US20030145514A1 - Fuel oil for use both in internal combustion in engine and fuel cell - Google Patents

Fuel oil for use both in internal combustion in engine and fuel cell Download PDF

Info

Publication number
US20030145514A1
US20030145514A1 US10/221,786 US22178602A US2003145514A1 US 20030145514 A1 US20030145514 A1 US 20030145514A1 US 22178602 A US22178602 A US 22178602A US 2003145514 A1 US2003145514 A1 US 2003145514A1
Authority
US
United States
Prior art keywords
volume
fuel oil
fuel
internal combustion
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/221,786
Inventor
Takashi Akimoto
Masashi Iizuka
Hiroshi Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Publication of US20030145514A1 publication Critical patent/US20030145514A1/en
Assigned to IDEMITSU KOSAN CO., LTD. reassignment IDEMITSU KOSAN CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AKIMOTO, TAKASHI, HIRANO, HIROSHI, IIZUKA, MASASHI
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/023Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This invention relates to a fuel oil usable both in an internal combustion engine and in a fuel cell, and, in more detail, relates to a fuel oil which comprises petroleum hydrocarbon fractions such as a gasoline fraction and is usable both in an internal combustion engine and in a fuel cell.
  • Fuel for a fuel cell is generally hydrogen, and it is proposed to use, as the hydrogen, hydrogen gas itself, hydrogen obtained by reforming or decomposing methanol or the like, hydrogen obtained from a town gas containing as a main component methane being gaseous at ordinary temperature and at ordinary pressure, or from an LPG or the like containing propane as a main component, or hydrogen from other sources.
  • the invention was made for solving the above problems. Namely, the invention aim is to provide a fuel oil usable for both an internal combustion engine and a fuel cell which can efficiently produce hydrogen, has no adverse effect on a reforming catalyst and the electrodes of the fuel cell and less causes deactivation of a reforming catalyst when the fuel oil is used as a fuel oil for the fuel cell, and it has a high octane number and can effectively be used without causing knocking, etc. when it is used as a fuel oil for an internal combustion engine of an automobile.
  • the present inventors have intensely studied for solving the above problems, and as a result, they found that the above aim could be achieved by using a gasoline fraction of particular composition and properties as a fuel oil.
  • the invention was completed based on the finding. Namely, the invention relates to
  • a fuel oil for usable both in an internal combustion engine and in a fuel cell containing 50% by volume or more of an alkylate gasoline (Fuel oil 1), and
  • the invention relates, first, to a fuel oil for usable both in an internal combustion engine and in a fuel cell containing 50% by volume or more of an alkylate gasoline (Fuel oil 1).
  • the alkylate gasoline means alkylated gasoline obtained by alkylation reaction, rich in isoparaffin having a high octane number and not containing aromatic components and olefin fractions.
  • alkylate gasoline having an octane number of 90 to 100, preferably of about 96 is used.
  • Such alkylate gasoline can be obtained by introducing an alkyl group into hydrocarbon fractions such as isoparaffin and aromatic fractions, and as a catalyst used then, there can be mentioned an acid catalyst such as sulfuric acid or hydrofluoric acid, a solid acid catalyst such as synthetic zeolite or solid phosphoric acid, etc.
  • Fuel oil 1 of the invention contains the alkylate gasoline in an amount of 50% by volume or more, preferably 50 to 95% by volume, more preferably 50 to 90% by volume, particularly preferably 50 to 80% by volume.
  • the content of the alkylate gasoline is less than 50% by volume, the octane number is low and knocking sometimes takes place when used as a fuel for an internal combustion engine.
  • the content is more than 95% by volume, there is a possibility that startability gets poor when used as a fuel for an internal combustion engine.
  • Fuel oil 1 of the invention preferably contains, in addition to the alkylate gasoline, isopentane in an amount of 1 to 50% by volume.
  • isopentane in an amount of 1 to 50% by volume.
  • the content of isopentane is less than 1% by volume, the effect by the addition is sometimes not exerted.
  • it is more than 50% by volume, in use as a fuel for an internal combustion engine, there sometimes arises a case where knocking is caused due to lowering of the octane number or a case where a vapor lock phenomenon is caused due to too high vapor pressure.
  • Such isopentane can be separated by distilling a hydrocarbon oil at ordinary pressure, and in the invention, isopentane having an octane number of 85 to 95, preferably of about 90, and having a vapor pressure of 130 to 170 kPa, preferably of about 150 kPa is preferably used.
  • Fuel oil 1 of the invention preferably further contains a hydrocarbon compound having 4 carbon atoms in an amount of 1 to 12% by volume.
  • a hydrocarbon compound having 4 carbon atoms there can be mentioned butane, n-butene, isobutene, etc., and as them ones obtained according to a process conventional in the field can appropriately be used.
  • the content of the hydrocarbon compound is less than 1% by volume, the effect by the addition is sometimes not exerted, and when the content is more than 12% by volume, there sometimes arises a case where a vapor lock phenomenon is caused due to too high vapor pressure, when the fuel oil is used as a fuel for an internal combustion engine.
  • Fuel oil 1 of the invention preferably further contains an oxygen-containing compound in an amount of 7% by volume or less.
  • an oxygen-containing compound MTBE (methyl t-butyl ether), ETBE (ethyl t-butyl ether), TAME (t-amyl methyl ether), etc. can preferably be mentioned from the viewpoint of their handling, prices, etc.
  • Fuel oil 1 of the invention contains the oxygen-containing compound in an amount of 1 to 7% by volume.
  • Fuel oil 1 of the invention preferably further contains desulfurized light naphtha in an amount of 1 to 30% by volume.
  • the desulfurized light naphtha means light naphtha composed of normal paraffin, isoparaffin, naphthene, etc. having 4 to 7 carbon atoms and usually obtained by fractionally distilling crude oil into light naphtha in an atmospheric distillation plant and desulfurizing the light naphtha in a naphtha-desulfurizing apparatus, or by fractionally distilling crude oil into full range naphtha in an atmospheric distillation plant, desulfurizing the full range naphtha in a naphtha-desulfurizing apparatus and fractionally distilling it into light naphtha.
  • the content of the desulfurized light naphtha is less than 1% by volume, the effect of the addition is sometimes not exerted, and when the content is more than 30% by volume, the octane number gets low and knocking sometimes occurs in use as a fuel for an internal combustion engine.
  • the sulfur content of the desulfurized light naphtha is usually 5 ppm by weight or less, preferably 1 ppm by weight or less, more preferably 0.1 ppm by weight or less.
  • an isomerized desulfurized light naphtha having a ratio of isoparaffin to normal paraffin of 1 or more, preferably 1.5 or more, more preferably 2.5 or more.
  • isomerized desulfurized light naphtha one obtained by isomerizing a desulfurized light naphtha according to a process usually used in the art, for example according to a process of passing a desulfurized light naphtha through a platinum catalyst such as a platinum carried on alumina catalyst, a platinum carried on zeolite catalyst or a platinum carried on a strongly acidic carrier catalyst, can be used.
  • Fuel oil 2 containing 10 to 60% by volume of a desulfurized light naphtha and 40 to 90% by volume of a benzene-free reformed gasoline, and, optionally, 10% by volume or less of a hydrocarbon compound having 4 carbon atoms.
  • the same desulfurized light naphtha and the hydrocarbon compound having 4 as used in Fuel oil 1 are used.
  • the contents when the content of the desulfurized light naphtha in Fuel oil 2 is less than 10% by volume, there sometimes arises a case where the content of aromatic compounds is increased and, in use as a fuel for a fuel cell, the reforming reaction gets disadvantageous.
  • the content is more than 60% by volume, there sometimes arises a case where the octane number becomes low and, in use as a fuel for an internal combustion engine, knocking occurs.
  • the hydrocarbon compound having 4 carbon atoms in use as a fuel for an internal combustion engine, the effects that the vapor pressure is increased and the startability is heightened can be obtained.
  • the content is more than 10% by volume, there sometimes arises a case where a vapor lock phenomenon occurs due to too high vapor pressure.
  • the above Fuel oil 2 contains 40 to 90% by volume of the benzene-free reformed gasoline.
  • the reformed gasoline means a gasoline obtained by thermally reforming or catalytically reforming a direct distillation gasoline generally having a low octane number, and in the invention, one having an octane number of 95 to 100 is preferably used.
  • a catalyst used in the catalytic reforming there can, for example, be mentioned a platinum catalyst, etc.
  • the benzene-free reformed gasoline means a gasoline obtained by removing benzene from the reformed gasoline through distillation or the like.
  • a low-boiling fraction containing saturated hydrocarbons having 5 carbon atoms as a main component is separated from the reformed gasoline (top temperature 73 to 83° C., top pressure 3 to 4 kg/cm 2 G).
  • any of Fuel oils 1 and 2 for use both in an internal combustion engine and in a fuel cell of the invention has a research octane number of 89 or more.
  • the research octane number is less than 89, knocking sometimes occurs in use as a fuel for an internal combustion engine.
  • any of Fuel oils 1 and 2 for use both in an internal combustion engine and in a fuel cell of the invention has a vapor pressure of 44 to 93 kPa.
  • the vapor pressure is less than 44 kPa, the startability of the engine sometimes gets poor in use as a fuel for an internal combustion engine, and when it is more than 93 kPa, a vapor lock phenomenon sometimes takes place due to too high vapor pressure.
  • the fuel oil of the invention can be used both in an internal combustion engine and in a fuel cell. Namely, when used in an internal combustion engine, the fuel oil has a high octane number and can be used effectively without causing knocking, and when it is used in a fuel cell, it can produce hydrogen efficiently, and has no adverse effect on the reforming catalyst and the electrodes of the fuel cell and thus deactivation of the reforming catalyst, etc. can be reduced.
  • the fuel oil of the invention has characteristics that the purity of hydrogen produced therefrom is high, lowering of the partial pressure of hydrogen is small, etc., and is, therefore, suitable for production of hydrogen for a fuel cell.
  • the fuel oil is first desulfurized according to necessity.
  • a hydrodesulfurization method is usually used.
  • the hydrodesulfurization is carried out under a pressure of from ordinary pressure to 5 MPa at a temperature of 200 to 400° C. using a hydrodesulfurizing catalyst such as Co—Mo/alumina or Ni—Mo/alumina and an adsorbent of hydrogen sulfide such as ZnO.
  • a hydrodesulfurizing catalyst such as Co—Mo/alumina or Ni—Mo/alumina and an adsorbent of hydrogen sulfide such as ZnO.
  • the desulfurized fuel oil is subjected to steam reforming and/or partial oxidation.
  • a fuel oil free of carbon deposition on the steam reforming catalyst, etc. and capable of efficiently producing hydrogen can be obtained.
  • Ni Ni, zirconium or a noble metal such as ruthenium (Ru), rhodium (Rh) and platinum (Pt).
  • Ru ruthenium
  • Rh rhodium
  • Pt platinum
  • Ru is particularly desirable, and Ru has a large effect in inhibition of carbon deposition during the steam reforming reaction.
  • the amount of Ru to be carried is preferably 0.05 to 20% by weight, more preferably 0.05 to 15% by weight, based on the weight of the carrier. When the amount is less than 0.05% by weight, the activity of the steam reforming reaction is sometimes extremely lowered, and when the amount is more than 20% by weight, remarkable increase of the activity is hard to obtain.
  • a combination of Ru and zirconium can be mentioned.
  • Ru and zirconium can be carried together or separately on a carrier.
  • the amount of zirconium to be carried is preferably 0.5 to 20% by weight, more preferably 0.5 to 15% by weight, in terms of ZrO 2 , based on the weight of the carrier.
  • the amount of cobalt to be added is preferably 0.01 to 30, more preferably 0.1 to 30, as an atomic ratio of cobalt/ruthenium, and the amount of magnesium to be added is preferably 0.5 to 20% by weight, more preferably 0.5 to 15% by weight, in terms of magnesia (MgO).
  • MgO magnesia
  • an inorganic oxide is used, and there can, specifically, be mentioned alumina, silica, zirconia and magnesia and a mixture thereof. Particularly preferred among them are alumina and zirconia.
  • a catalyst comprising zirconia having carried Ru thereon.
  • This zirconia can be zirconia itself (ZrO 2 ) or a stabilized zirconia containing a stabilizing component such as magnesia.
  • a stabilizing component such as magnesia.
  • the stabilized zirconia ones containing magnesia, yttria, ceria or the like are suitable.
  • a catalyst comprising an alumina carrier having carried Ru and zirconium thereon, or Ru, zirconium and further cobalt and/or magnesium thereon.
  • alumina ⁇ -alumina particularly excellent in heat resistance and mechanical strength is preferred.
  • the steam reforming in such a condition that the S/C (mole ratio), which is a ratio of steam (S) to carbon (C) derived from the fuel oil, is 2 to 5, particularly 2 to 4.
  • S/C mole ratio of steam (S) to carbon (C) derived from the fuel oil
  • the temperature of the inlet of the steam reforming catalyst layer tends to rise due to the addition of oxygen, it is necessary to control the temperature.
  • the inlet temperature is more than 630° C., there can be a case where thermal decomposition of the raw material hydrocarbon is accelerated, and carbon via radicals formed is deposited on the catalyst or the wall of reactor tubes to make the running hard.
  • the temperature of the outlet of the catalyst layer is not particularly limited, but preferably 650 to 800° C.
  • the temperature of the outlet of the catalyst layer is less than 650° C., the amount of hydrogen produced is not sufficient, and for carrying out the reaction at a temperature more than 800° C., the reactor sometimes needs to be made of highly heat resistant materials, which is not desirable in view of economical efficiency.
  • the reaction pressure is preferably from ordinary pressure to 3 MPa, more preferably from ordinary pressure to 1 MPa.
  • the flow rate of the fuel oil is preferably 0.1 to 100 h ⁇ 1 in terms of LHSV.
  • the partial oxidation is carried out at a reaction pressure of from ordinary pressure to 5 MPa, a reaction temperature of 400 to 1,100° C., an oxygen/carbon ratio of 0.2 to 0.8 and an LHSV of 0.1 to 100 h ⁇ 1 using a catalyst comprising a heat resistant oxide having carried a noble metal such as preferably ruthenium, nickel or the like thereon.
  • a S/C ratio of 0.4 to 4 is adopted.
  • a fuel oil for use both in an internal combustion engine and in a fuel cell which can produce hydrogen with good efficiency, has no adverse effect on a reforming catalyst and electrodes for a fuel cell, and is reduced in deactivation of the reforming catalyst, etc., and which has a high octane number and can be used without causing knocking, etc when it is also used as a fuel oil for an internal combustion engine.
  • Fuel oils having compositions and properties shown in Table 1 were prepared, and the research octane number and vapor pressure of each of them were measured according to JIS K2280 and JIS K2258, respectively. An experiment of production of hydrogen as shown below was carried out using each of them, and a coking test of the catalysts after the reaction is carried. The results are shown in Table 1.
  • Catalyst Water (20% by weight) was added to ⁇ -alumina powder, and the mixture was mixed and compression molded by a kneader to give columnar moldings of diameter 5 mm and length 5 mm. The moldings were dried at 200° C. for 3 hours, and calcined at 1,280° C. for 26 hours to obtain an alumina carrier.
  • ruthenium trichloride (RuCl 3 /nH 2 O) (containing 38% of Ru), 2.47 g of cobalt nitrate (Co(NO 3 ) 36H 2 O) and 6.36 g of magnesium nitrate (Mg(NO 3 ).26H 2 O) were added to an aqueous solution of zirconium oxychloride (ZrO(OH)Cl) (2.5 g in terms of ZrO 2 ), and the mixture was stirred until they were dissolved. The whole amount of the solution was 10 cc. This solution was impregnated into 50 g of the alumina carrier (pore filling method), and then the impregnated carrier was dried at 120° C.
  • RuCl 3 /nH 2 O containing 38% of Ru
  • Co(NO 3 ) 36H 2 O cobalt nitrate
  • Mg(NO 3 ).26H 2 O magnesium nitrate
  • the catalyst obtained contains, based on the weight of the carrier, 0.5% by weight of Ru, 5% by weight of Zr in terms of zirconia, 1.0% by weight of Co and 2% by weight of Mg in terms of magnesia.
  • the fuel oil of the invention is suitable as a fuel oil usable both in an internal combustion engine and in a fuel cell, and in detail, since it comprises petroleum hydrocarbon fractions such as the gasoline fraction, it is suitable as a fuel oil usable both in an internal combustion engine and in a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Fuel Cell (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

A fuel oil for use both in an internal combustion engine and in a fuel cell containing 50% by volume or more of an alkylate gasoline, and, optionally, 1 to 50% by volume of isopentane, 1 to 12% by volume of a hydrocarbon having 4 carbon atoms, 7% by volume or less of an oxygen-containing compound, and 1 to 30% by volume of a desulfurized light naphtha; and a fuel oil for use both in an internal combustion engine and in a fuel cell containing 10 to 60% by volume of a desulfurized light naphtha, 40 to 90% by volume of a benzene-free reformed gasoline and 0 to 10% by volume of a hydrocarbon having 4 carbon atoms. Each of the above fuel oils is a fuel oil for a fuel cell which can produce hydrogen with good efficiency, has no adverse effect on reforming catalysts and electrodes for a fuel cell, and is reduced in deactivation of reforming catalysts and the like, and a fuel oil for an internal combustion engine which has a high octane number and can be used without causing knocking or the like.

Description

    TECHNICAL FIELD
  • This invention relates to a fuel oil usable both in an internal combustion engine and in a fuel cell, and, in more detail, relates to a fuel oil which comprises petroleum hydrocarbon fractions such as a gasoline fraction and is usable both in an internal combustion engine and in a fuel cell. [0001]
  • BACKGROUND ART [0002]
  • Fuel for a fuel cell is generally hydrogen, and it is proposed to use, as the hydrogen, hydrogen gas itself, hydrogen obtained by reforming or decomposing methanol or the like, hydrogen obtained from a town gas containing as a main component methane being gaseous at ordinary temperature and at ordinary pressure, or from an LPG or the like containing propane as a main component, or hydrogen from other sources. [0003]
  • However, when hydrogen gas is used as such, handling of the gas is hard since it is itself a gas. Methanol has problems that its energy density is low, it is expensive, supply equipment is not provided, etc. Town gas and LPG have problems that their use is regionally limited, it is hard to handle them, etc., and especially when they are used as a fuel for a fuel cell for transportation such as automobiles, there is practically a big problem. [0004]
  • In recent years, fuel cell powered vehicles equipped as a power source with a fuel cell having high energy efficiency and being low in loads on environment have gotten to draw attention, and development of a fuel cell to be used therein is desired. On the other hand, gasoline which has hitherto been used as a fuel for an internal combustion engine in automobiles, etc. and petroleum hydrocarbon fractions composing gasoline have advantages that they are usually liquid, have a high energy density, etc., and they are considered to be effectively utilizable in a fuel cell. Further, as to such gasoline fractions, their supply system, etc. is sufficiently provided. [0005]
  • DISCLOSURE OF INVENTION
  • However, despite the above findings, it is practically hard to change all of an internal combustion engine having hitherto been used in automobiles, etc. to a fuel cell engine all at once, and at the transitional period, it is desired to use a fuel oil usable both in an internal combustion engine and in a fuel cell. There are also problems that in comparison with methanol, etc., gasoline fractions are not easy to reform due to deactivation of the reforming catalyst with coke or poisoning of the catalyst, and the life of the catalyst is comparatively short. Thus, if a fuel oil generally used in an internal combustion engine is used as such in a fuel cell, problems as mentioned above arise, and on the other hand, if a fuel oil developed for a fuel cell is used in an internal combustion engine, problems of knocking, etc. arise, and in either case, simple diversion thereof was difficult. [0006]
  • The invention was made for solving the above problems. Namely, the invention aim is to provide a fuel oil usable for both an internal combustion engine and a fuel cell which can efficiently produce hydrogen, has no adverse effect on a reforming catalyst and the electrodes of the fuel cell and less causes deactivation of a reforming catalyst when the fuel oil is used as a fuel oil for the fuel cell, and it has a high octane number and can effectively be used without causing knocking, etc. when it is used as a fuel oil for an internal combustion engine of an automobile. [0007]
  • The present inventors have intensely studied for solving the above problems, and as a result, they found that the above aim could be achieved by using a gasoline fraction of particular composition and properties as a fuel oil. The invention was completed based on the finding. Namely, the invention relates to [0008]
  • (1) A fuel oil for usable both in an internal combustion engine and in a fuel cell containing 50% by volume or more of an alkylate gasoline (Fuel oil 1), and [0009]
  • (2) A fuel oil for usable both in an internal combustion engine and in a fuel cell containing 10 to 60% by volume of a desulfurized light naphtha and 40 to 90% by volume of a benzene-free reformed gasoline (Fuel oil 2). [0010]
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • The invention is in more detail described below. [0011]
  • The invention relates, first, to a fuel oil for usable both in an internal combustion engine and in a fuel cell containing 50% by volume or more of an alkylate gasoline (Fuel oil 1). The alkylate gasoline means alkylated gasoline obtained by alkylation reaction, rich in isoparaffin having a high octane number and not containing aromatic components and olefin fractions. [0012]
  • In the invention alkylate gasoline having an octane number of 90 to 100, preferably of about 96 is used. Such alkylate gasoline can be obtained by introducing an alkyl group into hydrocarbon fractions such as isoparaffin and aromatic fractions, and as a catalyst used then, there can be mentioned an acid catalyst such as sulfuric acid or hydrofluoric acid, a solid acid catalyst such as synthetic zeolite or solid phosphoric acid, etc. [0013]
  • Fuel oil 1 of the invention contains the alkylate gasoline in an amount of 50% by volume or more, preferably 50 to 95% by volume, more preferably 50 to 90% by volume, particularly preferably 50 to 80% by volume. When the content of the alkylate gasoline is less than 50% by volume, the octane number is low and knocking sometimes takes place when used as a fuel for an internal combustion engine. When the content is more than 95% by volume, there is a possibility that startability gets poor when used as a fuel for an internal combustion engine. [0014]
  • Fuel oil 1 of the invention preferably contains, in addition to the alkylate gasoline, isopentane in an amount of 1 to 50% by volume. When the content of isopentane is less than 1% by volume, the effect by the addition is sometimes not exerted. When it is more than 50% by volume, in use as a fuel for an internal combustion engine, there sometimes arises a case where knocking is caused due to lowering of the octane number or a case where a vapor lock phenomenon is caused due to too high vapor pressure. Such isopentane can be separated by distilling a hydrocarbon oil at ordinary pressure, and in the invention, isopentane having an octane number of 85 to 95, preferably of about 90, and having a vapor pressure of 130 to 170 kPa, preferably of about 150 kPa is preferably used. [0015]
  • Fuel oil 1 of the invention preferably further contains a hydrocarbon compound having 4 carbon atoms in an amount of 1 to 12% by volume. As the hydrocarbon compound having 4 carbon atoms, there can be mentioned butane, n-butene, isobutene, etc., and as them ones obtained according to a process conventional in the field can appropriately be used. When the content of the hydrocarbon compound is less than 1% by volume, the effect by the addition is sometimes not exerted, and when the content is more than 12% by volume, there sometimes arises a case where a vapor lock phenomenon is caused due to too high vapor pressure, when the fuel oil is used as a fuel for an internal combustion engine. [0016]
  • Fuel oil 1 of the invention preferably further contains an oxygen-containing compound in an amount of 7% by volume or less. As the oxygen-containing compound, MTBE (methyl t-butyl ether), ETBE (ethyl t-butyl ether), TAME (t-amyl methyl ether), etc. can preferably be mentioned from the viewpoint of their handling, prices, etc. [0017]
  • In the invention, by adding the oxygen-containing compound, effects that the octane number is heightened and the reforming reaction gets to progress easily can be obtained. When the content is more than 7% by volume, in use as a fuel for an internal combustion engine, there sometimes arises a case where the fuel oil has adverse effects on a three-way catalyst for cleaning the exhaust gas and NOx in the exhaust gas is increased. From this standpoint, it is preferred that Fuel oil 1 of the invention contains the oxygen-containing compound in an amount of 1 to 7% by volume. [0018]
  • Fuel oil 1 of the invention preferably further contains desulfurized light naphtha in an amount of 1 to 30% by volume. The desulfurized light naphtha means light naphtha composed of normal paraffin, isoparaffin, naphthene, etc. having 4 to 7 carbon atoms and usually obtained by fractionally distilling crude oil into light naphtha in an atmospheric distillation plant and desulfurizing the light naphtha in a naphtha-desulfurizing apparatus, or by fractionally distilling crude oil into full range naphtha in an atmospheric distillation plant, desulfurizing the full range naphtha in a naphtha-desulfurizing apparatus and fractionally distilling it into light naphtha. When the content of the desulfurized light naphtha is less than 1% by volume, the effect of the addition is sometimes not exerted, and when the content is more than 30% by volume, the octane number gets low and knocking sometimes occurs in use as a fuel for an internal combustion engine. [0019]
  • The sulfur content of the desulfurized light naphtha is usually 5 ppm by weight or less, preferably 1 ppm by weight or less, more preferably 0.1 ppm by weight or less. [0020]
  • In the invention, it is preferred to use, as the desulfurized light naphtha, an isomerized desulfurized light naphtha having a ratio of isoparaffin to normal paraffin of 1 or more, preferably 1.5 or more, more preferably 2.5 or more. As such isomerized desulfurized light naphtha, one obtained by isomerizing a desulfurized light naphtha according to a process usually used in the art, for example according to a process of passing a desulfurized light naphtha through a platinum catalyst such as a platinum carried on alumina catalyst, a platinum carried on zeolite catalyst or a platinum carried on a strongly acidic carrier catalyst, can be used. [0021]
  • As a fuel oil used for both an internal combustion engine and a fuel cell in the invention, there can be mentioned, apart from the above Fuel oil 1, Fuel oil 2 containing 10 to 60% by volume of a desulfurized light naphtha and 40 to 90% by volume of a benzene-free reformed gasoline, and, optionally, 10% by volume or less of a hydrocarbon compound having 4 carbon atoms. [0022]
  • As to the desulfurized light naphtha and the hydrocarbon compound having 4 carbon atoms, the same desulfurized light naphtha and the hydrocarbon compound having 4 as used in Fuel oil 1 are used. As to the contents, when the content of the desulfurized light naphtha in Fuel oil 2 is less than 10% by volume, there sometimes arises a case where the content of aromatic compounds is increased and, in use as a fuel for a fuel cell, the reforming reaction gets disadvantageous. When the content is more than 60% by volume, there sometimes arises a case where the octane number becomes low and, in use as a fuel for an internal combustion engine, knocking occurs. By adding the hydrocarbon compound having 4 carbon atoms, in use as a fuel for an internal combustion engine, the effects that the vapor pressure is increased and the startability is heightened can be obtained. When the content is more than 10% by volume, there sometimes arises a case where a vapor lock phenomenon occurs due to too high vapor pressure. [0023]
  • The above Fuel oil 2 contains 40 to 90% by volume of the benzene-free reformed gasoline. The reformed gasoline means a gasoline obtained by thermally reforming or catalytically reforming a direct distillation gasoline generally having a low octane number, and in the invention, one having an octane number of 95 to 100 is preferably used. As a catalyst used in the catalytic reforming, there can, for example, be mentioned a platinum catalyst, etc. The benzene-free reformed gasoline means a gasoline obtained by removing benzene from the reformed gasoline through distillation or the like. [0024]
  • As processes for producing the benzene-free reformed gasoline, various processes can be mentioned, but the following one is preferred. [0025]
  • (1) In the first fractionating tower, from the top part, a low-boiling fraction containing saturated hydrocarbons having 5 carbon atoms as a main component is separated from the reformed gasoline (top temperature 73 to 83° C., top pressure 3 to 4 kg/cm[0026] 2 G).
  • (2) The fraction withdrawn from the bottom part of the first fractionating tower is introduced into the second fractionating tower, and from the top part a medium-boiling fraction containing benzene and saturated hydrocarbons having 6 and 7 carbon atoms of a low octane number as main components is withdrawn, and at the same time, from the bottom part a high-boiling fraction containing aromatic hydrocarbons having 7 to 10 carbon atoms of a high octane number as main components is withdrawn (top temperature 95 to 105° C., top pressure 1.3 to 2.3 kg/cm[0027] 2 G).
  • (3) The above low-boiling fraction and high-boiling fraction are mixed to give a benzene-free reformed gasoline. [0028]
  • According to this process, it is, usually, possible to reduce the content of benzene in the reformed gasoline being 4 to 10% by volume up to 0 to 0.5% by volume, which is advantageous for the reforming reaction, and in addition, since the fraction having a low octane number is removed together with benzene as the medium-boiling fraction, it is possible to heighten the octane number, which is desirable in use for an internal combustion engine. [0029]
  • As further processes for reducing the amount of benzene in the reformed gasoline, there can, for example, be mentioned (1) modification of operating condition of the catalytic reforming apparatus, (2) a process of removing the C[0030] 6 fraction in desulfurized heavy naphtha as a raw material by distillation, (3) a process of removing the benzene fraction from the reformed gasoline by distillation, (4) a process of hydrogenating the benzene fraction in the reformed gasoline, by a catalytic reaction, to convert it to cyclohexane, etc. and then introducing them into an isomerizing apparatus where they are isomerized into isomers having a high octane number, (5) a process of alkylating the benzene fraction in the reformed gasoline, by a catalytic reaction, to convert it to alkylated aromatic compounds having a high octane number, and (6) a process of alkylating the benzene fraction removed and separated by the above process (2) with an off-gas from a FCC (fluidized catalytic cracker) containing a large amount of ethylene, etc to convert the benzene fraction to alkylated aromatic compounds having a high octane number, etc.
  • When the content of the reformed gasoline in Fuel oil 2 is less than 40% by volume, the octane number is lowered and knocking sometimes takes place in use as a fuel for an internal combustion engine, and when the content is more than 90% by volume, the content of aromatic compounds increases, and the reforming reaction sometimes become disadvantageous in use as a fuel for a fuel cell. [0031]
  • It is preferred that any of Fuel oils 1 and 2 for use both in an internal combustion engine and in a fuel cell of the invention has a research octane number of 89 or more. When the research octane number is less than 89, knocking sometimes occurs in use as a fuel for an internal combustion engine. [0032]
  • It is also preferred that any of Fuel oils 1 and 2 for use both in an internal combustion engine and in a fuel cell of the invention has a vapor pressure of 44 to 93 kPa. When the vapor pressure is less than 44 kPa, the startability of the engine sometimes gets poor in use as a fuel for an internal combustion engine, and when it is more than 93 kPa, a vapor lock phenomenon sometimes takes place due to too high vapor pressure. [0033]
  • The fuel oil of the invention can be used both in an internal combustion engine and in a fuel cell. Namely, when used in an internal combustion engine, the fuel oil has a high octane number and can be used effectively without causing knocking, and when it is used in a fuel cell, it can produce hydrogen efficiently, and has no adverse effect on the reforming catalyst and the electrodes of the fuel cell and thus deactivation of the reforming catalyst, etc. can be reduced. [0034]
  • Particularly, the fuel oil of the invention has characteristics that the purity of hydrogen produced therefrom is high, lowering of the partial pressure of hydrogen is small, etc., and is, therefore, suitable for production of hydrogen for a fuel cell. [0035]
  • For producing hydrogen from the fuel oil, the fuel oil is first desulfurized according to necessity. As the desulfurization method, a hydrodesulfurization method is usually used. The hydrodesulfurization is carried out under a pressure of from ordinary pressure to 5 MPa at a temperature of 200 to 400° C. using a hydrodesulfurizing catalyst such as Co—Mo/alumina or Ni—Mo/alumina and an adsorbent of hydrogen sulfide such as ZnO. Then, the desulfurized fuel oil is subjected to steam reforming and/or partial oxidation. According to the invention, a fuel oil free of carbon deposition on the steam reforming catalyst, etc. and capable of efficiently producing hydrogen can be obtained. [0036]
  • There is no particular limitation about the process of steam reforming, but, usually, the steam reforming is usually carried out as follows. [0037]
  • First, on a steam reforming catalyst to be used, there is no particular limitation, but as the metal to be carried, there can be mentioned Ni, zirconium or a noble metal such as ruthenium (Ru), rhodium (Rh) and platinum (Pt). These metals to be carried can be used alone or in a combination of two or more. [0038]
  • Among the above metals to be carried, Ru is particularly desirable, and Ru has a large effect in inhibition of carbon deposition during the steam reforming reaction. The amount of Ru to be carried is preferably 0.05 to 20% by weight, more preferably 0.05 to 15% by weight, based on the weight of the carrier. When the amount is less than 0.05% by weight, the activity of the steam reforming reaction is sometimes extremely lowered, and when the amount is more than 20% by weight, remarkable increase of the activity is hard to obtain. [0039]
  • As a specific example of combination of metals to be carried, a combination of Ru and zirconium can be mentioned. Ru and zirconium can be carried together or separately on a carrier. The amount of zirconium to be carried is preferably 0.5 to 20% by weight, more preferably 0.5 to 15% by weight, in terms of ZrO[0040] 2, based on the weight of the carrier. In the case of this combination of metals to be carried, it is preferred to further add cobalt and/or magnesium. The amount of cobalt to be added is preferably 0.01 to 30, more preferably 0.1 to 30, as an atomic ratio of cobalt/ruthenium, and the amount of magnesium to be added is preferably 0.5 to 20% by weight, more preferably 0.5 to 15% by weight, in terms of magnesia (MgO).
  • On the other hand, as the carrier of the catalyst used in the steam reforming, an inorganic oxide is used, and there can, specifically, be mentioned alumina, silica, zirconia and magnesia and a mixture thereof. Particularly preferred among them are alumina and zirconia. [0041]
  • As a preferred embodiment of the steam reforming catalyst, there can be mentioned a catalyst comprising zirconia having carried Ru thereon. This zirconia can be zirconia itself (ZrO[0042] 2) or a stabilized zirconia containing a stabilizing component such as magnesia. As the stabilized zirconia, ones containing magnesia, yttria, ceria or the like are suitable.
  • As another preferred embodiment of the steam reforming catalyst, there can be mentioned a catalyst comprising an alumina carrier having carried Ru and zirconium thereon, or Ru, zirconium and further cobalt and/or magnesium thereon. As the alumina, α-alumina particularly excellent in heat resistance and mechanical strength is preferred. [0043]
  • In the production of hydrogen, it is preferred to carry out the steam reforming in such a condition that the S/C (mole ratio), which is a ratio of steam (S) to carbon (C) derived from the fuel oil, is 2 to 5, particularly 2 to 4. When the steam reforming is carried out at such a condition the S/C (mole ratio) is as high as more than 5, heat loss is large since there arises a need to produce excess steam, and the efficiency of hydrogen production is sometimes lowered. When S/C is less than 2, the amount of hydrogen produced is sometimes lowered. [0044]
  • In the production of hydrogen, it is preferred to carry out the steam reforming in the condition of maintaining the temperature of the inlet of the steam reforming catalyst layer at 630° C. or less. [0045]
  • Since the temperature of the inlet of the steam reforming catalyst layer tends to rise due to the addition of oxygen, it is necessary to control the temperature. When the inlet temperature is more than 630° C., there can be a case where thermal decomposition of the raw material hydrocarbon is accelerated, and carbon via radicals formed is deposited on the catalyst or the wall of reactor tubes to make the running hard. [0046]
  • The temperature of the outlet of the catalyst layer is not particularly limited, but preferably 650 to 800° C. When the temperature of the outlet of the catalyst layer is less than 650° C., the amount of hydrogen produced is not sufficient, and for carrying out the reaction at a temperature more than 800° C., the reactor sometimes needs to be made of highly heat resistant materials, which is not desirable in view of economical efficiency. [0047]
  • In the production of hydrogen, the reaction pressure is preferably from ordinary pressure to 3 MPa, more preferably from ordinary pressure to 1 MPa. The flow rate of the fuel oil is preferably 0.1 to 100 h[0048] −1 in terms of LHSV.
  • As to the production of hydrogen, also when the fuel oil is used in such a case where hydrogen is produced in a combination of the steam reforming and partial oxidation, hydrogen can be produced efficiently. [0049]
  • The partial oxidation is carried out at a reaction pressure of from ordinary pressure to 5 MPa, a reaction temperature of 400 to 1,100° C., an oxygen/carbon ratio of 0.2 to 0.8 and an LHSV of 0.1 to 100 h[0050] −1 using a catalyst comprising a heat resistant oxide having carried a noble metal such as preferably ruthenium, nickel or the like thereon. When steam is added, a S/C ratio of 0.4 to 4 is adopted.
  • In the above process of production of hydrogen, since CO obtained by the steam reforming adversely influences the hydrogen formation, it is preferred to remove the CO by a reaction to convert it to CO[0051] 2.
  • As described above in detail, according to the invention, there can be provided a fuel oil for use both in an internal combustion engine and in a fuel cell, which can produce hydrogen with good efficiency, has no adverse effect on a reforming catalyst and electrodes for a fuel cell, and is reduced in deactivation of the reforming catalyst, etc., and which has a high octane number and can be used without causing knocking, etc when it is also used as a fuel oil for an internal combustion engine. [0052]
  • The invention is further specifically described by examples, but the invention is not limited at all by these examples.[0053]
  • EXAMPLES 1 to 9 AND COMPARATIVE EXAMPLES 1 to 3
  • Fuel oils having compositions and properties shown in Table 1 were prepared, and the research octane number and vapor pressure of each of them were measured according to JIS K2280 and JIS K2258, respectively. An experiment of production of hydrogen as shown below was carried out using each of them, and a coking test of the catalysts after the reaction is carried. The results are shown in Table 1. [0054]
  • Experiment of Production of Hydrogen [0055]
  • Two fixed bed flow-type reactors were connected, and desulfurization was carried out in the first reactor and steam reforming was carried out in the second reactor, under the following conditions, respectively. [0056]
  • (First Reactor) [0057]
  • Desulfurization [0058]
  • Catalyst: Co—Mo (the first part)/ZnO (the latter part) [0059]
  • Condition: ordinary pressure, temperature 330° C., LHSV=1.3 h[0060] −1
  • (Second Reactor) [0061]
  • Reforming [0062]
  • Catalyst: Water (20% by weight) was added to α-alumina powder, and the mixture was mixed and compression molded by a kneader to give columnar moldings of diameter 5 mm and length 5 mm. The moldings were dried at 200° C. for 3 hours, and calcined at 1,280° C. for 26 hours to obtain an alumina carrier. Separately, 0.66 g of ruthenium trichloride (RuCl[0063] 3/nH2O) (containing 38% of Ru), 2.47 g of cobalt nitrate (Co(NO3) 36H2O) and 6.36 g of magnesium nitrate (Mg(NO3).26H2O) were added to an aqueous solution of zirconium oxychloride (ZrO(OH)Cl) (2.5 g in terms of ZrO2), and the mixture was stirred until they were dissolved. The whole amount of the solution was 10 cc. This solution was impregnated into 50 g of the alumina carrier (pore filling method), and then the impregnated carrier was dried at 120° C. for 5 hours, calcined at 500° C. for 2 hours and adjusted in a particle size to from 16 to 32 mesh. The catalyst obtained contains, based on the weight of the carrier, 0.5% by weight of Ru, 5% by weight of Zr in terms of zirconia, 1.0% by weight of Co and 2% by weight of Mg in terms of magnesia.
  • Condition: Steam/carbon ratio 1.5, LHSV of the raw material oil=2.5 h[0064] −1, ordinary pressure, the temperature of the inlet of the catalyst layer 500° C., the temperature of the outlet of the catalyst layer 700° C.
  • After the above reaction was carried out for consecutive 100 hours, the catalyst of the second reactor was withdrawn, and the proportion of carbon deposition on the catalyst was measured and calculated as follows. [0065]
  • Proportion of carbon deposition (%)=the length of the part where carbon was deposited/the length of the whole catalyst
    TABLE I 1
    Composition (% by volume)
    C4HC Iso- DLN PG FG
    Alkylate *1 pentane *2 MTBE *3 *4
    Example 1 59 41
    Example 2 93 7
    Example 3 93 3  4
    Example 4 93 5 2
    Example 5 90 5  1 4
    Example 6 75 1 23 1
    Example 7 51 1 25 20 3
    Example 8 14 86
    Example 9 3 38 59
    Com. exam. 1 28 2 70
    Com. exam. 2 18 2 70 10
    Com. exam. 3 30 5 30 35
  • [0066]
    TABLE I 2
    Proportion of
    RVP carbon deposition
    RON (kPa) (%)
    Example 1 93 80 1
    Example 2 96 50 2
    Example 3 96 45 2
    Example 4 96 45 2
    Example 5 96 46 2
    Example 6 89 47 1
    Example 7 89 78 1
    Example 8 98 63 1
    Example 9 89 80 1
    Com. exam. 1 75 80 1
    Com. exam. 2 76 80 1
    Com. exam. 3 97 80 10 
  • INDUSTRIAL APPLICABILITY
  • The fuel oil of the invention is suitable as a fuel oil usable both in an internal combustion engine and in a fuel cell, and in detail, since it comprises petroleum hydrocarbon fractions such as the gasoline fraction, it is suitable as a fuel oil usable both in an internal combustion engine and in a fuel cell. [0067]

Claims (11)

1. A fuel oil for use both in an internal combustion engine and in a fuel cell containing 50% by volume or more of an alkylate gasoline.
2. The fuel oil according to claim 1 further containing 1 to 50% by volume of isopentane.
3. The fuel oil according to claim 1 further containing 1 to 12% by volume of a hydrocarbon compound having 4 carbon atoms.
4. The fuel oil according to claim 2 further containing 1 to 12% by volume of a hydrocarbon compound having 4 carbon atoms.
5. The fuel oil according to claim 1 containing 50% by volume or more of the alkylate gasoline, 1 to 50% by volume of isopentane, 1 to 10% by volume of a hydrocarbon compound having 4 carbon atoms and 7% by volume or less of an oxygen-containing compound.
6. The fuel oil according to any of claims 1 to 5, further containing 1 to 30% by volume of a desulfurized light naphtha.
7. The fuel oil according to claim 5 wherein the oxygen-containing compound is at least one selected from methyl tertiary butyl ether, ethyl tertiary butyl ether and tertiary amyl methyl ether.
8. The fuel oil according to claim 1 having a research octane number of 89 or more and a vapor pressure of 44 to 93 kPa.
9. A fuel oil for use both in an internal combustion engine and in a fuel cell containing 10 to 60% by volume of a desulfurized light naphtha and 40 to 90% by volume of a benzene-free reformed gasoline.
10. The fuel oil according to claim 9 further containing 10% by volume or less of a hydrocarbon compound having 4 carbon atoms.
11. The fuel oil according to claim 9 having a research octane number of 89 or more and a vapor pressure of 44 to 93 kPa.
US10/221,786 2000-03-23 2001-03-23 Fuel oil for use both in internal combustion in engine and fuel cell Abandoned US20030145514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000081357A JP2001262163A (en) 2000-03-23 2000-03-23 Fuel oil combinedly useful for internal combustion engine and fuel cell
JP2000-81357 2000-03-23

Publications (1)

Publication Number Publication Date
US20030145514A1 true US20030145514A1 (en) 2003-08-07

Family

ID=18598307

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/221,786 Abandoned US20030145514A1 (en) 2000-03-23 2001-03-23 Fuel oil for use both in internal combustion in engine and fuel cell

Country Status (5)

Country Link
US (1) US20030145514A1 (en)
EP (1) EP1266949A4 (en)
JP (1) JP2001262163A (en)
AU (1) AU2001242767A1 (en)
WO (1) WO2001070914A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040213735A1 (en) * 2001-09-11 2004-10-28 Hodges Michael Graham Production of hydrogen
US20060254126A1 (en) * 2000-12-21 2006-11-16 Graham Butler Dual use hydrocarbon fuel composition
US20080134571A1 (en) * 2006-12-12 2008-06-12 Jorg Landschof Unleaded fuel compositions
US20100018112A1 (en) * 2008-07-28 2010-01-28 Joseph Michael Russo High octane unleaded fuel compositions and methods for increasing the maximum torque output value produced burning same
CN104531236A (en) * 2014-12-29 2015-04-22 清华大学 Wide-boiling fraction fuel for internal combustion engine
US9163189B2 (en) 2011-12-01 2015-10-20 Shell Oil Company Balanced unleaded fuel compositions
WO2021206873A1 (en) * 2020-04-09 2021-10-14 Exxonmobil Research And Engineering Company Fuel blending component composition and method for reducing criteria emissions

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1281748A4 (en) * 2000-04-10 2004-10-06 Nippon Oil Corp Fuel for use in fuel cell system
EP1273651A4 (en) * 2000-04-10 2004-10-13 Nippon Oil Corp Fuel for use in fuel cell system
WO2001077264A1 (en) * 2000-04-10 2001-10-18 Nippon Oil Corporation Fuel for use in fuel cell
WO2004035468A1 (en) * 2002-10-14 2004-04-29 Shell Internationale Research Maatschappij B.V. A process for the catalytic conversion of a gasoline composition
FR2846002B1 (en) * 2002-10-22 2006-12-15 Totalfinaelf France NEW FUEL WITH HIGH OCTANE INDEX AND LOW LEVEL CONTENT
FR2846003B1 (en) * 2002-10-22 2006-08-18 Total France NEW FUEL WITH HIGH OCTANE INDEX AND LOW LEVEL CONTENT
JP5439840B2 (en) * 2009-02-13 2014-03-12 日産自動車株式会社 Fuel reformer
US8679204B2 (en) 2009-11-17 2014-03-25 Shell Oil Company Fuel formulations

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3081255A (en) * 1959-05-18 1963-03-12 Texaco Inc Method of treating a petroleum fraction using molecular sieve aluminosilicate selective adsorbents
US4140622A (en) * 1977-11-03 1979-02-20 Uop Inc. Process to reduce the benzene content of gasoline
US4812146A (en) * 1988-06-09 1989-03-14 Union Oil Company Of California Liquid fuels of high octane values
US4824552A (en) * 1987-05-20 1989-04-25 Nippon Oil Co., Ltd. High-octane-rating gasolines
US5200059A (en) * 1991-11-21 1993-04-06 Uop Reformulated-gasoline production
US5401280A (en) * 1992-10-14 1995-03-28 Nippon Oil Co., Ltd. Lead-free, high-octane gasoline
US5624548A (en) * 1994-07-21 1997-04-29 Texaco Inc. Heavy naphtha hydroconversion process
US20020045785A1 (en) * 1996-11-18 2002-04-18 Bazzani Roberto Vittorio Fuel composition
US6514298B2 (en) * 1999-12-27 2003-02-04 Nippon Mitsubishi Oil Corporation Fuel additive and fuel composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB520564A (en) * 1938-03-11 1940-04-26 Standard Oil Dev Co An improved manufacture of motor fuel
JPS5031516A (en) * 1973-07-24 1975-03-28
JPH0710980B2 (en) * 1987-06-19 1995-02-08 出光興産株式会社 High performance fuel oil
JPH0570780A (en) * 1991-09-12 1993-03-23 Sekiyu Sangyo Kasseika Center Depth desulfurization of middle-or low-boiling oil
JP3946276B2 (en) * 1995-06-26 2007-07-18 出光興産株式会社 Gasoline base material and unleaded gasoline using the base material
JP3785204B2 (en) * 1995-07-06 2006-06-14 出光興産株式会社 Unleaded gasoline
JPH0971788A (en) * 1995-09-07 1997-03-18 Cosmo Sogo Kenkyusho:Kk Unleaded, high performance gasoline
JP3655111B2 (en) * 1997-12-18 2005-06-02 出光興産株式会社 Unleaded gasoline composition
JPH11311136A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Hybrid automobile and driving device therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3081255A (en) * 1959-05-18 1963-03-12 Texaco Inc Method of treating a petroleum fraction using molecular sieve aluminosilicate selective adsorbents
US4140622A (en) * 1977-11-03 1979-02-20 Uop Inc. Process to reduce the benzene content of gasoline
US4824552A (en) * 1987-05-20 1989-04-25 Nippon Oil Co., Ltd. High-octane-rating gasolines
US4812146A (en) * 1988-06-09 1989-03-14 Union Oil Company Of California Liquid fuels of high octane values
US5200059A (en) * 1991-11-21 1993-04-06 Uop Reformulated-gasoline production
US5401280A (en) * 1992-10-14 1995-03-28 Nippon Oil Co., Ltd. Lead-free, high-octane gasoline
US5624548A (en) * 1994-07-21 1997-04-29 Texaco Inc. Heavy naphtha hydroconversion process
US20020045785A1 (en) * 1996-11-18 2002-04-18 Bazzani Roberto Vittorio Fuel composition
US6514298B2 (en) * 1999-12-27 2003-02-04 Nippon Mitsubishi Oil Corporation Fuel additive and fuel composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060254126A1 (en) * 2000-12-21 2006-11-16 Graham Butler Dual use hydrocarbon fuel composition
US7533700B2 (en) * 2000-12-21 2009-05-19 Bp Oil International Limited Dual use hydrocarbon fuel composition
US20040213735A1 (en) * 2001-09-11 2004-10-28 Hodges Michael Graham Production of hydrogen
US7294420B2 (en) 2001-09-11 2007-11-13 Bp P.L.C. Production of hydrogen
US20080134571A1 (en) * 2006-12-12 2008-06-12 Jorg Landschof Unleaded fuel compositions
US9074153B2 (en) 2006-12-12 2015-07-07 Shell Oil Company Unleaded fuel compositions
US20100018112A1 (en) * 2008-07-28 2010-01-28 Joseph Michael Russo High octane unleaded fuel compositions and methods for increasing the maximum torque output value produced burning same
US9163189B2 (en) 2011-12-01 2015-10-20 Shell Oil Company Balanced unleaded fuel compositions
CN104531236A (en) * 2014-12-29 2015-04-22 清华大学 Wide-boiling fraction fuel for internal combustion engine
WO2021206873A1 (en) * 2020-04-09 2021-10-14 Exxonmobil Research And Engineering Company Fuel blending component composition and method for reducing criteria emissions
US11339338B2 (en) 2020-04-09 2022-05-24 ExxonMobil Technology and Engineering Company Fuel blending component composition and method for reducing criteria emissions

Also Published As

Publication number Publication date
AU2001242767A1 (en) 2001-10-03
JP2001262163A (en) 2001-09-26
EP1266949A1 (en) 2002-12-18
WO2001070914A1 (en) 2001-09-27
EP1266949A4 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
US20030145514A1 (en) Fuel oil for use both in internal combustion in engine and fuel cell
JP5114164B2 (en) Method for producing gasoline composition
US20060254126A1 (en) Dual use hydrocarbon fuel composition
JP4776287B2 (en) Clean gasoline composition and method for producing the same
US20030023120A1 (en) Fuel oil for fuel cell, fuel oil composition, and automobile driving system
JP4916743B2 (en) Eco-friendly gasoline composition and method for producing the same
JP5027971B2 (en) Fuel oil composition
JP4803790B2 (en) Clean gasoline composition
JP5186183B2 (en) Gasoline composition
JP4804769B2 (en) Carbon dioxide low emission gasoline composition
JP4490533B2 (en) Fuel oil for fuel cells
JP5099896B2 (en) Gasoline composition
JP4426039B2 (en) Fuel oil for fuel cell and method for producing the same
US20040136901A1 (en) Process for the catalytic conversion of a gasoline composition
JP4916742B2 (en) High octane number environment-friendly gasoline composition and method for producing the same
JP5357098B2 (en) Gasoline composition
JP4932195B2 (en) Gasoline composition and method for producing the same
Gerzeliev et al. New routes for the manufacturing of isoparaffins as environmentally friendly, high-octane components of motor gasoline
JPS6116985A (en) Manufacture of unleaded gasoline of high octane value
JP4832104B2 (en) Method for producing gasoline base material and gasoline composition
JP2001262164A (en) Fuel oil for fuel cell
JP2011241406A (en) Environmentally friendly gasoline composition, and method of manufacturing the same
JP2007284646A (en) Gasoline composition
JP4953275B2 (en) Method for producing gasoline base material and gasoline composition
JP2006152243A (en) Environment-responsive gasoline composition and its production process

Legal Events

Date Code Title Description
AS Assignment

Owner name: IDEMITSU KOSAN CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AKIMOTO, TAKASHI;IIZUKA, MASASHI;HIRANO, HIROSHI;REEL/FRAME:014452/0896

Effective date: 20020808

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION