JPS63297459A - Electrically conductive polymer blend - Google Patents

Electrically conductive polymer blend

Info

Publication number
JPS63297459A
JPS63297459A JP13163387A JP13163387A JPS63297459A JP S63297459 A JPS63297459 A JP S63297459A JP 13163387 A JP13163387 A JP 13163387A JP 13163387 A JP13163387 A JP 13163387A JP S63297459 A JPS63297459 A JP S63297459A
Authority
JP
Japan
Prior art keywords
fibers
diameter
electrically conductive
conductive
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13163387A
Other languages
Japanese (ja)
Inventor
Izumi Kosuge
小菅 泉
Kenichi Otani
健一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13163387A priority Critical patent/JPS63297459A/en
Publication of JPS63297459A publication Critical patent/JPS63297459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain an electrically conductive polymer, having excellent shielding characteristics and heat cycle resistance and suitable as thin-walled parts of precise parts, by blending a thermoplastic polymer with two kinds of electrically conductive fibers having a specific diameter in a specific proportion. CONSTITUTION:An electrically conductive polymer obtained by blending a thermoplastic polymer, (e.g. polystyrene or polyethylene) as a matrix polymer with (B) electrically conductive fibers having <=10mum diameter (e.g. stainless fiber) and (B) electrically conductive fibers (e.g. stainless steel or copper) having a diameter so as to provide >=50g strength (tensile strength X cross-sectional area) at 30:70-70:30 weight ratio.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電磁波シールドを主目的とした導電性樹脂混和
物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a conductive resin mixture whose main purpose is to shield electromagnetic waves.

(従来の技術) 従来導電性ファイバーを樹脂中に分散せしめて見られる
導電性樹脂において、混入せしめる上記導電性ファイバ
ーとしては、ヒビリ損動法によって見られる金属短ファ
イバー、カーボンファイバー、メタライズドガラスファ
イバー、伸線によって見られる金属ファイバーなどがあ
る。
(Prior art) In conductive resins in which conductive fibers are conventionally dispersed in resin, the conductive fibers to be mixed include short metal fibers, carbon fibers, metallized glass fibers, and There are metal fibers found in wire drawing.

これらのファイバーの直径は、ヒビリ振動法の場合は直
径4〜120μ、カーボンファイバー、メタライズドガ
ラスファイバーの場合は5〜10μ程度、伸線によって
見られる金属ファイバーの場合は、ステンレスファイバ
ーにて4〜20μ、銅ファイバーにて30〜50μ程度
のものが一般に使用されている。
The diameter of these fibers is 4 to 120μ in the crack vibration method, 5 to 10μ in the case of carbon fiber or metallized glass fiber, and 4 to 20μ in the case of metal fibers obtained by wire drawing. , copper fibers with a thickness of about 30 to 50 μm are generally used.

而して、導電性樹脂混和物においてCRTの筐体の如く
大型肉厚の成形品を製造する場合にはヒビリ振動法にて
えたファイバーや銅ファイバーの如く直径50μのファ
イバーでも均一に分、散し問題はないが、小型の精密部
品、薄肉品或は大型品でも精密部や薄肉部を有するもの
はファイバーが十分に充填され難く電磁波もれを生ずる
という欠点があった。又ヒピリ振動法によるファイバー
はアスペクト比が小さく、又カーボンファイバーはそれ
自体の導電率が金属ファイバーに比して低いため大量(
30〜70!量%)に混入せしめなければならず実用的
なシールド効果がえられず、重量増・コスト高、成形性
等の低下をまねくものであった。
Therefore, when manufacturing a large, thick molded product such as a CRT casing using a conductive resin mixture, even fibers with a diameter of 50 μm, such as fibers obtained by the crack vibration method or copper fibers, must be uniformly dispersed. However, there is a drawback in that small precision parts, thin-walled products, or even large products with precision parts or thin-walled parts are difficult to fill with fibers sufficiently, resulting in leakage of electromagnetic waves. In addition, fibers produced using the Hipiri vibration method have a small aspect ratio, and carbon fibers have lower conductivity than metal fibers, so they cannot be produced in large quantities (
30-70! %), and a practical shielding effect cannot be obtained, resulting in increased weight, increased cost, and decreased moldability.

従ってステンレスファイバーとして直径8μのものを混
入した樹脂混和物が現在主として検討され上布されてい
るが、このものは初期的なシールド効果は良好であるが
、熱サイクルを加えると実用的に使用出来ない程シール
ド効果が低下するものであった。これは直径8μのファ
イバーは絶対的な強度が弱いため上記樹脂混和物の製造
時或は成形時において該ファイバーが切断されやすくな
りアスペクト比が太い直径のものと同等でもファイバー
長が1+ll以下と短かく、そのため成形品中の導電路
を形成するための接触回数が多くなる。
Therefore, resin mixtures containing stainless steel fibers with a diameter of 8 μm are currently being mainly studied and applied to cloth, but although this has a good initial shielding effect, it cannot be used practically after heat cycling. The shielding effect was reduced to the extent that it was. This is because fibers with a diameter of 8μ have a weak absolute strength, so they are easily cut during the production or molding of the resin mixture, and even if the aspect ratio is the same as that of a larger diameter fiber, the fiber length is as short as 1+ll or less. Thus, the number of contacts required to form conductive paths in the molded article is increased.

このような成形品に熱サイクルを加えると収縮。When heat cycles are applied to such molded products, they shrink.

膨張により接触が断たれ太い直径のファイバーに比して
不連続点が多くなり、体積抵抗率の増大に伴いシールド
効果が低下するものと推考される。
It is presumed that the contact is broken due to expansion, resulting in more discontinuities than in a fiber with a larger diameter, and the shielding effect decreases as the volume resistivity increases.

(発明が解決しようとする問題点) 本発明はかかる現状に鑑み鋭意研究を行った結果、精密
部品或は薄肉部品においても良好なシールド効果を有し
且つ熱サイクルの影響によるもシールド効果の低下を生
じない導電性樹脂混和物を開発したものである。
(Problems to be Solved by the Invention) As a result of intensive research in view of the current situation, the present invention has a good shielding effect even in precision parts or thin-walled parts, and the shielding effect does not deteriorate even due to the influence of thermal cycles. We have developed a conductive resin mixture that does not cause

(問題点を解決するための手段) 本発明は熱可塑性樹脂をマ) IJノクス樹脂とし、該
樹脂中に直径10μm以下の導電性ファイバー囚と強度
(抗張力×断面積)が50?以上を有する直径の導電性
ファイバー〇)とを重量比にて30ニア0〜70:30
の割合で混和せしめたことを特徴とするものである。
(Means for Solving the Problems) The present invention uses a thermoplastic resin as IJ Nox resin, and contains conductive fibers with a diameter of 10 μm or less and a strength (tensile strength x cross-sectional area) of 50? conductive fiber with a diameter of 30 to 70:30 by weight.
It is characterized by being mixed at a ratio of .

なお、導電性ファイバー(A)及び(B)の種類として
はステンレス、銅、銅合金が使用されるが、導電性ファ
イバー囚としては加工コストが安く、強度も高いステン
レスファイバーが特によく、導電性ファイバー(ト))
としてはステンレス、銅、銅合金。
Stainless steel, copper, and copper alloys are used as the types of conductive fibers (A) and (B), but stainless steel fibers are particularly good as conductive fibers because they have low processing costs and high strength. fiber (g))
Examples include stainless steel, copper, and copper alloys.

アルミニウムがよい。Aluminum is better.

又本発明において導電性ファイバー(A)と導電性ファ
イバー但)の配合割合を30ニア0〜70:30に限定
した理由は導電性ファイバー■が30%未満の場合には
細部での充填量が少なく電磁波のシールドが十分でない
。又70%を超えた場合には細部への充填量は充分なも
のの、耐ヒートサイクル性に劣るためである。
Also, in the present invention, the reason why the blending ratio of conductive fiber (A) and conductive fiber () is limited to 30:0 to 70:30 is that if the conductive fiber (■) is less than 30%, the filling amount in the details is There is insufficient electromagnetic shielding. If it exceeds 70%, although the amount of filling in the details is sufficient, the heat cycle resistance is poor.

又導電性ファイバー(B)が30%未満の場合にはシー
ルド特性の耐ヒートサイクル性が劣るためであり、又7
0−を超した場合には細部への充填量が少々くなシ、電
磁波もれが生じる。
In addition, if the content of the conductive fiber (B) is less than 30%, the heat cycle resistance of the shielding properties will be poor;
If it exceeds 0-, the amount of filling in the details will be slightly reduced and electromagnetic wave leakage will occur.

又マトリックスとなる熱可塑性樹脂としてはポリスチロ
ール、4リエチレ71,74リプロピレン、ABS、ア
クリルスチレン共重合体、PBT 、ポリカーゴネート
、PA等が使用される。
Further, as the thermoplastic resin serving as the matrix, polystyrene, 4-propylene, ABS, acrylic styrene copolymer, PBT, polycargonate, PA, etc. are used.

本発明導電性樹脂混和物をうるには3〜101mの任意
の長さに切シ揃えられた上記2種類のファイバーを二軸
押出機等にてマトリックスの熱可塑性樹脂と混練してう
る方法、又は2種類のファイバーを多数本束ねて、熱可
塑性樹脂と相容性のある溶融特高流動性の樹脂で集束し
、熱可塑性樹脂を押出被覆し、3〜1Qssの任意の長
さにペレタイズする方法又は溶剤に溶解した樹脂で、夫
々の径のファイバーを集束し任意の長さにペレタイズす
る方法等によるものである。
The conductive resin mixture of the present invention can be obtained by kneading the above-mentioned two types of fibers cut into an arbitrary length of 3 to 101 m with a matrix thermoplastic resin in a twin-screw extruder or the like; Alternatively, a large number of two types of fibers are bundled together, bundled with a molten highly fluid resin that is compatible with a thermoplastic resin, extrusion coated with a thermoplastic resin, and pelletized to an arbitrary length of 3 to 1 Qss. This method is based on a method in which fibers of different diameters are bundled using a resin dissolved in a solvent and pelletized into a desired length.

(作用) 本発明において導電性ファイバー(A)を直径10μ以
下に限定した理由は、10μ以上のファイバーは精密製
品、薄肉製品に対し充填することが出来ず、又導電性フ
ァイバー(B)を505L以上に限定した理由は50P
以下のファイバーは切断し易く且つ耐ヒートサイクル性
を阻害するためである。
(Function) In the present invention, the conductive fiber (A) is limited to a diameter of 10μ or less because fibers with a diameter of 10μ or more cannot be filled into precision products or thin products, and the conductive fiber (B) is limited to 505L. The reason for limiting it to the above is 50 pages.
This is because the following fibers are easy to cut and impede heat cycle resistance.

而して導電性ファイバー(A)において直径10μ以下
のものはコストが高く且りコンノ4つ71時或は成形加
工時に切断され易いという欠点はあるものの精度部品、
薄肉部品にも均一に分散するという利点がある。又導″
dL注ファイバー■)において50?以上の如く径の太
いファイバーはコストが安く強度が大きく且つ耐ヒート
サイクル性にも良好であるが、隅々まで充填することが
出来ず又加工性。
Conductive fibers (A) with a diameter of less than 10 μm are expensive and are easy to break during molding or molding, but they are precision components.
It has the advantage of being evenly distributed even in thin-walled parts. Also lead''
50 in dL Note Fiber ■)? As mentioned above, fibers with a large diameter are low in cost, have high strength, and have good heat cycle resistance, but they cannot be filled into every corner and are difficult to process.

物理特性の低下をまねくという欠点がある。なおその径
が30μ以上になると成形品の外観を阻害する。
It has the disadvantage of causing a decline in physical properties. Note that if the diameter is 30μ or more, the appearance of the molded product will be impaired.

本発明は2種類のファイバーの欠点を相互に補うべく混
合して成形することにより低コストにして細部までKも
ファイバーが充填され且つ長繊維のものが充填されてい
るのでシールド特性、耐ヒートサイクルの優れた導電性
樹脂組成物をうろことが出来る。
The present invention achieves low cost by mixing and molding two types of fibers to mutually compensate for their shortcomings. K is also filled with fibers and long fibers in every detail, which improves shielding properties and heat cycle resistance. It is possible to use an excellent conductive resin composition.

(実施例) 実施例(1) 直径8μのステンレスファイバー5000本束と1if
f130μ(強度1305’ )のステンレスファイバ
ー500本束とを別々にタンデム押出機によシまず低分
子量(約500(B)のIJAにて含浸集束した直後、
その外周にABS樹脂(JSR社Ifりを被覆し冷却後
これを60の長さにペレット化した。これを直径8μの
ステンレスファイバー囚とi[lU径30μのステンレ
スファイバーCB)の重量比が50:50になるように
調整し且つステンレスファイバーの合計が混和物全体の
10重量外になるように調整して本発明導電性樹脂混和
物をえた。
(Example) Example (1) A bundle of 5000 stainless steel fibers with a diameter of 8μ and 1if
A bundle of 500 stainless steel fibers of f130 μ (strength 1305') was put into a tandem extruder separately, and immediately after impregnation and convergence with IJA of low molecular weight (approximately 500 (B)),
The outer periphery was coated with ABS resin (JSR Co., Ltd.), and after cooling, it was pelletized into a length of 60 mm.The weight ratio of the stainless fiber core with a diameter of 8 μ and the stainless steel fiber CB with a diameter of 30 μ was 50. :50 and the total amount of stainless fibers was adjusted to be less than 10% by weight of the entire mixture to obtain a conductive resin mixture of the present invention.

実施例(2) 実施例(1)において直径8μのステンレスファイバー
(A)と直径3Oμのステンレスファイ−4−(B) 
トの重量比を30ニア0にした以外はすべて実施例(1
)と同様にして本発明導電性樹脂混和物をえた。
Example (2) In Example (1), stainless steel fiber (A) with a diameter of 8μ and stainless fiber 4-(B) with a diameter of 30μ
All the examples were the same as those of Example (1) except that the weight ratio of
) A conductive resin mixture of the present invention was obtained.

実施例(3) 実施例(1)において直径8μのステンレスファイバー
(A)と直径30μのステンレスファイバー(6)とを
重量比を70:30とした以外はすべて実施例(1)と
同様にして本発明導電性樹脂組成物をえた。
Example (3) All procedures were carried out in the same manner as in Example (1) except that in Example (1), the stainless steel fiber (A) with a diameter of 8μ and the stainless steel fiber (6) with a diameter of 30μ were changed to a weight ratio of 70:30. A conductive resin composition of the present invention was obtained.

実施例(A) 直径8μのステンレスファイバー(A)と直匝50μの
銅ファイバーの重量比を50:50となるように調整し
且つこの2種のファイバーの合計量が混和物全体の10
重量%になるように調整した以外はすべて実施例(1)
と同様にして本発明導電性樹脂混和物をえた。
Example (A) The weight ratio of stainless steel fiber (A) with a diameter of 8 μm and copper fiber with a straight weight of 50 μm was adjusted to 50:50, and the total amount of these two types of fibers was 10% of the entire mixture.
All examples are Example (1) except that they were adjusted to be % by weight.
A conductive resin mixture of the present invention was obtained in the same manner as above.

比較例(1) 直径8μのステンレスファイバー囚のみを混和した以外
はすべて実施例(1)と同様にして比較例導電性樹脂混
和物をえた。
Comparative Example (1) A comparative conductive resin mixture was obtained in the same manner as in Example (1) except that only stainless fiber particles having a diameter of 8 μm were mixed.

比較例(2) 直径30μのステンレスファイバー(B)のみを混和し
た以外はすべて実施例(1)と同様にして比較例導電性
樹脂混和物をえた。
Comparative Example (2) A comparative conductive resin mixture was obtained in the same manner as in Example (1) except that only stainless fiber (B) having a diameter of 30 μm was mixed.

斯くして得九本発明導電性樹脂混和物及び比較例導電性
樹脂混和物を射出成型により精宛部品(ICキャリア)
を製造し、これの肉厚部(2〜3絽)と肉薄部(0,5
m)の体積抵抗率(Ω−1)及び−40℃〜80℃のヒ
ートサイクル即ち一40℃2時間、昇温1時間、80℃
2時間、降温1時間の試験を40回繰返し行った後の体
積抵抗率(Ω−1)を夫々測定し九〇その結果は第1表
に示す通りである。
Thus obtained nine conductive resin mixtures of the present invention and comparative conductive resin mixtures were injection molded to produce precision parts (IC carriers).
The thick part (2~3 絽) and the thin part (0,5
m) volume resistivity (Ω-1) and heat cycle from -40°C to 80°C, i.e. -40°C for 2 hours, temperature rising for 1 hour, 80°C
The volume resistivity (Ω-1) was measured after repeating the test for 2 hours and the temperature was lowered for 1 hour 40 times.The results are shown in Table 1.

第  1  表 (効果) 以上詳述した如く本発明導電性樹脂混和物によれば精密
部品の薄肉部においても良好なシールド効果がえられ且
つヒートサイクルを行うも同等シールド効果に影響及ぼ
すことがない等工業上極めて有用なものである。
Table 1 (Effects) As detailed above, the conductive resin mixture of the present invention provides a good shielding effect even in thin-walled parts of precision parts, and does not affect the same shielding effect even when heat cycled. It is extremely useful industrially.

Claims (2)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂をマトリックス樹脂とし、該樹脂中
に直径10μm以下の導電性ファイバー(A)と強度(
抗張力×断面積)が50g以上を有する直径の導電性フ
ァイバー(B)とを、重量比にて30:70〜70:3
0の割合で混和せしめたことを特徴とする導電性樹脂混
和物。
(1) A thermoplastic resin is used as a matrix resin, and conductive fibers (A) with a diameter of 10 μm or less and strength (
and a conductive fiber (B) having a diameter of 50 g or more (tensile strength x cross-sectional area) at a weight ratio of 30:70 to 70:3.
A conductive resin mixture characterized by being mixed at a ratio of 0.
(2)導電性ファイバー(A)としてステンレスファイ
バーを使用したことを特徴とする特許請求の範囲第1項
記載の導電性樹脂混和物。
(2) The conductive resin mixture according to claim 1, characterized in that stainless steel fibers are used as the conductive fibers (A).
JP13163387A 1987-05-29 1987-05-29 Electrically conductive polymer blend Pending JPS63297459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13163387A JPS63297459A (en) 1987-05-29 1987-05-29 Electrically conductive polymer blend

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13163387A JPS63297459A (en) 1987-05-29 1987-05-29 Electrically conductive polymer blend

Publications (1)

Publication Number Publication Date
JPS63297459A true JPS63297459A (en) 1988-12-05

Family

ID=15062613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13163387A Pending JPS63297459A (en) 1987-05-29 1987-05-29 Electrically conductive polymer blend

Country Status (1)

Country Link
JP (1) JPS63297459A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022556A2 (en) * 2003-09-02 2005-03-10 Integral Technologies, Inc. Very low resistance electrical interfaces to conductive loaded resin-based materials
US6896828B2 (en) 2001-11-13 2005-05-24 Dow Global Technologies Inc. Electrically conductive thermoplastic polymer composition
US6936191B2 (en) 2001-11-13 2005-08-30 Doe Global Technologies Inc. Electrically conductive thermoplastic polymer composition
KR100742709B1 (en) 2006-06-22 2007-07-25 노바템스 주식회사 Method for manufacturing conductive composite using the scrap of stainless steel
JP2008156401A (en) * 2006-12-21 2008-07-10 Asahi Kasei Chemicals Corp Mixture of electroconductive thermoplastic resin composition for molding, and molded article obtained by molding the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896828B2 (en) 2001-11-13 2005-05-24 Dow Global Technologies Inc. Electrically conductive thermoplastic polymer composition
US6936191B2 (en) 2001-11-13 2005-08-30 Doe Global Technologies Inc. Electrically conductive thermoplastic polymer composition
WO2005022556A2 (en) * 2003-09-02 2005-03-10 Integral Technologies, Inc. Very low resistance electrical interfaces to conductive loaded resin-based materials
WO2005022556A3 (en) * 2003-09-02 2006-01-26 Integral Technologies Inc Very low resistance electrical interfaces to conductive loaded resin-based materials
KR100742709B1 (en) 2006-06-22 2007-07-25 노바템스 주식회사 Method for manufacturing conductive composite using the scrap of stainless steel
JP2008156401A (en) * 2006-12-21 2008-07-10 Asahi Kasei Chemicals Corp Mixture of electroconductive thermoplastic resin composition for molding, and molded article obtained by molding the same

Similar Documents

Publication Publication Date Title
TWI285655B (en) Electrically conductive thermoplastic polymer composition
JP2001503799A (en) Conductive composition and method for producing the same
JPS59189142A (en) Electrically conductive thermoplastic resin composition
CN112778762A (en) Conductive PPS composite material and preparation method thereof
JPS63297459A (en) Electrically conductive polymer blend
CN115746531B (en) PC-ABS electromagnetic shielding composite material and preparation method and application thereof
JPS624749A (en) Blend type electrically conductive composite material
JPH0419644B2 (en)
JPH0139453B2 (en)
JPH04207100A (en) Conductive resin composition
EP0221434B1 (en) Improving conductivity of plastics containing metallic fillers
JPH0319862B2 (en)
JPH0647254B2 (en) Conductive resin composition
KR100787562B1 (en) A method of preparing resin composition pellet for shielding electro-magnetic interference and molded articles using it
JPS6213444A (en) Electrically conductive resin composition
JPH027977B2 (en)
JPS61209120A (en) Manufacture of electrically conductive termoplastic resin molding
JPS63189208A (en) Manufacture of electrically conductive polyvinyl chloride resin pellet
JPS6142568A (en) Electromagnetic wave-shielding resin mixture
JPH056587B2 (en)
JPS6386755A (en) Electrically conductive thermoplastic resin composition
JP2573555B2 (en) Synthetic resin composition
JPH0763971B2 (en) Conductive resin molding
WO1988004986A1 (en) Process for molding resin composition containing metallic fibers
JPH039956A (en) Highly conductive resin composition