US20030215889A1 - Non-selective cation channel in neural cells and methods for treating brain swelling - Google Patents
Non-selective cation channel in neural cells and methods for treating brain swelling Download PDFInfo
- Publication number
- US20030215889A1 US20030215889A1 US10/391,561 US39156103A US2003215889A1 US 20030215889 A1 US20030215889 A1 US 20030215889A1 US 39156103 A US39156103 A US 39156103A US 2003215889 A1 US2003215889 A1 US 2003215889A1
- Authority
- US
- United States
- Prior art keywords
- channel
- atp
- swelling
- compound
- test compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 138
- 210000003061 neural cell Anatomy 0.000 title claims abstract description 95
- 206010048962 Brain oedema Diseases 0.000 title claims abstract description 76
- 208000006752 brain edema Diseases 0.000 title claims abstract description 76
- 108091005462 Cation channels Proteins 0.000 title description 17
- 108091006146 Channels Proteins 0.000 claims abstract description 408
- 150000001875 compounds Chemical class 0.000 claims abstract description 295
- 210000004027 cell Anatomy 0.000 claims abstract description 155
- 230000008961 swelling Effects 0.000 claims abstract description 107
- 239000000203 mixture Substances 0.000 claims abstract description 101
- 239000005557 antagonist Substances 0.000 claims abstract description 65
- ZNNLBTZKUZBEKO-UHFFFAOYSA-N glyburide Chemical compound COC1=CC=C(Cl)C=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZNNLBTZKUZBEKO-UHFFFAOYSA-N 0.000 claims abstract description 48
- 101000944267 Homo sapiens Inward rectifier potassium channel 4 Proteins 0.000 claims abstract description 46
- 229960004580 glibenclamide Drugs 0.000 claims abstract description 43
- 108010091821 Sulfonylurea Receptors Proteins 0.000 claims abstract description 37
- 102000018692 Sulfonylurea Receptors Human genes 0.000 claims abstract description 37
- 208000029028 brain injury Diseases 0.000 claims abstract description 30
- JLRGJRBPOGGCBT-UHFFFAOYSA-N Tolbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229960005371 tolbutamide Drugs 0.000 claims abstract description 27
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical class OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 claims abstract description 26
- 150000001768 cations Chemical class 0.000 claims abstract description 20
- 230000003405 preventing effect Effects 0.000 claims abstract description 14
- 238000012360 testing method Methods 0.000 claims description 110
- 239000012528 membrane Substances 0.000 claims description 93
- 230000000694 effects Effects 0.000 claims description 90
- 210000001130 astrocyte Anatomy 0.000 claims description 85
- 210000004556 brain Anatomy 0.000 claims description 44
- 238000002360 preparation method Methods 0.000 claims description 41
- 241001465754 Metazoa Species 0.000 claims description 33
- 201000006474 Brain Ischemia Diseases 0.000 claims description 27
- 206010008120 Cerebral ischaemia Diseases 0.000 claims description 26
- 206010008118 cerebral infarction Diseases 0.000 claims description 26
- 238000009472 formulation Methods 0.000 claims description 23
- 230000002401 inhibitory effect Effects 0.000 claims description 23
- 208000030886 Traumatic Brain injury Diseases 0.000 claims description 21
- 229940100389 Sulfonylurea Drugs 0.000 claims description 20
- 230000001086 cytosolic effect Effects 0.000 claims description 19
- 239000003937 drug carrier Substances 0.000 claims description 19
- 230000009529 traumatic brain injury Effects 0.000 claims description 19
- LXIKEPCNDFVJKC-QXMHVHEDSA-N tenidap Chemical compound C12=CC(Cl)=CC=C2N(C(=O)N)C(=O)\C1=C(/O)C1=CC=CS1 LXIKEPCNDFVJKC-QXMHVHEDSA-N 0.000 claims description 13
- 229960003676 tenidap Drugs 0.000 claims description 13
- 230000014509 gene expression Effects 0.000 claims description 12
- 108090000672 Annexin A5 Proteins 0.000 claims description 10
- 102000004121 Annexin A5 Human genes 0.000 claims description 10
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 claims description 9
- -1 sulfonylurea compound Chemical class 0.000 claims description 9
- 239000003112 inhibitor Substances 0.000 claims description 8
- 238000000159 protein binding assay Methods 0.000 claims description 8
- 238000012216 screening Methods 0.000 claims description 8
- 238000000338 in vitro Methods 0.000 claims description 7
- BOVGTQGAOIONJV-BETUJISGSA-N 1-[(3ar,6as)-3,3a,4,5,6,6a-hexahydro-1h-cyclopenta[c]pyrrol-2-yl]-3-(4-methylphenyl)sulfonylurea Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NN1C[C@H]2CCC[C@H]2C1 BOVGTQGAOIONJV-BETUJISGSA-N 0.000 claims description 5
- SWLAMJPTOQZTAE-UHFFFAOYSA-N 4-[2-[(5-chloro-2-methoxybenzoyl)amino]ethyl]benzoic acid Chemical compound COC1=CC=C(Cl)C=C1C(=O)NCCC1=CC=C(C(O)=O)C=C1 SWLAMJPTOQZTAE-UHFFFAOYSA-N 0.000 claims description 5
- FAEKWTJYAYMJKF-QHCPKHFHSA-N GlucoNorm Chemical compound C1=C(C(O)=O)C(OCC)=CC(CC(=O)N[C@@H](CC(C)C)C=2C(=CC=CC=2)N2CCCCC2)=C1 FAEKWTJYAYMJKF-QHCPKHFHSA-N 0.000 claims description 5
- 239000012190 activator Substances 0.000 claims description 5
- 229960000346 gliclazide Drugs 0.000 claims description 5
- 229950004994 meglitinide Drugs 0.000 claims description 5
- 229960000698 nateglinide Drugs 0.000 claims description 5
- OELFLUMRDSZNSF-BRWVUGGUSA-N nateglinide Chemical compound C1C[C@@H](C(C)C)CC[C@@H]1C(=O)N[C@@H](C(O)=O)CC1=CC=CC=C1 OELFLUMRDSZNSF-BRWVUGGUSA-N 0.000 claims description 5
- 229960002354 repaglinide Drugs 0.000 claims description 5
- TYZQFNOLWJGHRZ-UHFFFAOYSA-N 2-[2-(4,5-dihydro-1h-imidazol-2-yl)-1-phenylethyl]pyridine Chemical compound N=1CCNC=1CC(C=1N=CC=CC=1)C1=CC=CC=C1 TYZQFNOLWJGHRZ-UHFFFAOYSA-N 0.000 claims description 4
- 102100024645 ATP-binding cassette sub-family C member 8 Human genes 0.000 claims description 4
- 101000760570 Homo sapiens ATP-binding cassette sub-family C member 8 Proteins 0.000 claims description 4
- SVSKFMJQWMZCRD-MCDZGGTQSA-L MgADP Chemical compound [Mg+2].C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP(O)([O-])=O)[C@@H](O)[C@H]1O SVSKFMJQWMZCRD-MCDZGGTQSA-L 0.000 claims description 4
- 206010012601 diabetes mellitus Diseases 0.000 claims description 4
- 229960004346 glimepiride Drugs 0.000 claims description 4
- WIGIZIANZCJQQY-RUCARUNLSA-N glimepiride Chemical compound O=C1C(CC)=C(C)CN1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)N[C@@H]2CC[C@@H](C)CC2)C=C1 WIGIZIANZCJQQY-RUCARUNLSA-N 0.000 claims description 4
- 229950001332 midaglizole Drugs 0.000 claims description 4
- 229940125400 channel inhibitor Drugs 0.000 claims description 3
- 238000007918 intramuscular administration Methods 0.000 claims description 3
- 238000001990 intravenous administration Methods 0.000 claims description 3
- 238000007920 subcutaneous administration Methods 0.000 claims description 3
- 239000003814 drug Substances 0.000 abstract description 35
- 230000028161 membrane depolarization Effects 0.000 abstract description 19
- 230000006378 damage Effects 0.000 abstract description 17
- 230000001105 regulatory effect Effects 0.000 abstract description 11
- 230000035945 sensitivity Effects 0.000 abstract description 8
- GFFGJBXGBJISGV-UHFFFAOYSA-N adenyl group Chemical class N1=CN=C2N=CNC2=C1N GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 abstract description 3
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 92
- 239000000243 solution Substances 0.000 description 41
- 229940079593 drug Drugs 0.000 description 32
- 238000011282 treatment Methods 0.000 description 27
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 22
- 238000002474 experimental method Methods 0.000 description 22
- 210000000170 cell membrane Anatomy 0.000 description 21
- 230000000903 blocking effect Effects 0.000 description 19
- 230000005764 inhibitory process Effects 0.000 description 19
- FCTRVTQZOUKUIV-MCDZGGTQSA-M potassium;[[[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate Chemical compound [K+].C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)([O-])=O)[C@@H](O)[C@H]1O FCTRVTQZOUKUIV-MCDZGGTQSA-M 0.000 description 19
- 230000035699 permeability Effects 0.000 description 18
- 230000004913 activation Effects 0.000 description 17
- 230000030833 cell death Effects 0.000 description 17
- 230000003834 intracellular effect Effects 0.000 description 17
- 239000011734 sodium Substances 0.000 description 16
- 208000014674 injury Diseases 0.000 description 15
- 230000017074 necrotic cell death Effects 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 239000011148 porous material Substances 0.000 description 13
- 230000001225 therapeutic effect Effects 0.000 description 13
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 description 12
- 229960004042 diazoxide Drugs 0.000 description 12
- 230000004044 response Effects 0.000 description 12
- 102100024642 ATP-binding cassette sub-family C member 9 Human genes 0.000 description 11
- 101000760581 Homo sapiens ATP-binding cassette sub-family C member 9 Proteins 0.000 description 11
- 101001019117 Homo sapiens Mediator of RNA polymerase II transcription subunit 23 Proteins 0.000 description 11
- 108090000862 Ion Channels Proteins 0.000 description 11
- 102000004310 Ion Channels Human genes 0.000 description 11
- 208000027418 Wounds and injury Diseases 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 230000027455 binding Effects 0.000 description 11
- 229910001629 magnesium chloride Inorganic materials 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 10
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 10
- 239000007995 HEPES buffer Substances 0.000 description 10
- 208000006011 Stroke Diseases 0.000 description 10
- 238000010171 animal model Methods 0.000 description 10
- 150000001540 azides Chemical class 0.000 description 10
- 239000001110 calcium chloride Substances 0.000 description 10
- 229910001628 calcium chloride Inorganic materials 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 206010022498 insulinoma Diseases 0.000 description 10
- 239000003446 ligand Substances 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 208000021255 pancreatic insulinoma Diseases 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 102100021240 ATP-sensitive inward rectifier potassium channel 8 Human genes 0.000 description 9
- 206010067276 Cytotoxic oedema Diseases 0.000 description 9
- 101000614717 Homo sapiens ATP-sensitive inward rectifier potassium channel 8 Proteins 0.000 description 9
- 230000006931 brain damage Effects 0.000 description 9
- 238000000423 cell based assay Methods 0.000 description 9
- 231100000673 dose–response relationship Toxicity 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 150000002500 ions Chemical group 0.000 description 9
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 8
- 102100021177 ATP-sensitive inward rectifier potassium channel 11 Human genes 0.000 description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 8
- 101000614701 Homo sapiens ATP-sensitive inward rectifier potassium channel 11 Proteins 0.000 description 8
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 8
- 231100000874 brain damage Toxicity 0.000 description 8
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 8
- 230000034994 death Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 7
- 230000006907 apoptotic process Effects 0.000 description 7
- 239000008103 glucose Substances 0.000 description 7
- 230000004941 influx Effects 0.000 description 7
- 230000003204 osmotic effect Effects 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 108010010803 Gelatin Proteins 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000000556 agonist Substances 0.000 description 6
- 230000003178 anti-diabetic effect Effects 0.000 description 6
- 239000003472 antidiabetic agent Substances 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 239000002552 dosage form Substances 0.000 description 6
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 6
- 239000008273 gelatin Substances 0.000 description 6
- 229920000159 gelatin Polymers 0.000 description 6
- 235000019322 gelatine Nutrition 0.000 description 6
- 235000011852 gelatine desserts Nutrition 0.000 description 6
- 229960000988 nystatin Drugs 0.000 description 6
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 6
- 150000002892 organic cations Chemical class 0.000 description 6
- 230000036470 plasma concentration Effects 0.000 description 6
- 238000003757 reverse transcription PCR Methods 0.000 description 6
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 5
- 229930195725 Mannitol Natural products 0.000 description 5
- 239000013543 active substance Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 210000003743 erythrocyte Anatomy 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 238000000099 in vitro assay Methods 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 239000000594 mannitol Substances 0.000 description 5
- 235000010355 mannitol Nutrition 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 230000001338 necrotic effect Effects 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 230000002123 temporal effect Effects 0.000 description 5
- 239000000080 wetting agent Substances 0.000 description 5
- VRYALKFFQXWPIH-PBXRRBTRSA-N (3r,4s,5r)-3,4,5,6-tetrahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)CC=O VRYALKFFQXWPIH-PBXRRBTRSA-N 0.000 description 4
- XTWYTFMLZFPYCI-KQYNXXCUSA-N 5'-adenylphosphoric acid Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XTWYTFMLZFPYCI-KQYNXXCUSA-N 0.000 description 4
- LPMXVESGRSUGHW-UHFFFAOYSA-N Acolongiflorosid K Natural products OC1C(O)C(O)C(C)OC1OC1CC2(O)CCC3C4(O)CCC(C=5COC(=O)C=5)C4(C)CC(O)C3C2(CO)C(O)C1 LPMXVESGRSUGHW-UHFFFAOYSA-N 0.000 description 4
- XTWYTFMLZFPYCI-UHFFFAOYSA-N Adenosine diphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O XTWYTFMLZFPYCI-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 229940122199 Insulin secretagogue Drugs 0.000 description 4
- LPMXVESGRSUGHW-GHYGWZAOSA-N Ouabain Natural products O([C@@H]1[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O1)[C@H]1C[C@@H](O)[C@@]2(CO)[C@@](O)(C1)CC[C@H]1[C@]3(O)[C@@](C)([C@H](C4=CC(=O)OC4)CC3)C[C@@H](O)[C@H]21 LPMXVESGRSUGHW-GHYGWZAOSA-N 0.000 description 4
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 244000166550 Strophanthus gratus Species 0.000 description 4
- 102000004142 Trypsin Human genes 0.000 description 4
- 108090000631 Trypsin Proteins 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- PMMURAAUARKVCB-UHFFFAOYSA-N alpha-D-ara-dHexp Natural products OCC1OC(O)CC(O)C1O PMMURAAUARKVCB-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 208000002352 blister Diseases 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- LPMXVESGRSUGHW-HBYQJFLCSA-N ouabain Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@@H]1C[C@@]2(O)CC[C@H]3[C@@]4(O)CC[C@H](C=5COC(=O)C=5)[C@@]4(C)C[C@@H](O)[C@@H]3[C@@]2(CO)[C@H](O)C1 LPMXVESGRSUGHW-HBYQJFLCSA-N 0.000 description 4
- 229960003343 ouabain Drugs 0.000 description 4
- 239000006187 pill Substances 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- MNWBNISUBARLIT-UHFFFAOYSA-N sodium cyanide Chemical compound [Na+].N#[C-] MNWBNISUBARLIT-UHFFFAOYSA-N 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 239000012588 trypsin Substances 0.000 description 4
- TVZCRIROJQEVOT-LSDHHAIUSA-N (3r,4s)-3-hydroxy-2,2-dimethyl-4-(2-oxopyrrolidin-1-yl)-3,4-dihydrochromene-6-carbonitrile Chemical compound N1([C@H]2C3=CC(=CC=C3OC([C@@H]2O)(C)C)C#N)CCCC1=O TVZCRIROJQEVOT-LSDHHAIUSA-N 0.000 description 3
- IVVNZDGDKPTYHK-JTQLQIEISA-N 1-cyano-2-[(2s)-3,3-dimethylbutan-2-yl]-3-pyridin-4-ylguanidine Chemical compound CC(C)(C)[C@H](C)N=C(NC#N)NC1=CC=NC=C1 IVVNZDGDKPTYHK-JTQLQIEISA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 108010023798 Charybdotoxin Proteins 0.000 description 3
- 108010079245 Cystic Fibrosis Transmembrane Conductance Regulator Proteins 0.000 description 3
- 102100023419 Cystic fibrosis transmembrane conductance regulator Human genes 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 206010041899 Stab wound Diseases 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 210000003050 axon Anatomy 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000002800 charge carrier Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005094 computer simulation Methods 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- CNVQLPPZGABUCM-LIGYZCPXSA-N ctx toxin Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@H]3CSSC[C@@H](C(N[C@@H](CC=4C5=CC=CC=C5NC=4)C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CCCNC(N)=N)NC3=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CO)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3NC=NC=3)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N2)C(C)C)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H]([C@@H](C)O)NC1=O)=O)CCSC)C(C)C)[C@@H](C)O)NC(=O)[C@H]1NC(=O)CC1)C1=CC=CC=C1 CNVQLPPZGABUCM-LIGYZCPXSA-N 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000001804 emulsifying effect Effects 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 239000003701 inert diluent Substances 0.000 description 3
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical class N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 3
- 208000028867 ischemia Diseases 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 230000004660 morphological change Effects 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 239000002304 perfume Substances 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 229960002310 pinacidil Drugs 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 239000003765 sweetening agent Substances 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- NUKYPUAOHBNCPY-UHFFFAOYSA-N 4-aminopyridine Chemical compound NC1=CC=NC=C1 NUKYPUAOHBNCPY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 2
- 102000053171 Glial Fibrillary Acidic Human genes 0.000 description 2
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 102100033057 Inward rectifier potassium channel 4 Human genes 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108010067902 Peptide Library Proteins 0.000 description 2
- 108010001441 Phosphopeptides Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 102000004257 Potassium Channel Human genes 0.000 description 2
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 241000700157 Rattus norvegicus Species 0.000 description 2
- 101100467584 Rattus norvegicus Nras gene Proteins 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000003042 antagnostic effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000000043 benzamido group Chemical group [H]N([*])C(=O)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 230000008499 blood brain barrier function Effects 0.000 description 2
- 210000001218 blood-brain barrier Anatomy 0.000 description 2
- 210000005013 brain tissue Anatomy 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- 150000001767 cationic compounds Chemical group 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000036755 cellular response Effects 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229940110456 cocoa butter Drugs 0.000 description 2
- 235000019868 cocoa butter Nutrition 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000000779 depleting effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000002702 enteric coating Substances 0.000 description 2
- 238000009505 enteric coating Methods 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 2
- 229940093471 ethyl oleate Drugs 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- 108010068927 iberiotoxin Proteins 0.000 description 2
- VDNVVLOBNHIMQA-UHFFFAOYSA-N iberiotoxin Chemical compound C1SSCC(C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(O)=O)NC(=O)C(CCCNC(N)=N)NC(=O)C1NC(=O)C(CCCCN)NC(=O)C(CCCCN)NC(=O)CNC(=O)C(CCSC)NC(=O)C(NC(=O)C(CCCCN)NC(=O)CNC(=O)C(CCCNC(N)=N)NC(=O)C(CC(O)=O)NC(=O)C(C(C)C)NC(=O)CNC(=O)C(CC=1C=CC=CC=1)NC(=O)C(CC(C)C)NC(=O)C(CC(O)=O)NC(=O)C(CCCCN)NC1=O)CSSCC1NC(=O)C(C(C)C)NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(NC(=O)C(CCC(O)=O)NC(=O)C(CCCCN)NC(=O)C(CO)NC(=O)C(C(C)C)NC(=O)C(CO)NC1=O)CSSCC1NC(=O)C(CC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(O)=O)NC(=O)C(C(C)O)NC(=O)C(NC(=O)C1NC(=O)CC1)CC1=CC=CC=C1 VDNVVLOBNHIMQA-UHFFFAOYSA-N 0.000 description 2
- 150000002462 imidazolines Chemical class 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 229910001411 inorganic cation Inorganic materials 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- XMYQHJDBLRZMLW-UHFFFAOYSA-N methanolamine Chemical compound NCO XMYQHJDBLRZMLW-UHFFFAOYSA-N 0.000 description 2
- 229940087646 methanolamine Drugs 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 230000003228 microsomal effect Effects 0.000 description 2
- 238000000329 molecular dynamics simulation Methods 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 239000012457 nonaqueous media Substances 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 210000001428 peripheral nervous system Anatomy 0.000 description 2
- 238000002135 phase contrast microscopy Methods 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 108020001213 potassium channel Proteins 0.000 description 2
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 2
- 229910052939 potassium sulfate Inorganic materials 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 239000003206 sterilizing agent Substances 0.000 description 2
- 230000002739 subcortical effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 238000000856 sucrose gradient centrifugation Methods 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 230000008736 traumatic injury Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 210000004885 white matter Anatomy 0.000 description 2
- 238000002424 x-ray crystallography Methods 0.000 description 2
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 230000002407 ATP formation Effects 0.000 description 1
- 208000010444 Acidosis Diseases 0.000 description 1
- 208000002381 Brain Hypoxia Diseases 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 101000621959 Daboia siamensis Kunitz-type serine protease inhibitor C10 Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 206010013142 Disinhibition Diseases 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000016924 KATP Channels Human genes 0.000 description 1
- 108010053914 KATP Channels Proteins 0.000 description 1
- PMRVFZXOCRHXFE-FMEJWYFOSA-L Kad 1229 Chemical compound [Ca+2].C([C@@H](CC(=O)N1C[C@@H]2CCCC[C@@H]2C1)C(=O)[O-])C1=CC=CC=C1.C([C@@H](CC(=O)N1C[C@@H]2CCCC[C@@H]2C1)C(=O)[O-])C1=CC=CC=C1 PMRVFZXOCRHXFE-FMEJWYFOSA-L 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 238000004617 QSAR study Methods 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 102000015296 acetylcholine-gated cation-selective channel activity proteins Human genes 0.000 description 1
- 108040006409 acetylcholine-gated cation-selective channel activity proteins Proteins 0.000 description 1
- 230000007950 acidosis Effects 0.000 description 1
- 208000026545 acidosis disease Diseases 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 229960001305 cysteine hydrochloride Drugs 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003436 cytoskeletal effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 230000002999 depolarising effect Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000007878 drug screening assay Methods 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007831 electrophysiology Effects 0.000 description 1
- 238000002001 electrophysiology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 229960004979 fampridine Drugs 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 239000007897 gelcap Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006749 inflammatory damage Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 230000003914 insulin secretion Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 239000005367 kimax Substances 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 229960003365 mitiglinide Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000012120 mounting media Substances 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 230000000065 osmolyte Effects 0.000 description 1
- 239000002337 osmotic diuretic agent Substances 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 210000001152 parietal lobe Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 229940083254 peripheral vasodilators imidazoline derivative Drugs 0.000 description 1
- 229940021222 peritoneal dialysis isotonic solution Drugs 0.000 description 1
- 230000008823 permeabilization Effects 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- KUAPETJWSCRJET-UHFFFAOYSA-N propane-1,1,3-tricarbaldehyde Chemical compound O=CCCC(C=O)C=O KUAPETJWSCRJET-UHFFFAOYSA-N 0.000 description 1
- 238000012342 propidium iodide staining Methods 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229940001607 sodium bisulfite Drugs 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 229940001482 sodium sulfite Drugs 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 101150036453 sur-2 gene Proteins 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 description 1
- CFMYXEVWODSLAX-QOZOJKKESA-N tetrodotoxin Chemical compound O([C@@]([C@H]1O)(O)O[C@H]2[C@@]3(O)CO)[C@H]3[C@@H](O)[C@]11[C@H]2[C@@H](O)N=C(N)N1 CFMYXEVWODSLAX-QOZOJKKESA-N 0.000 description 1
- CFMYXEVWODSLAX-UHFFFAOYSA-N tetrodotoxin Natural products C12C(O)NC(=N)NC2(C2O)C(O)C3C(CO)(O)C1OC2(O)O3 CFMYXEVWODSLAX-UHFFFAOYSA-N 0.000 description 1
- 229950010357 tetrodotoxin Drugs 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
- G01N33/5058—Neurological cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/17—Amides, e.g. hydroxamic acids having the group >N—C(O)—N< or >N—C(S)—N<, e.g. urea, thiourea, carmustine
- A61K31/175—Amides, e.g. hydroxamic acids having the group >N—C(O)—N< or >N—C(S)—N<, e.g. urea, thiourea, carmustine having the group, >N—C(O)—N=N— or, e.g. carbonohydrazides, carbazones, semicarbazides, semicarbazones; Thioanalogues thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/18—Sulfonamides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/4015—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having oxo groups directly attached to the heterocyclic ring, e.g. piracetam, ethosuximide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/426—1,3-Thiazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4453—Non condensed piperidines, e.g. piperocaine only substituted in position 1, e.g. propipocaine, diperodon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/565—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/565—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
- A61K31/566—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol having an oxo group in position 17, e.g. estrone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/64—Sulfonylureas, e.g. glibenclamide, tolbutamide, chlorpropamide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
- A61K31/7064—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
- A61K31/7076—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0004—Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
- A61K49/0008—Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/10—Antioedematous agents; Diuretics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
- B32B37/1284—Application of adhesive
- B32B37/1292—Application of adhesive selectively, e.g. in stripes, in patterns
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0622—Glial cells, e.g. astrocytes, oligodendrocytes; Schwann cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5076—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving cell organelles, e.g. Golgi complex, endoplasmic reticulum
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6872—Intracellular protein regulatory factors and their receptors, e.g. including ion channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/756—Microarticles, nanoarticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/04—Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
Definitions
- the present invention relates to a novel ion channel found in neural cells which participates in the cation flux involved in cell swelling.
- the invention also provides a method of screening for compounds that inhibit the activity of the ion channel. Methods to screen for and identify antagonists of the NC Ca-ATP channel are provided.
- the invention further provides therapeutic methods for using compounds and compositions that inhibit the ion channel activity to inhibit or prevent the swelling of neural cells in brain. It has been discovered that neural cell swelling is mediated by the opening of a novel non-selective monovalent cationic ATP sensitive channel (the NC Ca-ATP channel) and that this channel is coupled to sulfonylurea receptor type 1.
- neural cell swelling and cell death can be inhibited by blocking the NC Ca-ATP channel of the present invention, particularly by antagonizing receptors coupled to this channel, such as antagonizing the SUR1.
- the invention also encompasses the use of such compounds and compositions, that modulate NC Ca-ATP channel activity to treat brain swelling.
- the present invention relates to methods for the treatment of brain swelling that results from brain trauma or cerebral ischemia, due to neural cell swelling and cell death.
- Cytotoxic edema is a well-recognized phenomenon clinically that causes brain swelling, which worsens outcome and increases morbidity and mortality in brain injury and stroke.
- Necrotic cell death is initiated by osmotic swelling following influx of Na + , the major extracellular osmolyte.
- accumulation of Na + intracellularly is regarded as a passive process that does not require activation of specific effectors but that is due instead to defective outward Na + pumping under conditions of low [ATP] i .
- [ATP] i the major extracellular osmolyte.
- Cell blebbing or swelling an indication of intracellular Na + overload, is generally regarded as an early sign of necrotic cell death. See, Leist and Nicotera, 1997; Majno and Joris, 1995.
- Non-selective cation channel is the non-selective cation channel, which are channels that are sensitive to Ca 2+ and ATP. More specifically, non-selective cation channels are activated by intracellular Ca 2+ ([Ca 2+ ] i ) and inhibited by intracellular ATP ([ATP] i ). Although Ca 2+ and ATP sensitive cation channels had been identified in a number of non-neural cell types, they have not been identified in astrocytes or any other neural cells.
- non-astrocyte channels comprise a heterogeneous group with incompletely defined characteristics. They exhibit single-channel conductances in the range of 25-35 pS, discriminate poorly between Na + and K + , are impermeable to anions, for the most part impermeable divalent cations, and they are blocked by similar concentrations of the adenine nucleotides ATP, ADP and AMP on the cytoplasmic side. The function of these non-selective ATP sensitive cation channels in these non-neural cell types remains enigmatic, in part because unphysiological concentrations of Ca 2+ are generally required for channel activation.
- K ATP channels ATP-sensitive potassium channel
- ATP-sensitive potassium channel K ATP channels
- SUR high affinity sulfonylurea receptor
- SUR1 SUR2A
- SUR2B SUR2C
- SUR2C SUR2C
- ATC ATP-binding cassette
- CFTR cystic fibrosis transmembrane conductance regulator
- the sulfonylurea receptor imparts sensitivity to antidiabetic sulfonylureas such as glibenclamide and tolbutamide.
- SUR is responsible for activation of the potassium channel by a chemically diverse group of agents termed K+ channel openers (SUR-activators), such as diazoxide, pinacidil, and cromakalin.
- K+ channel openers such as diazoxide, pinacidil, and cromakalin.
- K ATP channel in pancreatic ⁇ cells is formed from SUR1 linked with a K+ channel
- cardiac and smooth muscle K ATP channels are formed from SUR2A and SUR2B, respectively, linked to K+ channels. See, Fujita ad Kurachi, 2000.
- the present invention is directed to a newly characterized non-selective calcium and ATP sensitive monovalent cation channel, termed the NC Ca-ATP channel, which is present in neural cells and linked to an SUR
- the present invention further provides a method to screen for or identify antagonists to NC Ca-ATP channel activity.
- the present invention provides a method for the therapeutic use of antagonists, such as sulfonylureas and other SUR1 blockers, to inhibit this channel's activity and thereby prevent neural cell swelling and cell death and the concomitant nervous system damage that includes brain swelling and brain damage.
- antagonists such as sulfonylureas and other SUR1 blockers
- the invention is based, in part, on the discovery of a specific channel, the NC Ca-ATP channel, which is expressed in reactive neural cells after brain trauma.
- the present invention is directed to purified compositions containing a novel Ca 2+ -activated, [ATP] i -sensitive nonspecific cation channel, hereinafter the NC Ca-ATP channel.
- the compositions comprise mammalian neural cells or membrane preparations expressing the NC Ca-ATP channel, most preferably the mammalian neural cells are freshly isolated reactive astrocytes.
- a preferred example of such a purified composition containing the NC Ca-ATP channel is a membrane preparation derived from native reactive astrocytes.
- the NC Ca-ATP channel opens and the cells swell and die. However, if the NC Ca-ATP channel is blocked on such cells, the cells do not swell and die.
- the invention is also based, in part, on the discovery that the NC Ca-ATP channel is regulated by a type 1 sulfonylurea receptor, and that antagonists of this receptor are capable of blocking the NC Ca-ATP channel and inhibit neural cell swelling.
- the NC Ca-ATP channel of the present invention is distinguished by certain functional characteristics, the combination of which distinguishes it from known ion channels.
- the characteristics that distinguish the NC Ca-ATP channel of the present invention include, but are not necessarily limited to, the following: 1) it is a non-selective cation channels that readily allows passage of Na, K and other monovalent cations; 2) it is activated by an increase in intracellular calcium, and/or by a decrease in intracellular ATP; 3) it is regulated by sulfanylurea receptor type 1 (SUR1), which heretofore had been considered to be associated exclusively with K ATP channels such as those found in pancreatic ⁇ cells.
- SUR1 sulfanylurea receptor type 1
- the NC Ca-ATP channel of the present invention has a single-channel conductance to potassium ion (K+) between 20 and 50 pS.
- the NC Ca-ATP channel is also stimulated by Ca 2+ on the cytoplasmic side of the cell membrane in a physiological concentration range, where said concentration range is from 10 ⁇ 8 to 10 ⁇ 5 M.
- the NC Ca-ATP channel is also inhibited by cytoplasmic ATP in a non-physiological concentration range, where said concentration range is from 10 ⁇ 1 to 10 M.
- the NC Ca-ATP channel is also permeable to the following cations; K + , Cs + , Li + , Na + ; to the extent that the permeability ratio between any two of said cations is greater than 0.5 and less than 2.
- the invention relates to assays designed to screen for compounds or compositions that modulate the NC Ca-ATP channel, particularly compounds or compositions that act as antagonists of the channel, and thereby modulate neural cell swelling and the concomitant brain swelling.
- cell-based assays or non-cell based assays can be used to detect compounds that interact with, e.g., bind to, the outside (i.e., extracellular domain) of the NC Ca-ATP channel and/or its associated SUR1.
- the cell-based assays have the advantage in that they can be used to identify compounds that affect NC Ca-ATP channel biological activity (i.e., depolarization).
- the invention also provides a method of screening for and identifying antagonists of the NC Ca-ATP channel, by contacting neural cells with a test compound and determining whether the test compound inhibits the activity of the NC Ca-ATP channel.
- methods for identifying compounds that are antagonists of the NC Ca-ATP are provided.
- therapeutic compounds of the present invention, including NC Ca-ATP antagonists are identified by the compound's ability to block the open channel or to prevent channel opening, by quantifying channel function using electrophysiological techniques to measure membrane current through the channel.
- NC Ca-ATP antagonists include compounds that are NC Ca-ATP channel inhibitors, NC Ca-ATP channel blockers, SUR1 antagonists, SUR1 inhibitors, and/or a compounds that reduce the magnitude of membrane current through the channel.
- channel function can be measured in a preparation of neural cells from a human or animal, and the test compound can be brought into contact with the cell preparation by washing it over the cell preparation in solution.
- the invention further provides a method of screening for sulfonylurea compounds that may act as antagonists of the NC Ca-ATP channel.
- the present invention relates to drug screening assays to identify compounds for the treatment of brain swelling, such as the swelling that occurs after brain injury or cerebral ischemia by using the NC Ca-ATP channel as a target.
- the invention also relates to compounds that modulate neural cell swelling via the NC Ca-ATP channel.
- the present invention also relates to the treatment of brain swelling by targeting the NC Ca-ATP channel.
- the invention also encompasses agonists and antagonists of the NC Ca-ATP channel, including small molecules, large molecules, and antibodies, as well as nucleotide sequences that can be used to inhibit NC Ca-ATP channel gene expression (e.g., antisense and ribozyme molecules).
- An antagonists of the NC Ca-ATP channel includes compounds capable of (1) blocking the channel, (2) preventing channel opening, and/or (3) reducing the magnitude of membrane current through the channel.
- the invention also encompasses the use of such compounds and compositions, that modulate NC Ca-ATP channel activity to treat brain swelling. Further provided is a method of preventing brain swelling and the resulting brain damage through the therapeutic use of antagonists to the NC Ca-ATP channel.
- the therapeutic antagonist can be administered to or into the brain. Such administration to the brain includes injection directly into the brain, particularly in the case where the brain has been rendered accessible to injection due to trauma to the skull.
- the invention further provides the therapeutic use of sulfonylurea compounds as antagonists to the NC Ca-ATP channel to prevent cell swelling in brain.
- the sulfonylurea compound is glibenclamide.
- the sulfonylurea compound is tolbutamide.
- FIG. 1 shows whole cell current clamp recording before and after exposure to ouabain and before and after exposure to NaN 3 .
- FIG. 1B shows whole cell voltage-clamp recordings during ramp pulses (a) before and (b) after exposure to NaN 3 ; (c) is the difference current.
- FIG. 1C shows whole cell voltage-clamp recordings during step pulses (a) before and (b) after exposure to NaN 3 ; (c) is the difference current.
- FIG. 1A shows whole cell current clamp recording before and after exposure to ouabain and before and after exposure to NaN 3 .
- FIG. 1B shows whole cell voltage-clamp recordings during ramp pulses (a) before and (b) after exposure to NaN 3 ; (c) is the difference current.
- FIG. 1C shows whole cell voltage-clamp recordings during step pulses (a) before and (b) after exposure to NaN 3 ; (c) is the difference current.
- FIG. 1D shows cell-attached patch recording of single ion channel openings induced by NaN 3 at membrane potentials of (3) ⁇ 80 mV and (4) 80 mV, compared to control patches at membrane potentials of (1) 80 mV and (2) ⁇ 80 mV.
- FIG. 1E shows the cell-attached patch currents of FIG. 1D, shown at higher time resolution.
- FIG. 1F shows the cell-attached patch single-channel current-voltage relationship.
- FIG. 2 shows single channel currents recorded in an inside-out patch at different membrane potentials; dotted line indicates channel closing.
- FIG. 2B is a plot of inside-out patch single channel amplitude vs. membrane potentials.
- FIG. 3 shows single channel currents recorded in an inside-out patch with various alkaline ions substituting for K + in the pipette; dotted line indicates channel closing.
- FIG. 3B is a plot of channel amplitude vs. membrane potential with various alkaline ions substituting for K + in the pipette.
- FIG. 3C is a plot of channel amplitude measured in inside-out patches vs. voltage with Ca 2+ and Mg 2+ substituting for K + in the pipette. To estimate channel pore size, FIG.
- 3D is a plot illustrating the relationship between the permeability (relative to Cs + ) and the molecular radius of a series of monovalent organic cations, which included: (a) methanolamine, (b) guanidium, (c) ethanolamine, (d) diethylamine, (e) piperazine, (f) Tris, and (g) N-methylglucamine, data indicating an equivalent pore size of 0.67 nm.
- FIG. 4 (comprised of FIGS. 4 A and 4 B); FIG. 4A shows single channel recordings in an inside-out patch in the absence and presence of cytoplasmic ATP.
- FIG. 4B is a plot of normalized open channel probability (n ⁇ Po) vs. concentration of cytoplasmic ATP.
- FIG. 5 shows current records from an inside-out patch exposed to different concentrations of [Ca 2+ ] i .
- FIG. 5B the values of n ⁇ Po measured at the membrane potentials and [Ca 2+ ] i indicated.
- FIG. 6 is a plot of mean single channel amplitudes obtained in an inside-out patch configuration at different potentials studied and with different [Mg 2+ ] i ; the dotted line indicates 35 pS conductance.
- FIG. 7 shows that presence of SUR1 mRNA and absences of Kir6.1 and Kir 6.2 in reactive astrocytes.
- Lanes 3 and 5 in FIG. 7A show the presence of SUR1 in insulinoma RIN-m5f cells and NRAs, respectively.
- Lanes 4 and 6 in FIG. 7A show that SUR2 is absent in both cell types.
- Lanes 3 and 4 in FIG. 7B show that Kir6.1 is present in insulinoma RIN-m5f cells and Kir6.2 is absent from the insulinoma cells, respectively.
- Lanes 5 and 6 in FIG. 7B show that neither Kir6.1 nor Kir6.2 is present in NRAs, respectively.
- FIG. 8 shows current recordings in an inside-out patch to illustrate the effects of tryptic digestion on channel sensitivity to glibenclamide and ATP.
- FIG. 9 shows that the channel activator diazoxide can elicit channel activities under outside-out patch recording configuration.
- FIG. 9A shows the outside-out patch recordings with Na azide and diazoxide applied to the extracellular side of the membrane.
- FIG. 9B shows the current records obtained from the segments marked with the corresponding numbers in FIG. 9A, at higher temporal resolution.
- FIG. 10 shows outside-out patch recordings (a) before, (b) during, and (c) after application of glibenclamide to the extracellular side of the membrane.
- FIG. 10B shows the current records of FIG. 10A at higher temporal resolution.
- FIG. 10C show a plot of mean single channel amplitudes at the different potentials studied; the slope of the data indicates 35 pS conductance of the glibenclamide-sensitive channel.
- FIG. 11 shows that sulfonylurea compounds inhibit channel activities.
- FIG. 11A shows the outside-out patch recordings with various concentrations of tolbutamide applied to the extracellular side of the membrane.
- FIG. 11B shows the dose-response curves for inhibition of open channel probability by glibenclamide and tolbutamide to provide a normalized open channel probability (n ⁇ Po); data were fit to a standard logistic equation, with a Hill coefficient of 1 and half-maximum inhibition of 48 nM and 16.1 ⁇ M; values plotted are means ( ⁇ SE) from 3 and 5 patches for Glibenclamide and Tolbutamide, respectively.
- FIGS. 12A, 12B, 12 C, 12 D, 12 E, 12 F, 12 G, 12 H and 12 I show the probability of channel opening in the presence of 0 ⁇ M, 3 ⁇ M, and 30 ⁇ M tolbutamide, respectively.
- FIGS. 12D, 12E and 12 F show the distribution of open channel dwell times in the presence of 0 ⁇ M, 3 ⁇ M, and 30 ⁇ M tolbutamide, respectively.
- FIGS. 12G, 12H and 12 I show the distribution of closed channel dwell times in the presence of 0 ⁇ M, 3 ⁇ M, and 30 ⁇ M tolbutamide, respectively.
- FIG. 13 shows outside-out patch recordings with diazoxide applied to the extracellular side of the membrane.
- FIG. 13B shows current records at higher temporal resolution after application of diazoxide and at different membrane potentials.
- FIG. 13C shows a plot of mean single channel amplitudes at the different potentials studied; the slope indicates 35 pS conductance of glibenclamide-sensitive channel.
- FIGS. 14A, 14B and 14 C are scanning electron micrographs of freshly isolated native reactive astrocytes.
- FIG. 14A shows the cells when formaldehyde-glutaraldehyde fixation was initiated under control conditions;
- FIG. 14B shows the cells fixed 5 min after exposure to 1 mM NaN3.
- FIG. 14C shows the cells fixed 25 min after exposure to 1 mM NaN3. Bar, 12 ⁇ m.
- FIG. 15 (comprised of FIGS. 15A, 15B and 15 C);
- FIG. 15A has photomicrographs of the epifluorescence images of cells exposed to different compounds and labeled with propidium iodide (upper panel a, b and c) or annexin V (lower panel d, e and f). The compounds were: control (a & d), 1 mM Na azide (b & e), 1 mM Na azide plus 1 ⁇ M glibenclamide (c & f).
- FIG. 15B has bar graphs showing cell-counts for propidium iodide labeling; pairwise multiple comparisons indicated a significant difference (p ⁇ 0.05) with Na azide treatment;
- FIG. 15C has bar graphs showing cell-counts for annexin V staining; pairwise multiple comparisons indicated no significant difference with any treatment.
- the present invention relates to a novel ion channel whose function underlies the swelling of mammalian neural cells, such as in response to ATP depletion; the use of the channel to screen for channel inhibitors, and the use of inhibitors of the channel function to prevent this cell swelling response, which characterizes brain damage in cerebral ischemia and traumatic brain injury.
- Sodium azide (NaN 3) is a metabolic toxin used to induce “chemical hypoxia” by depleting intracellular ATP. See, Swanson, 1992.
- the morphological and electrophysiological responses of neural cells to NaN 3 are examined in a novel cell preparation.
- Freshly isolated native reactive astrocytes (NRAs) from adult rat brain are used and studied in a native state immediately after their isolation.
- Reactive astrocytes are astrocytes that have been activated or stimulated in vivo, such as those associated with brain or neural injury.
- Reactive astrocytes are astrocytes that have been activated or stimulated in vivo, such as those associated with brain or neural injury.
- TBI traumatic brain injury
- reactive astrocytes are found in proximity to the injury.
- the majority of reactive astrocytes surrounding an injury site in the brain are reactive astrocytes.
- Type 1 reactive astrocytes comprise >80% of recoverable reactive astrocytes, whereas type 2 reactive astrocytes comprise about
- neural cells includes astrocytes.
- reactive astrocytes means astrocytes found in brain at the site of a lesion or ischemia.
- native reactive astrocytes or “NRAs” means reactive astrocytes that are freshly isolated from brain.
- freshly isolated refers to NRAs that have been purified from brain, particularly NRAs that were purified from about 0 to about 72 hours previously.
- NRAs When NRAs are referred to as being “purified from brain” the word “purified” means that the NRAs are isolated from other brain tissue and/or implanted gelatin or sponge and does not refer to a process that simply harvests a population of cells from brain without further isolation of the cells.
- the NC Ca-ATP channel found in reactive astrocytes is present only in freshly isolated cells; the NC Ca-ATP channel is lost shortly after culturing the cells.
- NRAs provide an in vitro model that is more similar to reactive astrocytes as they exist in vivo in the brain, than astrocytes grown in culture.
- the terms “native” and “freshly isolated” are used synonymously.
- the term “isolated neural cells” means neural cells isolated from brain.
- Reactive astrocytes are produced in vivo and harvested from brain according to a method system similar to that described by Perillan. See, Perillan et al., 1999; Perillan et al., 2000. Harvested cells are then isolated and not cultured; rather, the freshly isolated reactive astrocytes are studied in a native state immediately after their isolation from the brain.
- NC Ca-ATP channel of the present invention which is newly identified in NRAs and present in >90% of membrane patches from such cells, is distinguished from previously reported non-selective calcium and ATP channels by exhibiting significantly different properties.
- These distinguishing properties of the NC Ca-ATP of the present invention include: being activated by submicromolar [Ca] and exhibiting a different sensitivity to block by various adenine nucleotides.
- NC Ca-ATP channel of the present invention Opening of the NC Ca-ATP channel of the present invention by ATP depletion causes profound membrane depolarization, which precedes blebbing of the cell membrane.
- the NC Ca-ATP channel opens to allow Na + influx that leads to cell swelling.
- This channel is regulated by sulfonylurea receptor type 1 (SUR1).
- SUR1 sulfonylurea receptor type 1
- the channel can be blocked by sulfonylurea, such as glibenclamide and tolbutamide; treatment with glybenclamide results in significant reduction in swelling and blebbing induced by chemical ATP depletion. This channel participates in the cation flux involved in cell swelling.
- a method of the present invention includes the use of sulfonylurea compounds to inhibit the flow of current through the NC Ca-ATP channel and inhibit blebbing related to channel opening. Also, use of sulfonylurea compounds and other compounds that inhibit the flow of current through the NC Ca-ATP channel, thus can have a therapeutic preventative effect on cell swelling in brain.
- the membrane preparation is derived from neural cells, such as isolated native reactive astrocytes (NRAs), preferably freshly isolated native reactive astrocytes.
- the NC Ca-ATP channel in the composition has the following characteristics: (a) it is a 35 pS type channel; (b) it is stimulated by cytoplasmic Ca 2+ ; (c) it opens when cytoplasmic ATP is less than about 0.8 ⁇ M; and (d) it is permeable to the monovalent cations K + , Cs + , Li + and Na + and it can be blocked by antagonists of the type 1 sulfonylurea receptor.
- the composition may contain a preparation of neural cells expressing the NC Ca-ATP channel or a membrane preparation expressing the NC Ca-ATP channel, such as a membrane preparation derived from isolated native reactive astrocytes (NRAs).
- the effect of the compound on this channel may include: (a) blocking the NC Ca-ATP channel; (b) closing the NC Ca-ATP channel; (c) preventing the NC Ca-ATP channel from opening; and (d) reducing the magnitude of membrane current through the NC Ca-ATP channel. It is also an object of the present invention to identify a compound that is an NC Ca-ATP antagonist, including an NC Ca-ATP channel inhibitor, an NC Ca-ATP channel blocker, a SUR1 antagonist, SUR1 inhibitor, and/or a compound capable of reducing the magnitude of membrane current through the channel.
- Yet another object of the present invention is to provide a method for identifying compounds that inhibit brain swelling, comprising: (a) contacting a test compound with a composition comprising the NC Ca-ATP channel, and (b) determining whether the test compound inhibits neural cell swelling, wherein a test compound that inhibits neural cell swelling is identified as a compound for inhibiting brain swelling.
- a further object of the present invention provides a method for identifying compounds that inhibit neural cell swelling in an animal, comprising: (a) contacting a test compound with a composition comprising the NC Ca-ATP channel and determining whether the test compound blocks the channel, and (b) administering the test compound to an animal having a brain injury or cerebral ischemia, and determining whether the test compound inhibits brain swelling of the treated animal, wherein test compounds that inhibit brain swelling are identified as compounds that inhibit neural cell swelling in an animal.
- the composition preferably comprises a preparation of neural cells expressing the NC Ca-ATP channel or a membrane preparation expressing the NC Ca-ATP channel, which preferably is derived from isolated native reactive astrocytes (NRAs). It is a further object of the present invention to provide the above methods using a compound that is an antagonist of a type 1 sulfonylurea receptor, such as a sulfonylurea compound, a benzamido derivative or an imidazoline derivative.
- a type 1 sulfonylurea receptor such as a sulfonylurea compound, a benzamido derivative or an imidazoline derivative.
- the determining step include, but are not limited to, detecting or identifying swelling of the native reactive astrocytes, such as by microscopic observation of cell appearance (normal, blebbing, swelling); measuring channel currents; measuring membrane potential; detecting expression of annexin V; detecting expression of propidium iodide; in vitro binding assays; and combinations thereof.
- Such administration may be delivery directly to the brain, intravenous, subcutaneous, intramuscular, intracutaneous, intragastric and oral administration.
- Examples of such compounds include antagonist of a type 1 sulfonylurea receptor, such as sulfonylureas like glibenclamide and tolbutamide, as well as other insulin secretagogues such as repaglinide, nateglinide, meglitinide, midaglizole, LY397364, LY389382, gliclazide, glimepiride, MgADP, and combinations thereof.
- a type 1 sulfonylurea receptor such as sulfonylureas like glibenclamide and tolbutamide
- insulin secretagogues such as repaglinide, nateglinide, meglitinide, midaglizole, LY397364, LY389382, gliclazide, glimepiride, MgADP, and combinations thereof.
- Reactive astrocytes are produced in vivo and harvested from adult brain in the following manner: gelatin sponges (Gelfoam®, Upjohn Co., Kalamazoo Mich.) are implanted into a stab wound in the parietal lobe of 8 week old Wistar rats as described herein. Sponge pieces are harvested at 8 days and washed three times in phosphate-buffered saline (PBS, pH 7.4) to remove adherent tissue.
- PBS phosphate-buffered saline
- the sponge pieces may be harvested earlier or later after implantation into a stab wound, with the preferred harvest being conducted from about 2 days to about 30 days after implantation, and the most preferred range being conducted from about 2 days to about 3 days after implantation.
- NRAs are freshly isolated from the sponge pieces in the following manner: washed pieces are placed in an Eppendorf tube containing artificial cerebrospinal fluid (aCSF) composed of (mM): 124 mM NaCl, 5.0 mM, 1.3 mM MgCl 2 , 2.0 mM CaCl 2 , 26 mM NaHCO 3 , and 10 mM D-glucose; at pH 7.4, ⁇ 290 mOsm, wherein the aCSF contains papain 20 U/ml, trypsin inhibitor 10 mg/ml and DNase 0.01% (Worthington, Lakewood, N.J.), the entirety of which is referred to as a “digestion system.” This digestion system is transferred to an incubator (humidified 90%/10% air/CO 2 , 37° C.) for 20 minutes, and is gently triturated every 5 minutes. The cell suspension is centrifuged at 3,000 rpm for 1 minute. The pelleted cells are res
- the pelleted cells prior to resuspension in aCSF, can be further purified by removing red blood cells (RBCs) using density gradient centrifugation in Histopaque-1077 (Sigma Diagnostics, St. Louis, Mo.). This further purification process can produce a population of cells in which ⁇ 1% are RBCs, as determined by phase contrast microscopy.
- RBCs red blood cells
- Membrane currents are amplified (Axopatch 200A, Axon Instruments, Foster City, Calif.) and sampled on-line at 5 kHz using a microcomputer equipped with a digitizing board (Digidata 1200A, Axon Instruments) and running Clampex software (version 8.0, Axon Instruments).
- Membrane currents are recorded in intact cells using both the cell-attached and the nystatin-perforated whole-cell configurations, according to methods described in Horn and Marty, 1988.
- Membrane currents are recorded in cell-free isolated membrane patches, using both the inside-out and outside-out configurations, such as those described in Hamill et al., 1981.
- Patch clamp pipettes pulled from borosilicate glass (Kimax, Fisher Scientific, Pittsburgh, Pa.), have resistances of 6-8 M ⁇ for single channel recordings and 2-4 M ⁇ for experiments using the nystatin-perforated whole-cell technique.
- the bath electrode is a Ag/AgCl pellet (Clark Electromedical, Reading, England) that is placed directly in the bath except when the bath [Cl ⁇ ] is altered, in which case an agar bridge made with 3 M KCl is used to connect to the bath.
- the terms “intracellular” and “cytoplasmic” are interchangeable, as are the terms “extracellular” and “external”.
- voltage clamp ion channel opening and closing
- current clamp ion channel opening and closing
- the “whole-cell” experimental configuration refers to a situation in which a recording pipette penetrates the cell membrane so that the pipette solution is continuous with the cytoplasm or the membrane under the pipette is perforated using nystatin, the external solution is in contact with the extracellular membrane, and current or voltage recordings represent measurements from the entire cell membrane.
- the “cell-attached patch” experimental configuration refers to a situation in which the pipette contacts the cell so that the patch is still forming part of the intact cell membrane and channels in the patch are recorded.
- the “outside-out patch” experimental configuration refers to a situation in which an excised patch of cell membrane is sealed to the tip of a recording pipette so that the pipette solution is in contact with the extracellular side of the membrane, the external solution is in contact with the cytoplasmic side of the membrane, and current or voltage recordings represent measurements from the excised patch of membrane.
- the “inside-out patch” experimental configuration refers to a situation in which an excised patch of cell membrane is sealed to the tip of a recording pipette so that the pipette solution is in contact with the cytoplasmic side of the membrane, the external solution is in contact with the extracellular side of the membrane, and current or voltage recordings represent measurements from the excised patch of membrane.
- the term “patches” includes, but is not limited to: inside-out patches, outside-out patches, an excised patch of a cell membrane, or a cell-attached patch.
- the term “membrane preparation” includes patches as well as cell membranes isolated from mammalian cells or tissues. Isolated mammalian cell membranes are produced by methods well known in the art. One example of such a membrane preparation is a microsomal fraction purified from disrupted cells or a tissue sample by discontinuous sucrose gradient centrifugation.
- a nystatin perforated patch technique is used, with a bath solution containing (mM): NaCl 130, KCl 10, CaCl 2 1, MgCl 2 1, HEPES 32.5, glucose 12.5, pH 7.4.
- the pipette solution contains (mM): KCl 55, K 2 SO 4 75, MgCl 2 8, and HEPES 10, pH 7.2.
- Nystatin, 50 mg (Calbiochem) is dissolved in dimethylsulfoxide (DMSO), 1 ml.
- a bath solution is used containing (mM): NaCl 130, KCl 10, CaCl 2 1, MgCl 2 1, HEPES 32.5, glucose 12.5, pH 7.4.
- the pipette contains (mM): KCl 145, MgCl 2 1, CaCl 2 0.2, EGTA 5, HEPES 10, pH 7.28.
- the measured osmolarity of the extracellular solution is ⁇ 300 mOsm (Precision Systems, Natick, Mass.).
- a bath solution is used containing (mM): CsCl 145, CaCl 2 4.5, MgCl 2 1, EGTA 5, HEPES 32.5, glucose 12.5, pH 7.4.
- the pipette contains (mM): CsCl 145, MgCl 2 1, CaCl 2 0.2, EGTA 5, HEPES 10, pH 7.28.
- Cs+ in the above solutions is replaced with equimolar K+.
- Cs+ in the pipette is replaced by equimolar concentrations of individual test ions, except when using Ca 2+ or Mg 2+ , in which cases a concentration of 75 mM is used to facilitate seal formation (Cook et al., 1990).
- the pipette solution contains (mM): CsCl 145, MgCl 2 1, CaCl 2 0.2, EGTA 5, HEPES 10, pH 7.28.
- the standard bath solution contains (mM): CsCl 145, CaCl 2 4.5, MgCl 2 1, EGTA 5, HEPES 32.5, glucose 12.5, pH 7.4.
- Cs+in the bath is replaced with equimolar concentrations of test cation.
- Single-channel amplitudes used to calculate slope conductance are obtained by fitting a Gaussian function to an all-points amplitude histogram of records obtained at various potentials.
- the all-points histogram is fit to a Gaussian function and the area under the fitted curve for the open channel is divided by the area under the fitted curve for the closed plus open channel.
- Values of n ⁇ Po at different concentration of test agents are fit to a standard logistic equation using a least-squares method.
- each permeability is obtained from its reversal potential (Erev) by fitting to the Goldman-Hodgkin-Katz (GHK) equation well known in the art. See Goldman 1943; Hodgkin and Katz, 1949. Current-voltage data are fit to the GHK equation, assuming that both K+ and the test ion are permeant.
- GHK Goldman-Hodgkin-Katz
- the Stoke-Einstein radius is then converted to the molecular radius using correction factors read off from FIG. 6. 1 in Robinson and Stokes, 1970.
- a/a 0 [1 ⁇ ( r/R )] 2 ⁇ [1-2.104( r/R )+2.09( r/R ) 3 ⁇ 0.95( r/R ) 5 ] (1)
- a, a 0 , r, and R are the effective area of the pore, the total cross sectional area of the pore, radius of the solute, and radius of the pore, respectively.
- junction potentials are determined with an electrometer by measuring the diffusion potential established across a dialysis membrane and are subtracted when appropriate. Holding currents are not subtracted from any of the recordings. Difference currents are obtained by simply subtracting current records before and after perfusing NaN 3 , with no other processing being employed.
- NRAs The surfaces of freshly isolated NRAs are highly complex, exhibiting small membrane evaginations and fine processes that decorate the entire cell surface, as shown in the scanning electron micrograph in FIG. 14A.
- Exposure of NRAs to NaN 3 (1 mM) causes changes in the surface appearance, characterized early-on by loss of complex structure and development of surface blebs (FIG. 14B), followed later by a grossly swollen appearance with complete loss of fine structure and formation of multiple large blebs (FIG. 14C). Therefore, NRAs undergo blebbing and swelling after NaN3-induced ATP depletion.
- Phase contrast microscopy is also useful for assessing this process, although fine structure cannot be resolved. Blebbing is visibly apparent 10-15 minutes after exposure to NaN 3 . Morphological changes of this sort are attributable to loss of cytoskeletal integrity, combined with action of an osmotic force that causes swelling of the cell.
- NRAs The macroscopic currents of whole cell preparations of NRAs are characterized by small inward currents at negative potentials, large outward currents at positive potentials, and a flat “plateau” region at intermediate potentials. NRAs exhibit macroscopic currents that are consistent with observations in primary cultured cells of the same origin. See, Perillan et al., 1999; Perillan et al., 2000.
- NRAs exhibited inward currents negative to the K + equilibrium potential (E K ) are usually ⁇ 100 pA, much smaller than values reported in cultured neonatal astrocytes (Ransom and Sontheimer, 1995), but consistent with findings in astrocytes freshly isolated from injured brain (Bordey and Sontheimer, 1998; Schroder et al., 1999).
- the large outward currents in NRAs are partially blocked by charybdotoxin (100 nM), iberiotoxin (100 nM) and tetraethylammonium chloride (5 mM), consistent with the presence of a large conductance Ca 2+ -activated K + channel. See, Perillan et al., 1999.
- the time course of depolarization with NaN 3 is appreciably more rapid than the time course for development of cell membrane blebbing observed with the same treatment. Also, neither the time course nor the magnitude of the depolarization is affected by raising the extracellular osmolarity with 50 mM mannitol, a treatment that substantially delays bleb formation. Thus, depolarization is a primary event, not secondary to cell swelling or stretch.
- patch excision is also a highly reliable method for channel activation.
- spontaneous channel activity attributable to a ⁇ 35 pS conductance is detected in only 2 cells.
- the NCCa-ATP channel of the present invention is typically silent in metabolically healthy cells.
- a ⁇ 35-pS channel is present in >90% of inside-out patches formed from NRAs not exposed to NaN 3 or other metabolic toxins, thus demonstrating that an intracellular element lost on patch excision normally prevents channel activation.
- RVD regulatory volume decrease
- NC Ca-ATP channel is seldom observed in cell attached patches from healthy cells, but becomes evident in >90% of patches after conversion to an inside-out configuration. Also, the NC Ca-ATP channel is lost shortly after culturing reactive astrocytes.
- the channel is further characterized using membrane patches in the inside-out configuration. Records obtained during test pulses to various potentials with equal [K + ] on both sides of the membrane are shown in FIG. 2A. Amplitude histograms are constructed of events observed at potentials from ⁇ 140 mV to +100 mV, and values (mean ⁇ SE) for 4 patches are plotted and show in FIG. 2B. Fit of the data to a linear equation indicates a slope conductance of 35 pS, with an extrapolated reversal potential (E rev ) of +0.1 mV, close to the expected K + reversal potential (E K ) of 0 mV.
- E rev extrapolated reversal potential
- the channel transports a variety of alkaline ions (FIG. 3A), indicating that it is a non-selective cation channel.
- the conductance of the channel is measured with various alkaline ions in the pipette solution, including Cs + , Na + , Rb + , K + , and Li + , always with equimolar K + in the bath solution.
- Current-voltage data are fit to the GHK equation. Na + is shown to have a nearly equal slope conductance (32.6 pS) compared to K + (35.2 pS), but the slope conductance is reduced with other cations (FIG. 3B).
- the permeability of the NC Ca-ATP channel of the present invention to anions, such as Cl ⁇ , is also assessed. After measuring single channel current amplitudes at different potentials with 145 mM KCl, the bath solution is changed to equimolar K+ gluconate. When an agar bridge is used, the solution change resulted in a change in Erev ⁇ 0.5 mV, indicating that the NC Ca-ATP channel of the present invention is essentially impermeable to anions.
- NC Ca -ATP channel of the present invention discriminates very poorly among monovalent inorganic cations (FIGS. 3A and B)
- experiments are performed to determine the equivalent pore size of the channel by measuring channel permeability, relative to Cs +, for a wide range of organic cations.
- single-channel current-voltage relations are plotted to obtain E rev for a number of organic cations. Permeability ratios are then derived from fits to the GHK equation.
- the mean value of relative permeability measured is plotted against its hydrated molecular radius (FIG. 3D, empty circles).
- the permeability ratios define a smoothly declining series of values that are well fit by the Renkin equation.
- the Renkin equation describes the permeation of a rigid sphere through a cylindrical pore. Renkin, 1955. Least-squares, fit to the equation, indicates an equivalent pore radius of 0.67 nm for the NC Ca-ATP channel of the present invention.
- a 0.67 nm pore radius is similar to pore sizes of 6 ⁇ , found for the Ca 2+ channel (McCleskey and Almers, 1985) and 7.4 ⁇ , found for the nAChR channel (Adams et al., 1980). Junction potentials determined according to the methods described herein generally did not exceed 5 mV.
- NC Ca-ATP channel is inhibited by intracellular ATP, based on the finding that this channel is turned on after depleting intracellular ATP by exposure to NaN 3 (See FIGS. 1B, 1C, 1 D and 1 E) or to NaCN plus 2-deoxyglucose. This fact is supported by the observation that the NC Ca-ATP channel of the present invention is seldom observed in cell attached patches from healthy cells, but becomes evident in >90% of patches after conversion to an inside-out configuration.
- the NC Ca-ATP channel is blocked by [ATP] i in a dose-dependent manner.
- ADP and AMP have no effect on the NC Ca-ATP channel activity in inside-out patches.
- This in vitro assay for determining the concentration of the test compound which achieves a half-maximal inhibition of channel activity may be used to formulate dose in animal models to achieve a circulating plasma concentration range that includes the IC 50 .
- the Ca 2+ concentration on the cytoplasmic side of the membrane is also found to regulate activity of the NC Ca-ATP channel of the present invention.
- FIG. 7A is a photograph of the gel showing the RT-PCR for SUR1 and SUR2.
- FIG. 7B is a photograph of a gel showing the RT-PCR for Kir6.1 and Kir6.2.
- Lanes 3 and 4 in FIGS. 7A and 7B show the RT-PCR for insulinoma cells.
- Lanes 5 and 6 show the RT-PCR for reactive astrocytes.
- Lane 1 in FIGS. 7A and 7B represents ladder size markers; Lane 2 in FIGS. 7A and 7B is a blank control.
- FIG. 7A is a photograph of the gel showing the RT-PCR for SUR1 and SUR2.
- FIG. 7B is a photograph of a gel showing the RT-PCR for Kir6.1 and Kir6.2.
- Lanes 3 and 4 in FIGS. 7A and 7B show the RT-PCR for insulinoma cells.
- Lanes 5 and 6 show the RT-PCR for reactive astrocytes.
- Lane 1 in FIGS. 7A and 7B represents ladder
- lanes 3 and 4 show the SUR1 and SUR2 experiments, respectively, in insulinoma cells. Insulinoma cells are known to express SUR1, but not SUR2. Lanes 5 and 6 in FIG. 7A show the SUR1 and SUR2 experiments in reactive astrocytes, respectively.
- FIG. 7A shows that SUR1 mRNA is present in reactive astrocytes, as well as in the control insulinoma cells. SUR2 is absent in both cell types.
- lanes 3 and 4 show the Kir6.1 and Kir6.2 experiments in insulinoma cells, respectively. Kir6.1 is present in insulinoma cells, but Kir6.2 is not. Kir6 is the potassium channel associated with SUR1 in insulinoma cells. Lane 5 and 6 in FIG. 7B show that neither Kir6.1 nor Kir6.2 is present in reactive astrocytes. Therefore, reactive astrocytes express SUR1 mRNA, but Kir6.1 and Kir6.2 mRNA is absent from the cells.
- a characteristic feature of SUR-regulated K ATP function is that tryptic digestion of the cytoplasmic face of the channel, but not its extracellular face causes loss of inhibition by sulfonylureas, without altering sensitivity to ATP and without changing the biophysical properties of the channel.
- the effect of trypsin on NC Ca-ATP function is shown in FIG. 8.
- channel activity in the inside-out patch configuration is strongly inhibited by 1 ⁇ M glibenclamide.
- Exposure to 100 ⁇ g/ml trypsin on the cytoplasmic side of the membrane for 3 minutes yields a patch that still exhibits strong channel activity, but that channel activity is completely unaffected by glibenclamide.
- Sulfonylurea compounds are known to modulate the sulfonylurea receptor.
- a sulfonylurea receptor is generally associated with K ATP channels as a regulatory component, and is found in various tissues, including rat NRAs.
- K ATP channels Kir6.1 and Kir6.2 are not present in rat NRAs (FIG. 7B). It is possible to activate the NC Ca-ATP channel with SUR ligand diazoxide in outside-out patches (FIGS. 9A and 9B). NaN 3 does not elicit channel activity in isolated membrane patches, indicating that it works via ATP depletion rather than any direct effect on the channel.
- SUR1 blocking compounds such as glibenclamide and tolbutamide
- glibenclamide and tolbutamide are known to have an inhibitory effect on K ATP channels.
- the present invention arrives at the objects of the invention by providing a method in which the direct inhibitory effect of glibenclamide and tolbutamide on NC Ca-ATP channels is determined (FIGS. 10 and 11). Inside-out patches are used to show the inhibitory effect of sulfonylureas. To ensure that no K+ channel, particularly K ATP is contributing to patch current, Cs+ is used as the charge carrier. Channel activity is profoundly diminished by the addition of 10 ⁇ M glibenclamide (FIGS.
- NC Ca-ATP channel of the present invention to blocking in NRAs with both of these sulfonylurea compounds corresponds closely to that reported in pancreatic ⁇ cells and in expression systems with SUR1, but not SUR2.
- This in vitro assay for determining the concentration of the test compound which achieves a half-maximal inhibition of channel activity may be used to formulate dose in animal models to achieve a circulating plasma concentration range.
- the NC Ca-ATP channel of the present invention exhibits two open states, with a shorter and a longer dwell time, each less than 10 ms.
- FIG. 12 shows data from a patch exhibiting an open channel probability (n ⁇ Po) of 0.63, with open dwell time values ⁇ 0-1 and ⁇ 0-2 of 1.9 and 8.2 ms.
- n ⁇ Po decreased to 0.44 and 0.09, respectively, but the open dwell time values are not appreciably affected by the drug.
- Closed channel dwell times are increased in duration and frequency by tolbutamide (FIGS. 12H and 12I).
- the channel of the present inventions exhibits a form of channel inhibition in which the blocking compound had no effect on open channel dwell times and a progressive increase in long closures.
- This form of channel inhibition is similar to that produced by sulfonylureas acting on the K ATP channel in pancreatic ⁇ cells. See, Gillis et. al., 1989; Babeenko et. al., 1999).
- Diazoxide is an SUR1 agonist or SUR1 activator.
- SUR1 SUR1 activator
- blebbing occurs even without ATP depletion
- Diazoxide therefore, opens the channel directly without ATP depletion by activating SUR1.
- addition of NaN 3 does not cause blebbing, even after 30 minutes.
- activation of NC Ca-ATP channel by ATP depletion or by the channel opener, diazoxide can result in blebbing and swelling of NRAs, and that swelling can be prevented by blocking the channel with glibenclamide.
- glibenclamide protects from the opening of the NC Ca-ATP channel following ATP depletion, and that opening of this channel is responsible for cell blebbing.
- the antagonist used in the methods of the present invention includes a compound that interferes with NC Ca-ATP function.
- the effect of an antagonist is observed as a blocking of NC Ca-ATP current in conditions under which the channel has been activated and current can be measured in the absence of the antagonist.
- agents that block SUR1 also include compounds that are structurally unrelated to sulfonylureas.
- SUR1 blockers include a class of insulin secretagogues compounds that bind to the SUR, which were identified and developed for the treatment of type 2 diabetes.
- the benzamido derivatives: repaglinide, nateglinide, and meglitinide represent one such class of insulin secretagogues, that bind to the SUR.
- Nateglinide is an amino acid derivative.
- imidazoline derivatives have been identified that interact with the sulfonylurea receptor (SUR) 1 subunit such as midaglizole (KAD-1229), LY397364 and LY389382.
- compounds that preferentially block SUR1, but not SUR2 are used in the method of the present invention.
- Such compounds include tolbutamide and gliclazide.
- the following compounds block both SUR1 and SUR2: glibenclamide, glimepiride, repaglinide, and meglitinide.
- administration is combined with MgADP, which has been show to produce an apparent increase of sulfonylurea efficacy on channels containing SUR1, but not SUR2.
- NC Ca-ATP activation by ATP depletion initiates necrosis of reactive astrocytes that express this channel
- studies are conducted to determine if glibenclamide is capable of protecting reactive astrocytes from cell death by inhibiting NC Ca-ATP channel activity via its action on SUR1. Two types of cell death, apoptosis and necrosis, are assessed following ATP depletion.
- NC Ca-ATP channel activation of NC Ca-ATP channel is responsible for necrotic death of NRAs following ATP depletion, and that glibenclamide can prevent this form of cell death.
- NRAs preparation of freshly isolated NRAs was further purified by removal of RBCs, as described herein to provide a cell population having ⁇ 1% RBCs. Over 95% of cells had resting potentials near E K , suggesting that the enzymatic dissociation method had not appreciably harmed the cells. Over 95% of cells are positive for the astrocyte marker, glial fibrillary acidic protein (GFAP) as determined by immunofluorescence.
- GFAP glial fibrillary acidic protein
- the NRAs When examined by phase microscopy, the NRAs are of various sizes, ranging from 11-45 ⁇ ms in diameter, some of which are phase bright and others are phase dark. A subgroup of phase bright cells had multiple short but distinct cell processes that are shorter than the cell soma. In this Example, only larger ( ⁇ 30 ⁇ m diameter), phase bright cells with short processes ( ⁇ 1 cell length) are studied. This population of NRAs reliably express the NC Ca-ATP channels.
- the cells are examined by propidium iodide (PI) staining for evidence of cellular membrane permeabilization, an indication of early oncotic or necrotic cell death. See, Barros et al., 2001.
- the cells are also examined by fluorescein-tagged annexin V binding for evidence of externalization of the phosphoaminolipid phosphotidylserine from the inner face of the plasma membrane to the outer surface, an early indication of apoptosis. See, Clodi et al., 2000; Rucker-Martin et al., 1999. Staining procedure are conducting according to manufacture directions (Vybrant Apoptosis Assay Kit 2, Molecular Probes).
- FIG. 15A The fluorescence microscopy photos shown in FIG. 15A show that under baseline (control) conditions, both annexin V-positive and PI-positive cells (photos a and d, respectively) are rare in the cell isolates.
- a 10-min incubation with Na azide (1 mM) the number of PI-positive cells increased substantially (p ⁇ 0.05) (FIG. 15A at photo b and FIG. 15B). This indicates that ATP depletion triggers necrotic death in these cells.
- Na azide treatment caused the number of annexin V-positive cells to increase slightly; the increase not being statically significant (p>0.05) (FIG. 15A at photo e and FIG. 15C). This indicates that apoptotic death was not a major endpoint of ATP depletion in these cells.
- Pretreatment of cells with glibenclamide (1 ⁇ M) at the time of administration of Na azide dramatically decreased the number of PI-positive cells (p ⁇ 0.05; FIG. 15A at photo c and FIG. 15B), indicating significant protection from necrotic death following ATP depletion.
- the number of NRAs undergoing apoptotic death also decreased with glibenclamide, as indicated by annexin V labeling (FIG. 15A at photo f and FIG. 15C), but values for this group were not significantly different.
- NC Ca-ATP channel is involved in the mechanism of the necrotic cell death of reactive astrocytes.
- This Example shows that necrotic, rather than apoptotic, cell death is the principal endpoint of ATP depletion in these cells. Therefore, ATP depletion by Na azide initiates cell death by removal of the ATP block of the NC Ca-ATP channel, thus initiating oncotic cell swelling. Involvement of this channel in oncotic cell swelling is confirmed by showing that necrotic death can also be induced by diazoxide, the channel opener that activates the NC Ca-ATP channel in these cells, and could be blocked by glybenclamide, which prevents opening of the NC Ca-ATP channel.
- the involvement of the NC Ca-ATP channel in cell death of reactive astrocytes provides a mechanism and target of death in these cells, as well as the importance of blocking the NC Ca-ATP channel to prevent the death of reactive astrocytes, which occurs in traumatic brain injury.
- NC Ca-ATP channels blocking compounds can be identified by a method in which the direct inhibitory effect of the test compound on NC Ca-ATP channels is determined. Inside-out patches are used to show the inhibitory effect of the compound. To ensure that no K+ channel, particularly K ATP is contributing to patch current, Cs+ is used as the charge carrier. Compounds that profoundly diminish channel activity, and the activity is shown to be due to a 35 pS cation channel, such a compound is identified as a compound that blocks the NC Ca-ATP channels and is capable of inhibiting neuronal cell swelling and brain swelling. Varying concentrations of the compound are used to determine whether the NC Ca-ATP channel is blocked by the compound in a dose-dependent manner.
- the concentration at which half maximum inhibition (EC 50 ) is observed and the concentration at which channel activity is completely lost are determined.
- the sensitivity of the NC Ca-ATP channel of the present invention to blocking in NRAs with the test compound can be compared.
- This in vitro assay for determining the concentration of the test compound which achieves a half-maximal inhibition of channel activity may be used to formulate dose in animal models to achieve a circulating plasma concentration range.
- the concentration of the test compound which achieves a half-maximal inhibition of channel activity is used to formulate dose in animal models to achieve a circulating plasma concentration range.
- the dose of test compound that achieves a circulating plasma concentration range calculated by methods known in the art is administered to an animal having brain injury or cerebral ischemia.
- the epidural pressure and/or intracranial pressure of the animal is measured, such as by using a microballoon, to quantitatively monitor brain swelling.
- the swelling can be monitored by magnetic resonance (MR) imaging.
- MR magnetic resonance
- a compound that provided diminishes brain swelling, as compared to controls, is identified as a compound capable of inhibiting neuronal cell swelling and brain swelling. Varying concentrations of the compound are used to determine whether the compound delivers efficacy in a dose-dependent manner. The dose at which half maximum inhibition is observed and the concentration at which brain swelling is most quickly alleviated are determined. Formulations are produced comprising the optimal effective dose of the test compound for preventing, inhibiting, or diminishing brain swelling, along with a pharmaceutically acceptable carrier.
- the present invention provides a previously unknown ion channel found in mammalian neural cells that plays a role in cell swelling.
- the present invention further provides a method of screening for antagonists to the channel and a new use for antagonists to the channel, including sulfonylurea compounds such as glibenclamide and tolbutamide, as a treatment for brain swelling in mammals.
- Such compounds may act as antagonists or agonists of NC Ca-ATP channel activity.
- antagonists that block and/or inhibit the permeability of the NC Ca-ATP channel are utilized in methods for treating neural cell swelling and/or brain swelling.
- the cell based assays use neural cells that express the NC Ca-ATP channel, preferably a functional NC Ca-ATP channel; the preferred cells are NRAs.
- the non-cell based assay systems include membrane preparations that express the NC Ca-ATP channel, preferably a functional NC Ca-ATP channel.
- Cell-based assays include, but are not limited to, compound binding assays, microscopic observation of cell status (normal, blebbing, swelling), and measuring channel currents both before and after exposure to compound.
- Compositions comprising membrane preparations expressing the NC Ca-ATP channel may be used to identify compounds that interact with, bind to, block or open the NC Ca-ATP channel or SUR1.
- NC Ca-ATP channel or “expresses the NC Ca-ATP channel” means having a functional NC Ca-ATP channel.
- functional NC Ca-ATP channel as used herein means an NC Ca-ATP channel capable of being detected.
- One preferred method of detecting the NC Ca-ATP channel is by determining, in vitro or in vivo, whether the channel is open, closed and/or blocked.
- NRAs that express the NC Ca-ATP channel are used to produce the membrane preparation.
- Methods for producing membranes from whole cells and tissues are well known in the art.
- One such method produces purified cell membranes in the form of a purified microsomal fraction isolated from disrupted cells or a tissue sample by discontinuous sucrose gradient centrifugation.
- membranes comprised of cell-attached patches, inside-out patches, or outside-out patches.
- tissue sample expressing NC Ca-ATP channels is brain tissue adjacent to brain injury.
- the membranes preparations are used in a number of assays, including, but not limited to measuring channel currents, both before and after exposure to compound; and in vitro binding assays.
- assays including, but not limited to measuring channel currents, both before and after exposure to compound; and in vitro binding assays.
- the experimental conditions for such assays to determine and quantify the status of the NC Ca-ATP channel are described throughout the instant specification, including binding assay conditions, bath compositions, pipette solutions, concentrations of ATP and Ca 2+ required, membrane voltage, membrane potentials, compound quantity ranges, controls, etc.
- Binding assays and competitive binding assays employ a labeled ligand or antagonist of the NC Ca-ATP channel.
- labeled Glibenclamide such as FITC-conjugated glibenclamide or radioactively labeled glibenclamide is bound to the membranes and assayed for specific activity; specific binding is determined by comparison with binding assays performed in the presence of excess unlabelled antagonist.
- the screens may be designed to identify compounds that compete with the interaction between NC Ca-ATP channel and a known (previously identified herein) NC Ca-ATP channel antagonist or SUR1 antagonist, such as glibenclamide.
- the known NC Ca-ATP channel antagonist or SUR1 antagonist is labeled and the test compounds are then assayed for their ability to compete with or antagonize the binding of the labeled antagonist.
- the assays described herein can be used to identify compounds that modulate or affect NC Ca-ATP channel activity.
- compounds that affect NC Ca-ATP channel activity include but are not limited to compounds that bind to the NC Ca-ATP channel or SUR1, inhibit binding of identified blockers or ligands (such as glibenclamide), and either open/activate the channel (agonists) or block/inhibit the channel (antagonists).
- Assays described can also identify compounds that modulate neural cell swelling (e.g., compounds which affect other events involved in neural cell swelling that are activated by ligand binding to or blocking of the NC Ca-ATP channel).
- the compounds for screening in accordance with the invention include, but are not limited to organic compounds, peptides, antibodies and fragments thereof, peptidomimetics, that bind to the NC Ca-ATP channel and either open the channel (i.e., agonists) or block the channel (i.e., antagonists).
- compounds that block the channel are preferred.
- Agonists that open or maintain the channel in the open state include peptides, antibodies or fragments thereof, and other organic compounds that include the SUR1 subunit of the NC Ca-ATP channel (or a portion thereof) and bind to and “neutralize” circulating ligand for SUR1.
- libraries of known compounds can be screened, including natural products or synthetic chemicals, and biologically active materials, including proteins, for compounds which are inhibitors or activators.
- a compound is an NC Ca-ATP antagonist, which includes an NC Ca-ATP channel inhibitor, an NC Ca-ATP channel blocker, a SUR1 antagonist, SUR1 inhibitor, and/or a compound capable of reducing the magnitude of membrane current through the channel.
- Compounds may include, but are not limited to, small organic or inorganic molecules, compounds available in compound libraries, peptides such as, for example, soluble peptides, including but not limited to members of random peptide libraries; (see, e.g., Lam, K. S. et al., 1991, Nature 354: 82-84; Houghten, R. et al., 1991, Nature 354: 84-86), and combinatorial chemistry-derived molecular library made of D- and/or L-configuration amino acids, phosphopeptides (including, but not limited to, members of random or partially degenerate, directed phosphopeptide libraries; see, e.g., Songyang, Z.
- peptides such as, for example, soluble peptides, including but not limited to members of random peptide libraries; (see, e.g., Lam, K. S. et al., 1991, Nature 354: 82-84; Houghten, R. et
- antibodies including, but not limited to, polyclonal, monoclonal, humanized, anti-idiotypic, chimeric or single chain antibodies, and FAb, F(ab′).sub.2 and FAb expression library fragments, and epitope-binding fragments thereof).
- Other compounds which can be screened in accordance with the invention include but are not limited to small organic molecules that are able to cross the blood-brain barrier, gain entry into an appropriate neural cell and affect the expression of the NC Ca-ATP channel gene or some other gene involved in the NC Ca-ATP channel activity (e.g., by interacting with the regulatory region or transcription factors involved in gene expression); or such compounds that affect the activity of the NC Ca-ATP channel or the activity of some other intracellular factor involved in the NC Ca-ATP channel activity.
- Computer modeling and searching technologies permit identification of compounds, or the improvement of already identified compounds, that can modulate NC Ca-ATP channel activity or expression. Having identified such a compound or composition, the active sites or regions are identified. Such active sites might typically be ligand binding sites.
- the active site can be identified using methods known in the art including, for example, from study of complexes of the relevant compound or composition with other ligands, from the amino acid sequences of peptides, or from the nucleotide sequences of nucleic acids. Chemical or X-ray crystallographic methods can be used to study complexes of the relevant compound to find the active site. The three dimensional geometric structure of the active site is determined.
- an incomplete or insufficiently accurate structure is determined, the methods of computer based numerical modeling can be used to complete the structure or improve its accuracy. Any recognized modeling method may be used, including parameterized models specific to particular biopolymers such as proteins or nucleic acids, molecular dynamics models based on computing molecular motions, statistical mechanics models based on thermal ensembles, or combined models. For most types of models, standard molecular force fields, representing the forces between constituent atoms and groups, are necessary, and can be selected from force fields known in physical chemistry. The incomplete or less accurate experimental structures can serve as constraints on the complete and more accurate structures computed by these modeling methods.
- candidate modulating compounds can be identified by searching databases containing compounds along with information on their molecular structure. Such a search seeks compounds having structures that match the determined active site structure and that interact with the groups defining the active site. Such a search can be manual, but is preferably computer assisted. These compounds found from this search are potential NC Ca-ATP channel modulating, preferably blocking, compounds.
- these methods can be used to identify improved modulating compounds from an already known modulating compound or ligand.
- the composition of the known compound can be modified and the structural effects of modification can be determined using the experimental and computer modeling methods described above applied to the new composition.
- the altered structure is then compared to the active site structure of the compound to determine if an improved fit or interaction results.
- systematic variations in composition such as by varying side groups, can be quickly evaluated to obtain modified modulating compounds or ligands of improved specificity or activity.
- Examples of molecular modeling systems are the CHARMm and QUANTA programs (Polygen Corporation, Waltham, Mass.).
- CHARMm performs the energy minimization and molecular dynamics functions.
- QUANTA performs the construction, graphic modeling and analysis of molecular structure.
- QUANTA allows interactive construction, modification, visualization, and analysis of the behavior of molecules with each other.
- a number of articles review computer modeling of drugs interactive with specific proteins, such as Rotivinen, et al.) 1988, Acta Pharmaceutical Fennica 97: 159-166); Ripka (1988 New Scientist 54-57); McKinaly and Rossmann (1989, Annu. Rev. Pharmacol. Toxicol.
- Compounds identified via assays such as those described herein may be useful, for example, in elaborating the biological function of the NC Ca-ATP channel and for relief of brain swelling.
- Assays for testing the efficacy of compounds identified in the cellular screen can be tested in animal model systems for brain swelling.
- animal models may be used as test substrates for the identification of drugs, pharmaceuticals, therapies and interventions which may be effective in treating brain swelling.
- animal models of brain swelling such as brain injury
- the response of the animals to the exposure may be monitored using visual means (e.g., radiological, CAT, MRI), measurement of intracranial pressure, and/or the reversal of symptoms associated with brain swelling.
- visual means e.g., radiological, CAT, MRI
- measurement of intracranial pressure e.g., intracranial pressure
- any treatments which reverse any aspect of brain swelling-associated symptoms should be considered as candidates for brain swelling therapeutic intervention.
- Dosages of test agents may be determined by deriving dose-response curves, as discussed herein.
- the present invention is useful in the treatment or alleviation of neural cell swelling and death and brain swelling, especially those brain insults related to traumatic brain injury, central or peripheral nervous system damage, cerebral ischemia, such as stroke, or complications involving and/or stemming from edema, injury, or trauma.
- damage or complications may be characterized by an apparent brain damage or aberration, the symptoms of which can be reduced by the methods of the present invention including the administration of an effective amount of the active compounds or substances described herein.
- the administration of effective amounts of the active compound can block the channel, which if remained open leads to neural cell swelling and cell death.
- a variety of antagonists to SUR1 are suitable for blocking the channel.
- SUR1 antagonists include, but are not limited to glibenclamide, tolbutamide, repaglinide, nateglinide, meglitinide, midaglizole, LY397364, LY389382, gliclazide, glimepiride, MgADP, and combinations thereof.
- the SUR1 antagonists is selected from the group consisting of glibenclamide and tolbutamide. Still other therapeutic “strategies” for preventing neural cell swelling and cell death can be adopted including, but not limited to methods that maintain the neural cell in a polarized state and methods that prevent strong depolarization.
- One potential way of maintaining the NRAs in a polarized state is to open the Kir2.3 channel.
- NRAs are exposed to the Kir2.3 channel opener, Tenidap, to maintain Kir2.3 channels open.
- Native reactive astrocytes freshly harvested from adult rat brains after injury are exposed to Tenidap to evaluate the drug's ability to open the Kir2.3 channel in these cells.
- type 1 reactive (R1) astrocytes are harvested and used in this assay.
- One of the subtypes of reactive astrocytes is the type R1 astrocyte.
- Type R1 astrocytes comprise the largest population of recoverable astrocytes at the site of brain injury. They are characteristically located in the region of tissue surrounding the injury site, many of which are found to have migrated into the injury site itself. See, Perillan, et al., 1999.
- the reactive astrocytes that are part of the cellular response to TBI and stroke are comprised of at least two subtypes.
- One of the subtypes of reactive astrocytes is the type R1 astrocyte.
- Type R1 astrocytes comprise the largest population of recoverable astrocytes at the site of brain injury. They are characteristically located in the region of tissue surrounding the injury site, with many of these cells also being found to have migrated into the injury site itself. See, Perillan, et al. 1999.
- Type R1 astrocytes are the predominant type of reactive astrocyte in the NRA preparations.
- Type R1 astrocytes express two critically important ion channels in their cell membrane: (a) the Kir2.3 channel, which is present in cultured as well as freshly isolated cells; and (b) the NC Ca-ATP channel, which is present only in freshly isolated reactive astrocytes and lost shortly after culturing.
- the Kir2.3 is an inward rectifier channel that is critically important for maintaining the cell polarized to a normal resting potential near the potassium reversal potential ( ⁇ 75 mV). When this channel is inactivated or inhibited, the cell depolarizes to a potential near the chloride reversal potential ( ⁇ 25 mV).
- NC Ca-ATP channel Characteristic features of he NC Ca-ATP channel are: 1) it is a non-selective cation channels that allows passage of Na, K and other monovalent cations quite readily; 2) it is activated by an increase in intracellular calcium, and/or by a decrease in intracellular ATP; and 3) it is regulated by sulfonylurea receptor type 1 (SUR1). SUR1 had been considered to be associated exclusively with K ATP channels, such as those found in pancreatic ⁇ cells.
- a number of approaches may be used to ameliorate brain swelling due to cytotoxic edema.
- One currently used treatment for treating patients in relevant clinical situations is based on increasing extracellular osmolarity to reduce the driving force for influx of H 2 O. This strategy also reduces blebbing in isolated cells.
- a more specific strategy to reduce cytotoxic edema is inactivating or blocking the NC Ca-ATP channel that is primarily responsible for the influx of Na that draws H 2 O into the cell and that actually causes cytotoxic edema.
- One highly selective approach to inactivating this channel is to exploit the unique relationship between the channel and the controlling regulatory subunit, SUR1.
- SUR1 the controlling regulatory subunit
- a variety of drugs have been developed that interact with SUR1 in pancreatic ⁇ cells to block the K ATP channel in those cells and thereby treat diabetes. Some of these drugs belong to the class of agents called sulfonylureas.
- drugs that block the K ATP channel are highly effective at blocking the NC Ca-ATP channel in type R1 astrocytes.
- Drugs capable NC Ca-ATP channel blocking in NRAs (a) prevents cell blebbing in response to ATP depletion, (b) significantly reduces cell death following ATP depletion.
- the use of glybenclamide to treat brain swelling in an animal suffering from stroke or brain injury is described herein.
- Tenidap is evaluated for its ability to reduce cell blebbing and swelling and necrotic cell death in response to ATP depletion in the isolated cells as well as in situ in injured rat brain.
- Tenidap opens the Kir2.3 channels in type R1 astrocytes, using methods similar to those described herein for evaluating the status of the NC Ca-ATP channel. Results from such experiments that show Tenidap to open Kir2.3 channels in type R1 astrocytes, and reduce cell blebbing and cell death in response to ATP depletion would indicate the usefulness of Tenidap in treating brain swelling and cytotoxic edema resulting from TBI or cerebral ischemia.
- the effective amount of Tenidap is that amount capable of reducing brain swelling or cerebral ischemia due to the drug's ability to inhibit neural cell swelling and necrotic cell death.
- SUR1 blockers are likely to be the most specific, reliable provide the fewest untoward side effects. Further, a combination of treatments including use of osmotic diuretics, NCCa-ATP channel blockers such glybenclamide and Kir2.3 channel openers such as Tenidap may provide better efficacy in ameliorating cytotoxic edema and reducing morbidity and mortality in brain injury and stroke.
- a preferred compound is Tenidap.
- the formulation may provide a daily dose of Tenidap that is from about 10 mg/day to about 500 mg/day, or, when administered directly to the brain the daily dose of Tenidap is from about 500 mg/day to 1.5 gms/day or greater.
- compositions comprising the active substances disclosed herein.
- these compositions include pharmaceutical compositions comprising a therapeutically effective amount of one or more of the active compounds or substances along with a pharmaceutically acceptable carrier.
- the term “pharmaceutically acceptable” carrier means a non-toxic, inert solid, semi-solid liquid filler, diluent, encapsulating material, formulation auxiliary of any type, or simply a sterile aqueous medium, such as saline.
- sugars such as lactose, glucose and sucrose, starches such as corn starch and potato starch, cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt, gelatin, talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol, polyols such as glycerin, sorbitol, mannitol and polyethylene glycol; esters such as ethyl oleate and ethyl laurate, agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline, Ringer's solution; ethyl
- wetting agents, emulsifiers and lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator.
- antioxidants examples include, but are not limited to, water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfite, sodium metabisulfite, sodium sulfite, and the like; oil soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, aloha-tocopherol and the like; and the metal chelating agents such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid and the like.
- water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfite, sodium metabisulfite, sodium sulfite, and the like
- oil soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (B
- a “therapeutically effective amount” or simply “effective amount” of an active compound is meant a sufficient amount of the compound to treat or alleviate the brain swelling at a reasonable benefit/risk ratio applicable to any medical treatment. It will be understood, however, that the total daily usage of the active compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment.
- the specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the brain injury or ischemia; activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coinciding with the specific compound employed; and like factors well known in the medical arts.
- Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell assays or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50.
- Compounds which exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
- the data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans.
- the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity.
- the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
- the therapeutically effective dose can be estimated initially from cell based assays.
- a dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture.
- IC50 i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms
- levels in plasma may be measured, for example, by high performance liquid chromatography.
- the total daily dose of the active compounds of the present invention administered to a subject in single or in divided doses can be in amounts, for example, from 0.01 to 25 mg/kg body weight or more usually from 0.1 to 15 mg/kg body weight.
- Single dose compositions may contain such amounts or submultiples thereof to make up the daily dose.
- treatment regimens according to the present invention comprise administration to a human or other mammal in need of such treatment from about 1 mg to about 1000 mg of the active substance(s) of this invention per day in multiple doses or in a single dose of from 1 mg, 5 mg, 10 mg, 100 mg, 500 mg or 1000 mg.
- the typical anti-diabetic dose of oral or IV glibenclamide is about 2.5 mg/kg to about 15 mg/kg per day; the typical anti-diabetic dose of oral or IV tolbutamide is about to 0.5 gm/kg to about 2.0 gm/kg per day; the typical anti-diabetic dose for oral gliclazide is about 30 mg/kg to about 120 mg/kg per day; however, much larger doses may be required to block neural cell swelling and brain swelling.
- a formulation containing an effective amount of a compound that blocks the NCCa-ATP channel and a pharmaceutically acceptable carrier may contain from about 0.1 to about 100 grams of tolbutamide or from about 0.5 to about 150 milligrams of glibenclamide.
- a method of alleviating the negative effects of traumatic brain injury or cerebral ischemia stemming from neural cell swelling in a subject by administering to the subject a formulation containing an effective amount of a compound that blocks the NCCa-ATP channel and a pharmaceutically acceptable carrier.
- traumatic brain injury or cerebral ischemia such as stroke
- cerebral hypoxia it may be important to maintain a fairly high dose of the active agent to ensure delivery to the brain of the patient, particularly early in the treatment.
- traumatic brain injury or cerebral ischemia such as stroke
- the method of the present invention is employed to treat conditions involving bleeding in the brain, such as traumatic brain injury or cerebral ischemia (such as stroke), delivery via the vascular system is available and the compound is not necessarily required to readily cross the blood-brain barrier.
- the compounds of the present invention may be administered alone or in combination or in concurrent therapy with other agents which affect the central or peripheral nervous system, particularly selected areas of the brain.
- Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs containing inert diluents commonly used in the art, such as water, isotonic solutions, or saline.
- Such compositions may also comprise adjuvants, such as wetting agents; emulsifying and suspending agents; sweetening, flavoring and perfuming agents.
- Injectable preparations for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
- the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil can be employed including synthetic mono- or diglycerides.
- fatty acids such as oleic acid are used in the preparation of injectables.
- the injectable formulation can be sterilized, for example, by filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions, which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.
- the most common way to accomplish this is to inject a suspension of crystalline or amorphous material with poor water solubility.
- the rate of absorption of the drug becomes dependent on the rate of dissolution of the drug, which is, in turn, dependent on the physical state of the drug, for example, the crystal size and the crystalline form.
- Another approach to delaying absorption of a drug is to administer the drug as a solution or suspension in oil.
- Injectable depot forms can also be made by forming microcapsule matrices of drugs and biodegradable polymers, such as polylactide-polyglycoside.
- the rate of drug release can be controlled.
- biodegradable polymers include polyorthoesters and polyanhydrides.
- the depot injectables can also be made by entrapping the drug in liposomes or microemulsions, which are compatible with body tissues.
- Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable non-irritating excipient, such as cocoa butter and polyethylene glycol which are solid at ordinary temperature but liquid at the rectal temperature and will, therefore, melt in the rectum and release the drug.
- a suitable non-irritating excipient such as cocoa butter and polyethylene glycol which are solid at ordinary temperature but liquid at the rectal temperature and will, therefore, melt in the rectum and release the drug.
- Solid dosage forms for oral administration may include capsules, tablets, pills, powders, gelcaps and granules.
- the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch.
- Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such as magnesium stearate and microcrystalline cellulose.
- the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings and other release-controlling coatings.
- compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
- the active compounds can also be in micro-encapsulated form with one or more excipients as noted above.
- the solid dosage forms of tablets, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferably, in a certain part of the intestinal tract, optionally in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes.
- Dosage forms for topical or transdermal administration of a compound of this invention further include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches.
- Transdermal patches have the added advantage of providing controlled delivery of active compound to the body.
- dosage forms can be made by dissolving or dispersing the compound in the proper medium.
- Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.
- the ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- the method of the present invention employs the compounds identified herein for both in vitro and in vivo applications.
- the invention compounds can be incorporated into a pharmaceutically acceptable formulation for administration. Those of skill in the art can readily determine suitable dosage levels when the invention compounds are so used.
- suitable dosage levels refers to levels of compound sufficient to provide circulating concentrations high enough to effectively block the NCCa-ATP channel and prevent or reduce neural cell swelling in vivo.
- compositions comprising at least one SUR1 antagonist compound (as described above), and a pharmaceutically acceptable carrier are contemplated.
- Exemplary pharmaceutically acceptable carriers include carriers suitable for oral, intravenous, subcutaneous, intramuscular, intracutaneous, and the like administration. Administration in the form of creams, lotions, tablets, dispersible powders, granules, syrups, elixirs, sterile aqueous or non-aqueous solutions, suspensions or emulsions, and the like, is contemplated.
- suitable carriers include emulsions, solutions, suspensions, syrups, and the like, optionally containing additives such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents, and the like.
- suitable carriers include sterile aqueous or non-aqueous solutions, suspensions, or emulsions.
- non-aqueous solvents or vehicles are propylene glycol, polyethylene glycol, vegetable oils, such as olive oil and corn oil, gelatin, and injectable organic esters such as ethyl oleate.
- Such dosage forms may also contain adjuvants such as preserving, wetting, emulsifying, and dispersing agents. They may be sterilized, for example, by filtration through a bacteria-retaining filter, by incorporating sterilizing agents into the compositions, by irradiating the compositions, or by heating the compositions. They can also be manufactured in the form of sterile water, or some other sterile injectable medium immediately before use.
- the active compound is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required.
- the specification may have presented the method and/or process of the present invention as a particular sequence of steps. However, to the extent that the method or process does not rely on the particular order of steps set forth herein, the method or process should not be limited to the particular sequence of steps described. As one of ordinary skill in the art would appreciate, other sequences of steps may be possible. Therefore, the particular order of the steps set forth in the specification should not be construed as limitations on the claims. In addition, the claims directed to the method and/or process of the present invention should not be limited to the performance of their steps in the order written, and one skilled in the art can readily appreciate that the sequences may be varied and still remain within the spirit and scope of the present invention.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Urology & Nephrology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cell Biology (AREA)
- Hematology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Microbiology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Neurology (AREA)
- Gastroenterology & Hepatology (AREA)
- Neurosurgery (AREA)
- Tropical Medicine & Parasitology (AREA)
- Wood Science & Technology (AREA)
- Biophysics (AREA)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/391,561 US20030215889A1 (en) | 2002-03-20 | 2003-03-20 | Non-selective cation channel in neural cells and methods for treating brain swelling |
US11/099,332 US7285574B2 (en) | 2002-03-20 | 2005-04-05 | Methods for treating neural cell swelling |
US11/359,946 US8980952B2 (en) | 2002-03-20 | 2006-02-22 | Methods for treating brain swelling with a compound that blocks a non-selective cation channel |
US11/857,547 US8318810B2 (en) | 2002-03-20 | 2007-09-19 | Methods for treating neural cell swelling |
US12/201,610 US20090137680A1 (en) | 2002-03-20 | 2008-08-29 | Novel non-selective cation channel in neuronal cells and method for treating brain swelling |
US13/483,824 US20120237449A1 (en) | 2002-03-20 | 2012-05-30 | Methods for treating neural cell swelling |
US14/184,947 US9107932B2 (en) | 2002-03-20 | 2014-02-20 | Methods for treating neural cell swelling |
US14/634,855 US20150272964A1 (en) | 2002-03-20 | 2015-03-01 | Novel non-selective cation channel in neuronal cells and methods for treating brain swelling |
US14/815,154 US20150338393A1 (en) | 2002-03-20 | 2015-07-31 | Methods for treating neural cell swelling |
US15/398,575 US20170112860A1 (en) | 2002-03-20 | 2017-01-04 | Novel non-selective cation channel in neuronal cells and methods for treating brain swelling |
US15/644,450 US10533988B2 (en) | 2002-03-20 | 2017-07-07 | Methods for treating central or peripheral nervous system damage |
US15/895,945 US20180172671A1 (en) | 2002-03-20 | 2018-02-13 | Methods for treating neural cell swelling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36593302P | 2002-03-20 | 2002-03-20 | |
US10/391,561 US20030215889A1 (en) | 2002-03-20 | 2003-03-20 | Non-selective cation channel in neural cells and methods for treating brain swelling |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/229,236 Continuation-In-Part US7872048B2 (en) | 2002-03-20 | 2005-09-16 | Methods for treating spinal cord injury with a compound that inhibits a NCCa-ATP channel |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/099,332 Division US7285574B2 (en) | 2002-03-20 | 2005-04-05 | Methods for treating neural cell swelling |
US11/359,946 Continuation-In-Part US8980952B2 (en) | 2002-03-20 | 2006-02-22 | Methods for treating brain swelling with a compound that blocks a non-selective cation channel |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030215889A1 true US20030215889A1 (en) | 2003-11-20 |
Family
ID=28454728
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/391,561 Abandoned US20030215889A1 (en) | 2002-03-20 | 2003-03-20 | Non-selective cation channel in neural cells and methods for treating brain swelling |
US11/099,332 Expired - Lifetime US7285574B2 (en) | 2002-03-20 | 2005-04-05 | Methods for treating neural cell swelling |
US11/857,547 Expired - Lifetime US8318810B2 (en) | 2002-03-20 | 2007-09-19 | Methods for treating neural cell swelling |
US13/483,824 Abandoned US20120237449A1 (en) | 2002-03-20 | 2012-05-30 | Methods for treating neural cell swelling |
US14/184,947 Expired - Lifetime US9107932B2 (en) | 2002-03-20 | 2014-02-20 | Methods for treating neural cell swelling |
US14/815,154 Abandoned US20150338393A1 (en) | 2002-03-20 | 2015-07-31 | Methods for treating neural cell swelling |
US15/644,450 Expired - Fee Related US10533988B2 (en) | 2002-03-20 | 2017-07-07 | Methods for treating central or peripheral nervous system damage |
US15/895,945 Abandoned US20180172671A1 (en) | 2002-03-20 | 2018-02-13 | Methods for treating neural cell swelling |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/099,332 Expired - Lifetime US7285574B2 (en) | 2002-03-20 | 2005-04-05 | Methods for treating neural cell swelling |
US11/857,547 Expired - Lifetime US8318810B2 (en) | 2002-03-20 | 2007-09-19 | Methods for treating neural cell swelling |
US13/483,824 Abandoned US20120237449A1 (en) | 2002-03-20 | 2012-05-30 | Methods for treating neural cell swelling |
US14/184,947 Expired - Lifetime US9107932B2 (en) | 2002-03-20 | 2014-02-20 | Methods for treating neural cell swelling |
US14/815,154 Abandoned US20150338393A1 (en) | 2002-03-20 | 2015-07-31 | Methods for treating neural cell swelling |
US15/644,450 Expired - Fee Related US10533988B2 (en) | 2002-03-20 | 2017-07-07 | Methods for treating central or peripheral nervous system damage |
US15/895,945 Abandoned US20180172671A1 (en) | 2002-03-20 | 2018-02-13 | Methods for treating neural cell swelling |
Country Status (12)
Country | Link |
---|---|
US (8) | US20030215889A1 (es) |
EP (2) | EP1529058B1 (es) |
JP (1) | JP4485806B2 (es) |
AU (3) | AU2003222020B2 (es) |
CA (1) | CA2477812C (es) |
CY (1) | CY1123341T1 (es) |
DK (2) | DK1529058T3 (es) |
ES (2) | ES2807274T3 (es) |
HU (1) | HUE051368T2 (es) |
PT (1) | PT2438913T (es) |
SI (1) | SI2438913T1 (es) |
WO (1) | WO2003079987A2 (es) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006034048A2 (en) | 2004-09-18 | 2006-03-30 | University Of Maryland, Baltimore | Therapeutic agents targeting the ncca-atp channel and methods of use thereof |
US20060276411A1 (en) * | 2002-03-20 | 2006-12-07 | University Of Maryland, Baltimore | Novel non-selective cation channel in neuronal cells and methods for treating brain swelling |
WO2008098160A1 (en) | 2007-02-09 | 2008-08-14 | University Of Maryland, Baltimore | Antagonists of a non-selective cation channel in neural cells |
WO2008089103A3 (en) * | 2007-01-12 | 2008-11-06 | Univ Maryland | Targeting ncca-atp channel for organ protection following ischemic episode |
WO2009002832A2 (en) | 2007-06-22 | 2008-12-31 | University Of Maryland, Baltimore | Inhibitors of ncca-atp channels for therapy |
US20090130083A1 (en) * | 2004-09-18 | 2009-05-21 | University Of Maryland | Therapeutic Agents Targeting the NCCA-ATP Channel and Methods of Use Thereof |
US20100056444A1 (en) * | 2006-10-12 | 2010-03-04 | Sven Martin Jacobson | Treatment of Alzheimer's Disease Using Compounds that Reduce the Activity of Non Selective Ca Activated ATP- Sensitive Cation Channels Regulated by SUR1 Receptors |
US20100273886A1 (en) * | 2007-12-04 | 2010-10-28 | Remedy Pharmaceuticals, Inc. | Formulations and methods for lyophilization and lyophilates provided thereby |
US20110034560A1 (en) * | 2008-01-29 | 2011-02-10 | Sven Jacobson | Liquid formulations of compounds active at sulfonylurea receptors |
EP2719380A2 (en) | 2008-09-16 | 2014-04-16 | University of Maryland, Baltimore | SUR1 inhibitors for therapy |
US9107932B2 (en) | 2002-03-20 | 2015-08-18 | University Of Maryland, Baltimore | Methods for treating neural cell swelling |
US10004703B2 (en) | 2006-10-12 | 2018-06-26 | Biogen Chesapeake Llc | Treatment of alzheimer's disease using compounds that reduce the activity of non-selective CA++ activated ATP-sensitive cation channels regulated by SUR1 channels |
US10894055B2 (en) | 2013-11-06 | 2021-01-19 | Aeromics, Inc. | Pharmaceutical compositions, methods of making pharmaceutical compositions, and kits comprising 2-{[3,5-bis(trifluoromethyl)phenyl]carbamoyl}4-chlorophenyl dihydrogen phosphate |
US11084778B2 (en) | 2012-05-08 | 2021-08-10 | Aeromics, Inc. | Methods of treating cardiac edema, neuromyelitis optica, and hyponatremia |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2005256675A1 (en) * | 2004-06-23 | 2006-01-05 | Neurotec Pharma, S.L. | Compounds for the treatment of inflammation of the central nervous system |
EP1782815B1 (en) * | 2004-06-23 | 2010-09-08 | Neurotec Pharma, S.L. | Compound for use in the diagnosis of cns acute damage |
WO2007081946A2 (en) * | 2006-01-09 | 2007-07-19 | University Of South Florida | Method for the identification of drugs to treat stroke at delayed timepoints |
EP2595633A4 (en) | 2010-07-19 | 2014-01-22 | Remedy Pharmaceuticals Inc | METHODS OF INTRAVENOUSLY DELIVERING GLYBURIDE AND OTHER MEDICAMENTS |
EP2609914A1 (en) | 2011-12-29 | 2013-07-03 | Universitätsklinikum Hamburg-Eppendorf | Novel methods for treating or preventing neurodegeneration |
MA45574A (fr) * | 2015-10-07 | 2019-05-15 | Biogen Chesapeake Llc | Procédés de traitement de lésions ou de pathologies liées à un dème du snc |
WO2018204721A1 (en) | 2017-05-05 | 2018-11-08 | Nino Sorgente | Methods and compositions for improving eye health |
US11382881B2 (en) | 2017-05-05 | 2022-07-12 | Nino Sorgente | Methods and compositions for diagnosing and treating glaucoma |
WO2020198037A1 (en) * | 2019-03-25 | 2020-10-01 | The University Of Vermont | Methods to promote cerebral blood flow in the brain |
JP2023534674A (ja) * | 2020-07-17 | 2023-08-10 | 上海森輝医薬有限公司 | スルホニル尿素誘導体及びその医薬用途 |
RU2752280C1 (ru) * | 2020-11-23 | 2021-07-26 | федеральное государственное бюджетное образовательное учреждение высшего образования "Ростовский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО РостГМУ Минздрава России) | Способ хирургического лечения злокачественного ишемического инсульта |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5047429A (en) * | 1988-04-19 | 1991-09-10 | Hoechst Aktiengesellschaft | Treatment of oedema |
US5166162A (en) * | 1990-03-02 | 1992-11-24 | Adir Et Compagnie | Pyridylsulfonylurea and pyridylsulfonylthiourea compounds |
US5215985A (en) * | 1990-07-20 | 1993-06-01 | E. R. Squibb & Sons, Inc. | Method for treating ischemic insult to neurons employing an ATP-sensitive potassium channel blocker |
US5236932A (en) * | 1990-07-19 | 1993-08-17 | E. R. Squibb & Sons, Inc. | Method for treating Parkinson's disease employing quinine |
US5545656A (en) * | 1995-04-05 | 1996-08-13 | Pfizer Inc. | 2-Oxidole-1-carboxamide pharmaceutical agents for the treatment of alzheimer's disease |
US5677344A (en) * | 1990-07-19 | 1997-10-14 | E. R. Squibb & Sons, Inc. | Method for treating Parkinson's disease employing an ATP-sensitive potassium channel blocker |
US5849796A (en) * | 1994-08-28 | 1998-12-15 | Merck Patent Gelsellschaft Mit Beschrankter Haftung | Ortho-substituted benzoil acid derivatives |
US5929082A (en) * | 1995-03-24 | 1999-07-27 | Polychip Pharmaceuticals Pty Ltd | Potassium ion channel blockers |
US6100047A (en) * | 1999-04-07 | 2000-08-08 | Zen Bio, Inc. | Modulation of the sulfonylurea receptor and calcium in adipocytes for treatment of obesity/diabetes |
US6187756B1 (en) * | 1996-09-05 | 2001-02-13 | The Massachusetts Institute Of Technology | Composition and methods for treatment of neurological disorders and neurodegenerative diseases |
US20010003751A1 (en) * | 1995-02-22 | 2001-06-14 | Terashita Zen-Ichi | Pharmaceutical composition for treating transient ischemic attack |
US20010016586A1 (en) * | 1999-12-23 | 2001-08-23 | Christiane Guitard | Use of organic compounds |
US20020013268A1 (en) * | 2000-04-13 | 2002-01-31 | Fryburg David A. | Synergistic effect of a sulfonylurea and/or non-sulfonylurea Kchannel blocker, and a phosphodiesterase 3 type inhibitor |
US20020037928A1 (en) * | 2000-05-03 | 2002-03-28 | Jaen Juan C. | Combination therapeutic compositions and method of use |
US6372743B1 (en) * | 1999-09-30 | 2002-04-16 | Neurogen Corporation | Certain alkylene diamine-substituted pyrazlo (1,5-a)-1,5-pyrimidines and pyrazolo (1,5-a) 1,3,5-triazines |
US20020065315A1 (en) * | 1999-04-12 | 2002-05-30 | Jensen Bo Skaaning | Ion channel modulating agents |
US20020081306A1 (en) * | 1996-02-16 | 2002-06-27 | Michael J. Elliott | Methods of preventing or treating cardiovascular, cerebrovascular and thrombotic disorders with tumor necrosis factor antagonists |
US20020094977A1 (en) * | 2000-06-15 | 2002-07-18 | Robl Jeffrey A. | HMG-CoA reductase inhibitors and method |
US6511989B2 (en) * | 2000-11-03 | 2003-01-28 | Aventis Pharma Deutschland Gmbh | Acylaminoalkyl-substituted benzenesulfonamide derivatives, their preparation, their use and pharmaceutical preparations comprising them |
US6569845B1 (en) * | 1997-12-26 | 2003-05-27 | Mochida Pharmaceutical Co., Ltd. | Neovascularization inhibitor containing dienogest as the active ingredient |
US6596751B2 (en) * | 1999-04-06 | 2003-07-22 | Sankyo Company Limited | α-substituted carboxylic acid derivatives |
US6613785B2 (en) * | 1998-07-21 | 2003-09-02 | Smithkline Beecham Plc | Use of glucose uptake enhancer for reducing post-ischemic injury of the heart |
US6679859B1 (en) * | 1997-10-24 | 2004-01-20 | Alliance Pharmaceutical Corp. | Amelioration of ischemic damage using synthetic oxygen carriers |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6219552A (ja) * | 1985-07-19 | 1987-01-28 | Ono Pharmaceut Co Ltd | 3−〔(4−アロイル)フエノキシ(またはフエニルチオ)〕シクロペンタンカルボン酸誘導体、それらの製造方法及びそれらを有効成分として含有する脳浮腫治療剤 |
CA2044855A1 (en) | 1990-07-20 | 1992-01-21 | Kerry P. S. J. Murphy | Method for treating insult to neurons prone to parkinson's degeneration employing an atp-sensitive potassium channel blocker |
WO1992006705A1 (en) | 1990-10-16 | 1992-04-30 | The Children's Medical Center Corporation | Heparin binding mitogen with homology to epidermal growth factor (egf) |
US5916871A (en) | 1992-04-27 | 1999-06-29 | Kansas State University Research Foundation | Inhibitory factor |
US6350739B1 (en) | 1999-08-11 | 2002-02-26 | University Of Florida Resarch Foundation, Inc. | Methods of prevention and treatment of ischemic damage |
JPH09208562A (ja) | 1996-01-26 | 1997-08-12 | Ono Pharmaceut Co Ltd | 一酸化窒素合成酵素阻害剤 |
US5856360A (en) | 1996-05-03 | 1999-01-05 | Children's Hospital Medical Center | Pharmaceutical method for the treatment of severe blood loss and for the inhibition or treatment of hemorrhagic shock |
US6184248B1 (en) | 1996-09-05 | 2001-02-06 | Robert K. K. Lee | Compositions and methods for treatment of neurological disorders and neurodegenerative diseases |
US20020016443A1 (en) | 1996-10-04 | 2002-02-07 | Keay Susan K. | Antiproliferative factor |
US5962645A (en) | 1996-10-04 | 1999-10-05 | University Of Maryland | Antiproliferative factor from patients with interstitial cystitis |
WO1999001738A2 (en) | 1997-06-30 | 1999-01-14 | University Of Maryland, Baltimore | Heparin binding-epidermal growth factor in the diagnosis of interstitial cystitis |
US6056977A (en) * | 1997-10-15 | 2000-05-02 | Edward Mendell Co., Inc. | Once-a-day controlled release sulfonylurea formulation |
US6180671B1 (en) | 1998-03-10 | 2001-01-30 | Beth Israel Deaconess Medical Center, Inc. | Methods for treating disorders in which docosahexaenoic acid (DHA) levels are affected |
US6232289B1 (en) | 1998-04-17 | 2001-05-15 | University Of Maryland, Baltimore | Method of treating interstitial cytitis with recombinant heparin-binding epidermal growth factor-like growth factor (HB-EGF) |
ATE332969T1 (de) | 1998-10-26 | 2006-08-15 | Avi Biopharma Inc | Auf morpholin basierendes p53-antisense- oligonucleotid und dessen verwendungen |
WO2001054680A2 (en) | 2000-01-26 | 2001-08-02 | Cedars-Sinai Medical Center | Method for using potassium channel activation for delivering a medicant to an abnormal brain region and/or a malignant tumor |
KR100867760B1 (ko) | 2000-05-15 | 2008-11-10 | 소니 가부시끼 가이샤 | 재생장치, 재생방법 및 기록매체 |
CN101134107A (zh) | 2000-05-15 | 2008-03-05 | 史密丝克莱恩比彻姆公司 | 抗血栓剂 |
ITMI20010450A1 (it) | 2001-03-05 | 2002-09-05 | Univ Ferrara | Profarmaci derivati dall'acido ascorbico atti al passaggio della barriera emato-encefalica |
US6561075B2 (en) | 2001-05-09 | 2003-05-13 | Delphi Technologies, Inc. | Power booster with mechanical panic assist function |
US6492339B1 (en) * | 2001-05-23 | 2002-12-10 | Insmed, Incorporated | Compositions comprising D-chiro inositol and sulfonylureas and methods of treatment thereof |
WO2003057843A2 (en) | 2001-12-31 | 2003-07-17 | Algos Therapeutics, Inc. | Methods and materials for modulating trpc4 |
US20030171407A1 (en) | 2002-03-07 | 2003-09-11 | Upsher-Smith Laboratories, Inc. | Composition for reducing blood glucose and cholesterol |
PT2438913T (pt) | 2002-03-20 | 2020-05-27 | Us Veterans Affairs | Canal de catiões não seletivos em células neurais e compostos que bloqueiam o canal para utilização no tratamento de edema cerebral |
US8980952B2 (en) * | 2002-03-20 | 2015-03-17 | University Of Maryland, Baltimore | Methods for treating brain swelling with a compound that blocks a non-selective cation channel |
US20050009733A1 (en) | 2003-04-22 | 2005-01-13 | Pharmacia Corporation | Compositions of a cyclooxygenase-2 selective inhibitor and a potassium ion channel modulator for the treatment of central nervous system damage |
US7326706B2 (en) | 2003-08-15 | 2008-02-05 | Bristol-Myers Squibb Company | Pyrazine modulators of cannabinoid receptors |
WO2005041877A2 (en) | 2003-10-29 | 2005-05-12 | Children's Medical Center Corporation | Method of inhibiting rejection following organ transplantation |
EP1782815B1 (en) | 2004-06-23 | 2010-09-08 | Neurotec Pharma, S.L. | Compound for use in the diagnosis of cns acute damage |
WO2006036278A2 (en) | 2004-09-18 | 2006-04-06 | University Of Maryland, Baltimore | THERAPEUTIC AGENTS TARGETING THE NCCa-ATP CHANNEL AND METHODS OF USE THEREOF |
ATE487484T1 (de) | 2004-09-18 | 2010-11-15 | Univ Maryland | Therapeutische mittel zum targeting des nc ca-atp-kanals und verwendungsverfahren dafür |
EP1906969A4 (en) | 2005-07-15 | 2009-07-29 | Childrens Medical Center | METHOD FOR TREATING AND DIAGNOSIS OF COMPLICATIONS IN AN EARLY BIRTH |
WO2007011595A2 (en) | 2005-07-15 | 2007-01-25 | Neuren Pharmaceuticals Limited | Neural regeneration peptides and antioxidants protect neurons from degeneration |
WO2007058902A1 (en) | 2005-11-11 | 2007-05-24 | Aurogen Inc. | Method for treating disease or disorder of adult central nervous system associated with tissue shrinkage or atrophy by administration of insulin |
EP3103451A1 (en) | 2007-01-12 | 2016-12-14 | University of Maryland, Baltimore | Targetting ncca-atp channel for organ protection following ischemic episode |
EP2114160B1 (en) | 2007-02-09 | 2016-11-16 | University of Maryland, Baltimore | Antagonists of a non-selective cation channel in neural cells |
EP2167107B1 (en) | 2007-06-22 | 2016-12-14 | University of Maryland, Baltimore | Inhibitors of ncca-atp channels for therapy |
US7787809B2 (en) | 2007-09-10 | 2010-08-31 | Kabushiki Kaisha Toshiba | Image forming apparatus, transfer unit thereof, and method of shifting transfer rollers thereof |
US7813201B2 (en) | 2008-07-08 | 2010-10-12 | Atmel Corporation | Differential sense amplifier |
WO2010033560A2 (en) | 2008-09-16 | 2010-03-25 | University Of Maryland, Baltimore | Sur1 inhibitors for therapy |
-
2003
- 2003-03-20 PT PT111956876T patent/PT2438913T/pt unknown
- 2003-03-20 EP EP03718003.1A patent/EP1529058B1/en not_active Expired - Lifetime
- 2003-03-20 US US10/391,561 patent/US20030215889A1/en not_active Abandoned
- 2003-03-20 SI SI200332615T patent/SI2438913T1/sl unknown
- 2003-03-20 ES ES11195687T patent/ES2807274T3/es not_active Expired - Lifetime
- 2003-03-20 CA CA 2477812 patent/CA2477812C/en not_active Expired - Lifetime
- 2003-03-20 HU HUE11195687A patent/HUE051368T2/hu unknown
- 2003-03-20 DK DK03718003T patent/DK1529058T3/da active
- 2003-03-20 EP EP11195687.6A patent/EP2438913B1/en not_active Expired - Lifetime
- 2003-03-20 WO PCT/US2003/008442 patent/WO2003079987A2/en active Search and Examination
- 2003-03-20 JP JP2003577819A patent/JP4485806B2/ja not_active Expired - Lifetime
- 2003-03-20 DK DK11195687.6T patent/DK2438913T3/da active
- 2003-03-20 ES ES03718003T patent/ES2436467T3/es not_active Expired - Lifetime
- 2003-03-20 AU AU2003222020A patent/AU2003222020B2/en not_active Expired
-
2005
- 2005-04-05 US US11/099,332 patent/US7285574B2/en not_active Expired - Lifetime
-
2007
- 2007-09-19 US US11/857,547 patent/US8318810B2/en not_active Expired - Lifetime
-
2008
- 2008-11-14 AU AU2008243265A patent/AU2008243265B2/en not_active Expired
-
2011
- 2011-03-21 AU AU2011201252A patent/AU2011201252B2/en not_active Expired
-
2012
- 2012-05-30 US US13/483,824 patent/US20120237449A1/en not_active Abandoned
-
2014
- 2014-02-20 US US14/184,947 patent/US9107932B2/en not_active Expired - Lifetime
-
2015
- 2015-07-31 US US14/815,154 patent/US20150338393A1/en not_active Abandoned
-
2017
- 2017-07-07 US US15/644,450 patent/US10533988B2/en not_active Expired - Fee Related
-
2018
- 2018-02-13 US US15/895,945 patent/US20180172671A1/en not_active Abandoned
-
2020
- 2020-07-15 CY CY20201100647T patent/CY1123341T1/el unknown
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5047429A (en) * | 1988-04-19 | 1991-09-10 | Hoechst Aktiengesellschaft | Treatment of oedema |
US5166162A (en) * | 1990-03-02 | 1992-11-24 | Adir Et Compagnie | Pyridylsulfonylurea and pyridylsulfonylthiourea compounds |
US5236932A (en) * | 1990-07-19 | 1993-08-17 | E. R. Squibb & Sons, Inc. | Method for treating Parkinson's disease employing quinine |
US5677344A (en) * | 1990-07-19 | 1997-10-14 | E. R. Squibb & Sons, Inc. | Method for treating Parkinson's disease employing an ATP-sensitive potassium channel blocker |
US5215985A (en) * | 1990-07-20 | 1993-06-01 | E. R. Squibb & Sons, Inc. | Method for treating ischemic insult to neurons employing an ATP-sensitive potassium channel blocker |
US5281599A (en) * | 1990-07-20 | 1994-01-25 | E. R. Squibb & Sons, Inc. | Method for treating ischemic oranoxic insult to neurons employing quinine |
US5451580A (en) * | 1990-07-20 | 1995-09-19 | E. R. Squibb & Sons, Inc. | Method for treating insult to neurons prone to Parkinson's degeneration employing an ATP-sensitive potassium channel blocker |
US5849796A (en) * | 1994-08-28 | 1998-12-15 | Merck Patent Gelsellschaft Mit Beschrankter Haftung | Ortho-substituted benzoil acid derivatives |
US20010003751A1 (en) * | 1995-02-22 | 2001-06-14 | Terashita Zen-Ichi | Pharmaceutical composition for treating transient ischemic attack |
US5929082A (en) * | 1995-03-24 | 1999-07-27 | Polychip Pharmaceuticals Pty Ltd | Potassium ion channel blockers |
US5545656A (en) * | 1995-04-05 | 1996-08-13 | Pfizer Inc. | 2-Oxidole-1-carboxamide pharmaceutical agents for the treatment of alzheimer's disease |
US20020081306A1 (en) * | 1996-02-16 | 2002-06-27 | Michael J. Elliott | Methods of preventing or treating cardiovascular, cerebrovascular and thrombotic disorders with tumor necrosis factor antagonists |
US6187756B1 (en) * | 1996-09-05 | 2001-02-13 | The Massachusetts Institute Of Technology | Composition and methods for treatment of neurological disorders and neurodegenerative diseases |
US6679859B1 (en) * | 1997-10-24 | 2004-01-20 | Alliance Pharmaceutical Corp. | Amelioration of ischemic damage using synthetic oxygen carriers |
US6569845B1 (en) * | 1997-12-26 | 2003-05-27 | Mochida Pharmaceutical Co., Ltd. | Neovascularization inhibitor containing dienogest as the active ingredient |
US6492130B1 (en) * | 1998-04-08 | 2002-12-10 | Artecel Sciences, Inc. | Modulation of the sulfonylurea receptor and calcium in adipocytes for treatment of obesity/diabetes |
US6242200B1 (en) * | 1998-04-08 | 2001-06-05 | Zen Bio, Inc. | Screening for SUR1 antagonists using adipocytes |
US6569633B1 (en) * | 1998-04-08 | 2003-05-27 | Artecel Science, Inc. | Modulation of the sulfonylurea receptor and calcium in adipocytes for treatment of obesity/diabetes |
US6613785B2 (en) * | 1998-07-21 | 2003-09-02 | Smithkline Beecham Plc | Use of glucose uptake enhancer for reducing post-ischemic injury of the heart |
US6596751B2 (en) * | 1999-04-06 | 2003-07-22 | Sankyo Company Limited | α-substituted carboxylic acid derivatives |
US6100047A (en) * | 1999-04-07 | 2000-08-08 | Zen Bio, Inc. | Modulation of the sulfonylurea receptor and calcium in adipocytes for treatment of obesity/diabetes |
US20020065315A1 (en) * | 1999-04-12 | 2002-05-30 | Jensen Bo Skaaning | Ion channel modulating agents |
US6372743B1 (en) * | 1999-09-30 | 2002-04-16 | Neurogen Corporation | Certain alkylene diamine-substituted pyrazlo (1,5-a)-1,5-pyrimidines and pyrazolo (1,5-a) 1,3,5-triazines |
US20010016586A1 (en) * | 1999-12-23 | 2001-08-23 | Christiane Guitard | Use of organic compounds |
US20020013268A1 (en) * | 2000-04-13 | 2002-01-31 | Fryburg David A. | Synergistic effect of a sulfonylurea and/or non-sulfonylurea Kchannel blocker, and a phosphodiesterase 3 type inhibitor |
US6610746B2 (en) * | 2000-04-13 | 2003-08-26 | Pfizer Inc. | Synergistic effect of a sulfonylurea and/or non-sulfonylurea K+ATP channel blocker, and a phosphodiesterase 3 type inhibitor |
US20030216294A1 (en) * | 2000-04-13 | 2003-11-20 | Pfizer Inc. | Synergistic effect of a sulfonylurea and/or non-sulfonylurea Kchannel blocker, and a phosphodiesterase 3 type inhibitor |
US20020037928A1 (en) * | 2000-05-03 | 2002-03-28 | Jaen Juan C. | Combination therapeutic compositions and method of use |
US20020094977A1 (en) * | 2000-06-15 | 2002-07-18 | Robl Jeffrey A. | HMG-CoA reductase inhibitors and method |
US6511989B2 (en) * | 2000-11-03 | 2003-01-28 | Aventis Pharma Deutschland Gmbh | Acylaminoalkyl-substituted benzenesulfonamide derivatives, their preparation, their use and pharmaceutical preparations comprising them |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8980952B2 (en) | 2002-03-20 | 2015-03-17 | University Of Maryland, Baltimore | Methods for treating brain swelling with a compound that blocks a non-selective cation channel |
US10533988B2 (en) | 2002-03-20 | 2020-01-14 | University Of Maryland, Baltimore | Methods for treating central or peripheral nervous system damage |
US20060276411A1 (en) * | 2002-03-20 | 2006-12-07 | University Of Maryland, Baltimore | Novel non-selective cation channel in neuronal cells and methods for treating brain swelling |
US9107932B2 (en) | 2002-03-20 | 2015-08-18 | University Of Maryland, Baltimore | Methods for treating neural cell swelling |
US10583094B2 (en) | 2004-09-18 | 2020-03-10 | University Of Maryland | Therapeutic methods that target the NCCA-ATP channel |
US8569377B2 (en) | 2004-09-18 | 2013-10-29 | The United States Of America As Represented By The Department Of Veteran Affairs | Methods for treating spinal cord injury with a compound that inhibits a NCCA-ATP channel |
US20090130083A1 (en) * | 2004-09-18 | 2009-05-21 | University Of Maryland | Therapeutic Agents Targeting the NCCA-ATP Channel and Methods of Use Thereof |
US20060100183A1 (en) * | 2004-09-18 | 2006-05-11 | University Of Maryland, Baltimore | Therapeutic agents targeting the NCCa-ATP channel and methods of use thereof |
WO2006034048A2 (en) | 2004-09-18 | 2006-03-30 | University Of Maryland, Baltimore | Therapeutic agents targeting the ncca-atp channel and methods of use thereof |
US7872048B2 (en) | 2004-09-18 | 2011-01-18 | University Of Maryland, Baltimore | Methods for treating spinal cord injury with a compound that inhibits a NCCa-ATP channel |
EP2359832A2 (en) | 2004-09-18 | 2011-08-24 | University of Maryland, Baltimore | Therapeutic agents targeting the NCCA-ATP channel and methods of use thereof |
EP2382977A1 (en) | 2004-09-18 | 2011-11-02 | University of Maryland, Baltimore | Therapeutic agents targeting the ncca-atp channel and methods of use thereof |
US20100056444A1 (en) * | 2006-10-12 | 2010-03-04 | Sven Martin Jacobson | Treatment of Alzheimer's Disease Using Compounds that Reduce the Activity of Non Selective Ca Activated ATP- Sensitive Cation Channels Regulated by SUR1 Receptors |
US10004703B2 (en) | 2006-10-12 | 2018-06-26 | Biogen Chesapeake Llc | Treatment of alzheimer's disease using compounds that reduce the activity of non-selective CA++ activated ATP-sensitive cation channels regulated by SUR1 channels |
US10441556B2 (en) | 2006-10-12 | 2019-10-15 | Biogen Chesapeake Llc | Composition containing glibenclamide |
US10758503B2 (en) | 2006-10-12 | 2020-09-01 | Biogen Chesapeake Llc | Composition containing glibenclamide |
US10898496B2 (en) | 2007-01-12 | 2021-01-26 | University Of Maryland, Baltimore | Targeting NCCa-ATP channel for organ protection following ischemic episode |
US12121526B2 (en) | 2007-01-12 | 2024-10-22 | The United States Government As Represented By The Department Of Veterans Affairs | Targeting NCCA-ATP channel for organ protection following ischemic episode |
WO2008089103A3 (en) * | 2007-01-12 | 2008-11-06 | Univ Maryland | Targeting ncca-atp channel for organ protection following ischemic episode |
US9511075B2 (en) | 2007-01-12 | 2016-12-06 | The University Of Maryland, Baltimore | Targeting NCCA-ATP channel for organ protection following ischemic episode |
EP3103451A1 (en) | 2007-01-12 | 2016-12-14 | University of Maryland, Baltimore | Targetting ncca-atp channel for organ protection following ischemic episode |
US20100143347A1 (en) * | 2007-01-12 | 2010-06-10 | The University Of Maryland, Baltimore | Targeting ncca-atp channel for organ protection following ischemic episode |
US10166244B2 (en) | 2007-01-12 | 2019-01-01 | University Of Maryland, Baltimore | Targeting NCCA-ATP channel for organ protection following ischemic episode |
WO2008098160A1 (en) | 2007-02-09 | 2008-08-14 | University Of Maryland, Baltimore | Antagonists of a non-selective cation channel in neural cells |
US20100092469A1 (en) * | 2007-02-09 | 2010-04-15 | Simard J Marc | Antagonists of a non-selective cation channel in neural cells |
WO2009002832A2 (en) | 2007-06-22 | 2008-12-31 | University Of Maryland, Baltimore | Inhibitors of ncca-atp channels for therapy |
US9375438B2 (en) | 2007-06-22 | 2016-06-28 | University Of Maryland, Baltimore | Inhibitors of NCCa-ATP channels for therapy |
US20100273886A1 (en) * | 2007-12-04 | 2010-10-28 | Remedy Pharmaceuticals, Inc. | Formulations and methods for lyophilization and lyophilates provided thereby |
US10117834B2 (en) | 2007-12-04 | 2018-11-06 | Biogen Chesapeake Llc | Formulations and methods for lyophilization and lyophilates provided thereby |
US8858997B2 (en) | 2007-12-04 | 2014-10-14 | Remedy Pharmaceuticals, Inc. | Formulations and methods for lyophilization and lyophilates provided thereby |
US10869835B2 (en) | 2007-12-04 | 2020-12-22 | Biogen Chesapeake Llc | Formulations and methods for lyophilization and lyophilates provided thereby |
US8277845B2 (en) | 2007-12-04 | 2012-10-02 | Remedy Pharmaceuticals, Inc. | Formulations and methods for lyophilization and lyophilates provided thereby |
US10688111B2 (en) | 2008-01-29 | 2020-06-23 | Biogen Chesapeake Llc | Liquid formulations of compounds active at sulfonylurea receptors |
US20110034560A1 (en) * | 2008-01-29 | 2011-02-10 | Sven Jacobson | Liquid formulations of compounds active at sulfonylurea receptors |
EP2719380A2 (en) | 2008-09-16 | 2014-04-16 | University of Maryland, Baltimore | SUR1 inhibitors for therapy |
US11084778B2 (en) | 2012-05-08 | 2021-08-10 | Aeromics, Inc. | Methods of treating cardiac edema, neuromyelitis optica, and hyponatremia |
US11873266B2 (en) | 2012-05-08 | 2024-01-16 | Aeromics, Inc. | Methods of treating or controlling cytotoxic cerebral edema consequent to an ischemic stroke |
US10894055B2 (en) | 2013-11-06 | 2021-01-19 | Aeromics, Inc. | Pharmaceutical compositions, methods of making pharmaceutical compositions, and kits comprising 2-{[3,5-bis(trifluoromethyl)phenyl]carbamoyl}4-chlorophenyl dihydrogen phosphate |
US11071744B2 (en) | 2013-11-06 | 2021-07-27 | Aeromics, Inc. | Prodrug salts |
US11801254B2 (en) | 2013-11-06 | 2023-10-31 | Aeromics, Inc. | Pharmaceutical compositions and methods of making pharmaceutical compositions comprising 2-{[3,5-bis(trifluoromethyl)phenyl]carbamoyl}-4-chlorophenyl dihydrogen phosphate |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10533988B2 (en) | Methods for treating central or peripheral nervous system damage | |
US20170112860A1 (en) | Novel non-selective cation channel in neuronal cells and methods for treating brain swelling | |
Chen et al. | Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain | |
Levite et al. | Extracellular K+ and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1. 3 channels and β1 integrins | |
JP2005534285A5 (ja) | 神経系細胞の非選択的陽イオンチャネルおよび脳腫脹を治療する方法 | |
Kauppinen et al. | Clinical manifestations and histological characteristics | |
Delogu et al. | Apoptogenic effect of fentanyl on freshly isolated peripheral blood lymphocytes | |
Amos | Immunological aspects of practolol toxicity | |
Boyle et al. | Permeabilization by streptolysin-O reveals a role for calcium-dependent protein kinase C isoforms alpha and beta in the response of cultured cardiomyocytes to hyposmotic challenge | |
Shi et al. | Apical phosphatidylserine externalization in auditory hair cells | |
Melvin et al. | Altered responses to agonists after chronic in vivo atropine administration in rat parotid acini | |
Zhang | Role and Regulation of Ion Channels in Insulin Secreting Cells | |
Graham | Airway Epithelial Sodium Transport | |
Ott | Cellular mechanisms of transport in epithelia: Functional and structural studies of renal organic cation transport | |
Hokama | Blood cell alterations in diabetes: Implications for ischemia-reperfusion injury in the diabetic heart | |
Rutledge | Mechanisms of tritium-D-aspartate release from primary astrocyte cultures under conditions that mimic cerebral ischemia | |
PRIMCLECTA | 290a Biophysical Journal vol. 25, 1979 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY OF MARYLAND, BALTIMORE, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIMARD, J. MARC;CHEN, MINGKUI;REEL/FRAME:014272/0325 Effective date: 20030605 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |