being bonded to the honeycomb core;
Honeycomb sandwich structure with
炭素繊維に樹脂を含浸させたプリプレグシートと、
互いに平行に並んで形成された半六角柱形状の複数の突起を有する、第1の治具および第2の治具と、
六角柱形状の複数の中子と、
を用いて、互いに異なる4方向以上の繊維方向を有する前記炭素繊維を含んで構成されるハニカムコアを製造する方法であって、
前記ハニカムコアのリボン方向をX軸方向、前記リボン方向と直交するセル幅方向をY軸方向、前記リボン方向および前記セル幅方向と直交する方向をZ軸方向とするとき、
前記複数の突起の短手方向は、前記X軸方向であり、前記複数の突起の長手方向が前記Z軸方向であり、
各繊維方向のうち、前記X軸方向となす角度が小さい順に第1繊維方向、第2繊維方向、第3繊維方向、第4繊維方向とし、
前記X軸方向と前記第1繊維方向とがなす角度が−45度であり、前記X軸方向と前記第2繊維方向とがなす角度が0度であり、前記X軸方向と前記第3繊維方向とがなす角度が45度であり、前記X軸方向と前記第4繊維方向とがなす角度が90度である状態を基準状態とするとき、
前記複数の中子を1つずつ前記Z軸方向と平行に並べて介在させながら、前記プリプレグシートに含まれる前記炭素繊維の繊維方向が前記X軸方向と平行にならないように、各繊維方向が前記基準状態から一定の回転角で回転した状態となるよう前記プリプレグシートを前記第1の治具へ複数層分順次重ねあわせていき、前記第2の治具をさらに重ねあわせ、加圧下で加熱した後、前記複数の中子を抜き取ることで、前記ハニカムコアを製造する
ハニカムコアの製造方法。
A prepreg sheet obtained by impregnating carbon fiber with a resin;
A first jig and a second jig having a plurality of semi-hexagonal columnar protrusions formed in parallel with each other;
A plurality of hexagonal cores,
A method for manufacturing a honeycomb core including the carbon fibers having fiber directions of four or more directions different from each other,
When the ribbon direction of the honeycomb core is the X-axis direction, the cell width direction orthogonal to the ribbon direction is the Y-axis direction, and the ribbon direction and the direction orthogonal to the cell width direction are the Z-axis direction,
The short direction of the plurality of protrusions is the X-axis direction, and the long direction of the plurality of protrusions is the Z-axis direction,
Among the fiber directions, the first fiber direction, the second fiber direction, the third fiber direction, and the fourth fiber direction in ascending order of the angle with the X-axis direction,
The angle formed by the X-axis direction and the first fiber direction is −45 degrees, the angle formed by the X-axis direction and the second fiber direction is 0 degrees, and the X-axis direction and the third fiber When the angle formed by the direction is 45 degrees and the state where the angle formed by the X-axis direction and the fourth fiber direction is 90 degrees is set as a reference state,
While interposing the plurality of cores one by one in parallel with the Z-axis direction, the fiber directions of the carbon fibers included in the prepreg sheet are not parallel to the X-axis direction. The prepreg sheet was sequentially stacked on the first jig for a plurality of layers so as to be rotated at a certain rotation angle from the reference state, and the second jig was further stacked and heated under pressure. Thereafter, the honeycomb core is manufactured by extracting the plurality of cores. A method for manufacturing a honeycomb core.
JP2017519030A 2015-05-21 2016-02-18 Honeycomb core, honeycomb sandwich structure, and honeycomb core manufacturing method Active JP6377268B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015103497 2015-05-21
JP2015103497 2015-05-21
PCT/JP2016/054711 WO2016185743A1 (en) 2015-05-21 2016-02-18 Honeycomb core, honeycomb sandwiching structure, and method for producing honeycomb core

Publications (2)

Publication Number Publication Date
JPWO2016185743A1 JPWO2016185743A1 (en) 2017-09-21
JP6377268B2 true JP6377268B2 (en) 2018-08-22

Family

ID=57319868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017519030A Active JP6377268B2 (en) 2015-05-21 2016-02-18 Honeycomb core, honeycomb sandwich structure, and honeycomb core manufacturing method

Country Status (4)

Country Link
US (1) US10507607B2 (en)
EP (1) EP3299153A4 (en)
JP (1) JP6377268B2 (en)
WO (1) WO2016185743A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018189876A1 (en) * 2017-04-14 2018-10-18 三菱電機株式会社 Honeycomb sandwich structure and method for manufacturing same
CN109407188B (en) * 2017-08-17 2021-08-20 中国科学院长春光学精密机械与物理研究所 Preparation method of carbon fiber composite material reflector and related reflector
CN108461925A (en) * 2018-03-15 2018-08-28 浙江大学 A kind of list covering grid reinforcement backing strip high-precision reflector
CN112782832A (en) * 2021-01-19 2021-05-11 长光卫星技术有限公司 Carbon fiber honeycomb type main bearing plate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288537A (en) * 1992-03-19 1994-02-22 Hexcel Corporation High thermal conductivity non-metallic honeycomb
FR2691923B1 (en) * 1992-06-04 1994-09-09 Europ Propulsion Honeycomb structure in thermostructural composite material and its manufacturing process.
US6261675B1 (en) * 1999-03-23 2001-07-17 Hexcel Corporation Core-crush resistant fabric and prepreg for fiber reinforced composite sandwich structures
JP2001009942A (en) * 1999-07-01 2001-01-16 Toray Ind Inc Fiber-reinforced resin honeycomb core, preform for fiber- reinforced resin honeycomb core and its manufacture
JP2008068437A (en) * 2006-09-12 2008-03-27 Mitsubishi Electric Corp Honeycomb sandwich panel
JP3137942U (en) * 2007-10-02 2007-12-13 京セラケミカル株式会社 Bicycle structure
TW200924969A (en) * 2007-12-03 2009-06-16 Jin-Jiang Chen A three-dimensional honeycomb-like woven fabric and its weaving method
JP2010083080A (en) * 2008-10-01 2010-04-15 Nippon Zeon Co Ltd Honeycomb core laminate and method of manufacturing the same
EP2295216B1 (en) * 2009-09-15 2016-01-06 INVENT Innovative Verbundwerkstoffe Realisation und Vermarktung neuer Technologien GmbH Method for producing a honeycomb structure from a semi-finished fibre product
JP5574835B2 (en) * 2010-06-14 2014-08-20 三菱電機株式会社 Honeycomb core sandwich structure
JP5976453B2 (en) * 2012-08-17 2016-08-23 昭和飛行機工業株式会社 Method for manufacturing honeycomb core made of fiber reinforced plastic
CA2889501C (en) * 2012-12-26 2017-05-23 Toray Industries, Inc. Molded product having hollow structure and process for producing same
US20150030803A1 (en) * 2013-07-29 2015-01-29 The Boeing Company Composite Laminates Having Hole Patterns Produced by Controlled Fiber Placement

Also Published As

Publication number Publication date
US20180117802A1 (en) 2018-05-03
JPWO2016185743A1 (en) 2017-09-21
EP3299153A4 (en) 2019-02-20
US10507607B2 (en) 2019-12-17
EP3299153A1 (en) 2018-03-28
WO2016185743A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP6377268B2 (en) Honeycomb core, honeycomb sandwich structure, and honeycomb core manufacturing method
JP6394818B1 (en) Honeycomb sandwich structure and manufacturing method thereof
JP5314024B2 (en) Structural frame formed from composite material and aircraft fuselage comprising the structural frame
EP2737995B1 (en) Fiber-reinforced composite material
JP5836885B2 (en) Advanced grid structure manufacturing method, advanced grid structure, and space telescope using the advanced grid structure
JP6157186B2 (en) Manufacturing method of fiber reinforced composite material structure
JP5574835B2 (en) Honeycomb core sandwich structure
US20160101591A1 (en) Composite article
WO2021084813A1 (en) Carbon fiber reinforced plastic structure body, production method therefor, and measurement apparatus
US5554430A (en) Low CTE boron/carbon fiber laminate
JP2013132781A (en) Sandwich panel and honeycomb core
US20160107413A1 (en) Tailored coefficient of thermal expansion of composite laminates using fiber steering
US20160089843A1 (en) In-situ annealing of polymer fibers
JP2008068437A (en) Honeycomb sandwich panel
JP4990181B2 (en) Advanced grid structure
RU2312771C1 (en) Composite stable-sized platform
JP2014159155A (en) Spiral laminated structural cone and manufacturing method
Pryor Hygrothermal stability of laminated CFRP composite mirrors
US20220396049A1 (en) Core material and structure
Sabat Jr Structural response of slotted waveguide antenna stiffened structure components under compression
JP2004009453A (en) Grid structure and its manufacturing method
JP7118312B1 (en) LAMINATED PRODUCT, LAMINATED PRODUCTION METHOD, AND SPACE STRUCTURE
KR20230157552A (en) Sandwich composite and manufacturing method thereof
ALANKAYA BOUNDARY DISCONTINUOUS FOURIER ANALYSIS OF A DOUBLY CURVED CROSS-PLY LAMINATED COMPOSITE SHELL
JPH05224133A (en) Astronomical telescope made of fiber reinforced plastic

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180724

R150 Certificate of patent or registration of utility model

Ref document number: 6377268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250