US20030159852A1 - Multilayer wiring board, manufacturing method therefor and test apparatus thereof - Google Patents

Multilayer wiring board, manufacturing method therefor and test apparatus thereof Download PDF

Info

Publication number
US20030159852A1
US20030159852A1 US10274125 US27412502A US2003159852A1 US 20030159852 A1 US20030159852 A1 US 20030159852A1 US 10274125 US10274125 US 10274125 US 27412502 A US27412502 A US 27412502A US 2003159852 A1 US2003159852 A1 US 2003159852A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
wiring board
multilayer wiring
resin layer
resin
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10274125
Inventor
Naoki Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. IMC (insert mounted components)
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2806Apparatus therefor, e.g. test stations, drivers, analysers, conveyors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0652Bump or bump-like direct electrical connections from substrate to substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06572Auxiliary carrier between devices, the carrier having an electrical connection structure
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06596Structural arrangements for testing
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/1627Disposition stacked type assemblies, e.g. stacked multi-cavities
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/061Lamination of previously made multilayered subassemblies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/162Testing a finished product, e.g. heat cycle testing of solder joints
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49004Electrical device making including measuring or testing of device or component part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49128Assembling formed circuit to base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49133Assembling to base an electrical component, e.g., capacitor, etc. with component orienting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49144Assembling to base an electrical component, e.g., capacitor, etc. by metal fusion

