JP3826402B2 - Dispersion containing photocatalytic titanium dioxide composite fine particles - Google Patents

Dispersion containing photocatalytic titanium dioxide composite fine particles Download PDF

Info

Publication number
JP3826402B2
JP3826402B2 JP2005276706A JP2005276706A JP3826402B2 JP 3826402 B2 JP3826402 B2 JP 3826402B2 JP 2005276706 A JP2005276706 A JP 2005276706A JP 2005276706 A JP2005276706 A JP 2005276706A JP 3826402 B2 JP3826402 B2 JP 3826402B2
Authority
JP
Japan
Prior art keywords
titanium dioxide
fine particles
photocatalytic titanium
dispersion
composite fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005276706A
Other languages
Japanese (ja)
Other versions
JP2006150344A (en
Inventor
幸輝 金平
修司 曾根▲崎▼
有美 大神
俊明 坂西
順次 亀島
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP2005276706A priority Critical patent/JP3826402B2/en
Priority to PCT/JP2006/306179 priority patent/WO2007034586A1/en
Priority to US11/883,212 priority patent/US20080261805A1/en
Publication of JP2006150344A publication Critical patent/JP2006150344A/en
Application granted granted Critical
Publication of JP3826402B2 publication Critical patent/JP3826402B2/en
Priority to US12/943,165 priority patent/US20110060269A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

本発明は、癌細胞、内分泌撹乱物質などに対する分子認識能を有する抗体などの生体分子を固定化し、紫外線の照射などによってこれらの分解作用を示す光触媒性二酸化チタン複合微粒子を含む分散液とその製造方法に関する。   Disclosed is a dispersion containing photocatalytic titanium dioxide composite fine particles in which biomolecules such as antibodies capable of recognizing molecules against cancer cells, endocrine disrupting substances and the like are immobilized, and these biocatalytic titanium dioxide composite particles exhibit a degrading action by irradiation with ultraviolet rays. Regarding the method.

近年、内分泌撹乱物質の分子認識能を有するDNAなどの生体分子を支持体上に固定化した選択的吸着性を有する材料が環境浄化材料として提案されている(例えば、特許文献1参照)。一方、アナターゼ型二酸化チタンには光触媒作用があり、その強い酸化力により微生物、汚れ、悪臭物質等の有機物を分解することが知られている。現在では、二酸化チタンと活性炭やゼオライトなどの無機吸着剤を複合化することにより、二酸化チタンの分解効率を高めるような工夫がなされている(例えば特許文献2参照)。二酸化チタンの表面処理においても、パラジウムなどの還元反応促進触媒金属を二酸化チタン等の光触媒表面に析出させることで、光触媒の酸化、還元反応を促進することが考案されている(例えば、特許文献3参照)。   In recent years, a material having selective adsorptivity in which a biomolecule such as DNA having molecular recognition ability of an endocrine disrupting substance is immobilized on a support has been proposed as an environmental purification material (see, for example, Patent Document 1). On the other hand, anatase-type titanium dioxide has a photocatalytic action and is known to decompose organic substances such as microorganisms, dirt, and malodorous substances by its strong oxidizing power. At present, a device has been devised to increase the decomposition efficiency of titanium dioxide by combining titanium dioxide and an inorganic adsorbent such as activated carbon or zeolite (for example, see Patent Document 2). Also in the surface treatment of titanium dioxide, it has been devised to promote the oxidation and reduction reaction of the photocatalyst by precipitating a reduction reaction promoting catalyst metal such as palladium on the surface of the photocatalyst such as titanium dioxide (for example, Patent Document 3). reference).

しかしながら、DNA等による内分泌攪乱物質の選択的吸着材料については、吸着した内分泌攪乱物質等の確実な除去・分解手段が無く、かつ吸着飽和の問題から浄化能力にも限界がある。また、前記の二酸化チタンの光触媒としての能力を高めようとする考案についても、特定物質の吸着や分解を指向していない。したがって、例えば内分泌攪乱物質のみを選択的に吸着し分解することは不可能である。このように、生体分子により特定の物質を選択的に吸着してこれを光触媒の強い酸化力によって分解する、すなわち「選択的吸着能と光触媒能との組み合わせ」については知られていない。

特開2001−81098号公報 特開平1−189322号公報 特開昭60−14940号公報
However, the selective adsorption material for endocrine disrupting substances such as DNA does not have a reliable means for removing and decomposing the adsorbed endocrine disrupting substances, and the purification capacity is limited due to the problem of adsorption saturation. Further, the idea of increasing the ability of titanium dioxide as a photocatalyst is not directed to adsorption or decomposition of a specific substance. Therefore, for example, it is impossible to selectively adsorb and decompose only the endocrine disrupting substance. Thus, it is not known about a specific substance selectively adsorbed by a biomolecule and decomposed by the strong oxidizing power of the photocatalyst, that is, “a combination of selective adsorption ability and photocatalytic ability”.

JP 2001-81098 A JP-A-1-189322 Japanese Patent Laid-Open No. 60-14940

本発明は、選択的吸着能生体内での中性な生理的条件下においても安定して分散し、存在することが可能な、光触媒性二酸化チタン複合微粒子を提供することにある。   It is an object of the present invention to provide photocatalytic titanium dioxide composite fine particles that can stably disperse and exist even under neutral physiological conditions in vivo.

本発明者らは上記課題を解決するために鋭意検討を行い、二酸化チタン表面を親水性高分子で修飾した後に生体分子を固定化した光触媒性二酸化チタン複合微粒子が、選択的吸着能と光触媒能を両立できることを見い出し、本発明を完成した。   The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and photocatalytic titanium dioxide composite fine particles in which biomolecules are immobilized after modifying the surface of titanium dioxide with a hydrophilic polymer have selective adsorption ability and photocatalytic ability. The present invention has been completed.

すなわち、本発明の光触媒性二酸化チタン複合微粒子を含む分散液はアナターゼ型二酸化チタン表面に親水性高分子アミンを有し、該親水性高分子のアミンと二酸化チタンはが強く結合しているとともに、前記親水性高分子のアミンに生体分子を固定化することを可能とし、さらに、分散剤等の他物質の添加無しに、分散性が極めて良好で安定な分散液である。   That is, the dispersion containing the photocatalytic titanium dioxide composite fine particles of the present invention has a hydrophilic polymer amine on the anatase-type titanium dioxide surface, and the hydrophilic polymer amine and titanium dioxide are strongly bonded together. A biomolecule can be immobilized on the hydrophilic polymer amine, and the dispersion is extremely stable and stable without adding other substances such as a dispersant.

本発明によれば、、選択的吸着能生体内での中性な生理的条件下においても安定して分散し、存在することができる。   According to the present invention, the selective adsorption ability can be stably dispersed and exist even under neutral physiological conditions in vivo.

本発明の実施の形態を図面に基づいて具体的に説明する。図1は本発明の光触媒性二酸化チタン複合微粒子を含む分散液を示す模式図である。本発明の光触媒性二酸化チタン複合微粒子を含む分散液はアナターゼ型二酸化チタン(1)と、生体分子と結合する親水性高分子アミン(2)を非プロトン性極性溶媒に分散させて、90〜180℃で1〜12時間水熱反応を行い、親水性高分子と二酸化チタンとの間で共有結合を生成させた後、水溶液に分散し、親水性高分子のアミンに生体分子(3)を固定化させたものである。これにより、本発明の光触媒性二酸化チタン複合微粒子のみで分散剤等の他物質の添加無しに、水溶液中において安定して分散可能であることを特徴とするものである。生体分子の固定化には、光触媒性二酸化チタン複合微粒子表面の二酸化チタンと親水性高分子の結合に関与していないフリーのアミンを用いることができる。生体分子側は、アミノ基、カルボキシル基、チオール基、糖鎖に由来するアルデヒド基等を持つ為、適切な架橋剤を用いることにより両者を共有結合させることが可能である。   Embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic view showing a dispersion containing the photocatalytic titanium dioxide composite fine particles of the present invention. The dispersion containing the photocatalytic titanium dioxide composite fine particles of the present invention is obtained by dispersing anatase-type titanium dioxide (1) and a hydrophilic polymer amine (2) that binds to a biomolecule in an aprotic polar solvent, 90 to 180. Hydrothermal reaction for 1 to 12 hours at ℃ to generate a covalent bond between the hydrophilic polymer and titanium dioxide, then disperse in aqueous solution and fix biomolecule (3) to amine of hydrophilic polymer It has been made. Thus, the photocatalytic titanium dioxide composite fine particles of the present invention can be stably dispersed in an aqueous solution without adding other substances such as a dispersant. For immobilization of the biomolecule, free amine that is not involved in the binding of titanium dioxide on the surface of the photocatalytic titanium dioxide composite fine particle and the hydrophilic polymer can be used. Since the biomolecule side has an amino group, a carboxyl group, a thiol group, an aldehyde group derived from a sugar chain, etc., it is possible to covalently bond them together by using an appropriate crosslinking agent.

生体分子としては多種多様なものが考えられるが、最も利用されているものとしてタンパク質が挙げられる。本発明によれば、タンパク質として抗体、レセプターから低分子ペプチドまで好適に固定化が可能である。また、タンパク質の化学組成から光触媒性二酸化チタン複合微粒子への固定化にはアミノ基、カルボキシル基やチオール基、糖タンパクの場合ではアルデヒド基を固定化の際の標的官能基にすることが可能である。更には両者間をビオチンとアビジンの相互作用を利用して固定化することも可能である。   A wide variety of biomolecules can be considered, and proteins are most frequently used. According to the present invention, it is possible to suitably immobilize antibodies, receptors, and low molecular peptides as proteins. For immobilization from protein chemical composition to photocatalytic titanium dioxide composite fine particles, amino groups, carboxyl groups, thiol groups, and in the case of glycoproteins, aldehyde groups can be used as target functional groups for immobilization. is there. Furthermore, it is also possible to immobilize between the two using the interaction between biotin and avidin.

このような場合、ニ官能性のリンカー試薬を用いることで、光触媒性二酸化チタン複合微粒子と生体分子間の結合は達成される。ニ官能性のリンカー試薬としてホモ官能基のものを用いれば、光触媒性二酸化チタン複合微粒子表面のアミンと生体分子に由来するアミノ基間に容易に共有結合を導入することが可能である。また、ヘテロ官能基を持つものを用いれば、生体分子側にチオール基、カルボキシル基を持つ生体分子が導入可能である。   In such a case, the bond between the photocatalytic titanium dioxide composite fine particle and the biomolecule is achieved by using a bifunctional linker reagent. If a bifunctional linker reagent having a homofunctional group is used, it is possible to easily introduce a covalent bond between an amine on the surface of the photocatalytic titanium dioxide composite fine particle and an amino group derived from a biomolecule. In addition, if a compound having a heterofunctional group is used, a biomolecule having a thiol group or a carboxyl group on the biomolecule side can be introduced.

また、生体分子に限らず、蛍光色素や検出用プローブ物質等も適当な官能基の導入により光触媒性二酸化チタン複合微粒子への固定化が可能である。   Further, not only biomolecules but also fluorescent dyes and detection probe substances can be immobilized on the photocatalytic titanium dioxide composite fine particles by introducing appropriate functional groups.

アミノ基同士のホモリンカー試薬としては、N−ヒドロキシスクシンイミドエステルを持つもの、具体的にはDisuccinimidyl glutarateやBis(Sulfosuccinimidyl) suberatate等およびイミドエステルを持つもの、具体的にはDimethyl adpimidateやDimethyl suberimidate等があり、好適に用いることができる。   Examples of homo-linker reagents between amino groups include those having N-hydroxysuccinimide ester, specifically, those having disuccinimidyl glutarate and Bis (sulfosuccinimidyl) sublate and imide ester, specifically, dimethymididimate and dimethylylate, etc. Can be preferably used.

また、ヘテロ官能基の組み合わせは、光触媒性二酸化チタン複合微粒子表面のアミンに対しては上述のN−ヒドロキシスクシンイミドエステル、イミドエステルが、生体物質側のチオール基に対しては、マレイミド基を有するもの、具体的にはN−(ε−Maleimidocaproyloxy)succinimide ester等を用いることができる。   In addition, the combination of heterofunctional groups is the above-mentioned N-hydroxysuccinimide ester or imide ester for the amine on the surface of the photocatalytic titanium dioxide composite fine particle, and the maleimide group for the thiol group on the biological material side. Specifically, N- (ε-Maleimidecaproxy) succinimide ester or the like can be used.

核酸の固定化を行う場合にはポリメラーゼチェインリアクション(PCR)によるDNA増幅の際に、アミノ化プライマー、チオール化プライマー、ビオチン化プライマーを用いて修飾DNAを合成することにより、同様の方法で光触媒性二酸化チタン複合微粒子へ固定化することが可能である。例えば、アミノ化DNAを固定化に用いる場合、光触媒性二酸化チタン複合微粒子表面のアミンとの間に二官能性ホモリンカーを用いれば、両者を混合するだけで固定化を行うことができる。また、チオール化DNAを用いる場合、上述のニ官能性ヘテロリンカーを用いれば、アミン−チオール間を結合することができる。
ビオチン化DNAを用いる場合には、光触媒性二酸化チタン複合微粒子にストレプトアビジンを導入することが必要であるが、この場合には、上述のアミノ基に対する二官能性ホモリンカーを用いることで容易に導入が可能である。
In the case of nucleic acid immobilization, photocatalytic property is synthesized in the same way by synthesizing modified DNA using aminated primer, thiolated primer and biotinylated primer during DNA amplification by polymerase chain reaction (PCR). It can be immobilized on titanium dioxide composite fine particles. For example, when aminated DNA is used for immobilization, if a bifunctional homolinker is used with the amine on the surface of the photocatalytic titanium dioxide composite fine particles, the immobilization can be performed only by mixing the two. Moreover, when using thiolated DNA, if an above-mentioned bifunctional heterolinker is used, between amine-thiol can be couple | bonded.
In the case of using biotinylated DNA, it is necessary to introduce streptavidin into the photocatalytic titanium dioxide composite fine particles. In this case, the introduction can be easily performed by using the above-mentioned bifunctional homolinker for the amino group. Is possible.

複合タンパク質や糖質などに由来する糖鎖の固定を行う場合は、シス−ジオールを過ヨウ素酸などによりアルデヒドに酸化し、光触媒性二酸化チタン複合微粒子のアミンとSodium cyanoborohydrideの存在下でシッフ塩基を形成させることにより固定化が可能であるが、二官能性リンカーを用いて架橋形成することも可能である。   When immobilizing sugar chains derived from complex proteins or carbohydrates, cis-diol is oxidized to aldehyde with periodic acid or the like, and a Schiff base is formed in the presence of amines of photocatalytic titanium dioxide composite particles and sodium cyanoborohydride. Immobilization is possible by forming, but it is also possible to form a crosslink using a bifunctional linker.

タンパク質や糖質の一部など、生体分子側がカルボキシル基を持つ場合、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)により活性化を行い、光触媒性二酸化チタン複合微粒子と混合することにより両者間の架橋が可能である。 When the biomolecule side has a carboxyl group, such as a part of protein or carbohydrate, it is activated with 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC) and mixed with photocatalytic titanium dioxide composite fine particles Thus, cross-linking between the two is possible.

本発明で用いる親水性高分子としては水溶液中での分散性の観点から水溶性高分子が望ましい。水溶性高分子としては、重量平均分子量が1000〜100000の範囲にあるアミンであればいずれも使用可能であるが、例えばポリアミノ酸、ポリペプチド、ポリアミン類、およびアミン単位を有する共重合体(コポリマー)などが挙げられる。具体的には、水溶性高分子の加水分解性および溶解度の観点から、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミン等のポリアミン類がより好適に使用される。   The hydrophilic polymer used in the present invention is preferably a water-soluble polymer from the viewpoint of dispersibility in an aqueous solution. As the water-soluble polymer, any amine having a weight average molecular weight in the range of 1,000 to 100,000 can be used. For example, polyamino acids, polypeptides, polyamines, and copolymers having amine units (copolymers). ) And the like. Specifically, polyamines such as polyethyleneimine, polyvinylamine, and polyallylamine are more preferably used from the viewpoint of hydrolyzability and solubility of the water-soluble polymer.

また、本発明の光触媒性二酸化チタン複合微粒子の材料として用いる二酸化チタンとしては、癌治療用として体内への適用の場合など、その使用形態の自由度の観点から分散粒経が2〜200nmであることが望ましい。さらに、本発明で用いる二酸化チタンとしては、光触媒活性の観点からアナターゼ型であることが望ましい。   In addition, the titanium dioxide used as the material of the photocatalytic titanium dioxide composite fine particles of the present invention has a dispersed particle size of 2 to 200 nm from the viewpoint of the degree of freedom of its usage, such as when applied to the body for cancer treatment. It is desirable. Furthermore, the titanium dioxide used in the present invention is desirably an anatase type from the viewpoint of photocatalytic activity.

また、本発明の光触媒性二酸化チタン複合微粒子は、分散性の観点から分散粒経が2〜500nmであることが好ましい。癌治療用として体内への適用の場合、腫瘍細胞への蓄積効果の観点から分散粒経が50〜200nmであることがより好ましい。このような範囲とすることで、生理的条件下で24時間以上にわたって、安定した分散が可能となる。尚、ここでいう分散粒径とは、動的光散乱法によって測定を行い、キュムラント法解析から算出される平均値のことを示している。また、ここでいう生理的条件下とは25℃、1気圧で
(137mM NaCl,8.1mM Na2HPO4,2.68mM KCl,1.47mM KH2PO4)の組成であるリン酸緩衝食塩水(pH7.4)存在下のことを示す。
The photocatalytic titanium dioxide composite fine particles of the present invention preferably have a dispersed particle size of 2 to 500 nm from the viewpoint of dispersibility. In the case of application to the body for cancer treatment, the dispersed particle size is more preferably 50 to 200 nm from the viewpoint of the effect of accumulation in tumor cells. By setting it as such a range, stable dispersion | distribution is attained over 24 hours or more on physiological conditions. In addition, the dispersion | distribution particle size here shows the average value measured by the dynamic light-scattering method and computed from cumulant method analysis. The physiological condition referred to here is a phosphate buffered saline (pH 7.4) having a composition of (137 mM NaCl, 8.1 mM Na2HPO4, 2.68 mM KCl, 1.47 mM KH2PO4) at 25 ° C. and 1 atm. Indicates presence.

さらに、上述した二酸化チタンが少なくとも表面に存在すれば、たとえば磁性粒子と二酸化チタンとの複合体のようなものであっても、水溶液中での特性は近似し、親水性高分子アミンにより表面を修飾することで、アミンを介した生体分子の固定化は可能であるため、同様の製造法、精製法を適用することができる。   Furthermore, if the above-described titanium dioxide is present at least on the surface, even in the case of, for example, a composite of magnetic particles and titanium dioxide, the characteristics in an aqueous solution are approximated, and the surface is covered with a hydrophilic polymer amine. By modifying, biomolecules can be immobilized via amines, and the same production method and purification method can be applied.

また、本発明の光触媒性二酸化チタン複合微粒子を含む分散液における光触媒性二酸化チタン複合微粒子は、表面上に存在するアミンにより、粒子間に電気的斥力が働くために凝集することなく、少なくとも24時間以上にわたって安定に存在することによる。しかも、基本的にpHの変動や無機塩類の添加に対しても極めて安定である。さらに、表面上に存在するアミンによって表面電荷が正に帯電していることから、一般的に負の表面電荷をもつ細胞への親和性、取込み性が著しく高く、癌細胞の破壊を目的とした医療用材料として極めて有用である。これらの観点から、表面電位の最適範囲としては、良好な分散性と細胞取込み性を達成できる範囲にあればよく、+20mV以上あればよい。さらに望ましくは、一般に自主分散(粒子が沈殿しない状態)が十分に達成できる電位として+40mV以上あればよい。   Further, the photocatalytic titanium dioxide composite fine particles in the dispersion containing the photocatalytic titanium dioxide composite fine particles of the present invention are at least 24 hours without agglomeration due to an electrical repulsive force between the particles due to the amine present on the surface. It is because it exists stably over the above. Moreover, it is basically very stable against pH fluctuations and addition of inorganic salts. Furthermore, since the surface charge is positively charged by the amine present on the surface, in general, the affinity to and uptake of cells with a negative surface charge is remarkably high, and the purpose is to destroy cancer cells. It is extremely useful as a medical material. From these viewpoints, the optimum range of the surface potential may be in a range in which good dispersibility and cell uptake can be achieved, and may be +20 mV or more. More preferably, it is generally sufficient that the electric potential at which sufficient self-dispersion (state in which particles do not precipitate) can be sufficiently achieved is +40 mV or more.

また、本発明の光触媒性二酸化チタン複合微粒子を含む分散液における光触媒性二酸化チタン複合微粒子は、光触媒性二酸化チタン複合微粒子間に電気的斥力が働くために凝集することなく、少なくとも24時間以上にわたって安定することができ、これを達成できる塩濃度の範囲として、1M以下であればよい。さらに望ましくは、生体への適用を考えた場合に生体内での中性な生理的条件下においても安定して分散し、存在することができればよく、塩濃度として100mM〜300mM程度であればよい。   In addition, the photocatalytic titanium dioxide composite fine particles in the dispersion containing the photocatalytic titanium dioxide composite fine particles of the present invention are stable for at least 24 hours without agglomeration due to the electric repulsion between the photocatalytic titanium dioxide composite fine particles. The range of the salt concentration that can be achieved is 1M or less. More desirably, it is only necessary to stably disperse and exist even under neutral physiological conditions in the living body when considering application to a living body, and the salt concentration may be about 100 mM to 300 mM. .

また、本発明の光触媒性二酸化チタン複合微粒子を含む分散液における光触媒性二酸化チタン複合微粒子は、光触媒性二酸化チタン複合微粒子間に電気的斥力が働くために凝集することなく、少なくとも24時間以上にわたって安定することができ、これを達成できる光触媒性二酸化チタン粒子濃度の範囲として、重量百分率で20%以下であればよい。さらに望ましくは、生体への適用を考えた場合に細胞に対する安全性の観点から、重量百分率で0.1%〜0.0001%であればよい。   In addition, the photocatalytic titanium dioxide composite fine particles in the dispersion containing the photocatalytic titanium dioxide composite fine particles of the present invention are stable for at least 24 hours without agglomeration due to the electric repulsion between the photocatalytic titanium dioxide composite fine particles. The range of the photocatalytic titanium dioxide particle concentration that can be achieved is 20% or less in terms of weight percentage. More desirably, it may be 0.1% to 0.0001% in terms of weight percentage from the viewpoint of safety with respect to cells when considering application to a living body.

以上のことから、本発明の光触媒性二酸化チタン複合微粒子を含む分散液を水、種々のpH緩衝液、輸液、あるいは生理食塩水を用いた、均一で安定な分散液として提供することが可能となる。また、本分散液を含む軟膏やスプレー剤等も製造が可能である。この特性は、特に二酸化チタンを体内外のDDSに応用する際に極めて有用である。すなわち、本発明の光触媒性二酸化チタン複合微粒子を含む分散液は中性付近の生理的条件においても凝集することがないために、患部組織に直接注射したり静脈に注射してターゲティングを行うことが可能となる。また、本分散液を含む軟膏やスプレー剤を皮膚等の患部に直接塗布し、太陽光や紫外線ランプ等により治療を施すことが可能となる。   From the above, it is possible to provide a dispersion containing the photocatalytic titanium dioxide composite fine particles of the present invention as a uniform and stable dispersion using water, various pH buffer solutions, infusion solutions, or physiological saline. Become. In addition, ointments and sprays containing this dispersion can also be produced. This characteristic is extremely useful particularly when titanium dioxide is applied to DDS inside and outside the body. That is, since the dispersion containing the photocatalytic titanium dioxide composite fine particles of the present invention does not aggregate even under physiological conditions near neutrality, it can be directly injected into the affected tissue or injected into the vein for targeting. It becomes possible. In addition, an ointment or spray containing this dispersion can be applied directly to the affected area such as the skin and treated with sunlight or an ultraviolet lamp.

本発明の光触媒性二酸化チタン複合微粒子を含む分散液における光触媒性二酸化チタン複合微粒子を励起、活性化させるための光源装置は特別である必要はないが、二酸化チタンのバンドギャップの関係上その波長は400nm以下であることが望ましい。皮膚等の外用用途では、太陽光や通常の紫外線ランプ、あるいはブラックライトを好適に使用できる。また、体内の患部に対しては内視鏡に紫外線ファイバーを装着することにより紫外線を照射すれば良い。さらに、特に280nm付近の紫外線を局所的に患部に照射して病変部を破壊しようとする光療法を想定した場合では、その作用増強剤として本発明の光触媒性二酸化チタン複合微粒子を含む分散液を適用することも可能である。   The light source device for exciting and activating the photocatalytic titanium dioxide composite fine particles in the dispersion containing the photocatalytic titanium dioxide composite fine particles of the present invention does not need to be special, but the wavelength is related to the band gap of titanium dioxide. It is desirable that it is 400 nm or less. For external use such as skin, sunlight, a normal ultraviolet lamp, or black light can be suitably used. Moreover, what is necessary is just to irradiate an ultraviolet-ray by attaching an ultraviolet fiber to an endoscope with respect to the affected part in a body. Furthermore, in particular, when assuming phototherapy for locally irradiating the affected area with ultraviolet rays of around 280 nm to destroy the affected area, a dispersion containing the photocatalytic titanium dioxide composite fine particles of the present invention is used as its action enhancer. It is also possible to apply.

さらに、本発明の光触媒性二酸化チタン複合微粒子を含む分散液における光触媒性二酸化チタン複合微粒子は、表面上に存在するアミンによって表面電荷が正に帯電していることから、一般的に負の表面電荷をもつ細胞への親和性、取込み性が著しく高く、本発明の光触媒性二酸化チタン複合微粒子と細胞とが接触すると直ちに細胞への結合や取込みが始まる。このことから、特に生体の皮膚表面や、あるいは気管、消化器などのあるいは生体内部の表層部や、生体内に存在する様々な患部への適用が非常に有効であり、さらに、生体分子を固定化させることで癌細胞内での局在化を可能にする。例えば、核内への移行シグナルを結合することで、核内DNAへの接近を容易にし、より高い治療効果を得ることができる。例えば、本発明の光触媒性二酸化チタン微粒子を含む分散液を含む軟膏やスプレー剤を皮膚癌や喉頭癌といった癌患部に直接塗布したり、あるいは注射により固形ガンに局所投与した後に、太陽光や紫外線ランプ等により治療を施すことにより簡便でかつ高い治療効果を得ることができるものである。   Furthermore, the photocatalytic titanium dioxide composite fine particles in the dispersion containing the photocatalytic titanium dioxide composite fine particles of the present invention generally have a negative surface charge because the surface charge is positively charged by the amine present on the surface. The affinity and the uptake | capture property to the cell which has, and remarkably high are taken, and the coupling | bonding and uptake | capture to a cell will start as soon as the photocatalytic titanium dioxide composite microparticle of this invention and a cell contact. For this reason, it is particularly effective for application to the skin surface of the living body, the surface layer of the trachea, digestive organs, etc. or inside the living body, and various affected parts existing in the living body. Allows localization in cancer cells. For example, by binding a signal for translocation into the nucleus, access to the nuclear DNA can be facilitated, and a higher therapeutic effect can be obtained. For example, after applying an ointment or spray containing the dispersion containing the photocatalytic titanium dioxide fine particles of the present invention directly to a cancer affected area such as skin cancer or laryngeal cancer, or locally administering to a solid cancer by injection, sunlight or ultraviolet rays By performing treatment with a lamp or the like, a simple and high therapeutic effect can be obtained.

以下、本発明を実施例に従って詳細に説明する。ただし、本発明はこの実施例に制限されるものではない。   Hereinafter, the present invention will be described in detail according to examples. However, the present invention is not limited to this embodiment.

(実施例1)
二酸化チタンへのポリエチレンイミンの導入
チタンテトライソプロポキシド3.6gとイソプロパノール3.6gを混合し、氷冷下で60mlの超純水に滴下して加水分解を行った。滴下後に室温で30分間攪拌した。攪拌後、12N硝酸1mlを滴下して80℃で8時間攪拌を行い、ペプチゼーションした。ペプチゼーション終了後0.45μmのフィルターで濾過し、さらに脱塩カラムPD−10(アマシャム・ファルマシア・バイオサイエンス社製)を用いて溶液交換して固形成分1%の酸性二酸化チタンゾルを調製した。この分散液を100ml容のバイアル瓶に入れ、200Hzで30分間超音波処理を行った。超音波処理を行う前後の平均分散粒経はそれぞれ、36.4nm、20.2nmであった。超音波処理後、溶液を濃縮して固形成分20%の二酸化チタンゾルを調製した。得られた二酸化チタンゾル0.75mlを20mlのジメチルホルムアミド(DMF)に分散させ、ポリエチレンイミン(平均分子量:10000、和光純薬社製)450mgを溶解したDMF10mlを添加後、攪拌して混合した。水熱反応容器(HU−50、三愛科学社製)に溶液を移し変え、150℃で6時間合成を行った。反応終了後、反応容器温度が50℃以下になるまで冷却し、2倍量のイソプロパノールを添加し、ポリエチレンイミン結合二酸化チタン微粒子を沈殿させ、遠心後に上清を除去することにより未反応のポリエチレンイミンを分離した。70%エタノールを添加して洗浄を行い、遠心後にエタノールを除去した。蒸留水を10ml添加後、200Hzで30分間超音波処理を行い、ポリエチレンイミン結合二酸化チタン微粒子を分散させた。超音波処理後、0.45μmのフィルターで濾過して、固形成分1.5%のポリエチレンイミン結合二酸化チタン微粒子の分散液を得た。作製したポリエチレンイミン結合二酸化チタン微粒子の分散粒径を、ゼータサイザーナノZS(シスメックス社製)を用いて、ゼータ電位測定セルにポリエチレンイミン結合二酸化チタン微粒子の分散液0.75mlを仕込み、溶媒の各種パラメーターを水と同値に設定し、25℃にて動的光散乱法により測定したところ、ポリエチレンイミン結合二酸化チタン微粒子の平均粒径は67.7nmであった。
Example 1
Introduction of Polyethyleneimine into Titanium Dioxide 3.6 g of titanium tetraisopropoxide and 3.6 g of isopropanol were mixed and hydrolyzed by adding dropwise to 60 ml of ultrapure water under ice cooling. After dropping, the mixture was stirred at room temperature for 30 minutes. After stirring, 1 ml of 12N nitric acid was added dropwise, and the mixture was stirred at 80 ° C. for 8 hours for peptization. After completion of peptization, the solution was filtered with a 0.45 μm filter, and the solution was exchanged using a desalting column PD-10 (Amersham Pharmacia Bioscience) to prepare an acidic titanium dioxide sol having a solid content of 1%. This dispersion was placed in a 100 ml vial and sonicated at 200 Hz for 30 minutes. The average dispersed particle sizes before and after the ultrasonic treatment were 36.4 nm and 20.2 nm, respectively. After sonication, the solution was concentrated to prepare a titanium dioxide sol having a solid content of 20%. 0.75 ml of the obtained titanium dioxide sol was dispersed in 20 ml of dimethylformamide (DMF), and 10 ml of DMF in which 450 mg of polyethyleneimine (average molecular weight: 10,000, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved was added and then stirred and mixed. The solution was transferred to a hydrothermal reaction vessel (HU-50, Sanai Kagaku Co., Ltd.), and synthesis was performed at 150 ° C. for 6 hours. After completion of the reaction, the reaction vessel is cooled until the temperature reaches 50 ° C. or lower, twice the amount of isopropanol is added, polyethyleneimine-bound titanium dioxide fine particles are precipitated, and the supernatant is removed after centrifugation to remove unreacted polyethyleneimine. Separated. Washing was performed by adding 70% ethanol, and ethanol was removed after centrifugation. After adding 10 ml of distilled water, ultrasonic treatment was performed at 200 Hz for 30 minutes to disperse the polyethyleneimine-bound titanium dioxide fine particles. After ultrasonic treatment, the mixture was filtered through a 0.45 μm filter to obtain a dispersion of polyethyleneimine-bound titanium dioxide fine particles having a solid content of 1.5%. Using the Zeta Sizer Nano ZS (manufactured by Sysmex Corporation), 0.75 ml of a dispersion of polyethylene imine-bonded titanium dioxide fine particles was charged into a zeta potential measurement cell using the prepared polyethyleneimine-bonded titanium dioxide fine particles. When the parameter was set to the same value as water and measured by a dynamic light scattering method at 25 ° C., the average particle diameter of the polyethyleneimine-bound titanium dioxide fine particles was 67.7 nm.

(実施例2)
ポリエチレンイミン結合二酸化チタン微粒子へのタンパク質の固定化
0.1mgのストレプトアビジン(ピアース社製)を含む50mMの2[4−(2−ヒドロキシエチル)−1−ピペラジニル]エタンスルホン酸(HEPES)緩衝液(pH8.0)1mlに20mMの1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)と5mMのN−ヒドロキシこはく酸イミド(NHS)の混合液0.1mlを添加して5分間攪拌を行い、ストレプトアビジンのもつカルボキシル基を活性化した。攪拌終了後、10mM酢酸緩衝液(pH5.0)で平衡化した脱塩カラムNAP−10(アマシャム・ファルマシア・バイオサイエンス社製)を用いてゲル濾過を行い、未反応のEDCおよびNHSを除去した。ストレプトアビジンを含む溶液0.1mlを実施例1で得られたポリエチレンイミン結合二酸化チタン微粒子を含む分散液2mlに添加し、10分間、4℃にて穏やかに攪拌した。この溶液を透析チューブ(分画分子量:100000、ピアース社製)に移し、20mMトリスヒドロキシメチルアミノメタン−塩酸緩衝液(pH8.0)に対して12時間透析を行った。透析チューブ内の溶液を回収し、2倍量のイソプロパノールを添加し、10分間、4000gにて遠心分離し、沈殿を70%エタノールで洗浄後、100mMリン酸緩衝食塩水(pH7.5、日本ジーン社製)1mlに溶解した。これにより、ストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子の分散液を得た。この分散液の粒径を、ゼータサイザーナノZS(シスメックス社製)を用いて、ゼータ電位測定セルにこの分散液0.75mlを仕込み、溶媒の各種パラメーターを水と同値に設定し、25℃にて動的光散乱法により測定したところ、作製した光触媒性二酸化チタン複合微粒子の平均粒径は68.2nmであった。
(Example 2)
Immobilization of protein on polyethyleneimine-bound titanium dioxide microparticles 50 mM 2 [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid (HEPES) buffer containing 0.1 mg of streptavidin (Pierce) (PH 8.0) 0.1 ml of a mixed solution of 20 mM 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC) and 5 mM N-hydroxysuccinimide (NHS) was added to 1 ml for 5 minutes. Stirring was performed to activate the carboxyl group of streptavidin. After completion of stirring, gel filtration was performed using a desalting column NAP-10 (Amersham Pharmacia Bioscience) equilibrated with 10 mM acetate buffer (pH 5.0) to remove unreacted EDC and NHS. . 0.1 ml of the solution containing streptavidin was added to 2 ml of the dispersion containing polyethyleneimine-bound titanium dioxide fine particles obtained in Example 1, and gently stirred at 4 ° C. for 10 minutes. This solution was transferred to a dialysis tube (fraction molecular weight: 100000, manufactured by Pierce) and dialyzed against 20 mM trishydroxymethylaminomethane-hydrochloric acid buffer (pH 8.0) for 12 hours. Collect the solution in the dialysis tube, add 2 volumes of isopropanol, centrifuge at 4000 g for 10 minutes, wash the precipitate with 70% ethanol, and then add 100 mM phosphate buffered saline (pH 7.5, Nippon Gene). Dissolved in 1 ml). As a result, a dispersion of photocatalytic titanium dioxide composite fine particles in which streptavidin was immobilized was obtained. Using Zetasizer Nano ZS (manufactured by Sysmex Corporation), 0.75 ml of this dispersion was charged into a zeta potential measurement cell, and various parameters of the solvent were set to the same value as water, and the particle size of this dispersion was set to 25 ° C. As a result of measurement by a dynamic light scattering method, the average particle size of the produced photocatalytic titanium dioxide composite fine particles was 68.2 nm.

(実施例3)
ストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子の生体分子機能性の確認
実施例2で得られたストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子の分散液0.1mlに対し、それぞれ1mMから100nMまで10倍刻みで希釈した異なる濃度のビオチンダイマー(EZ−Link PEO−Biotin Dimer、ピアース社製)を0.01ml添加し、37℃にて10分間静置し、595nmの吸光度をマイクロタイタープレートリーダー(Bench Mark、バイオラッド社製)にて測定した。結果を図2に示す。明らかにビオチンダイマーの濃度に応じて溶液の濁度が上昇しており、光触媒性二酸化チタン複合微粒子にストレプトアビジンが効率的に固定化されていることが判明した。
Example 3
Confirmation of Biomolecular Functionality of Photocatalytic Titanium Dioxide Composite Fine Particles Immobilized with Streptavidin From 1 mM each to 0.1 ml of the dispersion of photocatalytic titanium dioxide composite fine particles immobilized with streptavidin obtained in Example 2 Add 0.01 ml of different concentrations of biotin dimer (EZ-Link PEO-Biotin Dimer, Pierce) diluted to 100 nM in 10-fold increments, leave it at 37 ° C. for 10 minutes, and absorb the absorbance at 595 nm in a microtiter plate. Measurement was performed with a reader (Bench Mark, manufactured by Bio-Rad). The results are shown in FIG. Obviously, the turbidity of the solution increased according to the concentration of biotin dimer, and it was found that streptavidin was efficiently immobilized on the photocatalytic titanium dioxide composite fine particles.

(実施例4)
蛍光色素標識を行った光触媒性二酸化チタン複合微粒子の作製
実施例1で得られたポリエチレンイミン結合二酸化チタン微粒子の分散液500μlを100mMリン酸緩衝食塩水(pH7.5)で平衡化した脱塩カラムNAP−10(アマシャム・ファルマシア・バイオサイエンス社製)を用いてゲル濾過を行って溶液交換し、そこへ、最終濃度が0.8mMになるようにDMSOに溶解したフルオレセインイソチオシアネート(ピアース社製)を加え、30分間室温で穏やかに攪拌した。反応終了後、あらかじめ蒸留水にて平衡化したPD−10(アマシャム・ファルマシア・バイオサイエンス社製)により脱塩を行い、その後、溶液を2mlにまで濃縮した。この蛍光色素標識を行った光触媒性二酸化チタン複合微粒子を含む分散液の液滴をガラスプレート上にのせ、蛍光顕微鏡で観察したところ、液滴と空気の境界面で明確に差が見られるようなフルオレセインに起因する蛍光が観察された(図3)。
Example 4
Preparation of Photocatalytic Titanium Dioxide Composite Fine Particles Labeled with Fluorescent Dye Desalting column obtained by equilibrating 500 μl of the dispersion of polyethyleneimine-bound titanium dioxide fine particles obtained in Example 1 with 100 mM phosphate buffered saline (pH 7.5) Gel filtration was performed using NAP-10 (manufactured by Amersham Pharmacia Bioscience) to exchange the solution, and fluorescein isothiocyanate (manufactured by Pierce) dissolved in DMSO so that the final concentration was 0.8 mM. And gently stirred at room temperature for 30 minutes. After completion of the reaction, desalting was performed with PD-10 (manufactured by Amersham Pharmacia Bioscience) previously equilibrated with distilled water, and then the solution was concentrated to 2 ml. Droplets of dispersion liquid containing photocatalytic titanium dioxide composite fine particles labeled with this fluorescent dye are placed on a glass plate and observed with a fluorescence microscope. As a result, a clear difference can be seen at the interface between the droplets and air. Fluorescence due to fluorescein was observed (FIG. 3).

(実施例5)
光触媒性二酸化チタン複合微粒子の細胞取込み性の評価 実施例1で得られた二酸化チタンゾル0.75mlを20mlのジメチルホルムアミド(DMF)に分散させ、ポリアクリル酸(平均分子量:5000、和光純薬社製)0.2gを溶解したDMFを10ml添加後、攪拌して混合した。水熱反応容器に溶液を移し変え、180℃で6時間水熱合成を行った。反応終了後、反応容器温度が50℃以下になるまで冷却し、溶液を取り出した後に水80mlを添加して攪拌混合した。エバポレータでDMFおよび水を除去した後に、再度、水20mlを添加してポリアクリル酸結合二酸化チタン微粒子の水溶液とした。2N塩酸1mlを添加して二酸化チタン粒子を沈殿させて、遠心後に上清を除去することにより未反応のポリアクリル酸を分離した。再度水を添加して洗浄を行い、遠心後に水を除去した。50mMリン酸緩衝液(pH7.0)を10ml添加後、200Hzで30分間超音波処理を行い、二酸化チタン粒子を分散させた。超音波処理後、0.45μmのフィルターで濾過し、重量百分率で0.25%のポリアクリル酸結合二酸化チタン微粒子の分散液を得た。ゼータサイザーナノZS(シスメックス社製)を用いて、ゼータ電位測定セルにポリエチレンイミン結合二酸化チタン微粒子の分散液0.75mlを仕込み、溶媒の各種パラメーターを水と同値に設定し、25℃にて動的光散乱法により測定したところ、作製したポリアクリル酸結合二酸化チタン微粒子の平均粒径は45.9nmであった。このポリアクリル酸結合二酸化チタン微粒子の分散液2mlに対して、0.8M 1−Ethyl−3−[3−Dimethylaminopropyl]Carbodiimide Hydrochlorideを250μlおよびN−Hydroxysuccinimideを250μl加えて、撹拌しながら室温で1時間反応させた。10mM 酢酸緩衝液(pH5.0)で平衡化した脱塩カラムNAP−10(アマシャム・ファルマシア・バイオサイエンス社製)を用いてゲル濾過を行って溶液交換し、その後に10mM酢酸緩衝液(pH5.0)を用いて全量を9.5mlとした。そこへ、DMFに溶解させた100mM 5−amino fluorescein(NCI社製)を5μl加え、遮光下で撹拌しながら室温で1時間反応させた。次に、0.1Mのエタノールアミン(和光純薬工業社製)水溶液を500μl加え、遮光下で撹拌しながら室温で30分間反応させた。この溶液を100mMリン酸緩衝食塩水(pH7.5)で平衡化した脱塩カラムPD−10を用いてゲル濾過を行って溶液交換し、未反応の5−amino fluoresceinを分離し、その後、溶液を2mlにまで濃縮した。これを蛍光色素標識ポリアクリル酸結合二酸化チタン複合微粒子の分散液とした。
また、実施例1で得られたポリエチレンイミン結合二酸化チタン微粒子の分散液を500μlを、100mMリン酸緩衝食塩水(pH7.5)で平衡化した脱塩カラムNAP−10を用いてゲル濾過を行って溶液交換し、そこへ、最終濃度が0.8mMになるようにDMSOに溶解したフルオレセインイソチオシアネート(ピアース社製)を加え、30分間室温で穏やかに攪拌した。反応終了後、あらかじめPBSにて平衡化したPD−10(アマシャム・ファルマシア・バイオサイエンス社製)により溶液交換を行い、その後、溶液を2mlにまで濃縮した。これを蛍光色素標識光触媒性二酸化チタン複合微粒子の分散液とした。
次に、メラノーマ細胞株T−24を10%血清を含むF12培地(ギブコ社製)で100%コンフルエントにになるまで培養し、フラスコを100mMリン酸緩衝食塩水(pH7.4)で2回洗浄し、100mMトリプシン−エチレンジアミン三酢酸溶液を1ml添加し、10分静置後、フラスコ壁面より剥離した細胞を回収し、9mlの10%血清を含むF12培地で希釈した。細胞数を血球計算盤により計測し、5×104個の細胞を含む培地500μlをそれぞれ24穴マイクロタイタープレートに接種し、最終濃度0.01%になるように分注した。そこに、先の蛍光色素標識ポリアクリル酸結合二酸化チタン複合微粒子の分散液および蛍光色素標識光触媒性二酸化チタン複合微粒子の分散液をそれぞれ最終濃度0.01%となるよう100μl加え、24時間CO2インキュベータ内で培養した。その後、細胞のフラスコへの接着を確認し、フラスコを100mMリン酸緩衝食塩水にて洗浄し、200μlの10%血清を含むF12培地を添加し、蛍光顕微鏡により観察を行った(図4)。蛍光視野像を観察した結果、蛍光色素標識ポリアクリル酸結合二酸化チタン複合微粒子よりも蛍光色素標識ポ光触媒性二酸化チタン複合微粒子のほうが明らかに細胞に対して高い親和性と細胞取込み性をもつことが確認された。
(Example 5)
Evaluation of cell uptake of photocatalytic titanium dioxide composite fine particles 0.75 ml of the titanium dioxide sol obtained in Example 1 was dispersed in 20 ml of dimethylformamide (DMF), and polyacrylic acid (average molecular weight: 5000, manufactured by Wako Pure Chemical Industries, Ltd.) ) After adding 10 ml of DMF in which 0.2 g was dissolved, the mixture was stirred and mixed. The solution was transferred to a hydrothermal reaction vessel, and hydrothermal synthesis was performed at 180 ° C. for 6 hours. After completion of the reaction, the reaction vessel was cooled to 50 ° C. or lower, and after taking out the solution, 80 ml of water was added and stirred and mixed. After removing DMF and water with an evaporator, 20 ml of water was added again to obtain an aqueous solution of polyacrylic acid-bonded titanium dioxide fine particles. Titanium dioxide particles were precipitated by adding 1 ml of 2N hydrochloric acid, and unreacted polyacrylic acid was separated by removing the supernatant after centrifugation. Water was added again for washing, and water was removed after centrifugation. After adding 10 ml of 50 mM phosphate buffer (pH 7.0), ultrasonic treatment was performed at 200 Hz for 30 minutes to disperse the titanium dioxide particles. After ultrasonic treatment, the mixture was filtered through a 0.45 μm filter to obtain a dispersion of polyacrylic acid-bonded titanium dioxide fine particles having a weight percentage of 0.25%. Using Zeta Sizer Nano ZS (manufactured by Sysmex Corporation), 0.75 ml of a dispersion of polyethyleneimine-bonded titanium dioxide fine particles was charged into a zeta potential measurement cell, and various parameters of the solvent were set to the same values as water and operated at 25 ° C. The average particle size of the prepared polyacrylic acid-bonded titanium dioxide fine particles was 45.9 nm as measured by a dynamic light scattering method. To 2 ml of the dispersion of the polyacrylic acid-bonded titanium dioxide fine particles, 250 μl of 0.8M 1-Ethyl-3- [3-dimethylaminopropyl] carbohydrate Hydrochloride and 250 μl of N-hydroxysuccinimide were added and stirred at room temperature for 1 hour. Reacted. Gel filtration was performed using a desalting column NAP-10 (manufactured by Amersham Pharmacia Bioscience) equilibrated with 10 mM acetate buffer (pH 5.0), and then the solution was exchanged. Thereafter, 10 mM acetate buffer (pH 5. 0) was used to bring the total volume to 9.5 ml. Thereto, 5 μl of 100 mM 5-aminofluorescein (manufactured by NCI) dissolved in DMF was added and allowed to react at room temperature for 1 hour with stirring under light shielding. Next, 500 μl of 0.1 M ethanolamine (manufactured by Wako Pure Chemical Industries, Ltd.) aqueous solution was added and allowed to react at room temperature for 30 minutes while stirring under light shielding. This solution was subjected to gel filtration using a desalting column PD-10 equilibrated with 100 mM phosphate buffered saline (pH 7.5) to exchange the solution, and unreacted 5-aminofluorescein was separated. Was concentrated to 2 ml. This was used as a dispersion of fluorescent dye-labeled polyacrylic acid-bonded titanium dioxide composite fine particles.
Further, gel filtration was performed using a desalting column NAP-10 in which 500 μl of the dispersion of polyethyleneimine-bound titanium dioxide fine particles obtained in Example 1 was equilibrated with 100 mM phosphate buffered saline (pH 7.5). Then, fluorescein isothiocyanate (manufactured by Pierce) dissolved in DMSO so as to have a final concentration of 0.8 mM was added thereto, and gently stirred at room temperature for 30 minutes. After completion of the reaction, the solution was exchanged with PD-10 (manufactured by Amersham Pharmacia Bioscience) previously equilibrated with PBS, and then the solution was concentrated to 2 ml. This was used as a dispersion of fluorescent dye-labeled photocatalytic titanium dioxide composite fine particles.
Next, the melanoma cell line T-24 is cultured in F12 medium (manufactured by Gibco) containing 10% serum until it becomes 100% confluent, and the flask is washed twice with 100 mM phosphate buffered saline (pH 7.4). Then, 1 ml of a 100 mM trypsin-ethylenediamine triacetic acid solution was added, and after standing for 10 minutes, the detached cells were collected from the flask wall and diluted with 9 ml of F12 medium containing 10% serum. The number of cells was counted with a hemocytometer, 500 μl of a medium containing 5 × 10 4 cells was inoculated into a 24-well microtiter plate, and dispensed to a final concentration of 0.01%. Thereto was added 100 μl of the dispersion of the fluorescent dye-labeled polyacrylic acid-bonded titanium dioxide composite fine particles and the dispersion of the fluorescent dye-labeled photocatalytic titanium dioxide composite fine particles to a final concentration of 0.01%, respectively, and a 24-hour CO 2 incubator. Incubated inside. Thereafter, adhesion of the cells to the flask was confirmed, the flask was washed with 100 mM phosphate buffered saline, 200 μl of F12 medium containing 10% serum was added, and observation was performed with a fluorescence microscope (FIG. 4). As a result of observing the fluorescent field image, the fluorescent dye-labeled photocatalytic titanium dioxide composite fine particles clearly have higher affinity and cell uptake than the fluorescent dye-labeled polyacrylic acid-bonded titanium dioxide composite fine particles. confirmed.

(実施例6)
光触媒性二酸化チタン複合微粒子のpH安定性の評価
50mMの異なるpHを持つ緩衝液(pH3=グリシン塩酸緩衝液、pH4および5=酢酸緩衝液、pH6=2−モルフォリノエタンスルホン酸緩衝液)、pH7および8=2−[4−(2−ヒドロキシエチル)−1−ピペラジニル]エタンスルホン酸緩衝液、pH9=ホウ酸緩衝液、pH10=グリシン水酸化ナトリウム緩衝液)を作成し、終濃度0.025(w/v)%になるように実施例2で得られたストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子を含む分散液を添加し、1時間室温にて静置した。その後、ゼータサイザーナノZSにて実施例1と同様に平均分散粒径の測定を行った。結果を図5に示す。pHが3から10の間で粒径の変化は認められるものの70から85nm程度であり、本発明の光触媒性二酸化チタン複合微粒子を含む分散液における光触媒性二酸化チタン複合微粒子は安定した分散性を示した。
(Example 6)
Evaluation of pH stability of photocatalytic titanium dioxide composite microparticles Buffers with different pH of 50 mM (pH 3 = glycine hydrochloride buffer, pH 4 and 5 = acetic acid buffer, pH 6 = 2-morpholinoethanesulfonic acid buffer), pH 7 And 8 = 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid buffer, pH 9 = borate buffer, pH 10 = glycine sodium hydroxide buffer), with a final concentration of 0.025. A dispersion containing the photocatalytic titanium dioxide composite fine particles on which the streptavidin obtained in Example 2 was immobilized so as to be (w / v)% was added, and the mixture was allowed to stand at room temperature for 1 hour. Thereafter, the average dispersed particle size was measured in the same manner as in Example 1 using Zetasizer Nano ZS. The results are shown in FIG. Although the change in particle size is recognized between pH 3 and 10, it is about 70 to 85 nm, and the photocatalytic titanium dioxide composite fine particles in the dispersion containing the photocatalytic titanium dioxide composite fine particles of the present invention show stable dispersibility. It was.

(実施例7)
光触媒性二酸化チタン複合微粒子の塩強度安定性の評価
0.05〜5Mの異なる塩化ナトリウムを含む10mMリン酸緩衝液に実施例2で得られたストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子を終濃度0.025%になるように添加し、1時間室温にて静置した。その後、ゼータサイザーナノZSにて実施例1と同様に平均分散粒径の測定を行った。結果を図6に示す。
系中の塩濃度が0.05から1Mの間はほとんど平均分散粒径の変化は認められず、本発明の光触媒性二酸化チタン複合微粒子を含む分散液における光触媒性二酸化チタン複合微粒子安定した分散性を示すことが明らかになった。
(Example 7)
Evaluation of salt strength stability of photocatalytic titanium dioxide composite fine particles The photocatalytic titanium dioxide composite fine particles obtained by immobilizing the streptavidin obtained in Example 2 in a 10 mM phosphate buffer containing 0.05 to 5 M of different sodium chloride were used. The final concentration was 0.025%, and the mixture was allowed to stand at room temperature for 1 hour. Thereafter, the average dispersed particle size was measured in the same manner as in Example 1 using Zetasizer Nano ZS. The results are shown in FIG.
When the salt concentration in the system is 0.05 to 1M, almost no change in the average dispersed particle diameter is observed, and the photocatalytic titanium dioxide composite fine particles in the dispersion containing the photocatalytic titanium dioxide composite fine particles of the present invention have stable dispersibility. It became clear to show.

(実施例8)
ポリエチレンイミン結合二酸化チタン微粒子へのレクチンの固定化
実施例1で得られたポリエチレンイミン結合二酸化チタン微粒子の分散液を30mM酢酸緩衝液(pH5.5)に懸濁し、1(w/v)%になるようにした。この溶液10mlに、500mMのEDC水溶液250μlと1mlの1mg/mlのDBA(Dolichos Biflorus Agglutinin)−FITC(VEC社製:FITCのDBAに対するモル結合比2.5)を加え、室温にて2時間攪拌を行った。反応後、20mlのイソプロパノールを加え、室温で30分静置後、4000gにて20分間遠心分離を行った。沈殿を70%エタノールで洗浄し、PBS緩衝液に懸濁しDBA−FITC固定化ポリエチレンイミン結合二酸化チタン微粒子の分散液を作成した。この複合体微粒子の平均分散粒子径は68.3nmであった。フルオレセイン(和光純薬工業社製)をPBS緩衝液で希釈し、励起波長595nm蛍光波長625nmにて蛍光光度計で測定し、検量線を作成した。分散液の蛍光強度から600ng/mlのFITCが結合していることが明らかになった。さらに本分散液を400℃に加熱し、酸化チタン含量を測定したところ、1(w/v)%の濃度であった。DBA:FITCの結合比が1:2.5であることから2.5×10−7(DBA−FITC)mol/TiO2(g)であることが判明した。
(Example 8)
Immobilization of lectin on polyethyleneimine-bound titanium dioxide fine particles The dispersion of polyethyleneimine-bound titanium dioxide fine particles obtained in Example 1 was suspended in 30 mM acetate buffer (pH 5.5) to 1 (w / v)%. It was made to become. To 10 ml of this solution, 250 μl of a 500 mM EDC aqueous solution and 1 ml of 1 mg / ml DBA (Dolichos Biflorus Agglutinin) -FITC (VEC: molar ratio of FITC to DBA 2.5) were stirred for 2 hours at room temperature. Went. After the reaction, 20 ml of isopropanol was added and left at room temperature for 30 minutes, followed by centrifugation at 4000 g for 20 minutes. The precipitate was washed with 70% ethanol and suspended in PBS buffer to prepare a dispersion of DBA-FITC-immobilized polyethyleneimine-bound titanium dioxide fine particles. The average dispersed particle size of the composite fine particles was 68.3 nm. Fluorescein (manufactured by Wako Pure Chemical Industries, Ltd.) was diluted with a PBS buffer and measured with a fluorometer at an excitation wavelength of 595 nm and a fluorescence wavelength of 625 nm to prepare a calibration curve. The fluorescence intensity of the dispersion revealed that 600 ng / ml FITC was bound. Further, this dispersion was heated to 400 ° C., and the titanium oxide content was measured. As a result, the concentration was 1 (w / v)%. Since the DBA: FITC bond ratio was 1: 2.5, it was found to be 2.5 × 10 −7 (DBA-FITC) mol / TiO 2 (g).

(実施例9)
光触媒性二酸化チタン複合微粒子を含む分散液の均一性(透明度)の評価
0.1Mの塩化ナトリウムを含む10mMリン酸緩衝液を用いて、実施例2で得られたストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子を含む分散液を終濃度0.1%になるように調整し、1時間室温にて静置した。また、二酸化チタン微粒子としてP25(日本アエロジル)を0.1Mの塩化ナトリウムを含む10mMリン酸緩衝液を用いて、同様に終濃度0.1%になるように調整し、1時間室温にて静置した。その後、シャーレに5ml移し上方から撮影し、確認した。その結果を図7に示す。P25水溶液に対してストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子を含む分散液は明らかに透明度が高く、均一に分散していることが確認された。また、分光光度計(UV−1600、島津製作所)を用いて波長660nmにおける吸光度の測定を行った結果、P25水溶液は吸光度が1を大きく上回り測定不能であったのに対して、ストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子を含む分散液は吸光度が0.044であり、また沈殿の形成は起きていなかった。更に、これらの溶液を室温暗所にて2週間静置した後に、同様に波長660nmにおける吸光度の測定を行った結果、P25水溶液は吸光度が1を大きく上回り測定不能であったのに対して、ストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子を含む分散液は吸光度が0.051であった。このことから、水溶液中においてストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子を含む分散液が透明度の高い、均一な分散性を示し、かつ安定していることが明らかになった。
Example 9
Evaluation of Uniformity (Transparency) of Dispersion Containing Photocatalytic Titanium Dioxide Composite Fine Particles Photocatalytic property obtained by immobilizing streptavidin obtained in Example 2 using 10 mM phosphate buffer containing 0.1 M sodium chloride The dispersion containing titanium dioxide composite fine particles was adjusted to a final concentration of 0.1% and allowed to stand at room temperature for 1 hour. Further, P25 (Nippon Aerosil) as titanium dioxide fine particles was similarly adjusted to a final concentration of 0.1% using a 10 mM phosphate buffer containing 0.1 M sodium chloride, and allowed to stand at room temperature for 1 hour. I put it. Thereafter, 5 ml was transferred to a petri dish and photographed from above to confirm. The result is shown in FIG. It was confirmed that the dispersion containing the photocatalytic titanium dioxide composite fine particles in which streptavidin was immobilized on the P25 aqueous solution was clearly highly transparent and uniformly dispersed. In addition, as a result of measuring the absorbance at a wavelength of 660 nm using a spectrophotometer (UV-1600, Shimadzu Corporation), the absorbance of P25 aqueous solution was much higher than 1, whereas it was not possible to measure streptavidin. The dispersion containing the converted photocatalytic titanium dioxide composite fine particles had an absorbance of 0.044, and no precipitate was formed. Furthermore, after these solutions were allowed to stand at room temperature in a dark place for 2 weeks, the absorbance at a wavelength of 660 nm was measured in the same manner. As a result, the absorbance of the P25 aqueous solution greatly exceeded 1 and was not measurable. The dispersion containing the photocatalytic titanium dioxide composite fine particles on which streptavidin was immobilized had an absorbance of 0.051. From this, it became clear that the dispersion containing the photocatalytic titanium dioxide composite fine particles in which streptavidin is immobilized in an aqueous solution has high transparency, uniform dispersibility, and is stable.

(実施例10)
光触媒性二酸化チタン複合微粒子を含む分散液の細胞毒性評価
実施例2で得られたストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子を含む分散液を、固形分が1.0%になるように10%血清を含むRPMI1640培地(GIBCO社製)で調整した。培養ガン細胞(Jurkat)を、10%血清を含むRPMI1640培地(GIBCO社製)で37℃、5%二酸化炭素雰囲気下で培養し、5.0×10 細胞数/mlとなるように調製した。これを再度20時間同条件で培養した。この細胞培養液に、上記ストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子を含む分散液を終濃度で0.1%、0.01%、0.001%、0.0001%になるように96穴プレート上で調整し、200μlの試験用細胞培養液とした。この試験用細胞培養液を37℃、5%二酸化炭素雰囲気下で20時間培養した後、それぞれ100μlを用いてCelltiter−Glo Luminescent Cell Viability Assay(Promega社製)により生細胞由来の発光反応を行い、イメージアナライザLAS−3000UVmini(富士フィルム社製)を用いてその発光量測定を行うことで細胞毒性の評価を行った。その結果を図8に示す。何も添加していないコントロールの培養細胞における発光量に比べ、どの分散液濃度においても同等の発光量を確認したことから、この濃度域のストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子を含む分散液は細胞毒性が認められないことが明らかになった。
(Example 10)
Cytotoxicity Evaluation of Dispersion Containing Photocatalytic Titanium Dioxide Composite Fine Particles The dispersion containing the photocatalytic titanium dioxide composite fine particles to which streptavidin was immobilized obtained in Example 2 was adjusted so that the solid content was 1.0%. It was prepared with RPMI 1640 medium (GIBCO) containing 10% serum. Cultured cancer cells (Jurkat) were cultured in RPMI 1640 medium (GIBCO) containing 10% serum at 37 ° C. in a 5% carbon dioxide atmosphere to prepare 5.0 × 10 4 cells / ml. . This was again cultured under the same conditions for 20 hours. In this cell culture solution, a dispersion containing the photocatalytic titanium dioxide composite fine particles to which the streptavidin is immobilized is adjusted to a final concentration of 0.1%, 0.01%, 0.001%, and 0.0001%. Prepared on a 96-well plate to give 200 μl of cell culture for testing. After culturing this test cell culture solution at 37 ° C. in a 5% carbon dioxide atmosphere for 20 hours, 100 μl each was used to perform a luminescent reaction derived from a living cell by Celltiter-Glo Luminescent Cell Viability Assay (manufactured by Promega), Cytotoxicity was evaluated by measuring the amount of luminescence using an image analyzer LAS-3000UVmini (manufactured by Fuji Film). The result is shown in FIG. Compared to the amount of luminescence in the control cultured cells to which nothing was added, the amount of luminescence was confirmed at any concentration of the dispersion, so it contains photocatalytic titanium dioxide composite fine particles with immobilized streptavidin in this concentration range. It became clear that the dispersion was not cytotoxic.

(実施例11)
光触媒性二酸化チタン複合微粒子を含む分散液の細胞殺傷性の評価
メラノーマ細胞株T−24を10%血清を含むF12培地(ギブコ社製)で100%コンフルエントにになるまで培養し、フラスコを100mMリン酸緩衝食塩水(pH7.4)で2回洗浄し、100mMトリプシン−エチレンジアミン三酢酸溶液を1ml添加し、10分静置後、フラスコ壁面より剥離した細胞を回収し、9mlの10%血清を含むF12培地で希釈した。細胞数を血球計算盤により計測し、5×104個の細胞を含む培地500μlをそれぞれ24穴マイクロタイタープレートに接種した。そこに、実施例2で得られたストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子を含む分散液を100mMリン酸緩衝食塩水(pH7.4)で調整し、最終濃度0%および0.01%となるよう100μl加え、ブラックライト(東芝社製)により波長340nmの紫外光を2.5mW/cm2で0分間および60分間照射し、24時間CO2インキュベータ内で培養した。Cell counting kit−8(同人化学社製)を試薬のマニュアルに従い調整して加え、96穴プレート上にて吸光度計Benchmark(Bio−Rad社製)を用い、波長450nmの吸光度測定を行った。その結果を表1に示す。
(Example 11)
Evaluation of cell killing property of dispersion containing photocatalytic titanium dioxide composite fine particles Melanoma cell line T-24 was cultured in F12 medium (Gibco) containing 10% serum until 100% confluent, and the flask was treated with 100 mM phosphorus. Wash twice with acid-buffered saline (pH 7.4), add 1 ml of 100 mM trypsin-ethylenediamine triacetic acid solution, leave it for 10 minutes, collect the cells detached from the flask wall, and contain 9 ml of 10% serum Diluted with F12 medium. The number of cells was counted with a hemocytometer, and 500 μl of a medium containing 5 × 10 4 cells was inoculated on each 24-well microtiter plate. Thereto, a dispersion containing photocatalytic titanium dioxide composite fine particles having immobilized streptavidin obtained in Example 2 was adjusted with 100 mM phosphate buffered saline (pH 7.4) to obtain final concentrations of 0% and 0.01%. 100 μl was added, and ultraviolet light with a wavelength of 340 nm was irradiated at 2.5 mW / cm 2 for 0 minutes and 60 minutes with a black light (manufactured by Toshiba), and cultured in a CO 2 incubator for 24 hours. Cell counting kit-8 (manufactured by Dojin Chemical Co., Ltd.) was added after adjusting according to the manual of the reagent, and absorbance at a wavelength of 450 nm was measured using an absorptiometer Benchmark (manufactured by Bio-Rad) on a 96-well plate. The results are shown in Table 1.

Figure 0003826402
Figure 0003826402

バックグラウンドの値を差し引いた紫外線照射0分間、ストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子濃度0%における生細胞由来の吸光度を1として相対生存率を示した。この結果から、ストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子が0.01%存在下で紫外線照射60分間の実験条件における場合のみ、相対生存率が減少しており、これによりストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子を含む分散液は細胞殺傷性が高いことが確認された。
The relative survival rate was shown with the absorbance derived from living cells at 1% of the photocatalytic titanium dioxide composite fine particle concentration with 0% of streptavidin immobilized for 0 minutes after UV irradiation after subtracting the background value. From this result, the relative survival rate decreased only when the photocatalytic titanium dioxide composite microparticles with immobilized streptavidin were present in an experimental condition of 0.01% UV irradiation for 60 minutes, thereby fixing the streptavidin. It was confirmed that the dispersion containing the converted photocatalytic titanium dioxide composite fine particles has high cell killing ability.

本発明は、癌細胞、内分泌撹乱物質などに対する分子認識能を有するタンパク質、抗体、DNAなどの生体分子を、水溶性高分子で修飾したアナターゼ型二酸化チタンに固定することにより、これらに対する分子認識能を有し、かつ紫外線の照射などの光触媒作用によりこれら物質の分解反応を示す光触媒性二酸化チタン複合微粒子を含む分散液を提供する。本発明の光触媒性二酸化チタン複合微粒子を含む分散液における光触媒性二酸化チタン複合微粒子は水、または水溶液中で目的とする物質を特異的に認識捕捉し、紫外線照射などにより目的物質を強力に分解する能力を有する。特に水系で使用できること、目的物質を正確に捕捉できること、強力な光触媒能を有することは、例えば水系の内分泌攪乱物質の分解処理や癌細胞の破壊などの医療への応用に極めて有用である。   The present invention relates to the ability of molecular recognition for cancer cells, endocrine disrupting substances, etc. by immobilizing biomolecules such as proteins, antibodies, DNA and the like on anatase-type titanium dioxide modified with water-soluble polymers. And a dispersion containing photocatalytic titanium dioxide composite fine particles that exhibit a decomposition reaction of these substances by photocatalytic action such as ultraviolet irradiation. The photocatalytic titanium dioxide composite fine particle in the dispersion containing the photocatalytic titanium dioxide composite fine particle of the present invention specifically recognizes and captures the target substance in water or an aqueous solution, and strongly decomposes the target substance by ultraviolet irradiation or the like. Have the ability. In particular, being able to be used in an aqueous system, being able to accurately capture a target substance, and having a strong photocatalytic ability are extremely useful for medical applications such as decomposition treatment of an aqueous endocrine disrupting substance and destruction of cancer cells.

本発明の光触媒性二酸化チタン複合微粒子を含む分散液を示す模式図である。It is a schematic diagram which shows the dispersion liquid containing the photocatalytic titanium dioxide composite fine particle of this invention. 本発明のストレプトアビジンを固定化した光触媒性二酸化チタン複合微粒子のビオチンダイマーによる凝集(吸光度の増加として表示)の結果を示す図である。It is a figure which shows the result of aggregation (it displays as an increase in a light absorbency) by the biotin dimer of the photocatalytic titanium dioxide composite fine particle which fix | immobilized the streptavidin of this invention. 本発明のフルオレセインイソチオシアネートで蛍光色素標識を行った光触媒性二酸化チタン複合微粒子を含む分散液の液滴の透過および蛍光による顕微鏡画像である。It is a microscope image by the transmission and the fluorescence of the droplet of the dispersion liquid containing the photocatalytic titanium dioxide composite fine particle which carried out fluorescent dye labeling with the fluorescein isothiocyanate of this invention. 細胞内に導入された本発明のフルオレセインイソチオシアネートで蛍光色素標識を行った光触媒性二酸化チタン複合微粒子の細胞取込み性を確認した結果を示す写真図である。It is a photograph figure which shows the result of having confirmed the cell uptake | capture property of the photocatalytic titanium dioxide composite fine particle which performed fluorescent dye label | marker with the fluorescein isothiocyanate of this invention introduce | transduced in the cell. 本発明の光触媒性二酸化チタン複合微粒子の各pHにおける平均分散粒径を測定した結果を示す図である。It is a figure which shows the result of having measured the average dispersion particle diameter in each pH of the photocatalytic titanium dioxide composite fine particle of this invention. 本発明の光触媒性二酸化チタン複合微粒子の各塩濃度における平均分散粒径を測定した結果を示す図である。It is a figure which shows the result of having measured the average dispersion particle diameter in each salt concentration of the photocatalytic titanium dioxide composite fine particle of this invention. 本発明の光触媒性二酸化チタン複合微粒子を含む分散液の均一性(透明度)を確認した結果を示す写真図である。It is a photograph figure which shows the result of having confirmed the uniformity (transparency) of the dispersion liquid containing the photocatalytic titanium dioxide composite fine particle of this invention. 本発明の光触媒性二酸化チタン複合微粒子を含む分散液の各濃度における細胞毒性を測定した結果を示す図である。It is a figure which shows the result of having measured the cytotoxicity in each density | concentration of the dispersion liquid containing the photocatalytic titanium dioxide composite fine particle of this invention.

Claims (20)

少なくとも表面の一部に光触媒性二酸化チタンが存在する微粒子の表面が、親水性高分子アミンにより表面を修飾された光触媒性二酸化チタン複合微粒子であって、該親水性高分子と光触媒性二酸化チタンが結合しているとともに、該親水性高分子のアミンに生体分子を固定化した光触媒性二酸化チタン複合微粒子を含んでなることを特徴とする、分散液。 At least a part of the surface of the fine particle having photocatalytic titanium dioxide is a photocatalytic titanium dioxide composite fine particle whose surface is modified with a hydrophilic polymer amine, and the hydrophilic polymer and the photocatalytic titanium dioxide are A dispersion liquid comprising photocatalytic titanium dioxide composite fine particles which are bound and have biomolecules immobilized on amines of the hydrophilic polymer. 前記微粒子は、光触媒性二酸化チタンの粒径が2〜200nmの光触媒性二酸化チタンであることを特徴とする、請求項1記載の分散液。 2. The dispersion according to claim 1, wherein the fine particles are photocatalytic titanium dioxide having a photocatalytic titanium dioxide particle size of 2 to 200 nm. 生体への導入が許容される水溶液中に、請求項1または2に記載の二酸化チタン複合微粒子を含んでなることを特徴とする、請求項1または2に記載の分散液。 The dispersion according to claim 1 or 2, comprising the titanium dioxide composite fine particles according to claim 1 or 2 in an aqueous solution that is allowed to be introduced into a living body. 前記水溶液がpH3〜9であることを特徴とする、請求項3に記載の分散液。 The dispersion according to claim 3, wherein the aqueous solution has a pH of 3-9. 前記水溶液がpH緩衝液であることを特徴とする、請求項4に記載の分散液。 The dispersion according to claim 4, wherein the aqueous solution is a pH buffer solution. 前記水溶液が塩濃度1M以下であることを特徴とする、請求項3〜5いずれか一項に記載の分散液。 The dispersion according to any one of claims 3 to 5, wherein the aqueous solution has a salt concentration of 1M or less. 前記水溶液が生理食塩水であることを特徴とする、請求項6に記載の分散液。 The dispersion according to claim 6, wherein the aqueous solution is physiological saline. 生体への導入が許容される包括体に、該光触媒性二酸化チタン複合微粒子が包括されていることを特徴とする、請求項1〜7のいずれか一項に記載の分散液。 The dispersion liquid according to any one of claims 1 to 7, wherein the photocatalytic titanium dioxide composite fine particles are included in a package that is allowed to be introduced into a living body. 前記包括体が、リポソーム、ウイルス粒子、中空ナノ粒子のいずれかであることを特徴とする、請求項8に記載の分散液。 The dispersion liquid according to claim 8, wherein the inclusion body is any one of a liposome, a virus particle, and a hollow nanoparticle. 前記微粒子は、磁性粒子と光触媒性二酸化チタンからなる複合微粒子であることを特徴とする、請求項1〜9のいずれか一項に記載の分散液。 The dispersion according to any one of claims 1 to 9, wherein the fine particles are composite fine particles made of magnetic particles and photocatalytic titanium dioxide. 前記光触媒性二酸化チタンがアナターゼ型であることを特徴とする、請求項1〜10のいずれか一項に記載の分散液。 The dispersion liquid according to any one of claims 1 to 10, wherein the photocatalytic titanium dioxide is anatase type. 前記親水性高分子が水溶性高分子であることを特徴とする、請求項1〜11のいずれか一項に記載の分散液。 The dispersion according to claim 1, wherein the hydrophilic polymer is a water-soluble polymer. 前記水溶性高分子がポリエチレンイミンであることを特徴とする、請求項1〜12のいずれか一項に記載の分散液。 The dispersion according to any one of claims 1 to 12, wherein the water-soluble polymer is polyethyleneimine. 前記生体分子がアミノ酸、ペプチド、単純タンパク質、および複合タンパク質のいずれかであることを特徴とする、請求項1〜13のいずれか一項に記載の分散液。 The dispersion according to any one of claims 1 to 13, wherein the biomolecule is any one of an amino acid, a peptide, a simple protein, and a complex protein. 前記単純タンパク質がレクチンであることを特徴とする、請求項14に記載の分散液。 The dispersion according to claim 14, wherein the simple protein is a lectin. 前記生体分子がヌクレオシド、ヌクレオチド、および核酸であることを特徴とする、請求項1〜13のいずれか一項に記載の分散液。 The dispersion according to claim 1, wherein the biomolecules are nucleosides, nucleotides, and nucleic acids. 前記生体分子が単糖、糖鎖、多糖、および複合糖質であることを特徴とする、請求項1〜13のいずれか一項に記載の分散液。 The dispersion according to any one of claims 1 to 13, wherein the biomolecules are monosaccharides, sugar chains, polysaccharides, and complex carbohydrates. 前記生体分子が単純脂質、複合脂質、リポソームであることを特徴とする、請求項1〜13のいずれか一項に記載の分散液。 The dispersion according to claim 1, wherein the biomolecule is a simple lipid, a complex lipid, or a liposome. 前記生体分子の代わりに、前記親水性高分子のアミンに蛍光色素を固定化したことを特徴とする、請求項1〜13のいずれか一項に記載の分散液。 The dispersion liquid according to any one of claims 1 to 13, wherein a fluorescent dye is immobilized on an amine of the hydrophilic polymer instead of the biomolecule. 前記分散液が、前記光触媒性二酸化チタン複合微粒子を重量百分率で0.0001〜0.1%含んでなることを特徴とする、請求項1〜19のいずれか一項に記載の分散液。
The dispersion liquid according to any one of claims 1 to 19, wherein the dispersion liquid contains 0.0001 to 0.1% of the photocatalytic titanium dioxide composite fine particles by weight.
JP2005276706A 2004-09-29 2005-09-22 Dispersion containing photocatalytic titanium dioxide composite fine particles Expired - Fee Related JP3826402B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005276706A JP3826402B2 (en) 2004-09-29 2005-09-22 Dispersion containing photocatalytic titanium dioxide composite fine particles
PCT/JP2006/306179 WO2007034586A1 (en) 2005-09-22 2006-03-27 Photocatalytic titanium dioxide microparticle, dispersion liquid thereof and process for producing the same
US11/883,212 US20080261805A1 (en) 2005-09-22 2006-03-27 Photocatalytic Titanium Dioxide Microparticle, Dispersion Liquid Thereof and Process for Producing the Same
US12/943,165 US20110060269A1 (en) 2005-09-22 2010-11-10 Method for killing cells using photocatalytic titanium dioxide particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004284801 2004-09-29
JP2005276706A JP3826402B2 (en) 2004-09-29 2005-09-22 Dispersion containing photocatalytic titanium dioxide composite fine particles

Publications (2)

Publication Number Publication Date
JP2006150344A JP2006150344A (en) 2006-06-15
JP3826402B2 true JP3826402B2 (en) 2006-09-27

Family

ID=36629250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276706A Expired - Fee Related JP3826402B2 (en) 2004-09-29 2005-09-22 Dispersion containing photocatalytic titanium dioxide composite fine particles

Country Status (1)

Country Link
JP (1) JP3826402B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009054243A1 (en) * 2007-10-25 2011-03-03 コニカミノルタエムジー株式会社 Aggregates of semiconductor nanoparticle phosphors and biological material labeling agents using the same
KR101072589B1 (en) 2009-08-05 2011-10-11 충남대학교산학협력단 Manufacturing Method of Visible Rays Active Anatase Type Titanium Dioxide Photocatalyst

Also Published As

Publication number Publication date
JP2006150344A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
US20080261805A1 (en) Photocatalytic Titanium Dioxide Microparticle, Dispersion Liquid Thereof and Process for Producing the Same
EP2000150B1 (en) Titanium oxide complex particle, dispersion solution of the particle, and process for production of the particle
Zhao et al. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects
Neves-Petersen et al. UV light effects on proteins: from photochemistry to nanomedicine
Kuo et al. Layered double hydroxide nanoparticles to enhance organ-specific targeting and the anti-proliferative effect of cisplatin
AU2006307134B2 (en) Ultrasonic cancer therapy accelerator and cytotoxic agent
US20060281087A1 (en) Titanium dioxide complex having molecule distinguishability
Priya Swetha et al. Graphene and graphene‐based materials in biomedical science
Kanehira et al. Properties of TiO2–polyacrylic acid dispersions with potential for molecular recognition
Tan et al. Magnetic iron oxide modified pyropheophorbide-a fluorescence nanoparticles as photosensitizers for photodynamic therapy against ovarian cancer (SKOV-3) cells
CN111803629A (en) Organic-inorganic hybrid multifunctional biological material based on nano cellulose crystals and preparation method and application thereof
Wang et al. Glutathione modified gold nanorods with excellent biocompatibility and weak protein adsorption, targeting imaging and therapy toward tumor cells
Mumtaz et al. Multifunctional nanodiamonds as emerging platforms for cancer treatment, and targeted delivery of genetic factors and protein medications—a review
Uniyal et al. Nano-bio fusion: Advancing biomedical applications and biosensing with functional nanomaterials
JP3835700B2 (en) Dispersion containing titanium dioxide composite with molecular discrimination
Lu et al. A photothermal nanoplatform with sugar-triggered cleaning ability for high-efficiency intracellular delivery
JP3826402B2 (en) Dispersion containing photocatalytic titanium dioxide composite fine particles
Ahlawat et al. Nanoparticles in biomedical applications
JP4169078B2 (en) Titanium oxide composite particles, dispersion thereof, and production method thereof
JP3894334B2 (en) Photocatalytic titanium dioxide fine particles
Zhou et al. AuNP and ssDNA capped mesoporous silica nanoparticles for laser controlled drug release
Mallakpour et al. Innovative progress in functionalized carbon nanomaterials, their hybrids, and nanocomposites: Fabrication, antibacterial, biomedical, bioactivity, and biosensor applications
JP4423677B2 (en) Cellicide
GÖZÜBENLİ et al. Hybrid nanomaterial: biocolloidals
Malhotra et al. Cellular Uptake of Upconversion Nanoparticles Based on Surface Polymer Coatings and Protein Corona

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees