JP4776287B2 - Clean gasoline composition and method for producing the same - Google Patents

Clean gasoline composition and method for producing the same Download PDF

Info

Publication number
JP4776287B2
JP4776287B2 JP2005197097A JP2005197097A JP4776287B2 JP 4776287 B2 JP4776287 B2 JP 4776287B2 JP 2005197097 A JP2005197097 A JP 2005197097A JP 2005197097 A JP2005197097 A JP 2005197097A JP 4776287 B2 JP4776287 B2 JP 4776287B2
Authority
JP
Japan
Prior art keywords
gasoline
less
catalyst
clean
hydrocracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005197097A
Other languages
Japanese (ja)
Other versions
JP2007016090A (en
Inventor
康一 松下
順子 松井
薫 藤元
暁紅 黎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2005197097A priority Critical patent/JP4776287B2/en
Publication of JP2007016090A publication Critical patent/JP2007016090A/en
Application granted granted Critical
Publication of JP4776287B2 publication Critical patent/JP4776287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、十分な運転特性を確保しつつ環境への影響に配慮したガソリン組成物及びその製造方法に関する。   The present invention relates to a gasoline composition and a method for producing the same in consideration of environmental impact while ensuring sufficient operating characteristics.

近年、世界的な産業経済活動規模の拡大にともない、地球レベルでの環境破壊が重大な問題となり、その対応策が世界的に検討され始めている。中でも、地球温暖化問題は人類のみならず、地球そのものにも著しい悪影響を与えることが懸念されている。そこで、地球温暖化の原因とされるガス(温室効果ガス:二酸化炭素、メタン、一酸化二窒素、ハイドロフルオロカーボン、パーフルオロカーボン、及び六フッ化硫黄)の大気中への排出を防止すべく、その対応策の確立が強く要請されている。2005年2月には京都議定書が発効しており、日本は、1990年レベルに対して6パーセントの温室効果ガスの削減が義務付けられている。   In recent years, with the expansion of global industrial economic activity scale, the destruction of the environment at the global level has become a serious problem, and countermeasures for this are beginning to be studied worldwide. Above all, there is concern that the global warming problem will have a significant adverse effect not only on humanity but also on the earth itself. Therefore, in order to prevent the emission of gases that cause global warming (greenhouse gases: carbon dioxide, methane, dinitrogen monoxide, hydrofluorocarbon, perfluorocarbon, and sulfur hexafluoride) into the atmosphere, There is a strong demand for the establishment of countermeasures. The Kyoto Protocol entered into force in February 2005, and Japan is obliged to reduce greenhouse gas emissions by 6 percent compared to the 1990 level.

自動車燃料の面で考慮すると、自動車の高性能化に伴って、高い運転性能をもつ高性能ガソリンの需要が増加している。特に、リサーチ法オクタン価(RON)が高い方が、自動車の運転性能が向上するとともに、エネルギー転換効率が向上して地球温暖化ガスの一つと考えられている二酸化炭素の排出量も削減できるといわれている。一方、自動車燃料そのものやその燃焼排ガスによる環境汚染が社会問題になってきており、高い運転性能を維持するとともに、環境負荷の少ない自動車燃料が望まれている。特に、排ガス浄化の観点から、硫黄分の一層の低減も切望されている。   Considering the aspect of automobile fuel, the demand for high-performance gasoline having high driving performance is increasing as the performance of automobiles increases. In particular, it is said that the higher the octane number (RON) of the research method, the better the driving performance of the car, the higher the energy conversion efficiency, and the reduction of carbon dioxide emissions, which is considered one of the global warming gases. ing. On the other hand, environmental pollution due to automobile fuel itself and its combustion exhaust gas has become a social problem, and automobile fuel that maintains high driving performance and has a low environmental impact is desired. In particular, from the viewpoint of exhaust gas purification, further reduction of the sulfur content is also desired.

JIS K 2202には、RONが96.0以上の1号自動車ガソリンと89.0以上の2号自動車ガソリンが規定されており、前者は高性能なプレミアムガソリンとして、後者はレギュラーガソリンとして市販されている。従来、プレミアムガソリンは、接触改質ガソリン基材のような100以上のRONをもつ基材、アルキレートガソリン基材、接触分解ガソリン軽質分のような93以上のRONをもつ基材を中心に、各種の基材を配合して製造されている。一方、レギュラーガソリンは、接触分解ガソリン基材を中心に、アロマ留分やRONの低い脱硫直留ナフサ等を配合することで製造されている。   JIS K 2202 stipulates No. 1 automobile gasoline with RON of 96.0 or more and No. 2 automobile gasoline with 89.0 or more. The former is marketed as high-performance premium gasoline and the latter as regular gasoline. Yes. Conventionally, premium gasoline is mainly based on base materials having 100 or more RONs such as catalytic reformed gasoline base materials, alkylate gasoline base materials, and base materials having 93 or more RONs such as light components of catalytic cracked gasoline. Manufactured by blending various base materials. On the other hand, regular gasoline is produced by blending an aroma fraction, a desulfurized straight-run naphtha having a low RON, etc. with a catalytic cracking gasoline base material as the center.

従来では、一般に接触分解ガソリンや各種分解ガソリンなどの分解ガソリン留分にはオレフィン類やアロマ分が多く含まれており、RONの向上に大きく寄与している。その反面、RONが比較的低いパラフィン類は、ガソリン基材としては好まれず、削減される方向であった。
一方で、RONが高い化合物として広く使用されているアロマ化合物やオレフィン化合物は、それぞれ環境面から、今後多く使用されることは考えにくい状況である。具体的には、アロマ化合物は発ガン性やPRTR法の問題や、自動車用燃料として使用されるとその一部は粒子状化合物(PM)に形を変えると言われており、また、オレフィン分は光化学的に不安定であること、貯蔵安定性に問題があることから、スラッジ分などの固体状化合物を析出させてしまう欠点が指摘されている。
Conventionally, cracked gasoline fractions such as catalytically cracked gasoline and various cracked gasolines generally contain a large amount of olefins and aroma, greatly contributing to the improvement of RON. On the other hand, paraffins having a relatively low RON are not preferred as gasoline base materials, and have been reduced.
On the other hand, aroma compounds and olefin compounds that are widely used as compounds having high RON are unlikely to be used in the future in terms of the environment. Specifically, it is said that aroma compounds are carcinogenic and have problems with the PRTR method, and that when used as a fuel for automobiles, some of them are changed to particulate compounds (PM). Is photochemically unstable and has a problem in storage stability, so that it has been pointed out that a solid compound such as sludge is precipitated.

さらに、アロマ化合物を多く含む留分は、RONが高い利点はあるものの、沸点が高く、蒸留性状の観点から、ガソリン基材にあまり多く含有することはできなかった。また、オレフィン分も、比較的低分子の成分についてはRONが高いものの蒸気圧も高い傾向があり、ガソリン基材に多く使用することはできなかった。蒸留性状が軽い、すなわち沸点が比較的低く、かつ、リード蒸気圧(RVP)が低い性状を有する基材が必要とされる傾向にある。   Furthermore, although the fraction containing a large amount of aroma compound has the advantage of high RON, it has a high boiling point and cannot be contained in the gasoline base material from the viewpoint of distillation properties. In addition, the olefin component has a relatively high molecular weight but has a high RON, but the vapor pressure tends to be high, so that it cannot be used in many gasoline base materials. There is a tendency to require a substrate having a light distillation property, that is, a property having a relatively low boiling point and a low Reed vapor pressure (RVP).

以上の状況を考慮しつつ、ガソリン製造の実態に目を向けると、重質な石油留分を分解することによって製造される分解ガソリン基材は、他のガソリン基材に比べ、経済的に製造できるという利点がある一方、硫黄分を多く含んでいる。その結果、上述のようにして製造されるガソリン中の硫黄分の大部分は、分解ガソリン基材に由来している。分解ガソリン基材に含まれる硫黄分は、高圧水素と触媒の共存下で水素化精製するという公知技術を用いて容易に低減できる。しかし、その場合は、接触分解ガソリン基材中に多く含まれ、高いRONをもつオレフィン分が水素化されて当該基材のRONが低下してしまうため、それを配合して十分な運転性能を有するガソリンを得ることは難しいという問題点があった。最近では、オレフィン分の水素化を抑制し、RONの低下を抑える技術も開発されている(特許文献1参照)が、前述の、オレフィン分が環境に悪影響を与える問題は解決されていない。また、硫黄分が50質量ppmまで削減された、パラフィン系のガソリンの開発も報告されている(特許文献2参照)が、今後の燃料電池用燃料としても使用できる共用ガソリンとしての性能を考慮すると、1.0質量ppm以下まで削減する必要があり、この硫黄レベルで、ガソリンエンジン用燃料としての適切な蒸留性状と蒸気圧を有し、かつRONの高いパラフィン系ガソリンを製造する方法は無かった。   Taking the above situation into consideration and looking at the actual situation of gasoline production, cracked gasoline base materials produced by cracking heavy petroleum fractions are more economical to manufacture than other gasoline base materials. While it has the advantage of being able to do so, it contains a lot of sulfur. As a result, most of the sulfur content in the gasoline produced as described above is derived from the cracked gasoline base material. The sulfur content contained in the cracked gasoline base material can be easily reduced using a known technique of hydrotreating in the presence of high-pressure hydrogen and a catalyst. However, in that case, a large amount of catalytic cracking gasoline base material is contained, and the olefin component having high RON is hydrogenated to decrease the RON of the base material. There was a problem that it was difficult to obtain gasoline. Recently, a technique for suppressing hydrogenation of olefins and suppressing reduction of RON has also been developed (see Patent Document 1), but the above-described problem that olefins adversely affect the environment has not been solved. In addition, development of paraffinic gasoline with a sulfur content reduced to 50 ppm by mass has been reported (see Patent Document 2), but considering the performance as a common gasoline that can be used as a fuel for future fuel cells. However, there was no method for producing paraffinic gasoline having an appropriate distillation property and vapor pressure as a fuel for a gasoline engine and having a high RON at this sulfur level. .

一方、特定の条件下、炭化水素油を骨格異性化させることにより、ガソリン基材として重要であるRONを向上できる技術が知られている。骨格異性化反応で生成されるイソパラフィン類は、アロマ化合物やオレフィン化合物のような、環境に対する悪影響が少ないため、環境対応型クリーン燃料としては有効である。具体的には、骨格異性化とは、一般的にRONの低い直鎖状パラフィンをRONの高い分岐状パラフィンに変換する反応であるが、その原料油として原油由来のガソリン留分の他、バイオマス、天然ガス、製鉄所等から発生する水素や一酸化炭素を原料に用いるGTL(Gas To Liquid)技術により得られるFischer-Tropsch(以下「FT」という)ワックスを使用することができる。   On the other hand, a technique is known that can improve RON, which is important as a gasoline base material, by skeletal isomerization of hydrocarbon oil under specific conditions. Isoparaffins produced by the skeletal isomerization reaction are effective as environmentally friendly clean fuels because they have little adverse effects on the environment such as aroma compounds and olefin compounds. Specifically, skeletal isomerization is a reaction that generally converts linear paraffin with a low RON to a branched paraffin with a high RON. Fischer-Tropsch (hereinafter referred to as “FT”) wax obtained by GTL (Gas To Liquid) technology using hydrogen or carbon monoxide generated from natural gas, steelworks, etc. as a raw material can be used.

GTL油は、主に直鎖状の飽和炭化水素を合成する反応で得られ、従来から潤滑油、軽油及び灯油に適用する検討が報告されている(特許文献3参照)が、ガソリンに適用する技術は未だ報告されていない。これは、前述のとおりガソリンの性状としてRONが重要な指標であるが、直鎖状パラフィンが多いGTL油から高RONガソリン、すなわち直鎖状パラフィンが少なく分岐状パラフィンを増加させたガソリンを製造することは困難であるとされてきた(特許文献4参照)ためと考えられる。すなわち、炭化水素中の炭素に対する水素の割合が高い化合物(パラフィン類)で、かつ、RONが高く、さらにガソリンとして適正な蒸留性状、蒸気圧、その他多くの指標を満足させることは、極めて難しかった。直鎖状パラフィンを異性化させることでガソリン基材に適用できる可能性があるが、適当な触媒やプロセスを使用しなければ所期の効果は得られず、また、FT合成時には水が生成するが、一般的に水素化分解・異性化触媒にとって水分は悪影響を与えるため(特許文献5参照)、水分を除去して異性化反応を行なう必要があった。   GTL oil is mainly obtained by a reaction that synthesizes a straight-chain saturated hydrocarbon, and has been reported to be applied to lubricating oil, light oil, and kerosene (see Patent Document 3), but is applied to gasoline. The technology has not yet been reported. As described above, RON is an important indicator for the properties of gasoline. However, high RON gasoline, that is, gasoline with less linear paraffin and increased branched paraffin is produced from GTL oil with much linear paraffin. This is considered to be difficult (see Patent Document 4). In other words, it is extremely difficult to satisfy a compound having a high ratio of hydrogen to carbon (paraffins) in hydrocarbons, high RON, and proper distillation properties, vapor pressure, and many other indicators as gasoline. . There is a possibility that it can be applied to gasoline bases by isomerizing linear paraffins, but the desired effect cannot be obtained unless an appropriate catalyst or process is used, and water is produced during FT synthesis. However, since moisture generally has an adverse effect on the hydrocracking / isomerization catalyst (see Patent Document 5), it has been necessary to remove the moisture and carry out the isomerization reaction.

異性化反応と同様にイソパラフィンを選択的に製造することができるプロセスとして、アルキレーション反応がある。アルキレーション反応は、硫酸などの酸触媒を使用して、主に炭素数4のオレフィンとイソパラフィンを反応させて炭素数8のイソパラフィンを製造する反応であり、既に多くの装置が世界中で稼動している(非特許文献1参照)。しかし、その反応の特徴ゆえ、生成物は炭素数が8のイソパラフィンが中心であることから、炭素数8の多分岐イソパラフィンは得られるものの、炭素数が8より少なく、かつ多分岐のイソパラフィンを得ることは難しかった。アルキレートガソリンは高沸点成分で構成されているため蒸留性状の制約から、また、原料として比較的高価な炭素数4の化合物を使用しており原料としての制約を受けることから、従来ではあまり大量には製造すること、及び使用することができなかった。
上述のような事情により、未だ、硫黄分が1質量ppm以下と低く、アロマ分やオレフィン分を十分に低減させながら、満足できるRONを維持できる等、十分な実用性能を確保したガソリン組成物は開発されておらず、その製造方法も確立されていない。
特開2003−183676号公報 国際公開2002/046334号公報 特表2004−500977号公報 特表2003−524679号公報 特開2000−169863号公報 石油学会編、「石油精製プロセス」、p209〜216、講談社サイエンティフィック、1998年発行
As in the isomerization reaction, there is an alkylation reaction as a process capable of selectively producing isoparaffin. The alkylation reaction is a reaction in which an acid catalyst such as sulfuric acid is used to react mainly with an olefin having 4 carbon atoms and isoparaffin to produce an 8 carbon isoparaffin, and many apparatuses have already been operated all over the world. (See Non-Patent Document 1). However, because of the characteristics of the reaction, the product is mainly an isoparaffin having 8 carbon atoms, so that a multibranched isoparaffin having 8 carbon atoms can be obtained, but a multibranched isoparaffin having less than 8 carbon atoms is obtained. That was difficult. Alkylate gasoline is composed of high-boiling components, so it is restricted by distillation properties, and because it uses relatively expensive compounds with 4 carbon atoms as a raw material, it is subject to restrictions as a raw material. Could not be manufactured and used.
Due to the circumstances as described above, the gasoline composition that still has sufficient practical performance, such as being able to maintain satisfactory RON while sufficiently reducing the aroma content and olefin content, with a sulfur content as low as 1 ppm by mass or less. It has not been developed and its manufacturing method has not been established.
JP 2003-183676 A International Publication No. 2002/046334 JP-T-2004-500977 Special table 2003-524679 gazette JP 2000-169863 A Edited by Petroleum Society, “Petroleum Refining Process”, p209 ~ 216, Kodansha Scientific, 1998

本発明は上記課題を解決するためになされたもので、本発明は、十分な運転特性を確保しつつ、燃焼時に発生する二酸化硫黄や二酸化炭素の量を削減して環境への負荷を著しく低減したガソリン組成物を提供することを課題とする。   The present invention was made to solve the above-mentioned problems, and the present invention significantly reduces the load on the environment by reducing the amount of sulfur dioxide and carbon dioxide generated during combustion while ensuring sufficient operating characteristics. An object is to provide a gasoline composition.

本発明者らは、上記課題を解決するために鋭意研究を重ね、フィッシャー・トロプシュ合成で得られる、硫黄分がない反応生成物を特段の精製処理をすることなしに、そのまま水素化分解・異性化触媒と接触して前記のガソリン基材を得ることができることを見出した。本発明は、かかる知見に基づいて想到したものである。   The inventors of the present invention have made extensive studies to solve the above-described problems, and without subjecting the reaction product, which is obtained by Fischer-Tropsch synthesis, to a sulfur-free reaction product to be subjected to hydrocracking / isomerization as it is. It has been found that the above gasoline base material can be obtained by contacting with a catalyst. The present invention has been conceived based on such knowledge.

すなわち、本発明は、一酸化炭素と水素の混合ガスを、フィッシャー・トロプシュ触媒と水素化分解・異性化触媒に接触して得られたAGTLガソリンと、アルキレートガソリンとを含む、蒸気圧が65kPa以下、リサーチ法オクタン価が91以上、硫黄分が1質量ppm以下、銀板腐食が1以下、蒸留性状の50容量%留出温度が95℃以下、アロマ分が1容量%以下、オレフィン分が1容量%以下、及び水素/炭素比(mol)が2.3以上であるクリーンガソリン組成物である。   That is, the present invention provides a vapor pressure of 65 kPa, which includes AGTL gasoline obtained by contacting a mixed gas of carbon monoxide and hydrogen with a Fischer-Tropsch catalyst and a hydrocracking / isomerization catalyst, and alkylate gasoline. In the following, the research octane number is 91 or more, the sulfur content is 1 mass ppm or less, the silver plate corrosion is 1 or less, the 50 vol% distillation temperature of distillation properties is 95 ° C or less, the aroma content is 1 vol% or less, and the olefin content is 1 A clean gasoline composition having a volume% or less and a hydrogen / carbon ratio (mol) of 2.3 or more.

本発明のクリーンガソリン組成物は、さらに、含酸素化合物を含んでいてもよく、さらに、液化石油ガス、イソペンタン、脱硫直留ナフサ、接触改質ガソリン、脱硫接触分解ガソリンよりなる群から選択される1種以上のガソリン基材を含んでいてもよい。また、本発明のクリーンガソリン組成物は、ガソリンエンジン用燃料又は燃料電池用燃料として好適に使用することができる。   The clean gasoline composition of the present invention may further contain an oxygen-containing compound, and is further selected from the group consisting of liquefied petroleum gas, isopentane, desulfurized straight naphtha, catalytic reformed gasoline, and desulfurized catalytic cracked gasoline. One or more gasoline base materials may be included. Moreover, the clean gasoline composition of the present invention can be suitably used as a fuel for gasoline engines or a fuel cell fuel.

また、本発明は、前記クリーンガソリン組成物の製造方法であり、
(a)一酸化炭素と水素の混合ガスをフィッシャー・トロプシュ触媒及び水素化分解・異性化触媒に接触して得られた反応生成物を精製し、AGTLガソリンを得る工程、及び
(b)工程(a)で得たAGTLガソリンとアルキレートガソリンとを混合するブレンド工程
を含むことを特徴とする。
Further, the present invention is a method for producing the clean gasoline composition,
(A) purifying a reaction product obtained by contacting a mixed gas of carbon monoxide and hydrogen with a Fischer-Tropsch catalyst and a hydrocracking / isomerization catalyst to obtain AGTL gasoline; and (b) step ( A blending step of mixing the AGTL gasoline and alkylate gasoline obtained in a) is included.

本発明のクリーンガソリン組成物の製造方法において、フィッシャー・トロプシュ触媒は周期律表第8族金属担持シリカであり、水素化分解・異性化触媒は周期律表第8族金属担持ゼオライトであることが好ましい。
また、本発明のクリーンガソリン組成物の製造方法で、一酸化炭素と水素の混合ガスは、フィッシャー・トロプシュ触媒と接触し、同時に又は次いで水素化分解・異性化触媒と接触することが好ましく、また、フィッシャー・トロプシュ触媒及び水素化分解・異性化触媒と温度150〜300℃及び圧力0.1〜10.0MPaの条件下に接触することが好ましい。さらに、好ましくは、前記工程(a)でAGTLガソリンを製造する際に副生した炭素数3〜4の炭化水素化合物を工程(b)で用いるアルキレートガソリンを製造する原料として使用する。
In the method for producing a clean gasoline composition of the present invention, the Fischer-Tropsch catalyst is a periodic table group 8 metal-supported silica, and the hydrocracking / isomerization catalyst is a periodic table group 8 metal-supported zeolite. preferable.
In the method for producing a clean gasoline composition of the present invention, it is preferable that the mixed gas of carbon monoxide and hydrogen is in contact with a Fischer-Tropsch catalyst and simultaneously or subsequently with a hydrocracking / isomerization catalyst. The Fischer-Tropsch catalyst and the hydrocracking / isomerization catalyst are preferably contacted under conditions of a temperature of 150 to 300 ° C. and a pressure of 0.1 to 10.0 MPa. Furthermore, Preferably, the C3-C4 hydrocarbon compound byproduced when manufacturing AGTL gasoline at the said process (a) is used as a raw material which manufactures the alkylate gasoline which uses at a process (b).

本発明のクリーンガソリン組成物は、充分な運転特性、特には高い燃費が確保できるとともに、環境へ排出される硫黄酸化物の量、二酸化炭素及び炭化水素を大幅に削減して環境への負荷を低減できるという格別の効果を奏する。また、本発明のクリーンガソリン組成物の製造方法によれば、前記のクリーンガソリン組成物の基材として用いるAGTLガソリンはフィッシャー・トロプシュ合成の反応生成物を特段の精製処理を施すことなく、水素化分解・異性化触媒に供給、接触して得られた分解・異性化物を精製して得ることができるから、フィッシャー・トロプシュ合成後の精製が不要であるため、プロセスの簡略化、省エネルギー化など、固定費、変動費の低減が期待される。   The clean gasoline composition of the present invention can ensure sufficient driving characteristics, particularly high fuel efficiency, and greatly reduce the amount of sulfur oxides, carbon dioxide and hydrocarbons discharged to the environment, thereby reducing the burden on the environment. There is a special effect that it can be reduced. Further, according to the method for producing a clean gasoline composition of the present invention, AGTL gasoline used as a base material for the clean gasoline composition can be hydrogenated without subjecting the reaction product of Fischer-Tropsch synthesis to a special purification treatment. Since it can be obtained by purifying the decomposition / isomerization product obtained by supplying and contacting the decomposition / isomerization catalyst, purification after the Fischer-Tropsch synthesis is unnecessary, simplifying the process, saving energy, etc. Reduction of fixed costs and variable costs is expected.

本発明のクリーンガソリン組成物は、燃費を効果的に向上させる観点から、リサーチ法オクタン価(RON)が91以上のものであるが、91〜96が好ましく、94〜96がより好ましく、95〜96のものが特に好ましい。このRONは、JIS K 2280に規定された方法により測定されるものである。   The clean gasoline composition of the present invention has a research octane number (RON) of 91 or more from the viewpoint of effectively improving fuel efficiency, preferably 91 to 96, more preferably 94 to 96, and 95 to 96. Are particularly preferred. This RON is measured by a method defined in JIS K 2280.

硫黄分としては、環境への負荷低減の意味からできるだけ低いほど好ましく、1質量ppm以下としたものであるが、0.5質量ppm以下が好ましく、0.1質量ppm以下がより好ましい。この硫黄分は、JIS K 2541に規定された方法により測定されるものである。
なお、微量の活性硫黄による車両の燃料センサーゲージの腐食等の不具合を防ぐために、銀板腐食が1以下で、0のものが好ましい。この銀板腐食は、英国石油協会規格IP−227に規定された方法により測定されるものである。
The sulfur content is preferably as low as possible from the viewpoint of reducing environmental burden, and is 1 mass ppm or less, preferably 0.5 mass ppm or less, and more preferably 0.1 mass ppm or less. This sulfur content is measured by the method defined in JIS K2541.
In order to prevent problems such as corrosion of a vehicle fuel sensor gauge due to a small amount of active sulfur, silver plate corrosion is preferably 1 or less and 0. This silver plate corrosion is measured by the method prescribed in British Petroleum Institute Standard IP-227.

蒸気圧は、低温始動性やベーパーロックなどによる運転性の不具合防止の点から、37.8℃の蒸気圧として65kPa以下としたもので、特に、夏季においては44〜65kPa、さらには44〜60kPaとすることが好ましい。この蒸気圧は、JIS K 2258に規定された蒸気圧試験方法、いわゆるリード法で測定されるものである。   The vapor pressure is set to 65 kPa or less as a vapor pressure at 37.8 ° C. from the viewpoint of preventing deficiencies in operability due to low temperature startability, vapor lock, etc., and in particular, in the summer, 44 to 65 kPa, further 44 to 60 kPa. It is preferable that This vapor pressure is measured by a vapor pressure test method defined in JIS K 2258, a so-called lead method.

蒸留性状の50容量%留出温度は、排出ガス低減及び加速性向上の観点から、95℃以下が好ましく、さらには80〜95℃のものが好ましい。この蒸留性状の50容量%留出温度は、JIS K 2254に規定された方法で測定されるものである。   The distillation volume of 50% by volume distillation temperature is preferably 95 ° C. or less, more preferably 80 to 95 ° C., from the viewpoints of exhaust gas reduction and acceleration improvement. The 50 vol% distillation temperature of this distillation property is measured by the method specified in JIS K 2254.

本発明のクリーンガソリン組成物においては、水素/炭素比(mol)は2.3以上が好ましく、より好ましくは2.3〜2.4である。このようにすることにより燃料として用いた場合、二酸化炭素の排出量を削減できる。この水素/炭素比は、ASTM D5291−96(炭化水素燃焼法)によって、炭素、水素の含有量を測定し、これらの量から算定されるものである。   In the clean gasoline composition of the present invention, the hydrogen / carbon ratio (mol) is preferably 2.3 or more, more preferably 2.3 to 2.4. In this way, when used as fuel, carbon dioxide emissions can be reduced. This hydrogen / carbon ratio is calculated from the contents of carbon and hydrogen measured by ASTM D5291-96 (hydrocarbon combustion method).

さらに、本発明のクリーンガソリン組成物は、オレフィン分を、好ましくは1容量%以下、より好ましくは0.1容量%以下、またアロマ分を、好ましくは1容量%以下、より好ましくは0.1容量%以下にする。このオレフィン分及びアロマ分は、JIS K 2536(蛍光指示薬吸着法)に規定される方法で測定するものである。
なお、オレフィン分及びアロマ分は、既に述べたようにガソリンのRONの向上に大きく寄与するが、発ガン性、排ガスの粒子状物質など環境の面から、あるいは貯蔵安定性の面からは好ましくない成分である。本発明のクリーンガソリン組成物は、オレフィン分及びアロマ分を上記のように極めて少量に低減しても高いRONを確保することに成功したものである。
Further, the clean gasoline composition of the present invention preferably has an olefin content of 1% by volume or less, more preferably 0.1% by volume or less, and an aroma content, preferably 1% by volume or less, more preferably 0.1%. Set to volume% or less. The olefin content and aroma content are measured by a method defined in JIS K 2536 (fluorescent indicator adsorption method).
The olefin content and aroma content greatly contribute to the improvement of gasoline RON as described above, but it is not preferable from the viewpoints of environment such as carcinogenicity, particulate matter of exhaust gas, or storage stability. It is an ingredient. The clean gasoline composition of the present invention has succeeded in securing a high RON even when the olefin content and aroma content are reduced to very small amounts as described above.

クリーンガソリン組成物の基材として、オレフィン分及びアロマ分が少ないAGTLガソリンとアルキレートガソリンを使用する。
AGTLガソリンを使用すると、水素/炭素比の高い炭化水素を容易に得ることができる。このAGTLガソリンとは、一酸化炭素と水素をFischer−Tropsch(FT)法で処理し、未反応物や溶媒、副生物等と分離、除去することなく、水素化分解・異性化処理して得られるガソリンのことである。なお、Fischer−Tropsch法とは、一酸化炭素と水素を、Fischer−Tropsch触媒を用いて反応させて、主にノルマルパラフィン(FTワックス)等を合成する方法であり、また水素化分解・異性化処理とは、水素化分解・異性化触媒を用いて長鎖ノルマルパラフィンを水素存在下で短鎖イソパラフィンへ変換する方法である。
また、アルキレートガソリンは、炭素数8のイソパラフィンを主成分とする高オクタン価のガソリン基材である。
AGTL gasoline and alkylate gasoline with low olefin content and aroma content are used as the base material of the clean gasoline composition.
When AGTL gasoline is used, hydrocarbons with a high hydrogen / carbon ratio can be easily obtained. This AGTL gasoline is obtained by treating carbon monoxide and hydrogen with the Fischer-Tropsch (FT) method and hydrocracking and isomerizing them without separating and removing them from unreacted substances, solvents and by-products. It is the gasoline that is used. The Fischer-Tropsch method is a method of synthesizing mainly normal paraffin (FT wax) by reacting carbon monoxide and hydrogen using a Fischer-Tropsch catalyst, and hydrocracking / isomerization. The treatment is a method for converting a long-chain normal paraffin to a short-chain isoparaffin in the presence of hydrogen using a hydrocracking / isomerization catalyst.
Further, alkylate gasoline is a high octane gasoline base material mainly composed of isoparaffin having 8 carbon atoms.

本発明のクリーンガソリン組成物は、含酸素化合物を用いると、より簡便にRONを91以上に調整することができる。   The clean gasoline composition of the present invention can more easily adjust the RON to 91 or more by using an oxygen-containing compound.

この含酸素化合物としては、例えば、炭素数2〜5のアルコール類、炭素数4〜8のエーテル類が好適であり、具体的には、エタノール、プロピルアルコール類、ブチルアルコール類などのアルコールや、アルコール類からの誘導体であるエーテル類やエステル類である、エチルイソプロピルエーテル、エチルターシャリーブチルエーテル(ETBE)、エチルセカンダリーブチルエーテル(ESBE)、ジイソプロピルエーテル、ターシャリーアミルエチルエーテル(TAEE)や、酢酸エチル、プロピオン酸エチル、等が挙げられる。   As the oxygen-containing compound, for example, alcohols having 2 to 5 carbon atoms and ethers having 4 to 8 carbon atoms are suitable. Specifically, alcohols such as ethanol, propyl alcohols, butyl alcohols, Ethers and esters which are derivatives from alcohols, such as ethyl isopropyl ether, ethyl tertiary butyl ether (ETBE), ethyl secondary butyl ether (ESBE), diisopropyl ether, tertiary amyl ethyl ether (TAEE), ethyl acetate, And ethyl propionate.

これらの含酸素化合物の配合量は、全ガソリン組成物基準で、1〜15容量%が好ましく、より好ましくは、3〜12容量%、さらには5〜10容量%である。これは、少なすぎると添加効果が少なく、また、多すぎると水分等の不純物を同伴してしまい、配管やシール材の腐食等のトラブルを引き起こすこともある。例えば、エタノールは水を際限なく溶解することから、燃料中にあまり多く含まれる場合、自動車タンク内で水分が濃縮され、蓄積して悪影響を与える可能性もある。さらに、燃料油中に含酸素化合物が多く含まれる場合、例えば15容量%を超える量が含まれると、既存エンジンの空気/燃料比が適正値からずれてしまい、酸素過剰気味となることから、排ガス中の窒素酸化物(NOx)量が増加してしまう欠点がある。また、含酸素化合物は他のガソリン基材と比較すると発熱量が総じて低いため、燃費を下げてしまうことがあるから、あまり多く使用することは好ましくない。   The blending amount of these oxygen-containing compounds is preferably 1 to 15% by volume, more preferably 3 to 12% by volume, and even more preferably 5 to 10% by volume based on the total gasoline composition. If the amount is too small, the effect of addition is small. If the amount is too large, impurities such as moisture are accompanied, which may cause troubles such as corrosion of pipes and sealing materials. For example, since ethanol dissolves water infinitely, if it is contained too much in the fuel, there is a possibility that the water will be concentrated and accumulated in the automobile tank, causing adverse effects. In addition, when the fuel oil contains a large amount of oxygen-containing compounds, for example, if the amount exceeds 15% by volume, the air / fuel ratio of the existing engine will deviate from the appropriate value, resulting in an excess of oxygen. There is a drawback that the amount of nitrogen oxide (NOx) in the exhaust gas increases. Further, since oxygen-containing compounds generally have a lower calorific value than other gasoline base materials, and may reduce fuel consumption, it is not preferable to use too much.

本発明のクリーンガソリン組成物に用いるAGTLガソリンは、一酸化炭素と水素からFischer−Tropsch触媒を用いて長鎖長の飽和炭化水素(FTワックス)を合成し、合成されたFTワックスを水素化分解・異性化用触媒を用いて短鎖長の炭化水素に水素化分解すると同時にノルマルパラフィンをイソパラフィンに異性化する水素化分解・異性化処理して製造される。これらの工程(FT合成と水素化分解・異性化)を遂行するに際して、FT触媒と水素化分解・異性化触媒は、後述のように二段に分けて使用しても良いし、あるいは、物理混合して一段として使用しても良い。   AGTL gasoline used in the clean gasoline composition of the present invention synthesizes long-chain saturated hydrocarbons (FT wax) from carbon monoxide and hydrogen using a Fischer-Tropsch catalyst, and hydrocracks the synthesized FT wax.・ Manufactured by hydrocracking into short-chain hydrocarbons using an isomerization catalyst and at the same time hydrocracking and isomerizing isomerizing normal paraffins into isoparaffins. In performing these steps (FT synthesis and hydrocracking / isomerization), the FT catalyst and the hydrocracking / isomerization catalyst may be used in two stages as described later, or You may mix and use it as one step.

前記AGTLガソリンの製造において、好ましくは、FT反応生成物を、未反応物や溶媒、副生物等と分離、除去することなく、また窒素や二酸化炭素などで希釈することもなく水素化分解・異性化工程に送って処理する。これは、FT合成工程で反応生成物を精製してFTワックスのみを取り出し、次いで水素化分解・異性化工程に供給し、得られた水素化分解・異性化物を精製して目的とするGTLガソリンを得る方法と比較すると、FT反応で生成する水分、未反応物や低級炭化水素や溶媒等を分離・除去せずに水素化分解・異性化処理する点で異なる。したがって、水素化分解・異性化工程の反応生成物のみを精製すればよいので、精製設備を二重に装備する必要がない。また、両工程の反応条件(反応温度、圧力など)は、ほぼ同じでよいので、FT合成工程の反応生成物をそのまま、冷却や加熱せず水素化分解・異性化工程に供給でき、省エネルギーでもある。このようにFT合成工程の反応生成物をそのまま水素化分解・異性化工程に供給して処理する場合、FT触媒を充填した反応器と水素化分解・異性化触媒を充填した反応器を、この順序で直列に設けてもよいし、1基の反応器の内部をこの順序で2段に分けて使用することもできる。
AGTLガソリンを得る精製処理の際に生じた未反応物はFT合成工程に、AGTLガソリンより重質の炭化水素は水素化分解・異性化工程にそれぞれリサイクルして処理できる。
In the production of the AGTL gasoline, preferably, the FT reaction product is not separated from unreacted substances, solvent, by-products, etc., removed, or hydrocracked / isomerized without being diluted with nitrogen or carbon dioxide. Sent to the process. This is because the reaction product is purified in the FT synthesis process and only the FT wax is taken out, and then supplied to the hydrocracking / isomerization process. The obtained hydrocracking / isomerization product is purified to obtain the target GTL gasoline. Compared with the method for obtaining the above, it is different in that hydrocracking / isomerization treatment is performed without separating / removing water, unreacted substances, lower hydrocarbons, solvents, and the like generated by the FT reaction. Therefore, since only the reaction product of the hydrocracking / isomerization process needs to be purified, it is not necessary to equip the purification equipment twice. In addition, since the reaction conditions (reaction temperature, pressure, etc.) of both steps may be substantially the same, the reaction product of the FT synthesis step can be supplied as it is to the hydrocracking / isomerization step without cooling or heating, saving energy. is there. In this way, when the reaction product of the FT synthesis process is supplied to the hydrocracking / isomerization process as it is, the reactor filled with the FT catalyst and the reactor filled with the hydrocracking / isomerization catalyst are connected to this reactor. They may be provided in series in order, or the inside of one reactor can be used in two stages in this order.
Unreacted substances generated in the purification process for obtaining AGTL gasoline can be recycled for the FT synthesis process, and hydrocarbons heavier than AGTL gasoline can be recycled for the hydrocracking / isomerization process.

さらに、本発明のクリーンガソリン組成物の製造方法において、一酸化炭素と水素の混合ガスを、フィッシャー・トロプシュ触媒と水素化分解・異性化触媒との混合触媒と接触して一度にFT合成と水素化分解・異性化を行うこともできる。   Furthermore, in the method for producing a clean gasoline composition of the present invention, a mixed gas of carbon monoxide and hydrogen is brought into contact with a mixed catalyst of a Fischer-Tropsch catalyst and a hydrocracking / isomerization catalyst at one time to generate FT synthesis and hydrogen. Chemical decomposition and isomerization can also be performed.

FT合成は、FT触媒を用い、原料として、水素と一酸化炭素を水素/一酸化炭素=2/1以上(モル比)の割合で混合した混合ガスを用い、さらに溶媒として、例えばノルマルヘキサンを用いて行う。反応は、混合ガス/ノルマルヘキサン=1.0/0.1〜1.0/10.0(モル比)、反応温度150〜300℃、反応圧力0.1〜10.0MPa、混合ガス流量10〜200ml/min./gの条件下に行うことができる。より好ましくは、水素/一酸化炭素=3/1以上(モル比)、混合ガス/ノルマルヘキサン=1.0/1.0〜1.0/5.0(モル比)、反応温度200〜250℃、反応圧力0.5〜4.5MPa、混合ガス流量40〜100ml/min./gである。FT触媒として周期律表第8族金属担持シリカを好ましく用いることができる。周期律表第8族金属としては、白金、パラジウム、ルテニウム、ロジウム、イリジウム、オスミウム、鉄、コバルト、ニッケルが挙げられる。なかでもルテニウム、鉄、コバルトが好ましく、コバルトが特に好ましい。周期律表第8族金属の担持量は、金属換算で1〜20質量%が好ましく、より好ましくは5〜15質量%である。担体の形状、もしくは触媒の形状は限定するものではないが、柱状成型品、三つ葉状・四つ葉状成型品、球状品、打錠成型品、粒状品などが使用される。   The FT synthesis uses an FT catalyst, uses a mixed gas of hydrogen and carbon monoxide at a ratio of hydrogen / carbon monoxide = 2/1 or more (molar ratio) as a raw material, and further uses, for example, normal hexane as a solvent. To do. Reaction is mixed gas / normal hexane = 1.0 / 0.1 to 1.0 / 10.0 (molar ratio), reaction temperature 150 to 300 ° C., reaction pressure 0.1 to 10.0 MPa, mixed gas flow rate 10 It can be carried out under a condition of ˜200 ml / min. / G. More preferably, hydrogen / carbon monoxide = 3/1 or more (molar ratio), mixed gas / normal hexane = 1.0 / 1.0 to 1.0 / 5.0 (molar ratio), reaction temperature 200 to 250. ° C, reaction pressure 0.5 to 4.5 MPa, mixed gas flow rate 40 to 100 ml / min. / G. Periodic table group 8 metal-supported silica can be preferably used as the FT catalyst. Examples of the Group 8 metal of the periodic table include platinum, palladium, ruthenium, rhodium, iridium, osmium, iron, cobalt, and nickel. Of these, ruthenium, iron and cobalt are preferable, and cobalt is particularly preferable. The supported amount of Group 8 metal of the periodic table is preferably 1 to 20% by mass, more preferably 5 to 15% by mass in terms of metal. The shape of the carrier or the shape of the catalyst is not limited, but columnar molded products, three-leaf / four-leaf molded products, spherical products, tablet-molded products, granular products, and the like are used.

水素化分解・異性化は、反応温度150〜300℃、反応圧力0.1〜10.0MPa、混合ガス流量10〜200ml/min./gの反応条件で行うことができ、より好ましくは、反応温度200〜250℃、反応圧力0.5〜4.5MPa、混合ガス流量40〜100ml/min./gである。触媒として、周期律表第8族金属担持ゼオライトを用いることができる。周期律表第8族金属としては、白金、パラジウム、ルテニウム、ロジウム、イリジウム、オスミウム、鉄、コバルト、ニッケルが挙げられる。好ましくは白金、パラジウム、ルテニウムが用いられ、特に好ましくはパラジウムが用いられる。周期律表第8族金属の担持量としては、0.1〜10質量%が好ましく、より好ましくは0.15〜1.0質量%である。ゼオライト担体としては、USYゼオライトが好ましく、β型ゼオライトがより好ましい。   Hydrocracking and isomerization can be performed under reaction conditions of a reaction temperature of 150 to 300 ° C., a reaction pressure of 0.1 to 10.0 MPa, and a mixed gas flow rate of 10 to 200 ml / min. / G, and more preferably a reaction The temperature is 200 to 250 ° C., the reaction pressure is 0.5 to 4.5 MPa, and the mixed gas flow rate is 40 to 100 ml / min. / G. A periodic table group 8 metal-supported zeolite can be used as the catalyst. Examples of the Group 8 metal of the periodic table include platinum, palladium, ruthenium, rhodium, iridium, osmium, iron, cobalt, and nickel. Platinum, palladium, and ruthenium are preferably used, and palladium is particularly preferably used. The supported amount of Group 8 metal of the periodic table is preferably 0.1 to 10% by mass, more preferably 0.15 to 1.0% by mass. As the zeolite carrier, USY zeolite is preferable, and β-type zeolite is more preferable.

一酸化炭素と水素の混合ガスは、ノルマルヘキサンとともに上記の条件下にFT触媒と接触して、FTワックスを生成する。FTワックスは、生成水、未反応原料ガスや反応中間物とともに水素化分解・異性化工程に送られ、上記の条件下に水素化分解・異性化触媒と接触して、炭素数15以上の長鎖炭化水素の大半が炭素数15以下の炭化水素に変換され、さらにノルマルパラフィンが異性化されてイソパラフィンに変換される。未反応原料ガス、生成水、メタン、エタンなどの燃料ガス、プロパン、ノルマルブタン、イソブタンなどの炭素数3、4の炭化水素類、及びガソリン基材になり得ない重質な炭化水素、ワックスなどを蒸留その他公知の適宜な単位操作によって除去し、ガソリン留分、すなわちAGTLガソリンを得ることができる。   The mixed gas of carbon monoxide and hydrogen is brought into contact with the FT catalyst under the above conditions together with normal hexane to produce FT wax. The FT wax is sent to the hydrocracking / isomerization step together with the produced water, unreacted raw material gas and reaction intermediate, and in contact with the hydrocracking / isomerization catalyst under the above conditions, the FT wax has a length of 15 or more. Most of the chain hydrocarbons are converted into hydrocarbons having 15 or less carbon atoms, and normal paraffins are further isomerized and converted into isoparaffins. Unreacted raw material gas, generated water, fuel gas such as methane and ethane, hydrocarbons having 3 and 4 carbon atoms such as propane, normal butane, and isobutane, and heavy hydrocarbon and wax that cannot be used as a gasoline base material Can be removed by distillation or other known appropriate unit operations to obtain a gasoline fraction, that is, AGTL gasoline.

上記AGTLガソリンは、最終的にRONを91以上で、水素/炭素比を2.3以上のガソリン組成物をより簡便に調製できるようにするために、ガソリン組成物全量に対して、20〜80容量%含有させることが好ましい。   The above AGTL gasoline finally has a RON of 91 or more and a hydrogen / carbon ratio of 2.3 or more, so that it can be more easily prepared with respect to the total amount of the gasoline composition, 20-80. It is preferable to contain by volume.

ノルマルヘキサンは、反応系内を超臨界状態に保ち、反応生成物を触媒の周りから分散して反応を促進する効果があり、また、副生し堆積するコーク類を洗浄・除去する効果がある。ノルマルヘキサンは必須でなく、使用しなくても反応は進行し、イソパラフィンを得ることができる。   Normal hexane keeps the reaction system in a supercritical state, has the effect of promoting the reaction by dispersing the reaction product from around the catalyst, and also has the effect of cleaning and removing coke that is by-produced and deposited. . Normal hexane is not essential, and the reaction proceeds without using it, and isoparaffin can be obtained.

本発明によるガソリン組成物は、AGTLガソリンとアルキレートガソリンをブレンドして調製することができる。さらに、含酸素化合物を適宜配合することが好ましい。また、これら以外の公知のガソリン基材、例えば、LPG(特にはいわゆるBB留分)、ペンタン(特にはイソペンタン)、脱硫直留ナフサ(軽質及び重質)、接触改質ガソリン(いわゆるホールの接触改質ガソリン、炭素数7から9の炭化水素を主成分する分留された接触改質ガソリン)、脱硫接触分解ガソリン(いわゆるホールの接触分解ガソリン、又は分留された接触分解ガソリン、及びこれらの脱硫物)を配合してもよい。このガソリン組成物の調製に当たっては、上記各種のガソリン基材のRON、硫黄分、蒸気圧、蒸留性状、銀板腐食、発熱量当たりの二酸化炭素の発生量等を予め測定或いは算定しておき、上記特定の範囲になるよう配合することにより、比較的容易に製造できる。
なお、好ましい配合量としては、AGTLガソリン20〜80容量%、アルキレートガソリンを20〜80容量%、ETBEを0〜15容量%である。
The gasoline composition according to the present invention can be prepared by blending AGTL gasoline and alkylate gasoline. Furthermore, it is preferable to mix an oxygen-containing compound as appropriate. Other known gasoline base materials such as LPG (particularly so-called BB fraction), pentane (particularly isopentane), desulfurized straight-run naphtha (light and heavy), catalytic reformed gasoline (so-called hall contact) Reformed gasoline, fractionated catalytically reformed gasoline mainly composed of hydrocarbons having 7 to 9 carbon atoms, desulfurized catalytic cracked gasoline (so-called catalytic cracking gasoline in holes, or fractionated catalytically cracked gasoline, and these (Desulfurized product) may be blended. In preparing this gasoline composition, RON, sulfur content, vapor pressure, distillation properties, silver plate corrosion, carbon dioxide generation amount per calorific value, etc. of the above various gasoline base materials are measured or calculated in advance. By blending to the above specific range, it can be produced relatively easily.
In addition, as a preferable compounding quantity, it is 20-80 volume% of AGTL gasoline, 20-80 volume% of alkylate gasoline, and 0-15 volume% of ETBE.

本発明で使用されるアルキレートガソリンは、一般的に行われている方法(アルキレーション)によって製造される。具体的には、ブチレンを主成分とする留分とイソブタンを主成分とする留分を硫酸触媒により反応させて、イソパラフィン(イソオクタン)分の高い炭化水素(アルキレートガソリン)を得ることができる。また、前述AGTLガソリン合成時に副生する炭素数3、4の炭化水素類、すなわち、プロパン、ノルマルブタン、イソブタンをこのアルキレーションの原料として用いることが、原料確保及び副生物の有効利用の観点から特に好ましい。なお、アルキレーション反応用触媒として、硫酸の他、フッ化水素酸のような液体触媒、燐酸系触媒、硫酸ジルコニアやタングステン酸ジルコニアに代表される固体超強酸触媒を使用することもできる。   The alkylate gasoline used in the present invention is produced by a generally performed method (alkylation). Specifically, a hydrocarbon (alkylate gasoline) having a high isoparaffin (isooctane) content can be obtained by reacting a fraction containing butylene as a main component with a fraction containing isobutane as a main component using a sulfuric acid catalyst. In addition, the use of hydrocarbons having 3 or 4 carbon atoms, which are by-produced during the synthesis of the AGTL gasoline, that is, propane, normal butane, and isobutane as raw materials for this alkylation is from the viewpoint of securing raw materials and effective utilization of by-products. Particularly preferred. In addition to the sulfuric acid, a liquid catalyst such as hydrofluoric acid, a phosphoric acid-based catalyst, a solid superacid catalyst represented by zirconia sulfate or zirconia tungstate can be used as the alkylation reaction catalyst.

本発明のクリーンガソリン組成物の好ましい態様として、必要に応じて公知の燃料添加剤を配合することができる。これらの配合量は適宜選べるが、通常は添加剤の合計量として0.1質量%以下とすることが好ましい。本発明の二酸化炭素低排出ガソリン組成物で使用可能な添加剤を例示すれば、アミン系、フェノール系、アミノフェノール系などの酸化防止剤、シッフ型化合物、チオアミド型化合物などの金属不活性化剤、有機リン系化合物などの表面着火防止剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミンなどの清浄分散剤、多価アルコールやそのエーテルなどの氷結防止剤、有機酸のアルカリ金属塩やアルカリ土類金属塩、高級アルコールの硫酸エステルなどの助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などの帯電防止剤、アルケニルコハク酸エステルなどのさび止め剤、キニザリン、クマリンなどの識別剤、アゾ染料などの着色剤を挙げることができる。   As a preferred embodiment of the clean gasoline composition of the present invention, a known fuel additive can be blended as necessary. Although these compounding quantities can be selected suitably, it is usually preferable to set it as 0.1 mass% or less as a total amount of an additive. Examples of additives that can be used in the carbon dioxide low emission gasoline composition of the present invention include amine-based, phenol-based, aminophenol-based antioxidants, Schiff-type compounds, thioamide-type compounds, and other metal deactivators. , Surface ignition inhibitors such as organophosphorus compounds, detergent dispersants such as succinimides, polyalkylamines and polyetheramines, anti-icing agents such as polyhydric alcohols and their ethers, alkali metal salts and alkaline earths of organic acids Metal salts, auxiliary agents such as sulfates of higher alcohols, anionic surfactants, cationic surfactants, antistatic agents such as amphoteric surfactants, rust inhibitors such as alkenyl succinates, quinizarin, coumarins, etc. And a colorant such as an azo dye.

以下に、実施例により本発明をより具体的に説明するが、本発明はこれらの例により何ら制限されるものではない。   Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.

FT合成触媒は、以下の方法により調製した。
富士シリシア製シリカQ−15の担体に対し、硝酸コバルト水溶液を含浸し、乾燥後、400℃で焼成して、Co担持SiO触媒を得た。触媒中に占める担持金属の割合は、コバルト元素として10.0質量%であった。担体は、成型品ペレットを粉砕し、20〜40メッシュのふるいを用いて、粒状サイズ0.4〜0.7mmとして用いた。
The FT synthesis catalyst was prepared by the following method.
Cobalt nitrate aqueous solution was impregnated into a carrier of silica Q-15 manufactured by Fuji Silysia, dried, and calcined at 400 ° C. to obtain a Co-supported SiO 2 catalyst. The ratio of the supported metal in the catalyst was 10.0% by mass as cobalt element. The carrier was used as a granular size of 0.4 to 0.7 mm using a 20 to 40 mesh sieve after pulverizing the molded product pellets.

水素化分解・異性化触媒は、以下の方法により調製した。
東ソー製β型ゼオライトに対し、塩化パラジウムアンミン塩水溶液を用いて80℃でイオン交換し、乾燥後、450℃で焼成して、Pd担持β型ゼオライト触媒を得た。触媒中に占める金属の割合は、パラジウム元素として0.3質量%であった。担体は、成型品ペレットを粉砕し、20〜40メッシュのふるいを用いて、粒状サイズ0.4〜0.7mmとして用いた。
The hydrocracking / isomerization catalyst was prepared by the following method.
Tosoh β-type zeolite was ion-exchanged at 80 ° C. using a palladium chloride ammine salt aqueous solution, dried, and calcined at 450 ° C. to obtain a Pd-supported β-type zeolite catalyst. The proportion of the metal in the catalyst was 0.3% by mass as palladium element. The carrier was used as a granular size of 0.4 to 0.7 mm using a 20 to 40 mesh sieve after pulverizing the molded product pellets.

表1に示す性状のガソリン基材を、表2上部に示す配合割合でブレンドして実施例、及び比較例となるガソリン組成物を調合した。用いたガソリン基材は、次のようにして調製された。   The gasoline base material having the properties shown in Table 1 was blended at the blending ratio shown in the upper part of Table 2 to prepare gasoline compositions serving as examples and comparative examples. The gasoline base used was prepared as follows.

AGTLガソリン
触媒にはFT合成触媒0.5gと水素化分解・異性化触媒0.5gを混合して用い、水素と一酸化炭素からなる混合ガスを原料として、反応温度240℃、反応圧力4.5MPa、水素/一酸化炭素=2/1(モル比)、混合ガス/ノルマルヘキサン=1.0/3.5(モル比)、混合ガス流量81ml/min.の条件下で反応を行なった。反応生成物を蒸留して軽質分と重質分を除いてAGTLガソリンを得た。
The AGTL gasoline catalyst is a mixture of 0.5 g of FT synthesis catalyst and 0.5 g of hydrocracking / isomerization catalyst, and a mixed gas composed of hydrogen and carbon monoxide is used as a raw material, with a reaction temperature of 240 ° C. and a reaction pressure of 4. The reaction was carried out under the conditions of 5 MPa, hydrogen / carbon monoxide = 2/1 (molar ratio), mixed gas / normal hexane = 1.0 / 3.5 (molar ratio), and mixed gas flow rate 81 ml / min. The reaction product was distilled to remove light and heavy components to obtain AGTL gasoline.

イソペンタン(iC5)
原油を蒸留して得られたガソリン留分、あるいは製油所の各種精製工程で副生したガソリン留分を必要により水素化脱硫後、精密蒸留して得た。
Isopentane (iC5)
A gasoline fraction obtained by distilling crude oil, or a gasoline fraction by-produced in various refinery refining processes, was obtained by hydrodesulfurization and precision distillation if necessary.

脱硫直留ナフサ留分(DSLG)
中東系原油を蒸留して得たガソリン留分を水素化脱硫後、蒸留分離することによりその軽質分を得た。この脱硫直留ナフサ留分は、アロマ分、オレフィン分をほとんど含有していないのが特徴である。
Desulfurization straight naphtha fraction (DSLG)
A gasoline fraction obtained by distilling Middle Eastern crude oil was hydrodesulfurized and then separated by distillation to obtain a lighter fraction. This desulfurized straight-run naphtha fraction is characterized by containing almost no aroma or olefin.

アルキレートガソリン(ALKG)
ブチレンを主成分とする留分とイソブタンを主成分とする留分を硫酸触媒により反応させて、炭素数8個のイソパラフィン分の高い炭化水素(ALKG)を得た。
Alkylate gasoline (ALKG)
A fraction containing butylene as a main component and a fraction containing isobutane as a main component were reacted with a sulfuric acid catalyst to obtain a hydrocarbon having a high carbon content of isoparaffin having 8 carbon atoms (ALKG).

接触改質ガソリン留分(AC9)
水素化脱硫後のガソリン留分から蒸留分離して軽質分(脱硫直留ナフサ留分(DSLG))を除いた脱硫直留重質ナフサを固体改質触媒により移動床式反応装置を用いて反応させることにより、アロマ含量の多い炭化水素に改質して改質ガソリンを得る。改質ガソリンは蒸気圧の調整をする程度でそのまま使用することも多いが、ここでは蒸留分離することにより炭素数9の芳香族炭化水素を95%以上含有する留分(AC9)を得た。
Catalytic reforming gasoline fraction (AC9)
Desulfurization straight-run heavy naphtha, which is separated from the gasoline fraction after hydrodesulfurization by distillation and removed light components (desulfurization straight-run naphtha cut (DSLG)), is reacted with a solid reforming catalyst using a moving bed reactor. As a result, the reformed gasoline is reformed into a hydrocarbon having a high aroma content. The reformed gasoline is often used as it is after adjusting the vapor pressure, but here, a fraction (AC9) containing 95% or more of aromatic hydrocarbons having 9 carbon atoms was obtained by distillation separation.

脱硫接触分解ガソリン留分(FCCG)
脱硫軽油あるいは脱硫重油を固体触媒により流動床式反応装置を用いて分解することによりオレフィン分の高い炭化水素を得た。さらに、FCCGを収着脱硫することにより硫黄分の低い炭化水素を得た。アルミナにニッケルを20質量%担持した触媒を硫化処理した後、反応温度250℃、反応圧力常圧、液空間速度(LHSV)4h-1、水素/油比340NL/Lの条件のもと、中東系原油の減圧軽油留分を水素化精製処理したものを主たる原料油とする流動接触分解で得られた接触分解ガソリン留分を通油してジエン低減処理を行った。その後、共沈法にて調製した銅-亜鉛アルミニウム複合酸化物(銅含有量35質量%、亜鉛含有量35質量%、アルミニウム含有量5質量%)の還元処理を行った。その後、ジエン処理された接触分解ガソリンを、反応温度100℃、反応圧力常圧、LHSV2.0h-1、水素/油比0.06NL/Lの条件のもと20時間通油して収着機能をもった脱硫剤によって脱硫された脱硫接触分解ガソリン留分(FCCG)を得た。この留分は、アロマ分を17%、オレフィン分を26%含有する。
Desulfurization catalytic cracking gasoline fraction (FCCG)
Hydrocarbons with high olefin content were obtained by cracking desulfurized light oil or desulfurized heavy oil with a solid catalyst using a fluidized bed reactor. Furthermore, hydrocarbons having a low sulfur content were obtained by collecting and removing FCCG. After sulfiding a catalyst in which 20% by mass of nickel was supported on alumina, the Middle East region was subjected to a reaction temperature of 250 ° C., a reaction pressure of normal pressure, a liquid space velocity (LHSV) of 4 h −1 , and a hydrogen / oil ratio of 340 NL / L. Diene reduction treatment was carried out by passing the catalytically cracked gasoline fraction obtained by fluid catalytic cracking, which was obtained by hydrorefining the crude oil reduced-pressure gas oil fraction as the main feedstock. Then, the reduction process of the copper- zinc aluminum complex oxide (copper content 35 mass%, zinc content 35 mass%, aluminum content 5 mass%) prepared by the coprecipitation method was performed. Thereafter, the diene-treated catalytically cracked gasoline was allowed to pass through for 20 hours under the conditions of a reaction temperature of 100 ° C., a reaction pressure of normal pressure, LHSV of 2.0 h −1 , and a hydrogen / oil ratio of 0.06 NL / L, so A desulfurized catalytic cracking gasoline fraction (FCCG) desulfurized with a desulfurizing agent having a water content was obtained. This fraction contains 17% aroma and 26% olefin.

エチルターシャリーブチルエーテル(ETBE)
イオン交換樹脂触媒(Amberlyst-15)存在下、エタノールとイソブチレンとを反応させ、蒸留法で精製し、純度95%のETBEを得た
Ethyl tertiary butyl ether (ETBE)
Ethanol and isobutylene were reacted in the presence of an ion exchange resin catalyst (Amberlyst-15) and purified by distillation to obtain 95% pure ETBE.

なお、ガソリン基材及び調製したガソリン組成物の性状は、次の方法により測定した。
密度はJIS K 2249の密度試験方法、リード法蒸気圧はJIS K 2258の蒸気圧試験方法(リード法)、蒸留性状はJIS K 2254の常圧法蒸留試験方法によって測定した。硫黄分は、JIS K 2541の硫黄分試験方法によって測定した。
In addition, the property of the gasoline base material and the prepared gasoline composition was measured by the following method.
The density was measured by the density test method of JIS K 2249, the vapor pressure of the Reed method was measured by the vapor pressure test method (Reed method) of JIS K 2258, and the distillation property was measured by the atmospheric pressure distillation test method of JIS K 2254. The sulfur content was measured by the sulfur content test method of JIS K2541.

Figure 0004776287
Figure 0004776287

Figure 0004776287
Figure 0004776287

実施例については、表2に記載の混合割合でガソリン基材をブレンドし、クリーンガソリンを製造した。実施例1のガソリンは、比較例1の従来型ガソリンと比較して、RONが高いアロマ分やオレフィン分をほとんど含まないのにもかかわらず、RONが高く、水素/炭素比が高いクリーンガソリン組成物であることが判る。   About the Example, the gasoline base material was blended by the mixing ratio of Table 2, and clean gasoline was manufactured. Compared with the conventional gasoline of Comparative Example 1, the gasoline of Example 1 has a high RON and a high hydrogen / carbon ratio even though it contains almost no aroma or olefin content. It turns out that it is a thing.

また、実施例2及び実施例3のガソリンは、ETBEを含有したもので、含酸素化合物を含むことで、高いRON、高い水素/炭素比、適切な蒸留性状を有しているが、これに対して、同様に含酸素化合物を含む比較例2及び比較例3のAGTLガソリンを使用しないガソリンでは、アロマ分やオレフィン分を含まない基材のみを用いたとしても、蒸留性状の50容量%留出温度が満足できないか、RONが低いか、水素/炭素比が低い。以上のように、AGTLガソリンを使用することで、優れた実用性能を有するクリーンガソリンが得られることがわかる。   In addition, the gasolines of Example 2 and Example 3 contain ETBE, and by containing an oxygen-containing compound, they have a high RON, a high hydrogen / carbon ratio, and an appropriate distillation property. On the other hand, in the gasoline not using the AGTL gasoline of Comparative Example 2 and Comparative Example 3 containing oxygen-containing compounds in the same manner, even if only the base material containing no aroma or olefin is used, a distillation volume of 50% by volume is obtained. Outlet temperature is not satisfactory, RON is low, or hydrogen / carbon ratio is low. As described above, it can be seen that clean gasoline having excellent practical performance can be obtained by using AGTL gasoline.

産業上の利用分野Industrial application fields

本発明のクリーンガソリン組成物は、硫黄分が極めて少なく、分岐状飽和炭化水素化合物の含有量が多いことから、ガソリンエンジン用燃料として好適であり、環境への負荷が低く、エネルギー効率の高い性能を有している。これに加えて、触媒毒となる不純物が少なく、水素含有比率が比較的高い炭化水素であるから、燃料電池用の燃料としても好適である。当然、ガソリンエンジン及び燃料電池の共用ガソリンとしても使用することができる。   The clean gasoline composition of the present invention has a very low sulfur content and a high content of branched saturated hydrocarbon compounds. Therefore, the clean gasoline composition is suitable as a fuel for gasoline engines, has a low environmental burden, and has high energy efficiency. have. In addition to this, since it is a hydrocarbon with a small amount of impurities that become catalyst poisons and a relatively high hydrogen content, it is also suitable as a fuel for fuel cells. Of course, it can also be used as a gasoline common to gasoline engines and fuel cells.

Claims (8)

一酸化炭素と水素の混合ガスをフィッシャー・トロプシュ触媒と接触し、同時に又は次いで水素化分解・異性化触媒接触して得られた反応生成物より未反応原料ガス、生成水、メタン、エタンなどの燃料ガス、炭素数3、4の炭化水素類、及びガソリン基材になり得ない重質な炭化水素、ワックスを除去して得られるガソリン留分であるAGTLガソリンと、アルキレートガソリンとを含む、37.8℃の蒸気圧が65kPa以下、リサーチ法オクタン価が91以上、硫黄分が1質量ppm以下、銀板腐食が1以下、蒸留性状の50容量%留出温度が95℃以下、アロマ分が1容量%以下、オレフィン分が1容量%以下、及び水素/炭素比(mol)が2.3以上であるクリーンガソリン組成物。 From a reaction product obtained by contacting a mixed gas of carbon monoxide and hydrogen with a Fischer-Tropsch catalyst and simultaneously or subsequently with a hydrocracking / isomerization catalyst , unreacted raw material gas, produced water, methane, ethane, etc. Fuel gas, C3 and C4 hydrocarbons, heavy hydrocarbons that cannot be gasoline base materials, AGTL gasoline that is a gasoline fraction obtained by removing wax, and alkylate gasoline The vapor pressure at 37.8 ° C. is 65 kPa or less, the research octane number is 91 or more, the sulfur content is 1 mass ppm or less, the silver plate corrosion is 1 or less, the 50% by volume distillation temperature of distillation property is 95 ° C. or less, the aroma content Is a clean gasoline composition having an olefin content of 1% by volume or less, a hydrogen / carbon ratio (mol) of 2.3 or more. さらに、含酸素化合物を含む請求項1に記載のクリーンガソリン組成物。   Furthermore, the clean gasoline composition of Claim 1 containing an oxygen-containing compound. さらに、液化石油ガス、イソペンタン、脱硫直留ナフサ、接触改質ガソリン、脱硫接触分解ガソリンよりなる群から選択される1種以上のガソリン基材を含む請求項1又は2に記載のクリーンガソリン組成物。   The clean gasoline composition according to claim 1 or 2, further comprising at least one gasoline base selected from the group consisting of liquefied petroleum gas, isopentane, desulfurized straight naphtha, catalytic reformed gasoline, and desulfurized catalytic cracked gasoline. . ガソリンエンジン用燃料又は燃料電池用燃料として使用される請求項1〜3のいずれかに記載のクリーンガソリン組成物。   The clean gasoline composition according to any one of claims 1 to 3, which is used as a fuel for a gasoline engine or a fuel for a fuel cell. (a)一酸化炭素と水素の混合ガスをフィッシャー・トロプシュ触媒と接触し、同時に又は次いで水素化分解・異性化触媒接触して得られた反応生成物より未反応原料ガス、生成水、メタン、エタンなどの燃料ガス、炭素数3、4の炭化水素類、及びガソリン基材になり得ない重質な炭化水素、ワックスを除去して得られるガソリン留分であるAGTLガソリンを得る工程、及び
(b)工程(a)で得たAGTLガソリンとアルキレートガソリンとを混合するブレンド工程
を含むことを特徴とする、37.8℃の蒸気圧が65kPa以下、リサーチ法オクタン価が91以上、硫黄分が1質量ppm以下、銀板腐食が1以下、蒸留性状の50容量%留出温度が95℃以下、アロマ分が1容量%以下、オレフィン分が1容量%以下、及び水素/炭素比(mol)が2.3以上であるクリーンガソリン組成物の製造方法。
(A) From a reaction product obtained by contacting a mixed gas of carbon monoxide and hydrogen with a Fischer-Tropsch catalyst and simultaneously or subsequently with a hydrocracking / isomerization catalyst , unreacted raw material gas, produced water, methane A process for obtaining a fuel gas such as ethane, hydrocarbons having 3 or 4 carbon atoms, heavy hydrocarbons that cannot be gasoline base materials, AGTL gasoline that is a gasoline fraction obtained by removing wax , and (B) A blending step of mixing the AGTL gasoline and alkylate gasoline obtained in the step (a) is included, the vapor pressure at 37.8 ° C. is 65 kPa or less, the research octane number is 91 or more, the sulfur content Is 1 mass ppm or less, silver plate corrosion is 1 or less, distillation volume of 50% by volume distillation temperature is 95 ° C. or less, aroma content is 1% by volume or less, olefin content is 1% by volume or less, and hydrogen / A method for producing a clean gasoline composition having a carbon ratio (mol) of 2.3 or more.
フィッシャー・トロプシュ触媒が周期律表第8族金属担持シリカであり、水素化分解・異性化触媒が周期律表第8族金属担持ゼオライトである請求項5に記載のクリーンガソリン組成物の製造方法。   6. The method for producing a clean gasoline composition according to claim 5, wherein the Fischer-Tropsch catalyst is a Periodic Table Group 8 metal-supported silica, and the hydrocracking / isomerization catalyst is a Periodic Table Group 8 metal-supported zeolite. フィッシャー・トロプシュ触媒及び水素化分解・異性化触媒と温度150〜300℃及び圧力0.1〜10.0MPaの条件下に接触する請求項5又は6に記載のクリーンガソリン組成物の製造方法。   The method for producing a clean gasoline composition according to claim 5 or 6, wherein the Fischer-Tropsch catalyst and the hydrocracking / isomerization catalyst are contacted under conditions of a temperature of 150 to 300 ° C and a pressure of 0.1 to 10.0 MPa. 工程(a)でAGTLガソリンを製造する際に副生した炭素数3〜4の炭化水素化合物を工程(b)で用いるアルキレートガソリンを製造する原料として使用する請求項5〜7のいずれかに記載のクリーンガソリン組成物の製造方法。   The hydrocarbon compound having 3 to 4 carbon atoms by-produced when producing AGTL gasoline in the step (a) is used as a raw material for producing the alkylate gasoline used in the step (b). The manufacturing method of the clean gasoline composition of description.
JP2005197097A 2005-07-06 2005-07-06 Clean gasoline composition and method for producing the same Active JP4776287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005197097A JP4776287B2 (en) 2005-07-06 2005-07-06 Clean gasoline composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005197097A JP4776287B2 (en) 2005-07-06 2005-07-06 Clean gasoline composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007016090A JP2007016090A (en) 2007-01-25
JP4776287B2 true JP4776287B2 (en) 2011-09-21

Family

ID=37753536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005197097A Active JP4776287B2 (en) 2005-07-06 2005-07-06 Clean gasoline composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP4776287B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843343B2 (en) * 2006-03-17 2011-12-21 Jx日鉱日石エネルギー株式会社 Fuel composition for combustion appliances
JP5482708B2 (en) * 2011-03-31 2014-05-07 コスモ石油株式会社 Gasoline base material and method for producing gasoline base material
US8968429B2 (en) * 2011-09-23 2015-03-03 Butamax Advanced Biofuels Llc Butanol compositions for fuel blending and methods for the production thereof
FI20165785A (en) * 2016-10-13 2018-04-14 Neste Oyj Alkylaattibensiinikoostumus
US10738247B2 (en) 2017-11-15 2020-08-11 Gas Technology Institute Processes and systems for reforming of methane and light hydrocarbons to liquid hydrocarbon fuels
EP4265705A3 (en) * 2017-11-15 2024-04-03 Gas Technology Institute Process for reforming of methane and light hydrocarbons to liquid hydrocarbon fuels
JP7331070B2 (en) * 2017-11-15 2023-08-22 ガス、テクノロジー、インスティチュート Process and system for reforming methane and light hydrocarbons to liquid hydrocarbon fuels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030213728A1 (en) * 2000-10-11 2003-11-20 Kenichirou Saitou Dual purpose fuel for gasoline driven automobile and fuel cell system, and system for storage and/or supply thereof
US6570047B1 (en) * 2001-11-06 2003-05-27 Exxonmobil Research And Engineering Company Slurry hydrocarbon synthesis with external hydroisomerization in downcomer reactor loop
US6555725B1 (en) * 2001-11-06 2003-04-29 Exxonmobil Research And Engineering Company In-situ hydroisomerization of synthesized hydrocarbon liquid in a slurry fischer-tropsch reactor
JP4236170B2 (en) * 2003-09-26 2009-03-11 株式会社ジャパンエナジー Method for producing gasoline base material

Also Published As

Publication number Publication date
JP2007016090A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP5114164B2 (en) Method for producing gasoline composition
JP4776287B2 (en) Clean gasoline composition and method for producing the same
WO2001070914A1 (en) Fuel oil for use both in internal combustion in engine and fuel cell
JP4803790B2 (en) Clean gasoline composition
JP3945772B2 (en) Environment-friendly diesel oil and method for producing the same
JP4916743B2 (en) Eco-friendly gasoline composition and method for producing the same
JP5186183B2 (en) Gasoline composition
JP4804769B2 (en) Carbon dioxide low emission gasoline composition
KR20090025241A (en) Hydrotreating process, low environmental load gasoline base material and lead-free gasoline compositions
JP4889095B2 (en) Eco-friendly gasoline composition and method for producing the same
JP5099896B2 (en) Gasoline composition
JP4850412B2 (en) Method for producing environmentally friendly gasoline composition
JP4916742B2 (en) High octane number environment-friendly gasoline composition and method for producing the same
JP4798649B2 (en) Eco-friendly gasoline composition and method for producing the same
JP5357098B2 (en) Gasoline composition
JP4932195B2 (en) Gasoline composition and method for producing the same
JP2005248071A (en) Eco-friendly clean gasoline and method for producing the same
JP4832104B2 (en) Method for producing gasoline base material and gasoline composition
JP2011241406A (en) Environmentally friendly gasoline composition, and method of manufacturing the same
JP5403595B2 (en) Unleaded gasoline
JP2014025077A (en) Unleaded gasoline
JP5405171B2 (en) Unleaded gasoline
JP5405170B2 (en) Unleaded gasoline
JP5431656B2 (en) Method for producing desulfurized heavy cracked gasoline
JP4851198B2 (en) Method for producing gasoline base material and gasoline composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Ref document number: 4776287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250