Connect public, paid and private patent data with Google Patents Public Datasets

Fluorescent silica-based nanoparticles

Download PDF

Info

Publication number
US20040101822A1
US20040101822A1 US10306614 US30661402A US2004101822A1 US 20040101822 A1 US20040101822 A1 US 20040101822A1 US 10306614 US10306614 US 10306614 US 30661402 A US30661402 A US 30661402A US 2004101822 A1 US2004101822 A1 US 2004101822A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
fluorescent
nanoparticle
nanoparticles
example
ligated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10306614
Inventor
Ulrich Wiesner
Hooisweng Ow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cornell Research Foundation Inc
Original Assignee
Cornell Research Foundation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of non-luminescent materials other than binders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay
    • G01N33/543Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • G01N33/587Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/2438Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Abstract

The present invention provides nanoparticle compositions comprising, for example, a core comprising a fluorescent silane compound; and a silica shell on the core. Also provided are methods for the preparation of nanoparticle compositions including fluorescent nanoparticles, ligated-fluorescent nanoparticles, ligated-fluorescent nanoparticles having therapeutic agents, and ligated-fluorescent nanoparticles coupled or associated with an analyte. Also provided are methods: for the detection of the ligated-fluorescent nanoparticles; for associating the linked-fluorescent nanoparticles with a cellular component of interest and recording or monitoring the movement of the cellular component; for improving the therapeutic properties of the therapeutic agent by combining the therapeutic agent with linked-fluorescent nanoparticles and contacting or administering the combination to a cell or organism; for making and using the fluorescent nanoparticles in, for example, diagnostic agents for the detection of various analytes, and like applications.

Description

    FIELD OF THE INVENTION
  • [0001]
    The invention generally relates to nanoparticles, and more specifically to ligated-fluorescent nanoparticles, methods of making ligated-fluorescent nanoparticles, and methods of using the ligated-fluorescent nanoparticles as biomarkers to, for example, monitor the motion or movement of cellular components on or within cell systems, and for the detection, diagnosis, or treatment of diseases or conditions, for example in intact or living cells.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Fluorescent and magnetic polymeric particles have known utility as markers and indicators in various biomedical assays. Among the most commonly used markers for sorting cells are immunoconjugates or immunological labels which include, for example, immuno-fluorescent and immuno-magnetic labels. Immunofluorescent labels typically include, for example, a fluorescent molecule joined to an antibody. Immuno-magnetic labels typically include, for example, a superparamagnetic particle joined to either a primary or secondary antibody. Cell labeling can be performed by, for example, attaching the antibody to a marker of interest (e.g., receptor site) on the surface of the cell, that is, a cell surface marker. However, the chemical and physical structure of cell surface marker and density of immunological labels attached to the cell surface have generally been difficult to accurately determine.
  • [0003]
    Fluorescent labels have been prepared, for example, by embedding or covalently coupling a fluorescent dye onto a polymeric particle. The resulting fluorescent microparticles can be analyzed manually or by other methods known in the art but preferably using an automated technique, e.g., flow cytometry, such as disclosed in U.S. Pat. No. 4,665,024, to Mansour, et al. The versatility of the fluorescent particles can be further enhanced by the incorporation of multiple fluorescent materials in a single particle. However, while simple absorption of a single dye into a particle can be adequate for most purposes, problems can arise when more than one dye is absorbed into a particle, including: inconsistent emissions attributable to, for example, intermolecular fluorescent energy transfer; differential fluorophore uptake ratios attributable to different dye solubilities within the polymeric matrix; and substrate induced changes in either or both the absorption and emission spectrum of the intercalated fluorophore.
  • [0004]
    Magnetic particles, such as known magnetically active materials, can be bonded or attached to, for example, antibodies, such as, monoclonal antibodies that are specific to a particular cell type, antigen, or other targets. The resulting magnetic-antibodies can then be mixed with a large population of many different cell types, for example, crude tissue samples, cells grown in a reactor, and the like. The magnetic-antibodies therefore attach only to their pre-selected target cell type, forming a magnetic-antibody-cell conjugate. The conjugate can then be separated from the rest of the cell population using a magnetic field. A shortcoming of magnetic particles is the lack of specificity in magnetic labeling in that a cell or other biological target analyte may be rendered paramagnetic by a number of different routes which can confound the analysis and diagnostic information afforded by the method, for example, by binding a specific paramagnetic compound to a specific hapten on a cell or by specific or non-specific binding of a paramagnetic metal or metal complex directly to a cell, such as, a metal binding microorganism or by phagocytosis. Other problems encountered with magnetic particles used in detection and diagnostics include, for example, difficulty in obtaining highly accurate quantification of a cell population's magnetic susceptibility. In addition to their magnetic properties (i.e. magnetic, paramagnetic, and superparamagnetic) magnetic-antibodies can be classified, for example, into three broad categories based on their relative descending particle size: magnetic particulate labels, colloidal magnetic labels, and molecular magnetic labels, see for example U.S. Pat. No. 6,412,359.
  • [0005]
    Latex nanoparticles having a polymeric core and a surface decorated with, for example, a ligand molecule capable of specific binding with a cell surface and optionally decorated with genetic material, such as a mutant gene, are known and may have utility in, for example, gene delivery to a cell and expression therein, for disrupting tumors, and related treatment applications, see for example, Science, 296, 2404 (2002).
  • [0006]
    Optically active nanoparticles, such as fluorescent nanoparticles, having an electrically conducting shell and a silica core are known and have utility in, for example, modulated delivery of a chemical and treatment applications, see for example, U.S. Pat. No. 6,344,272, and 6,428,811.
  • [0007]
    A shortcoming of existing fluorescent probe nanoparticles is their limited brightness and their attenuated detectability as fluorescent probes in dispersed systems, particularly with single fluorescent nanoparticles.
  • [0008]
    There is currently a need for improved fluorescent nanoparticles and methods for detection and analysis therewith, including their use as fluorescent markers or probes in dispersed biological media.
  • SUMMARY OF THE INVENTION
  • [0009]
    The invention provides a fluorescent nanoparticle comprising: a core comprising a fluorescent silane compound; and a silica shell on the core.
  • [0010]
    The invention also provides a fluorescent nanoparticle comprising:
  • [0011]
    a core comprising a fluorescent silane compound; and a porous silica shell on the core.
  • [0012]
    The invention also provides a fluorescent nanoparticle which can further include a ligand, such as a antibody, conjugated with or coated on the surface of the fluorescent nanoparticle to form a ligated-fluorescent nanoparticle. The ligated- or ligand bearing-fluorescent nanoparticles of the present invention can be used, for example, as highly target specific diagnostic agents, and motion monitoring agents when combined with cells or cell components.
  • [0013]
    The invention also provides a pharmaceutical carrier or drug delivery vehicle comprising the fluorescent nanoparticles or the ligated-fluorescent nanoparticles of the present invention.
  • [0014]
    The invention also provides a fluorescent imaging agent comprising the ligated-fluorescent nanoparticles of the present invention.
  • [0015]
    The invention also provides ligated-fluorescent nanoparticles as pharmaceutical carrier particles. Thus, the ligated-fluorescent nanoparticles can further include a therapeutic agent, which therapeutic agent is on the surface or is conjugated with the surface of the fluorescent nanoparticle to form a pharmaceutical composition.
  • [0016]
    The invention also provides a method of making a fluorescent nanoparticle comprising:
  • [0017]
    mixing a fluorescent compound, such as a reactive fluorescent dye, and an organo-silane compound, such as a co-reactive organo-silane compound, to form a fluorescent core; and
  • [0018]
    mixing the resulting core with a silica forming compound, such as a tetraalkoxysilane, to form a silica shell on the core.
  • [0019]
    The invention also provides a method for monitoring movement of a cellular component of a cell comprising:
  • [0020]
    contacting the cell with a ligated-fluorescent nanoparticle to form a cell selectively decorated with the ligated-fluorescent nanoparticle; and
  • [0021]
    recording the motion of a fluorescent loci for a time.
  • [0022]
    The invention also provides a method for treating disease comprising:
  • [0023]
    administering to a patient in need of treatment with an effective amount of a ligated-fluorescent nanoparticle, which nanoparticle optionally includes a therapeutic agent, the nanoparticle being adapted to selectively associate with a disease producing component of the cell, to form a selectively decorated cell with the ligated-fluorescent nanoparticle; and
  • [0024]
    illuminating the decorated cell.
  • [0025]
    The invention also provides a method for treatment comprising:
  • [0026]
    contacting a cell with a ligated-fluorescent nanoparticle, which nanoparticle optionally includes a therapeutic agent, to form a cell selectively decorated with the ligated-fluorescent nanoparticle; and irradiating the resulting decorated cell for a time.
  • [0027]
    The invention also provides a kit for use in the detection of an analyte, the kit comprising a ligated-fluorescent nanoparticle, as illustrated herein.
  • [0028]
    The invention also provides a kit for detecting and monitoring a cell surface component comprising a ligated-fluorescent nanoparticle for detecting the cell surface component, and optionally a recorder for monitoring the cell surface component.
  • [0029]
    The invention also provides an assay method for detecting motion or a change in the location of a cellular component in, or on the surface of, a cell when the cell is treated with a therapeutic agent comprising:
  • [0030]
    contacting a cell with a ligated-fluorescent nanoparticle, wherein the nanoparticle includes a therapeutic agent, to bind the ligated-fluorescent nanoparticle to a cellular component; and
  • [0031]
    recording the fluorescent signal.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0032]
    [0032]FIG. 1A illustrates an example of the fluorescent brightness of the fluorescent nanoparticles of the present invention compared to latex particles.
  • [0033]
    [0033]FIG. 2A illustrates an example of bio-molecule binding specificity of the fluorescent nanoparticles of the present invention.
  • [0034]
    [0034]FIG. 2B illustrates an example of bio-molecule binding specificity of comparative latex particles.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0035]
    Applicants have discovered fluorescent nanoparticles, and linked- or ligated-fluorescent nanoparticles of the invention that are useful for labeling, detection, identification, motion monitoring, and like applications, of various biological and non-biological analytes. The linked- or ligated-fluorescent nanoparticles of the invention can also be useful in therapeutic treatment, when used as a pharmaceutical carriers, for example, in combination with a suitable therapeutic agent.
  • [0036]
    The present invention provides nanoparticles which can have useful multifunctional architectures, for example, a fluorescent nano-sized core which can optionally contain other functionality such as a magnetic component, a silica shell which can be made to have a range of useful thicknesses and surface properties, such as a smooth monolithic surface or a highly porous surface, and which silica surface can be further physically or chemically modified with, for example, a ligand or a therapeutic agent.
  • [0037]
    The present invention provides for the preparation and characterizations of fluorescent nanoparticles in various sizes suitable for single particle tracking (SPT) applications. Nanoparticles of various diameters can be prepared having narrow size distributions. The versatility of the preparative route allows for the incorporation of different fluorescent materials, such as dyes, depending on the intended nanoparticle application. Methods for surface functionalization are also provided which enable the conjugation of specific ligands, such as antibodies or proteins, onto the fluorescent nanoparticles to form probes useful for specific SPT experiments. The nanoparticle preparative procedure enables the preparation, by in situ systematic nanoparticle size-growth, of fluorescent nanoparticles in the range of, for example, from about 10 to about 500 nm, and from about 25 to about 100 nm, and narrower ranges therein as illustrated herein.
  • [0038]
    The fluorescent nanoparticles can be conjugated with a molecule or entity, such as an antibody ligand or linker, to provide a linked- or ligated-fluorescent nanoparticle which can be used to identify, detect, target (i.e. pinpoint or specify with a high level of certainty), monitor, or modify a disease state or condition, such as the presence or absence of particular receptors, metabolic levels of particular receptors, and like components. The linked- or ligated-fluorescent nanoparticle can be still further conjugated or associated with, for example, a therapeutic agent and used to, for example, treat a disease state or condition, such as by delivering the therapeutic agent to a diseased site in a highly specific or localized manner and in a relatively high concentration with release of the therapeutic agent in a relatively controlled manner. The ligated-fluorescent nanoparticles can be used for directed delivery of a therapeutic agent to a desired location in a variety of systems, such as on, or within, a cell or cell component, or within the body of an organism, such as a human, e.g. across the blood-brain barrier.
  • [0039]
    In embodiments the therapeutic agent can be either or both absorbed into, such as the interstices or pores of the silica shell, or coated onto the silica shell of the fluorescent nanoparticle. In other embodiments where the silica shell is incomplete, the therapeutic agent can be associated with the fluorescent core, such as by physical absorption or by bonding interaction. The therapeutic agent can also be associated with the ligand of a ligated-fluorescent nanoparticle if desired.
  • [0040]
    The ligated-fluorescent nanoparticles of the present invention can be used in a variety of diagnostic and treatment applications, for example, as a pharmaceutical carrier for therapeutic agents, and as a fluorescent marker in, for example, single nucleotide polymorphorism (SNPs) experiments, such as where a DNA sample is stained with a fluorescent marker and gene activity can be detected as a colored glow of the marker when illuminated with a laser.
  • [0041]
    The nanoparticles of the invention, alone or in combination with a ligand, can be used for passive or covalent coupling of biological material, i.e. an analyte, such as haptens, antigens, antibodies, enzymes or nucleic acids, and used for various types of analyte assays such as immunoassays, nucleic acid (DNA or RNA) assays, affinity purification, cell separation, and other medical, diagnostic, environmental, and industrial applications. The nanoparticles incorporate known fluorescently responsive materials, such as, dyes, pigments, or combinations thereof. A wide variety of suitable chemically reactive fluorescent dyes are known, see for example MOLECULAR PROBES HANDBOOK OF FLUORESCENT PROBES AND RESEARCH CHEMICALS, 6th ed., R. P. Haugland, ed. (1996). A typical fluorophore is, for example, a fluorescent aromatic or heteroaromatic compound such as is a pyrene, an anthracene, a naphthalene, an acridine, a stilbene, an indole or benzindole, an oxazole or benzoxazole, a thiazole or benzothiazole, a 4-amino-7-nitrobenz-2-oxa-1,3-diazole (NBD), a cyanine, a carbocyanine, a carbostyryl, a porphyrin, a salicylate, an anthranilate, an azulene, a perylene, a pyridine, a quinoline, a coumarin (including hydroxycoumarins and aminocoumarins and fluorinated derivatives thereof), and like compounds, see for example U.S. Pat. Nos. 5,830,912; 4,774,339; 5,187,288; 5,248,782; 5,274,113; 5,433,896; 4,810,636; and 4,812,409.
  • [0042]
    The co-reactive organosilane used for forming the fluorescent core has the general formula R(4-n)SiXn, where X can be a hydrolyzable group such as ethoxy, methoxy, or 2-methoxy-ethoxy; R can be a monovalent organic radical of from 1 to 12 carbon atoms which can optionally contains a functional organic group such as mercapto, epoxy, acrylyl, methacrylyl, or amino; and n is an integer of from 0 to 4. The co-reactive organosilane used for forming the fluorescent core preferably has n equal to 3. A organosilane used for forming the silica shell has n equal to 4. The use of functional mono-, bis- and tris-alkoxysilanes for coupling and modification of co-reactive functional groups or hydroxy-functional surfaces, including glass surfaces, is also known, see Kirk-Othmer, Encyclopedia of Chemical Technology, Vol. 20, 3rd Ed., J. Wiley, N.Y. Although not desired to be limited by theory, the coupling arises as a result of hydrolysis of the alkoxysilane groups to silanol groups and as a result of condensation with hydroxyl groups of the surface, see E. Pluedemann, Silane Coupling Agents, Plenum Press, N.Y. 1982. Thus, the above mentioned organo-silane compounds and like coupling agents can be used: to make the core; to make the silica shell, to modify the surface of the resulting silica shell coated fluorescent core nanoparticles; to attach or couple a ligand to the fluorescent nanoparticles; or to modify the properties of ligand before or after attachment to fluorescent nanoparticle. The organo-silane can cause gels, so it may be desirable to employ an alcohol or other known stabilizers. When the organo-silane is to be copolymerized with another monomer such as a reactive fluorescent compound, a stabilizer can be selected that does not interfere with the polymerization. An alcohol, such as methanol, is especially useful and can be employed in amounts, for example, from about twice to about ten times the amount of the organo-silane.
  • [0043]
    The nanoparticles can optionally incorporate known magnet or magnetically responsive materials, such as, superparamagnetic, paramagnetic, ferromagnetic metal oxide, and combinations thereof.
  • [0044]
    The fluorescent nanoparticles of the present invention comprise a core comprising a fluorescent silane compound; and a silica shell on the core. The core of the nanoparticle can comprise, for example, the reaction product of a reactive fluorescent compound and an co-reactive organo-silane compound, and the shell can comprise, for example, the reaction product of a silica forming compound. The silica forming compound can produce, for example, one or more layers of silica, such as from 1 to about 20 layers, and depending upon the shell characteristics desired, such as shell layer thickness, the ratio of the shell thickness to the core thickness or diameter, silica shell surface coverage of the core, porosity and carrying capacity of the silica shell, and like considerations.
  • [0045]
    The silica shell coating on the core can cover, for example, from about 10 to about 100 percent of the surface area of the core. The ligand when ligated on the surface of the fluorescent nanoparticle can cover, for example, from about 0.1 to about 100 percent of the surface area of the core. The thickness or diameter of the core to the thickness of the silica shell can be in a ratio of, for example, from about 1:1 to about 1:100. The diameter of the fluorescent nanoparticle can be, for example, from about 1 to about 1,000 nanometers. The diameter of a ligated-fluorescent nanoparticle can be comparable to or larger than the diameter of the fluorescent nanoparticle depending upon, for example, the size and the amount of the ligand selected. In embodiments the diameter of the core can be, for example, from about 10 to about 300 nanometers, and preferably from about 25 to about 200 nanometers, and the thickness of the silica shell can be, for example, from about 25 to about 800 nanometers, and preferably from about 25 to about 500 nanometers. In preferred embodiments, such as when the nanoparticles are selected as a carriers, the silica shell is made porous to accommodate for example a therapeutic agent, and as illustrated herein. More preferably the nanoparticles
  • [0046]
    The preparative methods for fluorescent nanoparticles of the present invention can yield nanoparticles, for example, of about an order of magnitude smaller in size than those reported by van Blaaderen and Vri, Langmuir, 8, 2921-2925 (1992) (monodisperse silica sphere core particles coated with dyes and further encapsulated with silica). The silica shell can be either solid, that is relatively non-porous, or meso-porous, such as semi-porous. The silica shell of the fluorescent nanoparticles is preferably dielectric. The silica shell of the fluorescent nanoparticles can be adapted to function as a pharmaceutical carrier nanoparticle, that is made to contain, for example, therapeutic agents, such as drugs or proteins for transport and delivery of in vivo or in vitro. Thus, the fluorescent nanoparticles of the present invention can provide a pharmaceutical carrier system which can be adapted for controlled delivery or release of therapeutic agents.
  • [0047]
    In embodiments, a ligand placed on the surface of the fluorescent nanoparticle forms a ligated-fluorescent nanoparticle. The placement of the ligand can be accomplished, for example, by attachment with a covalent bond or by physical absorption. The ligand on the surface of the fluorescent nanoparticle can be, for example, a biopolymer, a synthetic polymer, an antigen, an antibody, a virus or viral component, a receptor, a hapten, an enzyme, a hormone, a chemical compound, a pathogen, a microorganism or a component thereof, a toxin, a surface modifier, such as a surfactant to alter the surface properties or histocompatability of the nanoparticle or of an analyte when a nanoparticle associates therewith, and combinations thereof. Preferred ligands are for example, antibodies, such as monoclonal or polyclonal.
  • [0048]
    The present invention also provides a method of preparing analytes which are selectively labeled with ligated-fluorescent nanoparticles by, for example, coupling (e.g. covalently) or any other known method(s) of associating the ligated-fluorescent nanoparticles directly to the analyte (e.g., through ionic bonds, hydrogen bonds, by simple adsorption). The resulting selectively labeled analytes having a coupled or associated ligated-fluorescent nanoparticle (i.e. ligated-fluorescent nanoparticle-analyte complex) can be useful as an authentic or reference sample, for example, in a treatment method or diagnostic kit.
  • [0049]
    An “analyte” of the present invention is the object or the target of the ligated-fluorescent nanoparticle for attachment or association therewith. The analyte can be, for example, a microorganism or a component thereof, a virus or viral component, a cell or a component thereof, a biopolymer, a synthetic polymer, a synthetic material, such as a carbon nanotube, an antigen, an antibody, a receptor, a hapten, an enzyme, a hormone, a chemical compound, a pathogen, a toxin, combinations thereof, and like substances. Analytes of particular interest are microorganisms and cells, including viruses, prokaryotic and eukaryotic cells, unicellular and multi-cellular organism, e.g., fungi, bacterial, mammalian, etc., and fragments or components thereof. Other analytes of particular interest are pathogens. Monoclonal or polyclonal antibodies or other selective ligands which are part of the ligated-fluorescent nanoparticle can be linked to the surface of, for example, a pathogen.
  • [0050]
    In embodiments of the present invention there are provided methods of making a fluorescent nanoparticle, for example, comprising:
  • [0051]
    mixing a fluorescent compound, such as a reactive fluorescent dye, and an organo-silane compound, such as a co-reactive organo-silane compound, to form a fluorescent core; and
  • [0052]
    mixing the resulting core with a silica forming compound, such as a tetraalkoxysilane, to form a silica shell on the core, to provide the fluorescent nanoparticle.
  • [0053]
    The methods of making the nanoparticles of the present invention can further comprise combining the resulting fluorescent nanoparticle with a ligand such as a biopolymer, a synthetic polymer, an antigen, an antibody, a microorganism, a virus, a receptor, a hapten, an enzyme, a hormone, a chemical compound, a pathogen, a toxin, a surface modifier, for example, to alter the surface or compatibility properties of the nanoparticle, combinations thereof, and like materials. The resulting combination of the fluorescent nanoparticle and a ligand provides a ligated-fluorescent nanoparticle. The methods of making the nanoparticles can also further comprise combining the resulting nanoparticle with a therapeutic agent, with or without a ligand attached to the nanoparticle. Combining the nanoparticles with a ligand or a therapeutic agent can be accomplished by, for example, coating the ligand or therapeutic agent onto the surface of the nanoparticle. Alternatively or additionally, combining a nanoparticle with a ligand or a therapeutic agent can be accomplished by, for example, imbibing the ligand or therapeutic agent into the surface of the nanoparticle. Imbibing means to assimilate or to take in or up, for example, where a porous nanoparticle surface is imbibed with a ligand, a therapeutic agent, or both. Alternatively or additionally, combining a nanoparticle with a ligand or a therapeutic agent can be accomplished by, for example, bonding the ligand or therapeutic agent to the surface of the resulting nanoparticle. Bonding includes, for example, known covalent, ionic, hydrogen, hydrophobic, coordination, adhesive, combinations thereof, and like bonding associative methods.
  • [0054]
    Because of the small size and uniformity of the nanoparticles of the present invention and their apparent solubility or high dispersibility properties, the nanoparticles can provide “molecular labels” which can readily associate with or be bonded to another entity, such as a ligand or a therapeutic agent, and thereafter be readily transported to and selectively attached to a target analyte. The selective attachment enables useful analytical detection, diagnostic, or differentiation schemes. The size of the ligated-fluorescent nanoparticles for use in embodiments of the present invention can be selected based on the number of nanoparticles to be attached to the analyte and the sensitivity of the optical or spectroscopic schemes selected.
  • [0055]
    In embodiments the present invention provides a method for monitoring movement of a cellular component of a cell comprising:
  • [0056]
    contacting the cell with a ligated-fluorescent nanoparticle to form a cell selectively decorated with the ligated-fluorescent nanoparticle; and
  • [0057]
    recording the motion of a fluorescent loci for a time.
  • [0058]
    The fluorescent loci can correspond to a single ligated-fluorescent nanoparticle bound to a component of the cell. The fluorescent loci can correspond to two or more ligated-fluorescent nanoparticles bound to a component of the cell. The monitoring method enables an operator to, for example, track the diffusion of one or more fluorescent loci, such as a receptor to which a single ligated-fluorescent nanoparticle is bound, such as, in real-time or with time-lapse techniques. The ligated-fluorescent nanoparticle is preferably adapted to selectively associate with a targeted cellular component of the cell, for example, by appropriate selection of the ligand.
  • [0059]
    The cellular component can be, for example, a receptor, an antibody, a hapten, an enzyme, a hormone, a biopolymer, an antigen, a microorganism, a virus, a pathogen, a toxin, combinations thereof, and like components. In embodiments, the ligated-fluorescent nanoparticle can be a fluorescent nanoparticle conjugated with an antibody. In embodiments, the conjugated antibody can be an immunoglobin, such as IgE.
  • [0060]
    Suitable means for detecting, recording, measuring, or imaging in embodiments of the present invention are known in the art and include, for example, a flow cytometer, a laser scanning cytometer, a fluorescence micro-plate reader, a fluorescence microscope, a confocal microscope, a bright-field microscope, a high content scanning system, and like devices.
  • [0061]
    The recording can be accomplished, for example, with a microscopically adapted camera, such as a video-microscopy camera, a digital camera, a silver halide single exposure camera, and like devices. The recording time can be any convenient and useful time period to observe notable events or phenomena, for example, intervals from about 1 microsecond to about 30 days. In typical extracellular, surface-cellular, or intra-cellular events, recording for a time period can be, for example, from about 1 second to about 60 minutes, more preferably from about 1 second to about 40 minutes, and even more preferably, from about 1 minute to about 30 minutes. The recording time period can often be conveniently shortened or lengthened as desired by changing the ambient temperature of the sample or system. The contacting and the recording can be accomplished in vitro using conventional microscopic photography techniques. The contacting and the recording can also be accomplished in vivo using, for example, a catheter adapted with a microscopic camera or fiber optic camera. It will be readily evident to one of ordinary skill in the art in embodiments of the present invention that “recording” can be synonymous with “detecting,” since for example making a photographic recording of an illuminated specimen can also simultaneously afford detection of fluorescent loci, such as a cell or cell component selectively decorated with a ligated-fluorescent nanoparticle.
  • [0062]
    In embodiments there is provided a pharmaceutical carrier comprising the fluorescent nanoparticle of the present invention, and optionally a ligand associated with the fluorescent nanoparticle.
  • [0063]
    In embodiments there is also provided a pharmaceutical composition comprising a ligated-fluorescent nanoparticle, and a therapeutic agent associated with the fluorescent nanoparticle.
  • [0064]
    In embodiments there is provided an imaging agent comprising the ligated-fluorescent nanoparticle, for example, where the ligand of the ligated-fluorescent nanoparticle is on the surface of the nanoparticle. The imaging agent can be used in conventional imaging processes, and preferably where, for example, a high fluorescent yield or fluorescent brightness is desired. In embodiments, the ligated-fluorescent nanoparticles of the present invention can provide enhanced fluorescent brightness which is, for example, from about 2 to about 10 times greater compared to conventional surface decorated fluorescent particles, such as fluorescent latex particles.
  • [0065]
    In embodiments there is provided a method for treating a disease or disorder comprising:
  • [0066]
    administering to a patient in need of treatment an effective amount of a ligated-fluorescent nanoparticle which nanoparticle optionally includes a therapeutic agent, wherein the nanoparticle is adapted to selectively associate with a disease producing component of the cell, to form a selectively decorated cell with the ligated-fluorescent nanoparticle; and
  • [0067]
    illuminating the decorated cell.
  • [0068]
    The ligated-fluorescent nanoparticle, by itself or as part of a decorated cell, when illuminated can fluoresce, heat-up, or both. Thus, the selection of the reactive fluorescent compound in preparing the fluorescent nanoparticle, and the selection of the ligand, can be made empirically depending upon the balance of fluorescent and non-fluorescent (heat dissipation) properties desired. Higher fluorescent properties may be desired where detection is paramount or difficult, for example in dilute systems. Higher non-fluorescent properties may be desired where high heating is needed to, for example, promote liberation of a therapeutic agent or to accomplish selective microscopic-cauterization or microscopic-heat therapy. In embodiments it may be desirable to use a mixture of two or more ligated-fluorescent nanoparticles having different fluorescent and non-fluorescent properties to exploit the benefits of the different properties, for example, simultaneously or sequentially, such as in the detection and treatment of a cancerous tumor.
  • [0069]
    Thus, the ligated-fluorescent nanoparticles of the present invention can be used to treat a light- or heat-sensitive diseases or disorders. Light therapy is known for activation of medicaments at one or more treatment sites within a living body. A particular embodiment of light therapy, for example, is photodynamic therapy (PDT) which is a two-step treatment process which has been found to be effective in destroying a wide variety of cancers. PDT is performed by first systemically or topically administering a photosensitizer compound or like compounds, and subsequently illuminating a treatment site with light in a waveband, which corresponds to an absorption waveband of the photosensitizer. The light energy activates the photosensitizer compound, causing it to destroy the diseased tissue, see for example, U.S. Pat. No. 6,454,789. It is readily evident to one skilled in the art that a fluorescent material, such as the ligated-fluorescent nanoparticles of the present invention, can be used in place of a photosensitizer compound.
  • [0070]
    Heat therapy methods are also known, for example, to shrink desired tissues, see U.S. Pat. No. 6,480,746, and for localized treatment of cutaneous warts, see Arch. Dermatol, (July 1992), vol. 128, p. 945-948, and to induce macrophage apoptosis, see U.S. Pat. No. 6,451,044. In these and related applications heat therapy can be accomplished within a body or across the skin by means of, for example, irradiation or illumination, such as ultraviolet radiation, infrared radiation, microwave radiation, etc. One of ordinary skill in the art once in possession of the present invention would readily recognize how to adapt its materials and methods to accomplish light therapy or heat therapy.
  • [0071]
    The present invention also provides a method of treatment comprising:
  • [0072]
    contacting a cell with a ligated-fluorescent nanoparticle, optionally having a therapeutic agent associated with the nanoparticle, to form a cell selectively decorated with the ligated-fluorescent nanoparticle; and
  • [0073]
    irradiating the resulting decorated cell for a time.
  • [0074]
    The amount and the duration of the contacting as well as the amount and the duration of irradiating can depend on, for example, the diagnostic or therapeutic objectives of the treatment method, such as fluorescent detection of a diseased state or condition, the delivery of an effect therapeutic agent, or both. The amount and the duration of the contacting and irradiating can also depend on, for example, the relative concentration ligated-fluorescent nanoparticle to the target analyte, and the state of the cell for treatment, such as in vivo or in vitro whole cells, permeabilized cells, homogenized cells, sensitized cells, and like cell preparations.
  • [0075]
    The ligated-fluorescent nanoparticles of the present invention also have application in diagnostic kits or assays, such as immunoassays, in improved imaging agents, in purification processes, in drugs, for example, treatment regimes and therapies, such as drug delivery to specifically target and shrink tumors or to identify and separate infectious agents, and like applications.
  • [0076]
    The invention provides a kit for use in the detection of an analyte, the kit comprising a ligated-fluorescent nanoparticle, as illustrated herein.
  • [0077]
    The invention also provides a kit for detecting and monitoring a cell surface component comprising a ligated-fluorescent nanoparticle for detecting the cell surface component, and optionally a recorder for monitoring the cell surface component.
  • [0078]
    The aforementioned kits include packaging of the kit component(s) and instructions for use of the kit.
  • [0079]
    The invention also provides an assay method for detecting motion or a change in the location of a cellular component in, or on the surface of, a cell when the cell is treated with a therapeutic agent comprising:
  • [0080]
    contacting a cell with a ligated-fluorescent nanoparticle, wherein the nanoparticle includes a therapeutic agent, to bind the ligated-fluorescent nanoparticle to a cellular component; and
  • [0081]
    recording the fluorescent signal, such as from one or more fluorescent loci, and determining the relative motion or a change in the location of a targeted cellular component.
  • [0082]
    The motion or movement of the fluorescent loci, that is an analyte bound by a ligated-fluorescent nanoparticle, is representative of and can be correlated to the motion or movement of the bound analyte, such as a cellular component.
  • [0083]
    The assay method for detecting motion or a change in the location of a cellular component can include, for example, optionally mapping or plotting the recorded positions of ligated-fluorescent nanoparticle. The assay method can further comprise determining the difference between the motion or movement of the analyte bound ligated-fluorescent nanoparticle in the presence and absence of the therapeutic agent, for example, in a tandem or control experimental design.
  • [0084]
    The nanoparticles materials, such as the ligated-fluorescent nanoparticles, and methods of use of the present invention can be used as, for example, labeled assay reagents or reagent products made therefrom, for assaying the presence of a cell component, for example, an enzyme, a receptor, and like cell components. The location of the cell component can be detected and determined, for example, inside a metabolically active whole cell, in a whole cell lysate, in a permeabilized cell, in a fixed cell, or with a partially purified cell component in a cell-free environment. The ligated-fluorescent nanoparticle contains an associated ligand or ligator, such as an antibody, which nanoparticle targets or associates with a specific cell component of interest. The ligated-fluorescent nanoparticle also contains a fluorescent label or fluorescent component in the nanoparticle core, which fluorescent component marks or reports on the presence of the target cell component when the nanoparticle and the target cell component are associated and appropriately illuminated or irradiated.
  • [0085]
    The invention also provides methods for treating a disease by administration of an effective amount of a linked fluorescent nanoparticles. The methods may involve administration of a linked fluorescent nanoparticles as described herein, alone, in a pharmaceutical composition, or in combination with other therapeutic agents or pharmaceutical compositions.
  • [0086]
    The invention also provides methods to increase the effectiveness of a therapeutic agent by linking the therapeutic agent to a fluorescent nanoparticle. The fluorescent nanoparticles and pharmaceutical compositions thereof may also be used to associate therapeutic agents to increase the therapeutic efficiency of the therapeutic agent. Conjugation of a fluorescent nanoparticle with a ligand to form a linked- or ligated-fluorescent nanoparticle is preferably accomplished in vitro where, for example, ligand amounts and conditions can be carefully controlled to produce a product of high purity and high quality. Similarly, modifying the linked fluorescent nanoparticle with a therapeutic agent is preferably accomplished in vitro.
  • [0087]
    The present invention provides fluorescent nanoparticles and ligated-fluorescent nanoparticle thereof, and methods for their use in, for example, immunolabeling, sub-cellular recognition procedures, diagnostics, or cell sorting. The methods of the present invention provide advantages which overcome shortcomings of known methodologies and as illustrated herein.
  • [0088]
    The present invention provides ligated-fluorescent nanoparticles which are highly dispersible, and are useful, for example, in improved methods for chemical and biochemical analysis, such as, the detection of biological analytes including micro-organisms or sub-cellular components. The ligated-fluorescent nanoparticle can provide high local concentrations of fluorescent material because of their high target selectively or affinity, and because of their enhanced brightness compared to known fluorescent particles. The fluorescent material is present throughout the nanoparticle core and not simply as a surface coating material as in many conventional materials.
  • [0089]
    A “therapeutic agent” is a substance that may be used in the diagnosis, cure, mitigation, treatment, or prevention of disease in a human or another animal. Such therapeutic agents include substances recognized in the official United States Pharmacopeia, official Homeopathic Pharmacopeia of the United States, official National Formulary, or any supplement thereof.
  • [0090]
    Therapeutic agents that can be incorporated with the fluorescent nanoparticles or the ligated-fluorescent nanoparticles of the invention include nucleosides, nucleoside analogs, oligopeptides, polypeptides, COX-2 inhibitors, apoptosis promoters, urinary tract agents, vaginal agents, vasodilators neurodegenerative agents (e.g., Parkinson's disease), obesity agents, ophthalmic agents, osteoporosis agents, para-sympatholytics, para-sympathometics, antianesthetics, prostaglandins, psychotherapeutic agents, respiratory agents, sedatives, hypnotics, skin and mucous membrane agents, anti-bacterials, anti-fungals, antineoplastics, cardioprotective agents, cardiovascular agents, anti-thrombotics, central nervous system stimulants, cholinesterase inhibitors, contraceptives, dopamine receptor agonists, erectile dysfunction agents, fertility agents, gastrointestinal agents, gout agents, hormones, immunomodulators, suitably functionalized analgesics or general or local anesthetics, anti-convulsants, anti-diabetic agents, anti-fibrotic agents, anti-infectives, motion sickness agents, muscle relaxants, immuno-suppresives, migraine agents, non-steroidal anti-inflammatory drugs (NSAIDs), smoking cessation agents, or sympatholytics (see Physicians' Desk Reference, 55th ed., 2001, Medical Economics Company, Inc., Montvale, N.J., pages 201-202).
  • [0091]
    Examples of specific therapeutic agents that can be linked, ligated, or associated with the fluorescent nanoparticles of the invention are flomoxef; fortimicin(s); gentamicin(s); glucosulfone solasulfone; gramicidin S; gramicidin(s); grepafloxacin; guamecycline; hetacillin; isepamicin; josamycin; kanamycin(s); flomoxef; fortimicin(s); gentamicin(s); glucosulfone solasulfone; gramicidin S; gramicidin(s); grepafloxacin; guamecycline; hetacillin; isepamicin; josamycin; kanamycin(s); bacitracin; bambermycin(s); biapenem; brodimoprim; butirosin; capreomycin; carbenicillin; carbomycin; carumonam; cefadroxil; cefamandole; cefatrizine; cefbuperazone; cefclidin; cefdinir; cefditoren; cefepime; cefetamet; cefixime; cefinenoxime; cefininox; cladribine; apalcillin; apicycline; apramycin; arbekacin; aspoxicillin; azidamfenicol; aztreonam; cefodizime; cefonicid; cefoperazone; ceforamide; cefotaxime; cefotetan; cefotiam; cefozopran; cefpimizole; cefpiramide; cefpirome; cefprozil; cefroxadine; cefteram; ceftibuten; cefuzonam; cephalexin; cephaloglycin; cephalosporin C; cephradine; chloramphenicol; chlortetracycline; clinafloxacin; clindamycin; clomocycline; colistin; cyclacillin; dapsone; demeclocycline; diathymosulfone; dibekacin; dihydrostreptomycin; 6-mercaptopurine; thioguanine; capecitabine; docetaxel; etoposide; gemcitabine; topotecan; vinorelbine; vincristine; vinblastine; teniposide; melphalan; methotrexate; 2-p-sulfanilyanilinoethanol; 4,4′-sulfinyldianiline; 4-sulfanilamidosalicylic acid; butorphanol; nalbuphine. streptozocin; doxorubicin; daunorubicin; plicamycin; idarubicin; mitomycin C; pentostatin; mitoxantrone; cytarabine; fludarabine phosphate; butorphanol; nalbuphine. streptozocin; doxorubicin; daunorubicin; plicamycin; idarubicin; mitomycin C; pentostatin; mitoxantrone; cytarabine; fludarabine phosphate; acediasulfone; acetosulfone; amikacin; amphotericin B; ampicillin; atorvastatin; enalapril; ranitidine; ciprofloxacin; pravastatin; clarithromycin; cyclosporin; famotidine; leuprolide; acyclovir; paclitaxel; azithromycin; lamivudine; budesonide; albuterol; indinavir; metformin; alendronate; nizatidine; zidovudine; carboplatin; metoprolol; amoxicillin; diclofenac; lisinopril; ceftriaxone; captopril; salmeterol; xinafoate; imipenem; cilastatin; benazepril; cefaclor; ceftazidime; morphine; dopamine; bialamicol; fluvastatin; phenamidine; podophyllinic acid 2-ethylhydrazine; acriflavine; chloroazodin; arsphenamine; amicarbilide; aminoquinuride; quinapril; oxymorphone; buprenorphine; floxuridine; dirithromycin; doxycycline; enoxacin; enviomycin; epicillin; erythromycin; leucomycin(s); lincomycin; lomefloxacin; lucensomycin; lymecycline; meclocycline; meropenem; methacycline; micronomicin; midecamycin(s); minocycline; moxalactam; mupirocin; nadifloxacin; natamycin; neomycin; netilmicin; norfloxacin; oleandomycin; oxytetracycline; p-sulfanilylbenzylamine; panipenem; paromomycin; pazufloxacin; penicillin N; pipacycline; pipemidic acid; polymyxin; primycin; quinacillin; ribostamycin; rifamide; rifampin; rifamycin SV; rifapentine; rifaximin; ristocetin; ritipenem; rokitamycin; rolitetracycline; rosaramycin; roxithromycin; salazosulfadimidine; sancycline; sisomicin; sparfloxacin; spectinomycin; spiramycin; streptomycin; succisulfone; sulfachrysoidine; sulfaloxic acid; sulfamidochrysoidine; sulfanilic acid; sulfoxone; teicoplanin; temafloxacin; temocillin; tetroxoprim; thiamphenicol; thiazolsulfone; thiostrepton; ticarcillin; tigemonam; tobramycin; tosufloxacin; trimethoprim; trospectomycin; trovafloxacin; tuberactinomycin; vancomycin; azaserine; candicidin(s); chlorphenesin; dermostatin(s); filipin; fungichromin; mepartricin; nystatin; oligomycin(s); perimycin A; tubercidin; 6-azauridine; 6-diazo-5-oxo-L-norleucine; aclacinomycin(s); ancitabine; anthramycin; azacitadine; azaserine; bleomycin(s); ethyl biscoumacetate; ethylidene dicoumarol; iloprost; lamifiban; taprostene; tioclomarol; tirofiban; amiprilose; bucillamine; gusperimus; gentisic acid; glucamethacin; glycol salicylate; meclofenamic acid; mefenamic acid; mesalamine; niflumic acid; olsalazine; oxaceprol; S-enosylmethionine; salicylic acid; salsalate; sulfasalazine; tolfenamic acid; carubicin; carzinophillin A; chlorozotocin; chromomycin(s); denopterin; doxifluridine; edatrexate; eflornithine; elliptinium; enocitabine; epirubicin; mannomustine; menogaril; mitobronitol; mitolactol; mopidamol; mycophenolic acid; nogalamycin; olivomycin(s); peplomycin; pirarubicin; piritrexim; prednimustine; procarbazine; pteropterin; puromycin; ranimustine; streptonigrin; thiamiprine; mycophenolic acid; procodazole; romurtide; sirolimus (rapamycin); tacrolimus; butethamine; fenalcomine; hydroxytetracaine; naepaine; orthocaine; piridocaine; salicyl alcohol; 3-amino-4-hydroxybutyric acid; aceclofenac; alminoprofen; amfenac; bromfenac; bromosaligenin; bumadizon; carprofen; diclofenac; diflunisal; ditazol; enfenamic acid; etodolac; etofenamate; fendosal; fepradinol; flufenamic acid; Tomudex® (N-[[5-[[(1,4-Dihydro-2-methyl-4-oxo-6-quinazolinyl)methyl]methylamino]-2-thienyl]carbonyl]-L-glutamic acid), trimetrexate, tubercidin, ubenimex, vindesine, zorubicin; argatroban; coumetarol or dicoumarol.
  • [0092]
    Lists of additional therapeutic agents can be found, for example, in: Physicians' Desk Reference, 55th ed., 2001, Medical Economics Company, Inc., Montvale, N.J.; USPN Dictionary of USAN and International Drug Names, 2000, The United States Pharmacopeial Convention, Inc., Rockville, Md.; and The Merck Index, 12th ed., 1996, Merck & Co., Inc., Whitehouse Station, N.J.
  • [0093]
    It will be readily appreciated by those skilled in the art how to determine, for example, therapeutic activity using standard tests or other similar tests which are known in the art.
  • [0094]
    A “pharmaceutical composition” includes a therapeutic agent as exemplified herein in combination with a fluorescent nanoparticle of the invention, for example, where the fluorescent nanoparticle can act as the pharmaceutically acceptable carrier. A pharmaceutical composition of the present invention, in addition to a therapeutic agent combination with a fluorescent nanoparticle, can be formulated into or with other acceptable carriers or dosage forms, such as, a solid, gelled or liquid diluent or an ingestible capsule. The pharmaceutical compositions of the invention, the salts thereof, or a mixture thereof, may be administered orally in the form of a suitable pharmaceutical unit dosage form. The pharmaceutical compositions of the invention may be prepared in many forms that include tablets, hard or soft gelatin capsules, aqueous solutions, suspensions, and liposomes and other slow-release formulations, such as shaped polymeric gels.
  • [0095]
    Oral liquid pharmaceutical compositions may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid pharmaceutical compositions may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous vehicles (which may include edible oils), or preservatives.
  • [0096]
    The nanoparticle pharmaceutical compositions of the invention may also be formulated for parenteral administration (e.g., by injection, for example, bolus injection or continuous infusion) and may be presented in unit dosage form in ampules, pre-filled syringes, small volume infusion containers or multi-dose containers with an added preservative. The pharmaceutical compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the pharmaceutical compositions of the invention may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilization from solution, for constitution with a suitable vehicle, e.g., sterile, pyrogen-free water, before use.
  • [0097]
    For topical administration to the epidermis, the pharmaceutical compositions may be formulated as ointments, creams or lotions, or as the active ingredient of a transdermal patch. Suitable transdermal delivery systems are disclosed, for example, in A. Fisher et al. (U.S. Pat. No. 4,788,603), or R. Bawa et al. (U.S. Pat. Nos. 4,931,279; 4,668,506; and 4,713,224). Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions may be formulated with an aqueous or oily base and will in general also contain one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents. The pharmaceutical compositions can also be delivered via ionophoresis, e.g., as disclosed in U.S. Pat. Nos. 4,140,122; 4,383,529; or 4,051,842.
  • [0098]
    Pharmaceutical compositions suitable for topical administration in the mouth include unit dosage forms such as lozenges comprising a pharmaceutical composition of the invention in a flavored base, usually sucrose and acadia or tragacanth; pastilles comprising the pharmaceutical composition in an inert base such as gelatin and glycerin or sucrose and acacia; mucoadherent gels, and mouthwashes comprising the pharmaceutical composition in a suitable liquid carrier.
  • [0099]
    For topical administration to the eye, the pharmaceutical compositions can be administered as drops, gels (S. Chrai et al., U.S. Pat. No. 4,255,415), gums (S. L. Lin et al., U.S. Pat. No. 4,136,177) or via a prolonged-release ocular insert (A. S. Michaels, U.S. Pat. No. 3,867,519 and H. M. Haddad et al., U.S. Pat. No. 3,870,791).
  • [0100]
    When desired, the above-described pharmaceutical compositions can be adapted to give sustained release of a therapeutic compound employed, e.g., by combination with certain hydrophilic polymer matrices, e.g., comprising natural gels, synthetic polymer gels or mixtures thereof.
  • [0101]
    Pharmaceutical compositions suitable for rectal administration wherein the carrier is a solid are most preferably presented as unit dose suppositories. Suitable carriers include cocoa butter and other materials commonly used in the art, and the suppositories may be conveniently formed by admixture of the pharmaceutical composition with the softened or melted carrier(s) followed by chilling and shaping in molds.
  • [0102]
    Pharmaceutical compositions suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or sprays containing, in addition to the nanoparticles and the therapeutic agent, such carriers are well known in the art.
  • [0103]
    For administration by inhalation, the pharmaceutical compositions according to the invention are conveniently delivered from an insufflator, nebulizer or a pressurized pack or other convenient means of delivering an aerosol spray. Pressurized packs may comprise a suitable propellant such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount.
  • [0104]
    Alternatively, for administration by inhalation or insufflation, the pharmaceutical compositions of the invention may take the form of a dry powder composition, for example, a powder mix of the pharmaceutical composition and a suitable powder base such as lactose or starch. The powder composition may be presented in unit dosage form in, for example, capsules or cartridges or, e.g., gelatin or blister packs from which the powder may be administered with the aid of an inhalator or insufflator.
  • [0105]
    For intra-nasal administration, the pharmaceutical compositions of the invention may be administered via a liquid spray, such as via a plastic bottle atomizer. Typical of these are the Mistometer® (isoproterenol inhaler-Wintrop) and the Medihaler® (isoproterenol inhaler—Riker).
  • [0106]
    Pharmaceutical compositions of the invention may also contain other adjuvants such as flavorings, colorings, anti-microbial agents, or preservatives.
  • [0107]
    It will be further appreciated that the amount of the pharmaceutical compositions required for use in treatment will vary not only with the particular salt selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient and will be ultimately at the discretion of the attendant physician or clinician.
  • [0108]
    The amount of a therapeutic agent in combination with ligated-fluorescent nanoparticles of the invention which can be administered and the frequency of administration to a given human patient will depend upon a variety of variables related to the patient's psychological profile and physical condition. For evaluations of these factors, see J. F. Brien et al., Europ. J. Clin. Pharmacol., 14, 133 (1978); and Physicians' Desk Reference, Charles E. Baker, Jr., Pub., Medical Economics Co., Oradell, N.J. (41st ed., 1987). Generally, the dosages of the therapeutic agent when used in combination with the ligated-fluorescent nanoparticles of the present can be lower than when the therapeutic agent is administered alone or in conventional pharmaceutical dosage forms. The high specificity of the ligated-fluorescent nanoparticle for a target site, such as a receptor situated on a cell's surface, can provide relatively high localized concentrations of a therapeutic agent, or alternatively, a sustained release of a therapeutic agent over an extended time period.
  • [0109]
    “Pharmaceutically acceptable salts” of the ligated-fluorescent nanoparticles and the therapeutic agents of the invention can include, but are not limited to, the nontoxic addition salts with organic and inorganic acids, such as the citrates, bicarbonates, malonates, tartrates, gluconates, hydrochlorides, sulfates, phosphates, and like salts. Additionally, in cases where the nanoparticles are sufficiently basic or acidic to form stable acid or base salts, preparation of the nanoparticles as salts may be appropriate. Examples of acceptable salts are organic acid addition salts formed with acids which form a acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, α-ketoglutarate, and α-glycerophosphate. Suitable inorganic salts may also be formed, including hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts. Acceptable salts may be obtained using standard procedures known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording a diagnostically acceptable anion. Alkali metal (e.g., sodium, potassium or lithium) or alkaline earth metal (e.g. calcium) salts of carboxylic acids can also be made.
  • [0110]
    “Receptor” is any macromolecular compound or composition capable of recognizing (e.g. such as having an enhanced binding affinity to) a particular spatial and polar organization of a molecule, i.e., epitopic or determinant site. Illustrative receptors include naturally occurring receptors, e.g., thyroxine binding globulin, antibodies, enzymes, immunoglobulin (Fab) fragments, lectins, various proteins found on the surface of cells (cluster of differentiation or CD molecules), and the like. CD molecules denote known and unknown proteins on the surface of eukaryotic cells, for example, CD4 is the molecule that primarily defines helper T lymphocytes.
  • [0111]
    “Haptens” can include naturally occurring hormones, naturally occurring drugs, synthetic drugs, pollutants, allergens, affector molecules, growth factors, chemokines, cytokines, lymphokines, amino acids, oligopeptides, chemical intermediates, nucleotides, oligonucleotides, and the like. The use for such compounds may be in the detection of drugs of abuse, therapeutic dosage monitoring, health status, donor matching for transplantation purposes, pregnancy (e.g., hCG or alpha-fetoprotein), detection of disease, e.g. endotoxins, cancer antigens, pathogens, and the like.
  • [0112]
    “Immunoconjugate” is a molecule formed by attachment of two different molecules or entities, such as an antibody ligated to a fluorescent nanoparticle, and a second usually biologically active molecular entity (analyte) such as an organic drug molecule, a radionuclide, an enzyme, a toxin, a protein, and like materials that can be conjugated to the antibody to form the conjugate. The antibody portion directs or guides the attached fluorescent nanoparticle to the target analyte enabling the fluorescent nanoparticle to efficiently produce a biological or marking effect.
  • [0113]
    Pathogens of interest can be, for example, viruses such as Herpesviruses, Poxviruses, Togaviruses, Orthomyxoviruses, Paramyxoviruses, Rhabdoviruses, Coronaviruses, Arenaviruses, and Retroviruses. Pathogens also include prions and bacteria including but not limited to Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumoniae, Salmonella typhimurium, Staphylococcus epidermidis, Serratia marcescens, Mycobacterium bovis, methicillin resistant Staphylococcus aureus and Proteus vulgaris. A non-exhaustive list of these organisms and associated diseases can be found, for example, in U.S. Pat. No. 5,795,158.
  • [0114]
    Assays using nanoparticles of the invention can be carried out in a biological fluid, including separated or unfiltered biological fluids such as urine, cerebrospinal fluid, pleural fluid, synovial fluid, peritoneal fluid, amniotic fluid, gastric fluid, blood, serum, plasma, lymph fluid, interstitial fluid, tissue homogenate, cell extracts, saliva, sputum, stool, physiological secretions, tears, mucus, sweat, milk, semen, vaginal secretions, fluid from ulcers and other surface eruptions, blisters, abscesses, and extracts of tissues including biopsies of normal, malignant, and suspect tissues or any other constituents of the body which may contain the analyte of interest. Other similar specimens such as cell or tissue culture or culture broth are also of interest. Alternatively, the sample can be obtained from an environmental source, such as soil, water, or air; or from an industrial source such as taken from a waste stream, a water source, a supply line, or a production lot. Industrial sources also include fermentation media, such as from a biological reactor or food fermentation process such as brewing; or foodstuff, such as meat, game, produce, or dairy products. The test sample can be pre-treated prior to use, such as preparing plasma from blood, diluting viscous fluids, and the like; methods of pretreatment can involve filtration, fractionation, distillation, concentration, inactivation of interfering compounds, and addition of reagents, and like steps, or combinations thereof.
  • [0115]
    Methods for detecting multiple subpopulations of analytes are known, see for example, U.S. Pat. No. 5,567,627, to Lehnen, and can be adapted to the present invention. Methods for detecting a nucleic acid with one or more nanoparticle having oligonucleotides attached thereto, including an electrochemical assay with a probe oligonucleotide having attached a redox-active molecule, for example as in U.S. Pat. No. 6,417,340, to Mirkin, et al, can be adapted to the present invention. Methods for electrochemical detection and localization of genetic point mutations and other base-stacking perturbations within oligonucleotide duplexes adsorbed onto electrodes, such as U.S. Pat. No. 6,221,586, to Barton, et al., can be adapted to the present invention. Methods for multiplexed fluorescent analysis of a plurality of analytes in a sample, such as U.S. Pat. No. 6,268,222, to Chandler, et al., can be adapted to the present invention. Other detection methods include using ultraviolet and visible spectroscopy, see for example X. Gong and E. S. Yeung, Anal. Chem., 71, 4989 (1999), “An Absorption Detection Approach for Multiplexed Capillary Electrophoresis Using a Linear Photodiode Array”. Methods for separating cells using a flow through fractional cell sorting process based on the application of a magnetic force to cells having a range of magnetic labeling densities, such as U.S. Pat. No. 5,968,820, to Zborowski, et al., can be adapted to the present invention. Methods for separating particles bound to each other via non-covalent binding and agglomeration, such as U.S. Pat. No. 4,279,617, to Masson et al., can be adapted to the present invention.
  • [0116]
    For the purposes of the present invention the nanoparticle's fluorescent component should provide a signal related to the presence of analyte in the sample. Similarly, when a ligand is selected, which includes a fluorescent nanoparticle, it should provide a fluorescent signal related to the presence of analyte in the sample and which signal can be detected as electromagnetic radiation, particularly as radiation in the ultra-violet, visible or infrared range.
  • [0117]
    “Optional” or “optionally” mean that the subsequently described event or condition may but need not occur, and that the description includes instances where the event or condition occurs and instances in which it does not. For example, “optionally including” means that the named component may be present but need not be present, and the description includes situations where the named component is included and situations where the named component is not included.
  • [0118]
    The terms “include”, “for example”, “such as”, and the like are used illustratively and are not intended to limit the present invention.
  • [0119]
    The indefinite articles “a” and “an” mean “at least one” or “one or more” when used in this application, including the claims, unless specifically indicated otherwise.
  • [0120]
    The following general methods were employed in preparing and evaluating nanoparticles, and conjugates or adducts, of the present invention.
  • [0121]
    Preparation of Fluorescent Nanoparticles
  • [0122]
    Processes and intermediates for preparing fluorescent nanoparticles of the invention are provided as further embodiments of the invention and are illustrated by the following procedures in which the meanings of the generic radicals are as given unless otherwise specified.
  • [0123]
    In embodiments, a fluorescent nanoparticle of the invention can be prepared, for example, mixing a reactive fluorescent compound, such as, a reactive fluorescent material, such as a dye (D) and a co-reactive organo-silane compound such as, a known organo-functional silane compound (OS) to form a fluorescent core particle (D-OS); and mixing the resulting core particle (D-OS) with a silica forming compound, such as a (Si(OR)4), to form a silica shell on the core which product is a fluorescent nanoparticle (D-OS)(SiO2).
  • [0124]
    The molar equivalent ratio of the reactive fluorescent material (D) and the co-reactive organo-silane compound (OS) can be, for example, from about 1:1 to about 1:100. The molar equivalent ratio of the fluorescent core particle (D-OS) to the silica forming compound (Si(OR)4) can be, for example, from about 1:1 to about 1:100.
  • [0125]
    The nanoparticles of the present invention can be selectively linked to either or both a ligand and analyte by, for example, any known chemical coupling reactions such as carbodiimide coupling. Other coupling methods include use of carboxylates, esters, alcohols, carbamides, aldehydes, amines, sulfur oxides, nitrogen oxides, or halides, and other methods known in the art can be used. Coupling a fluorescent nanoparticle to a ligand, or a ligated-fluorescent nanoparticle to an analyte, and like combinations, can generally be accomplished by applying the procedures and principles disclosed in U.S. Pat. No. 6,268,222, or other procedures known in the art as applied to the present invention.
  • [0126]
    In embodiments, linked-fluorescent nanoparticle, such as a surface modified fluorescent nanoparticle of the invention can be prepared, for example, from a preformed fluorescent nanoparticle fluorescent nanoparticle (D-OS)(SiO2) and a ligand, such as a biologically active compound (of formula X1-R1-X2), and optionally a linker precursor (of formula Z1-L-Z2), wherein X1, X2, Z1, and Z2 can be selected from the values in the table below. In the absence of an optional linker precursor the surface silanol (Si—OH) groups of the silica shell can be used to link or associate with the ligand. The ligand and the linker precursor can be reacted or polymerized using well known synthetic techniques (e.g. by condensation) to provide a ligated-fluorescent nanoparticle or linked product of the invention. Depending on the reactive functional group (X1 or X2) of the ligand, a corresponding functional group (Z1 or Z2) can be selected from the following table, to provide an ester linkage, thioester linkage, or amide linkage in the ligated-fluorescent nanoparticle or linked product.
    Resulting Linkage
    Functional Group On in the Ligated-
    Functional Group On Linker Precursor Fluorescent
    ligand (X1 or X2) (Z1 or Z2) Nanoparticle
    —COOH —OH Ester
    —COOH —NHR Amide
    —COOH —SH Thioester
    —OH —COOH Ester
    —SH —COOH Thioester
    —NHR —COOH Amide
    —SO3H —OH Sulfate Ester
    —OH —SO3H Sulfate Ester
  • [0127]
    As will be clear to one skilled in the art, suitable protecting groups can be used during the ligation reaction. For example, other functional groups present in the biologically active compound, on the nanoparticle surface, or the linker precursor can be partially or completely protected during ligation, and the protecting groups can subsequently be removed to provide the ligated-fluorescent nanoparticles of the invention. Suitable protecting groups and methods for their incorporation and removal are well known in the art (see for example Greene, T. W.; Wutz, P. G. M. “Protecting Groups In Organic Synthesis” second edition, 1991, New York, John Wiley & sons, Inc.).
  • [0128]
    Additionally, when a carboxylic acid is reacted with a hydroxy group, a mercapto group, or an amine group to provide an ester linkage, thioester linkage, or an amide linkage, the carboxylic acid can be activated prior to the reaction, for example, by formation of the corresponding acid chloride. Numerous methods for activating carboxylic acids, and for preparing ester linkages, thioester linkages, and amide linkages, are known in the art (see for example, Advanced Organic Chemistry: Reaction Mechanisms and Structure, 4th ed., Jerry March, John Wiley & Sons, pages 419-437 and 1281).
  • [0129]
    The silica shell surface of the nanoparticles can be further modified if desired by, for example, surface functionalization reactions using known cross-linking agents to afford surface functional groups and as illustrated herein. Crosslinking agents are, for example, divinyl benzene, ethylene glycol dimethacrylate, trimethylol propane trimethacrylate, N,N′-methylene-bis-acrylamide, alkyl ethers, sugars, peptides, DNA fragments, or other known functionally equivalent agents. It is readily evident to one skilled in the art that many cross-linking agents can be used in combination with, or suitable for use as the ligand in forming ligated-fluorescent nanoparticles of present invention. It is readily evident to one skilled in the art in possession of the present invention that cross-linking agents can be used in surface modifying reactions to modify the surface properties of fluorescent nanoparticles, or ligated-fluorescent nanoparticles, and as illustrated herein.
  • [0130]
    Materials and Methods
  • [0131]
    All reagents were used as received without further purification and distillation. The ammonia molarity was determined by titration with methyl blue indicator before each synthesis. Glassware was cleaned by methods described in literature and dried using a heat gun before the synthetic procedure. The volume after mixing was ignored in the molarity calculations. The amount of 3-aminopropyltriethoxysilane (APTS) in the synthesis of the fluorescent core was not taken into account in the calculations of monomer molarity in Table I.
  • [0132]
    Nanoparticle Synthesis Materials
  • [0133]
    Absolute ethanol (Aldrich), Tetrahydrofuran (Aldrich), Ammonium hydroxide (Fluka, 28%), Tetraethoxysilane (Aldrich, 98%), 3-Aminopropyltriethoxysilane (Aldrich, 99%), 3-Mercaptopropyltriethoxysilane (Gelest, 99%), Tetramethylrhodamine-5-(and -6-)-isothiocyanate *mixed isomers* (TRITC) (Molecular Probes, 88%), Alexa Fluor® 488 C5 Meleimide (Molecular Probes, 97%), Alexa Flour® 488 carboxylic acid, and succinimidyl ester (Molecular Probes, ≧50%).
  • [0134]
    Preparation of Core (Fluorescent Seed) Nanoparticles Generally
  • [0135]
    Amounts of water, ammonia and solvent were measured in graduated cylinders. Fluorescent seed particle synthesis was carried out in 1 L Erlenmeyer flasks and stirred with magnetic TEFLON® coated stir bars at about 600 rpm. De-ionized water and ammonia solution were added to ethanol and stirred. About 2 mL of the reactive dye precursor in either ethanol or THF containing about 425 micromolar APTS, was added to the reaction vessel. The resulting mixture was stirred for about 1 to about 3 hours at room temperature with the reaction vessel covered with aluminum foil to minimize exposure to light to afford a fluorescent seed particle mixture. Tetrahydrofuran (THF) and absolute ethanol (EtOH) were distilled under nitrogen. Organic dyes were brought to room temperature from storage temperatures of about −20° C., then placed in a glove box.
  • [0136]
    Preparation of the Silica Shell on the Core (Fluorescent Seed) Particles Generally
  • [0137]
    The silica shell coating and growth step was performed in the above mentioned fluorescent seed particle reaction mixture with regular addition of solvent, such as ethanol, methanol, or isopropanol, to prevent drastic changes in solution ionic strength while the silica forming monomer tetraethoxysilane (TEOS) was added. This prevents particle aggregation during synthesis, which can broaden the particle size distribution.
  • [0138]
    Characterization of Fluorescence Nanoparticles
  • [0139]
    The particle size and particle size distribution of the resulting fluorescent nanoparticles were characterized by electron microscopy (SEM) and fluorescence correlation spectroscopy (FCS).
  • [0140]
    Referring to FIG. 1A, there is illustrated an example of fluorescent brightness properties of the fluorescent nanoparticles (10) of the present invention compared to polystyrene latex beads (20). Fluorescence correlation spectroscopy (FCS) was used to obtain the count rates for the nanoparticles and beads as follows: 100 or 300 nanometer fluorescent nanoparticles had 299.1 kHz per particle; and 300 nanometer polystyrene latex beads had 69.84 kHz per bead. Fluorescence count rates indicated that the fluorescent nanoparticles (10) were about four times brighter than the polystyrene latex beads.
  • [0141]
    Photo-physical characterizations were performed to determine: dye content per particle content, fluorescence lifetimes, and action cross-sections. The action cross-section metric is essentially the product of quantum yield and absorbance profile. Time resolved fluorescence measurements of fluorescence versus time in nanoseconds (ns) showed that a dye incorporated in a nanoparticle exhibited a longer lifetime than free dyes in solution, indicating that each dye molecule could be about 46% brighter when contained inside the core of the nanoparticles than when free in solution. For example, TRITC dyes contained within the core of the nanoparticle (with a diameter of about 25 nanometers), had a fluorescence lifetime of about 3.33 ns, compared to TRITC dyes free in solution which had a fluorescence lifetime of about 2.28 ns.
  • [0142]
    From absorbance measurements over the range of 250 to 650 nanometers it was established that there are, for example, about 20 dye molecules per nanoparticle. For example, sample R30 had about 23 TRITC dye molecules per nanoparticle; and sample R29 had about 21 TRITC dye molecules per nanoparticle. However, action cross section measurements, σ2p (GM) over the range of 700 to about 1,000 nm for two separate preparations of 25 nm particles (samples R29 and R30) demonstrated that R30 was almost twice as bright as R29 over the range and particularly at absorbance maxima at about 700 and about 840 nanometers, even though the dye content is almost identical. This observation suggested great complexity associated with interaction effects between the core and the shell and they may be responsible for the enhanced quantum efficiency observed. Thus, it is possible to further optimize the fluorescence properties of the nanoparticles of the present invention, for example, for use as biomarkers, by straight-forward procedures such as changing the thickness of the core or shell as disclosed herein. The invention will now be illustrated by the following non-limiting examples:
  • EXAMPLE 1
  • [0143]
    Preparation of Red Core Nanoparticles. 10 mg of tetramethylrhodamine-5-(and 6-)isothiocyanate (TRITC) were dissolved in ethanol. The molar ratio of 3-aminopropyltriethoxysilane (APTS) to TRITC was 50 to 1, with 2 mL of ethanol, per mg of APTS. Following complete dissolution of TRITC in ethanol, APTS was added to the reaction vessel. The reaction was stirred in the dark in the glove box for about 12 hours at room temperature.
  • EXAMPLE 2
  • [0144]
    Preparation of Green Core Nanoparticles.
  • [0145]
    5 mg of Alexa Fluor® 488 C5 Meleimide was dissolved in ethanol. The molar ratio of 3-mercaptopropyltriethoxysilane (MPTS) was 100 to 1, with 2 mL of ethanol per mg of MPTS. Following complete dissolution of TRITC in ethanol, MPTS was added to the reaction vessel and stirred for about 12 hours in darkness at room temperature.
  • [0146]
    5 mg of Alexa Fluor® 488 carboxylic acid, succinimidyl ester was dissolved in THF. The molar ratio of 3-Aminopropyltriethoxysilane (APTS) to Alexa Flour® 488 carboxylic acid, succinimidyl ester was 100 to 1, with 2 ml of THF per mg of APTS. Following complete dissolution of Alexa Fluor® 488 carboxylic acid, succinimidyl ester in THF, APTS was added to the reaction vessel and stirred for 12 hours in darkness at room temperature. Due to the minute quantities, the fluorescent dye-core adducts were not isolated from the reaction medium before the silica shell was deposited.
  • EXAMPLE 3
  • [0147]
    Preparation of Sized Silica Coated Fluorescent Nanoparticles Preparation of silica coated fluorescent nanoparticles of different sizes was accomplished using different relative molar amounts of reagents as described above. The molar amounts of reagents for the synthesis of 20 nm to 200 nm particles are tabulated in Table I. All silica coating of fluorescent nanoparticle procedures were accomplished at ambient conditions, i.e. at room temperature with ethanol as the solvent. A representative procedure follows.
  • [0148]
    To a mixture containing fluorescent core particles there was added continuously 2 mL of TEOS in 100 mL additional solvent, dropwise such as over about 20 minutes. The remaining larger quantity of the TEOS was added at a more rapid rate, such as over about a 45 minute period with simultaneous addition of 400 mL of additional solvent. Optionally, water was added at this stage to grow particles larger than about 100 nm and to maintain the molar ratio of water to TEOS as tabulated in Table I. The resulting suspension was stirred overnight at room temperature in darkness.
    TABLE I
    Reactants (in molarity) for the Preparation and the Resulting Particle
    Size of Silica Shell Coated Fluorescent Nanoparticles
    Nominal particle Size by Size by
    size [NH3] [H2O] [TEOS] Solvent FCS SEM
    500 nm  6.127 M 16.83 M 0.1923 M i-PrOH 500 nm
    300 nm  6.127 M 16.83 M 0.1923 M EtOH 300 nm
    200 nm  3.892 M 10.80 M 0.2443 M EtOH 200 nm
    100 nm  3.892 M 10.80 M 0.2443 M i-PrOH:MeOH 125 nm
    (v:v = 3:1)
     70 nm 0.0085 M 17.60 M 0.2003 M EtOH  75 nm
     50 nm 0.0096 M 26.68 M 0.1518 M MeOH 48.6 nm
     40 nm  0.318 M 1.153 M  0.155 M EtOH 37.6 nm
     30 nm  0.150 M 1.710 M  0.155 M EtOH 28.8 nm  30 nm
     25 nm  0.200 M 1.494 M  0.155 M EtOH 24.4 nm
  • [0149]
    Alternatively, to produce nanoparticles having a narrow particle size range below about 70 nm, TEOS was added in small aliquots intermittently, such as 300 microliters in about 10 to 15 minute intervals, and stirred overnight at room temperature in darkness. Molar ratio of de-ionized water to monomer was kept maintained at about at least 6-fold but not more. To better monitor water content in the reaction mixture, 2.0 M ammonia was used as the catalyst source, dissolved in ethanol, methanol or isopropanol, depending on the primary solvent of the synthesis, such as 2.0 M ammonia in ethanol. After the dye-rich core/seed particle was prepared, tetraethyl orthosilicate monomer was added intermittently, such as 300 microliters every 10 minutes to grow the siliceous shell. In contrast to the larger particle procedure where monomer was added continuously via a dropping funnel, the smaller particle size procedure (for particles below about 70 nm) the TEOS monomer was added intermittently. The alternative procedure for preparing silica shell coated fluorescent nanoparticles was devised because the size distribution of silica nanoparticles prepared by the known Stöber procedure (J. Colloid and Interface Sci., 26 62-69 (1968)) has a self-sharpening characteristic as particle size increases beyond 70 nm as more monomer is added to the reaction mixture. Thus, silica nanoparticles smaller than 70 nm generally have a much broader size distribution. Therefore, the first mentioned procedure of Example 3, was modified as described thereafter to obtain nanoparticles with a narrower size distribution than what might be expected for particle sizes in the range of about 10 to about 70 nm.
  • EXAMPLE 4
  • [0150]
    Nanoparticle Ligation (coupling) with IgE by Adsorption Silica coated fluorescent nanoparticles of Example 3 were diluted (1: 10-1:20) with phosphate buffered saline (PBS) or Tyrodes buffer at pH 7. Immunoglobulin E (IgE) (0.85 mg/mL stock concentration) was adsorbed onto the fluorescent nanoparticles by incubating with IgE for about 3 hours at room temperature to provide, for example, nanoparticle-IgE ratios of from about 1:1 to about 1:4. For nanoparticles greater than about 50 nm, unbound IgE was removed by centrifugation. For nanoparticles of size of 50 nm or smaller, the unbound IgE was removed by adding 100 microliters (in a total volume of 500 microliters nanoparticles-IgE) of 0.25 wt % latex particles of size 1:2 microns. Unbound IgE stuck to the large latex particles which then settled out of suspension if undisturbed in several hours, for example, with overnight incubation at 4° C. The residual pellet mass was confirmed to be primarily latex particles bound with IgE and discarded. The resulting supernatant containing the IgE coupled-nanoparticle (IgE ligated-fluorescent nanoparticle) was carefully separated and placed in a vial. The resulting IgE coupled-nanoparticle samples (i.e. IgE adsorbed onto nanoparticles) were stored at 4° C. for cell binding experiments. The IgE coupled nanoparticles were diluted in Tyrodes-BSA before cell binding. The dilution was according to the IgE coupled-nanoparticle number density desired per cell.
  • EXAMPLE 5
  • [0151]
    Nanoparticle Surface Functionalization The surface of the nanoparticles can be further chemically modified to improve the versatility and stability of the nanoparticles, for example, introducing carboxylic acid groups or like chemical functional groups. Introducing functional groups, such as carboxylic acid groups, to the surface of silica coated nanoparticles can provide attachment points to enable covalent attachment of bio-molecules, for example, proteins and antibodies, to the surface of the nanoparticles. Surface functional groups, especially ionizable groups, provide other desirable properties to the nanoparticles, such as charge stabilization in buffered media. Charged carboxylate surface groups can maintain the nanoparticles as single particle colloidal dispersions which avoid or minimize nanoparticle agglomeration. Nanoparticle surface functionalization procedures are known and include, for example, carbodiimide modification and as illustrated herein.
  • [0152]
    Materials
  • [0153]
    3-aminopropyldimethylethoxysilane (APDMES) (Gelest Inc.); Bifunctional Crosslinking Reagent (Pierce Endogen Inc.): Methyl N-succinimidyl adipate (MSA).
  • [0154]
    Nanoparticle surface functionalization was accomplished as follows. A 20 mL suspension of nanoparticles with a diameter of 25 nm, as described in Table I, was used. The nanoparticle concentration was 4.33 mg/mL as determined by fluorescence correlation spectroscopy, and by drying and weighing known volumes of the suspension. Other nanoparticle sizes and concentrations can be surface modified according to this procedure when appropriately adapted in view of differences in particle size, surface area, concentration, and like considerations.
  • [0155]
    Fluorescent nanoparticles having a silica shell were cleaned by dialysis after their initial preparation described above. The concentration of the silica shelled nanoparticle suspension was determined by drying aliquots of the nanoparticle suspension in a vacuum oven and weighing, or by fluorescence correlation spectroscopy. Assuming a density of 2 g/mL and knowing the size of the nanoparticles, the number of particles per mL of suspension was calculated to be about 1.78·×1016. The total nanoparticle surface area, assuming solid particles, was for example, about 3.35·×1019 nm2. The density of silanol groups can be estimated as about 1.4 —OH groups per square nanometer according to literature values (e.g. R. Iler, The Chemistry of Silica), and hence there is about 7.78·10−5 moles of —OH groups available for reaction with APDMES for 100% amine coverage. APDMES was added in a 2 molar excess with about 5 mg of ammonium fluoride as a catalyst, and allowed to react for about 12 hours at ambient temperature and shielded from ambient light. Excess unreacted APDMES was dialyzed away in phosphate buffer at pH 7 over 12 hours. The resulting aminated nanoparticles suspended in phosphate buffer pH 7 were then reacted with 2-molar excess of MSA dissolved in dimethyl sulfoxide at ambient temperature for about 2 to 6 hours. Excess unreacted MSA was dialyzed away in phosphate buffer at pH 9.5 for about 6 to 12 hours, which also hydrolyzes the ester group in the MSA, to afford carboxylic acid groups covalently attached to the surface of the nanoparticle.
  • [0156]
    Nanoparticle Characterization by FTIR
  • [0157]
    The nanoparticle products at each functionalization step described above were characterized by Fourier Transform Infra-Red (FTIR) spectroscopy. The vibration bands of the mono-substituted amide groups at 1500-1600 cm−1 indicated the linkage between amine groups of the silane compound APDMES and the succinimidyl ester groups of the MSA compound, as well as the carboxylic acid signature at 1700 cm−1. The observed spectroscopic changes compared to the starting nanoparticles were indicative of successful surface functionalization reactions.
  • EXAMPLE 6
  • [0158]
    Nanoparticle Ligation (coupling) by Covalent Conjugation Other surface functionalization examples can be accomplished by covalent conjugation of fluorescent nanoparticles with various biomolecules as described above.
  • EXAMPLE 7
  • [0159]
    Cell Binding with IgE Coupled-Fluorescent Nanoparticles Specificity binding experiments using a rat basophilic leukemia (RBL) mast cell model system demonstrated specific binding characteristics of the fluorescent silica-based nanoparticles. Cells (e.g. rat basophilic leukemia (RBL) mast cells) were harvested using Trypsin-EDTA. The cells were then counted to determine the cell concentration (number of cells per mL). The appropriate number of cells was incubated with IgE coupled-nanoparticles, for example, around 2×105 IgE coupled-nanoparticles per cell, for about 1 hour on ice to avoid any internalization. The resulting nanoparticle-IgE bound cells, i.e. IgE coupled-nanoparticles bound to cells, were washed with Tyrodes-BSA, and the cells were viewed under a confocal microscope for specific binding.
  • [0160]
    Confocal microscope images showed, for example, the top surface of the cells decorated with the red nanoparticles, and the antibody IgE is labeled with a green fluorophore to show co-localization of the antibody with the nanoparticles. Another set of images, taken from the equitorial view of the cells showed an alternative confocal view where diffusive motions of the antibody receptors marked by the fluorescent nanoparticles can be monitored via SPT. Appropriate controls were performed to check for non-specific binding as follows. Control cells were pre-sensitized overnight using IgE, so that all the receptor sites were blocked. These blocked cells were then harvested in the same manner as above using Trypsin-EDTA, labeled with same IgE coupled-nanoparticles per cell concentration. These cells were then viewed under the confocal microscope for any non-specific binding (or sticking).
  • [0161]
    Referring to FIGS. 2A and 2B, there is illustrated an example of high biomolecular binding specificity of, for example, 100 or 300 nanometer diameter fluorescent nanoparticles of the present invention (FIG. 2A) compared to polystyrene latex beads (FIG. 2B) as measured by cell counting statistics. The result indicate that specific interactions (represented by the left-side of the bar pairs) of rat basophilic leukemia (RBL) mast cells coupled with IgE coupled-nanoparticles and cells coupled with polystyrene latex beads are comparable whereas less desirable or undesired non-specific interactions (represented by the right-side of the bar pairs), such as “sticking” interactions, were greater for polystyrene latex beads and cells compared to IgE coupled-nanoparticles and cells. A comparable result is expected for fluorescent nanoparticles of the present invention with diameters between 25 and 100 nanometers.
  • [0162]
    In FIGS. 2A and 2B, the legends:
  • [0163]
    “IgEM” refers to mouse IgE which will bind specifically to IgE receptors of rat basophilic leukemia (RBL) mast cells;
  • [0164]
    “control: IgEH” refers to human IgE which will not bind to IgE receptors of the aforementioned rat cells; and
  • [0165]
    “control: particles alone” refers to the respective binding of IgE coupled-fluorescent nanoparticles with cells, and binding of polystyrene latex beads with cells.
  • EXAMPLE 8
  • [0166]
    Single Particle Tracking (SPT) Single fluorescent nanoparticle tracking experiments were performed by confocally following the motion of a selected single bright fluorescent spot (corresponding to a single receptor bound particle) for about 20-30 minutes to track the diffusion of the receptor to which the single particle was bound. Alternatively, a plurality of selected single bright fluorescent spots could be tracked.
  • [0167]
    Single particle tracking evaluates lateral diffusion of individual components on cell surfaces. This method is based on direct observation of bright fluorescent probes that are specifically conjugated to macromolecules of interest. Tracking of individual components reveals a variety of interesting and useful behaviors including confinement to a small region or movement along a track. This information enables an understanding of how components interact within cells, on cell membranes and like structures or components. However, the method is highly dependent on the quality of the probes. A significant shortcoming of the method has been nonspecific binding of the particles to cells. The fluorescent nanoparticles and the ligated-fluorescent nanoparticles of the present invention provide enhanced brightness and high conjugation specificity to a component of interest. The ligated-fluorescent nanoparticles were demonstrated to be biocompatible and minimize non-specific binding interactions.
  • EXAMPLE 9
  • [0168]
    Mesoporous Silica Nanoparticles for Targeted Delivery and Controlled Release of a Therapeutic Agent Fluorescent core nanoparticles were prepared according to, for example, Examples 1 and 2, and in accord with the general core preparative procedure above.
  • [0169]
    Mesoporous Shell
  • [0170]
    A surface substantive agent, N-hexadecyltrimethylammonium bromide (2.4 g, 6.6 mmol, HDTB), was dissolved in the reaction mixture containing fluorescent seed core nanoparticles. The mixture was stirred (450 rpm) until the HDTB was fully dissolved and then 3.4 g TEOS (16 mmol) was added all at once. The HDTB serves as a templating agent around which the silica shell's formation is ordered and perturbed to enable pore formation by subsequent removal of the HDTB associated with the surface. Subsequent cleaning or removal of the HDTB from the nanoparticle provides fluorescent nanoparticles having a mesoporous silica shell.
  • [0171]
    Cleaning Procedure
  • [0172]
    After about 5 hours of reaction with TEOS, a solid was recovered from three centrifugation washes at 6,000 rpm. At each centrifugation step the supernatant was refreshed with absolute ethanol. Two washes by filtration in de-ionized water followed the centrifugation procedure. The centrifugation and filtration steps removed approximately 90% of the HDTB surfactant. The recovered nanoparticles containing solid was finally suspended in absolute ethanol. The suspension was homogenized by ultrasonic agitation.
  • [0173]
    A vacuum distillation was carried out to exchange ethanol solvent with dimethyl sulfoxide (DMSO). Final concentrations were determined by drying an aliquot of the suspension and weighing the solid mass. The resulting meso-porous nanoparticles in DMSO were suitable for loading therapeutic agent as illustrated below.
  • [0174]
    Loading Mesoporous Nanoparticles with a Therapeutic Agent
  • [0175]
    The above mesoporous nanoparticles suspended in DMSO were stirred and transferred to a 50 mL Falcon tube. The solution was centrifuged at 3,000 rpm for about 5 minutes and the volume of DMSO was reduced to 4 mL by pouring off 6 mL of the supernatant fluid. A 16 mg sample of a therapeutic agent, camptothecin (CPT), was added to the solution. After 5 hours, the solution was centrifuged, and two washes with phosphate buffer saline (PBS) were done. For each wash, 20 mL of PBS was added, and the particles were sonicated and centrifuged. Sonication was done at 15% power with a pulse rate of 1.0 second on and 1.0 second off for 30 seconds of pulsing or until the solution appeared homogenous. The centrifugation was done at 25° C. at 3,000 rpm for 5 minutes. Therapeutic agent loaded particles were stored at room temperature.
  • [0176]
    All publications, patents, and patent documents are incorporated by reference herein, as though individually incorporated by reference. The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

Claims (58)

What is claimed is:
1. A fluorescent nanoparticle comprising:
a core comprising a fluorescent silane compound; and
a silica shell on the core.
2. The nanoparticle of claim 1 wherein the core comprises the reaction product of a reactive fluorescent compound and an organo-silane, and the shell comprises the reaction product of a silica forming compound.
3. The nanoparticle of claim 1 further comprising a ligand on the surface of the fluorescent nanoparticle to form a ligated-fluorescent nanoparticle.
4. The nanoparticle of claim 3 wherein the ligand on the surface of the fluorescent nanoparticle is attached by a covalent bond or by physical absorption.
5. The nanoparticle of claim 3 wherein the ligand on the surface of the fluorescent nanoparticle is selected from the group consisting of a biopolymer, a synthetic polymer, an antigen, an antibody, a microorganism, a virus, a receptor, a hapten, an enzyme, a hormone, a chemical compound, a pathogen, a toxin, a surface modifier, and combinations thereof.
6. The nanoparticle of claim 1 wherein the silica shell coating on the core covers from about 10 to about 100 percent of the surface area of the core.
7. The nanoparticle of claim 3 wherein the ligand on the surface of the fluorescent nanoparticle covers from about 10 to about 100 percent of the surface area of the core.
8. The nanoparticle of claim 1 wherein the thickness of the core to the silica shell is in a ratio of from about 1:1 to about 1:100.
9. The nanoparticle of claim 1 wherein the diameter of the nanoparticle is from about 1 to about 1,000 nanometers.
10. The nanoparticle of claim 1 further comprising a therapeutic agent.
11. The nanoparticle of claim 3 further comprising a therapeutic agent.
12. The nanoparticle of claim 10 or 11 wherein the therapeutic agent is selected from the group consisting of a drug, a biomolecule, a surface modifier, and combinations thereof.
13. The nanoparticle of claim 10 or 11 wherein the therapeutic agent is absorbed into the silica shell of the nanoparticle.
14. The nanoparticle of claim 10 or 11 wherein the therapeutic agent is coated onto the silica shell of the nanoparticle.
15. The nanoparticle of claim 3 wherein the therapeutic agent is associated with the ligand of the nanoparticle.
16. A method of making a fluorescent nanoparticle comprising:
mixing a fluorescent compound and an organo-silane compound to form a fluorescent core; and
mixing the resulting core with a silica forming compound to form a silica shell on the core, to provide the fluorescent nanoparticle.
17. The method of claim 16 further comprising combining the resulting nanoparticle with a ligand selected from the group consisting of a biopolymer, a synthetic polymer, an antigen, an antibody, a microorganism, a virus, a receptor, a hapten, an enzyme, a hormone, a chemical compound, a pathogen, a toxin, a surface modifier, and combinations thereof.
18. The method of claim 16 further comprising combining the resulting fluorescent nanoparticle with a therapeutic agent selected from the group consisting of a drug, a biomolecule, a surface modifier, and combinations thereof.
19. The method of any one of claim 17 or 18 wherein combining comprises coating the ligand or therapeutic agent onto the surface of the nanoparticle.
20. The method of any one of claim 17 or 18 wherein combining comprises imbibing the ligand or therapeutic agent into the surface of the nanoparticle.
21. The method of any one of claim 17 or 18 wherein combining comprises bonding the ligand or therapeutic agent to the surface of the resulting nanoparticle.
22. A method for monitoring movement of a cellular component of a cell comprising:
contacting the cell with a ligated-fluorescent nanoparticle to form a cell selectively decorated with the ligated-fluorescent nanoparticle and to form a fluorescent loci; and
recording the motion of the fluorescent loci for a time, to monitor the movement of a cellular component.
23. The method of claim 22 wherein the fluorescent loci corresponds to one or more ligated-fluorescent nanoparticle bound to a component of the cell.
24. The method of claim 22 wherein the fluorescent loci corresponds to a single ligated-fluorescent nanoparticle bound to a component of the cell.
25. The method of claim 22 wherein the ligated-fluorescent nanoparticle is adapted to selectively associate with a cellular component of the cell.
26. The method of claim 22 wherein the cellular component is a receptor, an antibody, a hapten, an enzyme, a hormone, a biopolymer, an antigen, a microorganism, a virus, a pathogen, a toxin, and combinations thereof.
27. The method of claim 22 wherein the ligated-fluorescent nanoparticle is a fluorescent nanoparticle conjugated with an antibody.
28. The method of claim 27 wherein the antibody is an immunoglobin.
29. The method of claim 28 wherein the antibody is IgE.
30. The method of claim 22 wherein recording is accomplished with a microscopically adapted camera.
31. The method of claim 22 wherein recording for a time is from about 1 microsecond to about 30 days
32. The method of claim 22 wherein recording for a time is from about 1 second to about 60 minutes.
33. The method of claim 22 wherein the contacting and the recording are accomplished in vitro.
34. The method of claim 22 wherein the contacting and the recording are accomplished in vivo.
35. A pharmaceutical carrier comprising the fluorescent nanoparticle of claim 1, and optionally a ligand.
36. A pharmaceutical composition comprising the ligated-fluorescent nanoparticle of claim 3 and optionally a therapeutic agent.
37. An imaging agent comprising the ligated-fluorescent nanoparticle of claim 3.
38. A method for treating disease or disorder comprising:
administering to a patient in need of treatment an effective amount of a ligated-fluorescent nanoparticle optionally including a therapeutic agent, the nanoparticle being adapted to selectively associate with a disease producing component of the cell, to form a selectively decorated cell with the ligated-fluorescent nanoparticle; and
illuminating the decorated cell to treat disease or disorder.
39. The method of claim 38 wherein the ligated-fluorescent nanoparticle fluoresces and heats-up when illuminated.
40. The method of claim 38 wherein the ligated-fluorescent nanoparticle is an antibody ligated to a fluorescent nanoparticle.
41. The method of claim 38 wherein the disease is cancerous tumor.
42. The method of claim 38 wherein the disease in sensitive to fluorescence, heat, or both.
43. A method of treating a disease or disorder comprising:
contacting a cell with a ligated-fluorescent nanoparticle to form a cell selectively decorated with the ligated-fluorescent nanoparticle; and
irradiating the resulting decorated cell for a time to treat the disease or disorder.
44. A kit for use in the detection of an analyte, the kit comprising packaging material containing a ligated-fluorescent nanoparticle.
45. A kit for detecting and monitoring a cell surface component, the kit comprising packaging material containing a ligated-fluorescent nanoparticle for detecting the cell surface component, and optionally a recorder for monitoring the cell surface component.
46. An assay method for detecting motion or a change in the location of a cellular component of a cell when the cell is treated with a therapeutic agent comprising:
contacting a cell with a ligated-fluorescent nanoparticle, the nanoparticle having a therapeutic agent, to bind the ligated-fluorescent nanoparticle to a cellular component; and
recording the fluorescent signal, to detect the motion or location change of the component.
47. The method of claim 46 further comprising determining the difference between the motion or movement of the bound ligated-fluorescent nanoparticle in the presence and absence of the therapeutic agent.
48. A method for detecting the presence of an analyte comprising:
contacting a sample which may contain an analyte with a ligated-fluorescent nanoparticle adapted to associate with the analyte, if present, to form a ligated-fluorescent nanoparticle-analyte complex;
optionally separating uncomplexed ligated-fluorescent nanoparticle; and
detecting the fluorescent signal of ligated-fluorescent nanoparticle-analyte complex to establish the presence of the analyte.
49. The method of claim 48 wherein the ligated-fluorescent nanoparticle-analyte comprises:
a ligated-fluorescent nanoparticle where the ligand is selected from the group consisting of a cell component, a biopolymer, a synthetic polymer, an antigen, an antibody, a receptor, a hapten, an enzyme, a hormone, a chemical compound, a pathogen, a toxin, and combinations thereof; and
an analyte selected from the group consisting of a microorganism, a virus, a cell, a cell component, a biopolymer, a synthetic polymer, an antigen, an antibody, a receptor, a hapten, an enzyme, a hormone, a chemical compound, a pathogen, a toxin, and combinations thereof.
50. A fluorescent nanoparticle comprising:
a core comprising a fluorescent silane compound; and
a porous silica shell on the core.
51. The nanoparticle of claim 50 further comprising a therapeutic agent, a ligand, or mixtures thereof, on the surface of the fluorescent nanoparticle.
52. The nanoparticle of claim 51 further comprising a ligand on the surface of the fluorescent nanoparticle.
53. The nanoparticle of claim 51 further comprising a therapeutic agent on the surface of the fluorescent nanoparticle.
54. The nanoparticle of claim 51 further comprising a magnetic component in the core of the fluorescent nanoparticle.
55. The method of claim 16 further comprising treating the fluorescent core with a templating agent prior to forming a silica shell on the core.
56. The method of claim 55 wherein the templating agent is a quaternary ammonium salt.
57. The method of claim 55 further comprising removing the templating agent after forming a silica shell on the core to afford a porous silica shell.
58. The method of claim 57 further comprising treating the porous silica shell with a ligand, a therapeutic, or mixtures thereof.
US10306614 2002-11-26 2002-11-26 Fluorescent silica-based nanoparticles Abandoned US20040101822A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10306614 US20040101822A1 (en) 2002-11-26 2002-11-26 Fluorescent silica-based nanoparticles

Applications Claiming Priority (19)

Application Number Priority Date Filing Date Title
US10306614 US20040101822A1 (en) 2002-11-26 2002-11-26 Fluorescent silica-based nanoparticles
CN 200810170588 CN101387639A (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
US10536569 US8298677B2 (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
EP20030815190 EP1604031B1 (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
JP2004566499A JP4965804B2 (en) 2002-11-26 2003-11-26 Fluorescent nanoparticles of silica
EP20110162895 EP2364840A1 (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
CN 200380109252 CN100443295C (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
CN 200380109241 CN1742094A (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
JP2004568576A JP2006514708A (en) 2002-11-26 2003-11-26 Silica-based fluorescent nanoparticle
KR20057009511A KR20050103186A (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
KR20057009530A KR20050109455A (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
EP20030815995 EP1572445A4 (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
EP20110156074 EP2369342A3 (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
PCT/US2003/037793 WO2004063387A3 (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
PCT/US2003/037963 WO2004074504A3 (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
US12579302 US8409876B2 (en) 2002-11-26 2009-10-14 Fluorescent silica-based nanoparticles
JP2009285153A JP2010070768A (en) 2002-11-26 2009-12-16 Fluorescent silica-based nanoparticle
JP2010262238A JP2011052228A (en) 2002-11-26 2010-11-25 Fluorescent silica-based nanoparticle
JP2014023357A JP2014133893A (en) 2002-11-26 2014-02-10 Fluorescent silica-based nanoparticle

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10536569 Continuation US8298677B2 (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
US12579302 Continuation US8409876B2 (en) 2002-11-26 2009-10-14 Fluorescent silica-based nanoparticles

Publications (1)

Publication Number Publication Date
US20040101822A1 true true US20040101822A1 (en) 2004-05-27

Family

ID=32325737

Family Applications (3)

Application Number Title Priority Date Filing Date
US10306614 Abandoned US20040101822A1 (en) 2002-11-26 2002-11-26 Fluorescent silica-based nanoparticles
US10536569 Active 2026-11-07 US8298677B2 (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
US12579302 Active US8409876B2 (en) 2002-11-26 2009-10-14 Fluorescent silica-based nanoparticles

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10536569 Active 2026-11-07 US8298677B2 (en) 2002-11-26 2003-11-26 Fluorescent silica-based nanoparticles
US12579302 Active US8409876B2 (en) 2002-11-26 2009-10-14 Fluorescent silica-based nanoparticles

Country Status (6)

Country Link
US (3) US20040101822A1 (en)
JP (5) JP4965804B2 (en)
KR (2) KR20050109455A (en)
CN (3) CN100443295C (en)
EP (4) EP1572445A4 (en)
WO (2) WO2004074504A3 (en)

Cited By (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050025820A1 (en) * 2003-04-25 2005-02-03 Mark Kester Method and system for systemic delivery of growth arresting, lipid-derived bioactive compounds
FR2873021A1 (en) * 2004-07-16 2006-01-20 Oreal Cosmetic composition, used as a make-up and/or skin care (particularly face, lips and/or keratinous fibers) product, comprises a photo luminescent mineral nanoparticles in a medium
WO2006011014A1 (en) * 2004-07-16 2006-02-02 L'oreal Cosmetic composition containing photoluminescent particles
US20060115917A1 (en) * 2004-11-30 2006-06-01 Linden Kurt J Precision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices
US20060113557A1 (en) * 2004-11-30 2006-06-01 Spire Corporation Nanophotovoltaic devices
US20060216239A1 (en) * 2005-03-18 2006-09-28 Washington, University Of Magnetic nanoparticle compositions and methods
US20060222286A1 (en) * 2005-03-31 2006-10-05 Eastman Kodak Company Polarized light emitting source with an electro-optical addressing architecture
US20060222292A1 (en) * 2005-03-31 2006-10-05 Eastman Kodak Company Placement of lumiphores within a light emitting resonator in a visual display with electro-optical addressing architecture
US20060227840A1 (en) * 2005-03-31 2006-10-12 Eastman Kodak Company Visual display with electro-optical addressing architecture
US20060245971A1 (en) * 2005-05-02 2006-11-02 Burns Andrew A Photoluminescent silica-based sensors and methods of use
US20060291769A1 (en) * 2005-05-27 2006-12-28 Eastman Kodak Company Light emitting source incorporating vertical cavity lasers and other MEMS devices within an electro-optical addressing architecture
US20060293396A1 (en) * 2005-01-14 2006-12-28 Eastman Kodak Company Amine polymer-modified nanoparticulate carriers
US20070051674A1 (en) * 2000-02-04 2007-03-08 Bratten Jack R Lift station and method
KR100821192B1 (en) * 2005-09-08 2007-03-13 주식회사바이테리얼즈 Magnetic nanoparticle having fluorescent and preparation method thereof
WO2007029980A1 (en) * 2005-09-08 2007-03-15 Biterials Co., Ltd. Magnetic nanoparticle having fluorescent and preparation method thereof and use thereof
US20070154965A1 (en) * 2005-04-22 2007-07-05 Miqin Zhang Chlorotoxin-labeled nanoparticle compositions and methods for targeting primary brain tumors
US20070203584A1 (en) * 2006-02-14 2007-08-30 Amit Bandyopadhyay Bone replacement materials
US20070262116A1 (en) * 2005-08-31 2007-11-15 Hueil Joseph C Surgical stapling device with multiple stacked actuator wedge cams for driving staple drivers
EP1862794A1 (en) * 2006-05-31 2007-12-05 Carl Zeiss MicroImaging GmbH Method for high resolution spatial images
US20080073163A1 (en) * 2006-09-22 2008-03-27 Weir Michael P Micro-electromechanical device
US20080086051A1 (en) * 2006-09-20 2008-04-10 Ethicon Endo-Surgery, Inc. System, storage medium for a computer program, and method for displaying medical images
WO2008071772A2 (en) * 2006-12-13 2008-06-19 L'oreal Use of coloured or fluorescent hybrid particles for treating keratin fibres
FR2909869A1 (en) * 2006-12-13 2008-06-20 Oreal Use of hybrid particles for dyeing keratinous fibers, obtained from an organosilane compound carrying a colored species
US20080167521A1 (en) * 2007-01-09 2008-07-10 Sheetz Jane A Method of in vivo monitoring using an imaging system including scanned beam imaging unit
US20080221434A1 (en) * 2007-03-09 2008-09-11 Voegele James W Displaying an internal image of a body lumen of a patient
US20080226034A1 (en) * 2007-03-12 2008-09-18 Weir Michael P Power modulation of a scanning beam for imaging, therapy, and/or diagnosis
US20080232656A1 (en) * 2007-03-22 2008-09-25 Ethicon Endo-Surgery, Inc. Recognizing a real world fiducial in image data of a patient
US20080234544A1 (en) * 2007-03-20 2008-09-25 Ethicon Endo-Sugery, Inc. Displaying images interior and exterior to a body lumen of a patient
US20080234566A1 (en) * 2007-03-21 2008-09-25 Ethicon Endo-Surgery, Inc. Recognizing a real world fiducial in a patient image data
US20080242967A1 (en) * 2007-03-27 2008-10-02 Ethicon Endo-Surgery, Inc. Medical imaging and therapy utilizing a scanned beam system operating at multiple wavelengths
US20080255459A1 (en) * 2007-04-13 2008-10-16 Ethicon Endo-Surgery, Inc. Sentinel node identification using fluorescent nanoparticles
US20080252778A1 (en) * 2007-04-13 2008-10-16 Ethicon Endo-Surgery, Inc. Combined SBI and conventional image processor
US20080255458A1 (en) * 2007-04-13 2008-10-16 Ethicon Endo-Surgery, Inc. System and method using fluorescence to examine within a patient's anatomy
US20080274463A1 (en) * 2007-05-04 2008-11-06 Ventana Medical Systems, Inc. Method for quantifying biomolecules conjugated to a nanoparticle
US20080275305A1 (en) * 2007-05-01 2008-11-06 Ethicon Endo-Surgery, Inc. Medical scanned beam imager and components associated therewith
US20080286371A1 (en) * 2005-09-12 2008-11-20 Cristalia Produtos Quimicos Farmaceuticos Ltda Immunogenical Complex Formed by Vaccinal Antigens Encapsulated by Nanostructured Mesoporous Silica
US20080293584A1 (en) * 2005-12-27 2008-11-27 The Furukawa Electric Co., Ltd. Fluorescent silica nano-particle, fluorescent nano-material, and biochip and assay using the same
US20080312490A1 (en) * 2007-06-18 2008-12-18 Ethicon Endo-Surgery, Inc. Methods and devices for repairing damaged or diseased tissue using a scanning beam assembly
US20090001130A1 (en) * 2007-06-29 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US20090001128A1 (en) * 2007-06-29 2009-01-01 Weisenburgh Ii William B Washer for use with a surgical stapling instrument
US20090035802A1 (en) * 2007-07-31 2009-02-05 Digital Bio Technology, Co., Ltd. Method for detection and enumeration of cell surface markers
WO2009017695A1 (en) * 2007-07-26 2009-02-05 The Regents Of The University Of California A single cell surgery tool and a cell transfection device utilizing the photothermal properties of thin films and/or metal nanoparticles
US20090043109A1 (en) * 2007-08-07 2009-02-12 Spangler Brenda D Asymmetric one- and two-photon fluorophores for simultaneous detection of multiple analytes using a common excitation source
US20090054761A1 (en) * 2007-08-22 2009-02-26 Ethicon Endo-Surgery, Inc. Medical system, method, and storage medium concerning a natural orifice transluminal medical procedure
US20090062659A1 (en) * 2007-08-28 2009-03-05 Weir Michael P Medical device including scanned beam unit with operational control features
US20090060381A1 (en) * 2007-08-31 2009-03-05 Ethicon Endo-Surgery, Inc. Dynamic range and amplitude control for imaging
US20090062658A1 (en) * 2007-08-27 2009-03-05 Dunki-Jacobs Robert J Position tracking and control for a scanning assembly
US20090068272A1 (en) * 2006-04-25 2009-03-12 Washington State University Mesoporous calcium silicate compositions and methods for synthesis of mesoporous calcium silicate for controlled release of bioactive agents
US20090099282A1 (en) * 2005-05-27 2009-04-16 Martin Muller Functionalized nanoparticles
WO2009059677A1 (en) * 2007-11-08 2009-05-14 Merck Patent Gmbh Method for the production of coated luminescent substances
US20090137060A1 (en) * 2005-07-11 2009-05-28 Rikshospitalet Hf Multicolored particles
WO2009073193A2 (en) * 2007-12-03 2009-06-11 The Johns Hopkins University Methods of synthesis and use of chemospheres
US7558455B2 (en) 2007-06-29 2009-07-07 Ethicon Endo-Surgery, Inc Receiver aperture broadening for scanned beam imaging
US20090202816A1 (en) * 2006-06-06 2009-08-13 Florida State University Research Foundation, Inc. Stabilized silica colloid
US20090217932A1 (en) * 2008-03-03 2009-09-03 Ethicon Endo-Surgery, Inc. Intraluminal tissue markers
US20090226371A1 (en) * 2005-11-16 2009-09-10 Signalomics Gmbh Fluorescent nanoparticles
US20090276056A1 (en) * 2006-04-25 2009-11-05 Washington State University Resorbable ceramics with controlled strength loss rates
US20090289225A1 (en) * 2007-04-19 2009-11-26 Naiyong Jing Reducing fluorescent self-quenching with nanoparticles
US20100040693A1 (en) * 2006-08-09 2010-02-18 Korea Research Institute Of Bioscience And Biotech Silica capsules having nano-holes or nano-pores on their surfaces and method for preparing the same
US7665647B2 (en) 2006-09-29 2010-02-23 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
WO2010021512A2 (en) * 2008-08-22 2010-02-25 Snu R&Db Foundation Silica-based fluorescent nanoparticles
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7673781B2 (en) 2005-08-31 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling device with staple driver that supports multiple wire diameter staples
US20100089970A1 (en) * 2008-10-10 2010-04-15 Ethicon Endo-Surgery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US7713265B2 (en) 2006-12-22 2010-05-11 Ethicon Endo-Surgery, Inc. Apparatus and method for medically treating a tattoo
US20100119500A1 (en) * 2007-02-28 2010-05-13 Mika Jokinen Method for preparing silica compositions, silica compositions and uses thereof
US20100184087A1 (en) * 2006-11-01 2010-07-22 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
US20100260686A1 (en) * 2009-04-09 2010-10-14 Washington, University Of Nanoparticles for brain tumor imaging
US20100311871A1 (en) * 2008-02-12 2010-12-09 Nissan Chemical Industries, Ltd. Colloidal silica particles, process for producing the same, and organic solvent-dispersed silica sol, polymerizable compound-dispersed silica sol, and dicarboxylic anhydride-dispersed silica sol each obtained from the same
US20100310872A1 (en) * 2007-12-06 2010-12-09 The University Of Tokushima Nanofunctional silica particles and manufacturing method thereof
US20100317537A1 (en) * 2008-02-15 2010-12-16 University Of Florida Research Foundation, Inc. Biophysical parameters for systems biology
US20100327482A1 (en) * 2005-12-20 2010-12-30 University Of Hawaii Polymer matrix composites with nano-scale reinforcements
US20100330366A1 (en) * 2009-06-30 2010-12-30 Keiser Bruce A Silica-based particle composition
US20110028662A1 (en) * 2007-08-31 2011-02-03 Hybrid Silica Technologies, Inc. Peg-coated core-shell silica nanoparticles and methods of manufacture and use
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20110111233A1 (en) * 2008-07-07 2011-05-12 Kazuya Tsukada Inorganic nanoparticle labeling agent
US20110110858A1 (en) * 2009-11-11 2011-05-12 Omer Aras Gold nanoparticle imaging agents and uses thereof
US7982776B2 (en) 2007-07-13 2011-07-19 Ethicon Endo-Surgery, Inc. SBI motion artifact removal apparatus and method
US20110174860A1 (en) * 2006-01-31 2011-07-21 Ethicon Endo-Surgery, Inc. Surgical instrument with force-feedback capabilities
US20110203023P1 (en) * 2010-02-16 2011-08-18 Menachem Bronstein Gypsophila Plant Named 'Pearl Blossom''
US20110214488A1 (en) * 2010-03-04 2011-09-08 Rose Peter E Colloidal-crystal quantum dots as tracers in underground formations
US8050520B2 (en) 2008-03-27 2011-11-01 Ethicon Endo-Surgery, Inc. Method for creating a pixel image from sampled data of a scanned beam imager
US20110288234A1 (en) * 2008-02-19 2011-11-24 The Research Foundation on State University of NY Silica nanoparticles postloaded with photosensitizers for drug delivery in photodynamic therapy
US20110300222A1 (en) * 2009-02-20 2011-12-08 The Regents Of The University Of California Luminescent porous silicon nanoparticles, methods of making and using same
US8113410B2 (en) 2008-02-14 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8196796B2 (en) 2007-06-04 2012-06-12 Ethicon Endo-Surgery, Inc. Shaft based rotary drive system for surgical instruments
US8196795B2 (en) 2008-02-14 2012-06-12 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
CN101457139B (en) 2008-08-22 2012-06-13 吉林大学 High quantum production rate luminescent silicon ball with controllable structure and preparation method thereof
US8273015B2 (en) 2007-01-09 2012-09-25 Ethicon Endo-Surgery, Inc. Methods for imaging the anatomy with an anatomically secured scanner assembly
US20120252140A1 (en) * 2009-12-25 2012-10-04 Konica Minolta Medical & Graphic, Inc. Fluorescent substance-containing silica nanoparticles and biosubstance labeling agent
US8332014B2 (en) 2008-04-25 2012-12-11 Ethicon Endo-Surgery, Inc. Scanned beam device and method using same which measures the reflectance of patient tissue
CN102921014A (en) * 2012-11-15 2013-02-13 中国科学院化学研究所 Biocompatible nano composite drug carrier with synergistic anti-tumor effect, drug with synergistic anti-tumor effect and preparation methods of biocompatible nano composite drug carrier and drug
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
CN103013016A (en) * 2011-09-28 2013-04-03 国家纳米科学中心 Medical carrier and medical composition and preparation method thereof
US20130084643A1 (en) * 2009-12-24 2013-04-04 Total Sa Use of nanoparticles for labelling oil field injection waters
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8424740B2 (en) 2007-06-04 2013-04-23 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US8445191B2 (en) 2007-05-23 2013-05-21 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8479969B2 (en) 2007-01-10 2013-07-09 Ethicon Endo-Surgery, Inc. Drive interface for operably coupling a manipulatable surgical tool to a robot
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US8573461B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with cam-driven staple deployment arrangements
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US8602288B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery. Inc. Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US8602287B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery, Inc. Motor driven surgical cutting instrument
US8616431B2 (en) 2007-06-04 2013-12-31 Ethicon Endo-Surgery, Inc. Shiftable drive interface for robotically-controlled surgical tool
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
WO2014052875A1 (en) 2012-09-27 2014-04-03 Cynvenio Biosystems, Inc. Stimulus-sensitive microparticles and methods of use
US8703490B2 (en) 2008-06-05 2014-04-22 Ventana Medical Systems, Inc. Compositions comprising nanomaterials and method for using such compositions for histochemical processes
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US8783541B2 (en) 2003-05-20 2014-07-22 Frederick E. Shelton, IV Robotically-controlled surgical end effector system
US8789741B2 (en) 2010-09-24 2014-07-29 Ethicon Endo-Surgery, Inc. Surgical instrument with trigger assembly for generating multiple actuation motions
US20140220598A1 (en) * 2011-09-09 2014-08-07 Tohoku University Biological substance detection method
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8844789B2 (en) 2006-01-31 2014-09-30 Ethicon Endo-Surgery, Inc. Automated end effector component reloading system for use with a robotic system
US8873041B1 (en) 2013-01-29 2014-10-28 Bayspec, Inc. Raman spectroscopy using multiple excitation wavelengths
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US8911471B2 (en) 2006-03-23 2014-12-16 Ethicon Endo-Surgery, Inc. Articulatable surgical device
US8961825B2 (en) 2009-04-15 2015-02-24 Cornell University Fluorescent silica nanoparticles through silica densification
US8978954B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjustable distal portion
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9018347B2 (en) 2010-02-04 2015-04-28 Morphotek, Inc. Chlorotoxin polypeptides and conjugates and uses thereof
US9023595B2 (en) 2008-05-15 2015-05-05 Morphotek, Inc. Treatment of metastatic tumors
US9028519B2 (en) 2008-09-23 2015-05-12 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9042765B2 (en) 2012-01-16 2015-05-26 Samsung Electronics Co., Ltd. Image forming apparatus with improved heat transmission
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US20150177153A1 (en) * 2013-12-20 2015-06-25 Sicpa Holding Sa Thermoluminescent composite particle and marking comprising same
US9068084B2 (en) 2010-01-19 2015-06-30 Wuxi Zodolabs Biotech Co., Ltd. Silica nanoparticles doped with dye having negative charge and preparing method thereof
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US20150202848A1 (en) * 2014-01-22 2015-07-23 Samsung Display Co., Ltd. Display device
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
EP2833144A4 (en) * 2012-03-28 2015-08-26 Konica Minolta Inc Method for detection biological substance
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9125552B2 (en) 2007-07-31 2015-09-08 Ethicon Endo-Surgery, Inc. Optical scanning module and means for attaching the module to medical instruments for introducing the module into the anatomy
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9138225B2 (en) 2007-06-22 2015-09-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
JP2016501286A (en) * 2012-11-16 2016-01-18 エスエヌユー アールアンドディービー ファウンデーションSnu R&Db Foundation Coded polymer fine particles
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9320521B2 (en) 2006-06-27 2016-04-26 Ethicon Endo-Surgery, Llc Surgical instrument
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US9532949B2 (en) 2011-07-19 2017-01-03 Stc.Unm Intraperitoneally-administered nanocarriers that release their therapeutic load based on the inflammatory environment of cancers
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9579283B2 (en) 2011-04-28 2017-02-28 Stc.Unm Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery and methods of using same
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9592053B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc Staple cartridge comprising multiple regions
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9625456B2 (en) 2009-07-02 2017-04-18 Sloan-Kettering Institute For Cancer Research Fluorescent silica-based nanoparticles
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US9730695B2 (en) 2014-03-26 2017-08-15 Ethicon Endo-Surgery, Llc Power management through segmented circuit
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US9743928B2 (en) 2006-01-31 2017-08-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US9784730B2 (en) 2013-03-21 2017-10-10 University Of Washington Through Its Center For Commercialization Nanoparticle for targeting brain tumors and delivery of O6-benzylguanine
US9788836B2 (en) 2014-09-05 2017-10-17 Ethicon Llc Multiple motor control for powered medical device
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9877721B2 (en) 2014-06-30 2018-01-30 Ethicon Llc Fastener cartridge comprising tissue control features

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101822A1 (en) * 2002-11-26 2004-05-27 Ulrich Wiesner Fluorescent silica-based nanoparticles
US20050221339A1 (en) 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
GB0307403D0 (en) 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
GB0400235D0 (en) * 2004-01-07 2004-02-11 Univ Sunderland Nanoparticles as agents for imaging finger prints
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
US20060078893A1 (en) 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
JP5557127B2 (en) * 2005-02-14 2014-07-23 オーストラリアン ニュークリア サイエンス アンド テクノロジー オーガニゼーション Layered nanoparticles
JP5174654B2 (en) * 2005-03-21 2013-04-03 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Magnetic nanoparticles and their use, which is functionalized
JP4774507B2 (en) * 2005-03-22 2011-09-14 国立大学法人徳島大学 Colorant compositions and chromogenic or luminescent products containing the same
JP2006328032A (en) * 2005-05-30 2006-12-07 Fujifilm Holdings Corp Nucleic acid probe and method for fluorescence detection of multiple-stranded nucleic acid
US8026328B2 (en) 2005-08-09 2011-09-27 University Of Sunderland Hydrophobic silica particles and methods of making same
JP4931015B2 (en) * 2005-08-30 2012-05-16 学校法人東京電機大学 Method of manufacturing a nano-silicon-containing soluble tablets
EP1760467A1 (en) * 2005-09-02 2007-03-07 Schering AG Optically fluorescent nanoparticles
WO2007081387A1 (en) 2006-01-11 2007-07-19 Raindance Technologies, Inc. Microfluidic devices, methods of use, and kits for performing diagnostics
JP2007197382A (en) * 2006-01-27 2007-08-09 Konica Minolta Medical & Graphic Inc Semiconductor nanoparticle
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
US20080014589A1 (en) 2006-05-11 2008-01-17 Link Darren R Microfluidic devices and methods of use thereof
WO2008021123A1 (en) 2006-08-07 2008-02-21 President And Fellows Of Harvard College Fluorocarbon emulsion stabilizing surfactants
FR2910632B1 (en) * 2006-12-22 2010-08-27 Commissariat Energie Atomique An optical coding plasmon effect and the authentication method employing
WO2008097559A3 (en) 2007-02-06 2008-10-09 Univ Brandeis Manipulation of fluids and reactions in microfluidic systems
WO2008130623A1 (en) 2007-04-19 2008-10-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US20100162494A1 (en) * 2007-05-11 2010-07-01 Ciba Corporation Functionalized nanoparticles
KR100845010B1 (en) * 2007-08-29 2008-07-08 한국생명공학연구원 Polymer particles for nir/mr bimodal molecular imaging and method for preparing thereof
WO2009032994A3 (en) * 2007-09-06 2009-05-22 Univ Emory Silica-based nanoparticles and methods of stimulating bone formation and suppressing bone resorption through modulation of nf-kb
CN101343538B (en) 2008-08-25 2011-03-23 华东理工大学 Fluorescence silica gel particle and uses thereof
JP5419199B2 (en) * 2008-12-08 2014-02-19 積水化学工業株式会社 Magnetic encapsulated particles, a method of manufacturing a magnetic encapsulated particles, for immunoassay particles, and, immunochromatographic method
CN102257098A (en) * 2008-12-25 2011-11-23 日本板硝子株式会社 Fluorescent dye-containing particles and manufacturing method thereof
CN101463252B (en) 2009-01-08 2012-01-04 东南大学 Preparation of dye doped silicon dioxide fluorescent nanoparticle
CN102574677B (en) * 2009-04-15 2015-03-18 康奈尔大学 Silica nanoparticles incorporating chemiluminescent and absorbing active molecules
DE102009019411A1 (en) 2009-04-29 2010-11-04 Bayer Technology Services Gmbh A process for UV-stabilizing organic substances
DE102009024685A1 (en) 2009-06-12 2010-12-16 Gmbu E.V., Fachsektion Dresden Luminescent composite particle, useful e.g. as marking agent in polymeric films and articles for forgery-proof product identification, comprises organic optical brightener, which is homogeneously embedded in microspherical inorganic oxide
US20130064776A1 (en) * 2009-10-09 2013-03-14 Universite De Strasbourg Labelled silica-based nanomaterial with enhanced properties and uses thereof
JP5620154B2 (en) * 2009-10-15 2014-09-26 公益財団法人神奈川科学技術アカデミー Hollow microspheres body and a manufacturing method thereof
JP5934657B2 (en) 2010-02-12 2016-06-15 レインダンス テクノロジーズ, インコーポレイテッド Digital sample analysis
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
EP2542643A4 (en) * 2010-03-01 2013-08-28 Univ Florida Near-ir indocyanine green doped multimodal silica nanoparticles and methods for making the same
WO2011128855A1 (en) 2010-04-13 2011-10-20 Universita' Degli Studi Di Palermo Silica-based nir nano-emitters for applications in vivo and process for production thereof
KR101218204B1 (en) * 2010-07-09 2013-01-03 한국과학기술원 Fluorescence hollow silica nanoparticles and a method for their preparation
CN101993693B (en) * 2010-09-28 2013-08-07 华东理工大学 Preparation method of mesoporous silica fluorescent nanoparticles for pH ratio probes
EP2622103A4 (en) 2010-09-30 2014-04-23 Raindance Technologies Inc Sandwich assays in droplets
US9525092B2 (en) 2010-11-05 2016-12-20 Pacific Light Technologies Corp. Solar module employing quantum luminescent lateral transfer concentrator
WO2012075087A3 (en) * 2010-11-30 2012-12-13 Board Of Trustees Of The University Of Illinois Silica nanoparticle agent conjugates
US9364803B2 (en) 2011-02-11 2016-06-14 Raindance Technologies, Inc. Methods for forming mixed droplets
US9150852B2 (en) 2011-02-18 2015-10-06 Raindance Technologies, Inc. Compositions and methods for molecular labeling
WO2012133306A1 (en) * 2011-03-25 2012-10-04 株式会社Tasプロジェクト Method for quantitatively detecting 8-oxo-2'-deoxyguanosine in aqueous sample solution with high sensitivity
JP5367915B2 (en) * 2011-04-26 2013-12-11 古河電気工業株式会社 Method for producing a functional molecule containing silica particles bound with biomolecules
CN102320612A (en) * 2011-05-26 2012-01-18 东北师范大学 Preparation method and application of fluorescence mesoporous silica nano-particle
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
US20120323112A1 (en) * 2011-06-17 2012-12-20 The Board Of Trustees Of The Leland Stanford Junior University Nanoparticles for accoustic imaging, methods of making, and methods of accoustic imaging
US20140248606A1 (en) * 2011-08-11 2014-09-04 Qiagen Hamburg Gmbh Cell- or virus simulating means comprising encapsulated marker molecules
GB201117675D0 (en) 2011-10-13 2011-11-23 Univ St Andrews Nanocolloids for local temperature monitoring
US20130112942A1 (en) 2011-11-09 2013-05-09 Juanita Kurtin Composite having semiconductor structures embedded in a matrix
US20130112941A1 (en) 2011-11-09 2013-05-09 Juanita Kurtin Semiconductor structure having nanocrystalline core and nanocrystalline shell with insulator coating
WO2013192609A1 (en) * 2012-06-22 2013-12-27 Cornell University Mesoporous oxide nanoparticles and methods of making and using same
WO2014024106A1 (en) 2012-08-10 2014-02-13 R.D. Pharmadvice S.R.L. Method for the production of thermochemiluminescent silica nanoparticles and their use as markers in bioanalytic methods
US9425365B2 (en) 2012-08-20 2016-08-23 Pacific Light Technologies Corp. Lighting device having highly luminescent quantum dots
KR101445596B1 (en) * 2012-09-27 2014-10-07 단국대학교 산학협력단 Measurement method and measurement kit of antibiotics concentration
US8889457B2 (en) 2012-12-13 2014-11-18 Pacific Light Technologies Corp. Composition having dispersion of nano-particles therein and methods of fabricating same
US9119875B2 (en) 2013-03-14 2015-09-01 International Business Machines Corporation Matrix incorporated fluorescent porous and non-porous silica particles for medical imaging
US9371237B2 (en) 2013-04-22 2016-06-21 American Talc Company Methods and systems for controlled conversion of minerals to pigmenting elements
JP6080163B2 (en) * 2013-10-02 2017-02-15 古河電気工業株式会社 The method of detecting a target substance
JP6080164B2 (en) * 2013-10-02 2017-02-15 古河電気工業株式会社 Fluorescently labeled particles
WO2015160794A1 (en) * 2014-04-14 2015-10-22 Ecosynthetix Ltd. Bio-based nanoparticle and composite materials derived therefrom
WO2015168439A1 (en) 2014-04-30 2015-11-05 Nitto Denko Corporation Inorganic oxide coated fluorescent chromophores for use in highly photostable wavelength conversion films
KR20170007809A (en) 2014-05-29 2017-01-20 메모리얼 슬로안-케터링 캔서 센터 Nanoparticle drug conjugates
US20160166714A1 (en) 2014-12-15 2016-06-16 Cornell University Cyclic peptides with enhanced nerve-binding selectively, nanoparticles bound with said cyclic peptides, and use of same for real-time in vivo nerve tissue imaging
KR20180002645A (en) 2015-04-07 2018-01-08 메모리얼 슬로안-케터링 캔서 센터 Nanoparticles immune conjugates
CN106281305A (en) * 2015-06-10 2017-01-04 南开大学 Adjustable-service-life fluorescence nanometer nucleocapsid material and preparation method thereof
KR20160147645A (en) * 2015-06-15 2016-12-23 주식회사 엘지화학 Fluorescent complex, light conversion film, light conversioni device and display appratus comprising the same
US9716211B2 (en) * 2015-07-22 2017-07-25 Sharp Kabushiki Kaisha Semiconductor phosphor nanoparticle, semiconductor phosphor nanoparticle-containing glass, light emitting device, and light emitting element
WO2017189961A1 (en) 2016-04-29 2017-11-02 Memorial Sloan Kettering Cancer Center Compositions and methods for targeted particle penetration, distribution, and response in malignant brain tumors
WO2017196789A1 (en) * 2016-05-09 2017-11-16 The Trustees Of The University Of Pennsylvania Omni-transparent and superhydrophobic coatings assembled from chain-like nanoparticles

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180415B2 (en) *
US4279617A (en) * 1979-02-26 1981-07-21 Technicon Instruments Corporation Iummunoassay involving agglutination
US4774339A (en) * 1987-08-10 1988-09-27 Molecular Probes, Inc. Chemically reactive dipyrrometheneboron difluoride dyes
US4810636A (en) * 1986-12-09 1989-03-07 Miles Inc. Chromogenic acridinone enzyme substrates
US4812409A (en) * 1986-01-31 1989-03-14 Eastman Kodak Company Hydrolyzable fluorescent substrates and analytical determinations using same
US5187288A (en) * 1991-05-22 1993-02-16 Molecular Probes, Inc. Ethenyl-substituted dipyrrometheneboron difluoride dyes and their synthesis
US5248782A (en) * 1990-12-18 1993-09-28 Molecular Probes, Inc. Long wavelength heteroaryl-substituted dipyrrometheneboron difluoride dyes
US5260957A (en) * 1992-10-29 1993-11-09 The Charles Stark Draper Laboratory, Inc. Quantum dot Laser
US5274113A (en) * 1991-11-01 1993-12-28 Molecular Probes, Inc. Long wavelength chemically reactive dipyrrometheneboron difluoride dyes and conjugates
US5405752A (en) * 1988-10-03 1995-04-11 Nilsson; Kurt G. I. Enzyme conjugate prepared with insoluble nonoparticle
US5433896A (en) * 1994-05-20 1995-07-18 Molecular Probes, Inc. Dibenzopyrrometheneboron difluoride dyes
US5639603A (en) * 1991-09-18 1997-06-17 Affymax Technologies N.V. Synthesizing and screening molecular diversity
US5753517A (en) * 1996-03-29 1998-05-19 University Of British Columbia Quantitative immunochromatographic assays
US5830912A (en) * 1996-11-15 1998-11-03 Molecular Probes, Inc. Derivatives of 6,8-difluoro-7-hydroxycoumarin
US5981180A (en) * 1995-10-11 1999-11-09 Luminex Corporation Multiplexed analysis of clinical specimens apparatus and methods
US5990479A (en) * 1997-11-25 1999-11-23 Regents Of The University Of California Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US6132773A (en) * 1996-04-22 2000-10-17 Rhodia Chimie Method for preparing particles comprising a core and a silica shell
US6180415B1 (en) * 1997-02-20 2001-01-30 The Regents Of The University Of California Plasmon resonant particles, methods and apparatus
US6207392B1 (en) * 1997-11-25 2001-03-27 The Regents Of The University Of California Semiconductor nanocrystal probes for biological applications and process for making and using such probes
US6251303B1 (en) * 1998-09-18 2001-06-26 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
US6268222B1 (en) * 1998-01-22 2001-07-31 Luminex Corporation Microparticles attached to nanoparticles labeled with flourescent dye
US6274323B1 (en) * 1999-05-07 2001-08-14 Quantum Dot Corporation Method of detecting an analyte in a sample using semiconductor nanocrystals as a detectable label
US6306610B1 (en) * 1998-09-18 2001-10-23 Massachusetts Institute Of Technology Biological applications of quantum dots
US6322901B1 (en) * 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US6326144B1 (en) * 1998-09-18 2001-12-04 Massachusetts Institute Of Technology Biological applications of quantum dots
US6344272B1 (en) * 1997-03-12 2002-02-05 Wm. Marsh Rice University Metal nanoshells
US6426513B1 (en) * 1998-09-18 2002-07-30 Massachusetts Institute Of Technology Water-soluble thiol-capped nanocrystals
US6428811B1 (en) * 1998-03-11 2002-08-06 Wm. Marsh Rice University Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery
US6454789B1 (en) * 1999-01-15 2002-09-24 Light Science Corporation Patient portable device for photodynamic therapy
US6479146B1 (en) * 1998-03-19 2002-11-12 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften, E.V. Fabrication of multilayer-coated particles and hollow shells via electrostatic self-assembly of nanocomposite multilayers on decomposable colloidal templates
US6500622B2 (en) * 2000-03-22 2002-12-31 Quantum Dot Corporation Methods of using semiconductor nanocrystals in bead-based nucleic acid assays
US20030017264A1 (en) * 2001-07-20 2003-01-23 Treadway Joseph A. Luminescent nanoparticles and methods for their preparation
US6548264B1 (en) * 2000-05-17 2003-04-15 University Of Florida Coated nanoparticles
US6576219B2 (en) * 1994-12-09 2003-06-10 The Regents Of The University Of California Method for enhancing outflow of aqueous humor in treatment of glaucoma
US20030124564A1 (en) * 2001-06-29 2003-07-03 Mathias Trau Synthesis and use of organosilica particles
US6649138B2 (en) * 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870791A (en) 1972-04-24 1975-03-11 Heskel M Haddad Solid state ophthalmic medication delivery method
US3867519A (en) 1972-04-27 1975-02-18 Alza Corp Bioerodible drug delivery device
US4051842A (en) 1975-09-15 1977-10-04 International Medical Corporation Electrode and interfacing pad for electrical physiological systems
DE2626348C3 (en) 1976-06-11 1980-01-31 Siemens Ag, 1000 Berlin Und 8000 Muenchen
US4136177A (en) 1977-01-31 1979-01-23 American Home Products Corp. Xanthan gum therapeutic compositions
US4255415A (en) 1978-11-22 1981-03-10 Schering Corporation Polyvinyl alcohol ophthalmic gel
US4383529A (en) 1980-11-03 1983-05-17 Wescor, Inc. Iontophoretic electrode device, method and gel insert
US4918200A (en) * 1984-07-16 1990-04-17 Huls America Inc. Chromogenic and fluorogenic silanes and using the same
US4665024A (en) 1984-10-01 1987-05-12 Becton, Dickinson And Company Fluorescent gram stain
US4931279A (en) 1985-08-16 1990-06-05 Bausch & Lomb Incorporated Sustained release formulation containing an ion-exchange resin
US4668506A (en) 1985-08-16 1987-05-26 Bausch & Lomb Incorporated Sustained-release formulation containing and amino acid polymer
US4788603A (en) 1985-10-19 1988-11-29 Fuji Photo Film Co., Ltd. Camera for sequentially photographing a subject using a reference optical system and a telescopic optical system
US4810639A (en) * 1985-12-20 1989-03-07 E. I. Du Pont De Nemours And Company Immunoassay for CK-MB using bound and soluble antibodies
US4713224A (en) 1986-03-31 1987-12-15 The Boc Group, Inc. One-step process for purifying an inert gas
DE69227112D1 (en) 1991-07-16 1998-10-29 Transmed Biotech Inc Methods and compositions for the simultaneous analysis of a plurality of analytes
DE69519384T2 (en) 1994-09-29 2001-05-23 British Telecomm Optical fiber having quantum dots
US6361944B1 (en) 1996-07-29 2002-03-26 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6451044B1 (en) 1996-09-20 2002-09-17 Board Of Regents, The University Of Texas System Method and apparatus for heating inflammed tissue
US5795158A (en) 1996-12-02 1998-08-18 Warinner; Peter Apparatus to review clinical microbiology
US5968820A (en) 1997-02-26 1999-10-19 The Cleveland Clinic Foundation Method for magnetically separating cells into fractionated flow streams
US6221586B1 (en) 1997-04-09 2001-04-24 California Institute Of Technology Electrochemical sensor using intercalative, redox-active moieties
US6480746B1 (en) 1997-08-13 2002-11-12 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6082205A (en) 1998-02-06 2000-07-04 Ohio State University System and device for determining particle characteristics
US6501091B1 (en) 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
WO2000032542A1 (en) * 1998-11-30 2000-06-08 The University Of Queensland Carriers for combinatorial compound libraries
GB9910155D0 (en) * 1999-04-30 1999-06-30 Microbiological Research Agenc Augmented agglutination assay
US6686188B2 (en) * 2000-05-26 2004-02-03 Amersham Plc Polynucleotide encoding a human myosin-like polypeptide expressed predominantly in heart and muscle
JP2003270154A (en) * 2001-12-27 2003-09-25 Techno Network Shikoku Co Ltd Fluorescent dye molecule-containing silica ball
WO2003060037A1 (en) * 2001-12-27 2003-07-24 Techno Network Shikoku Co., Ltd. Silica sphere containing fluorescent dye molecule
US20040101822A1 (en) * 2002-11-26 2004-05-27 Ulrich Wiesner Fluorescent silica-based nanoparticles

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444143B1 (en) *
US6180415B2 (en) *
US4279617A (en) * 1979-02-26 1981-07-21 Technicon Instruments Corporation Iummunoassay involving agglutination
US4812409A (en) * 1986-01-31 1989-03-14 Eastman Kodak Company Hydrolyzable fluorescent substrates and analytical determinations using same
US4810636A (en) * 1986-12-09 1989-03-07 Miles Inc. Chromogenic acridinone enzyme substrates
US4774339A (en) * 1987-08-10 1988-09-27 Molecular Probes, Inc. Chemically reactive dipyrrometheneboron difluoride dyes
US5405752A (en) * 1988-10-03 1995-04-11 Nilsson; Kurt G. I. Enzyme conjugate prepared with insoluble nonoparticle
US5248782A (en) * 1990-12-18 1993-09-28 Molecular Probes, Inc. Long wavelength heteroaryl-substituted dipyrrometheneboron difluoride dyes
US5187288A (en) * 1991-05-22 1993-02-16 Molecular Probes, Inc. Ethenyl-substituted dipyrrometheneboron difluoride dyes and their synthesis
US5639603A (en) * 1991-09-18 1997-06-17 Affymax Technologies N.V. Synthesizing and screening molecular diversity
US5274113A (en) * 1991-11-01 1993-12-28 Molecular Probes, Inc. Long wavelength chemically reactive dipyrrometheneboron difluoride dyes and conjugates
US5260957A (en) * 1992-10-29 1993-11-09 The Charles Stark Draper Laboratory, Inc. Quantum dot Laser
US5433896A (en) * 1994-05-20 1995-07-18 Molecular Probes, Inc. Dibenzopyrrometheneboron difluoride dyes
US6576219B2 (en) * 1994-12-09 2003-06-10 The Regents Of The University Of California Method for enhancing outflow of aqueous humor in treatment of glaucoma
US5981180A (en) * 1995-10-11 1999-11-09 Luminex Corporation Multiplexed analysis of clinical specimens apparatus and methods
US5753517A (en) * 1996-03-29 1998-05-19 University Of British Columbia Quantitative immunochromatographic assays
US6132773A (en) * 1996-04-22 2000-10-17 Rhodia Chimie Method for preparing particles comprising a core and a silica shell
US5830912A (en) * 1996-11-15 1998-11-03 Molecular Probes, Inc. Derivatives of 6,8-difluoro-7-hydroxycoumarin
US6180415B1 (en) * 1997-02-20 2001-01-30 The Regents Of The University Of California Plasmon resonant particles, methods and apparatus
US6344272B1 (en) * 1997-03-12 2002-02-05 Wm. Marsh Rice University Metal nanoshells
US6322901B1 (en) * 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US6207392B1 (en) * 1997-11-25 2001-03-27 The Regents Of The University Of California Semiconductor nanocrystal probes for biological applications and process for making and using such probes
US5990479A (en) * 1997-11-25 1999-11-23 Regents Of The University Of California Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US6423551B1 (en) * 1997-11-25 2002-07-23 The Regents Of The University Of California Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US6268222B1 (en) * 1998-01-22 2001-07-31 Luminex Corporation Microparticles attached to nanoparticles labeled with flourescent dye
US6428811B1 (en) * 1998-03-11 2002-08-06 Wm. Marsh Rice University Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery
US6479146B1 (en) * 1998-03-19 2002-11-12 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften, E.V. Fabrication of multilayer-coated particles and hollow shells via electrostatic self-assembly of nanocomposite multilayers on decomposable colloidal templates
US6326144B1 (en) * 1998-09-18 2001-12-04 Massachusetts Institute Of Technology Biological applications of quantum dots
US6319426B1 (en) * 1998-09-18 2001-11-20 Massachusetts Institute Of Technology Water-soluble fluorescent semiconductor nanocrystals
US6426513B1 (en) * 1998-09-18 2002-07-30 Massachusetts Institute Of Technology Water-soluble thiol-capped nanocrystals
US6306610B1 (en) * 1998-09-18 2001-10-23 Massachusetts Institute Of Technology Biological applications of quantum dots
US6444143B2 (en) * 1998-09-18 2002-09-03 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
US6251303B1 (en) * 1998-09-18 2001-06-26 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
US6454789B1 (en) * 1999-01-15 2002-09-24 Light Science Corporation Patient portable device for photodynamic therapy
US6274323B1 (en) * 1999-05-07 2001-08-14 Quantum Dot Corporation Method of detecting an analyte in a sample using semiconductor nanocrystals as a detectable label
US6500622B2 (en) * 2000-03-22 2002-12-31 Quantum Dot Corporation Methods of using semiconductor nanocrystals in bead-based nucleic acid assays
US6548264B1 (en) * 2000-05-17 2003-04-15 University Of Florida Coated nanoparticles
US6649138B2 (en) * 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
US20030124564A1 (en) * 2001-06-29 2003-07-03 Mathias Trau Synthesis and use of organosilica particles
US20030017264A1 (en) * 2001-07-20 2003-01-23 Treadway Joseph A. Luminescent nanoparticles and methods for their preparation

Cited By (489)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070051674A1 (en) * 2000-02-04 2007-03-08 Bratten Jack R Lift station and method
US20050025820A1 (en) * 2003-04-25 2005-02-03 Mark Kester Method and system for systemic delivery of growth arresting, lipid-derived bioactive compounds
US9028863B2 (en) * 2003-04-25 2015-05-12 The Penn State Research Foundation Method and system for systemic delivery of growth arresting, lipid-derived bioactive compounds
US9326953B2 (en) 2003-04-25 2016-05-03 The Penn State Research Foundation Method and system for systemic delivery of growth arresting, lipid-derived bioactive compounds
US8783541B2 (en) 2003-05-20 2014-07-22 Frederick E. Shelton, IV Robotically-controlled surgical end effector system
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
FR2873021A1 (en) * 2004-07-16 2006-01-20 Oreal Cosmetic composition, used as a make-up and/or skin care (particularly face, lips and/or keratinous fibers) product, comprises a photo luminescent mineral nanoparticles in a medium
WO2006011014A1 (en) * 2004-07-16 2006-02-02 L'oreal Cosmetic composition containing photoluminescent particles
US9585663B2 (en) 2004-07-28 2017-03-07 Ethicon Endo-Surgery, Llc Surgical stapling instrument configured to apply a compressive pressure to tissue
US9737303B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US9510830B2 (en) 2004-07-28 2016-12-06 Ethicon Endo-Surgery, Llc Staple cartridge
US9282966B2 (en) 2004-07-28 2016-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US9844379B2 (en) 2004-07-28 2017-12-19 Ethicon Llc Surgical stapling instrument having a clearanced opening
US9737302B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Surgical stapling instrument having a restraining member
US20090165852A1 (en) * 2004-11-30 2009-07-02 Spire Corporation Nanophotovoltaic devices
US20060115917A1 (en) * 2004-11-30 2006-06-01 Linden Kurt J Precision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices
US20060113557A1 (en) * 2004-11-30 2006-06-01 Spire Corporation Nanophotovoltaic devices
US8242009B2 (en) 2004-11-30 2012-08-14 Spire Corporation Nanophotovoltaic devices
US7759257B2 (en) 2004-11-30 2010-07-20 Spire Corporation Precision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices
US7514725B2 (en) 2004-11-30 2009-04-07 Spire Corporation Nanophotovoltaic devices
US20110237015A1 (en) * 2004-11-30 2011-09-29 Spire Corporation Nanophotovoltaic devices
US7306963B2 (en) 2004-11-30 2007-12-11 Spire Corporation Precision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices
US7772612B2 (en) 2004-11-30 2010-08-10 Spire Corporation Nanophotovoltaic devices
US20100297803A1 (en) * 2004-11-30 2010-11-25 Spire Corporation Nanophotovoltaic devices
US7955965B2 (en) 2004-11-30 2011-06-07 Spire Corporation Nanophotovoltaic devices
US20060293396A1 (en) * 2005-01-14 2006-12-28 Eastman Kodak Company Amine polymer-modified nanoparticulate carriers
US20080241266A1 (en) * 2005-01-14 2008-10-02 Bringley Joseph F Amine polymer-modified nanoparticulate carriers
US7666394B2 (en) 2005-03-18 2010-02-23 University Of Washington Nanoparticles having reactive ester groups covalently coupled thereto and related methods
US7462446B2 (en) * 2005-03-18 2008-12-09 University Of Washington Magnetic nanoparticle compositions and methods
US20060216239A1 (en) * 2005-03-18 2006-09-28 Washington, University Of Magnetic nanoparticle compositions and methods
US20090060846A1 (en) * 2005-03-18 2009-03-05 Washington, University Of Nanoparticles having reactive ester groups covalently coupled thereto and related methods
US20060227840A1 (en) * 2005-03-31 2006-10-12 Eastman Kodak Company Visual display with electro-optical addressing architecture
US20060222292A1 (en) * 2005-03-31 2006-10-05 Eastman Kodak Company Placement of lumiphores within a light emitting resonator in a visual display with electro-optical addressing architecture
US20060222286A1 (en) * 2005-03-31 2006-10-05 Eastman Kodak Company Polarized light emitting source with an electro-optical addressing architecture
US7352926B2 (en) 2005-03-31 2008-04-01 Eastman Kodak Company Visual display with electro-optical addressing architecture
US7272275B2 (en) 2005-03-31 2007-09-18 Eastman Kodak Company Polarized light emitting source with an electro-optical addressing architecture
US7120332B1 (en) 2005-03-31 2006-10-10 Eastman Kodak Company Placement of lumiphores within a light emitting resonator in a visual display with electro-optical addressing architecture
US20080279780A1 (en) * 2005-04-22 2008-11-13 Washington, University Of Fluorescent chlorotoxin conjugate and method for intra-operative visualization of cancer
US20070154965A1 (en) * 2005-04-22 2007-07-05 Miqin Zhang Chlorotoxin-labeled nanoparticle compositions and methods for targeting primary brain tumors
US8778310B2 (en) 2005-04-22 2014-07-15 University Of Washington Fluorescent chlorotoxin conjugate and method for intra-operative visualization of cancer
US20060245971A1 (en) * 2005-05-02 2006-11-02 Burns Andrew A Photoluminescent silica-based sensors and methods of use
CN101198672B (en) 2005-05-02 2012-09-05 科内尔研究基金会 Photoluminescent silica-based sensors and methods of use
US8084001B2 (en) 2005-05-02 2011-12-27 Cornell Research Foundation, Inc. Photoluminescent silica-based sensors and methods of use
US20090099282A1 (en) * 2005-05-27 2009-04-16 Martin Muller Functionalized nanoparticles
US20060291769A1 (en) * 2005-05-27 2006-12-28 Eastman Kodak Company Light emitting source incorporating vertical cavity lasers and other MEMS devices within an electro-optical addressing architecture
US20110135929A1 (en) * 2005-07-11 2011-06-09 Rikshospitalet Hf Multicolored particles
US7897407B2 (en) 2005-07-11 2011-03-01 Rikshospitalet Hf Multicolored particles
US20090137060A1 (en) * 2005-07-11 2009-05-28 Rikshospitalet Hf Multicolored particles
US7673781B2 (en) 2005-08-31 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling device with staple driver that supports multiple wire diameter staples
US9848873B2 (en) 2005-08-31 2017-12-26 Ethicon Llc Fastener cartridge assembly comprising a driver and staple cavity arrangement
US9844373B2 (en) 2005-08-31 2017-12-19 Ethicon Llc Fastener cartridge assembly comprising a driver row arrangement
US8636187B2 (en) 2005-08-31 2014-01-28 Ethicon Endo-Surgery, Inc. Surgical stapling systems that produce formed staples having different lengths
US9561032B2 (en) 2005-08-31 2017-02-07 Ethicon Endo-Surgery, Llc Staple cartridge comprising a staple driver arrangement
US8567656B2 (en) 2005-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070262116A1 (en) * 2005-08-31 2007-11-15 Hueil Joseph C Surgical stapling device with multiple stacked actuator wedge cams for driving staple drivers
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9839427B2 (en) 2005-08-31 2017-12-12 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US8317070B2 (en) 2005-08-31 2012-11-27 Ethicon Endo-Surgery, Inc. Surgical stapling devices that produce formed staples having different lengths
US20110174863A1 (en) * 2005-08-31 2011-07-21 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8464923B2 (en) 2005-08-31 2013-06-18 Ethicon Endo-Surgery, Inc. Surgical stapling devices for forming staples with different formed heights
US9592052B2 (en) 2005-08-31 2017-03-14 Ethicon Endo-Surgery, Llc Stapling assembly for forming different formed staple heights
WO2007029980A1 (en) * 2005-09-08 2007-03-15 Biterials Co., Ltd. Magnetic nanoparticle having fluorescent and preparation method thereof and use thereof
KR100821192B1 (en) * 2005-09-08 2007-03-13 주식회사바이테리얼즈 Magnetic nanoparticle having fluorescent and preparation method thereof
US20080286371A1 (en) * 2005-09-12 2008-11-20 Cristalia Produtos Quimicos Farmaceuticos Ltda Immunogenical Complex Formed by Vaccinal Antigens Encapsulated by Nanostructured Mesoporous Silica
US8642258B2 (en) * 2005-09-12 2014-02-04 Cristalia Produtos Quimicos Farmaceuticos Ltda. Immunogenical complex formed by vaccinal antigens encapsulated by nanostructured mesoporous silica
US8974767B2 (en) 2005-11-16 2015-03-10 Signalomics Gmbh Fluorescent nanoparticles
US20090226371A1 (en) * 2005-11-16 2009-09-10 Signalomics Gmbh Fluorescent nanoparticles
US20100327482A1 (en) * 2005-12-20 2010-12-30 University Of Hawaii Polymer matrix composites with nano-scale reinforcements
US7875212B2 (en) * 2005-12-20 2011-01-25 University Of Hawaii Polymer matrix composites with nano-scale reinforcements
USRE45911E1 (en) 2005-12-20 2016-03-01 University Of Hawaii Polymer matrix composites with nano-scale reinforcements
US20080293584A1 (en) * 2005-12-27 2008-11-27 The Furukawa Electric Co., Ltd. Fluorescent silica nano-particle, fluorescent nano-material, and biochip and assay using the same
US9260656B2 (en) * 2005-12-27 2016-02-16 The Furukawa Electric Co., Ltd. Fluorescent silica nano-particle, fluorescent nano-material, and biochip and assay using the same
US8292155B2 (en) 2006-01-31 2012-10-23 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9326770B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US20110174860A1 (en) * 2006-01-31 2011-07-21 Ethicon Endo-Surgery, Inc. Surgical instrument with force-feedback capabilities
US8172124B2 (en) 2006-01-31 2012-05-08 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US9439649B2 (en) 2006-01-31 2016-09-13 Ethicon Endo-Surgery, Llc Surgical instrument having force feedback capabilities
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US9451958B2 (en) 2006-01-31 2016-09-27 Ethicon Endo-Surgery, Llc Surgical instrument with firing actuator lockout
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8167185B2 (en) 2006-01-31 2012-05-01 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8844789B2 (en) 2006-01-31 2014-09-30 Ethicon Endo-Surgery, Inc. Automated end effector component reloading system for use with a robotic system
US8746529B2 (en) 2006-01-31 2014-06-10 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8157153B2 (en) 2006-01-31 2012-04-17 Ethicon Endo-Surgery, Inc. Surgical instrument with force-feedback capabilities
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US8752747B2 (en) 2006-01-31 2014-06-17 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8820605B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instruments
US9517068B2 (en) 2006-01-31 2016-12-13 Ethicon Endo-Surgery, Llc Surgical instrument with automatically-returned firing member
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US9743928B2 (en) 2006-01-31 2017-08-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9320520B2 (en) 2006-01-31 2016-04-26 Ethicon Endo-Surgery, Inc. Surgical instrument system
US9326769B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US9113874B2 (en) 2006-01-31 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument system
US9327056B2 (en) 2006-02-14 2016-05-03 Washington State University Bone replacement materials
US20070203584A1 (en) * 2006-02-14 2007-08-30 Amit Bandyopadhyay Bone replacement materials
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US9149274B2 (en) 2006-03-23 2015-10-06 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US9492167B2 (en) 2006-03-23 2016-11-15 Ethicon Endo-Surgery, Llc Articulatable surgical device with rotary driven cutting member
US9301759B2 (en) 2006-03-23 2016-04-05 Ethicon Endo-Surgery, Llc Robotically-controlled surgical instrument with selectively articulatable end effector
US8911471B2 (en) 2006-03-23 2014-12-16 Ethicon Endo-Surgery, Inc. Articulatable surgical device
US9402626B2 (en) 2006-03-23 2016-08-02 Ethicon Endo-Surgery, Llc Rotary actuatable surgical fastener and cutter
US8916198B2 (en) * 2006-04-25 2014-12-23 Washington State University Mesoporous calcium silicate compositions and methods for synthesis of mesoporous calcium silicate for controlled release of bioactive agents
US9028871B2 (en) 2006-04-25 2015-05-12 Washington State University Resorbable ceramics with controlled strength loss rates
US9795716B2 (en) 2006-04-25 2017-10-24 Washington State University Resorbable ceramics with controlled strength loss rates
US20090276056A1 (en) * 2006-04-25 2009-11-05 Washington State University Resorbable ceramics with controlled strength loss rates
US9539359B2 (en) 2006-04-25 2017-01-10 Washington State University Mesoporous calcium silicate compositions and methods for synthesis of mesoporous calcium silicate for controlled release of bioactive agents
US20090068272A1 (en) * 2006-04-25 2009-03-12 Washington State University Mesoporous calcium silicate compositions and methods for synthesis of mesoporous calcium silicate for controlled release of bioactive agents
US20080043230A1 (en) * 2006-05-31 2008-02-21 Gerhard Krampert Method for spatially high-resolution imaging
EP1862794A1 (en) * 2006-05-31 2007-12-05 Carl Zeiss MicroImaging GmbH Method for high resolution spatial images
US20090202816A1 (en) * 2006-06-06 2009-08-13 Florida State University Research Foundation, Inc. Stabilized silica colloid
US9320521B2 (en) 2006-06-27 2016-04-26 Ethicon Endo-Surgery, Llc Surgical instrument
US20100040693A1 (en) * 2006-08-09 2010-02-18 Korea Research Institute Of Bioscience And Biotech Silica capsules having nano-holes or nano-pores on their surfaces and method for preparing the same
US20080086051A1 (en) * 2006-09-20 2008-04-10 Ethicon Endo-Surgery, Inc. System, storage medium for a computer program, and method for displaying medical images
US20080073163A1 (en) * 2006-09-22 2008-03-27 Weir Michael P Micro-electromechanical device
US9079762B2 (en) 2006-09-22 2015-07-14 Ethicon Endo-Surgery, Inc. Micro-electromechanical device
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US8720766B2 (en) 2006-09-29 2014-05-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments and staples
US8808325B2 (en) 2006-09-29 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with staples having crown features for increasing formed staple footprint
US8365976B2 (en) 2006-09-29 2013-02-05 Ethicon Endo-Surgery, Inc. Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US9603595B2 (en) 2006-09-29 2017-03-28 Ethicon Endo-Surgery, Llc Surgical instrument comprising an adjustable system configured to accommodate different jaw heights
US8899465B2 (en) 2006-09-29 2014-12-02 Ethicon Endo-Surgery, Inc. Staple cartridge comprising drivers for deploying a plurality of staples
US9179911B2 (en) 2006-09-29 2015-11-10 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US8763875B2 (en) 2006-09-29 2014-07-01 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US9706991B2 (en) 2006-09-29 2017-07-18 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples including a lateral base
US8973804B2 (en) 2006-09-29 2015-03-10 Ethicon Endo-Surgery, Inc. Cartridge assembly having a buttressing member
US8499993B2 (en) 2006-09-29 2013-08-06 Ethicon Endo-Surgery, Inc. Surgical staple cartridge
US9408604B2 (en) 2006-09-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instrument comprising a firing system including a compliant portion
US7966799B2 (en) 2006-09-29 2011-06-28 Ethicon Endo-Surgery, Inc. Method of manufacturing staples
US8348131B2 (en) 2006-09-29 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US8360297B2 (en) 2006-09-29 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling instrument with self adjusting anvil
US7794475B2 (en) 2006-09-29 2010-09-14 Ethicon Endo-Surgery, Inc. Surgical staples having compressible or crushable members for securing tissue therein and stapling instruments for deploying the same
US7665647B2 (en) 2006-09-29 2010-02-23 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US8220690B2 (en) 2006-09-29 2012-07-17 Ethicon Endo-Surgery, Inc. Connected surgical staples and stapling instruments for deploying the same
US20100184087A1 (en) * 2006-11-01 2010-07-22 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
US8618265B2 (en) 2006-11-01 2013-12-31 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
US9719986B2 (en) 2006-11-01 2017-08-01 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof preparation and method for their preparation and use
US20100297725A1 (en) * 2006-11-01 2010-11-25 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
US8846320B2 (en) 2006-11-01 2014-09-30 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
WO2008071772A2 (en) * 2006-12-13 2008-06-19 L'oreal Use of coloured or fluorescent hybrid particles for treating keratin fibres
WO2008071772A3 (en) * 2006-12-13 2008-10-02 Oreal Use of coloured or fluorescent hybrid particles for treating keratin fibres
FR2909869A1 (en) * 2006-12-13 2008-06-20 Oreal Use of hybrid particles for dyeing keratinous fibers, obtained from an organosilane compound carrying a colored species
US7713265B2 (en) 2006-12-22 2010-05-11 Ethicon Endo-Surgery, Inc. Apparatus and method for medically treating a tattoo
US8801606B2 (en) 2007-01-09 2014-08-12 Ethicon Endo-Surgery, Inc. Method of in vivo monitoring using an imaging system including scanned beam imaging unit
US8273015B2 (en) 2007-01-09 2012-09-25 Ethicon Endo-Surgery, Inc. Methods for imaging the anatomy with an anatomically secured scanner assembly
US20080167521A1 (en) * 2007-01-09 2008-07-10 Sheetz Jane A Method of in vivo monitoring using an imaging system including scanned beam imaging unit
US8517243B2 (en) 2007-01-10 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US9757123B2 (en) 2007-01-10 2017-09-12 Ethicon Llc Powered surgical instrument having a transmission system
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8479969B2 (en) 2007-01-10 2013-07-09 Ethicon Endo-Surgery, Inc. Drive interface for operably coupling a manipulatable surgical tool to a robot
US8746530B2 (en) 2007-01-10 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US9675355B2 (en) 2007-01-11 2017-06-13 Ethicon Llc Surgical stapling device with a curved end effector
US9603598B2 (en) 2007-01-11 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling device with a curved end effector
US9655624B2 (en) 2007-01-11 2017-05-23 Ethicon Llc Surgical stapling device with a curved end effector
US9724091B2 (en) 2007-01-11 2017-08-08 Ethicon Llc Surgical stapling device
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US9730692B2 (en) 2007-01-11 2017-08-15 Ethicon Llc Surgical stapling device with a curved staple cartridge
US9775613B2 (en) 2007-01-11 2017-10-03 Ethicon Llc Surgical stapling device with a curved end effector
US9700321B2 (en) 2007-01-11 2017-07-11 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US9750501B2 (en) 2007-01-11 2017-09-05 Ethicon Endo-Surgery, Llc Surgical stapling devices having laterally movable anvils
US9757130B2 (en) 2007-02-28 2017-09-12 Ethicon Llc Stapling assembly for forming different formed staple heights
US20100119500A1 (en) * 2007-02-28 2010-05-13 Mika Jokinen Method for preparing silica compositions, silica compositions and uses thereof
US20080221434A1 (en) * 2007-03-09 2008-09-11 Voegele James W Displaying an internal image of a body lumen of a patient
US20080226034A1 (en) * 2007-03-12 2008-09-18 Weir Michael P Power modulation of a scanning beam for imaging, therapy, and/or diagnosis
US8216214B2 (en) 2007-03-12 2012-07-10 Ethicon Endo-Surgery, Inc. Power modulation of a scanning beam for imaging, therapy, and/or diagnosis
US20080234544A1 (en) * 2007-03-20 2008-09-25 Ethicon Endo-Sugery, Inc. Displaying images interior and exterior to a body lumen of a patient
US20080234566A1 (en) * 2007-03-21 2008-09-25 Ethicon Endo-Surgery, Inc. Recognizing a real world fiducial in a patient image data
US8457718B2 (en) 2007-03-21 2013-06-04 Ethicon Endo-Surgery, Inc. Recognizing a real world fiducial in a patient image data
US8081810B2 (en) 2007-03-22 2011-12-20 Ethicon Endo-Surgery, Inc. Recognizing a real world fiducial in image data of a patient
US20080232656A1 (en) * 2007-03-22 2008-09-25 Ethicon Endo-Surgery, Inc. Recognizing a real world fiducial in image data of a patient
US20080242967A1 (en) * 2007-03-27 2008-10-02 Ethicon Endo-Surgery, Inc. Medical imaging and therapy utilizing a scanned beam system operating at multiple wavelengths
US20080255537A1 (en) * 2007-04-13 2008-10-16 Ethicon Endo-Surgery, Inc. Biocompatible nanoparticle compositions and methods
US20080255460A1 (en) * 2007-04-13 2008-10-16 Ethicon Endo-Surgery, Inc. Nanoparticle tissue based identification and illumination
US20080255459A1 (en) * 2007-04-13 2008-10-16 Ethicon Endo-Surgery, Inc. Sentinel node identification using fluorescent nanoparticles
US20080255425A1 (en) * 2007-04-13 2008-10-16 Ethicon Endo-Surgery, Inc. Nanoparticle treated medical devices
US20080252778A1 (en) * 2007-04-13 2008-10-16 Ethicon Endo-Surgery, Inc. Combined SBI and conventional image processor
US20080255414A1 (en) * 2007-04-13 2008-10-16 Ethicon Endo-Surgery, Inc. Fluorescent nanoparticle scope
US8239007B2 (en) 2007-04-13 2012-08-07 Ethicon Endo-Surgert, Inc. Biocompatible nanoparticle compositions and methods
US20080255458A1 (en) * 2007-04-13 2008-10-16 Ethicon Endo-Surgery, Inc. System and method using fluorescence to examine within a patient's anatomy
US8062215B2 (en) 2007-04-13 2011-11-22 Ethicon Endo-Surgery, Inc. Fluorescent nanoparticle scope
US20080255403A1 (en) * 2007-04-13 2008-10-16 Ethicon Endo-Surgery, Inc. Magnetic nanoparticle therapies
US8626271B2 (en) * 2007-04-13 2014-01-07 Ethicon Endo-Surgery, Inc. System and method using fluorescence to examine within a patient's anatomy
WO2008128051A2 (en) * 2007-04-13 2008-10-23 Ethicon Endo-Surgery, Inc Fluorescent nanoparticle compositions, methods and devices
US7995045B2 (en) 2007-04-13 2011-08-09 Ethicon Endo-Surgery, Inc. Combined SBI and conventional image processor
US8239008B2 (en) 2007-04-13 2012-08-07 Ethicon Endo-Surgery, Inc. Sentinel node identification using fluorescent nanoparticles
WO2008128051A3 (en) * 2007-04-13 2010-10-28 Ethicon Endo-Surgery, Inc Fluorescent nanoparticle compositions, methods and devices
WO2008127880A1 (en) * 2007-04-13 2008-10-23 Ethicon Endo-Surgery, Inc A system and method using fluorescence to examine within a patient's anatomy
US20090289225A1 (en) * 2007-04-19 2009-11-26 Naiyong Jing Reducing fluorescent self-quenching with nanoparticles
US20080275305A1 (en) * 2007-05-01 2008-11-06 Ethicon Endo-Surgery, Inc. Medical scanned beam imager and components associated therewith
US20080274463A1 (en) * 2007-05-04 2008-11-06 Ventana Medical Systems, Inc. Method for quantifying biomolecules conjugated to a nanoparticle
US7682789B2 (en) * 2007-05-04 2010-03-23 Ventana Medical Systems, Inc. Method for quantifying biomolecules conjugated to a nanoparticle
US8445191B2 (en) 2007-05-23 2013-05-21 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US9103822B2 (en) 2007-05-23 2015-08-11 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US9017954B2 (en) 2007-05-23 2015-04-28 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US8486620B2 (en) 2007-05-23 2013-07-16 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US9575067B2 (en) 2007-05-23 2017-02-21 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
US9186143B2 (en) 2007-06-04 2015-11-17 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8424740B2 (en) 2007-06-04 2013-04-23 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US9795381B2 (en) 2007-06-04 2017-10-24 Ethicon Endo-Surgery, Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US8196796B2 (en) 2007-06-04 2012-06-12 Ethicon Endo-Surgery, Inc. Shaft based rotary drive system for surgical instruments
US9585658B2 (en) 2007-06-04 2017-03-07 Ethicon Endo-Surgery, Llc Stapling systems
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8616431B2 (en) 2007-06-04 2013-12-31 Ethicon Endo-Surgery, Inc. Shiftable drive interface for robotically-controlled surgical tool
US9750498B2 (en) 2007-06-04 2017-09-05 Ethicon Endo Surgery, Llc Drive systems for surgical instruments
US20080312490A1 (en) * 2007-06-18 2008-12-18 Ethicon Endo-Surgery, Inc. Methods and devices for repairing damaged or diseased tissue using a scanning beam assembly
US8160678B2 (en) 2007-06-18 2012-04-17 Ethicon Endo-Surgery, Inc. Methods and devices for repairing damaged or diseased tissue using a scanning beam assembly
US9662110B2 (en) 2007-06-22 2017-05-30 Ethicon Endo-Surgery, Llc Surgical stapling instrument with an articulatable end effector
US9138225B2 (en) 2007-06-22 2015-09-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US9872682B2 (en) 2007-06-29 2018-01-23 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US9289206B2 (en) 2007-06-29 2016-03-22 Ethicon Endo-Surgery, Llc Lateral securement members for surgical staple cartridges
US20090001130A1 (en) * 2007-06-29 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US7558455B2 (en) 2007-06-29 2009-07-07 Ethicon Endo-Surgery, Inc Receiver aperture broadening for scanned beam imaging
US8668130B2 (en) 2007-06-29 2014-03-11 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US7669747B2 (en) 2007-06-29 2010-03-02 Ethicon Endo-Surgery, Inc. Washer for use with a surgical stapling instrument
US8186560B2 (en) 2007-06-29 2012-05-29 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US20090001125A1 (en) * 2007-06-29 2009-01-01 Hess Christopher J Surgical stapling instrument having a releasable buttress material
US20090001128A1 (en) * 2007-06-29 2009-01-01 Weisenburgh Ii William B Washer for use with a surgical stapling instrument
US8991676B2 (en) 2007-06-29 2015-03-31 Ethicon Endo-Surgery, Inc. Surgical staple having a slidable crown
US8925788B2 (en) 2007-06-29 2015-01-06 Ethicon Endo-Surgery, Inc. End effectors for surgical stapling instruments
US7673782B2 (en) 2007-06-29 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a releasable buttress material
US7735703B2 (en) 2007-06-29 2010-06-15 Ethicon Endo-Surgery, Inc. Re-loadable surgical stapling instrument
US8672208B2 (en) 2007-06-29 2014-03-18 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a releasable buttress material
US8727197B2 (en) 2007-06-29 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8590762B2 (en) 2007-06-29 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US7982776B2 (en) 2007-07-13 2011-07-19 Ethicon Endo-Surgery, Inc. SBI motion artifact removal apparatus and method
WO2009017695A1 (en) * 2007-07-26 2009-02-05 The Regents Of The University Of California A single cell surgery tool and a cell transfection device utilizing the photothermal properties of thin films and/or metal nanoparticles
US9125552B2 (en) 2007-07-31 2015-09-08 Ethicon Endo-Surgery, Inc. Optical scanning module and means for attaching the module to medical instruments for introducing the module into the anatomy
US20090035802A1 (en) * 2007-07-31 2009-02-05 Digital Bio Technology, Co., Ltd. Method for detection and enumeration of cell surface markers
US20090043109A1 (en) * 2007-08-07 2009-02-12 Spangler Brenda D Asymmetric one- and two-photon fluorophores for simultaneous detection of multiple analytes using a common excitation source
US20090054761A1 (en) * 2007-08-22 2009-02-26 Ethicon Endo-Surgery, Inc. Medical system, method, and storage medium concerning a natural orifice transluminal medical procedure
US8155728B2 (en) 2007-08-22 2012-04-10 Ethicon Endo-Surgery, Inc. Medical system, method, and storage medium concerning a natural orifice transluminal medical procedure
US20090062658A1 (en) * 2007-08-27 2009-03-05 Dunki-Jacobs Robert J Position tracking and control for a scanning assembly
US7983739B2 (en) 2007-08-27 2011-07-19 Ethicon Endo-Surgery, Inc. Position tracking and control for a scanning assembly
US20090062659A1 (en) * 2007-08-28 2009-03-05 Weir Michael P Medical device including scanned beam unit with operational control features
US7925333B2 (en) 2007-08-28 2011-04-12 Ethicon Endo-Surgery, Inc. Medical device including scanned beam unit with operational control features
US20090060381A1 (en) * 2007-08-31 2009-03-05 Ethicon Endo-Surgery, Inc. Dynamic range and amplitude control for imaging
US20110028662A1 (en) * 2007-08-31 2011-02-03 Hybrid Silica Technologies, Inc. Peg-coated core-shell silica nanoparticles and methods of manufacture and use
US8519609B2 (en) 2007-11-08 2013-08-27 Merck Patent Gmbh Process for the preparation of coated phosphors
WO2009059677A1 (en) * 2007-11-08 2009-05-14 Merck Patent Gmbh Method for the production of coated luminescent substances
US20100264809A1 (en) * 2007-11-08 2010-10-21 Merck Patent Gmbh Process for the preparation of coated phosphors
WO2009073193A2 (en) * 2007-12-03 2009-06-11 The Johns Hopkins University Methods of synthesis and use of chemospheres
WO2009073193A3 (en) * 2007-12-03 2009-12-23 The Johns Hopkins University Methods of synthesis and use of chemospheres
US20110104052A1 (en) * 2007-12-03 2011-05-05 The Johns Hopkins University Methods of synthesis and use of chemospheres
US9265729B2 (en) * 2007-12-06 2016-02-23 The University Of Tokushima Nanofunctional silica particles and manufacturing method thereof
US20100310872A1 (en) * 2007-12-06 2010-12-09 The University Of Tokushima Nanofunctional silica particles and manufacturing method thereof
US20100311871A1 (en) * 2008-02-12 2010-12-09 Nissan Chemical Industries, Ltd. Colloidal silica particles, process for producing the same, and organic solvent-dispersed silica sol, polymerizable compound-dispersed silica sol, and dicarboxylic anhydride-dispersed silica sol each obtained from the same
US20160145110A1 (en) * 2008-02-12 2016-05-26 Nissan Chemical Industries, Ltd. Colloidal silica particles, process for producing the same, and organic solvent-dispersed silica sol, polymerizable compound-dispersed silica sol, and dicarboxylic anhydride-dispersed silica sol each obtained from the same
US9284197B2 (en) * 2008-02-12 2016-03-15 Nissan Chemical Industries, Ltd. Colloidal silica particles, process for producing the same, and organic solvent-dispersed silica sol, polymerizable compound-dispersed silica sol, and dicarboxylic anhydride-dispersed silica sol each obtained from the same
US9527749B2 (en) * 2008-02-12 2016-12-27 Nissan Chemical Industries, Ltd. Colloidal silica particles, process for producing the same, and organic solvent-dispersed silica sol, polymerizable compound-dispersed silica sol, and dicarboxylic anhydride-dispersed silica sol each obtained from the same
US8657178B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US9095339B2 (en) 2008-02-14 2015-08-04 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US8196795B2 (en) 2008-02-14 2012-06-12 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8540130B2 (en) 2008-02-14 2013-09-24 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US9084601B2 (en) 2008-02-14 2015-07-21 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US9498219B2 (en) 2008-02-14 2016-11-22 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US8113410B2 (en) 2008-02-14 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features
US8991677B2 (en) 2008-02-14 2015-03-31 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US9072515B2 (en) 2008-02-14 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US8573461B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with cam-driven staple deployment arrangements
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US9872684B2 (en) 2008-02-14 2018-01-23 Ethicon Llc Surgical stapling apparatus including firing force regulation
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8998058B2 (en) 2008-02-14 2015-04-07 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US9867618B2 (en) 2008-02-14 2018-01-16 Ethicon Llc Surgical stapling apparatus including firing force regulation
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9522029B2 (en) 2008-02-14 2016-12-20 Ethicon Endo-Surgery, Llc Motorized surgical cutting and fastening instrument having handle based power source
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US9211121B2 (en) 2008-02-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US20100317537A1 (en) * 2008-02-15 2010-12-16 University Of Florida Research Foundation, Inc. Biophysical parameters for systems biology
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US20110288234A1 (en) * 2008-02-19 2011-11-24 The Research Foundation on State University of NY Silica nanoparticles postloaded with photosensitizers for drug delivery in photodynamic therapy
EP2098187A1 (en) 2008-03-03 2009-09-09 Ethicon Endo-Surgery, Inc. Intraluminal tissue markers
US20090217932A1 (en) * 2008-03-03 2009-09-03 Ethicon Endo-Surgery, Inc. Intraluminal tissue markers
US8050520B2 (en) 2008-03-27 2011-11-01 Ethicon Endo-Surgery, Inc. Method for creating a pixel image from sampled data of a scanned beam imager
US8332014B2 (en) 2008-04-25 2012-12-11 Ethicon Endo-Surgery, Inc. Scanned beam device and method using same which measures the reflectance of patient tissue
US9603952B2 (en) 2008-05-15 2017-03-28 Morphotek, Inc. Treatment of metastatic tumors
US9023595B2 (en) 2008-05-15 2015-05-05 Morphotek, Inc. Treatment of metastatic tumors
US8703490B2 (en) 2008-06-05 2014-04-22 Ventana Medical Systems, Inc. Compositions comprising nanomaterials and method for using such compositions for histochemical processes
US20110111233A1 (en) * 2008-07-07 2011-05-12 Kazuya Tsukada Inorganic nanoparticle labeling agent
WO2010021512A3 (en) * 2008-08-22 2010-04-15 Snu R&Db Foundation Silica-based fluorescent nanoparticles
WO2010021512A2 (en) * 2008-08-22 2010-02-25 Snu R&Db Foundation Silica-based fluorescent nanoparticles
CN101457139B (en) 2008-08-22 2012-06-13 吉林大学 High quantum production rate luminescent silicon ball with controllable structure and preparation method thereof
US9655614B2 (en) 2008-09-23 2017-05-23 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument with an end effector
US8602287B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery, Inc. Motor driven surgical cutting instrument
US9028519B2 (en) 2008-09-23 2015-05-12 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8602288B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery. Inc. Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9549732B2 (en) 2008-09-23 2017-01-24 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting instrument
US20100089970A1 (en) * 2008-10-10 2010-04-15 Ethicon Endo-Surgery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US9370364B2 (en) 2008-10-10 2016-06-21 Ethicon Endo-Surgery, Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US20110300222A1 (en) * 2009-02-20 2011-12-08 The Regents Of The University Of California Luminescent porous silicon nanoparticles, methods of making and using same
US20100260686A1 (en) * 2009-04-09 2010-10-14 Washington, University Of Nanoparticles for brain tumor imaging
US8961825B2 (en) 2009-04-15 2015-02-24 Cornell University Fluorescent silica nanoparticles through silica densification
US20100330366A1 (en) * 2009-06-30 2010-12-30 Keiser Bruce A Silica-based particle composition
EP2448864A4 (en) * 2009-06-30 2015-10-14 Nalco Co Silica-based particle composition
US9625456B2 (en) 2009-07-02 2017-04-18 Sloan-Kettering Institute For Cancer Research Fluorescent silica-based nanoparticles
US20110110858A1 (en) * 2009-11-11 2011-05-12 Omer Aras Gold nanoparticle imaging agents and uses thereof
US9260957B2 (en) * 2009-12-24 2016-02-16 Total Sa Use of nanoparticles for labelling oil field injection waters
US20130084643A1 (en) * 2009-12-24 2013-04-04 Total Sa Use of nanoparticles for labelling oil field injection waters
US20120252140A1 (en) * 2009-12-25 2012-10-04 Konica Minolta Medical & Graphic, Inc. Fluorescent substance-containing silica nanoparticles and biosubstance labeling agent
US8513031B2 (en) * 2009-12-25 2013-08-20 Konica Minolta Medical & Graphic, Inc. Fluorescent substance-containing silica nanoparticles with coating having high bulk refractive index
US9068084B2 (en) 2010-01-19 2015-06-30 Wuxi Zodolabs Biotech Co., Ltd. Silica nanoparticles doped with dye having negative charge and preparing method thereof
US9234015B2 (en) 2010-02-04 2016-01-12 Morphotek, Inc. Chlorotoxin polypeptides and conjugates and uses thereof
US9637526B2 (en) 2010-02-04 2017-05-02 Morphotek, Inc. Chlorotoxin polypeptides and conjugates and uses thereof
US9018347B2 (en) 2010-02-04 2015-04-28 Morphotek, Inc. Chlorotoxin polypeptides and conjugates and uses thereof
US20110203023P1 (en) * 2010-02-16 2011-08-18 Menachem Bronstein Gypsophila Plant Named 'Pearl Blossom''
US20110214488A1 (en) * 2010-03-04 2011-09-08 Rose Peter E Colloidal-crystal quantum dots as tracers in underground formations
US8789741B2 (en) 2010-09-24 2014-07-29 Ethicon Endo-Surgery, Inc. Surgical instrument with trigger assembly for generating multiple actuation motions
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9345477B2 (en) 2010-09-30 2016-05-24 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9833242B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Tissue thickness compensators
US9833238B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Retainer assembly including a tissue thickness compensator
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9844372B2 (en) 2010-09-30 2017-12-19 Ethicon Llc Retainer assembly including a tissue thickness compensator
US9592053B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc Staple cartridge comprising multiple regions
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9833236B2 (en) 2010-09-30 2017-12-05 Ethicon Llc Tissue thickness compensator for surgical staplers
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9848875B2 (en) 2010-09-30 2017-12-26 Ethicon Llc Anvil layer attached to a proximal end of an end effector
US9592050B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc End effector comprising a distal tissue abutment member
US8978954B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjustable distal portion
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9795383B2 (en) 2010-09-30 2017-10-24 Ethicon Llc Tissue thickness compensator comprising resilient members
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9320518B2 (en) 2010-09-30 2016-04-26 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an oxygen generating agent
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9861361B2 (en) 2010-09-30 2018-01-09 Ethicon Llc Releasable tissue thickness compensator and fastener cartridge having the same
US9808247B2 (en) 2010-09-30 2017-11-07 Ethicon Llc Stapling system comprising implantable layers
US9307965B2 (en) 2010-09-30 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-microbial agent
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9480476B2 (en) 2010-09-30 2016-11-01 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising resilient members
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9566061B2 (en) 2010-09-30 2017-02-14 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasably attached tissue thickness compensator
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9801634B2 (en) 2010-09-30 2017-10-31 Ethicon Llc Tissue thickness compensator for a surgical stapler
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9572574B2 (en) 2010-09-30 2017-02-21 Ethicon Endo-Surgery, Llc Tissue thickness compensators comprising therapeutic agents
US9579283B2 (en) 2011-04-28 2017-02-28 Stc.Unm Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery and methods of using same
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9775614B2 (en) 2011-05-27 2017-10-03 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotatable staple deployment arrangements
US9271799B2 (en) 2011-05-27 2016-03-01 Ethicon Endo-Surgery, Llc Robotic surgical system with removable motor housing
US9532949B2 (en) 2011-07-19 2017-01-03 Stc.Unm Intraperitoneally-administered nanocarriers that release their therapeutic load based on the inflammatory environment of cancers
US20140220598A1 (en) * 2011-09-09 2014-08-07 Tohoku University Biological substance detection method
JP2016027340A (en) * 2011-09-09 2016-02-18 コニカミノルタ株式会社 Fluorescent labelling compound for detecting biological substance
US9687237B2 (en) 2011-09-23 2017-06-27 Ethicon Endo-Surgery, Llc Staple cartridge including collapsible deck arrangement
US9216019B2 (en) 2011-09-23 2015-12-22 Ethicon Endo-Surgery, Inc. Surgical stapler with stationary staple drivers
US9592054B2 (en) 2011-09-23 2017-03-14 Ethicon Endo-Surgery, Llc Surgical stapler with stationary staple drivers
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
CN103013016A (en) * 2011-09-28 2013-04-03 国家纳米科学中心 Medical carrier and medical composition and preparation method thereof
US9042765B2 (en) 2012-01-16 2015-05-26 Samsung Electronics Co., Ltd. Image forming apparatus with improved heat transmission
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9730697B2 (en) 2012-02-13 2017-08-15 Ethicon Endo-Surgery, Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
EP2833144A4 (en) * 2012-03-28 2015-08-26 Konica Minolta Inc Method for detection biological substance
US9632081B2 (en) 2012-03-28 2017-04-25 Konica Minolta, Inc. Detection method for biological substance
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9314247B2 (en) 2012-03-28 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating a hydrophilic agent
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
JPWO2013146694A1 (en) * 2012-03-28 2015-12-14 コニカミノルタ株式会社 Method of detecting a biological substance
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
WO2014052875A1 (en) 2012-09-27 2014-04-03 Cynvenio Biosystems, Inc. Stimulus-sensitive microparticles and methods of use
CN104981236A (en) * 2012-09-27 2015-10-14 辛温尼奥生物系统公司 Stimulus-sensitive microparticles and methods of use
EP2903603A4 (en) * 2012-09-27 2016-08-10 Cynvenio Biosystems Inc Stimulus-sensitive microparticles and methods of use
CN102921014A (en) * 2012-11-15 2013-02-13 中国科学院化学研究所 Biocompatible nano composite drug carrier with synergistic anti-tumor effect, drug with synergistic anti-tumor effect and preparation methods of biocompatible nano composite drug carrier and drug
JP2016501286A (en) * 2012-11-16 2016-01-18 エスエヌユー アールアンドディービー ファウンデーションSnu R&Db Foundation Coded polymer fine particles
US8873041B1 (en) 2013-01-29 2014-10-28 Bayspec, Inc. Raman spectroscopy using multiple excitation wavelengths
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9326767B2 (en) 2013-03-01 2016-05-03 Ethicon Endo-Surgery, Llc Joystick switch assemblies for surgical instruments
US9782169B2 (en) 2013-03-01 2017-10-10 Ethicon Llc Rotary powered articulation joints for surgical instruments
US9398911B2 (en) 2013-03-01 2016-07-26 Ethicon Endo-Surgery, Llc Rotary powered surgical instruments with multiple degrees of freedom
US9468438B2 (en) 2013-03-01 2016-10-18 Eticon Endo-Surgery, LLC Sensor straightened end effector during removal through trocar
US9700309B2 (en) 2013-03-01 2017-07-11 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US9554794B2 (en) 2013-03-01 2017-01-31 Ethicon Endo-Surgery, Llc Multiple processor motor control for modular surgical instruments
US9358003B2 (en) 2013-03-01 2016-06-07 Ethicon Endo-Surgery, Llc Electromechanical surgical device with signal relay arrangement
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9784730B2 (en) 2013-03-21 2017-10-10 University Of Washington Through Its Center For Commercialization Nanoparticle for targeting brain tumors and delivery of O6-benzylguanine
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9814460B2 (en) 2013-04-16 2017-11-14 Ethicon Llc Modular motor driven surgical instruments with status indication arrangements
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9826976B2 (en) 2013-04-16 2017-11-28 Ethicon Llc Motor driven surgical instruments with lockable dual drive shafts
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
US9445813B2 (en) 2013-08-23 2016-09-20 Ethicon Endo-Surgery, Llc Closure indicator systems for surgical instruments
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
US9510828B2 (en) 2013-08-23 2016-12-06 Ethicon Endo-Surgery, Llc Conductor arrangements for electrically powered surgical instruments with rotatable end effectors
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
US20150177153A1 (en) * 2013-12-20 2015-06-25 Sicpa Holding Sa Thermoluminescent composite particle and marking comprising same
US20150202848A1 (en) * 2014-01-22 2015-07-23 Samsung Display Co., Ltd. Display device
US9839423B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
US9884456B2 (en) 2014-02-24 2018-02-06 Ethicon Llc Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments
US9775608B2 (en) 2014-02-24 2017-10-03 Ethicon Llc Fastening system comprising a firing member lockout
US9757124B2 (en) 2014-02-24 2017-09-12 Ethicon Llc Implantable layer assemblies
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US9730695B2 (en) 2014-03-26 2017-08-15 Ethicon Endo-Surgery, Llc Power management through segmented circuit
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9877721B2 (en) 2014-06-30 2018-01-30 Ethicon Llc Fastener cartridge comprising tissue control features
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US9788836B2 (en) 2014-09-05 2017-10-17 Ethicon Llc Multiple motor control for powered medical device
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9883861B2 (en) 2015-06-22 2018-02-06 Ethicon Llc Retainer assembly including a tissue thickness compensator
US9877723B2 (en) 2016-05-05 2018-01-30 Ethicon Llc Surgical stapling assembly comprising a selector arrangement

Also Published As

Publication number Publication date Type
EP1604031A4 (en) 2008-08-20 application
CN1742094A (en) 2006-03-01 application
US20060183246A1 (en) 2006-08-17 application
JP2006514708A (en) 2006-05-11 application
JP2014133893A (en) 2014-07-24 application
CN100443295C (en) 2008-12-17 grant
US8409876B2 (en) 2013-04-02 grant
KR20050109455A (en) 2005-11-21 application
EP2364840A1 (en) 2011-09-14 application
US8298677B2 (en) 2012-10-30 grant
CN101387639A (en) 2009-03-18 application
JP2010070768A (en) 2010-04-02 application
WO2004074504A3 (en) 2004-12-02 application
EP1604031A2 (en) 2005-12-14 application
WO2004063387A2 (en) 2004-07-29 application
WO2004063387A3 (en) 2005-09-22 application
WO2004074504A2 (en) 2004-09-02 application
JP4965804B2 (en) 2012-07-04 grant
EP2369342A3 (en) 2011-10-19 application
JP2011052228A (en) 2011-03-17 application
JP2006517985A (en) 2006-08-03 application
EP1604031B1 (en) 2017-05-03 grant
KR20050103186A (en) 2005-10-27 application
EP2369342A2 (en) 2011-09-28 application
CN1767941A (en) 2006-05-03 application
EP1572445A4 (en) 2008-10-22 application
US20100035365A1 (en) 2010-02-11 application
EP1572445A2 (en) 2005-09-14 application

Similar Documents

Publication Publication Date Title
Faklaris et al. Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells
Chen et al. Fluorescent CdSe/ZnS nanocrystal− peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells
Yang et al. Functionalized mesoporous silica materials for controlled drug delivery
Sapsford et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology
Trewyn et al. Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems
Levy et al. Gold nanoparticles delivery in mammalian live cells: a critical review
Tan et al. Bionanotechnology based on silica nanoparticles
Corr et al. Multifunctional magnetic-fluorescent nanocomposites for biomedical applications
Chakraborty et al. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin
Parak et al. Labelling of cells with quantum dots
Susumu et al. Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles
Xie et al. Fe3O4/Au Core/Shell nanoparticles modified with Ni2+− Nitrilotriacetic acid specific to histidine-tagged proteins
Bae et al. Fluorescent dye-doped silica nanoparticles: new tools for bioapplications
Sauer et al. Role of endosomal escape for disulfide-based drug delivery from colloidal mesoporous silica evaluated by live-cell imaging
Roux et al. Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalization by the electroluminescent luminol
Ravindran et al. Biofunctionalized silver nanoparticles: advances and prospects
Lai et al. Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release
Slowing et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications
Oyelere et al. Peptide-conjugated gold nanorods for nuclear targeting
Kogan et al. Peptides and metallic nanoparticles for biomedical applications
Chaudhari et al. Understanding the evolution of luminescent gold quantum clusters in protein templates
Sedlmeier et al. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications
Lin et al. Well-ordered mesoporous silica nanoparticles as cell markers
Niemeyer Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science
US20050142296A1 (en) Substrates and compounds bonded thereto

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORNELL RESEARCH FOUNDATION, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WIESNER, ULRICH;OW, HOOISWENG;REEL/FRAME:013844/0627;SIGNING DATES FROM 20030129 TO 20030130