JP4932195B2 - Gasoline composition and method for producing the same - Google Patents

Gasoline composition and method for producing the same Download PDF

Info

Publication number
JP4932195B2
JP4932195B2 JP2005249045A JP2005249045A JP4932195B2 JP 4932195 B2 JP4932195 B2 JP 4932195B2 JP 2005249045 A JP2005249045 A JP 2005249045A JP 2005249045 A JP2005249045 A JP 2005249045A JP 4932195 B2 JP4932195 B2 JP 4932195B2
Authority
JP
Japan
Prior art keywords
gasoline
volume
content
carbon atoms
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005249045A
Other languages
Japanese (ja)
Other versions
JP2007063353A (en
Inventor
英治 田中
康一 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2005249045A priority Critical patent/JP4932195B2/en
Publication of JP2007063353A publication Critical patent/JP2007063353A/en
Application granted granted Critical
Publication of JP4932195B2 publication Critical patent/JP4932195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高オクタン価を維持しながら、低温運転性に優れ、ガソリン自体から放出される、又は排気ガスとして排出される環境汚染物質を低減したガソリン組成物とその製造方法に関する。   The present invention relates to a gasoline composition excellent in low-temperature drivability while maintaining a high octane number, and reduced in environmental pollutants released from gasoline itself or discharged as exhaust gas, and a method for producing the same.

プレミアムガソリンはオクタン価を高めるために、通常オクタン価が高い芳香族炭化水素基材を多く使用する。この芳香族炭化水素基材は沸点が高いために、沸点が比較的低くオクタン価が高い接触分解ガソリンを蒸留分離した軽質分解ガソリンやイソペンタン及びアルキレートガソリンを用いて、50%留出温度や90%留出温度等を低く調整することがなされている。一方、エチル−t−ブチルエーテル(ETBE)などの含酸素ガソリン基材を利用してこれを重質芳香族炭化水素基材と置き換えることにより90%留出温度を低下することも報告されている(特許文献1,2参照)。しかしながら、これらのいずれにも、炭化水素の組成を調整することで、例えば高オクタン価を維持しながら積極的に芳香族炭化水素分を低減させることで低温運転性に優れ、ガソリン自体から放出される、又は排気ガスとして排出される環境汚染物質を低減したプレミアムガソリンを製造するものは見当たらない。   In order to increase the octane number, premium gasoline usually uses many aromatic hydrocarbon base materials having a high octane number. Since this aromatic hydrocarbon base has a high boiling point, it uses a light cracked gasoline, isopentane and alkylate gasoline obtained by distillation separation of catalytically cracked gasoline having a relatively low boiling point and a high octane number. The distillation temperature and the like are adjusted to be low. On the other hand, it is also reported that the distillation temperature is reduced by 90% by using an oxygen-containing gasoline substrate such as ethyl-t-butyl ether (ETBE) and replacing it with a heavy aromatic hydrocarbon substrate ( (See Patent Documents 1 and 2). However, in any of these, by adjusting the hydrocarbon composition, for example, the aromatic hydrocarbon content is actively reduced while maintaining a high octane number, thereby being excellent in low-temperature drivability and released from the gasoline itself. Nothing produces premium gasoline with reduced environmental pollutants emitted as exhaust gas.

プレミアムガソリンはオクタン価を高めるために、オクタン価が高い芳香族炭化水素基材を多く使用しているから、通常芳香族炭化水素分を積極的に下げようとするとオクタン価が低下する。このため、ETBE等の高オクタン価の含酸素ガソリン基材を使用して芳香族炭化水素分を低減しながらオクタン価を維持することがある。しかし、含酸素ガソリン基材は、アルミニウム金属部材などを腐食したり、あるいは、パッキンやホースなどのゴム部品を膨潤することがあり、さらに、含酸素ガソリン基材に含まれる酸素によってエンジンの空燃比がずれて、NOxが多くなるなど排気ガスに影響を及ぼすことなどから、その使用比率は制限される。また、ETBEなどは炭化水素と比較すると、エンジンの空燃比のずれや、発熱量が低下すること等が影響するため、沸点低下に対する低温運転性改善効果が小さくなる。また、沸点や酸素分から算出される、ドライバビリティインデックスなどとして開示されている運転性に関する式(例えば、DI=1.5×T10+3.0×T50+T90+11×(酸素重量%)、式中、T10、T50及びT90は、ASTM D86に基づいて測定した10%留出温度(℃)、50%留出温度(℃)及び90%留出温度(℃)である。)では、プレミアムガソリンのように芳香族炭化水素分を比較的高く含有するガソリンの運転性を必ずしも正確に推定し、表現するものとはなっていない。
特開2005−029762号 特開2004−292511号
Since premium gasoline uses many aromatic hydrocarbon base materials having a high octane number in order to increase the octane number, when an attempt is made to actively reduce the aromatic hydrocarbon content, the octane number generally decreases. For this reason, the octane number may be maintained while reducing the aromatic hydrocarbon content using an oxygen-containing gasoline base material having a high octane number such as ETBE. However, the oxygen-containing gasoline base material may corrode aluminum metal members or the like, or may swell rubber parts such as packings and hoses, and further, the oxygen contained in the oxygen-containing gasoline base material causes the air / fuel ratio of the engine. The ratio of use is limited because it affects the exhaust gas by increasing the amount of NOx. Further, ETBE or the like is less effective in improving low-temperature drivability with respect to lowering of boiling point because it is affected by a shift in the air-fuel ratio of the engine, a decrease in the amount of heat generated, and the like as compared with hydrocarbons. In addition, an expression relating to drivability, which is calculated as a drivability index calculated from the boiling point and oxygen content (for example, DI = 1.5 × T10 + 3.0 × T50 + T90 + 11 × (oxygen weight%), where T10, T50 And T90 are 10% distillation temperature (° C.), 50% distillation temperature (° C.) and 90% distillation temperature (° C.) measured according to ASTM D86.) The operability of gasoline containing a relatively high hydrocarbon content is not necessarily accurately estimated and expressed.
JP 2005-029762 A JP 2004-292511 A

本発明は、芳香族炭化水素分を積極的に低減しつつ、高オクタン価を維持した低温運転性に優れ、排気ガス中の環境汚染物質の排出量を低減したガソリン組成物とその製造方法を提供することを課題とする。   The present invention provides a gasoline composition and a method for producing the same, which are excellent in low-temperature operability while maintaining a high octane number while actively reducing aromatic hydrocarbon content and reducing the amount of environmental pollutants emitted in exhaust gas. The task is to do.

本発明は上記の従来の技術における問題を解決するものであり、本発明者らは、ガソリン組成物の成分組成、物性、性能などについて鋭意検討した結果、ETBE等の含酸素ガソリン基材に加えて、オクタン価が高い特定の炭化水素化合物を特定の割合で含有するガソリン組成物は、芳香族炭化水素分を低減しながら、高オクタン価を維持し、低温運転性に優れていることを見出し、本発明に想到した。   The present invention solves the above-mentioned problems in the prior art, and as a result of intensive studies on the composition, physical properties, performance, etc. of the gasoline composition, the present inventors have added it to oxygen-containing gasoline base materials such as ETBE. Thus, a gasoline composition containing a specific hydrocarbon compound with a high octane number in a specific ratio maintains a high octane number while reducing the aromatic hydrocarbon content, and is excellent in low-temperature operability. I came up with the invention.

すなわち、本発明は、アルキレートガソリンを5〜30容量%配合し、硫黄分が10質量ppm以下、ベンゼンが1容量%以下、2,3,4−トリメチルペンタン(234TMP)が4.5〜9.2容量%、(234TMP)/(234TMP+2,2,4−トリメチルペンタン(224TMP))比(容量)が0.34以上、芳香族炭化水素分が20〜30容量%酸素分が0.1〜2.7質量%、リサーチ法オクタン価が98〜104、50%留出温度が88〜100℃、及び、90%留出温度が110〜150℃であり、かつ、炭素数6以下の炭化水素の含有量が下記の式(1)を満たし、さらに、加速性指数Aが下記の式(2)を満たすガソリン組成物である。 That is, the present invention contains 5 to 30% by volume of alkylate gasoline, sulfur content is 10 mass ppm or less, benzene is 1% by volume or less, and 2,3,4-trimethylpentane (234TMP) is 4.5 to 9%. .2 volume%, (234TMP) / (234TMP + 2,2,4-trimethylpentane (224TMP)) ratio (volume) is 0.34 or more, aromatic hydrocarbon content is 20-30 volume% , oxygen content is 0.1 2.7% by mass , research octane number of 98 to 104, 50% distillation temperature of 88 to 100 ° C., 90% distillation temperature of 110 to 150 ° C. and hydrocarbon having 6 or less carbon atoms The gasoline composition satisfies the following formula (1), and the acceleration index A satisfies the following formula (2) .

本発明のガソリン組成物は、リサーチ法オクタン価(RON)が98〜104、50%留出温度が88〜100℃、90%留出温度が110〜150℃、及び炭素数6以下の炭化水素の含有量が下記の式(1)を満たし、かつ加速性指数Aが下記の式(2)を満たすものが好ましい。
(C4L)+(C5)+(C6)≧42 ・・・ (1)
加速性指数A=7×(T50)+3×(T90)+13×(AR)+8×(OX)≦1500 ・・・ (2)
上記式(1)及び(2)において、C4Lは炭素数4以下の炭化水素の含有量(容量%)、C5は炭素数5の炭化水素の含有量(容量%)、C6は炭素数6の炭化水素の含有量(容量%)を示し、T50は50%留出温度(℃)、T90は90%留出温度(℃)、ARは芳香族炭化水素分(容量%)、OXは酸素分(質量%)を示す。
The gasoline composition of the present invention has a research octane number (RON) of 98 to 104, a 50% distillation temperature of 88 to 100 ° C, a 90% distillation temperature of 110 to 150 ° C, and a hydrocarbon having 6 or less carbon atoms. It is preferable that the content satisfies the following formula (1) and the acceleration index A satisfies the following formula (2).
(C4L) + (C5) + (C6) ≧ 42 (1)
Acceleration index A = 7 × (T50) + 3 × (T90) + 13 × (AR) + 8 × (OX) ≦ 1500 (2)
In the above formulas (1) and (2), C4L is the content (capacity%) of hydrocarbons having 4 or less carbon atoms, C5 is the content (capacity%) of hydrocarbons having 5 carbon atoms, and C6 is 6 carbon atoms. Indicates hydrocarbon content (volume%), T50 is 50% distillation temperature (° C), T90 is 90% distillation temperature (° C), AR is aromatic hydrocarbon content (volume%), OX is oxygen content (Mass%) is shown.

さらに、本発明のガソリン組成物は、37.8℃における蒸気圧(リード蒸気圧)が65kPa以下で、炭素数5以下の炭化水素の含有量が次式(3)を満たすものが好ましい。
4×(C4L)+(C5)≦42 ・・・ (3)
式(3)において、C4Lは炭素数4以下の炭化水素の含有量(容量%)を示し、C5は炭素数5の炭化水素の含有量(容量%)を示す。
Furthermore, the gasoline composition of the present invention preferably has a vapor pressure (Reed vapor pressure) at 37.8 ° C. of 65 kPa or less and a hydrocarbon content of 5 or less carbon atoms satisfying the following formula (3).
4 × (C4L) + (C5) ≦ 42 (3)
In the formula (3), C4L represents the content (volume%) of hydrocarbons having 4 or less carbon atoms, and C5 represents the content (volume%) of hydrocarbons having 5 carbon atoms.

また、本発明は、接触改質ガソリンに含まれる炭素数4〜7の炭化水素からベンゼンを蒸留分離除去して得たガソリン1〜50容量%、トルエン0〜40容量%、流動接触分解ガソリンを蒸留分離して得た100℃以下の沸点の軽質ガソリン0〜50容量%、アルキレートガソリン5〜30容量%、含酸素ガソリン基材0.3〜20容量%混合して前記のガソリン組成物を得る製造方法である。   The present invention also provides 1-50 vol% gasoline, 0-40 vol% toluene, fluid catalytic cracked gasoline obtained by distilling and removing benzene from hydrocarbons having 4-7 carbon atoms contained in catalytic reformed gasoline. The above gasoline composition is obtained by mixing 0-50% by volume of light gasoline having a boiling point of 100 ° C. or less obtained by distillation separation, 5-30% by volume of alkylate gasoline, and 0.3-20% by volume of oxygen-containing gasoline base. It is a manufacturing method to obtain.

本発明によれば、高オクタン価を維持しながら低温運転性に優れ、環境汚染物質の排出を低減したガソリン組成物を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the gasoline composition which was excellent in low-temperature drivability, maintaining the high octane number, and reduced discharge | emission of an environmental pollutant can be obtained.

このガソリン組成物は、硫黄分が10質量ppm以下、排気ガス中の硫黄酸化物は少ないほどよいので、好ましくは5質量ppm以下、さらに好ましくは1質量ppm以下である。ガソリン中の硫黄分は、排気ガス中で硫黄酸化物となり、窒素酸化物除去触媒を被毒する。そのために、窒素酸化物除去触媒の活性を回復するために還元雰囲気を形成するために燃料が使用され、燃費悪化の原因となっている。従って、ガソリン中の硫黄分が少ないほど燃費は向上する。
ベンゼンが1容量%以下、排気ガス性状から好ましくは0.6容量%以下である。
In this gasoline composition, the sulfur content is preferably 10 ppm by mass or less and the lower the sulfur oxide in the exhaust gas, the better. Therefore, the gasoline composition is preferably 5 ppm by mass or less, more preferably 1 ppm by mass or less. The sulfur content in gasoline becomes sulfur oxides in the exhaust gas, poisoning the nitrogen oxide removal catalyst. For this reason, fuel is used to form a reducing atmosphere in order to restore the activity of the nitrogen oxide removal catalyst, causing deterioration of fuel consumption. Therefore, the fuel efficiency improves as the sulfur content in gasoline decreases.
Benzene is 1% by volume or less, and preferably 0.6% by volume or less in terms of exhaust gas properties.

また、本発明のガソリン組成物は、炭化水素成分として234TMPを2.0容量%以上含有し、確実にオクタン価向上効果を得るためより好ましくは3.0容量%以上、さらには4.0容量%以上含有することが好ましく、さらに、(234TMP)/(234TMP+224TMP)比(容量)が0.34以上、オクタン価向上効果から、より好ましくは0.40以上、さらに好ましくは0.50以上である。224TMPはいわゆるオクタン価(RON)100のイソオクタンであり、234TMPは224TMPよりもオクタン価が2〜3高いオクタン価を有する炭素数8の分枝パラフィンである。234TMPは、どのような形態でガソリン組成物中に導入されてもかまわないが、イソブタンとブチレンとをアルキル化して得られる、いわゆるアルキレート中に、224TMPとともに比較的多く含まれているので、ガソリン組成物中に234TMPが上記含有量となるような割合でアルキレートを配合すればよい。ただし、硫酸法で得られるアルキレートは一般的に224TMPを多量に含有し、多くの場合、上記の(234TMP)/(234TMP+224TMP)比(容量)が0.34以上を満足しない。したがって、本発明のガソリン組成物の調製に当っては、(234TMP)/(234TMP+224TMP)比(容量)が0.34以上を満足する、234TMPの含有量が多いアルキレートを選択して用いればよい。現在、全く経済的であるとはいえないが、234TMP単品を用いてもよく、また、炭素数3〜5程度のオレフィンを、場合によっては同程度の炭素数のイソパラフィンの1種以上を組み合わせて、適宜の方法で低重合して、必要であれば、水素化して不飽和結合を安定な飽和結合に変換して、あるいは炭素数8を中心とするパラフィンを異性化して、234TMP含有量の多い炭化水素油を得、これを用いてもよい。例えば、ブチレンを主成分とする留分を固体リン酸触媒により反応させた後、ニッケル−モリブデン系触媒により反応させ、234TMP含有量の多い炭化水素を得ることができるため、これを用いてもよい。   In addition, the gasoline composition of the present invention contains 2.0% by volume or more of 234TMP as a hydrocarbon component, and more preferably 3.0% by volume or more, and more preferably 4.0% by volume in order to reliably obtain an octane number improving effect. In addition, the (234TMP) / (234TMP + 224TMP) ratio (capacity) is preferably 0.34 or more, and more preferably 0.40 or more, and further preferably 0.50 or more, from the effect of improving the octane number. 224TMP is an isooctane having a so-called octane number (RON) of 100, and 234TMP is a branched paraffin having 8 carbon atoms having an octane number of 2 to 3 higher than that of 224TMP. 234TMP may be introduced into the gasoline composition in any form. However, since 234TMP is relatively contained in the so-called alkylate obtained by alkylating isobutane and butylene together with 224TMP, What is necessary is just to mix | blend alkylate in a ratio that 234TMP becomes the said content in a composition. However, the alkylate obtained by the sulfuric acid method generally contains a large amount of 224TMP, and in many cases, the above (234TMP) / (234TMP + 224TMP) ratio (capacity) does not satisfy 0.34 or more. Therefore, in the preparation of the gasoline composition of the present invention, an alkylate with a high content of 234TMP satisfying a (234TMP) / (234TMP + 224TMP) ratio (capacity) of 0.34 or more may be selected and used. . Although it is not economical at all, 234TMP may be used alone, or an olefin having about 3 to 5 carbon atoms may be combined with one or more isoparaffins having about the same carbon number in some cases. Low polymerization by an appropriate method, and if necessary, hydrogenation to convert unsaturated bonds to stable saturated bonds, or isomerization of paraffins mainly having 8 carbon atoms, high 234TMP content Hydrocarbon oil may be obtained and used. For example, a fraction containing butylene as a main component can be reacted with a solid phosphoric acid catalyst and then reacted with a nickel-molybdenum catalyst to obtain a hydrocarbon having a high 234TMP content. .

さらに、本発明のガソリン組成物は、芳香族炭化水素分を20〜30容量%含有する。オクタン価維持や燃費から、より好ましくは21容量%以上、さらには22容量%以上である。一方、排気ガス性状や低温運転性維持の観点からは、芳香族炭化水素分はできるだけ少ない方が好ましく、30容量%以下、より好ましくは29容量%、特には28容量%以下が好ましい。本発明のガソリン組成物は、含酸素ガソリン基材や各種のガソリン基材の配合量を、234TMPなどの特定成分の含有量を勘案して細かく調整することによって、従来高いRONを得るために多用されていた芳香族含有量をできるだけ低減しても、上記RONを確保することができる。   Furthermore, the gasoline composition of the present invention contains 20 to 30% by volume of aromatic hydrocarbons. From the viewpoint of maintaining the octane number and fuel consumption, it is more preferably 21% by volume or more, and even more preferably 22% by volume or more. On the other hand, from the viewpoint of maintaining exhaust gas properties and low-temperature drivability, the aromatic hydrocarbon content is preferably as low as possible, preferably 30% by volume or less, more preferably 29% by volume, and particularly preferably 28% by volume or less. The gasoline composition of the present invention is widely used to obtain a high RON conventionally by finely adjusting the blending amount of oxygen-containing gasoline base and various gasoline bases in consideration of the content of specific components such as 234TMP. Even if the aromatic content that has been reduced is reduced as much as possible, the RON can be secured.

さらに、本発明のガソリン組成物は、酸素を0.1〜2.7質量%、好ましくは0.5〜2.5質量%含有する。含酸素化合物は、排ガスの環境問題対応の観点からバイオマス由来のものを用いることが好ましい。ガソリン組成物中に酸素は、含酸素ガソリン基材のかたちで導入されるか、あるいは酸素原子を有する化合物を含む添加剤のかたちで導入される。しかし、添加剤の配合量は、通常極めて少量であるので、酸素含有量は実質的に全て含酸素ガソリン基材で持ち込まれるとみなすことができる。   Furthermore, the gasoline composition of the present invention contains 0.1 to 2.7% by mass, preferably 0.5 to 2.5% by mass of oxygen. As the oxygen-containing compound, a biomass-derived compound is preferably used from the viewpoint of dealing with environmental problems of exhaust gas. Oxygen is introduced into the gasoline composition in the form of an oxygenated gasoline base or in the form of an additive containing a compound having an oxygen atom. However, since the additive content is usually very small, it can be considered that substantially all oxygen content is brought into the oxygenated gasoline base.

本発明のガソリン組成物は、RONが98〜104であることが好ましく、少なくとも90以上であることが望ましい。より好ましくは99以上である。   The gasoline composition of the present invention preferably has a RON of 98 to 104, and desirably 90 or more. More preferably, it is 99 or more.

このガソリン組成物は、蒸留性状において、50%留出温度は88〜100℃が好ましく、燃費の面からは89℃以上がより好ましく、さらには90℃以上であり、低温運転性からは99℃以下がより好ましく、さらには97℃以下である。また、90%留出温度は110〜150℃が好ましく、燃費及び直噴エンジンの清浄性維持、及び軽質分増加による蒸発ガス増加抑制の観点から115℃以上がより好ましく、さらには120℃以上、特には122℃以上が好ましい。一方、低温運転性からは145℃以下がより好ましく、さらには140℃以下、特に135℃以下が好ましい。   This gasoline composition has a distillation property in which the 50% distillation temperature is preferably 88 to 100 ° C., more preferably 89 ° C. or more from the aspect of fuel consumption, and further 90 ° C. or more, and 99 ° C. from the low temperature drivability. The following is more preferable, and it is 97 ° C. or lower. The 90% distillation temperature is preferably 110 to 150 ° C., more preferably 115 ° C. or more from the viewpoint of fuel consumption and maintaining the cleanliness of the direct injection engine, and suppression of evaporative gas increase due to an increase in light components, and further 120 ° C. or more. In particular, 122 ° C. or higher is preferable. On the other hand, from a low temperature drivability, 145 ° C. or lower is more preferable, 140 ° C. or lower, particularly 135 ° C. or lower is preferable.

また、式(1)で示される炭素数6以下の炭化水素の含有量が合計で42容量%以上であることが、低温運転性や加速性から好ましく、45容量%以上がより好ましい。さらに、式(2)で示される加速性指数Aは、低温運転性及び加速性の観点から1500以下が好ましく、1400以下がより好ましく、さらに好ましくは1350以下である。
(C4L)+(C5)+(C6)≧42 ・・・ (1)
加速性指数A=7×(T50)+3×(T90)+13×(AR)+8×(OX)≦1500 ・・・ (2)
上記式(1)及び(2)において、C4Lは炭素数4以下の炭化水素の含有量(容量%)、C5は炭素数5の炭化水素の含有量(容量%)、C6は炭素数6の炭化水素の含有量(容量%)を示し、T50は50%留出温度(℃)、T90は90%留出温度(℃)、ARは芳香族炭化水素分(容量%)、OXは酸素分(質量%)を示す。
Further, the total content of hydrocarbons having 6 or less carbon atoms represented by the formula (1) is preferably 42% by volume or more from the viewpoint of low-temperature drivability and acceleration, and more preferably 45% by volume or more. Furthermore, the acceleration index A represented by the formula (2) is preferably 1500 or less, more preferably 1400 or less, and further preferably 1350 or less, from the viewpoints of low-temperature drivability and acceleration.
(C4L) + (C5) + (C6) ≧ 42 (1)
Acceleration index A = 7 × (T50) + 3 × (T90) + 13 × (AR) + 8 × (OX) ≦ 1500 (2)
In the above formulas (1) and (2), C4L is the content (capacity%) of hydrocarbons having 4 or less carbon atoms, C5 is the content (capacity%) of hydrocarbons having 5 carbon atoms, and C6 is 6 carbon atoms. Indicates hydrocarbon content (volume%), T50 is 50% distillation temperature (° C), T90 is 90% distillation temperature (° C), AR is aromatic hydrocarbon content (volume%), OX is oxygen content (Mass%) is shown.

また、本発明によるガソリン組成物は、37.8℃の蒸気圧(リード法)が65kPa以下であることが好ましく、少なくとも44〜93kPaの範囲内であることが望ましい。蒸気圧が高いと蒸発損失の増加、ベーパーロックの懸念、危険性の増加などの問題が起こりやすく、一方、低いと低温運転性が損なわれる傾向を示す。
また、本発明のガソリン組成物は、炭素数5以下の炭化水素の含有量が次の式(3)を満たすものが好ましい。軽質炭化水素分が多いほど加速性は向上する傾向を示すが、軽質分の増加による蒸発ガスの増加(蒸発損失)、光化学スモッグ発生や粒子状物質の排出等を抑制する観点から、次式(3)は41.5以下がより好ましくは、さらに好ましくは41.0以下、特に好ましくは40.5以下である。
4×(C4L)+(C5)≦42 ・・・ (3)
式中、C4L及びC5は、上記の式(1)における定義と同様に、それぞれ炭素数4以下の炭化水素の含有量(容量%)及び炭素数5の炭化水素の含有量(容量%)を示す。
The gasoline composition according to the present invention preferably has a vapor pressure (Lead method) of 37.8 ° C. of 65 kPa or less, and preferably at least in the range of 44 to 93 kPa. When the vapor pressure is high, problems such as an increase in evaporation loss, concerns about vapor lock, and an increase in danger are likely to occur. On the other hand, when the vapor pressure is low, low temperature drivability tends to be impaired.
In addition, the gasoline composition of the present invention preferably has a hydrocarbon content of 5 or less carbon atoms that satisfies the following formula (3). Acceleration tends to improve as the amount of light hydrocarbons increases. From the viewpoint of suppressing the increase in evaporation gas (evaporation loss), photochemical smog generation and particulate matter emission due to the increase in light components, the following formula ( 3) is more preferably 41.5 or less, further preferably 41.0 or less, and particularly preferably 40.5 or less.
4 × (C4L) + (C5) ≦ 42 (3)
In the formula, C4L and C5 respectively represent the content (volume%) of hydrocarbons having 4 or less carbon atoms and the content (volume%) of hydrocarbons having 5 carbon atoms, as defined in the above formula (1). Show.

〔ガソリン基材〕
本発明のガソリン組成物は、上記性状、組成を満足するように従来のいわゆるガソリン基材を適宜選択し、組み合わせて配合することによって調製することができる。本発明に好適に持ち言うことができるガソリン基材としては次のようなガソリン基材を挙げることができる。
[Gasoline base material]
The gasoline composition of the present invention can be prepared by appropriately selecting a conventional so-called gasoline base material so as to satisfy the above properties and composition, and blending them in combination. Examples of the gasoline base material that can be suitably used in the present invention include the following gasoline base materials.

接触改質ガソリン:
パラフィン系の重質脱硫ナフサを貴金属系の改質触媒と接触して芳香族や分枝炭化水素を多く含む高オクタンの炭化水素油に改質したガソリンである。接触改質反応で生成したガソリンを単に蒸気圧を調整したのみで、ガソリン基材として用いてもよいが、ベンゼンや炭素数7〜8の芳香族を分離して、あるいは蒸留して軽質留分と重質留分に分けて、あるいは、これらを組み合わせて得られる留分を用いてもよい。例えば、接触改質ガソリンに含まれる炭素数4〜7の炭化水素からベンゼンを蒸留分離除去して得たガソリン(ここで、PFM−Nと略すこともある)を好適に用いることができる。また、接触改質ガソリンに含まれる炭素数8以上の炭化水素を蒸留分離して得たガソリン(PX−C8H)なども用いることができる。
Catalytic reforming gasoline:
This is a gasoline in which paraffin-based heavy desulfurized naphtha is brought into contact with a precious metal-based reforming catalyst and reformed into a high-octane hydrocarbon oil rich in aromatics and branched hydrocarbons. The gasoline produced by the catalytic reforming reaction may be used as a gasoline base material simply by adjusting the vapor pressure, but light fractions may be obtained by separating or distilling benzene and C7-8 aromatics. And a heavy fraction may be used, or a fraction obtained by combining these may be used. For example, gasoline obtained by distilling and removing benzene from hydrocarbons having 4 to 7 carbon atoms contained in catalytic reformed gasoline (herein sometimes abbreviated as PFM-N) can be preferably used. Moreover, gasoline (PX-C8H) obtained by distilling and separating hydrocarbons having 8 or more carbon atoms contained in catalytic reformed gasoline can also be used.

接触分解ガソリン:
接触分解ガソリン(FCCG)は、無定形シリカアルミナ、ゼオライトなどの触媒を使用して、軽油から減圧軽油までの石油留分のほか、重油間接脱硫装置から得られる間脱軽油、重油直接脱硫装置から得られる直脱重油、常圧残さ油などを接触分解して得られる高オクタン価のガソリン基材である。特に、蒸留して分離した軽質留分(FCCGL)は、相当する低沸点留分のガソリン基材の中で最もRONが高いものの一つである。硫黄分が多い場合は、水素化精製して脱硫することができるが、高オクタン価のオレフィンが飽和されてオクタン価が低下するので、洗浄や吸着などの方法で脱硫することが好ましい。
Catalytic cracking gasoline:
Catalytic cracking gasoline (FCCG) uses a catalyst such as amorphous silica alumina, zeolite, etc. In addition to petroleum fractions from light oil to vacuum gas oil, while it is obtained from heavy oil indirect desulfurization equipment, from degasification oil, heavy oil direct desulfurization equipment It is a gasoline base having a high octane number obtained by catalytic cracking of the directly degassed heavy oil, atmospheric residue oil and the like obtained. In particular, the light fraction (FCCGL) separated by distillation is one of the gasoline bases with the highest RON among the corresponding low-boiling fraction gasoline. When the sulfur content is high, it can be hydrorefined and desulfurized. However, since the high octane number olefin is saturated and the octane number decreases, it is preferable to desulfurize by a method such as washing or adsorption.

異性化ガソリン:
主に脱硫軽質ナフサなどのノルマルパラフィンをより高オクタン価のイソパラフィンに変換させる骨格異性化処理により得られるガソリン基材である。異性化方法は特に限定されないが、水素雰囲気下で、固体酸触媒などを用いて異性化する方法が一般的に使用することができ、触媒として、従来から使用されている、塩素化アルミナに白金を担持した「白金塩素化アルミナ」、ゼオライトに白金を担持した「白金ゼオライト」、ジルコニアと硫酸分を含む担体に白金を担持した「白金硫酸ジルコニア類」、ジルコニアとタングステンの酸化物成分を含む担体に白金を担持した「白金タングステン酸ジルコニア類」などに代表される固体酸が好ましく用いられる。
Isomerized gasoline:
It is a gasoline base material obtained by skeletal isomerization treatment that converts normal paraffin such as desulfurized light naphtha into higher-octane isoparaffin. The isomerization method is not particularly limited, but a method of isomerization using a solid acid catalyst or the like under a hydrogen atmosphere can be generally used. As a catalyst, platinum is added to chlorinated alumina which has been conventionally used. "Platinum chlorinated alumina" supporting platinum, "Platinum zeolite" supporting platinum on zeolite, "Platinum sulfate zirconia" supporting platinum on a support containing zirconia and sulfuric acid, Support containing oxide components of zirconia and tungsten A solid acid typified by “platinum tungstate zirconia” carrying platinum on it is preferably used.

アルキレートガソリン:
アルキレートガソリン(ALKG)は、ブチレンとイソブタンを触媒として硫酸やフッ化水素酸を用いてアルキル化して得られるオクタン価の高いイソオクタン(代表的には、224TMP)を多く含むガソリン基材である。原料はブチレンとイソブタンのみに限定されるものでなく炭素数4近辺のオレフィンとイソパラフィンを用いることもできる。他のガソリン基材に比べて234TMPを比較的多く含むことから、本発明のガソリン組成物を調製するのに好適に用いることのできるガソリン基材である。
Alkylate gasoline:
The alkylate gasoline (ALKG) is a gasoline base material containing a large amount of isooctane (typically 224TMP) having a high octane number obtained by alkylating with butylene and isobutane as a catalyst using sulfuric acid or hydrofluoric acid. The raw materials are not limited to butylene and isobutane, and olefins and isoparaffins having about 4 carbon atoms can also be used. Since it contains a relatively large amount of 234TMP compared to other gasoline base materials, it is a gasoline base material that can be suitably used to prepare the gasoline composition of the present invention.

含酸素ガソリン基材:
含酸素ガソリン基材としては、例えば、炭素数2〜5のアルコール類、炭素数4〜8のエーテル類が好適であり、具体的には、エタノール、プロピルアルコール類、ブチルアルコール類などのアルコールや、アルコール類からの誘導体であるエーテル類やエステル類である、エチルイソプロピルエーテル、メチルターシャリーブチルエーテル(MTBE)、エチルターシャリーブチルエーテル(ETBE)、エチルセカンダリーブチルエーテル(ESBE)、ジイソプロピルエーテル、ターシャリーアミルエチルエーテル(TAEE)や、酢酸エチル、プロピオン酸エチル等を挙げることができる。特に、ETBEは酸素含有量あたりのオクタン価向上効果がエタノールやMTBEに比べて高く、ETBEの混合により揮発性を悪化させることなくオクタン価を高めることができ好ましい基材である。
Oxygenated gasoline base:
As the oxygen-containing gasoline base material, for example, alcohols having 2 to 5 carbon atoms and ethers having 4 to 8 carbon atoms are suitable. Specifically, alcohols such as ethanol, propyl alcohols, butyl alcohols, and the like Derivatives from alcohols such as ethers and esters, ethyl isopropyl ether, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), ethyl secondary butyl ether (ESBE), diisopropyl ether, tertiary amyl ethyl Examples include ether (TAEE), ethyl acetate, ethyl propionate, and the like. In particular, ETBE is a preferred base material that has a higher octane number improving effect per oxygen content than ethanol and MTBE, and can increase the octane number without deteriorating volatility by mixing ETBE.

これらの含酸素化合物は、少なすぎるとオクタン価向上効果が少なく、また、多すぎると水分等の不純物を同伴してしまい、配管やシール材の腐食等のトラブルを引き起こす。例えば、燃料中に多く含まれる場合、自動車燃料タンク内で水分が濃縮され、蓄積して悪影響を与える可能性があり、さらに、既存エンジンの空気/燃料比が最適値から外れてしまい、酸素過剰気味となることから、排ガス中の窒素酸化物(NOx)量が増加してしまう欠点がある。また、含酸素化合物は他のガソリン基材と比較すると発熱量が総じて低く、燃費を下げてしまうことがあるため、あまり多く使用することは好ましくない。   If the amount of these oxygen-containing compounds is too small, the effect of improving the octane number is small. If the amount of these oxygen-containing compounds is too large, impurities such as moisture are accompanied, causing troubles such as corrosion of piping and sealing materials. For example, if it is contained in a large amount in the fuel, water may be concentrated in the automobile fuel tank and accumulate, which may have an adverse effect. Furthermore, the air / fuel ratio of the existing engine will deviate from the optimum value, resulting in excess oxygen. There is a drawback in that the amount of nitrogen oxides (NOx) in the exhaust gas increases because it makes a difference. Further, since oxygen-containing compounds generally have a lower calorific value than other gasoline base materials and may reduce fuel consumption, it is not preferable to use too much.

芳香族炭化水素化合物:
一般的に芳香族炭化水素化合物は、環境の面からは好ましいガソリン成分ではない、特にベンゼンは健康上問題がある。炭素数7〜8の芳香族は、石油化学原料としての用途も重要であるが、極めてオクタン価が高い炭化水素化合物であり、ガソリンのオクタン価を向上させる効果がある。なかでもトルエンは、ガソリンのオクタン価を向上させるために便利なガソリン基材の一つである。
Aromatic hydrocarbon compounds:
In general, aromatic hydrocarbon compounds are not preferred gasoline components from the viewpoint of the environment, and in particular, benzene has health problems. Aromatics having 7 to 8 carbon atoms are important as petrochemical raw materials, but are hydrocarbon compounds having an extremely high octane number, and have the effect of improving the octane number of gasoline. In particular, toluene is one of the convenient gasoline base materials for improving the octane number of gasoline.

その他のガソリン基材:
本発明のガソリン組成物を調製するにあたって、用いることのできるガソリン基材は上記の基材に限定されるものでなく、脱硫軽質ナフサや、例えば石油化学の分野で製造ないし副生されるガソリン留分の炭化水素油などを用いることができる。例えば、ブタン留分の多い液化石油ガスやイソペンタン等は比較的オクタン価が高いため適宜使用できる。また、本発明のガソリン組成物の構成成分として特徴的な化合物である234TMPそのものをガソリン基材として配合してもよい。炭素数4近辺のオレフィンの低重合や、イソパラフィンとのアルキル化などをとおして、さらに必要なら水素化、異性化を経て234TMPを高含有量で含まれる炭化水素油が得られれば、本発明のガソリン組成物を調製するガソリン基材として好ましく用いることができる。
その他のガソリン基材を含めて、本発明のガソリン組成物の調製に用いるガソリン基材は、硫黄分が10質量ppm以下であることが好ましく、より好ましくは5質量ppm以下、特に好ましくは1質量ppm以下である。
Other gasoline bases:
In preparing the gasoline composition of the present invention, the gasoline base material that can be used is not limited to the above-mentioned base material, and desulfurized light naphtha, for example, a gasoline fraction produced or by-produced in the petrochemical field. Minute hydrocarbon oils can be used. For example, liquefied petroleum gas or isopentane having a high butane fraction can be used as appropriate because of its relatively high octane number. Moreover, you may mix | blend 234TMP itself which is a characteristic compound as a structural component of the gasoline composition of this invention as a gasoline base material. If a hydrocarbon oil containing a high content of 234TMP is obtained through low polymerization of olefins near 4 carbon atoms, alkylation with isoparaffin, etc., and further hydrogenation and isomerization if necessary, It can be preferably used as a gasoline base material for preparing a gasoline composition.
The gasoline base used for the preparation of the gasoline composition of the present invention including other gasoline bases preferably has a sulfur content of 10 mass ppm or less, more preferably 5 mass ppm or less, and particularly preferably 1 mass. ppm or less.

〔配合〕
本発明は、上記の物性及び成分組成を満足するガソリン組成物が得られるように配合し、調製されるのであれば、ガソリン基材及びその配合量を特に規定するものではないが、例えば、接触改質ガソリンに含まれる炭素数4〜7の炭化水素からベンゼンを蒸留分離除去して得たガソリン(PFM−N)を1〜50容量%、好ましくは5〜47容量%、接触分解ガソリン(FCCG)を蒸留分離した軽質接触分解ガソリン(FCCGL)を0〜50容量%、好ましくは5〜47容量%、トルエン0〜40容量%、好ましくは1〜35容量%、アルキレートガソリン(ALKG)5〜30容量%、好ましくは10〜27容量%、及び含酸素ガソリン基材を0.3〜20容量%、好ましくは0.5〜15容量%をそれぞれ配合して調製することができる。
[Combination]
The present invention does not particularly define the gasoline base material and its blending amount as long as it is formulated and prepared so as to obtain a gasoline composition satisfying the above physical properties and component composition. 1-50% by volume of gasoline (PFM-N) obtained by distilling and removing benzene from hydrocarbons having 4-7 carbon atoms contained in reformed gasoline, preferably 5-47% by volume, catalytic cracking gasoline (FCCG) 0-50 vol%, preferably 5-47 vol%, toluene 0-40 vol%, preferably 1-35 vol%, alkylate gasoline (ALKG) 5 30% by volume, preferably 10 to 27% by volume, and 0.3 to 20% by volume, preferably 0.5 to 15% by volume, of an oxygen-containing gasoline base material can be prepared. That.

〔添加物〕
さらに、本発明のガソリン組成物には、当業界で公知の燃料油添加剤の1種又は2種以上を必要に応じて配合することができる。これらの配合量は適宜選べるが、通常は添加剤の合計配合量を0.1重量%以下に維持することが好ましい。本発明のガソリン組成物で使用可能な燃料油添加剤を例示すれば、フェノール系、アミン系などの酸化防止剤、シッフ型化合物、チオアミド型化合物などの金属不活性化剤、有機リン系化合物などの表面着火防止剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミンなどの清浄分散剤、多価アルコール又はそのエーテルなどの氷結防止剤、有機酸のアルカリ金属塩又はアルカリ土類金属塩、高級アルコールの硫酸エステルなどの助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などの帯電防止剤、アゾ染料などの着色剤を挙げることができる。
〔Additive〕
Furthermore, the gasoline composition of the present invention may contain one or more fuel oil additives known in the art as needed. Although these compounding quantities can be selected suitably, it is preferable to maintain the total compounding quantity of an additive to 0.1 weight% or less normally. Examples of fuel oil additives that can be used in the gasoline composition of the present invention include phenol-based and amine-based antioxidants, Schiff-type compounds, metal deactivators such as thioamide-type compounds, and organic phosphorus-based compounds. Surface ignition inhibitor, detergent dispersants such as succinimide, polyalkylamine, polyetheramine, anti-icing agent such as polyhydric alcohol or its ether, alkali metal salt or alkaline earth metal salt of organic acid, higher alcohol And a colorant such as an azo dye, an antistatic agent such as an anionic surfactant, a cationic surfactant and an amphoteric surfactant.

以下に、実施例により具体的に説明するが、本発明はこれらの例により何ら制限されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

表1に示す性状のガソリン基材を用意し、表2の上部に示す混合割合(容量%)でブレンドして実施例、比較例となるガソリン組成物を調製した。なお、用いたガソリン基材は、次のように調製した。   Gasoline base materials having the properties shown in Table 1 were prepared and blended at the mixing ratio (volume%) shown in the upper part of Table 2 to prepare gasoline compositions as Examples and Comparative Examples. The gasoline base used was prepared as follows.

ALKG1:
ブチレンを主成分とする留分とイソブタンを主成分とする留分を硫酸触媒により10℃でアルキル化反応させて、イソオクタンを主成分とするアルキレート(ALKG1)を得た。
ALKG2:
前記ALKG1(100容量部)に234TMP(38容量部)を混合して、234TMPを高濃度で含有する調整アルキレート(ALKG2)を得た。なお、234TMPは試薬を用いた。
ALKG1:
An alkylate (ALKG1) containing isooctane as a main component was obtained by subjecting a fraction containing butylene as a main component and a fraction containing isobutane as a main component to an alkylation reaction at 10 ° C. using a sulfuric acid catalyst.
ALKG2:
234TMP (38 parts by volume) was mixed with the ALKG1 (100 parts by volume) to obtain an adjusted alkylate (ALKG2) containing 234TMP at a high concentration. A reagent was used for 234TMP.

FCCGL:
脱硫軽油及び脱硫重油などを固体触媒により流動床式反応装置を用いて分解してオレフィン分の高い炭化水素油(流動接触分解ガソリン:FCCG)を得、これを軽質留分と重質留分に蒸留分離して得た軽質留分(FCCGL)である。
FCCGL:
Desulfurized light oil and desulfurized heavy oil are decomposed with a solid catalyst using a fluidized bed reactor to obtain hydrocarbon oils with high olefin content (fluid catalytic cracking gasoline: FCCG), which are converted into light and heavy fractions. It is a light fraction (FCCGL) obtained by distillation separation.

PFM−N:
脱硫重質ナフサをバイメタル触媒の移動床式接触改質装置で処理して得た接触改質ガソリンを分留し、炭素数4〜7の炭化水素を主成分とする軽質留分の接触改質ガソリンから、ベンゼンを蒸留分離除去して得た。
PX−C8H:
前記の接触改質ガソリンを分留して、炭素数8以上の炭化水素を蒸留分離して得た。
PFM-N:
Catalytic reforming gasoline obtained by treating desulfurized heavy naphtha with a bimetallic catalyst moving bed catalytic reformer, and catalytically reforming a light fraction mainly composed of hydrocarbons having 4 to 7 carbon atoms It was obtained by distilling and removing benzene from gasoline.
PX-C8H:
The catalytic reformed gasoline was fractionally distilled to obtain hydrocarbons having 8 or more carbon atoms by distillation.

トルエン:
接触改質ガソリンに含まれる芳香族分を抽出した後、精密蒸留して純度約99質量%のトルエンを得た。
ETBE:
イオン交換樹脂触媒(Amberlyst-15)を用い、エタノールとイソブチレンとを反応し、次いで蒸留法により精製し、純度95%以上のETBEを得た。
toluene:
After extracting the aromatics contained in the catalytic reformed gasoline, precision distillation was performed to obtain toluene having a purity of about 99% by mass.
ETBE:
Ethanol and isobutylene were reacted using an ion exchange resin catalyst (Amberlyst-15), and then purified by a distillation method to obtain ETBE having a purity of 95% or more.

表1及び表2に示すガソリン基材及び実施例、比較例のガソリン組成物の性状は、次の方法により測定した。
蒸留性状:JIS K 2254「石油製品−蒸留試験法」
蒸気圧(RVP):JIS K 2258「原油及び燃料油−蒸気圧試験方法−リード法」
オクタン価(RON):JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」のリサーチ法オクタン価試験方法
硫黄分:JIS K 2541「原油及び石油製品−硫黄分試験方法」の微量電量滴定式酸化法に準拠して、小数点以下1桁まで求めた。
密度:JIS K 2249「原油及び石油製品−密度試験方法」
The properties of the gasoline base materials and the gasoline compositions of Examples and Comparative Examples shown in Tables 1 and 2 were measured by the following method.
Distillation properties: JIS K 2254 "Petroleum products-Distillation test method"
Vapor pressure (RVP): JIS K 2258 "Crude oil and fuel oil-Vapor pressure test method-Reed method"
Octane number (RON): JIS K 2280 “Petroleum products—Fuel oil—Octane number and cetane number test method and cetane index calculation method” research method Octane number test method Sulfur content: JIS K 2541 “Crude oil and petroleum products—Sulfur content test method” In accordance with the microcoulometric titration oxidation method, it was determined to one digit after the decimal point.
Density: JIS K 2249 "Crude oil and petroleum products-Density test method"

ベンゼン、炭素数6以下の組成成分、トリメチルペンタン類及び芳香族炭化水素分:JIS K 2536「石油製品−成分試験方法」のガスクロマトグラフィー法により全成分を測定した。
カラム槽条件:
材質:メチルシリコーン
初期温度5℃、保持時間10分、昇温速度2℃/分、最終温度140℃、
ガス条件:流速2ml/分、スプリット比50:1、メークアップ量50ml/分、
試料注入量:0.5μL
酸素分:ETBEに含まれる酸素原子の割合と、ETBEの配合量に基づいて算出した。
Benzene, composition component having 6 or less carbon atoms, trimethylpentanes and aromatic hydrocarbon content: All components were measured by a gas chromatography method of JIS K 2536 “Petroleum products—component test method”.
Column tank conditions:
Material: Methyl silicone Initial temperature 5 ° C., holding time 10 minutes, heating rate 2 ° C./min, final temperature 140 ° C.
Gas conditions: flow rate 2 ml / min, split ratio 50: 1, makeup amount 50 ml / min,
Sample injection volume: 0.5 μL
Oxygen content: Calculated based on the proportion of oxygen atoms contained in ETBE and the blending amount of ETBE.

さらに、実施例1〜4及び比較例1、2のガソリン組成物を用いてシャシダイナモ装置を用い、1台の試験車Aによる加速性能試験を実施した。試験は、車両を冷機(25℃)状態に保持した後、自動運転装置(堀場製作所製、ADS7000)によりアクセル開度を50%上限としてアクセル開度上限まで一気に加速した時に、初速0から50(km/時間)の車速に到達するまでの時間により測定した。その結果(加速時間増加率)を、比較例1の燃料を使用したときの到達時間を基準として、それとの相対的な加速時間の差異で比較した。その結果を表2に併せて示す。
なお、供試ガソリンの加速時間増加率は、次式により求めた。
加速時間増加率=(供試ガソリンの到達時間−比較例1の到達時間)÷(比較例1の到達時間)×100
Furthermore, the acceleration performance test by one test vehicle A was implemented using the chassis dynamo apparatus using the gasoline composition of Examples 1-4 and Comparative Examples 1 and 2. In the test, after the vehicle was kept in a cold machine (25 ° C.) state, when the accelerator opening was accelerated up to 50% by the automatic driving device (Horiba Seisakusho, ADS7000), the initial speed was 0 to 50 ( km / hour) until the vehicle speed was reached. The results (acceleration time increase rate) were compared based on the difference in acceleration time relative to the arrival time when the fuel of Comparative Example 1 was used. The results are also shown in Table 2.
The acceleration time increase rate of the test gasoline was obtained by the following formula.
Acceleration time increase rate = (arrival time of test gasoline-arrival time of comparative example 1) / (arrival time of comparative example 1) x 100

Figure 0004932195
Figure 0004932195

Figure 0004932195
Figure 0004932195


Claims (3)

アルキレートガソリンを5〜30容量%配合し、硫黄分が10質量ppm以下、ベンゼンが1容量%以下、2,3,4−トリメチルペンタンが4.5〜9.2容量%、(2,3,4−トリメチルペンタン)/(2,3,4−トリメチルペンタン+2,2,4−トリメチルペンタン)比(容量)が0.34以上、芳香族炭化水素分が20〜30容量%、酸素分が0.1〜2.7質量%、リサーチ法オクタン価が98〜104、50%留出温度が88〜100℃、及び、90%留出温度が110〜150℃、かつ、炭素数6以下の炭化水素の含有量が下記の式(1)を満たし、さらに、加速性指数Aが下記の式(2)を満たすことを特徴とするガソリン組成物。
(C4L)+(C5)+(C6)≧42 ・・・ (1)
加速性指数A=7×(T50)+3×(T90)+13×(AR)+8×(OX)≦1500 ・・・ (2)
(ここで、C4Lは炭素数4以下の炭化水素の含有量(容量%)、C5は炭素数5の炭化水素の含有量(容量%)、C6は炭素数6の炭化水素の含有量(容量%)を示し、T50は50%留出温度(℃)、T90は90%留出温度(℃)、ARは芳香族炭化水素分(容量%)、OXは酸素分(質量%)を示す。)
5-30% by volume of alkylate gasoline, sulfur content is 10 mass ppm or less, benzene is 1% by volume or less, 2,3,4-trimethylpentane is 4.5-9.2 % by volume, (2,3 , 4-trimethylpentane) / (2,3,4-trimethylpentane + 2,2,4-trimethylpentane) ratio (volume) is 0.34 or more, aromatic hydrocarbon content is 20-30% by volume, oxygen content is Carbonization of 0.1 to 2.7% by mass, research octane number of 98 to 104, 50% distillation temperature of 88 to 100 ° C., 90% distillation temperature of 110 to 150 ° C. and carbon number of 6 or less A gasoline composition characterized in that the hydrogen content satisfies the following formula (1), and the acceleration index A satisfies the following formula (2) .
(C4L) + (C5) + (C6) ≧ 42 (1)
Acceleration index A = 7 × (T50) + 3 × (T90) + 13 × (AR) + 8 × (OX) ≦ 1500 (2)
(Here, C4L is the content (capacity%) of hydrocarbons having 4 or less carbon atoms, C5 is the content (capacity%) of hydrocarbons having 5 carbon atoms, and C6 is the content (capacity of hydrocarbons having 6 carbon atoms). T50 represents a 50% distillation temperature (° C.), T90 represents a 90% distillation temperature (° C.), AR represents an aromatic hydrocarbon content (volume%), and OX represents an oxygen content (mass%). )
蒸気圧(37.8℃)が65kPa以下であり、かつ、炭素数5以下の炭化水素の含有量が次の式(3)を満たす請求項に記載のガソリン組成物。
4×(C4L)+(C5)≦42 ・・・ (3)
(ここで、C4Lは炭素数4以下の炭化水素の含有量(容量%)、C5は炭素数5の炭化水素の含有量(容量%)を示す。)
The gasoline composition according to claim 1 , wherein the vapor pressure (37.8 ° C) is 65 kPa or less and the content of hydrocarbons having 5 or less carbon atoms satisfies the following formula (3).
4 × (C4L) + (C5) ≦ 42 (3)
(Here, C4L represents the content (volume%) of hydrocarbons having 4 or less carbon atoms, and C5 represents the content (volume%) of hydrocarbons having 5 carbon atoms.)
接触改質ガソリンに含まれる炭素数4〜7の炭化水素からベンゼンを蒸留分離除去して得たガソリン1〜50容量%、トルエン0〜40容量%、流動接触分解ガソリンを蒸留分離して得た100℃以下の沸点の軽質ガソリン0〜50容量%、アルキレートガソリン5〜30容量%、及び含酸素ガソリン基材0.3〜20容量%を混合して請求項1又は2に記載のガソリン組成物を得ることを特徴とするガソリン組成物の製造方法。 1 to 50 vol% gasoline obtained by distilling and removing benzene from 4 to 7 carbon atoms contained in catalytic reformed gasoline, 0 to 40 vol% toluene, obtained by distilling fluid catalytic cracking gasoline The gasoline composition according to claim 1 or 2 , wherein 0 to 50% by volume of light gasoline having a boiling point of 100 ° C or less, 5 to 30% by volume of alkylate gasoline, and 0.3 to 20% by volume of oxygen-containing gasoline base material are mixed. A method for producing a gasoline composition, comprising obtaining a product.
JP2005249045A 2005-08-30 2005-08-30 Gasoline composition and method for producing the same Active JP4932195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249045A JP4932195B2 (en) 2005-08-30 2005-08-30 Gasoline composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249045A JP4932195B2 (en) 2005-08-30 2005-08-30 Gasoline composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007063353A JP2007063353A (en) 2007-03-15
JP4932195B2 true JP4932195B2 (en) 2012-05-16

Family

ID=37925918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249045A Active JP4932195B2 (en) 2005-08-30 2005-08-30 Gasoline composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP4932195B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270038A (en) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd Gasoline composition
US8968429B2 (en) * 2011-09-23 2015-03-03 Butamax Advanced Biofuels Llc Butanol compositions for fuel blending and methods for the production thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3067934B2 (en) * 1993-09-28 2000-07-24 日石三菱株式会社 Unleaded high octane gasoline
JP3990052B2 (en) * 1998-08-30 2007-10-10 新日本石油株式会社 Unleaded gasoline
JP4115861B2 (en) * 2003-03-12 2008-07-09 コスモ石油株式会社 Fuel oil composition
JP4585176B2 (en) * 2003-03-20 2010-11-24 Jx日鉱日石エネルギー株式会社 gasoline

Also Published As

Publication number Publication date
JP2007063353A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4926425B2 (en) ETBE-containing gasoline composition and method for producing the same
JP2005213332A (en) Gasoline composition
JP2007091922A (en) Gasoline composition
JP4803790B2 (en) Clean gasoline composition
JP4932195B2 (en) Gasoline composition and method for producing the same
JP5543122B2 (en) Gasoline composition
JP4855003B2 (en) Gasoline composition and method for producing the same
JP4889095B2 (en) Eco-friendly gasoline composition and method for producing the same
JP4856991B2 (en) Unleaded high octane gasoline
JP5144325B2 (en) Gasoline composition
JP5357098B2 (en) Gasoline composition
JP2006249310A (en) Ethanol-formulated gasoline
JP4429880B2 (en) Unleaded gasoline
JP5280624B2 (en) Unleaded gasoline composition
JP4856992B2 (en) Unleaded gasoline
JP5052851B2 (en) Unleaded gasoline composition
JP5153146B2 (en) Gasoline composition
JP2009227694A (en) Gasoline composition
JP2010138293A (en) Manufacturing method for fuel composition for gasoline engine, and fuel base material for automobile engine used for the manufacturing method
JP5280625B2 (en) Unleaded gasoline composition
JP5280623B2 (en) Unleaded gasoline composition
JP4798649B2 (en) Eco-friendly gasoline composition and method for producing the same
JP4737613B2 (en) ETBE-containing gasoline composition and method for producing the same
JP5114144B2 (en) Gasoline composition
JP2007284646A (en) Gasoline composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080529

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Ref document number: 4932195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250