JPS6386755A - Electrically conductive thermoplastic resin composition - Google Patents

Electrically conductive thermoplastic resin composition

Info

Publication number
JPS6386755A
JPS6386755A JP23301186A JP23301186A JPS6386755A JP S6386755 A JPS6386755 A JP S6386755A JP 23301186 A JP23301186 A JP 23301186A JP 23301186 A JP23301186 A JP 23301186A JP S6386755 A JPS6386755 A JP S6386755A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
stainless steel
fiber
average fiber
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23301186A
Other languages
Japanese (ja)
Inventor
Masatoshi Sakai
酒井 昌利
Masamitsu Murayama
村山 政充
Akira Sakamoto
晃 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Monsanto Chemical Co
Priority to JP23301186A priority Critical patent/JPS6386755A/en
Publication of JPS6386755A publication Critical patent/JPS6386755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the titled resin composition, containing SUS304 stainless steel fibers having a specific average fiber diameter, average fiber length and aspect ratio and capable of giving molded articles having improved electric conductivity as well as electromagnetic wave shielding ability even after passing through heat cycles. CONSTITUTION:A composition obtained by melt blending (A) 96-85wt% thermoplastic resin with (B) 4-15wt% SUS304 stainless steel fibers, having 2-20mum, preferably 4-12mum average fiber diameter, 0.5-10mm, preferably 2-10mm fiber length and 200-1,000, preferably 200-700 aspect ratio, preferably collected with a binder and, as necessary, melt blending an additive, e.g. flame retardant, colorant, plasticizer, etc., using a Henschel mixer, etc.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、導電性熱可塑性樹脂組成物に関する。[Detailed description of the invention] "Industrial application field" The present invention relates to a conductive thermoplastic resin composition.

さらに詳しくは、ヒートサイクルを〆経ても安定した導
電性と優れた電磁波遮蔽能を有する成形品を!l遣する
のに好適な、導電性熱可塑性樹脂IiL戊物に関するも
のである。
For more details, molded products with stable conductivity and excellent electromagnetic shielding ability even after undergoing heat cycles! This invention relates to a conductive thermoplastic resin IiL container suitable for personal use.

「従来の技術」 近年、電子機器の急速な普及とともに、電磁波障害とい
う新しい社会問題が生じてきた。すなわち、事務機器、
電子計Kfi、テレビ受信機などの電子機器は、他の電
子機器から発生される不要電磁波の妨害を受けるととも
に、それ自身の回路や素子からも不要電磁波を発生し、
他の電子8!器に障害を与える。これら不要電磁波によ
る、電子機器相互の障害現象は、電磁波障害と呼称され
ている。
"Conventional Technology" In recent years, with the rapid spread of electronic devices, a new social problem has arisen: electromagnetic interference. i.e. office equipment,
Electronic devices such as electronic meters and television receivers are not only subject to interference from unnecessary electromagnetic waves generated by other electronic devices, but also generate unnecessary electromagnetic waves from their own circuits and elements.
Other electrons 8! Causes damage to the vessel. The phenomenon in which electronic devices interfere with each other due to these unnecessary electromagnetic waves is called electromagnetic interference.

電磁波障害への対策としては、不要電磁波の発生そのも
のを抑制する、いわゆる−次的手段と、発生した不要電
磁波の漏洩を防止する、あるいは、外部から来る不要電
磁波の侵入を防止する、いわゆる二次的手段とがある。
Measures against electromagnetic interference include so-called secondary measures, which suppress the generation of unnecessary electromagnetic waves themselves, and so-called secondary measures, which prevent the leakage of generated unnecessary electromagnetic waves or the intrusion of unnecessary electromagnetic waves coming from outside. There are certain means.

しかし、電子機器はICからLISへ、さらにはV L
 S ’Iへと高速化、高集積化の一途をたどっている
ことから、不要電磁波の発生はむしろ増加の傾向にさえ
あり、−次的手段には自ずと限界があるといわざるを得
ない。
However, electronic devices are changing from IC to LIS and even VL
As S'I continues to become faster and more highly integrated, the generation of unnecessary electromagnetic waves is even on the rise, and it must be said that the following methods naturally have their limits.

従って、二次的手段としての、不要電磁波遮蔽技術に対
する期待は非常に高く、現在は電磁波障害防止対策の柱
として位置ずけられるに到っている。
Therefore, expectations for unnecessary electromagnetic wave shielding technology as a secondary means are very high, and it has now been positioned as a pillar of measures to prevent electromagnetic interference.

外部から来る不要電磁波を遮蔽して電磁波障害を回避す
るには、基本的には、その電子機器を適度の導電性を有
する筐体、例えば金属製の筐体で覆ってやればよい。
In order to avoid electromagnetic interference by shielding unnecessary electromagnetic waves coming from the outside, basically it is sufficient to cover the electronic device with a housing having appropriate conductivity, for example, a metal housing.