Abstract

A built-in component type multilayer wiring board includes at least one resin layer and at least one frame resin layer. The resin layer includes electronic components buried therein. The frame resin layer includes at least one of glass cloth, filler and nonwoven fabric. The frame resin layer includes no electronic component.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a multilayer wiring board formed by stacking a plurality of boards mounting electronic components such as a coil, a condenser and an IC chip. [0002]
  • 2. Description of the Related Art [0003]
  • It is possible for a multilayer wiring board having electronic components within its layers (referred to as “built-in component type multilayer wiring board”, hereinafter) to correspond to speeding up of a signal since distances between the components can be reduced. The built-in component type multilayer wiring board can mount the same components as those of a conventional single layer board using an area smaller than that required by the conventional single layer board. Such a built-in component type multilayer wiring board is useful as a printed wiring board unit. Thus, many examinations of the built-in component type multilayer wiring board have been conducted by manufacturers. However, the manufacturing process of the built-in component type multilayer wiring board is complex. Accordingly, it is difficult to obtain a built-in component type multilayer wiring board of high reliability. [0004]
  • The conventional popular built-in component type multilayer wiring board mounts components on a base board having rigidity. Additionally, the multilayer structure is realized by using a resin sheet of such as a prepreg material including glass cloth, for example, and by making the resin sheet form around and bury mounted electronic components. [0005]
  • A description will be given of the conventional built-in component type multilayer wiring board, with reference to FIGS. 1 and 2. FIG. 1 shows a multilayer wiring board [0006] 100. In the multilayer wiring board 100, electronic components are mounted on a base board 101 having rigidity, and the base boards 101 are stacked by hollowing out prepreg material corresponding to areas where the electronic components are mounted.
  • The base board [0007] 101 of the multilayer wiring board 100 is formed by completely cured resin including glass cloth and has a preachieved rigidity. On the other hand, generally, the prepreg material is a resin sheet made by mixing glass cloth and adhesive resin, and in a semi-cured state (referred to as “B stage” in this industry). The glass cloth included in the prepreg material interferes with (occupies space for) the electronic component. Thus, a part of the prepreg material is hollowed out so as to secure space for the mounted electronic components. The multilayer wiring board 100 as shown in FIG. 1 is formed by appropriately stacking such base boards 101 and prepreg material, and performing a complete curing process on the prepreg material.
  • Accordingly, the conventional multilayer wiring board [0008] 100 is formed by stacking the base boards 101 each having high rigidity and prepreg layers 102 formed by performing the complete curing process on the prepreg material. A component 105 is arranged on a wiring pattern 103 in a space 104 within the prepreg layer 102. Further, a reference numeral 107 denotes a contact hole penetrating the layers. Inside the contact hole 107, wiring 109 made of copper or the like is formed.
  • FIG. 2 shows another conventional built-in component type multilayer wiring board [0009] 110. In FIG. 2, those parts that are the same as those corresponding parts in FIG. 1 are designated by the same reference numerals, and a description thereof will be omitted. The multilayer wiring board 110 is manufactured in the same way as the multilayer wiring board 100 shown in FIG. 1 and has a structure similar to that of the multilayer wiring board 100. However, filling resin 111 for reinforcement is filled in a space 104 of a prepreg layer 102. Accordingly, the multilayer wiring board 110 requires more manufacturing processes than the multilayer wiring board 100. However, the multilayer wiring board 110 has higher reliability than the multilayer wiring board 100 shown in FIG. 1.
  • However, as mentioned above, the conventional multilayer wiring boards shown in FIGS. 1 and 2 are formed by stacking the base boards [0010] 101 and prepreg layers 102 after manufacturing processes of hollowing out the parts of the prepreg material corresponding to the mounted components. Thus, the number of manufacturing processes increases since additional operations such as hollowing out the prepreg material, positioning the mounted components in the space formed in the prepreg material and the like are required. Further, the operation of positioning the holes in the prepreg material is an operation requiring particular accuracy.
  • Additionally, the multilayer wiring boards [0011] 100 and 110 shown in FIGS. 1 and 2, respectively, are manufactured by a single press process after preparing a plurality of base boards 101 and the prepreg layers 102. Therefore, tests of these multilayer wiring boards are mainly local tests performed on each component before stacking and evaluation tests of finished multilayer wiring boards. Therefore, it is not possible to perform adequate electrical testing.
  • Additionally, when the finished multilayer wiring board includes a defect, it is difficult to fix the defect. Further, the defective rate increases drastically since the multilayer wiring board includes many layers and components. As a result, the manufacturing cost increases. [0012]
  • SUMMARY OF THE INVENTION
  • A first object of the present invention is to provide a built-in component type multilayer wiring board that can be manufactured by simplified manufacturing processes and a manufacturing method thereof. [0013]
  • A second object of the present invention is to provide an optimum test apparatus for the multilayer wiring board. [0014]
  • In order to achieve the first object, according to one aspect of the present invention, there is provided a multilayer wiring board, including: at least one resin layer including electronic components buried therein; and at least one frame resin layer including at least one of glass cloth, filler and nonwoven fabric, the frame resin layer including no electronic components therein. [0015]
  • Additionally, according to another aspect of the present invention, in the above-mentioned multilayer wiring board, the resin layer may include at least one of filler and nonwoven fabric. [0016]
  • Additionally, according to another aspect of the present invention, in the above-mentioned multilayer wiring board, the frame resin layer may include glass cloth as a frame and a resin surrounding the glass cloth may be completely cured. [0017]
  • Additionally, according to another aspect of the present invention, in the above-mentioned multilayer wiring board, the resin layer may be completely cured with fragments of one of filler and nonwoven fabric included in a resin; and the frame resin layer may be completely cured with fragments of at least one of glass cloth, filler and nonwoven fabric included in a resin. [0018]
  • According to the above-mentioned aspects of the present invention, the frame resin layer having a preachieved rigidity maintains the form of the multilayer wiring board, and the electronic components are buried in the resin layer. Thus, the multilayer wiring board according to the present invention can be manufactured without processes such as hollowing out prepreg material and adjusting the position of a hollowed out part (space) as in the conventional case. Therefore, it is possible to simplify the processes and to manufacture the multilayer wiring board with a low cost. [0019]
  • Additionally, in order to achieve the first object, according to another aspect of the present invention, there is provided a manufacturing method of a multilayer wiring board, including: a first step of mounting an electronic component on a frame resin layer including at least one of glass cloth, filler and nonwoven fabric, the frame resin layer including no electronic component therein; and a second step of forming a resin layer by placing a semi-cured resin sheet on the frame resin layer so as to contact the mounted electronic component, and completely curing the semi-cured resin sheet with the electronic component buried therein. [0020]
  • Additionally, according to another aspect of the present invention, in the above-mentioned manufacturing method, the semi-cured resin sheet may include fragments of at least one of filler and nonwoven fabric. [0021]
