JPWO2003060037A1 - Silica spheres containing fluorescent dye molecules - Google Patents

Silica spheres containing fluorescent dye molecules Download PDF

Info

Publication number
JPWO2003060037A1
JPWO2003060037A1 JP2003546639A JP2003546639A JPWO2003060037A1 JP WO2003060037 A1 JPWO2003060037 A1 JP WO2003060037A1 JP 2003546639 A JP2003546639 A JP 2003546639A JP 2003546639 A JP2003546639 A JP 2003546639A JP WO2003060037 A1 JPWO2003060037 A1 JP WO2003060037A1
Authority
JP
Japan
Prior art keywords
fluorescent dye
fitc
dye molecule
silica
containing silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003546639A
Other languages
Japanese (ja)
Inventor
弘一 三好
弘一 三好
教泰 中村
教泰 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Network Shikoku Co Ltd
Original Assignee
Techno Network Shikoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Network Shikoku Co Ltd filed Critical Techno Network Shikoku Co Ltd
Priority to JP2002380371A priority Critical patent/JP2003270154A/en
Publication of JPWO2003060037A1 publication Critical patent/JPWO2003060037A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0004Coated particulate pigments or dyes
    • C09B67/0008Coated particulate pigments or dyes with organic coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B

Abstract

製造上の安定性に優れ、性能にも優れた蛍光色素分子含有シリカ球を提供する。すなわち、下記構造式(1)で示される蛍光色素分子を使って調整した蛍光色素分子含有シリカ球である。R−CO−NH−(CH2)3−Si−(C2H5O)3(1)式中、RはNHSを側鎖に有することができる物質であり、FITC(フルオロセインイソチオシアネート)などを示す。Provided is a fluorophore-containing silica sphere that is excellent in production stability and performance. That is, a fluorescent dye molecule-containing silica sphere prepared using a fluorescent dye molecule represented by the following structural formula (1). R—CO—NH— (CH 2) 3 —Si— (C 2 H 5 O) 3 (1) In the formula, R is a substance that can have NHS in the side chain, and represents FITC (fluorescein isothiocyanate) or the like.

Description

発明の属する技術分野:
本発明は、検出系試薬として有用な蛍光色素分子含有シリカ球に関する。
従来の技術:
近年、蛍光色素を含む微粒子を利用した生化学的検査手法が各種研究されている。例えば、パッカード社によりアルファスクリーン技法が商品化されている。これは、直径250nmのラテックス製ドナーとアクセクタービーズ(登録商標)を使用したもので、ドナービーズとアクセクタービーズが結合した後、ドナービーズをレーザーで励起すると、内部の蛍光分子からの蛍光で一重項酸素分子が生成し、これがアクセクタービーズ中の蛍光物質と化学反応して化学発光を生じ、これを観測するというものである。
一方、内部に蛍光色素分子を入れたシリカ球の製法も各種提案されており、代表的なものとして、予めAPS(3−アミノプロピルオルソシリケート)に直接FITC(フルオロセインイソチオシアネート)を結合させて調製したものがあり(J.Phys.Chem.B 1999,103,1408−1415)、この種の製法の中で最も高濃度の蛍光色素分子をシリカ球内部に保持している。しかし、その最大濃度では、シリカ球内部で消光が起こることも報告されている。このように、蛍光色素分子をシリカで囲うことで、外部因子による消光(生化学的高分子等による励起エネルギーの吸収)がなく、各種検査に応用されることが期待されている。
ところが、本発明者らが更に検討を進めた結果、上記のシリカ球の製造上、FITCとAPSの結合性が高くなく、製造効率が悪いと共に、得られた粒子サイズが単一で数百ナノメーターである等の欠点があった。
発明の開示
本発明は、上記従来技術の課題に鑑みなされたものであり、製造上の安定性に優れ、性能にも優れた蛍光色素分子含有シリカ球の提供を目的とする。
本発明者らは、かかる目的を達成するため鋭意検討した結果、蛍光色素分子含有シリカ球に特定の化合物を導入することが極めて有効であることを見出し、本発明を完成するに至った。
即ち、本発明は下記構造式(1)で示される蛍光色素分子を使って調整した蛍光色素分子含有シリカ球である。
R−CO−NH−(CH−Si−(CO) (1)
式中、RはNHSを側鎖に有することができる物質である。
好ましくは、RはFITC(フルオロセインイソチオシアネート)、色素、磁性物質およびフリーラジカルより選ばれた物質である。
特に FITC−CO−NH−(CH−Si−(CO) (1’)
が好ましい。式(1’)中、FITCはフルオロセインイソチオシアネートを示す。
FITCは1例であって、その代わりにローダミンなどの他の色素、酸化鉄などの磁性物質、スピンラベル剤などの安定フリーラジカルなど、RはNHSを側鎖に有することができる物質をすべて含む。
発明の詳細な説明:
以下に本発明を詳しく説明する。本発明は、従来提案されている蛍光色素分子含有シリカ球である「FITC−APS−シリカ」の製造過程で、FITCに側鎖としてNHS(N−ハイドロキシサクシンイミドエステル)を持つFITC−NHSを使用し、APSのアミン基とFITC−NHSのCO基との強固な結合能を利用してFITC−CO−APSを調製したものであり、これによりその製造安定性等を顕著に改善したものである。
本発明の蛍光色素分子含有シリカ球の製造方法は、上記従来技術のものと同様でよい。即ち、N−ハイドロキシサクシンイミドエステルを側鎖に持つフルオロセインイソチオシアネートまたはビオチン分子を原料として使用し、これとシランカップリング剤である3−アミノプロピルオルソシリケートの結合により生成

Figure 2003060037
テトラオルソシリケートのアンモニアによる加水分解と重縮合により、室温で大気下、4:1のエタノール水溶液中で、テトラオルソシリケートを使って蛍光色素分子含有シリカ球を製造することができる。
より詳細には、FITC−CO−APSのDMSO溶液5mlを、水6mlに加えて、エタノール20mlと水溶液の比率を4:1として、これにテトラオルソシリケート0.3mlと約30%のアンモニア水2mlを加えて、一日撹拌しながら放置する。
この場合、テトラオルソシリケートの濃度とこの熟成の回数を変えることによって、得られるシリカ球のサイズを、直径数nmから数百nmへ、更にはμmオーダーへと自在に調整できる。
また、得られたシリカ球については、周知のウルトラフィルトレーションメソッドを用いて共存イオンを取り除いて精製したり、希望する粒子径分布に調整する。
本発明の蛍光色素分子含有シリカ球は、上記の通り、数ナノメーターサイズと数十ナノメーターサイズとすることができ、その表面にNHSを調製することでタンパク質に結合した場合に外れにくく、消光を受けにくい検出系試薬として有用である。また、従来の「FITC−NHS」分子は安定性が悪いため、抗体のタンパク質に結合するFITCは4分子程度であり、感度が低く、シャーレ上の決まった形のものにしか適用できない、即ち、実用性能に劣るものであったのに対し、本発明の蛍光色素分子含有シリカ球は、シリカ球内に最大で数千個のFITCが濃度消光することなく密集しているため、レーザー照射したときの発光が強く、感度が高いという優れた効果を有する。
また、本発明の蛍光色素分子含有シリカ球の場合、シリカは、化学的に不活性であると共に、その修飾が容易であることから、例えば、その表面をメソポーラスにしたり、新たに特定のタンパク質と結合するためのアクセプター分子を表面に固定することが可能である。
実施例
以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
N−ハイドロキシサクシンイミドエステルを側鎖に持つフルオロセインイソチオシアネートまたはビオチン分子を原料として使用し、シランカップリング剤である3−アミノプロピルオルソシリケートの結合により生成した化合物を核とし
Figure 2003060037
トのアンモニア水による加水分解と重縮合により室温で大気下、4:1のエタノール水溶液中で、テトラオルソシリケートを使って蛍光色素分子含有シリカ球を製造した。
このようにして調製した、ビオチン/シリカ粒子を、アビジン鎖を持つタンパク質と混合したところ、同試料のビオチンによって、アビジン−タンパク質の凝集が観測できた。
また、同様にして、フルオロセインイソチオシアネート分子を含むビオチン−シリカ粒子を調製し、同様の観察を行ったところ、同様の凝集が観測でき、フルオロセインイソチオシアネート−シリカ粒子によるタンパク質ラベルが確認できた。
実施例2
実施例1で調製した蛍光色素分子含有シリカ球(A:1st Growth,B:2nd Growth)の水溶液中の吸収スペクトルを図1に示す。1st Growth溶液の色は強い蛍光を有する黄色を呈しており、1ヶ月を経ても安定であった。これは、試料調製時の溶液pHが強アルカリ性であり、その状態のまま、シリカ球の内部に存在していることを示している。両者とも典型的な吸収ピークが490nmに観測でき、2nd Growthの吸収スペクトルは短波長側に向かって吸収が増大する、大きな粒子に基づく散乱効果が観測された。
分子吸光係数から推定されるフルオロセインイソチオシアネートの濃度は、1st Growthの場合、0.075mMであった。さらに、蛍光スペクトルを測定すると、両者とも典型的な蛍光ピークを有していた。
また、蛍光寿命測定の結果(図2)によると、水溶液中でのフリーな状態なもの(3.8nsec)とほぼ同じであったことから、本試料ではシリカ球内への濃縮による自己消光は起こっていないことがわかった。
また、同試料を透過型電子顕微鏡で観察すると、数nmから数百nmの粒子が観測でき、1st Growthの方(図3)は表面に凹凸があり、メソポーラス様を呈しており、2nd Growthの方(図4)は表面が滑らかであった。
【図面の簡単な説明】
図1は、実施例1で調製した蛍光色素分子含有シリカ球(A:1st Growth,B:2nd Growth)の水溶液中の吸収スペクトルを示す図である。
図2は、実施例1で調製した蛍光色素分子含有シリカ球(A:1st Growth,B:2nd Growth)の蛍光減衰曲線を示す図である。
図3は、実施例1で調製した蛍光色素分子含有シリカ球(1st Growth)のTEM写真(×90,000)である。
図4は、実施例1で調製した蛍光色素分子含有シリカ球(2st Growth)のTEM写真(×15,000)である。 TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluorescent sphere-containing silica sphere useful as a detection system reagent.
Conventional technology:
In recent years, various biochemical inspection methods using fine particles containing fluorescent dyes have been studied. For example, the Alpha Screen technique has been commercialized by Packard. This is a latex donor with a diameter of 250 nm and Axector beads (registered trademark). After the donor beads and Axeton beads are combined, when the donor beads are excited with a laser, the fluorescence from the internal fluorescent molecules is emitted. Singlet oxygen molecules are generated, which chemically react with the fluorescent substance in the accessor beads to generate chemiluminescence, which is observed.
On the other hand, various methods for producing silica spheres containing fluorescent dye molecules have been proposed. As a typical example, FITC (fluorescein isothiocyanate) is directly bonded to APS (3-aminopropyl orthosilicate) in advance. There is a preparation (J. Phys. Chem. B 1999, 103, 1408-1415), and the highest concentration of fluorescent dye molecules in this type of process is retained inside the silica sphere. However, it has also been reported that quenching occurs within the silica sphere at its maximum concentration. Thus, by enclosing the fluorescent dye molecule with silica, there is no quenching due to external factors (absorption of excitation energy by a biochemical polymer or the like), and it is expected to be applied to various inspections.
However, as a result of further studies by the present inventors, in the production of the above silica sphere, the binding property between FITC and APS is not high, the production efficiency is poor, and the obtained particle size is single and several hundred nanometers. There were drawbacks such as being a meter.
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide fluorescent dye molecule-containing silica spheres having excellent manufacturing stability and excellent performance.
As a result of intensive studies to achieve this object, the present inventors have found that it is extremely effective to introduce a specific compound into the fluorescent sphere-containing silica sphere, and have completed the present invention.
That is, the present invention is a fluorescent sphere molecule-containing silica sphere prepared by using a fluorescent pigment molecule represented by the following structural formula (1).
R—CO—NH— (CH 2 ) 3 —Si— (C 2 H 5 O) 3 (1)
In the formula, R is a substance capable of having NHS in the side chain.
Preferably, R is a substance selected from FITC (fluorescein isothiocyanate), a dye, a magnetic substance, and a free radical.
Particularly FITC-CO-NH- (CH 2 ) 3 -Si- (C 2 H 5 O) 3 (1 ')
Is preferred. In the formula (1 ′), FITC represents fluorescein isothiocyanate.
FITC is an example, and instead, R includes all substances that can have NHS in the side chain, such as other dyes such as rhodamine, magnetic substances such as iron oxide, stable free radicals such as spin labeling agents, etc. .
Detailed description of the invention:
The present invention is described in detail below. In the present invention, FITC-NHS having NHS (N-hydroxysuccinimide ester) as a side chain in FITC is used in the production process of “FITC-APS-silica”, which is a conventionally proposed silica sphere containing fluorescent dye molecules. FITC-CO-APS was prepared by utilizing the strong binding ability between the amine group of APS and the CO group of FITC-NHS, thereby significantly improving the production stability and the like. .
The method for producing the fluorescent dye molecule-containing silica sphere of the present invention may be the same as that of the above prior art. In other words, fluorescein isothiocyanate having N-hydroxysuccinimide ester in the side chain or biotin molecule is used as a raw material, and this is combined with silane coupling agent 3-aminopropyl orthosilicate.
Figure 2003060037
By the hydrolysis and polycondensation of tetraorthosilicate with ammonia, silica spheres containing fluorescent dye molecules can be produced using tetraorthosilicate in a 4: 1 aqueous ethanol solution at room temperature in the atmosphere.
More specifically, 5 ml of a FITC-CO-APS DMSO solution is added to 6 ml of water to make a ratio of 20 ml of ethanol to an aqueous solution of 4: 1, to which 0.3 ml of tetraorthosilicate and 2 ml of about 30% aqueous ammonia. And leave with stirring for one day.
In this case, by changing the concentration of tetraorthosilicate and the number of times of aging, the size of the silica spheres obtained can be freely adjusted from several nm to several hundred nm and further to the μm order.
The obtained silica spheres are purified by removing coexisting ions using a known ultrafiltration method, or adjusted to a desired particle size distribution.
As described above, the fluorescent dye molecule-containing silica sphere of the present invention can be several nanometers and several tens of nanometers in size, and it is difficult to come off when it is bound to a protein by preparing NHS on its surface. It is useful as a detection system reagent that is not easily affected. In addition, since the conventional “FITC-NHS” molecule has poor stability, the FITC that binds to the antibody protein is about 4 molecules, has low sensitivity, and can be applied only to a fixed form on the petri dish, Whereas the fluorescent sphere-containing silica spheres of the present invention were inferior in practical performance, a maximum of several thousand FITCs were concentrated in the silica sphere without quenching the concentration. Has an excellent effect of strong emission and high sensitivity.
In addition, in the case of the fluorescent dye molecule-containing silica sphere of the present invention, since silica is chemically inert and easy to modify, for example, its surface is made mesoporous, or newly added with a specific protein. An acceptor molecule for binding can be immobilized on the surface.
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
Example 1
Using fluorescein isothiocyanate or biotin molecule with N-hydroxysuccinimide ester in the side chain as a raw material, and using as a nucleus a compound formed by the binding of 3-aminopropyl orthosilicate, a silane coupling agent
Figure 2003060037
Fluorescent dye molecule-containing silica spheres were prepared using tetraorthosilicate in a 4: 1 aqueous ethanol solution at room temperature in the air by hydrolysis with ammonia water and polycondensation.
When the biotin / silica particles thus prepared were mixed with a protein having an avidin chain, aggregation of avidin-protein could be observed with biotin of the same sample.
Similarly, when biotin-silica particles containing fluorescein isothiocyanate molecules were prepared and observed in the same manner, the same aggregation was observed, and the protein label by fluorescein isothiocyanate-silica particles was confirmed. .
Example 2
FIG. 1 shows an absorption spectrum of the fluorescent dye molecule-containing silica sphere (A: 1st Growth, B: 2nd Growth) prepared in Example 1 in an aqueous solution. The color of the 1st Growth solution was yellow with strong fluorescence and was stable even after one month. This indicates that the solution pH at the time of sample preparation is strongly alkaline and exists in the silica sphere as it is. In both cases, a typical absorption peak was observed at 490 nm, and in the 2nd Growth absorption spectrum, a scattering effect based on large particles in which absorption increased toward the short wavelength side was observed.
The concentration of fluorescein isothiocyanate estimated from the molecular extinction coefficient was 0.075 mM in the case of 1st Growth. Furthermore, when the fluorescence spectrum was measured, both had typical fluorescence peaks.
In addition, according to the result of the fluorescence lifetime measurement (FIG. 2), it was almost the same as that in a free state (3.8 nsec) in an aqueous solution. I knew it was not happening.
Further, when the same sample is observed with a transmission electron microscope, particles of several nm to several hundred nm can be observed, and the 1st Growth (FIG. 3) has irregularities on the surface, exhibiting a mesoporous shape, and the 2nd Growth The surface (FIG. 4) was smooth.
[Brief description of the drawings]
FIG. 1 is a graph showing an absorption spectrum of an aqueous solution of a fluorescent dye molecule-containing silica sphere (A: 1st Growth, B: 2nd Growth) prepared in Example 1.
FIG. 2 is a diagram showing a fluorescence decay curve of the fluorescent dye molecule-containing silica sphere (A: 1st Growth, B: 2nd Growth) prepared in Example 1.
FIG. 3 is a TEM photograph (× 90,000) of the fluorescent dye molecule-containing silica sphere (1st Growth) prepared in Example 1.
FIG. 4 is a TEM photograph (× 15,000) of the fluorescent dye molecule-containing silica sphere (2st Growth) prepared in Example 1.

Claims (2)

下記構造式(1)で示される蛍光色素分子を使って調整した蛍光色素分子含有シリカ球。
R−CO−NH−(CH−Si−(CO) (1)
式中、RはNHSを側鎖に有することができる物質である。
Fluorescent dye molecule-containing silica spheres prepared using a fluorescent dye molecule represented by the following structural formula (1).
R—CO—NH— (CH 2 ) 3 —Si— (C 2 H 5 O) 3 (1)
In the formula, R is a substance capable of having NHS in the side chain.
RはFITC(フルオロセインイソチオシアネート)、色素、磁性物質およびフリーラジカルより選ばれた物質である請求項1に記載したシリカ球。2. The silica sphere according to claim 1, wherein R is a substance selected from FITC (fluorescein isothiocyanate), a dye, a magnetic substance, and a free radical.
JP2003546639A 2001-12-27 2001-12-27 Silica spheres containing fluorescent dye molecules Pending JPWO2003060037A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380371A JP2003270154A (en) 2001-12-27 2002-12-27 Fluorescent dye molecule-containing silica ball

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/011572 WO2003060037A1 (en) 2001-12-27 2001-12-27 Silica sphere containing fluorescent dye molecule

Publications (1)

Publication Number Publication Date
JPWO2003060037A1 true JPWO2003060037A1 (en) 2005-05-19

Family

ID=11738084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003546639A Pending JPWO2003060037A1 (en) 2001-12-27 2001-12-27 Silica spheres containing fluorescent dye molecules

Country Status (3)

Country Link
JP (1) JPWO2003060037A1 (en)
AU (1) AU2002216422A1 (en)
WO (1) WO2003060037A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101822A1 (en) * 2002-11-26 2004-05-27 Ulrich Wiesner Fluorescent silica-based nanoparticles
JP4759741B2 (en) * 2005-03-22 2011-08-31 国立大学法人徳島大学 Fluorescent material and X-ray sensitized substrate
ATE491001T1 (en) 2007-08-13 2010-12-15 Procter & Gamble Internat Operations Sa SPRAY DRYING PROCESS FOR PRODUCING DYE-CONTAINING PARTICLES
EP2062946B1 (en) * 2007-08-13 2012-06-06 Procter & Gamble International Operations SA Dye-loaded particles
JP5709292B2 (en) * 2007-12-06 2015-04-30 国立大学法人徳島大学 Nano-functional silica particles and method for producing the same
JP2012532211A (en) * 2009-06-30 2012-12-13 スリーエム イノベイティブ プロパティズ カンパニー Transparent fluorescent structure with improved fluorescence using nanoparticles, method for producing the same, and use thereof
CN103904804A (en) * 2012-12-28 2014-07-02 上海微电子装备有限公司 Coil unit for machine winding and planar motor using the coil unit
CN106118636A (en) * 2016-06-27 2016-11-16 高大元 A kind of preparation method of fluorescence silicon oxide nano-particle
CN110964341A (en) * 2019-11-29 2020-04-07 安徽捷融数据科技有限公司 Preparation method of natural dye with high washing fastness for cotton products

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918200A (en) * 1984-07-16 1990-04-17 Huls America Inc. Chromogenic and fluorogenic silanes and using the same
JPH05501611A (en) * 1989-11-13 1993-03-25 アフィマックス テクノロジーズ ナームロゼ ベノートスハップ Spatially addressable immobilization of antiligands on surfaces

Also Published As

Publication number Publication date
WO2003060037A1 (en) 2003-07-24
AU2002216422A1 (en) 2003-07-30

Similar Documents

Publication Publication Date Title
US8168447B2 (en) Multiple component nanoparticles for multiplexed signaling and optical encoding
US9187691B2 (en) Particles
Wu et al. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels
EP1490691B1 (en) Luminescent, spheroid, non-autofluorescent silica gel particles having variable emission intensities and frequencies
Ma et al. Highly bright water-soluble silica coated quantum dots with excellent stability
Yang et al. Nanometer fluorescent hybrid silica particle as ultrasensitive and photostable biological labels
US20070141726A1 (en) Detection via switchable emission of nanocrystals
US7381467B2 (en) Composite particles comprising ferromagnetic particle, fluorescent pigment and a silica coating
CN106566879A (en) Encoding microspheres used for biomolecular screening or detection, and preparation method and application of encoding microspheres
Rossi et al. Fluorescent silica nanospheres for digital counting bioassay of the breast cancer marker HER2/nue
JP5277431B2 (en) Fluorescent dye-containing nanosilica particles and preparation method thereof
JPWO2003060037A1 (en) Silica spheres containing fluorescent dye molecules
Zhang et al. Polymers mediate a one-pot route for functionalized quantum dot barcodes with a large encoding capacity
Sui et al. Plasmon-controlled narrower and blue-shifted fluorescence emission in (Au@ SiO 2) SiC nanohybrids
CN112322280A (en) Preparation method of piperazine functionalized carbon quantum dots and application of piperazine functionalized carbon quantum dots in oxytetracycline detection
JP2003270154A (en) Fluorescent dye molecule-containing silica ball
WO2009116408A1 (en) Process for producing core/shell-type semiconductor nanoparticles, and core/shell-type semiconductor nanoparticles
Gelamos et al. Up-converter nanophosphor Y2O2S: Er, Yb aminofunctionalized containing or not spherical silica conjugated with BSA
TWI453161B (en) Hydrophilic modified II-VI quantum dots and preparation method thereof
CN117866628A (en) Preparation method and encoding method of fluorescent encoding microsphere based on perovskite nanocrystalline
TURKUENSIS Emilia P