しかるに、電子機器の筐体としては、以前の板金やアル
ミニウムグイキャスト製のものに代わり、いまや、熱可
塑性樹脂製の成形品がその殆どを占めるまでに至ってい
る。これは、熱可塑性樹脂材料の成形の容易さ、デザイ
ン、着色の自由さ、成形品の軽量性など熱可塑性樹脂の
優れた材料特性によるものである。
However, the housings of electronic devices are now mostly made of thermoplastic resin, replacing the previous ones made of sheet metal or aluminum cast. This is due to the excellent material properties of thermoplastic resins, such as ease of molding, freedom of design and coloring, and lightweight molded products.

しかしながら、通常の熱可塑性樹脂は電気絶縁体である
ために、電磁波遮蔽能を全く有しない。
However, since a normal thermoplastic resin is an electrical insulator, it has no ability to shield electromagnetic waves at all.

このような背景から、電磁波遮蔽能を有する熱可塑性樹
脂91筐体の検討が従来からなされ、表面を導電化処理
した熱可塑性樹脂成形品とする技術、および導電性材料
を配合した熱可塑性樹脂組成物よりなる成形品とする技
術が、提案されている。
Against this background, studies have been conducted on thermoplastic resin 91 casings that have electromagnetic wave shielding ability, and technologies for making thermoplastic resin molded products with conductive surface treatment and thermoplastic resin compositions blended with conductive materials have been developed. Techniques have been proposed to create molded products made of objects.

しかしながら、提案されでいるこれら技術には次のよう
な欠点があった。
However, these proposed techniques have the following drawbacks.

まず表面を導電化処理した熱可塑性樹脂成形品とする技
術としては、成形品の表面に導電性塗料を塗布、または
亜鉛やアルミニウムを溶射して導電性のコーティング層
を形成したものが知られている。しかし、これらの、表
面を導電化処理した熱可塑性樹脂成形品を得るには、成
形品の表面に導電性材料のコーティング層を形成するた
めの工程が新たに追加されるうえ、これを筐体として用
いる場合には、導電性材料のコーティング層に亀裂、剥
離、剥離片の脱落等の危険が常に伴ない、電子m器の信
頼性に不安が残るという欠1代を有する。
First of all, there are known techniques for making thermoplastic resin molded products whose surfaces have been treated to conductivity, such as applying conductive paint to the surface of the molded product or thermally spraying zinc or aluminum to form a conductive coating layer. There is. However, in order to obtain these thermoplastic resin molded products whose surfaces have been treated to make them conductive, a new process is added to form a coating layer of conductive material on the surface of the molded product, and this is also required for the casing. When used as an electronic device, there is always a risk that the coating layer of the conductive material may crack, peel, or come off, leaving concerns about the reliability of the electronic device.

つぎに熱可塑性樹脂に導電性を付与する技術としては、
基体となる熱可塑性樹脂材料に、金属粉、炭素繊維、金
属繊維などの導電性フィラーを配合、分散し、複合化し
たものが知られている。
Next, the technology for imparting conductivity to thermoplastic resin is as follows:
Composite materials are known in which conductive fillers such as metal powder, carbon fibers, and metal fibers are blended and dispersed in a thermoplastic resin material as a base material.

しかしながら、在米技術によって得られるこの種の導電
性熱可塑性樹脂組成物は、導電性フィラー混入量の多い
ものでなければ、電磁波遮蔽能が不充分で、他方、混入
量の多いものは熱可塑性1(脂組成物の物性が損われ、
成形性を悪くし、さらに得られる成形品の機械的特性も
劣ったものとなってしまうという問題があった。
However, this type of conductive thermoplastic resin composition obtained using American technology has insufficient electromagnetic wave shielding ability unless it contains a large amount of conductive filler; 1 (physical properties of the fat composition are impaired,
There was a problem that the moldability was deteriorated and the mechanical properties of the obtained molded article were also inferior.

また、従来の導電性熱可塑性樹層よりなる成形品は、常
態においてはほぼ満足すべき導電性と電磁波遮蔽能を示
しても、例えば0℃以下と70℃以上との間における反
覆する温度変化の如き、連続したヒートサイクル処理を
受けると、次第に導電性が失われ、不充分な電磁波遮蔽
能しか示さなくなってしまい、この5点からも満足すべ
きものとは云えなかった。
In addition, although molded products made of conventional conductive thermoplastic tree layers exhibit almost satisfactory conductivity and electromagnetic wave shielding ability under normal conditions, repeated temperature changes between, for example, below 0°C and above 70°C When subjected to continuous heat cycle treatments such as the above, the conductivity was gradually lost and the electromagnetic wave shielding ability was insufficient, so that it could not be said to be satisfactory from these five points.

「発明が解決しようとする問題2代」 そこで本発明者らは、上記在米技術の問題点に鑑み、成
形性が良好で、機械的特性の優れた成形品が得られ、し
かもこの成形品に苛酷なヒートサイクルを負荷しても安
定した導電性と優れた電磁波遮蔽能を発揮する導電性熱
可塑性樹脂MLrit物を提供すべく鋭意研究を重ねた
結果、本発明を完成したものである。
"Second generation of problems to be solved by the invention" Therefore, in view of the problems of the above-mentioned American technology, the present inventors have found that a molded product with good moldability and excellent mechanical properties can be obtained, and this molded product The present invention was completed as a result of intensive research to provide a conductive thermoplastic resin MLrit product that exhibits stable conductivity and excellent electromagnetic shielding ability even when subjected to severe heat cycles.

「問題点を解決するための手段」 しかして、本発明の要旨とするところは、熱可塑性樹脂
(a)と5O8304ステンレス繊維(b)とを、(a
)成分お上(/(b)成分の合計量に対する(b)成分
の割合が4〜15重量%の範囲で含有し、前記5Us3
04ス?ンレxjiJa(b)l!、平均am径2〜2
0μm、平均繊維長0.5〜10mmでかつアスペクト
比が200〜1000であることを特徴とする、導電性
熱可塑性樹脂組成物に存する。
"Means for Solving the Problems" However, the gist of the present invention is to combine thermoplastic resin (a) and 5O8304 stainless fiber (b) into (a
) component above (/contains the ratio of component (b) to the total amount of component (b) in the range of 4 to 15% by weight, and the 5Us3
04th? Nle xjiJa(b)l! , average am diameter 2~2
0 μm, average fiber length of 0.5 to 10 mm, and aspect ratio of 200 to 1000.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係る導電性熱可塑性樹脂組成物は熱可塑性樹脂
(鳳)を基体とする。基体となしうる熱可塑性樹脂(、
)は、通常成形材料としで用いられる熱可塑性樹脂であ
ればよく、特に制限はない、具体的には例えば、ポリス
チレン、耐衝撃性ポリスチレン、AS樹脂、ABS樹脂
等のスチレン系樹脂; ポリエチレン、ポリプロピレン
等のオレフィン、11脂; ポリエチレンテレフタレー
ト、ポリブチレンテレフタレート等のポリエステルPS
樹脂; ポリアミド系樹脂、ポリカーボネート系樹脂、
塩化ビニル系樹脂等、およびこれらの樹脂ブレンド物を
挙げることができる。
The conductive thermoplastic resin composition according to the present invention has a thermoplastic resin (Otori) as its base. Thermoplastic resin (,
) may be any thermoplastic resin that is commonly used as a molding material, and there are no particular restrictions.Specifically, for example, styrenic resins such as polystyrene, impact-resistant polystyrene, AS resin, and ABS resin; polyethylene, polypropylene Olefins such as 11 fats; Polyester PS such as polyethylene terephthalate and polybutylene terephthalate
Resin; polyamide resin, polycarbonate resin,
Examples include vinyl chloride resins and blends of these resins.

本発明におけるSUS 304ステンレス#&Jli(
b)は、JIS  G−4303〜8に規定するSUS
304ステンレス鋼よりなり、平均繊維径2〜20μ箇
&Pましく1±4〜12μm、平均繊、III艮0.5
〜10mm好ましくは2〜10mmで、かつアスペクト
比(am長を繊維径で割った値)が200〜1000.
好ましくは200〜700のものである。
SUS 304 stainless steel # & Jli (
b) is SUS specified in JIS G-4303~8
Made of 304 stainless steel, average fiber diameter 2-20 μm & P preferably 1 ± 4-12 μm, average fiber, III 0.5
-10 mm, preferably 2-10 mm, and the aspect ratio (value obtained by dividing the am length by the fiber diameter) is 200-1000.
Preferably it is 200-700.

本発明者らの実験によれば、本発明の目的を達成するた
めには、基体となる熱可塑性樹脂に配合する導電性フィ
ラーとしては、上記特性をもったSUS304ステンレ
ス繊維が好適であることが判った。
According to experiments conducted by the present inventors, in order to achieve the object of the present invention, SUS304 stainless steel fibers having the above-mentioned characteristics are suitable as the conductive filler to be blended into the thermoplastic resin that serves as the base. understood.

上記SUS304ステンレス繊維に代えて、JIs  
G−4303〜8に規定するSUS304ステンレス鋼
以外のステンレス鋼、例えばSUS316ステンレス鋼
よりなるステンレス繊維を配合した場合には、その形状
が上記範囲内のものであっても本発明の目的を達成する
ことができない。
Instead of the above SUS304 stainless steel fiber, JIs
When stainless steel other than SUS304 stainless steel specified in G-4303 to G-8, for example, stainless fiber made of SUS316 stainless steel is blended, the object of the present invention can be achieved even if the shape is within the above range. I can't.

SUS304ステンレス繊維(b)の平均繊維径が2μ
−以下であると繊維自体の強度が不足し、このステンレ
ス繊維を基体となる熱可塑性樹脂(a)に配合する際に
、細い入テンレス繊維同士が互いに絡み合って毛玉状と
なり易いため、基体に均一に分散させることが性しく、
かつ分散攬作中にステンレス繊維が折損し、組成物から
得られる成形品に充分な導電性を付与することができな
い。
The average fiber diameter of SUS304 stainless steel fiber (b) is 2μ
- If the strength is below, the strength of the fiber itself will be insufficient, and when blending the stainless steel fiber into the thermoplastic resin (a) that becomes the base, the thin stainless steel fibers will easily become entangled with each other and form a pill, so that the strength of the fiber itself will be insufficient. It is natural to disperse,
Moreover, the stainless steel fibers break during dispersion, making it impossible to impart sufficient electrical conductivity to molded articles obtained from the composition.

また、SUS304ステンレス繊維(b)の平均繊維径
が20μ−以上であると、ステンレス繊維の単位重量当
りの導電性の付与効率が低いうえ、このステンレス繊維
が配合された導電性熱可塑性樹脂組成物から得られる成
形品は、表面のモ滑性が劣ったものとなり、実用的でな
い。
Furthermore, if the average fiber diameter of the SUS304 stainless fiber (b) is 20μ or more, the efficiency of imparting conductivity per unit weight of the stainless fiber is low, and the conductive thermoplastic resin composition containing the stainless fiber is low. The molded products obtained from this method have poor surface smoothness and are not practical.

SUS304ステンレス繊Jlli(b)の平均繊維長
が0.5IIIm以下であると、アスペクト比が小さい
ものとなり組成物から得られる成形品に光分な導電性を
付与することができず実用的でない。
If the average fiber length of the SUS304 stainless steel fiber Jlli (b) is 0.5IIIm or less, the aspect ratio will be small and it will not be possible to impart optical conductivity to a molded article obtained from the composition, making it impractical.

また、SUS304ステンレス繊維(b)の平均繊維長
が10箇−以上であると、このステンレスM&維を基体
の熱可塑性樹脂Ca>に配合する際に、長いステンレス
繊維同士が互いに絡み合って毛玉状となり易いため均一
に分散させることが難しく、かつこのステンレスa#l
を含む導電性熱可塑性樹脂IL成産物ら得られる成形品
は、表面の平滑性が劣ったものとなり、実用的でない。
In addition, if the average fiber length of the SUS304 stainless steel fiber (b) is 10 or more, when the stainless steel M&fiber is blended into the base thermoplastic resin Ca, the long stainless steel fibers are likely to become entangled with each other and form a pill. Therefore, it is difficult to disperse uniformly, and this stainless steel a#l
A molded article obtained from a conductive thermoplastic resin IL product containing the above has poor surface smoothness and is not practical.

また、SUS304ステンレス織Jlt(b)の7スベ
クト比が200より小さいと、組成物から得られる成形
品への導電性および電磁波遮蔽能の付与効率が低く実用
的でなく、アスペクト比が1000より大きいと、この
ステンレス繊維を基体の熱可塑性樹脂(a)に配合する
際に、#I艮いステンレス繊維同士が相互に絡み合って
毛玉状となり易いため、基体に均一に分散させることが
難しく、虫た分散4作の時に加えられる外力によって繊
維が折損し、組成物から得られる成形品に対し、充分な
導電性および電磁波遮蔽能を付与することがでミず実用
的でない。
In addition, if the 7 aspect ratio of SUS304 stainless steel Jlt(b) is less than 200, the efficiency of imparting conductivity and electromagnetic shielding ability to the molded product obtained from the composition is low and impractical, and the aspect ratio is greater than 1000. When blending these stainless steel fibers into the base thermoplastic resin (a), the #I stainless steel fibers tend to get entangled with each other and form a pill shape, making it difficult to uniformly disperse the stainless steel fibers into the base. The fibers break due to the external force applied during the four-crop process, making it impractical to impart sufficient electrical conductivity and electromagnetic wave shielding ability to a molded article obtained from the composition.

そして、本発明の導電性熱可塑性樹脂組成物の中には、
上記SUS 304ステンレ入繊維(b)が、前記熱可
塑性樹JJI(a)およびSUS304ステンレス繊維
(b)の合計量に対して、4〜15重景%重量している
ことが必要である。
In the conductive thermoplastic resin composition of the present invention,
It is necessary that the SUS 304 stainless fiber (b) weighs 4 to 15 percent by weight based on the total amount of the thermoplastic JJI (a) and the SUS 304 stainless steel fiber (b).

上記SUS304ステンレス繊II(b)の含有量が4
重量%未満であると、組成物から得られる成形品の導電
性、電磁波遮蔽能とともに不充分で実用的でなく、また
15重量%を超えても成形品の導電性、電磁波遮蔽能の
いずれも有意には向上せず、更にM産物の成形加工性を
悪化させ、基体となる熱可塑性0(脂本来の物性を損な
うことにもなるので好ましくない。
The content of the above SUS304 stainless steel fiber II (b) is 4
If it is less than 15% by weight, the conductivity and electromagnetic shielding ability of the molded product obtained from the composition will be insufficient and impractical, and if it exceeds 15% by weight, the molded product will have poor conductivity and electromagnetic shielding ability. This is not preferable because it does not significantly improve the molding processability of the M product, and also impairs the thermoplasticity of the base material (the physical properties inherent in the fat).

次に、本発明に係る導電性熱可塑性り(脂組産物を製造
するには、前記熱可塑性樹脂(a)と前記特性をもった
SUS304ステンレス繊維(b)とを、ヘンシェルミ
イサー、バンバリーミキサ−、ニーグー、単紬押出暇、
二軸押出機などの溶融混合機を使用して、混線分散させ
る方法を採用することができる。
Next, in order to produce the conductive thermoplastic resin (fat assembly product) according to the present invention, the thermoplastic resin (a) and the SUS304 stainless steel fiber (b) having the above characteristics are mixed in a Henschel Miser or Banbury mixer. −, Niegoo, single pongee extrusion time,
A method of cross-dispersion using a melt mixer such as a twin-screw extruder can be adopted.

この混線分散捏作をより円滑に遅行するには、集束状聾
のS tJ S 304ステンレス繊維を用いるのがよ
い。
In order to delay this crosstalk dispersion fabrication more smoothly, it is preferable to use S tJ S 304 stainless steel fibers with convergent deafness.

ここで、集束状聾のSUS304ステンレス繊維とは、
前記規定の乎均繊維径を有する単繊維状の5O5304
ステンレス長繊維を複数本、例えば数百本〜数百本束ね
、集束剤を用いて集束し、この長繊維の集束物を前記の
乎均織継長お上びアスペクト比等の特性を具備するよう
に切断した、いわゆるチタソブドストランド状のものを
いう。
Here, what is SUS304 stainless steel fiber of convergence deafness?
Monofilament-like 5O5304 having the above-described uniform fiber diameter
A plurality of long stainless steel fibers, for example, several to several hundred long fibers, are bundled together using a sizing agent, and the bundle of long fibers has the above-mentioned characteristics such as uniform weave length and aspect ratio. It refers to what is called a titasobud strand that is cut like this.

単繊維状のSUS304ステンレス長&tJIIIを集
束する際に使用できる集束剤としては、基体となる熱可
塑性O(脂(、)との相溶性を有し、かつ、その特性を
阻害しない樹脂がよく、特に制限はない。
As a sizing agent that can be used when sizing single-filament SUS304 stainless steel long & tJIII, it is best to use a resin that is compatible with the base thermoplastic O (fat) and does not inhibit its properties. There are no particular restrictions.

このような集束剤は、溶液状またはエマルノタン状の形
態で用いることができる。
Such a sizing agent can be used in the form of a solution or emalnotane.

このような、集束剤によって集束したSUS304ステ
ンレス繊維を用いると、混線分散捏作時に、ステンレス
繊維が飛散することがなく、従って作業環境が悪化する
のを防止できる。また、混練過程におけるステンレスa
維同士の絡みや折損をより少なくすることができ、組成
物から得られる成形品に対し優れた導電性および電磁波
遮蔽能を付与することができ、好適である。
When such SUS304 stainless steel fibers are bundled with a binding agent, the stainless steel fibers will not be scattered during crosstalk dispersion fabrication, and therefore the working environment can be prevented from deteriorating. In addition, stainless steel a in the kneading process
This is preferred because it can further reduce the entanglement and breakage of fibers, and it can impart excellent conductivity and electromagnetic wave shielding ability to molded products obtained from the composition.

本発明に係る導電性熱可塑性樹脂組成物には、前記(a
)rjt分および([))成分のほか、M酸物の特性を
阻害しないかぎり、さらに必要に応じて、tl燃剤、着
色剤、可塑剤、紫外線吸収剤、滑剤、熱安定剤、帯電防
止剤、その他各種の添加剤を含有させることもできる。
The conductive thermoplastic resin composition according to the present invention includes the above (a)
) In addition to the rjt and ([)) components, as long as they do not inhibit the properties of the M acid, TL retardants, colorants, plasticizers, ultraviolet absorbers, lubricants, heat stabilizers, and antistatic agents may be added as necessary. , and various other additives may also be included.

本発明に係る導電性熱可塑性樹脂M酸物は、各種電子8
!器の筐体、集積回路用の容器などの製造用材料として
使用可能であり、必要に応じ好みの色に着色してコンピ
ューター室等の床材、天井材、壁材などにも使用可能で
ある。
The conductive thermoplastic resin M acid according to the present invention can be used for various electronic 8
! It can be used as a manufacturing material for equipment casings, containers for integrated circuits, etc., and can also be used as flooring, ceiling, and wall materials in computer rooms, etc. by coloring it in the desired color. .

「発明の効果」 本発明は、以上詳細に説明したとおりの内容であり、次
のように特別に顕著な効果を奏するので、その産業上の
利用価値は、極めて大である。
"Effects of the Invention" The present invention has the contents as described in detail above, and has particularly remarkable effects as described below, so that its industrial utility value is extremely large.

(a)本発明に係る導電性熱可塑性樹脂組成物は、導電
性フィラーの含有量が少ないので、良好な成形性を示す
(a) The conductive thermoplastic resin composition according to the present invention has a low content of conductive filler, and thus exhibits good moldability.

く2)本発明に係る導電性熱可塑性樹脂1jLr&物は
、通常用いられる混線分散法によって製造することがで
きるので、製造するのに特殊な装置や特別な工程を必要
とせず、その製法がrrJ単である。
2) Since the conductive thermoplastic resin 1jLr& product according to the present invention can be manufactured by the commonly used crosstalk dispersion method, no special equipment or special process is required for manufacturing, and the manufacturing method is rrJ. It's simple.

(3)本発明に係る導電性熱可塑性t34f’XI組成
物は、導電性フィラーとして、本発明で規定する特性を
らつ5tJS 304ステンレス繊維を含有するので、
その含有1が少ないにもかかわらず、この組成物から得
られる成形品は優れた導電性と電磁波遮蔽能を示す。
(3) Since the conductive thermoplastic t34f'XI composition according to the present invention contains 5tJS 304 stainless steel fibers having the characteristics specified in the present invention as a conductive filler,
Despite its low content of 1, molded articles obtained from this composition exhibit excellent electrical conductivity and electromagnetic wave shielding ability.

(4)本発明−二係る導電性熱可塑性(3(脂組産物か
ら得られる成形品は、常態において良好な導電性と電磁
波遮蔽能を示すとともに、苛酷な温度条件の変化(ヒー
トサイクル)を受けても安定して良好な導電性と電磁波
遮蔽能を示す。
(4) The conductive thermoplastic according to the present invention (3) The molded product obtained from the resin composite product exhibits good conductivity and electromagnetic wave shielding ability under normal conditions, and is resistant to changes in severe temperature conditions (heat cycle). It exhibits stable conductivity and electromagnetic wave shielding ability even when exposed to high temperatures.

[実施例J 次に1本発明を実施例および比較例に基づいて更に詳細
に説明するが、本発明は、その要9を超えないかぎり、
これらの例に限定さhるものではない。
[Example J] Next, the present invention will be explained in more detail based on Examples and Comparative Examples.
The invention is not limited to these examples.

なお、以下の例に示す成形品の物性は、下記に記載の方
法によって測定したものである。
Note that the physical properties of the molded products shown in the following examples were measured by the method described below.

(a)熱変形温度; JIS  K−7207に準拠した。(a) Heat distortion temperature; Compliant with JIS K-7207.

(3)体積固有抵抗; 12.7vaX 12.7+*mX 127mmの試験
片の1001間の抵抗値を測定し、算出した。
(3) Volume resistivity; The resistance value between 1001 and 1001 of a test piece of 12.7 va×12.7+*m×127 mm was measured and calculated.

(4)電磁波遮蔽能; 同軸伝送管内によって測定した。すなわち、厚さ3mm
、直径90− の円板の中心部に、これと同心円状に直
径251111の孔部が形成された試験片を、同軸伝送
管内に設置して、電磁波強度の入出力を測定したもので
ある。
(4) Electromagnetic wave shielding ability: Measured inside a coaxial transmission pipe. That is, the thickness is 3mm
A test piece in which a hole with a diameter of 251,111 mm was formed concentrically in the center of a disk with a diameter of 90 mm was installed in a coaxial transmission pipe, and the input and output of electromagnetic wave intensity was measured.

また、以下の例において用いたステンレス繊維は、次の
ような特性をもったものである。
Furthermore, the stainless steel fibers used in the following examples have the following characteristics.

5tJS304繊維集束物: 日本間#l(株)製”ナスロン”チョツプドストランド
5t JS304 fiber bundle: "Naslon" chopped strand manufactured by Nihonma #l Co., Ltd.

iJT径8μmのSUS304ステンレス氏#&維約5
000本を、繊m集束物当り12.5重量%のポリエチ
レンテレフタレートで集束したのち、この集束した長繊
維を長さ5Iに切断したもの、SUS316La維婁束
物: 日本間jQ(株)製”ナスロン”チョツプドストランド
iJT diameter 8μm SUS304 stainless steel #& guarantee 5
000 fibers were bundled with polyethylene terephthalate of 12.5% by weight per fiber bundle, and the bundled long fibers were cut into lengths of 5I, SUS316La fiber bundles: manufactured by Nihonma jQ Co., Ltd. Nasron” Chopped Strand.

直径8μ鴫のSUS31 f3Lステンレス艮yL維約
5000本を、am集束物当り12.5重量%のポリエ
チレンテレフタレートで集束したのち、この集束した長
amを長さ511IIに切断したもの。
Approximately 5,000 SUS31 F3L stainless steel fibers with a diameter of 8μ are bundled with polyethylene terephthalate of 12.5% by weight per am bundle, and the bundled length am is cut into lengths of 511II.

実施例1〜5、比較例1〜3 タフレックス410(商品名、三菱モンサント化成(株
)製ABS樹脂)と、SUS304繊継集束物またはS
US316L1M維集束物とを、それぞFL第1表に示
す割合(第1表において0内の数値は、集束剤を除いた
ステンレス&を維分のみの割合を意味する。)で配合し
、4011−φベント付き単輪押出機(いすず化工機(
株)製フル7ライト式押出W1)を用いて溶融混合し、
直径4 ass、長さ約8■の8種類のベレットを得た
Examples 1 to 5, Comparative Examples 1 to 3 Tufflex 410 (trade name, ABS resin manufactured by Mitsubishi Monsanto Chemical Co., Ltd.) and SUS304 spliced bundle or S
US316L1M fiber bundles are blended in the proportions shown in FL Table 1 (in Table 1, the numbers within 0 mean the proportions of stainless steel and fibers excluding the sizing agent), and 4011 - Single-wheel extruder with φ vent (Isuzu Kakoki (
Melt and mix using Full 7 Light Extrusion W1) manufactured by Co., Ltd.
Eight types of pellets with a diameter of 4 ass and a length of about 8 cm were obtained.

次に、これらのベレットを原料とし射出成形機(東芝機
械(株)製l5−9QB型)を使用し、通常のA B 
S a(脂の成形条件で試験片を成形した。各物性測定
用の試験片を用いて、前記物性測定方法に従って、各p
A物性を測定した。
Next, using these pellets as raw materials, an injection molding machine (Model 15-9QB manufactured by Toshiba Machinery Co., Ltd.) was used to mold ordinary A B
A test piece was molded under the molding conditions of S a (fat). Using the test piece for each physical property measurement, each p
A Physical properties were measured.

成形品の物性ff1l定において、熱変形温度とフイゾ
ット衝撃強度は、ヒートサイクル処理前の試験片につい
て測定し、体積固有抵抗と電磁波遮蔽能はヒートサイク
ル処理前の試験片とヒートサイクル処理後の試験片とに
ついて測定した。
In determining the physical properties of molded products, the heat distortion temperature and Fizotte impact strength were measured on the test piece before heat cycle treatment, and the volume resistivity and electromagnetic shielding ability were measured on the test piece before heat cycle treatment and the test after heat cycle treatment. Measurements were made for each piece.

ここで、ヒートサイクル処理とは、成形後の試験片を、
85℃で1時間、23℃で1時間、−30°Cで1時間
、再び23°Cで1時間放置することを1サイクルとし
、これを10サイクル繰返し、温度変化を与えたことを
意味する。
Here, heat cycle treatment means that the test piece after molding is
One cycle is 1 hour at 85°C, 1 hour at 23°C, 1 hour at -30°C, and 1 hour at 23°C, and this is repeated 10 times, which means that the temperature was changed. .

これらの測定結果を、配合割合とともに第1表に示す。These measurement results are shown in Table 1 together with the blending ratio.

第1表より、次のことが明らかである。From Table 1, the following is clear.

(a)本発明に係る導電性熱可塑性樹脂組成物より得ら
れた成形品は、常温においてのみならず、苛酷な温度変
化を繰返し受けても、優れた導電性と電磁波遮蔽能を発
揮する。(実施例1〜5)。
(a) A molded article obtained from the conductive thermoplastic resin composition according to the present invention exhibits excellent conductivity and electromagnetic wave shielding ability not only at room temperature but also when subjected to repeated severe temperature changes. (Examples 1-5).

Claims (1)

【特許請求の範囲】[Claims]  熱可塑性樹脂(a)とSUS304ステンレス繊維(
b)とを、(a)成分および(b)成分の合計量に対す
る(b)成分の割合が4〜15重量%の範囲で含有し、
前記SUS304ステンレス繊維(b)は、平均繊維径
2〜20μm、平均繊維長0.5〜10mmでかつアス
ペクト比が200〜1000であることを特徴とする、
導電性熱可塑性樹脂組成物。
Thermoplastic resin (a) and SUS304 stainless steel fiber (
b) in a proportion of 4 to 15% by weight of component (b) relative to the total amount of component (a) and component (b);
The SUS304 stainless steel fiber (b) is characterized in that it has an average fiber diameter of 2 to 20 μm, an average fiber length of 0.5 to 10 mm, and an aspect ratio of 200 to 1000.
Conductive thermoplastic resin composition.
JP23301186A 1986-09-30 1986-09-30 Electrically conductive thermoplastic resin composition Pending JPS6386755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23301186A JPS6386755A (en) 1986-09-30 1986-09-30 Electrically conductive thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23301186A JPS6386755A (en) 1986-09-30 1986-09-30 Electrically conductive thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPS6386755A true JPS6386755A (en) 1988-04-18

Family

ID=16948416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23301186A Pending JPS6386755A (en) 1986-09-30 1986-09-30 Electrically conductive thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS6386755A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150437A (en) * 1988-12-01 1990-06-08 Sumitomo Naugatuck Co Ltd Resin composition having grain pattern
JPH02178336A (en) * 1988-12-29 1990-07-11 Kawasaki Techno Res Kk Antistatic molding material
EP0696614A1 (en) * 1994-08-08 1996-02-14 Hoechst Aktiengesellschaft Material for the preparation of electrically conductive compounds in thermoplastic molded bodies
US6156427A (en) * 1987-07-20 2000-12-05 Hitachi, Ltd. Electroconductive resin composition for molding and electromagnetic wave interference shield structure molded from the composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176220A (en) * 1982-04-09 1983-10-15 Fukuda Kinzoku Hakufun Kogyo Kk Production of conductive plastic
JPS5941246A (en) * 1982-07-22 1984-03-07 ダ−ト・インダストリ−ス・インコ−ポレ−テツド Fiber reinforced composite material
JPS61296067A (en) * 1985-06-24 1986-12-26 Toshiba Chem Corp Electrically-conductive resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176220A (en) * 1982-04-09 1983-10-15 Fukuda Kinzoku Hakufun Kogyo Kk Production of conductive plastic
JPS5941246A (en) * 1982-07-22 1984-03-07 ダ−ト・インダストリ−ス・インコ−ポレ−テツド Fiber reinforced composite material
JPS61296067A (en) * 1985-06-24 1986-12-26 Toshiba Chem Corp Electrically-conductive resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156427A (en) * 1987-07-20 2000-12-05 Hitachi, Ltd. Electroconductive resin composition for molding and electromagnetic wave interference shield structure molded from the composition
JPH02150437A (en) * 1988-12-01 1990-06-08 Sumitomo Naugatuck Co Ltd Resin composition having grain pattern
JPH02178336A (en) * 1988-12-29 1990-07-11 Kawasaki Techno Res Kk Antistatic molding material
EP0696614A1 (en) * 1994-08-08 1996-02-14 Hoechst Aktiengesellschaft Material for the preparation of electrically conductive compounds in thermoplastic molded bodies

Similar Documents

Publication Publication Date Title
US7244892B2 (en) Flame retardant ethylene family resin composite and flame retardant electric wire or cable
JP2005510009A (en) Conductive thermoplastic polymer composition
US20030173550A1 (en) Electrically conductive thermoplastic polymer composition
JPS6362107A (en) Manufacture of plastic molding containing conducting fiber
US6231788B1 (en) Carbon-reinforced PC-ABS composition and articles made from same
JPH10195311A (en) Thermoplastic resin molding, material for molding and production of molding
JPH03289004A (en) Conductive resin composite
CN106905678A (en) Antibacterial electromagnetic shielding makrolon material and its preparation method and application
JPS6386755A (en) Electrically conductive thermoplastic resin composition
CN106905677A (en) Halogen-free flameproof electromagnetic shielding makrolon material and preparation method thereof
CN108752903A (en) A kind of flame-proof static resistant polycarbonate material and its preparation process
CN109320849A (en) Anti-electrostatic fire retardant polypropylene material and preparation method thereof
JP2732986B2 (en) Resin composition for shielding electromagnetic waves
EP0304435B1 (en) Electrically conductive material for molding
JPS6390564A (en) Electrically conductive thermoplastic resin composition
JPS6392672A (en) Conductive thermoplastic resin composition
JPH10204305A (en) Electromagnetic-wave-shielding resin composition and molding made therefrom
JPS63297459A (en) Electrically conductive polymer blend
CN110066503A (en) A kind of antistatic thermosetting plastics and preparation method thereof
JP2001261975A (en) Electroconductive thermoplastic resin composition
JPS62138537A (en) Electrically-conductive thermoplastic resin composition
JPS6069158A (en) Electrically conductive, low-shrinkage resin molding material
JPS6142568A (en) Electromagnetic wave-shielding resin mixture
KR870002144B1 (en) Impact electronic pulse cross of abs
JPH01213365A (en) Electrically conductive composition