  • According to the above-mentioned aspects of the present invention, it is possible to manufacture the multilayer wiring board including the frame resin layer having a preachieved rigidity and maintaining the form of the multilayer wiring board and the resin layer including the electronic components buried therein without including processes such as hollowing out the material and adjusting the position of the space. Thus, according to the manufacturing method of the multilayer wiring board according to the present invention, it is possible to simplify the processes and to manufacture the multilayer wiring board at a low cost compared with the conventional method. [0022]
  • Additionally, in order to achieve the second object, according to another aspect of the present invention, there is provided a test apparatus used for evaluating a multilayer wiring board formed by successively stacking layers, including: a probe part configured to be connected to an incomplete multilayer wiring board that is in a half finished state before completion; and a supplementary part supplementing an element of the complete multilayer wiring board, the incomplete multilayer wiring board lacking the element. [0023]
  • Additionally, according to another aspect of the present invention, in the above-mentioned test apparatus, the supplementary part may include layer wiring of the complete multilayer wiring board, the incomplete multilayer wiring board lacking the layer wiring. [0024]
  • According to the above-mentioned aspects of the present invention, it is possible to perform an evaluation test suitable for the complete multilayer wiring board on the incomplete multilayer wiring board. Thus, it is possible to manufacture the complete multilayer wiring board while checking the operations and functions of circuits when the multilayer wiring board includes such as an IC chip as the electronic component. [0025]
  • Additionally, according to another aspect of the present invention, there is provided a manufacturing method of a multilayer wiring board, wherein: the multilayer wiring board is manufactured while successively testing an incomplete multilayer wiring board using a test apparatus used (designed) for evaluating the multilayer wiring board; and the test apparatus including: a probe part configured to be connected to the incomplete multilayer wiring board in a half finished state before completion; and a supplementary part supplementing an element of a complete multilayer wiring board, the incomplete multilayer wiring board lacking the element. [0026]
  • Additionally, according to another aspect of the present invention, in the above-mentioned manufacturing method, the supplementary part may include layer wiring of the complete multilayer wiring board, the incomplete multilayer wiring board lacking the layer wiring. [0027]
  • According to the above-mentioned aspects of the present invention, a test on the incomplete multilayer wiring board may be also performed in addition to a local test on each component and a test on the complete multilayer wiring board. Thus, it is possible to improve the yield of the complete multilayer wiring board and to lower the manufacturing cost thereof. [0028]
  • Other objects, features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the following drawings.[0029]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram showing a conventional built-in component type multilayer wiring board; [0030]
  • FIG. 2 is a schematic diagram showing another conventional built-in component type multilayer wiring board; [0031]
  • FIG. 3 is a schematic diagram showing the general structure of a built-in component type multilayer wiring board according to an embodiment of the present invention; [0032]
  • FIG. 4 is a schematic diagram showing the first part of the preferred manufacturing processes of the multilayer wiring board according to the embodiment; [0033]
  • FIG. 5 is a schematic diagram showing the latter part of the preferred manufacturing processes of the multilayer wiring board according to the embodiment; and [0034]
  • FIGS. 6A and 6B are schematic diagrams showing a test apparatus used in the manufacturing processes of the multilayer wiring board.[0035]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A description will be given of embodiments of the present invention, by referring to the drawings. FIG. 3 is a schematic diagram showing a general structure of a built-in electronic component type multilayer wiring board [0036] 1 according to an embodiment of the present invention.
  • In FIG. 3, a frame resin layer [0037] 11 corresponds to a conventional base board. The frame resin layer 11 has rigidity to maintain the form of the multilayer wiring board 1. The frame resin layer 11 is a completely cured resin layer including at least one of glass cloth, filler, and nonwoven fabric, for example.
  • More specifically, the frame resin layer [0038] 11 is completely cured including glass cloth as its frame and resin surrounding the glass cloth. Additionally, fragments of filler or nonwoven fabric may be further included in the resin. Further, the frame resin layer 11 may not include glass cloth but include fragments of filler or nonwoven fabric. The frame resin layer 11 may have the desired rigidity and does not include electronic components.
  • A wiring pattern [0039] 13 is formed on one side or both sides of the frame resin layer 11. Active electronic components such as an IC chip 15 and passive electronic components such as a coil and a condenser are connected at predetermined positions.
  • The reference numeral [0040] 12 denotes a resin layer having built-in components (referred to as “resin layer 12”, hereinafter). The resin layer 12 includes electronic components 15 and 16 such that the electronic components 15 and 16 are buried therein. The electronic components 15 and 16 are buried in the resin layer 12 during the manufacturing processes. The manufacturing processes thereof will be described later. The multilayer wiring board 1 according to this embodiment is manufactured by sequentially stacking the frame resin layers 11 and the resin layers 12 by the build-up method. When manufacturing the multilayer wiring board 1 by the build-up method, as shown in FIG. 3, the wiring pattern 13 may also be formed on a surface of the resin layer 12 the same as the frame resin layer 11, and the electronic component 15 may be connected to the wiring pattern 13 thereof. That is, as shown in FIG. 3, two or more of the resin layers 12 may be stacked successively.
  • The above-mentioned resin layer [0041] 12 includes only resin, or resin and at least one of filler or nonwoven fabric. Since the electronic components 15 and 16 are buried in the resin layer 12, it is not desirable to use glass cloth that would be an obstacle in burying the electronic components 15 and 16. On the other hand, it is preferable for the resin layer 12 to have high rigidity. Accordingly, it is preferable for the resin layer 12 to have improved rigidity by including filler or nonwoven fabric in a distributed manner. When the filler or nonwoven fabric is formed in fragments and distributed in the resin, the filler or nonwoven fabric will not be an obstacle to burying the electronic components 15 and 16. Fragments of filler, silicon or ceramic material may be used, for example. The shapes of the fragments are not limited. In addition, glass fiber may be used for the fragments of nonwoven fabric.
  • The same applies to filler or nonwoven fabric used for the above-mentioned frame resin layer [0042] 11. It should be noted that the filler or nonwoven fabric of the resin layer 12 needs to have the size and the density that will not be an obstacle in burying the electronic components 15 and 16. However, in the case of the frame resin layer 11, there is no such limitation.
  • The resin used for forming the resin layer [0043] 12 is a thermosetting resin sheet. The thermosetting resin sheet is in the B stage, that is a semi-cured state, and is deformed corresponding to the shapes of the electronic components 15 and 16. When the thermosetting resin sheet is heated and pressured by press working, the resin is softened and further deformed so as to correspond to the shapes of the electronic components 15 and 16. Thereafter, the resin is cooled and completely cured. Thus, the resin layer 12 including the electronic components 15 and 16 buried therein is formed.
  • It should be noted that similar to the conventional multilayer wiring board, in the multilayer wiring board [0044] 1, wiring 21 is formed inside contact holes 20, and the wiring patterns 13 between the layers are electrically connected.
  • FIGS. 4 and 5 are schematic diagrams showing preferable manufacturing processes of the above-mentioned multilayer wiring board [0045] 1. FIG. 4 shows the first part of the manufacturing processes, and FIG. 5 shows the successive manufacturing processes of the multilayer wiring board 1.
  • In a process shown in FIG. 4-(A), the wiring pattern [0046] 13, the contact hole 20 and the wiring 21 are formed on both sides of the frame resin layer 11 using a conventional exposure/developing technique, plating technique, etching technique and the like.
  • In the next process, as shown in FIG. 4(B), the electronic components [0047] 15 are mounted on the wiring patterns 13, and thus a first incomplete multilayer wiring board 1-B is formed. An evaluation test is performed on the incomplete multilayer wiring board 1-B using a test apparatus that will be described later. The incomplete multilayer wiring board 1-B that is determined to be defective is fixed or disposed of. Only the normal incomplete multilayer wiring board 1-B is processed in the next process as shown in FIG. 4-(C).
  • It should be noted that, in the following, a description will be omitted of an evaluation test. However, when the same evaluation test is performed after each of the steps, and only the normal incomplete multilayer wiring board is processed in the next process, it is possible to improve yield of complete multilayer wiring boards. It is not always necessary to perform the evaluation test after every process. The evaluation test may be performed after specific processes. [0048]
  • In the next process, as shown in FIG. 4(C), a press working of heating and pressuring is performed after placing resin sheets in a B-stage state on both sides of the frame resin layer [0049] 11. As mentioned above, the resin sheet has a thermosetting property, and may include filler or nonwoven fabric in fragments. By performing this process, the resin sheet is completely cured and the resin layers 12 including buried electronic components 15 therein are formed on both sides of the incomplete multilayer wiring board 1-B. Thereafter, the wiring patterns 13 are formed on a surface of each of the resin layers 12.
  • In the next process, as shown in FIG. 4(D), the electronic component [0050] 15 is mounted on the lower side resin layer 12.
  • Additionally, in the next process, as shown in FIG. 4-(E), the second frame resin layer [0051] 11 is mounted on the upper side of the resin layer 12. The resin sheet for forming the resin layer 12 that buries the electronic component 15 mounted in the former step (refer to FIG. 4-(D)) is placed on the lower side resin layer 12. Thereafter, press working of heating and pressuring is performed.
  • In the next process, as shown in FIG. 5(A), the electronic components [0052] 15 and 16 are further mounted on a surface of the frame resin layer 11. Also, another electronic component 15 is mounted on a surface of the resin layer 12. Then, in the last process, as shown in FIG. 5-(B), resin sheets are placed on both sides as mentioned above so as to bury the electronic components 15 and 16 in the resin layer 12. At last, the complete multilayer wiring board 1 as shown in FIG. 3 is obtained by forming the wiring patterns 13 on both sides.
  • As described above, it is possible to perform the evaluation test on the incomplete multilayer wiring boards shown in FIG. 4-(C), FIG. [0053] 4-(D), FIG. 4-(E) and FIG. 5-(A) as well as the incomplete multilayer wiring board 1-B shown in FIG. 4-(B) so as to improve the yield of the complete multilayer wiring board 1 shown in FIG. 5-(B). A finished product test is performed on the complete multilayer wiring board 1 the same as the conventional multilayer wiring board.
  • In this embodiment, a case is shown where the multilayer wiring board [0054] 1 includes two frame resin layers 11. However, the number of the frame resin layers 11 may be varied in accordance with required intensity.
  • FIGS. 6A and 6B are schematic diagrams showing a test apparatus that can be suitably used in the above-mentioned manufacturing processes. In FIGS. 6A and 6B, a case is shown where a test is performed on the incomplete multilayer wiring board [0055] 1-B manufactured in the process shown in FIG. 4-(B) Additionally, FIGS. 6A and 6B only show parts characteristic of the test apparatus when compared with a conventional test apparatus, and the other parts are not shown.
  • The test apparatus includes an upper test jig [0056] 50 for contacting the upper surface of the incomplete multilayer wiring board 1-B, and a lower test jig 60 for contacting the lower surface of the incomplete multilayer wiring board 1-B. FIG. 6A shows a state where the incomplete multilayer wiring board 1-B, the upper test jig 50 and the lower test jig 60 are separated from each other. FIG. 6B shows a state where the incomplete multilayer wiring board 1-B contacts the upper test jig 50 and the lower test jig 60.
  • The upper test jig [0057] 50 includes a layer wiring part 55 formed above the incomplete multilayer wiring board 1-B, which layer wiring part 55 is incorporated in the complete multilayer wiring board 1. The upper test jig 50 is provided with probe pins 52 for connecting with the incomplete multilayer wiring board 1-B and a probe board 51 for supporting the probe pins 52.
  • Similarly, the lower test jig [0058] 60 includes a layer wiring part 65 formed below the incomplete multilayer wiring board 1-B. The lower test jig 60 is provided with probe pins 62 and a probe board 61 for supporting the probe pins 62. Basically, the lower test jig 60 should include a resin layer 12 as the top layer of the layer wiring part 65. However, the layer wiring part 65 does not include the frame resin layer 11 that maintains the layer structure. Thus, the layer wiring part 65 includes a reinforcing layer 65A instead of the frame resin layer 11. The reinforcing layer 65A is similar to the frame resin layer 11 and has high rigidity. Basically, the part where the reinforcing layer 65A is formed should be the resin layer 12 that buries the electronic components. However, this is not a problem since, as shown in FIGS. 6A and 6B, the electronic components 15 and 16 on the lower surface of the incomplete multilayer wiring board 1-B are not buried.
  • As mentioned above, the test is performed by supplementing elements that the incomplete multilayer wiring board [0059] 1-B lacks by providing such elements to the jigs 50 and 60 of the test apparatus. Accordingly, it is possible to perform a continuity test. At the same time, it is also possible to check functions of electronic components such as an IC chip.
  • In the above-mentioned test apparatus, the test is made possible by causing the upper test jig [0060] 50 and the lower test jig 60 to include the respective layer wiring (elements). However, the elements lacking may be provided not to the test jigs 50 and 60 but to the test apparatus. Additionally, circuit conditions corresponding to the layer wiring parts may be set in the test apparatus instead of forming the actual layer wiring parts as described above.
  • The test apparatus as shown in FIGS. 6A and 6B is for the incomplete multilayer wiring board [0061] 1-B as shown in FIG. 4-(B). However, the same evaluation test may be performed on the incomplete multilayer wiring boards as shown in FIGS. 4-(C) through 5-(A) when respective jigs are provided.
  • As described above, only quality products are used in the manufacturing processes while successively performing the tests on the incomplete multilayer wiring boards using the above-mentioned test apparatus. Therefore, it is possible to improve the yield of the complete multilayer wiring board. [0062]
  • Further, it should be noted that the above-mentioned test apparatus may be applied to not only the built-in component type multilayer wiring boards but also general multilayer wiring boards manufactured by the build-up method. [0063]
  • Additionally, in FIG. 3, a case is shown of the multilayer wiring board [0064] 1 formed by stacking the frame resin layers 11 and the resin layers 12 by the build-up method. However, the multilayer wiring board according to the present invention may be manufactured by stacking all the layers at one time. In this case, the multilayer wiring board may be manufactured with a single press working by preparing in advance the desired number of frame resin layers 11 mounting the electronic components 15 and 16 as shown in FIG. 4-(B), and inserting the resin layers 12 in between the above-mentioned frame resin layers 11 based on a stacked layers design. However, in a case of stacking all the layers at one time, the resin sheets that form the resin layers 12 are in a semi-cured state (B stage). Accordingly, it is difficult to realize a form in which the resin layers 12 are stacked successively and the electronic components 15 are included in the resin layers 12, all at the same time.
  • The present invention is not limited to the specifically disclosed embodiments, and variations and modifications may be made without departing from the scope of the present invention. [0065]
  • The present application is based on Japanese priority application No. 2002-047979 filed on Feb. 25, 2002, the entire contents of which are hereby incorporated by reference. [0066]

Claims (10)

    What is claimed is:
  1. 1. A multilayer wiring board, comprising:
    a resin layer including electronic components buried therein; and
    a frame resin layer including at least one of glass cloth, filler and nonwoven fabric, said frame resin layer including no electronic component therein.
  2. 2. The multilayer wiring board as claimed in claim 1, wherein the resin layer includes at least one of filler and nonwoven fabric.
  3. 3. The multilayer wiring board as claimed in claim 1, wherein the frame resin layer includes glass cloth as a frame and a resin surrounding said glass cloth is completely cured.
  4. 4. The multilayer wiring board as claimed in claim 1, wherein:
    the resin layer is completely cured with fragments of said one of filler and nonwoven fabric included in a resin; and
    the frame resin layer is completely cured with fragments of said at least one of glass cloth, filler and nonwoven fabric included in a resin.
  5. 5. A manufacturing method of a multilayer wiring board, comprising:
    a first step of mounting an electronic component on a frame resin layer including at least one of glass cloth, filler and nonwoven fabric, said frame resin layer including no electronic component therein; and
    a second step of forming a resin layer by placing a semi-cured resin sheet on said frame resin layer so as to contact the mounted electronic component, and completely curing said semi-cured resin sheet with the electronic component buried therein.
  6. 6. The manufacturing method as claimed in claim 5, wherein the semi-cured resin sheet includes fragments of at least one of filler and nonwoven fabric.
  7. 7. A test apparatus used for evaluating a multilayer wiring board formed by successively stacking layers, comprising:
    a probe part configured to be connected to an incomplete multilayer wiring board that is in a half finished state before completion; and
    a supplementary part supplementing an element of the multilayer wiring board, said incomplete multilayer wiring board lacking said element.
  8. 8. The test apparatus as claimed in claim 7, wherein the supplementary part includes layer wiring of the multilayer wiring board, said incomplete multilayer wiring board lacking said layer wiring.
  9. 9. A manufacturing method of a multilayer wiring board, wherein:
    said multilayer wiring board is manufactured as successively testing an incomplete multilayer wiring board using a test apparatus used for evaluating the multilayer wiring board; and
    said test apparatus comprises:
    a probe part configured to be connected to said incomplete multilayer wiring board in a half finished state before completion; and
    a supplementary part supplementing an element of the multilayer wiring board, said incomplete multilayer wiring board lacking said element.
  10. 10. The manufacturing method as claimed in claim 9, wherein the supplementary part includes layer wiring of the multilayer wiring board, said incomplete multilayer wiring board lacking said layer wiring.
US10274125 2002-02-25 2002-10-21 Multilayer wiring board, manufacturing method therefor and test apparatus thereof Abandoned US20030159852A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002047979A JP2003249763A (en) 2002-02-25 2002-02-25 Multilayer interconnection board and manufacturing method thereof
JP2002-047979 2002-02-25

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10664930 US7091716B2 (en) 2002-02-25 2003-09-22 Multilayer wiring board, manufacturing method therefor and test apparatus thereof
US10664928 US7047634B2 (en) 2002-02-25 2003-09-22 Method of making a multilayer wiring board
US11184827 US7284311B2 (en) 2002-02-25 2005-07-20 Multilayer wiring board, manufacturing method therefor and test apparatus thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10664930 Division US7091716B2 (en) 2002-02-25 2003-09-22 Multilayer wiring board, manufacturing method therefor and test apparatus thereof
US10664928 Division US7047634B2 (en) 2002-02-25 2003-09-22 Method of making a multilayer wiring board

Publications (1)

Publication Number Publication Date
US20030159852A1 true true US20030159852A1 (en) 2003-08-28

Family

ID=27750723

Family Applications (4)

Application Number Title Priority Date Filing Date
US10274125 Abandoned US20030159852A1 (en) 2002-02-25 2002-10-21 Multilayer wiring board, manufacturing method therefor and test apparatus thereof
US10664930 Active 2022-12-20 US7091716B2 (en) 2002-02-25 2003-09-22 Multilayer wiring board, manufacturing method therefor and test apparatus thereof
US10664928 Expired - Fee Related US7047634B2 (en) 2002-02-25 2003-09-22 Method of making a multilayer wiring board
US11184827 Active 2023-02-03 US7284311B2 (en) 2002-02-25 2005-07-20 Multilayer wiring board, manufacturing method therefor and test apparatus thereof

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10664930 Active 2022-12-20 US7091716B2 (en) 2002-02-25 2003-09-22 Multilayer wiring board, manufacturing method therefor and test apparatus thereof
US10664928 Expired - Fee Related US7047634B2 (en) 2002-02-25 2003-09-22 Method of making a multilayer wiring board
US11184827 Active 2023-02-03 US7284311B2 (en) 2002-02-25 2005-07-20 Multilayer wiring board, manufacturing method therefor and test apparatus thereof

Country Status (2)

Country Link
US (4) US20030159852A1 (en)
JP (1) JP2003249763A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1534054A2 (en) * 2003-11-20 2005-05-25 Matsushita Electric Industrial Co., Ltd. Laminated circuit board and its manufacturing method, and manufacturing method for module using the laminated circuit board and its manufacturing apparatus
US20060278967A1 (en) * 2003-04-01 2006-12-14 Tuominen Risto Method for manufacturing an electronic module and an electronic module
US20070166886A1 (en) * 2003-09-18 2007-07-19 Antti Iihola Method for manufacturing an electronic module
US20080196930A1 (en) * 2005-06-16 2008-08-21 Imbera Electronics Oy Method for Manufacturing a Circuit Board Structure, and a Circuit Board Structure
US20080202801A1 (en) * 2005-06-15 2008-08-28 Imbera Electronics Oy Circuit Board Structure and Method for Manufacturing a Circuit Board Structure
US20080205016A1 (en) * 2005-03-17 2008-08-28 Matsushita Electric Industrial Co., Ltd. Module Board
US20080261338A1 (en) * 2004-06-15 2008-10-23 Imbera Electronics Oy Method For Manufacturing an Electronics Module Comprising a Component Electrically Connected to a Conductor-Pattern Layer
US20080295326A1 (en) * 2004-08-05 2008-12-04 Tuominen Risto Manufacture of a Layer Including a Component
US20090014872A1 (en) * 2005-06-16 2009-01-15 Imbera Electronics Oy Method for manufacturing a circuit board structure, and a circuit board structure
US20100103635A1 (en) * 2003-02-26 2010-04-29 Imbera Electronics Oy Single-layer component package
US7719851B2 (en) 2004-04-27 2010-05-18 Imbera Electronics Oy Electronics module and method for manufacturing the same
US20100202115A1 (en) * 2004-08-05 2010-08-12 Imbera Electronics Oy Circuit board including an embedded component
US20110141711A1 (en) * 2009-12-14 2011-06-16 Samsung Electro-Mechanics Co., Ltd. Electronic component embedded printed circuit board and method of manufacturing the same
US20110176590A1 (en) * 2009-10-20 2011-07-21 Suman Banerjee Wireless Communication System Mapping Data Bits to Symbol Bit Positions According to Error Rates of Those Bit Positions and Data Content
US8222723B2 (en) 2003-04-01 2012-07-17 Imbera Electronics Oy Electric module having a conductive pattern layer
US8704359B2 (en) 2003-04-01 2014-04-22 Ge Embedded Electronics Oy Method for manufacturing an electronic module and an electronic module
US9743526B1 (en) * 2016-02-10 2017-08-22 International Business Machines Corporation Wiring board with stacked embedded capacitors and method of making

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011320A1 (en) * 2004-07-30 2006-02-02 Murata Manufacturing Co., Ltd. Composite electronic component and its manufacturing method
US7615856B2 (en) * 2004-09-01 2009-11-10 Sanyo Electric Co., Ltd. Integrated antenna type circuit apparatus
KR100656751B1 (en) * 2005-12-13 2006-12-06 삼성전기주식회사 Electronic components embedded pcb and the method for manufacturing thereof
US7603771B2 (en) * 2006-08-29 2009-10-20 Mutual-Tek Industries Co., Ltd. Method of manufacturing a combined multilayer circuit board having embedded chips
JP5064062B2 (en) * 2007-02-28 2012-10-31 株式会社日本マイクロニクス Inspection method for a multilayer wiring board
JP5019909B2 (en) * 2007-02-28 2012-09-05 株式会社日本マイクロニクス Inspection method for a multilayer wiring board
CN101543152A (en) * 2007-06-19 2009-09-23 株式会社村田制作所 Method for manufacturing substrate with built-in component and substrate with built-in component
CN101690434B (en) * 2007-06-26 2011-08-17 株式会社村田制作所 Method for manufacturing substrate having built-in components
US20090166889A1 (en) * 2007-12-31 2009-07-02 Rajen Murugan Packaged integrated circuits having surface mount devices and methods to form packaged integrated circuits
US8860202B2 (en) * 2012-08-29 2014-10-14 Macronix International Co., Ltd. Chip stack structure and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803115A (en) * 1985-09-27 1989-02-07 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Glass fiber-reinforced electrical laminates and a continuous production method therefor
US6021050A (en) * 1998-12-02 2000-02-01 Bourns, Inc. Printed circuit boards with integrated passive components and method for making same
US6338767B1 (en) * 1997-11-25 2002-01-15 Matsushita Electric Industrial Co., Ltd. Circuit component built-in module and method for producing the same
US6469374B1 (en) * 1999-08-26 2002-10-22 Kabushiki Kaisha Toshiba Superposed printed substrates and insulating substrates having semiconductor elements inside
US20020175402A1 (en) * 2001-05-23 2002-11-28 Mccormack Mark Thomas Structure and method of embedding components in multi-layer substrates
US6524717B1 (en) * 1999-02-19 2003-02-25 Hitachi Chemical Co., Ltd. Prepreg, metal-clad laminate, and printed circuit board obtained from these
US6552265B1 (en) * 1998-10-06 2003-04-22 Telefonaktiebolaget Lm Ericsson Printed board assembly and method of its manufacture

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917984A (en) * 1974-10-01 1975-11-04 Microsystems Int Ltd Printed circuit board for mounting and connecting a plurality of semiconductor devices
US4578279A (en) * 1981-05-26 1986-03-25 International Business Machines Corporation Inspection of multilayer ceramic circuit modules by electrical inspection of unfired green sheets
US4443278A (en) * 1981-05-26 1984-04-17 International Business Machines Corporation Inspection of multilayer ceramic circuit modules by electrical inspection of green specimens
US4891789A (en) * 1988-03-03 1990-01-02 Bull Hn Information Systems, Inc. Surface mounted multilayer memory printed circuit board
JP2712091B2 (en) 1990-03-30 1998-02-10 東芝エー・ブイ・イー株式会社 Printed wiring board of the connection device
JP2999529B2 (en) 1990-09-12 2000-01-17 松下電工株式会社 Electrical laminates
JPH05226833A (en) * 1992-02-17 1993-09-03 Toshiba Corp Manufacture of printed circuit board
JP3231537B2 (en) * 1994-03-09 2001-11-26 松下電器産業株式会社 Method of manufacturing a multi-layer board
JPH0823149A (en) * 1994-05-06 1996-01-23 Seiko Epson Corp Semiconductor device and its production
JP2988280B2 (en) 1994-10-28 1999-12-13 松下電工株式会社 Method for producing a copper-clad laminate
JPH10119195A (en) 1996-10-23 1998-05-12 Sumitomo Bakelite Co Ltd Laminate for printed circuit
JPH11100562A (en) * 1997-09-26 1999-04-13 Sumitomo Bakelite Co Ltd Interlayer insulation adhesive for multilayer printed wiring board and copper foil
JPH11160356A (en) * 1997-11-25 1999-06-18 Matsushita Electric Ind Co Ltd Probe card for wafer collective measurement and inspection and ceramic multilayer interconnection board as well as their manufacture
JP3375555B2 (en) 1997-11-25 2003-02-10 松下電器産業株式会社 Circuit component built-in module and a manufacturing method thereof
JP2000117733A (en) 1998-10-15 2000-04-25 Hitachi Chem Co Ltd Prepreg, metal foil-clad laminated sheet and printed wiring board
JP2000199780A (en) * 1998-12-29 2000-07-18 I C T:Kk Inspection device of printed board
JP2000216512A (en) 1999-01-27 2000-08-04 Hitachi Chem Co Ltd Manufacture of printed wiring board
US6414504B2 (en) * 1999-05-20 2002-07-02 Delaware Capital Formation, Inc. Coaxial tilt pin fixture for testing high frequency circuit boards
US6625307B1 (en) 1999-07-29 2003-09-23 Sun Microsystems, Inc. Image decode optimization techniques
JP3619395B2 (en) 1999-07-30 2005-02-09 京セラ株式会社 A semiconductor element built-in wiring board and a manufacturing method thereof
JP2001053413A (en) 1999-08-16 2001-02-23 Sony Corp Substrate incorporating electronic parts, multilayered substrate incorporating electronic parts, and their manufacture
JP2001119147A (en) 1999-10-14 2001-04-27 Sony Corp Multilayer board incorporating electronic device and production method therefor
US6370013B1 (en) 1999-11-30 2002-04-09 Kyocera Corporation Electric element incorporating wiring board
US6452410B1 (en) * 2000-01-05 2002-09-17 Agilent Technologies, Inc. Apparatus and method for electrolytic bare board testing
JP3246502B2 (en) 2000-01-27 2002-01-15 松下電器産業株式会社 Method for producing a component built-sided wiring board, and a manufacturing method of an electronic circuit assembly
JP3540976B2 (en) 2000-02-29 2004-07-07 京セラ株式会社 Electric element built-in wiring board
US20030055970A1 (en) 2001-09-17 2003-03-20 Iraklis Kourtidis On-demand resource editor for dynamically generated web page documents

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803115A (en) * 1985-09-27 1989-02-07 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Glass fiber-reinforced electrical laminates and a continuous production method therefor
US6338767B1 (en) * 1997-11-25 2002-01-15 Matsushita Electric Industrial Co., Ltd. Circuit component built-in module and method for producing the same
US6552265B1 (en) * 1998-10-06 2003-04-22 Telefonaktiebolaget Lm Ericsson Printed board assembly and method of its manufacture
US6021050A (en) * 1998-12-02 2000-02-01 Bourns, Inc. Printed circuit boards with integrated passive components and method for making same
US6524717B1 (en) * 1999-02-19 2003-02-25 Hitachi Chemical Co., Ltd. Prepreg, metal-clad laminate, and printed circuit board obtained from these
US6469374B1 (en) * 1999-08-26 2002-10-22 Kabushiki Kaisha Toshiba Superposed printed substrates and insulating substrates having semiconductor elements inside
US20020175402A1 (en) * 2001-05-23 2002-11-28 Mccormack Mark Thomas Structure and method of embedding components in multi-layer substrates

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100103635A1 (en) * 2003-02-26 2010-04-29 Imbera Electronics Oy Single-layer component package
US8817485B2 (en) * 2003-02-26 2014-08-26 Ge Embedded Electronics Oy Single-layer component package
US8034658B2 (en) 2003-04-01 2011-10-11 Imbera Electronics Oy Electronic module with a conductive-pattern layer and a method of manufacturing same
US7663215B2 (en) 2003-04-01 2010-02-16 Imbera Electronics Oy Electronic module with a conductive-pattern layer and a method of manufacturing same
US8222723B2 (en) 2003-04-01 2012-07-17 Imbera Electronics Oy Electric module having a conductive pattern layer
US9363898B2 (en) 2003-04-01 2016-06-07 Ge Embedded Electronics Oy Method for manufacturing an electronic module and an electronic module
US20100062568A1 (en) * 2003-04-01 2010-03-11 Tuominen Risto Electronic module with a conductive-pattern layer and a method of manufacturing same
US20060278967A1 (en) * 2003-04-01 2006-12-14 Tuominen Risto Method for manufacturing an electronic module and an electronic module
US8704359B2 (en) 2003-04-01 2014-04-22 Ge Embedded Electronics Oy Method for manufacturing an electronic module and an electronic module
US20100188823A1 (en) * 2003-09-18 2010-07-29 Antti Iihola Method for Manufacturing an Electronic Module
US7696005B2 (en) * 2003-09-18 2010-04-13 Imbera Electronics Oy Method for manufacturing an electronic module in an installation base
US20070166886A1 (en) * 2003-09-18 2007-07-19 Antti Iihola Method for manufacturing an electronic module
US9232658B2 (en) 2003-09-18 2016-01-05 Ge Embedded Electronics Oy Method for manufacturing an electronic module
EP1534054A2 (en) * 2003-11-20 2005-05-25 Matsushita Electric Industrial Co., Ltd. Laminated circuit board and its manufacturing method, and manufacturing method for module using the laminated circuit board and its manufacturing apparatus
EP1534054A3 (en) * 2003-11-20 2008-07-30 Matsushita Electric Industrial Co., Ltd. Laminated circuit board and its manufacturing method, and manufacturing method for module using the laminated circuit board and its manufacturing apparatus
US20080073024A1 (en) * 2003-11-20 2008-03-27 Junichi Kimura Laminated circuit board and its manufacturing method, and manufacturing method for module using the laminated circuit board and its manufacturing apparatus
US7719851B2 (en) 2004-04-27 2010-05-18 Imbera Electronics Oy Electronics module and method for manufacturing the same
US8351214B2 (en) 2004-04-27 2013-01-08 Imbera Electronics Oy Electronics module comprising an embedded microcircuit
US20100214750A1 (en) * 2004-04-27 2010-08-26 Tuominen Risto Electronics module comprising an embedded microcircuit
US8240032B2 (en) * 2004-06-15 2012-08-14 Imbera Electronics Oy Method for manufacturing an electronics module comprising a component electrically connected to a conductor-pattern layer
US20080261338A1 (en) * 2004-06-15 2008-10-23 Imbera Electronics Oy Method For Manufacturing an Electronics Module Comprising a Component Electrically Connected to a Conductor-Pattern Layer
US8487194B2 (en) 2004-08-05 2013-07-16 Imbera Electronics Oy Circuit board including an embedded component
US7673387B2 (en) 2004-08-05 2010-03-09 Imbera Electronics Oy Manufacture of a layer including a component
US20080295326A1 (en) * 2004-08-05 2008-12-04 Tuominen Risto Manufacture of a Layer Including a Component
US20100202115A1 (en) * 2004-08-05 2010-08-12 Imbera Electronics Oy Circuit board including an embedded component
US8675369B2 (en) 2005-03-17 2014-03-18 Panasonic Corporation Module board
US20080205016A1 (en) * 2005-03-17 2008-08-28 Matsushita Electric Industrial Co., Ltd. Module Board
US8077478B2 (en) 2005-03-17 2011-12-13 Panasonic Corporation Module board
US20080202801A1 (en) * 2005-06-15 2008-08-28 Imbera Electronics Oy Circuit Board Structure and Method for Manufacturing a Circuit Board Structure
US8225499B2 (en) 2005-06-16 2012-07-24 Imbera Electronics Oy Method for manufacturing a circuit board structure, and a circuit board structure
US8581109B2 (en) 2005-06-16 2013-11-12 Imbera Electronics Oy Method for manufacturing a circuit board structure
US9622354B2 (en) 2005-06-16 2017-04-11 Ge Embedded Electronics Oy Method for manufacturing a circuit board structure
US20080196930A1 (en) * 2005-06-16 2008-08-21 Imbera Electronics Oy Method for Manufacturing a Circuit Board Structure, and a Circuit Board Structure
US20090014872A1 (en) * 2005-06-16 2009-01-15 Imbera Electronics Oy Method for manufacturing a circuit board structure, and a circuit board structure
US8240033B2 (en) 2005-06-16 2012-08-14 Imbera Electronics Oy Method for manufacturing a circuit board
US20110176590A1 (en) * 2009-10-20 2011-07-21 Suman Banerjee Wireless Communication System Mapping Data Bits to Symbol Bit Positions According to Error Rates of Those Bit Positions and Data Content
US20110141711A1 (en) * 2009-12-14 2011-06-16 Samsung Electro-Mechanics Co., Ltd. Electronic component embedded printed circuit board and method of manufacturing the same
US9743526B1 (en) * 2016-02-10 2017-08-22 International Business Machines Corporation Wiring board with stacked embedded capacitors and method of making

Also Published As

Publication number Publication date Type
US7284311B2 (en) 2007-10-23 grant
US7091716B2 (en) 2006-08-15 grant
US20040066634A1 (en) 2004-04-08 application
US7047634B2 (en) 2006-05-23 grant
JP2003249763A (en) 2003-09-05 application
US20050246891A1 (en) 2005-11-10 application
US20040063340A1 (en) 2004-04-01 application

Similar Documents

Publication Publication Date Title
US6262579B1 (en) Method and structure for detecting open vias in high density interconnect substrates
US7365416B2 (en) Multi-level semiconductor module and method for fabricating the same
US6849945B2 (en) Multi-layered semiconductor device and method for producing the same
US6928726B2 (en) Circuit board with embedded components and method of manufacture
US7498522B2 (en) Multilayer printed circuit board and manufacturing method thereof
US6200824B1 (en) Semiconductor device and tape carrier, and method of manufacturing the same, circuit board, electronic instrument, and tape carrier manufacturing device
US6632732B2 (en) Stereolithographically fabricated conductive elements, semiconductor device components and assemblies including such conductive elements, and methods
US5920123A (en) Multichip module assembly having via contacts and method of making the same
US6000124A (en) Method and apparatus for manufacturing multilayer printed circuit board
US20040239349A1 (en) Probe card and testing method of semiconductor chip, capacitor and manufacturing method thereof
US5440452A (en) Surface mount components and semifinished products thereof
US20080296056A1 (en) Printed circuit board, production method therefor, electronic-component carrier board using printed circuit board, and production method therefor
US6066512A (en) Semiconductor device, method of fabricating the same, and electronic apparatus
US7282394B2 (en) Printed circuit board including embedded chips and method of fabricating the same using plating
US20080014768A1 (en) Rigid-flexible printed circuit board and method of manufacturing the same
US5316787A (en) Method for manufacturing electrically isolated polyimide coated vias in a flexible substrate
US5981880A (en) Electronic device packages having glass free non conductive layers
US6573461B2 (en) Retaining ring interconnect used for 3-D stacking
US5048178A (en) Alignment--registration tool for fabricating multi-layer electronic packages
US20050218451A1 (en) Semiconductor device incorporating semiconductor constructing body and method of fabricating the same
EP0178227A2 (en) Integrated circuit semiconductor device formed on a wafer
US5386627A (en) Method of fabricating a multi-layer integrated circuit chip interposer
US20100044845A1 (en) Circuit substrate, an electronic device arrangement and a manufacturing process for the circuit substrate
US20030063453A1 (en) Multilayer wiring circuit board
US5570505A (en) Method of manufacturing a circuit module

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJITSU LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAKAMURA. NAOKI;REEL/FRAME:013409/0553

Effective date: 20020624