US20030201641A1 - Tube couplings - Google Patents

Tube couplings Download PDF

Info

Publication number
US20030201641A1
US20030201641A1 US10/420,476 US42047603A US2003201641A1 US 20030201641 A1 US20030201641 A1 US 20030201641A1 US 42047603 A US42047603 A US 42047603A US 2003201641 A1 US2003201641 A1 US 2003201641A1
Authority
US
United States
Prior art keywords
tube
cap
coupling body
coupling
locking device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/420,476
Other languages
English (en)
Inventor
John Guest
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
John Guest International Ltd
Original Assignee
John Guest International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by John Guest International Ltd filed Critical John Guest International Ltd
Assigned to JOHN GUEST INTERNATIONAL LIMITED reassignment JOHN GUEST INTERNATIONAL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUEST, JOHN DEREK
Publication of US20030201641A1 publication Critical patent/US20030201641A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L19/00Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts
    • F16L19/08Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts with metal rings which bite into the wall of the pipe
    • F16L19/083Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts with metal rings which bite into the wall of the pipe the longitudinal cross-section of the ring not being modified during clamping
    • F16L19/086Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts with metal rings which bite into the wall of the pipe the longitudinal cross-section of the ring not being modified during clamping with additional sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/08Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members
    • F16L37/084Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members combined with automatic locking
    • F16L37/092Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members combined with automatic locking by means of elements wedged between the pipe and the frusto-conical surface of the body of the connector
    • F16L37/0925Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members combined with automatic locking by means of elements wedged between the pipe and the frusto-conical surface of the body of the connector with rings which bite into the wall of the pipe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/08Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members
    • F16L37/084Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members combined with automatic locking
    • F16L37/092Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members combined with automatic locking by means of elements wedged between the pipe and the frusto-conical surface of the body of the connector
    • F16L37/0927Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members combined with automatic locking by means of elements wedged between the pipe and the frusto-conical surface of the body of the connector the wedge element being axially displaceable for releasing the coupling

Definitions

  • the invention relates to tube couplings. It is an object of the invention to provide a coupling with enhanced sealing for the tube without voids between the tube and coupling surfaces in which fluids may be trapped and fester.
  • EP-A-1233225 discloses a tube coupling to receive and hold a tube comprising a coupling body having a throughway open at one end to receive a tube. An annular step is formed in the throughway facing the open end to receive an end of a tube. An end cap is screwed on to the coupling body for axial movement between forward and retracted position on the coupling body, the end cap having an opening for the tube to extend through.
  • a seal is located in the coupling body between the step and the open end of the body. The seal has an annular sleeve encircling the throughway and an out-turned annular flange at one end lying against the annular step to receive and seal with an end of the tube inserted into the throughway.
  • a compression device in the throughway is operable to compress the sleeve around the outer surface of the tube adjacent said end of the tube as the end cap is screwed on to the coupling body into the forward position.
  • This invention provides a tube coupling comprising a coupling body having a throughway open at one end to receive an end portion of a tube, a seal encircling the throughway to seal with the periphery and end of the tube and a cap mounted on the body having a tube locking device rotatably mounted therein the cap to engage and hold the tube in the cap in the axial direction out of the cap, the cap and body having interengaging means which guide the cap on the body in an axial direction along the body with rotation of the cap from a first position in which a tube can be inserted through the cap and into the seal in the throughway and retained by the locking device and a second position advanced along the coupling body from the end thereof in which the tube end is held positively in engagement with the seal in the throughway, wherein means are provided to resist rotation of the locking device with respect to the coupling body whereby rotation of the cap between said the first and second positions does not cause the tube to rotate.
  • annular member is provided in the cap acting between the coupling body and tube locking device to resist rotation of the locking device with respect to the coupling body.
  • the annular member and an end of the coupling body have interengaging teeth to resist rotation of the annular member with respect to the coupling body.
  • annular member and the tube locking device may have interengaging teeth to resist rotation of the locking device with respect to the coupling body.
  • the annular member may comprise a sleeve which engages in the open end of the throughway of the coupling body and has an out-turned flange overlying the end of the coupling body, the end of the coupling body and side of the flange facing the coupling body having interengaging teeth to resist rotation of the annular member with respect to the coupling body and the other side of the flange and tube locking device having interengaging teeth to resist rotation of the tube locking device with respect to the coupling body.
  • the locking device may comprise a collet having an annular head located on the outer side of the cap and having a plurality of resilient arms projecting into the cap, the arms having interengaging teeth for engaging the tube extending through the collet into the coupling body and the cap having a tapered cam surface converging towards the open end of the cap remote from the coupling body with which the arms of the collet are engageable to be pressed inwardly with outward movement of the collet with respect to the cap to engage and grip the tube extending through the collet.
  • ends of the arms of the collet projecting into the cap may have teeth for interengaging with the teeth of the annular member for resisting rotation of the collet with the cap.
  • FIG. 1 is a exploded view of an inline tube coupling having identical tube connectors at each end thereof;
  • FIG. 2 is a cross-sectional view through the coupling of FIG. 1 with the components of the coupling fully assembled with tubes, one tube being located in an initial engagement position and the other being fully engaged;
  • FIG. 3 is an enlarged view of part of the coupling of FIG. 2 showing said one tube in the initially engaged position
  • FIG. 4 is a similar view to FIG. 3 showing the other tube in the fully engaged position.
  • FIG. 5 is a cut-away perspective view of a modified form of the connector.
  • FIG. 1 of the drawing there is shown a double ended inline tube coupling indicated generally at 10 for connecting together two inline tubes indicated at 11 in FIG. 2.
  • the coupling comprises a central cylindrical coupling body 12 having a throughway 13 and an integral annular internal wall 14 located centrally in the throughway with a central aperture 15 for flow of fluid from tube to tube through the coupling.
  • the outer side of the coupling body has an encircling outer wall 16 formed integrally with the coupling body centrally along the body.
  • the periphery of the outer wall is formed with four equally spaced abutments extending across the outer periphery of the wall and between the abutments the wall has shallow recesses.
  • the raised abutments provide finger grips to enable the coupling body to be held against rotation during assembly and disassembly of tubes with the coupling as described later.
  • End caps 20 are engagable over the portions of the coupling body to either side of the central wall.
  • the end caps are generally of cylindrical form having an open end 21 to receive an end portion of the cylindrical body 12 and having a reduced diameter socket 22 at the other end in which a collet 23 is engagable to receive and lock a tube in the end cap as describe later.
  • the open end 21 of the end cap has two shallow lugs 24 formed integrally with the wall of the end cap at diametrically spaced locations across the end cap.
  • Each end portion of the cylindrical body 12 has in its outer surface axially extending grooves 25 formed at diametrically spaced locations around the coupling body leading towards the central wall 16 .
  • the grooves are dimensioned to receive the lugs 24 on the inner surface of the cap with a close fit and to guide the cap axially onto the coupling body.
  • the grooves 25 lead into helically wound grooves 26 extending a short distance of approximately one quarter of the circumference around the cylindrical body.
  • the grooves 26 are dimensioned to receive the abutments 24 in the cap to allow the cap to rotate and at the same time to advance axially with respect to the coupling body.
  • the grooves 26 run out at the wall 16 in a short end section 27 parallel to the wall which terminates with an end stop 28 at the end of the groove.
  • the side of each groove remote from the wall is formed with a shallow projection where the groove changes from the helical portion 26 to the end section 27 to retain the abutment 24 in the parallel section of the groove adjacent the end.
  • the axial portion of the groove 25 has a shallow ramp 30 over which the abutment 24 rides immediately before entering the helically groove section 26 .
  • the ramps serve to define a first position of assembly of the cap 20 on the coupling body and to retain the cap on the coupling body.
  • the cap 20 is initially moved axially onto the coupling body with the abutments 24 sliding along the groove 25 and snapping over the ramps 30 . Once past the ramps 30 , the cap is then rotated along the helical grooves 26 until it engages in the straight section 27 where it is retained by the projections 29 .
  • the arrangement of grooves on the coupling body and abutments in the cap define a first position of location of the cap on the coupling body in which the abutments have just snapped past the ramps in the grooves 25 and a second position in which the cap is rotated through a quarter turn on the coupling body to bring the abutments 24 into engagement with the end sections 28 of the grooves and against the end stop 29 .
  • the cap has a plurality of axially extending ribs 35 at spaced locations around its outer surface.
  • each cap 20 has a reduced diameter socket 22 at the end remote from the coupling body in which the collet 23 is located to receive and lock a tube in the cap.
  • Each collet 23 comprises an annular portion 40 having a plurality of axially extending spaced resilient arms 41 projecting into the cap and an out turned head 42 .
  • the arms 41 have inturned teeth to engage and grip a surface of a tube passing through the collet and have heads 44 at the ends of the arms to engage in an internal tapered frusto-conical cam surface formed in the tapered portion of the cap between the main part and reduced diameter socket 21 .
  • Engagement of the heads of the arms with the cam surface causes the arms to be compressed inwardly with outward movement of the collet from the cap to press the teeth of the arms firmly into gripping engagement with the tube and thereby resist withdrawal of a tube from the coupling body.
  • An arrangement of seals is provided in the throughway 12 in the coupling body to one side of the inner annular wall 11 as follows. Adjacent the wall there is an annular seal 50 having an outer sleeve which extends around the throughway and is dimensioned to receive the end of a tube to be sealed in the coupling body.
  • the sleeve has a short inner sleeve formed integrally with the outer sleeve to receive an end face of the tube projecting into the outer sleeve and form a seal therewith.
  • the sleeve 50 is lodged against and supported by the inner central wall 11 .
  • a ring member 60 one side 61 which abuts the sleeve and the other side of which has an encircling flange 62 formed with spaced axially facing teeth 64 on both sides thereof.
  • the ring 60 projects into the open end of the coupling body 12 and the teeth 63 mesh with corresponding teeth 65 formed on the end face of the coupling body to prevent rotation of the ring with respect to the coupling body.
  • the ends of the arms 41 of the collet are formed with teeth 67 which mesh with the teeth 64 on the flange 62 so that when the collet is in engagement with the flange, the cap can be rotated on the coupling body as described earlier without causing the collet 23 to rotate.
  • a tube is assembled in the coupling body with a cap 20 positioned in the first position defined above in which the abutments 24 in the cap are snapped over the ramps in the grooves 25 but the cap is not advanced further on the coupling body at that stage.
  • the tube to be connected to the coupling body is aligned with the open end of the cap and is inserted through the collet 23 in the cap, through the ring 60 , and into the seal 50 in the throughway. The collet automatically grips and retains the tube to prevent the tube from being withdrawn from the coupling body.
  • the cap 20 is then rotated through the helical path defined by the grooves 26 to the position shown in the right hand part of FIG. 2 and in FIG. 4 and in so doing is drawn axially along the coupling body.
  • the tube held by the collet is forced further into the throughway in the coupling body and is pressed firmly into the seal with the end of the tube engaging the inner seal.
  • the abutments 24 in the cap reach the end portions of the groove and are retained by the shallow projections referred to earlier to hold the cap in the second position of movement with the end of the tube held firmly sealed at the end of the tube by the inner seal and around the outer surface of the tube by the outer seal and 0 -ring seal.
  • the tube does not damage the seals in the coupling body as it is forced into full sealing engagement with the seals.
  • the cap When it is required to detach a tube from the tube coupling, the cap is rotated in the opposite direction back to the first position in its movement at the ends of the axial portions of the groove. The corresponding axial movement of the tube with the cap slightly releases the engagement of the end of the tube in the seal and the collet 23 can then be depressed into the cap to release the gripping engagement of the collet arms with the tube and to allow the tube to be extracted from the coupling body/cap.
  • annular spacer and an 0 -ring may be located next to the sleeve in the throughway to receive and encircle a tube extending into the coupling body.
  • the ring member 60 then abuts the other side of the 0 -ring to provide an additional seal between the tube and coupling body.
  • FIG. 5 of the drawings shows a modified arrangement of the coupling in which ring 60 is omitted and the cap 20 is located on coupling body 12 by means of a coarse screw-thread indicated at 70 .
  • the teeth 67 on the ends of the arms of the collet engage directly with the teeth 65 at the end of the coupling body.
  • the construction is otherwise the same as that described earlier.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
US10/420,476 2002-04-30 2003-04-22 Tube couplings Abandoned US20030201641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0209897.8 2002-04-30
GBGB0209897.8A GB0209897D0 (en) 2002-04-30 2002-04-30 Improvements in or relating to tube couplings

Publications (1)

Publication Number Publication Date
US20030201641A1 true US20030201641A1 (en) 2003-10-30

Family

ID=9935817

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/420,476 Abandoned US20030201641A1 (en) 2002-04-30 2003-04-22 Tube couplings
US10/427,078 Expired - Lifetime US7100948B2 (en) 2002-04-30 2003-04-30 Tube couplings
US11/402,103 Expired - Fee Related US7410193B2 (en) 2002-04-30 2006-04-11 Tube couplings

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/427,078 Expired - Lifetime US7100948B2 (en) 2002-04-30 2003-04-30 Tube couplings
US11/402,103 Expired - Fee Related US7410193B2 (en) 2002-04-30 2006-04-11 Tube couplings

Country Status (7)

Country Link
US (3) US20030201641A1 (de)
EP (1) EP1359362B1 (de)
AU (1) AU2003203843B2 (de)
DE (1) DE60301293T2 (de)
ES (1) ES2243861T3 (de)
GB (1) GB0209897D0 (de)
NZ (1) NZ525545A (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090036861A1 (en) * 2007-08-01 2009-02-05 Hospira, Inc. Medicament admixing system
US20090140514A1 (en) * 2007-12-03 2009-06-04 John Guest International Limited Tube couplings
US20090295152A1 (en) * 2008-05-28 2009-12-03 John Guest International Limited Tube couplings
US8721612B2 (en) 2010-12-17 2014-05-13 Hospira, Inc. System and method for intermixing the contents of two containers
US8834444B2 (en) 2011-10-03 2014-09-16 Hospira, Inc. System and method for mixing the contents of two containers
WO2014186417A1 (en) * 2013-05-14 2014-11-20 Fluidmaster, Inc. Click-seal torque limiting connector
US9261214B2 (en) 2010-06-22 2016-02-16 John Guest International Limited Tube coupling having an improved collet alignment
US9322499B2 (en) 2013-10-11 2016-04-26 John Guest International Limited Connector
US9551447B2 (en) 2013-10-10 2017-01-24 John Guest International Limited Connector for connecting to a tube
US9909701B2 (en) 2012-03-29 2018-03-06 John Guest International Limited Tube couplings

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6929289B1 (en) 2001-02-15 2005-08-16 John Guest International Ltd. Tube couplings
GB0126798D0 (en) 2001-11-07 2002-01-02 Guest John Int Ltd Improvements in or relating to tube couplings
GB0209899D0 (en) 2002-04-30 2002-06-05 Guest John Int Ltd Improvements in or relating to tube couplings
GB0209897D0 (en) 2002-04-30 2002-06-05 Guest John Int Ltd Improvements in or relating to tube couplings
GB0221076D0 (en) 2002-09-11 2002-10-23 Guest John Int Ltd Improvements in or relating to tube couplings
NZ539383A (en) 2004-05-26 2006-11-30 Guest John Int Ltd Collet for tube couplings with head made of stronger material than rest of collet
GB0504899D0 (en) 2005-03-09 2005-04-13 Guest John Int Ltd Improvements in or relating to tube couplings
US7575575B2 (en) * 2005-03-18 2009-08-18 Ron Anthon Olsen Adjustable splint for osteosynthesis with modular components
CN101573549B (zh) * 2006-11-07 2011-04-06 崔六男 管联接装置
US7887548B2 (en) * 2006-12-05 2011-02-15 Aesculap Implant Systems, Llc Screw insertion guide tube with window
GB0624784D0 (en) 2006-12-12 2007-01-17 Guest John Int Ltd Improvements in or relating to tube couplings
US7900967B2 (en) * 2008-09-16 2011-03-08 GM Global Technology Operations LLC Engine fitting and method of assembling vehicles
TWI387697B (zh) * 2008-10-23 2013-03-01 Yugen Kaisha Hama Int 管接頭
US20100171302A1 (en) * 2009-01-05 2010-07-08 Nibco Inc. Push-twist connector
FR2950948A1 (fr) * 2009-10-06 2011-04-08 Legris Sas Dispositif de raccordement instantane ayant des zones de guidage et d'etancheite inversees
US8157294B2 (en) * 2009-12-10 2012-04-17 Masco Corporation Glueless whirlpool fittings
US8403370B2 (en) * 2009-12-17 2013-03-26 Yuk Nam Choi Pipe coupling device
US8833733B2 (en) 2010-01-21 2014-09-16 Automatic Switch Company Valve connections
US20110204624A1 (en) * 2010-02-25 2011-08-25 Nibco Inc. Universal connection socket
US9874299B2 (en) * 2010-05-05 2018-01-23 Cnh Industrial Canada, Ltd. Pneumatic seed distribution hose coupling assembly
DE102010052189B4 (de) * 2010-11-24 2012-07-12 Schell Gmbh & Co. Kg Vorrichtung zum Halten und Abdichten eines Rohres
US8657343B2 (en) * 2012-02-06 2014-02-25 Watts Water Technologies, Inc. Quick connector assembly
US9440246B2 (en) 2012-12-10 2016-09-13 Delta Faucet Company Ratcheting hose nut for a fluid delivery device
US9303804B2 (en) * 2013-03-12 2016-04-05 Sioux Chief Mfg. Co., Inc. Combination glue hub and mechanical coupler for pipe fittings
KR101359819B1 (ko) * 2013-04-18 2014-02-11 정휘동 정수라인의 튜브 피팅구조
US9708798B2 (en) * 2013-11-06 2017-07-18 Mcwane, Inc. Water supply outlet cap
US10006575B2 (en) 2013-12-11 2018-06-26 Nibco Inc. Modular push-to-connect assembly
US9447906B2 (en) 2013-12-11 2016-09-20 Nibco Inc. Self-locking push-to-connect insert
US9541228B2 (en) 2013-12-11 2017-01-10 Nibco Inc. Push-to-connect fitting
US9115833B2 (en) * 2013-12-31 2015-08-25 Quick Fitting, Inc. Cross platform grip ring release device and method
US9777875B2 (en) 2014-02-26 2017-10-03 Nibco Inc. Clam shell push-to-connect assembly
JP6184895B2 (ja) * 2014-03-28 2017-08-23 株式会社ニフコ ホースコネクタ及びホースコネクタを一体的に備えた自動車部品
DE112015001853T5 (de) * 2014-04-16 2017-03-30 Idex Health & Science Llc Hochdruck-Fluid-Verbindungsanordnungen
TWM504976U (zh) * 2015-03-11 2015-07-11 Solutions Technology Co Ltd 9 可快速轉向定位之磁固組件
WO2016191619A1 (en) * 2015-05-27 2016-12-01 Johnson Controls Technology Company Actuator conduit adaptor
US9879810B2 (en) 2015-09-18 2018-01-30 Quick Fitting, Inc. Push-to-connect joint assembly with protective shield device and method
US9562637B1 (en) 2015-09-22 2017-02-07 Quick Fitting, Inc. Locking pipe joint assembly, device and method
US10670173B2 (en) 2016-03-31 2020-06-02 Quick Fitting, Inc. Locking pipe joint device with indicator
US9671049B1 (en) 2016-07-27 2017-06-06 Quick Fitting, Inc. Hybrid push-to-connect fitting device and assembly
US11035505B2 (en) 2017-02-06 2021-06-15 North American Pipe Corporation System, method and apparatus for in-line removable pipe assembly
US10400929B2 (en) 2017-09-27 2019-09-03 Quick Fitting, Inc. Fitting device, arrangement and method
US11092400B2 (en) * 2018-08-21 2021-08-17 Jess Briley Manufacturing Company Shotgun choke assemblies and firearm suppressor assemblies and methods connecting the same
US10801652B2 (en) * 2019-03-12 2020-10-13 Keith R. Bunn, SR. Snap together pipe coupling assembly
US10969047B1 (en) 2020-01-29 2021-04-06 Quick Fitting Holding Company, Llc Electrical conduit fitting and assembly
US11035510B1 (en) 2020-01-31 2021-06-15 Quick Fitting Holding Company, Llc Electrical conduit fitting and assembly
US11105452B1 (en) 2021-02-25 2021-08-31 Quick Fitting Holding Company, Llc Push-to-connect joint assembly and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181751A (en) * 1990-05-31 1993-01-26 Tokai Rubber Industries, Ltd. Quick connector
US5607190A (en) * 1994-03-04 1997-03-04 Hutchinson Quick and leaktight joining device for tubular pipes
US6056326A (en) * 1998-03-27 2000-05-02 Guest; John Derek Tube couplings
US6293595B1 (en) * 1993-09-29 2001-09-25 Jpb Systeme Anti-rotation locking units, and apparatus equipped therewith
US20020109353A1 (en) * 2001-02-15 2002-08-15 John Guest International Limited Tube couplings
US20030006610A1 (en) * 2001-07-09 2003-01-09 Werth Albert A. Barb clamp

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2475741A (en) * 1943-01-06 1949-07-12 Robert A Goeller Connector
US2452277A (en) * 1945-05-10 1948-10-26 George V Woodling Tube coupling
US2640716A (en) * 1948-12-28 1953-06-02 Arthur L Bigelow Tube coupling
US2728895A (en) * 1954-10-04 1955-12-27 Whitney Blake Co Self-locking coupling device
NL107650C (de) * 1956-05-28
US3107108A (en) * 1957-11-26 1963-10-15 Whitney E Greene Tube coupling
US3180664A (en) * 1961-07-20 1965-04-27 Imp Eastman Corp Ball pipe joint with composite ball member
US3233924A (en) * 1963-04-18 1966-02-08 Parker Hannifin Corp High pressure coupling
BE656166A (de) * 1963-11-26
US3334661A (en) * 1964-01-03 1967-08-08 Kenneth A Milette Pipe union
US3250550A (en) 1964-02-13 1966-05-10 Gilbert T Lyon Self-flaring tube coupling
US3434744A (en) * 1966-07-19 1969-03-25 Dresser Ind Tube fitting with locking means
FR1508220A (fr) * 1966-11-21 1968-01-05 Moulages Ind Plasto Raccord rapide pour tuyaux souples
NO126755B (de) * 1968-05-28 1973-03-19 Raufoss Ammunisjonsfabrikker
CH506743A (de) * 1969-06-11 1971-04-30 Schmid Kranz & Co Gmbh Zweigni Rohrverbindungsmuffe für die mechanisch gesicherte Klemmbefestigung glatter Rohrenden - insbesondere kleinkalibriger Stahlrohre
US3834742A (en) 1971-02-05 1974-09-10 Parker Hannifin Corp Tube coupling
US3747964A (en) * 1971-12-15 1973-07-24 N Nilsen Quick coupling and seal
FR2227483B1 (de) 1973-04-24 1975-08-22 Legris France Sa
GB1520742A (en) 1975-07-30 1978-08-09 Guest J D Couplings for tubes
DE2624521A1 (de) 1975-06-03 1976-12-16 Lera Holding S A Manuelle kupplung
IL47642A (en) 1975-07-04 1978-07-31 Plasson Maagan Michael Ind Ltd Pipe coupling and split-ring useful therein
US3989283A (en) * 1975-07-23 1976-11-02 Genova, Inc. Compression fitting
US4136897A (en) 1976-04-08 1979-01-30 Parker-Hannifin Corporation Coupling device for tubular members
US4062572A (en) * 1976-08-30 1977-12-13 Inner-Tite, A Division Of Yara Engineering Corporation Transition fittings
US4188051A (en) * 1977-04-22 1980-02-12 Parker-Hannifin Corporation Tube coupling
FR2394736A1 (fr) 1977-06-16 1979-01-12 Cetri Sa Raccord de tuyauterie
US4305606A (en) * 1978-11-24 1981-12-15 Societe Legris France S.A. Quick-releasable connectors for flexible plastic pipes
US4253686A (en) 1979-04-10 1981-03-03 Aitken W Sidney Pipe coupling useful at high fluid pressures
FR2461186A1 (fr) 1979-07-06 1981-01-30 Legris Perfectionnement aux raccords pour tuyauteries notamment pour tuyauteries de fluides a haute pression
US4335908A (en) * 1980-05-19 1982-06-22 Burge Donald G Push-in tube connector
US4298222A (en) 1980-07-23 1981-11-03 Jaco Manufacturing Company Tube coupling
SE455638B (sv) 1982-08-27 1988-07-25 Ekman K R Anordning vid en kopplingsenhet med forsta och andra mutterformade kopplingsdelar samt sett for framstellning av anordningen
US4637636A (en) 1984-11-12 1987-01-20 Guest John D Tube couplings
US4655159A (en) 1985-09-27 1987-04-07 Raychem Corp. Compression pressure indicator
CH672898A5 (de) * 1987-05-11 1990-01-15 Praezisions Werkzeuge Ag
GB8718198D0 (en) 1987-07-31 1987-09-09 Guest J D Bodies which use couplings
US4867489A (en) 1987-09-21 1989-09-19 Parker Hannifin Corporation Tube fitting
JPH0633844B2 (ja) 1987-09-29 1994-05-02 ブリヂストンフロ−テック株式会社 管継手
CA1311778C (en) * 1988-05-12 1992-12-22 Anthony L. Reese Compression coupling
IT1230763B (it) 1989-02-20 1991-10-29 Claber Spa Elemento di raccordo maschio femmina, in particolare per tubi di grosso diametro
US4993755A (en) * 1989-09-22 1991-02-19 Master Industries, Inc. Quick connect fitting
US5388866A (en) * 1990-03-09 1995-02-14 Lourdes Industries High pressure coupling with provision for preventing separation of parts and with anti-galling provision
US5217261A (en) 1990-04-23 1993-06-08 Aeroquip Corporation Flareless compression fitting
US5362110A (en) * 1991-02-25 1994-11-08 Moeller Manufacturing Co., Inc. Fluid coupling and fastener capture device
FR2689205B1 (fr) 1992-03-30 1995-08-11 Hutchinson Dispositif adaptateur pour raccorder un embout et l'extremite d'un flexible, en particulier d'un flexible gaz.
CA2144979C (en) * 1993-07-20 1999-01-12 Wayne Albert Harris Coupling for outer surface engagement of polymeric pipe
GB9407752D0 (en) 1994-04-19 1994-06-15 Rigby Stephen D Improvements in tube connectors
IT1274292B (it) * 1994-07-26 1997-07-17 Fip Formatura Inienzione Poli Giunto per il collegamento rapido di tubi in materiale plastico
US5466019A (en) * 1994-09-26 1995-11-14 Komolrochanaporn; Naris Pipe coupling
US5498043A (en) * 1995-01-25 1996-03-12 Plastic Specialties And Technologies, Inc. Hose fitting having ferrule anti-rotation ratchet teeth
JP3644786B2 (ja) 1997-04-14 2005-05-11 Smc株式会社 管継手
US6623047B2 (en) * 1997-06-16 2003-09-23 Swagelok Company Tube coupling
US6095572A (en) * 1998-01-20 2000-08-01 Optimize Technologies, Inc. Quarter turn quick connect fitting
NZ333076A (en) 1998-02-27 2000-06-23 Guest John D Tube coupling having a first and a second enlarged diameter portion and a plastics sleeve to seal a tube against the coupling
US5957509A (en) * 1998-10-16 1999-09-28 Komolrochanaporn; Naris Pipe coupling
US6139194A (en) * 1998-11-05 2000-10-31 Illinois Tool Works Inc. Fiber optic lighting system connector
EP1087168B1 (de) 1999-09-27 2004-06-09 Legris S.A. Vorrichtung zum Verbinden von einem Leitungsende mit einem Anschlussteil
WO2001061235A1 (en) 2000-02-17 2001-08-23 Heinz, Luna Pipe connector
US20020135184A1 (en) * 2001-01-19 2002-09-26 Snyder Ronald R. Mechanical pipe coupling derived from a standard fitting
GB0126798D0 (en) 2001-11-07 2002-01-02 Guest John Int Ltd Improvements in or relating to tube couplings
US20040032125A1 (en) * 2002-04-23 2004-02-19 Rehder Randall J. Connector
GB0209897D0 (en) 2002-04-30 2002-06-05 Guest John Int Ltd Improvements in or relating to tube couplings
GB0209899D0 (en) 2002-04-30 2002-06-05 Guest John Int Ltd Improvements in or relating to tube couplings
GB0221076D0 (en) 2002-09-11 2002-10-23 Guest John Int Ltd Improvements in or relating to tube couplings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181751A (en) * 1990-05-31 1993-01-26 Tokai Rubber Industries, Ltd. Quick connector
US6293595B1 (en) * 1993-09-29 2001-09-25 Jpb Systeme Anti-rotation locking units, and apparatus equipped therewith
US5607190A (en) * 1994-03-04 1997-03-04 Hutchinson Quick and leaktight joining device for tubular pipes
US6056326A (en) * 1998-03-27 2000-05-02 Guest; John Derek Tube couplings
US20020109353A1 (en) * 2001-02-15 2002-08-15 John Guest International Limited Tube couplings
US20030006610A1 (en) * 2001-07-09 2003-01-09 Werth Albert A. Barb clamp

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9198832B2 (en) 2007-08-01 2015-12-01 Hospira, Inc. Medicament admixing system
US20090036861A1 (en) * 2007-08-01 2009-02-05 Hospira, Inc. Medicament admixing system
US8801689B2 (en) 2007-08-01 2014-08-12 Hospira, Inc. Medicament admixing system
US9205025B2 (en) 2007-08-01 2015-12-08 Hospira, Inc. Medicament admixing system
US9205026B2 (en) 2007-08-01 2015-12-08 Hospira, Inc. Medicament admixing system
US20090140514A1 (en) * 2007-12-03 2009-06-04 John Guest International Limited Tube couplings
US7758085B2 (en) 2007-12-03 2010-07-20 John Guest International Limited Tube couplings
KR101111670B1 (ko) 2007-12-03 2012-02-17 죤 게스트 인터내셔널 리미티드 튜브 결합기
US20090295152A1 (en) * 2008-05-28 2009-12-03 John Guest International Limited Tube couplings
US8029024B2 (en) 2008-05-28 2011-10-04 John Guest International Limited Tube couplings
US9261214B2 (en) 2010-06-22 2016-02-16 John Guest International Limited Tube coupling having an improved collet alignment
US8721612B2 (en) 2010-12-17 2014-05-13 Hospira, Inc. System and method for intermixing the contents of two containers
US9610223B2 (en) 2010-12-17 2017-04-04 Hospira, Inc. System and method for intermixing the contents of two containers
US9079686B2 (en) 2011-10-03 2015-07-14 Hospira, Inc. Port assembly for mixing the contents of two containers
US8911421B2 (en) 2011-10-03 2014-12-16 Hospira, Inc. System and method for mixing the contents of two containers
US8882739B2 (en) 2011-10-03 2014-11-11 Hospira, Inc. System and method for mixing the contents of two containers
US8834444B2 (en) 2011-10-03 2014-09-16 Hospira, Inc. System and method for mixing the contents of two containers
US9909701B2 (en) 2012-03-29 2018-03-06 John Guest International Limited Tube couplings
WO2014186417A1 (en) * 2013-05-14 2014-11-20 Fluidmaster, Inc. Click-seal torque limiting connector
GB2528017A (en) * 2013-05-14 2016-01-06 Fluidmaster Click-seal torque limiting connector
CN105229358A (zh) * 2013-05-14 2016-01-06 芙洛玛斯特公司 棘爪密封限扭连接器
US9551447B2 (en) 2013-10-10 2017-01-24 John Guest International Limited Connector for connecting to a tube
US9322499B2 (en) 2013-10-11 2016-04-26 John Guest International Limited Connector
US9631756B2 (en) 2013-10-11 2017-04-25 John Guest International Limited Connector

Also Published As

Publication number Publication date
EP1359362A1 (de) 2003-11-05
US20030201642A1 (en) 2003-10-30
DE60301293D1 (de) 2005-09-22
US7410193B2 (en) 2008-08-12
ES2243861T3 (es) 2005-12-01
US20060181080A1 (en) 2006-08-17
AU2003203843A1 (en) 2003-11-20
DE60301293T2 (de) 2006-06-01
GB0209897D0 (en) 2002-06-05
EP1359362B1 (de) 2005-08-17
US7100948B2 (en) 2006-09-05
NZ525545A (en) 2004-08-27
AU2003203843B2 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
EP1359362B1 (de) Verbesserungen an oder bezüglich Rohrkupplungen
US6957833B2 (en) Tube couplings
US6056326A (en) Tube couplings
US6880865B2 (en) Tube couplings
US8882156B2 (en) Tube couplings
KR100886263B1 (ko) 튜브 결합구 또는 그에 관한 향상
EP1657480B1 (de) Verbesserungen betreffend Rohrverbindungen
US8029024B2 (en) Tube couplings
AU784093B2 (en) Improvements in or relating to tube couplings
JPH1080494A (ja) カテーテルアダプタのアセンブリ
JP4736490B2 (ja) 差込式管継手
GB2597493A (en) A plumbing connector
GB2597494A (en) A plumbing connector
JP2002098276A (ja) 管継手
JPH11257564A (ja) 管継手
JP2004100720A (ja) 管継手

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOHN GUEST INTERNATIONAL LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUEST, JOHN DEREK;REEL/FRAME:013994/0019

Effective date: 20030414

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION