US20030034329A1 - Lithographic method for molding pattern with nanoscale depth - Google Patents

Lithographic method for molding pattern with nanoscale depth Download PDF

Info

Publication number
US20030034329A1
US20030034329A1 US10244303 US24430302A US2003034329A1 US 20030034329 A1 US20030034329 A1 US 20030034329A1 US 10244303 US10244303 US 10244303 US 24430302 A US24430302 A US 24430302A US 2003034329 A1 US2003034329 A1 US 2003034329A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
surface
release
mold
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10244303
Inventor
Stephen Chou
Original Assignee
Chou Stephen Y.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • B29C33/62Releasing, lubricating or separating agents based on polymers or oligomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/222Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • G03F9/7053Non-optical, e.g. mechanical, capacitive, using an electron beam, acoustic or thermal waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C2043/3205Component parts, details or accessories; Auxiliary operations particular pressure exerting means for making definite articles
    • B29C2043/3211Component parts, details or accessories; Auxiliary operations particular pressure exerting means for making definite articles magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/56Compression moulding under special conditions, e.g. vacuum
    • B29C2043/568Compression moulding under special conditions, e.g. vacuum in a magnetic or electric field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/026Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing of layered or coated substantially flat surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/887Nanoimprint lithography, i.e. nanostamp

Abstract

The addition of thin coatings (less than and approaching monomolecular coatings) of persistent release materials comprising preferred compounds of the formula:
RELEASE-M(X)n-1
RELEASE-M(X)n-m-1Qm,
or
RELEASE-M(OR)n-1—, wherein
RELEASE is a molecular chain of from 4 to 20 atoms in length, preferably from 6 to 16 atoms in length, which molecule has either polar or non-polar properties;
M is a metal atom, semiconductor atom, or semimetal atom;
X is halogen or cyano, especially Cl, F, or Br;
Q is hydrogen or alkyl group;
m is the number of Q groups;
R is hydrogen, alkyl or phenyl, preferably hydrogen or alkyl of 1 to 4 carbon atoms; and;
n is the valence −1 of M,
and n-m-1 is at least 1
provides good release properties. The coated substrates are particularly good for a lithographic method and apparatus for creating ultra-fine (sub-25 nm) patterns in a thin film coated on a substrate is provided, in which a mold having at least one protruding feature is pressed into a thin film carried on a substrate. The protruding feature in the mold creates a recess of the thin film. The mold is removed from the film. The thin film then is processed such that the thin film in the recess is removed exposing the underlying substrate. Thus, the patterns in the mold is replaced in the thin film, completing the lithography. The patterns in the thin film will be, in subsequent processes, reproduced in the substrate or in another material which is added onto the substrate.

Description

    BACKGROUND OF THE INVENTION
  • [0001]
    1. Field of the Invention
  • [0002]
    The present invention relates to release surfaces, particularly release surfaces with fine features to be replicated, and to lithography which may be used to produce integrated circuits and microdevices. More specifically, the present invention relates to a process of using an improved mold or microreplication surface that creates patterns with ultra fine features in a thin film carried on a surface of a substrate.
  • [0003]
    2. Background of the Art
  • [0004]
    In many different areas of technology and commercial utility, it is highly desirable that surface be provided with non-stick functionality. The wide range of utility for this type of technology ranges from antistain treatments for fabrics and surfaces (e.g., countertops, stove tops, and the like), to utensils (e.g., cooking or laboratory utensils and surfaces), release surfaces for imaging technology (e.g., image transfer surfaces, temporary carriers), and mold release surfaces. Antistick functionality has clear lubricating implications where the antistick function can be provided in a substantive or retentive manner onto a substrate.
  • [0005]
    In the fabrication of semiconductor integrated electrical circuits, integrated optical, magnetic, mechanical circuits and microdevices, and the like, one of the key processing methods is lithography and especially photolithography. Lithography can be used, along with its traditional resist imaging in the formation of printing plates and resist images, to create a pattern in a thin film carried on a substrate so that, in subsequent process steps, the pattern can be replicated in the substrate or in another material which is added onto the substrate. The thin film which accepts a pattern or image during the lithographic process is often referred to as resist. The resist may be either a positive resist or a negative resist, depending on its operation of formation. For example, a positive photoresist becomes more soluble in a solvent where irradiated and a negative resist becomes more insoluble where irradiated. A typical lithographic process for integrated circuit fabrication involves exposing or irradiating a photoresist composition or film with a beam of radiation or particles, including light, energetic particles (which may be electrons), photons, or ions, by either passing a flood beam through a mask or scanning a focused beam. The radiation or particle beam changes the chemical structure of the exposed area of the film, so that when washed or immersed in a developer or washed with a developer, either the exposed area or the unexposed area of the resist will be removed to recreate the patterns or its obverse of the mask or the scanning. The lithography resolution is limited by the wavelength of the particles and the resolution of the beam, the particle scattering in the resist and the substrate, and the properties of the resist.
  • [0006]
    There is an ongoing need in art of lithography to produce progressively smaller pattern sizes while maintaining cost efficiency in the process. There is a great need to develop low-cost technologies for mass producing sub-50 nm structures since such a technology could have an enormous impact in many areas of engineering and science. Not only will the future of semiconductor integrated circuits be affected, but also the commercialization of many innovative electrical, optical, magnetic, mechanical microdevices that are far superior to current devices will rely on the possibility of such technology. Additionally optical materials, including reflective coatings and reflective sheeting (as may be used for security purposes or for signage) can use microreplication techniques according to lithographic technology.
  • [0007]
    Numerous technologies have been developed to service these needs, but they all suffer serious drawbacks and none of them can mass produce sub-50 nm lithography at a low cost. Electron beam lithography has demonstrated 10 nm lithography resolution. A. N. Broers, J. M. Harper, and W. W. Molzen, Appl. Phys. Lett. 33, 392 (1978) and P. B. Fischer and S. Y. Chou, Appl. Phys. Let. 62, 2989 (1993). However, using these technologies for mass production of sub-50 nm structures seems economically impractical due to inherent low throughput in a serial processing tool. X-ray lithography, which can have a high throughput, has demonstrated 50 nm lithography resolution. K. Early, M. L. Schattenburg, and H. I. Smith, Microelectronic Engineering 11, 317 (1990). But X-ray lithography tools are rather expensive and its ability for mass producing sub-50 nm structures is yet to be commercially demonstrated. Lithography based on scanning probes has produced sub-10 nm structures in a very thin layer of materials. However, the practicality of such lithography as a manufacturing tool is hard to judge at this point.
  • [0008]
    Imprint technology using compressive molding of thermoplastic polymers is a low cost mass manufacturing technology and has been around for several decades. Features with sizes greater than 1 micrometers have been routinely imprinted in plastics. Compact disks which are based on imprinting of polycarbonate are one example of the commercial use of this technology. Other examples are imprinted polymethyl methacrylate (PMMA) structures with a feature size on the order to 10 micrometers for making micromechanical parts. M. Harmening, W. Bacher, P. Bley, A. El-Kholi, H. Kalb, B. Kowanz, W. Menz, A. Michel, and J. Mohr, Proceedings IEEE Micro Electro Mechanical Systems, 202 (1992). Molded polyester micromechanical parts with feature dimensions of several tens of microns have also been used. H. Li and S. D. Senturia, Proceedings of 1992 13th IEEE/CHMT International Electronic Manufacturing Technology Symposium, 145 (1992). However, no one has recognized the use of imprint technology to provide 25 nm structures with high aspect ratios. Furthermore, the possibility of developing a lithographic method that combines imprint technology and other technologies to replace the conventional lithography used in semiconductor integrated circuit manufacturing has never been raised.
  • SUMMARY OF THE INVENTION
  • [0009]
    The present invention relates to methods for changing the properties of surfaces by bonding coatings of molecules to surfaces to form non-continuous coatings of molecules bonded thereto. The invention is particualrly advantageous for forming mold or microreplication surfaces having coatings of molecules bonded thereto, and to processes of molding and microreplication using these coatings and surfaces. The coatings may be referred to as non-continuous coatings as the coating material does not have to bond cohesively with itself parallel to the surface which is coated, but is bonded, molecule-by-molecule, to the surface, such as grass protrudes, blade-by-blade, from the surface of the ground.
  • [0010]
    The present invention relates to a method for providing a surface with a treatment that can render the surface more effective in molding or microreplication processes. A molecular moiety having release properties towards other materials (e.g., fluorinated hydrocarbon chains or polysiloxanes) and low chemical reactivity to moldable polymers is bonded to a mold or microreplication surface. The release properties of the molecular moiety having release properties allows for the enhancement of resolution on the molded article since the molded material is released from the minute features of the mold on a molecular level. More common polymeric coated release surfaces can fill the openings or partially fill the openings of the mold. Merely smoother release surfaces expose the surface of the mold to abrasion and to reaction with the molding materials. The description of the coating as non-continuous may be described as follows. A continuous coating normally is one that forms a film on the surface with no direct route from one side of the film to the other side of the film. As there is no true film coating formed in the practice of the present invention, but rather individual molecules tend to be stacked up on the surface, there is no continuous coating, even though there may be uniform properties over the surface. On a molecular level, the surface would appear as a surface having one moiety at one end of a relatively linear molecule bonded to the surface. The relatively linear molecule extends away from the surface, with the release properties provided by the ‘tail’ of the molecule that extends away from the surface. The relative concentration of tails on the surface controls the hydrophilic/hydrophobic/polar/non-polar properties of the surface so that it will enable ready release of the material provided by the molding or microreplication process. The release portion of the adhered molecule will preferably have few reactive sites on the tail, particularly within the last one, two, three or four skeletal atoms in the relatively linear chain (e.g., with a hydrocarbon-based chain, the alpha, beta, gamma, and delta atoms in the chain). Such moieties to be avoided particularly would include free hydrogen containing groups (e.g., acid groups, carboxylic acid groups or salts, sulfonic acid groups or salts, amine groups, ethylenically unsaturated groups, and the like).
  • [0011]
    The present invention also relates to a method and apparatus for performing ultra-fine line lithography of the type used to produce integrated circuits and microdevices. A layer of thin film is deposited upon a surface of a substrate. A mold having its mold surface treated with the release materials of the present invention and at least one protruding feature and a recess is pressed into the thin film, therefore the thickness of the film under the protruding feature is thinner than the thickness of the film under the recess and a relief is formed in the thin film. The relief generally conforms to the shape of the feature on the mold. After the mold is removed from the film, the thin film is processed such that the thinner portion of the film in the relief is removed exposing the underlying substrate. Thus, the pattern in the mold is replicated in the thin film, completing the lithography. The patterns in the thin film will be, in subsequent processes, reproduced in the substrate or in another material that is added onto the substrate. The use of the release treatment on the mold surface enhances the resolution of the image and can protect the mold so that it can be used more often without showing wear on fine features in the mold.
  • [0012]
    The invention described here is based on a fundamentally different principle from conventional lithography. The process invention can eliminate many resolution limitations imposed in conventional lithography, such as wavelength limitation, backscattering of particles in the resist and substrate, and optical interference. It has been demonstrated the present invention can include a high throughput mass production lithography method for generating sub-25 nm features. Furthermore, the present invention has the ability to mass produce sub-10 nm features at a low cost. These capabilities of the present invention is unattainable with the prior art, and the use of the adherent release property coating improves the durability and the resolution of the process even further. The present process, however, has implications and utility for more, macroscopic details in molding surfaces and would include features in the super-50 nm range, the super-100 nm range, and the super 200 nm range, as well as macroscopic dimensions in the visual range of features (e.g., 0.1 mm and greater).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0013]
    [0013]FIG. 1A is a cross sectional view showing a mold and substrate in accordance with the present invention.
  • [0014]
    [0014]FIG. 1B is a cross sectional view of the mold and substrate of FIG. 1A showing the mold pressed into a thin film carried on the substrate.
  • [0015]
    [0015]FIG. 1C is a cross sectional view of the substrate of FIG. 1B following compression of the mold into the thin film.
  • [0016]
    [0016]FIG. 1D is a cross sectional view of the substrate of FIG. 1C showing removal of compressed portions of the thin film to expose the underlying substrate.
  • [0017]
    [0017]FIG. 5A is a cross sectional view of the substrate of FIG. 1D following deposition of a material.
  • [0018]
    [0018]FIG. 5B is a cross sectional view of the substrate of FIG. 5A following selective removal of the material by a lift off process.
  • [0019]
    [0019]FIG. 8 is a cross sectional view of the substrate of FIG. 1D following subsequent processing.
  • [0020]
    [0020]FIG. 9 is a simplified block diagram of an apparatus in accordance with one embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0021]
    The present invention relates to methods for changing the properties of surfaces by bonding non-continuous coatings of molecules thereto, to surfaces having non-continuous coatings of molecules bonded thereto, to mold or microreplication surfaces having non-continuous coatings of molecules bonded thereto, and to processes of molding and microreplication using these coatings and surfaces.
  • [0022]
    This invention also relates to a method and apparatus for a high-resolution, high-throughput, low-cost lithography. Unlike current microlithography, a preferred embodiment of the present invention abandons usage of energetic light or particle beams. Photolithography may also benefit from the practice of the present invention by the use of the reactive release layer bonded to the mold surface. In the embodiment of the invention which does not require the use of photolithography, the present invention is based on pressing a mold into a thin film on a substrate to create a relief and, later removing the compressed area of the film to expose the underlying substrate and to form a resist pattern on the substrate that replicates the obverse of the protruding pattern of the mold.
  • [0023]
    The present invention also has demonstrated the generation of patterns, such as holes, pillars, or trenches in a thin film on a substrate, that have a minimum size of 25 nm, a depth over 100 nm, a side wall smoothness better than 3 nm, and corners with near perfect 90 degrees angles. It was found that presently the size of imprinted features is limited by the size of the mold being used; with a suitable mold, the present invention should create sub-10 nm structures with a high aspect ratio. Furthermore, using one embodiment of the present-invention that including a material deposition and a lift-off process, 100 nm wide metal lines of a 200 nm period and 25 nm diameter metal dots of 125 nm period have been fabricated The resist pattern created using the present invention also has been used as a mask to etch nanostructures (features having dimensions less than 1000 nm, preferably less than 500 nm) into the substrate.
  • [0024]
    The present invention offers many unique advantages over the prior art. First, since it is based on a paradigm different from the prior art and it abandons the usage of an energetic particle beam such as photons, electrons, and ions, the present invention eliminates many factors that limit the resolution of conventional lithographies, such as wave diffraction limits due to a finite wavelength, the limits due to scattering of particles in the resist and the substrate, and interferences. Therefore the present invention offers a finer lithography resolution and much more uniform lithography over entire substrate than the prior art. Results show it can achieve sub-25 nm resolution. Second, the present invention can produce sub-25 nm features in parallel over a large area, leading to a high throughput. This seems unachievable with the prior art. And thirdly, since no sophisticated energetic particle beam generator is involved, the present invention can achieve a sub-25 nm lithography over a large area at a cost much lower than the prior art. These advantages make the present invention superior to the prior art and vital to future integrated circuit manufacturing and other areas of science and engineering where nanolithography is required.
  • [0025]
    The non-continuous coatings of molecules are formed from a specific type of reactive compound. These compounds may be characterized by the following structure:
  • RELEASE-M(X)n
  • or
  • RELEASE-M(OR)n, wherein
  • [0026]
    RELEASE is a molecular chain of from 4 to 20 atoms in length, preferably from 6 to 16 atoms in length, which molecule has either polar or non-polar properties, depending upon the phobicity desired towards a molding agent;
  • [0027]
    M is an inorganic atom, especially a metal atom, semiconductor atom, or semimetal atom;
  • [0028]
    X is halogen or cyano, especially Cl, F, or Br;
  • [0029]
    R is hydrogen, alkyl or phenyl, preferably hydrogen or alkyl of 1 to 4 carbon atoms, most preferably hydrogen, methyl or ethyl; and;
  • [0030]
    (n) is the valence −1 of M, usually 1, 2 or 3 depending upon the nature of M.
  • [0031]
    The actual moiety bonded to the surface has one of the groups bonded to the metal or semimetal atom removed during a reaction with the mold surface and may have the structural formula:
  • RELEASE-M(X)n-1
  • or
  • RELEASE-M(OR)n-1—, wherein
  • [0032]
    RELEASE is a molecular chain of from 4 to 20 atoms in length, preferably from 6 to 16 atoms in length, which molecule has either polar or non-polar properties;
  • [0033]
    M is a metal or semimetal atom;
  • [0034]
    X is halogen or cyano, especially Cl, F, or Br;
  • [0035]
    R is hydrogen, alkyl or phenyl, preferably hydrogen or alkyl of 1 to 4 carbon atoms; and;
  • [0036]
    (n) is the valence −1 of M.
  • [0037]
    As noted above, the properties of RELEASE are determined in part by the nature of the molded material to be used with the surface or the nature of the properties desired on the surface. That is where the surface is to be used in microreplication with a polar polymeric material, the RELEASE properties must be non-polar. Non-polar RELEASE groups are preferably selected, for example, from non-polar molecular units including especially siloxane units and highly fluorinated or fluorocarbon units. It is further preferred that these non-polar molecular units are linear units of from 4 to 20 skeletal atoms in the linear chain. Smaller chains might not form as continuous of release properties as desired, and longer chains might mask features on the surface to be replicated. By highly fluorinated is meant that at least ⅔ of all substituents on the carbon are fluorinated units, with the remaining units comprising Cl or H. Preferably the terminal carbon is perfluorinated, more preferably the terminal carbon atom is perfluorinated and no hydrogen atoms are present on the three terminal carbon atoms, and most preferably the chain is perfluorinated.
  • [0038]
    M is preferably a metal atom, semiconductor atom or semimetal atom such as for example, Si, Ti, Zr, Cr, Ge, and the like. Most preferably M is Si. In these cases, n would preferably be 3.
  • [0039]
    Examples of the compounds which can be used in the practice of the present invention comprise perfluorohexyl trichlorosilane, perfluorooctyl trichlorosilane, perfluorodecyl trichlorosilane, perfluorododecyl trichlorosilane, perfluorohexylpropyl trichlorosilane, perfluorodecyl trichlorotitanium, perfluorodecyl dichlorobromosilane, polydimethylsiloxane-trichlorosilane (with n preferably of about 4 to 20 for the polydimethylsiloxane unit), perfluorodecyl dichlorobromogermanium, perfluorodecyl dichlorobromochromium, and the like.
  • [0040]
    The mold surfaces to be used may be any surface to which the release providing molecules may bond. By selecting appropriate release providing molecules, substantially any release surface may be used. The release surface may be metallic, semimetallic, metal oxides, metal and semimetal carbides and nitrides, semimetallic oxide, polymeric, semiconductors, photocinductors, ceramic, glass, composite or the like, as is known in the molding and microreplication art. Particularly useful substrates include, but are not limited to, silicon, silicon nitride, silicon carbide, silicon nitride, doped semiconductor blends, photoconductors (both organic and inorganic), and the like. The molding process may include impression molding as generally described above, injection molding, powder molding, blow molding, casting or cast molding, vapor deposition molding, decomposition molding (where materials are decomposed to form new materials which deposit on the surface), and the like. Uniformly shaped patterns or random patterns may be manufactured, and the materials used in the molding composition may harden, as previously noted, by cooling thermally softened materials, polymerizable materials, chemically reacting materials, vapor depositing materials, or the like. Preferred materials comprise semiconductor, dielectric, photoresponsive, thermally responsive, or electrically responsive substrates or surfaces, such as, but not limited to, inorganic oxides (or sulfides, halides, carbides, nitrides, etc.), rare earth oxides (or sulfides, halides, carbides, nitrides, etc.), inorganic or organic silicon compounds (e.g., silica oxides, sulfides, halides, carbides, nitrides, etc.) and their titanium, germanium, cadmium, zinc and the like counterparts (e.g., titania, zinc oxide [particles or layers], germanium oxide, cadmium sulfide) as continuous or discontinuous coatings or layers, as mixture, dispersions or blends, as layered structures, and the like.
  • [0041]
    The release-coating forming materials of the present invention may be applied in coatings which form less than continuous monomolecular layers of the release material. That is, the release material forms coatings comprising tails of the release moiety secured to the surface by reaction with the nominatively inorganic end of the molecule (e.g., the silicon, titanium, germanium, end). The entire surface of the substrate is not necessarily coated, as the release molecules tend to prevent other molecules from aligning uniformly (at least uniformly in a pattern) along the surface. There may be, and most likely always is, some spacing between the individual coating molecules on the surface since, as shown in FIG. 1A, the coating does not form as a continuous layer parallel to the coated surface, but rather forms as extended molecules bonded at only one end to the surface, leaving the RELEASE group outwardly extending to provide the release (non-stick) properties. However, the release moiety tail of the compounds evidences an area of lubricity, so a uniform coating is not essential. Coating weights of the release coating material may be used in surprisingly small amounts, considering their effectiveness. For example, coating weights of less than 0.001 mg/m2 of surface area have provided significant release coating effects. Coating weights of 0.001 to 100 or more mg/m2 of surface area, from 0.005 to 5 mg/m2 of surface area, and preferably from 0.01 up to 1 to 5 mg/m2 of surface area are generally useful.
  • [0042]
    FIGS. 1A-1D show steps in accordance with one embodiment. FIG. 1A shows molding layer 10 having body 12 and molding layer 14. The release coating material Si-RELEASE is shown attached to said molding layer 10, although not proportionally. The Si-RELEASE compound is shown as single molecules bonded at the Si end, with the RELEASE tail extending therefrom to provide the release properties to the mold 14. The size of the release compound residues —Si-RELEASE is molecular as opposed to the macromolecular view of the molding surface 14 shown in the FIG. 1A. The residual groups which may be attached to the Si (e.g., unreacted H, cyano, or halogen) are not shown, merely for convenience in drawing the Figure. As can be seen from this less than literal representation, the RELEASE moities extend away from the molding surface 14. These RELEASE “tails” provide the release property and tend to be fairly durable and persistent. Molding layer 14 is shown as including a plurality of features 16 having a desired shape. A release layer 17 is shown bonded to the surface of the features 16 on the molding layer 14. A substrate 18 carries thin film layer 20. Thin film layer 20 is deposited through any appropriate technique such as spin casting, slot die coating, slide coating, curtain coating, solvent coating, gravure coating, screen coating, vapor deposition, sputtering and the like.
  • [0043]
    [0043]FIG. 1B shows a compressive molding step where mold 10 is pressed into thin film layer 20 in the direction shown by arrow 22 forming compressed regions 24. In the embodiment, shown in FIGS. 1A-1D, features 16 are not pressed all of the way into thin film 20 and do not contact substrate 18. In some embodiments, top portions 24 a of film 20 may contact depressed surfaces 16 a of mold 10. This causes top surfaces 24 a to substantially conform to the shape of surfaces 16 a, for example flat. When contact occurs, this also can stop the mold move further into the thin film 20, due to a sudden increase of contact area and hence a decrease of the compressive pressure when the compressive force is constant. The release layer 17 of the present inventions improves the release of the thin film layer 20 from the features 16 of the mold 10.
  • [0044]
    [0044]FIG. 1C is a cross sectional view showing thin film layer 20 following removal of mold 10. Layer 20 includes a plurality of recesses formed at compressed regions 24 which generally conform to the shape of features 16 which is coated with release layer 17. Layer 20 is subjected to a subsequent processing step as shown in FIG. 1D, in which the compressed portions 24 of film 20 are removed thereby exposing substrate 18. This removal may be through any appropriate process such as reactive ion etching, wet chemical etching. This forms dams 26 having recesses 28 on the surface of substrate 18. Recesses 28 form relief features that conform generally to the shape of features 16 and mold 10.
  • [0045]
    The mold 10 is patterned with features 16 comprising pillars, holes and trenches with a minimum lateral feature size of 25 nm, using electron beam lithography, reactive ion etching (RIE) and other appropriate methods. The typical depth of feature 16 is from 5 nm to 200 nm (either including the dimensions of the release layer 17 or excluding those molecular dimensions), depending upon the desired lateral dimension. In general, the mold should be selected to be hard relative to the softened thin film, and can be made of metals, dielectrics, polymers, or semiconductors or ceramics or their combination. In one experiment, the mold 10 consists of a layer 14 and features 16 of silicon dioxide on a silicon substrate 12.
  • [0046]
    Thin film layer 20 may comprise a thermoplastic polymer or other thermoplastic, hardenable, or curable material which may pass from a flowable state to a non-flowing state upon a change in conditions (e.g., temperature, polymerization, curing or irradiation). During the compressive molding step shown in FIG. 1B, thin film 20 may be heated at a temperature to allow sufficient softening of the film relative to the mold. For example, above the glass transition temperature the polymer has a low viscosity and can flow, thereby conforming to the features 16 without forming a strong adherence to the surface because of the presence of the release layer 17. The film layer may comprise anything from continuous films of materials, to lightly sintered materials, to loose powders held in place by gravity until the compressive and adherent steps of the molding or microreplication processes. For example, the material could be a polymer film, latex film, viscous polymer coating, composite coating, fusible powder coating, blend of adherent and powder, lightly sintered powder, and the like. The polymer may comprise any moldable polymer, including, but not limited to (meth)acrylates (which includes acrylates and methacrylates), polycarbonates, polyvinyl resins, polyamides, polyimides, polyurethanes, polysiloxanes, polyesters (e.g., polyethyleneterephthalate, polyethylenenaphthalate), polyethers, and the like. Materials such as silica, alumina, zirconia, chromia, titania, and other metal oxides (or halides) or semimetal oxides (or halides) whether in dry form or sol form (aqueous, inorganic solvent or organic solvent) may be used as the moldable material. Composites, mixing both polymeric materials and non-polymeric materials, including microfibers and particulates, may also be used as the molding material.
  • [0047]
    In one experiment, the thin film 20 was a PMMA spun on a silicon wafer 18. The thickness of the PMMA was chosen from 50 nm to 250 nm. PMMA was chosen for several reasons. First, even though PMMA does not adhere well to the SiO2 mold due to its hydrophilic surface, its adherence can be reduced further by the use of the release layers of the present invention. Good mold release properties are essential for fabricating nanoscale features. Second, shrinkage of PMMA is less than 0.5% for large changes of temperature and pressure. See I. Rubin, Injection Molding, (Wiley, N.Y.) 1992. In a molding process, both the mold 10 and PMMA 20 were first heated to a temperature of 200° C. which is higher than the glass transition temperature of PMMA, 105° C. See M. Harmening, W. Bacher, P. Bley, A. El-Kholi, H. Kalb, B. Kowanz, W. Menz, A. Michel, and J. Mohr, Proceedings IEEE Micro Electro Mechanical Systems, 202 (1992). Then the mold 10 and features 16 were compressed against the thin film 20 and held there until the temperature dropped below the PMMA's glass transition temperature. Various pressures have been tested. It was found that the one preferred pressure is about 400-1900 psi., especially 500-100 psi. At that pressure, the pattern of the features 16 can be fully transferred into the PMMA, particularly when the release was expedited by the presence of the release layer 17. After removing mold 10, the PMMA in the compressed area was removed using an oxygen plasma, exposing the underlying silicon substrate and replicating the patterns of the mold over the entire thickness of the PMMA. The molding pressure is, of course, dependent upon the specific polymer being used and can therefore vary widely from material to material.
  • [0048]
    [0048]FIG. 2 in copending application Ser. No. 08/558,809 shows a scanning electron micrograph of a top view of 25 nm diameter holes with a 120 nm period formed into a PMMA film in accordance with FIG. 1C. Mold features as large as tens of microns on the same mold as the nanoscale mold features have been imprinted.
  • [0049]
    [0049]FIG. 3 copending application Ser. No. 08/558,809 shows a scanning electron micrograph of a top view of 100 nm wide trenches with a 200 nm period formed in PMMA in accordance with FIG. 1C.
  • [0050]
    [0050]FIG. 4 in copending application Ser. No. 08/558,809 is a scanning electron micrograph of a perspective view of trenches made in the PMMA using the present invention with embodiment that top portions 24 a of film 20 contact depressed surfaces 16 a of mold 10. The strips are 70 nm wide, 200 nm tall, therefore a high aspect ratio. The surface of these PMMA features is extremely smooth and the roughness is less than 3 nm. The corners of the strips are nearly a perfect 90 degrees. Such smoothness, such sharp right angles, and such high aspect ratio at the 70 nm features size cannot be obtained with the prior art.
  • [0051]
    Furthermore, scanning electron microscopy of the PMMA patterns and the mold showed that the lateral feature size and the smoothness to the sidewalls of PMMA patterns fabricated using the present invention conform with the mold. From our observations, it is clear that the feature size achieved so far with the present invention is limited by our mold size. From the texture of the imprinted PMMA, it appears that 10 nm features can be fabrication with the present invention.
  • [0052]
    After the steps 1A-1D, the patterns in film 20 can be replicated in a material that is added on substrate 18 or can replicated directly into substrate 18. FIGS. 5A and 5B show one example of the subsequent steps which follow the steps of FIGS. 1A-1D. Following formation of the recesses 28 shown in FIG. 1D, a layer of material 30 is deposited over substrate 18 as shown in FIG. 5A. Material 30 is deposited through any desired technique over dams 26 and into recesses 28 between dams 26. Material 30 may comprise, for example, electrical conductors or semiconductors or dielectrics of the type used to fabricate integrated circuits, or it comprise ferromagnetic materials for magnetic devices. Next, a lift off process is performed in which a selective chemical etch is applied which removes dams 26 causing material 30 deposited on top of dams 26 to be removed. FIG. 5B shows the structure which results following the lift off process. A plurality of elements 32 formed of material 30 are left on the surface of substrate 18. Elements 32 are of the type used to form miniaturized devices such as integrated circuits. Subsequent processing steps similar to those shown in steps 1A-1D may be repeated to form additional layers on substrate 18.
  • [0053]
    [0053]FIG. 6 of copending application Ser. No. 08/558,809 is a scanning electron micrograph of the substrate of FIG. 2 following deposition of 5 nm of titanium and 15 nm of gold and a lift off process. In the lift-off process, the wafers were soaked in acetone to dissolve the PMMA and therefore lift-off metals which were on the PMMA. The metal dots have a 25 nm diameter that is the same as that of the holes created in the PMMA using the present invention.
  • [0054]
    [0054]FIG. 7 of copending application Ser. No. 08/558,809 is a scanning electron micrograph of the substrate of FIG. 3 following deposition of 5 nm of titanium and 15 nm of gold and a lift off process. The metal linewidth is 100 nm that is the same as the width of the PMMA trenches shown in FIG. 3. FIGS. 6 and 7 have demonstrated that, during the oxygen RIE process in the present invention, the compressed PMMA area was completely removed and the lateral size of the PMMA features has not been changed significantly.
  • [0055]
    [0055]FIG. 8 is a cross sectional view of substrate 18 of FIG. 1D following an example alternative processing step that replicates the patterns in film 20 directly into substrate 18. In FIG. 8, substrate 18 has been exposed to an etching process such as reactive ion etching, chemical etching, etc., such that recesses 40 are formed in substrate 18. These recesses 40 may be used for subsequent processing steps. For example, recesses 40 may be filled with material for use in fabricating a device. This is just one example of a subsequent processing step which can be used in conjunction with the present invention.
  • [0056]
    Molding processes typically use two plates to form malleable material therebetween. In the present invention, substrate 18 and body 12 (mold 10) act as plates for the imprint process of the invention. Substrate 18 and body 12 should be sufficiently stiff to reduce bending while forming the imprint. Such bending leads to deformation in the pattern formed in the film 20.
  • [0057]
    [0057]FIG. 9 is a simplified block diagram of apparatus 50 for performing nanoimprint lithography in accordance with the invention. Apparatus 50 includes stationary block 52 carrying substrate 18 and moveable molding block 54 carrying mold 10. Blocks 52 and 54 carry the substrate 18 and mold 10 depicted in FIGS. 1A-1D. A controller 56 couples to x-y positioner 58 and z positioner 60. An alignment mark 64 is on mold 10 and complimentary mark 68 is on substrate 18. Sensor 62 carried in block 54 couples to alignment marks 64 and 68 and provide an alignment signal to controller 56. Controller 56 is also provided with input output circuitry 66.
  • [0058]
    In operation, controller 56 controls the imprinting of mold 10 into film 20 on substrate 18 by actuating z positioner 60 which moves block 54 in the z direction relative to block 52. During the imprinting process, precise alignment of mold 10 and film 20 is crucial. This is achieved using optical or electrical alignment techniques. For example, sensor 62 and alignment marks 64 and 68 may be an optical detector and optical alignment marks which generate a moiré alignment pattern such that moiré alignment techniques may be employed to position mold 10 relative to film 20. Such techniques are described by Nomura et al. A MOIRÉ ALIGNMENT TECHNIQUE FOR MIX AND MATCH LITHOGRAPHIC SYSTEM, J. Vac. Sci. Technol. B6(1), Jan/Feb 1988, pg. 394 and by Hara et al., AN ALIGNMENT TECHNIQUE USING DEFRACTED MOIRÉ SIGNALS J. Vac. Sci, Technol. B7(6), Nov/Dec 1989, pg. 1977. Controller 56 processes this alignment information and adjusts the position of block 54 in the x-y plane relative to film 20 using x-y positioner 58. In another embodiment, alignment marks 64 and 68 comprise plates of a capacitor such that sensor 62 detects capacitance between marks 64 and 68. Using this technique, alignment is achieved by moving block 54 in the x-y plane to maximize the capacitance between alignment marks 64 and 68. During imprinting, controller 56 may also monitor and control the temperature of film 20.
  • [0059]
    It should be understood that the invention is not limited to the specific technique described herein, and may be implemented in any appropriate lithographic process. Generally, the mold should be hard relative to the film during the molding process. This may be achieved for example, by sufficiently heating the film. Additionally, it should be understood that the invention is not limited to the particular film described herein. For example, other types of films may be used. In one alternative embodiment, a thin film may be developed which has a chemical composition which changes under pressure. Thus, following the imprint process, a chemical etch could be applied to the film which selectively etches those portions whose composition had changed due to applied pressure. In anther embodiment, after molding of the thin film to create a thickness contrast in the thin film, a material is deposited on the thin film and the thickness contrast then is transferred into the substrate.
  • [0060]
    Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
  • EXAMPLES
  • [0061]
    An example of a lithographic process according to the present invention forming a pattern in a film carried on a substrate would be practiced by the steps of depositing a film on a substrate to provide a mold having a protruding feature and a recess formed thereby, the feature and the recess having a shape forming a mold pattern. At least a portion of the surface, (in this case a surface of silica or silicon-nitride is preferred) such as the protruding feature(s), if not the entire surface (the protrusions and valleys between the protrusions) onto which the film is deposited, is coated with the release material comprises a material having the formula:
  • RELEASE-M(X)n-1—,  Formula I
  • RELEASE-M(X)n-m-1Qm  Formula II
  • or
  • RELEASE-M(OR)n-1—,  Formula III wherein
  • [0062]
    RELEASE is a molecular chain of from 4 to 20 atoms in length, preferably from 6 to 16 atoms in length, which molecule has either polar or non-polar properties;
  • [0063]
    M is a metal or semimetal atom;
  • [0064]
    X is halogen or cyano, especially Cl, F, or Br;
  • [0065]
    Q is a hydrogen or alkyl group,
  • [0066]
    m is the number of Q groups,
  • [0067]
    R is hydrogen, alkyl or phenyl, preferably hydrogen or alkyl of 1 to 4 carbon atoms; and;
  • [0068]
    n-m-1 in Formula II is at least 1 (m is 2 or less), preferably 2 (m is 1 or less), and most preferably at least 3 (m is 0)
  • [0069]
    n is the valence −1 of M.
  • [0070]
    In particular, silicon compounds (pure or in solution) of C 1 to C4 alkyl (for R), wherein X is F, and RELEASE is perfluorinated alkyl are preferred. Particularly 1H, 1H, 2H, 2H-perfluorododecyltrichlorosilane (commercially available as a 97% solids solution) has been found to be particularly useful in the practice of the invention. (The triethoxysilane counterpart tends to require a more active stimulus to assure extensive bonding to the surface. The 1H, 1H, 2H, 2H-perfluorododecylmethyldichlorosilane, would close in effectiveness to the 1H, 1H, 2H, 2H-perfluorododecyltrichlorosilane, with the slightly reduced activity of the additional methyl group replacing one of the chloro groups on the silane. Similarly, the commercially available 1H, 1H, 2H, 2H-perfluorododecyldimethylmonochlorosilane would be slightly less reactive, yet again). This 1H, 1H, 2H, 2H-perfluorododecyltrichlorosilane compound is coated (in a room temperature, air tight, ventilated environment) at about 0.01 mg/m2 of surface area, heated (to about 40 to 50 degrees Centigrade) to react the material to the surface, and cooled. This forms a coating on the surface in which the reactive portion of the molecule (the SiF bonds) reacts with the silica or silica nitride surface, forming a coating comprising the silicon atom bonded to the surface with a tail of the perfluorinatedalkyl group extending from the surface to leave a reduced friction surface. The mold is then urged into the film whereby the thickness of the film under the protruding feature is reduced and a thin region is formed in the film. The mold is removed from the film, processing the relief. The thin region is removed, exposing a portion of the surface of the substrate which underlies the thin region. The exposed portion of the surface of the substrate substantially replicates the mold pattern. The improvement of having at least a portion of said protruding feature and a portion of said release having the release materials of the invention bonded thereto improves the release and the resolution of the mold operation. Importantly, the release coating of the invention has been proven to be persistent and reusable, particularly where modest pressures (e.g., less than 1000 psi are used, and where the film does not contain ingredients which chemically attack the release coating. The selection of the release coating with perfluorinated R groups assists in providing chemical attack resistant coatings. It is important to note that the processes and release coated materials of the present invention can be made by the simple coating and reaction of the release coating forming materials of the present invention, and that these materials, and the broad range of equivalents are broadly enabled. The materials may be coated as pure material and allowed to react at ambient conditions (where the materials are particularly active to the surface), they may be in solution to dilute the coating (taking care to select solvents which are themselves not active to the release-coating forming compounds and preferably not to the surface), their reaction may be accelerated by heat, catalysts, initiators (either thermal, or photoinitiators, for example, such as fluorinated sulfonic acids, sulfonium or iodonium photoinitiators with complex halide anions, such as triarylsulfonium hexafluoroantimonate, diaryl iodonium tetrafluoroborate), accelerators and the like.
  • [0071]
    The release-forming coatings of the present invention may be applied as release coatings by simply applying the chemical compounds to a surface to which they react (essentially any surface with free Hydrogen atoms, which react with halogens, organic acids, silicic or inorganic acids, hydroxyl groups, hydrogen-containing amine groups, mercaptan groups, and the like). The surfaces may be polymeric surfaces, metallic surfaces, alloy surfaces, ceramic surfaces, composite surfaces, organic surfaces, inorganic surfaces, smooth surfaces, rough surfaces, textured surfaces, patterned surfaces, and the like. The use of temperatures and solvents is limited solely by their effect on the substrate and the coating. That is temperatures should not be used during the application of the surface which would degrade the surface or the coating material or so rapidly volatilize the coating material that it would not adhere. As noted elsewhere, catalysts and initiators may be used, but the preferred release coating forming compounds of the invention generally can react at room temperature without any significant stimulus being applied.
  • [0072]
    The 1H, 1H, 2H, 2H-perfluorododecyltrichlorosilane has been applied as a release surface to Si surfaces, SiN surfaces and the like solely by application of the commercially available 1H, 1H, 2H, 2H-perfluorododecyltrichlorosilane (without modification) to the surface at room temperature. The comppounds of Formula I are the most preferred (primarily because of their activity), the compounds of Formula II less preferred, and the compounds of Formula III least preferred because of their reduced reactivity to surfaces.

Claims (43)

    We claim:
  1. 1. A method for forming a pattern on a moldable surface on a substrate comprising the steps of:
    providing the substrate including the moldable surface;
    providing a mold having a molding surface comprised of protruding features and recessed features wherein the mold depth between a protruding feature and a recessed feature is less than 250 nm;
    urging together the molding surface and the moldable surface; and
    separating the molding surface and the moldable surface to provide the moldable surface patterned with a feature having a depth in the range 5-250 nm.
  2. 2. The method of claim 1 wherein the moldable surface is molded to a pattern having at least one feature with minimum dimension of less than 200 nm and to a depth in the range 5-250 nm.
  3. 3. The method of claim 1 wherein the moldable surface comprises a polymer material.
  4. 4. The method of claim 1 further comprising the step of etching the moldable surface after separating the molding surface.
  5. 5. The method of claim 1 further comprising the step of applying a release material to the molding surface before urging together the molding surface and the moldable surface.
  6. 6. The method of claim 5 wherein the release material is bonded to the molding surface.
  7. 7. The method of claim 1 wherein the molding surface comprises a pattern for molding at least one feature with a minimum dimension of less than 25 nm.
  8. 8. The method of claim 1 wherein the molding surface comprises a material selected from the group consisting of metals, metal oxides, metal carbides and metal nitrides.
  9. 9. The method of claim 1 wherein the molding surface comprises a material selected from the group consisting of semimetals, semimetal oxides, semimetal carbides and semimetal nitrides.
  10. 10. The method of claim 1 wherein the molding surface comprises a material selected from the group consisting of polymers, semiconductors, photoconductors, ceramics and glasses.
  11. 11. The method of claim 1 wherein the molding surface comprises a plurality of layers.
  12. 12. The method of claim 1 wherein the substrate comprises a material selected from the group consisting of silicon, silicon nitride, and silicon carbide.
  13. 13. The method of claim 1 wherein the substrate comprises a material selected from the group consisting of doped semiconductor blends, organic photoconductors and inorganic photoconductors.
  14. 14. The method of claim 1 wherein urging the mold into the film comprises a process selected from the group consisting of impression molding, injection molding, powder molding, blow molding, casting, cast molding, vapor deposition molding and decomposition molding.
  15. 15. The method of claim 1 wherein the mold pattern comprises a uniform pattern.
  16. 16. The method of claim 1 wherein the mold pattern comprises a random pattern.
  17. 17. The method of claim 1 wherein the moldable surface comprises a molding composition that hardens by a process selected from the group consisting of cooling, polymerizing, chemically reacting, and irradiating.
  18. 18. The method of claim 1 wherein the moldable surface comprises a hardenable material selected from the group consisting of semiconductors, dielectric materials, photoresponsive materials, thermally responsive materials and electrically responsive materials.
  19. 19. The method of claim 1 wherein the moldable surface comprises a material selected from the group consisting of inorganic oxides, sulfides, halides, carbides and nitrides.
  20. 20. The method of claim 1 wherein the moldable surface comprises a material selected from the group consisting of rare earth oxides, sulfides, halides, carbides and nitrides.
  21. 21. The method of claim 1 wherein the moldable surface comprises a material selected from the group consisting of silicon compounds, cadmium compounds and zinc compounds.
  22. 22. The method of claim 1 wherein the moldable surface comprises a continuous coating or layer.
  23. 23. The method of claim 1 wherein the moldable surface comprises a discontinuous coating or layer.
  24. 24. The method of claim 1 wherein the moldable surface comprises a mixture, dispersion or blend.
  25. 25. The method of claim 1 wherein the moldable surface comprises a plurality of layers.
  26. 26. The method of claim 1 wherein the moldable surface comprises a thermoplastic material.
  27. 27. The method of claim 1 wherein the moldable surface comprises a hardenable or curable material.
  28. 28. The method of claim 1 wherein the moldable surface comprises a material which passes from a flowable state to a non-flowing state.
  29. 29. The method of claim 1 wherein the moldable surface comprises a material which passes from a flowable state to a non-flowing state upon a change in temperature, polymerization, curing or radiation.
  30. 30. The method of claim 1 including the step of softening the moldable surface to facilitate molding.
  31. 31. The method of claim 1 wherein the moldable surface is heated to soften the moldable surface.
  32. 32. The method of claim 1 wherein the moldable surface is cooled to harden the film.
  33. 33. The method of claim 1 wherein the moldable surface comprises a polymer having a glass transition temperature and the moldable surface is heated to a temperature above the glass transition temperature to flow into conformation with the features of the mold.
  34. 34. The method of claim 1 wherein the moldable surface comprises a sintered material.
  35. 35. The method of claim 1 wherein, prior to urging together the molding surface and the moldable surface, the moldable surface comprises powder.
  36. 36. The method of claim 1 wherein the moldable surface comprises a moldable polymer selected from the group consisting of acrylates, methacrylates, polycarbonates, polyvinyl resins, polyamides, polyurethanes, polysiloxanes, polyesters and polyethers.
  37. 37. The method of claim 1 wherein providing the substrate including the moldable surface comprises applying a moldable polymer on the substrate.
  38. 38. The method of claim 40 wherein the moldable polymer is applied by spin casting.
  39. 39. The method of claim 1 wherein the moldable surface comprises a sol.
  40. 40. The method of claim 1 wherein the moldable surface comprises a composite of a polymeric material and a non-polymeric material.
  41. 41. The method of claim 1 wherein the substrate and the mold act as plates for urging the mold into the moldable surface.
  42. 42. The method of claim 1 wherein the substrate and the mold are stiff to reduce bending.
  43. 43. The method of claim 1 including repeating the steps of providing the mold, urging together the molding surface and the moldable surface and separating the molding surface and the moldable surface.
US10244303 1995-11-15 2002-09-16 Lithographic method for molding pattern with nanoscale depth Abandoned US20030034329A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09107006 US6309580B1 (en) 1995-11-15 1998-06-30 Release surfaces, particularly for use in nanoimprint lithography
US10046594 US20020167117A1 (en) 1998-06-30 2001-10-29 Release surfaces, particularly for use in nanoimprint lithography
US10244303 US20030034329A1 (en) 1998-06-30 2002-09-16 Lithographic method for molding pattern with nanoscale depth

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10244303 US20030034329A1 (en) 1998-06-30 2002-09-16 Lithographic method for molding pattern with nanoscale depth
US11003107 US20050146079A1 (en) 1995-11-15 2004-12-03 Lithographic method for molding a pattern
US11773719 US8128856B2 (en) 1995-11-15 2007-07-05 Release surfaces, particularly for use in nanoimprint lithography

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10046594 Continuation US20020167117A1 (en) 1995-11-15 2001-10-29 Release surfaces, particularly for use in nanoimprint lithography

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11003107 Division US20050146079A1 (en) 1995-11-15 2004-12-03 Lithographic method for molding a pattern

Publications (1)

Publication Number Publication Date
US20030034329A1 true true US20030034329A1 (en) 2003-02-20

Family

ID=22314362

Family Applications (5)

Application Number Title Priority Date Filing Date
US09107006 Expired - Lifetime US6309580B1 (en) 1995-11-15 1998-06-30 Release surfaces, particularly for use in nanoimprint lithography
US10046594 Abandoned US20020167117A1 (en) 1995-11-15 2001-10-29 Release surfaces, particularly for use in nanoimprint lithography
US10244303 Abandoned US20030034329A1 (en) 1995-11-15 2002-09-16 Lithographic method for molding pattern with nanoscale depth
US10351770 Expired - Lifetime US7114938B2 (en) 1995-11-15 2003-01-27 Lithographic apparatus for molding ultrafine features
US11003107 Abandoned US20050146079A1 (en) 1995-11-15 2004-12-03 Lithographic method for molding a pattern

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09107006 Expired - Lifetime US6309580B1 (en) 1995-11-15 1998-06-30 Release surfaces, particularly for use in nanoimprint lithography
US10046594 Abandoned US20020167117A1 (en) 1995-11-15 2001-10-29 Release surfaces, particularly for use in nanoimprint lithography

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10351770 Expired - Lifetime US7114938B2 (en) 1995-11-15 2003-01-27 Lithographic apparatus for molding ultrafine features
US11003107 Abandoned US20050146079A1 (en) 1995-11-15 2004-12-03 Lithographic method for molding a pattern

Country Status (3)

Country Link
US (5) US6309580B1 (en)
CN (1) CN1230713C (en)
WO (1) WO2000000868A9 (en)

Cited By (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020094496A1 (en) * 2000-07-17 2002-07-18 Choi Byung J. Method and system of automatic fluid dispensing for imprint lithography processes
US20020093122A1 (en) * 2000-08-01 2002-07-18 Choi Byung J. Methods for high-precision gap and orientation sensing between a transparent template and substrate for imprint lithography
US20020150398A1 (en) * 2000-08-21 2002-10-17 Choi Byung J. Flexure based macro motion translation stage
US20030205657A1 (en) * 2002-05-01 2003-11-06 Voisin Ronald D. Methods of manufacturing a lithography template
US20030215577A1 (en) * 2002-05-16 2003-11-20 Willson Carlton Grant Method and system for fabricating nanoscale patterns in light curable compositions using an electric field
US20030235787A1 (en) * 2002-06-24 2003-12-25 Watts Michael P.C. Low viscosity high resolution patterning material
US20040021866A1 (en) * 2002-08-01 2004-02-05 Watts Michael P.C. Scatterometry alignment for imprint lithography
US20040022888A1 (en) * 2002-08-01 2004-02-05 Sreenivasan Sidlgata V. Alignment systems for imprint lithography
US20040065976A1 (en) * 2002-10-04 2004-04-08 Sreenivasan Sidlgata V. Method and a mold to arrange features on a substrate to replicate features having minimal dimensional variability
US20040112862A1 (en) * 2002-12-12 2004-06-17 Molecular Imprints, Inc. Planarization composition and method of patterning a substrate using the same
US20040116548A1 (en) * 2002-12-12 2004-06-17 Molecular Imprints, Inc. Compositions for dark-field polymerization and method of using the same for imprint lithography processes
US20040146792A1 (en) * 2002-12-13 2004-07-29 Molecular Imprints, Inc. Magnification correction employing out-of-plane distortion of a substrate
US20040163563A1 (en) * 2000-07-16 2004-08-26 The Board Of Regents, The University Of Texas System Imprint lithography template having a mold to compensate for material changes of an underlying liquid
US20040168613A1 (en) * 2003-02-27 2004-09-02 Molecular Imprints, Inc. Composition and method to form a release layer
US20040188381A1 (en) * 2003-03-25 2004-09-30 Molecular Imprints, Inc. Positive tone bi-layer imprint lithography method
US20040197843A1 (en) * 2001-07-25 2004-10-07 Chou Stephen Y. Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US20040202865A1 (en) * 2003-04-08 2004-10-14 Andrew Homola Release coating for stamper
US20040209470A1 (en) * 2003-04-17 2004-10-21 Bajorek Christopher H. Isothermal imprinting
US20040223131A1 (en) * 2002-11-13 2004-11-11 Molecular Imprints, Inc. Chucking system for modulating shapes of substrates
US20040241324A1 (en) * 2002-07-09 2004-12-02 Molecular Imprints, Inc. System for dispensing liquids
US20040256764A1 (en) * 2003-06-17 2004-12-23 University Of Texas System Board Of Regents Method to reduce adhesion between a conformable region and a pattern of a mold
US20050006343A1 (en) * 2003-07-09 2005-01-13 Molecular Imprints, Inc. Systems for magnification and distortion correction for imprint lithography processes
US20050028618A1 (en) * 2002-12-12 2005-02-10 Molecular Imprints, Inc. System for determining characteristics of substrates employing fluid geometries
US20050036223A1 (en) * 2002-11-27 2005-02-17 Wachenschwanz David E. Magnetic discrete track recording disk
US20050051698A1 (en) * 2002-07-08 2005-03-10 Molecular Imprints, Inc. Conforming template for patterning liquids disposed on substrates
US20050064344A1 (en) * 2003-09-18 2005-03-24 University Of Texas System Board Of Regents Imprint lithography templates having alignment marks
US20050061773A1 (en) * 2003-08-21 2005-03-24 Byung-Jin Choi Capillary imprinting technique
US20050067379A1 (en) * 2003-09-25 2005-03-31 Molecular Imprints, Inc. Imprint lithography template having opaque alignment marks
US20050072757A1 (en) * 2003-10-02 2005-04-07 University Of Texas System Board Of Regents Method of creating a turbulent flow of fluid between a mold and a substrate
US20050082253A1 (en) * 2003-10-16 2005-04-21 Molecular Imprints, Inc. Applying imprinting material to substrates employing electromagnetic fields
WO2005038525A1 (en) * 2003-09-26 2005-04-28 Infineon Technologies Ag Stamp device for use in soft lithography and method for producing the same
US20050098534A1 (en) * 2003-11-12 2005-05-12 Molecular Imprints, Inc. Formation of conductive templates employing indium tin oxide
US20050106321A1 (en) * 2003-11-14 2005-05-19 Molecular Imprints, Inc. Dispense geometery to achieve high-speed filling and throughput
US20050151282A1 (en) * 2004-01-13 2005-07-14 Harper Bruce M. Workpiece handler and alignment assembly
US20050151300A1 (en) * 2004-01-13 2005-07-14 Harper Bruce M. Workpiece isothermal imprinting
US20050150862A1 (en) * 2004-01-13 2005-07-14 Harper Bruce M. Workpiece alignment assembly
US20050156353A1 (en) * 2004-01-15 2005-07-21 Watts Michael P. Method to improve the flow rate of imprinting material
US20050160011A1 (en) * 2004-01-20 2005-07-21 Molecular Imprints, Inc. Method for concurrently employing differing materials to form a layer on a substrate
US20050155554A1 (en) * 2004-01-20 2005-07-21 Saito Toshiyuki M. Imprint embossing system
US20050158419A1 (en) * 2004-01-15 2005-07-21 Watts Michael P. Thermal processing system for imprint lithography
US20050158163A1 (en) * 2004-01-20 2005-07-21 Harper Bruce M. Imprint embossing alignment system
US20050160934A1 (en) * 2004-01-23 2005-07-28 Molecular Imprints, Inc. Materials and methods for imprint lithography
US20050170639A1 (en) * 2004-01-30 2005-08-04 Ping Mei Forming a semiconductor device
US20050187339A1 (en) * 2004-02-23 2005-08-25 Molecular Imprints, Inc. Materials for imprint lithography
US20050185169A1 (en) * 2004-02-19 2005-08-25 Molecular Imprints, Inc. Method and system to measure characteristics of a film disposed on a substrate
US20050189676A1 (en) * 2004-02-27 2005-09-01 Molecular Imprints, Inc. Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography
US20050193944A1 (en) * 2004-03-04 2005-09-08 Asml Netherlands B.V. Printing apparatus and device manufacturing method
US20050212022A1 (en) * 2004-03-24 2005-09-29 Greer Edward C Memory cell having an electric field programmable storage element, and method of operating same
US6951173B1 (en) 2003-05-14 2005-10-04 Molecular Imprints, Inc. Assembly and method for transferring imprint lithography templates
US20050236739A1 (en) * 1999-03-11 2005-10-27 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US20050238036A1 (en) * 1998-12-04 2005-10-27 Tekelec Edge device and method for interconnecting SS7 signaling points (SPs) using edge device
US20050236360A1 (en) * 2004-04-27 2005-10-27 Molecular Imprints, Inc. Compliant hard template for UV imprinting
US20050253307A1 (en) * 2004-05-11 2005-11-17 Molecualr Imprints, Inc. Method of patterning a conductive layer on a substrate
US20050260848A1 (en) * 2004-05-21 2005-11-24 Molecular Imprints, Inc. Method of forming a recessed structure employing a reverse tone process
US20050263077A1 (en) * 2004-05-28 2005-12-01 Board Of Regents, The University Of Texas System Adaptive shape substrate support method
US20050265341A1 (en) * 1998-12-04 2005-12-01 Tekelec Methods and systems for communicating SS7 messages over packet-based network using transport adapter layer interface
US20050274219A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
US20050275311A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Compliant device for nano-scale manufacturing
US20050276919A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method for dispensing a fluid on a substrate
US20060017876A1 (en) * 2004-07-23 2006-01-26 Molecular Imprints, Inc. Displays and method for fabricating displays
US20060036051A1 (en) * 2004-08-16 2006-02-16 Molecular Imprints, Inc. Composition to provide a layer with uniform etch characteristics
US20060032437A1 (en) * 2004-08-13 2006-02-16 Molecular Imprints, Inc. Moat system for an imprint lithography template
US20060035029A1 (en) * 2004-08-16 2006-02-16 Molecular Imprints, Inc. Method to provide a layer with uniform etch characteristics
US20060035464A1 (en) * 2004-08-13 2006-02-16 Molecular Imprints, Inc. Method of planarizing a semiconductor substrate
US20060063359A1 (en) * 2004-09-21 2006-03-23 Molecular Imprints, Inc. Patterning substrates employing multi-film layers defining etch differential interfaces
US20060063387A1 (en) * 2004-09-21 2006-03-23 Molecular Imprints, Inc. Method of Patterning Surfaces While Providing Greater Control of Recess Anisotropy
US20060060557A1 (en) * 2004-09-21 2006-03-23 Sreenivasan Sidlgata V Reverse tone patterning on surfaces having surface planarity perturbations
US20060063277A1 (en) * 2004-09-21 2006-03-23 Molecular Imprints, Inc. Method of forming an in-situ recessed structure
US20060063112A1 (en) * 2004-09-21 2006-03-23 Molecular Imprints, Inc. Pattern reversal employing thick residual layers
US20060062922A1 (en) * 2004-09-23 2006-03-23 Molecular Imprints, Inc. Polymerization technique to attenuate oxygen inhibition of solidification of liquids and composition therefor
US20060077978A1 (en) * 1998-12-04 2006-04-13 Tekelec Methods and systems for communicating signaling system 7 (SS7) user part messages among SS7 signaling points (SPs) and internet protocol (IP) nodes using signal transfer points (STPs)
US20060081557A1 (en) * 2004-10-18 2006-04-20 Molecular Imprints, Inc. Low-k dielectric functional imprinting materials
US20060108710A1 (en) * 2004-11-24 2006-05-25 Molecular Imprints, Inc. Method to reduce adhesion between a conformable region and a mold
US20060111454A1 (en) * 2004-11-24 2006-05-25 Molecular Imprints, Inc. Composition to reduce adhesion between a conformable region and a mold
US20060113697A1 (en) * 2004-12-01 2006-06-01 Molecular Imprints, Inc. Eliminating printability of sub-resolution defects in imprint lithography
US20060115999A1 (en) * 2004-12-01 2006-06-01 Molecular Imprints, Inc. Methods of exposure for the purpose of thermal management for imprint lithography processes
US20060126058A1 (en) * 2004-11-30 2006-06-15 Molecular Imprints, Inc. Interferometric analysis for the manufacture of nano-scale devices
US20060139814A1 (en) * 2001-02-16 2006-06-29 David Wachenschwanz Patterned medium and recording head
US20060137555A1 (en) * 2004-12-23 2006-06-29 Asml Netherlands B.V. Imprint lithography
US20060141245A1 (en) * 2003-10-17 2006-06-29 Francesco Stellacci Nanocontact printing
US20060144814A1 (en) * 2004-12-30 2006-07-06 Asml Netherlands B.V. Imprint lithography
US20060145398A1 (en) * 2004-12-30 2006-07-06 Board Of Regents, The University Of Texas System Release layer comprising diamond-like carbon (DLC) or doped DLC with tunable composition for imprint lithography templates and contact masks
US20060144274A1 (en) * 2004-12-30 2006-07-06 Asml Netherlands B.V. Imprint lithography
US20060144275A1 (en) * 2004-12-30 2006-07-06 Asml Netherlands B.V. Imprint lithography
US20060150849A1 (en) * 2004-12-30 2006-07-13 Asml Netherlands B.V. Imprint lithography
US20060154179A1 (en) * 2005-01-07 2006-07-13 Asml Netherlands B. V. Imprint lithography
US20060172553A1 (en) * 2005-01-31 2006-08-03 Molecular Imprints, Inc. Method of retaining a substrate to a wafer chuck
US20060177535A1 (en) * 2005-02-04 2006-08-10 Molecular Imprints, Inc. Imprint lithography template to facilitate control of liquid movement
US20060180952A1 (en) * 2005-02-17 2006-08-17 Asml Netherlands B.V. Imprint lithography
US20060196377A1 (en) * 2005-03-07 2006-09-07 Asml Netherlands B.V. Imprint lithography
US7122482B2 (en) 2003-10-27 2006-10-17 Molecular Imprints, Inc. Methods for fabricating patterned features utilizing imprint lithography
US20060230959A1 (en) * 2005-04-19 2006-10-19 Asml Netherlands B.V. Imprint lithography
US20060231979A1 (en) * 2005-04-19 2006-10-19 Asml Netherlands B.V. Imprint lithography
US20060254446A1 (en) * 2005-05-16 2006-11-16 Asml Netherlands B.V. Imprint lithography
US20060266244A1 (en) * 2005-05-31 2006-11-30 Asml Netherlands B.V. Imprint lithography
US20060268256A1 (en) * 2005-05-27 2006-11-30 Asml Netherlands B.V. Imprint lithography
US20060267231A1 (en) * 2005-05-27 2006-11-30 Asml Netherlands B.V. Imprint lithography
US20060266916A1 (en) * 2005-05-25 2006-11-30 Molecular Imprints, Inc. Imprint lithography template having a coating to reflect and/or absorb actinic energy
US7147790B2 (en) 2002-11-27 2006-12-12 Komag, Inc. Perpendicular magnetic discrete track recording disk
US20060280829A1 (en) * 2005-06-13 2006-12-14 Asml Netherlands B.V. Imprint lithography
US20070009821A1 (en) * 2005-07-08 2007-01-11 Charlotte Cutler Devices containing multi-bit data
US20070017899A1 (en) * 2005-07-19 2007-01-25 Molecular Imprints, Inc. Method of controlling the critical dimension of structures formed on a substrate
US20070021520A1 (en) * 2005-07-22 2007-01-25 Molecular Imprints, Inc. Composition for adhering materials together
US20070018360A1 (en) * 2005-07-21 2007-01-25 Asml Netherlands B.V. Imprint lithography
US20070023976A1 (en) * 2005-07-26 2007-02-01 Asml Netherlands B.V. Imprint lithography
US20070024448A1 (en) * 2002-04-08 2007-02-01 Universal Surveillance Corporation Article surveillance tag having a vial
US20070064384A1 (en) * 2005-08-25 2007-03-22 Molecular Imprints, Inc. Method to transfer a template transfer body between a motion stage and a docking plate
US20070071582A1 (en) * 2005-08-25 2007-03-29 Molecular Imprints, Inc. System to transfer a template transfer body between a motion stage and a docking plate
US20070074635A1 (en) * 2005-08-25 2007-04-05 Molecular Imprints, Inc. System to couple a body and a docking plate
US20070102838A1 (en) * 2005-11-04 2007-05-10 Asml Netherlands B.V. Imprint lithography
US20070102844A1 (en) * 2005-11-04 2007-05-10 Asml Netherlands B.V. Imprint lithography
US7217562B2 (en) 2002-04-16 2007-05-15 Princeton University Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof
US20070126156A1 (en) * 2005-12-01 2007-06-07 Molecular Imprints, Inc. Technique for separating a mold from solidified imprinting material
US7229273B2 (en) 2000-10-12 2007-06-12 Board Of Regents, The University Of Texas System Imprint lithography template having a feature size under 250 nm
US20070132152A1 (en) * 2005-12-08 2007-06-14 Molecular Imprints, Inc. Method and System for Double-Sided Patterning of Substrates
US20070141191A1 (en) * 2005-12-21 2007-06-21 Asml Netherlands B.V. Imprint lithography
US20070138699A1 (en) * 2005-12-21 2007-06-21 Asml Netherlands B.V. Imprint lithography
US7244386B2 (en) 2004-09-27 2007-07-17 Molecular Imprints, Inc. Method of compensating for a volumetric shrinkage of a material disposed upon a substrate to form a substantially planar structure therefrom
US20070170617A1 (en) * 2006-01-20 2007-07-26 Molecular Imprints, Inc. Patterning Substrates Employing Multiple Chucks
US20070190200A1 (en) * 2005-01-31 2007-08-16 Molecular Imprints, Inc. Chucking system comprising an array of fluid chambers
US20070228608A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Preserving Filled Features when Vacuum Wiping
US20070228589A1 (en) * 2002-11-13 2007-10-04 Molecular Imprints, Inc. Method for expelling gas positioned between a substrate and a mold
US20070228593A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Residual Layer Thickness Measurement and Correction
US20070243655A1 (en) * 2006-04-18 2007-10-18 Molecular Imprints, Inc. Self-Aligned Process for Fabricating Imprint Templates Containing Variously Etched Features
US20070246850A1 (en) * 2006-04-21 2007-10-25 Molecular Imprints, Inc. Method for Detecting a Particle in a Nanoimprint Lithography System
US20080003827A1 (en) * 2006-06-30 2008-01-03 Asml Netherlands B.V. Imprintable medium dispenser
US20080011934A1 (en) * 2006-06-30 2008-01-17 Asml Netherlands B.V. Imprint lithography
US7329114B2 (en) 2004-01-20 2008-02-12 Komag, Inc. Isothermal imprint embossing system
US20080075068A1 (en) * 2000-06-01 2008-03-27 Tekelec Methods and systems for providing converged network management functionality in a gateway routing node
US20080110557A1 (en) * 2006-11-15 2008-05-15 Molecular Imprints, Inc. Methods and Compositions for Providing Preferential Adhesion and Release of Adjacent Surfaces
US20080141862A1 (en) * 2003-10-02 2008-06-19 Molecular Imprints, Inc. Single Phase Fluid Imprint Lithography Method
US20080242556A1 (en) * 2007-03-28 2008-10-02 Bionanomatrix, Llc Methods of macromolecular analysis using nanochannel arrays
US7432634B2 (en) 2000-10-27 2008-10-07 Board Of Regents, University Of Texas System Remote center compliant flexure device
US20080257187A1 (en) * 2007-04-18 2008-10-23 Micron Technology, Inc. Methods of forming a stamp, methods of patterning a substrate, and a stamp and a patterning system for same
US20080274413A1 (en) * 2007-03-22 2008-11-06 Micron Technology, Inc. Sub-10 nm line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US20080315270A1 (en) * 2007-06-21 2008-12-25 Micron Technology, Inc. Multilayer antireflection coatings, structures and devices including the same and methods of making the same
US20090037004A1 (en) * 2000-10-12 2009-02-05 Molecular Imprints, Inc. Method and System to Control Movement of a Body for Nano-Scale Manufacturing
US20090038636A1 (en) * 2007-08-09 2009-02-12 Asml Netherlands B.V. Cleaning method
US20090057267A1 (en) * 2007-09-05 2009-03-05 Asml Netherlands B.V. Imprint lithography
US20090136654A1 (en) * 2005-10-05 2009-05-28 Molecular Imprints, Inc. Contact Angle Attenuations on Multiple Surfaces
US20090169662A1 (en) * 2004-11-30 2009-07-02 Molecular Imprints, Inc. Enhanced Multi Channel Alignment
EP2090929A3 (en) * 2005-06-08 2009-09-16 Canon Kabushiki Kaisha Mold, pattern forming method, and pattern forming apparatus
US20090250840A1 (en) * 2006-04-18 2009-10-08 Molecular Imprints, Inc. Template Having Alignment Marks Formed of Contrast Material
US7670534B2 (en) 2005-09-21 2010-03-02 Molecular Imprints, Inc. Method to control an atmosphere between a body and a substrate
US20100053578A1 (en) * 2002-07-11 2010-03-04 Molecular Imprints, Inc. Apparatus for imprint lithography using an electric field
US20100102415A1 (en) * 2008-10-28 2010-04-29 Micron Technology, Inc. Methods for selective permeation of self-assembled block copolymers with metal oxides, methods for forming metal oxide structures, and semiconductor structures including same
US20100105206A1 (en) * 2004-06-01 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7727453B2 (en) 2002-07-11 2010-06-01 Molecular Imprints, Inc. Step and repeat imprint lithography processes
US7780893B2 (en) 2006-04-03 2010-08-24 Molecular Imprints, Inc. Method of concurrently patterning a substrate having a plurality of fields and a plurality of alignment marks
US7785526B2 (en) 2004-07-20 2010-08-31 Molecular Imprints, Inc. Imprint alignment method, system, and template
US7802978B2 (en) 2006-04-03 2010-09-28 Molecular Imprints, Inc. Imprinting of partial fields at the edge of the wafer
US7811505B2 (en) 2004-12-07 2010-10-12 Molecular Imprints, Inc. Method for fast filling of templates for imprint lithography using on template dispense
US20100316849A1 (en) * 2008-02-05 2010-12-16 Millward Dan B Method to Produce Nanometer-Sized Features with Directed Assembly of Block Copolymers
US7854877B2 (en) 2007-08-14 2010-12-21 Asml Netherlands B.V. Lithography meandering order
US7880872B2 (en) 2004-11-30 2011-02-01 Molecular Imprints, Inc. Interferometric analysis method for the manufacture of nano-scale devices
US7906180B2 (en) 2004-02-27 2011-03-15 Molecular Imprints, Inc. Composition for an etching mask comprising a silicon-containing material
US7906058B2 (en) 2005-12-01 2011-03-15 Molecular Imprints, Inc. Bifurcated contact printing technique
US20120070927A1 (en) * 2009-05-29 2012-03-22 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor component
US8142850B2 (en) 2006-04-03 2012-03-27 Molecular Imprints, Inc. Patterning a plurality of fields on a substrate to compensate for differing evaporation times
US8215946B2 (en) 2006-05-18 2012-07-10 Molecular Imprints, Inc. Imprint lithography system and method
US8402638B1 (en) 2009-11-06 2013-03-26 Wd Media, Inc. Press system with embossing foil free to expand for nano-imprinting of recording media
US8496466B1 (en) 2009-11-06 2013-07-30 WD Media, LLC Press system with interleaved embossing foil holders for nano-imprinting of recording media
US8557351B2 (en) 2005-07-22 2013-10-15 Molecular Imprints, Inc. Method for adhering materials together
US8609221B2 (en) 2007-06-12 2013-12-17 Micron Technology, Inc. Alternating self-assembling morphologies of diblock copolymers controlled by variations in surfaces
US8633112B2 (en) 2008-03-21 2014-01-21 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US8642157B2 (en) 2008-02-13 2014-02-04 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
US8641914B2 (en) 2008-03-21 2014-02-04 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
US8753738B2 (en) 2007-03-06 2014-06-17 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8785559B2 (en) 2007-06-19 2014-07-22 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8808808B2 (en) 2005-07-22 2014-08-19 Molecular Imprints, Inc. Method for imprint lithography utilizing an adhesion primer layer
US8850980B2 (en) 2006-04-03 2014-10-07 Canon Nanotechnologies, Inc. Tessellated patterns in imprint lithography
US8900963B2 (en) 2011-11-02 2014-12-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and related structures
US8993088B2 (en) 2008-05-02 2015-03-31 Micron Technology, Inc. Polymeric materials in self-assembled arrays and semiconductor structures comprising polymeric materials
US9087699B2 (en) 2012-10-05 2015-07-21 Micron Technology, Inc. Methods of forming an array of openings in a substrate, and related methods of forming a semiconductor device structure
US9142420B2 (en) 2007-04-20 2015-09-22 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US9177795B2 (en) 2013-09-27 2015-11-03 Micron Technology, Inc. Methods of forming nanostructures including metal oxides
US9229328B2 (en) 2013-05-02 2016-01-05 Micron Technology, Inc. Methods of forming semiconductor device structures, and related semiconductor device structures
US9330685B1 (en) 2009-11-06 2016-05-03 WD Media, LLC Press system for nano-imprinting of recording media with a two step pressing method
US9678038B2 (en) 2001-07-25 2017-06-13 The Trustees Of Princeton University Nanochannel arrays and their preparation and use for high throughput macromolecular analysis

Families Citing this family (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728380B2 (en) * 1995-11-15 2014-05-20 Regents Of The University Of Minnesota Lithographic method for forming a pattern
US20080217813A1 (en) * 1995-11-15 2008-09-11 Chou Stephen Y Release surfaces, particularly for use in nanoimprint lithography
US8128856B2 (en) * 1995-11-15 2012-03-06 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
US6309580B1 (en) * 1995-11-15 2001-10-30 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
DE69943136D1 (en) 1998-10-09 2011-02-24 Arborgen Llc Materials and Methods for modifying the Pflanzenligningehalts
US7658772B2 (en) * 1997-09-08 2010-02-09 Borealis Technical Limited Process for making electrode pairs
US20050145836A1 (en) * 1998-06-08 2005-07-07 Avto Tavkhelidze Influence of surface geometry
US6680214B1 (en) * 1998-06-08 2004-01-20 Borealis Technical Limited Artificial band gap
US20030080472A1 (en) * 2001-10-29 2003-05-01 Chou Stephen Y. Lithographic method with bonded release layer for molding small patterns
US7635262B2 (en) * 2000-07-18 2009-12-22 Princeton University Lithographic apparatus for fluid pressure imprint lithography
US6355343B1 (en) * 1998-07-08 2002-03-12 S. D. Warren Services Company Release sheet for use with multicomponent reactive urethane systems and method of manufacture
US6713238B1 (en) * 1998-10-09 2004-03-30 Stephen Y. Chou Microscale patterning and articles formed thereby
WO2000048172A9 (en) 1999-02-12 2002-01-03 Gen Electric Data storage media
US6873087B1 (en) * 1999-10-29 2005-03-29 Board Of Regents, The University Of Texas System High precision orientation alignment and gap control stages for imprint lithography processes
DE60121302D1 (en) 2000-01-21 2006-08-17 Obducat Ab Form nanobedruckung
US6821509B2 (en) * 2000-04-14 2004-11-23 Cosmetica, Inc. Nanoscopic hair care products
CN1215528C (en) * 2000-04-18 2005-08-17 奥布杜卡特公司 A substrate and a process in connection with the product of structures
USRE43694E1 (en) 2000-04-28 2012-10-02 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
US7510946B2 (en) 2003-03-17 2009-03-31 Princeton University Method for filling of nanoscale holes and trenches and for planarizing of a wafer surface
CN100373528C (en) * 2002-03-15 2008-03-05 普林斯顿大学 Laser assisted direct imprint lithography
EP1320872A2 (en) * 2000-09-27 2003-06-25 NUP2 Incorporated Fabrication of semiconductor devices
US6770721B1 (en) * 2000-11-02 2004-08-03 Surface Logix, Inc. Polymer gel contact masks and methods and molds for making same
US7018674B2 (en) * 2001-03-02 2006-03-28 Omron, Corporation Manufacturing methods and apparatuses of an optical device and a reflection plate provided with a resin thin film having a micro-asperity pattern
JP2002270541A (en) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd Mold method of manufacturing mold, and method of forming pattern
WO2002085605A1 (en) * 2001-04-19 2002-10-31 General Electric Company Methods for embossing and embossed articles formed thereby
US7137336B2 (en) 2001-07-05 2006-11-21 Obducat Ab Stamp having an antisticking layer and a method of forming of repairing such a stamp
US6863219B1 (en) * 2001-08-17 2005-03-08 Alien Technology Corporation Apparatuses and methods for forming electronic assemblies
US6788866B2 (en) * 2001-08-17 2004-09-07 Nanogram Corporation Layer materials and planar optical devices
US7666579B1 (en) * 2001-09-17 2010-02-23 Serenity Technologies, Inc. Method and apparatus for high density storage of analog data in a durable medium
US20030071016A1 (en) * 2001-10-11 2003-04-17 Wu-Sheng Shih Patterned structure reproduction using nonsticking mold
US20050167894A1 (en) * 2002-10-08 2005-08-04 Wu-Sheng Shih Patterned structure reproduction using nonsticking mold
US6743368B2 (en) 2002-01-31 2004-06-01 Hewlett-Packard Development Company, L.P. Nano-size imprinting stamp using spacer technique
US6716754B2 (en) * 2002-03-12 2004-04-06 Micron Technology, Inc. Methods of forming patterns and molds for semiconductor constructions
US8574663B2 (en) * 2002-03-22 2013-11-05 Borealis Technical Limited Surface pairs
WO2003083876A3 (en) * 2002-03-27 2004-08-12 Nanoink Inc Method and apparatus for aligning patterns on a substrate
US6875695B2 (en) * 2002-04-05 2005-04-05 Mems Optical Inc. System and method for analog replication of microdevices having a desired surface contour
EP1362682A1 (en) * 2002-05-13 2003-11-19 ZBD Displays Ltd, Method and apparatus for liquid crystal alignment
US6897089B1 (en) * 2002-05-17 2005-05-24 Micron Technology, Inc. Method and system for fabricating semiconductor components using wafer level contact printing
US6876784B2 (en) * 2002-05-30 2005-04-05 Nanoopto Corporation Optical polarization beam combiner/splitter
US7534359B2 (en) * 2003-06-09 2009-05-19 Canon Kabushiki Kaisha Process for producing structure, structure thereof, and magnetic recording medium
US7283571B2 (en) * 2002-06-17 2007-10-16 Jian Wang Method and system for performing wavelength locking of an optical transmission source
US7386205B2 (en) * 2002-06-17 2008-06-10 Jian Wang Optical device and method for making same
EP1520203A4 (en) 2002-06-18 2005-08-24 Nanoopto Corp Optical components exhibiting enhanced functionality and method of making same
US7687007B2 (en) 2002-06-20 2010-03-30 Obducat Ab Mold for nano imprinting
WO2004006019A1 (en) * 2002-07-08 2004-01-15 Obducat Ab A method and a stamp for transferring a pattern to a substrate
US6900881B2 (en) * 2002-07-11 2005-05-31 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US6916584B2 (en) * 2002-08-01 2005-07-12 Molecular Imprints, Inc. Alignment methods for imprint lithography
JP2005534981A (en) 2002-08-01 2005-11-17 ナノオプト コーポレーション How precise phase delay device and manufacturing the same
US6867983B2 (en) * 2002-08-07 2005-03-15 Avery Dennison Corporation Radio frequency identification device and method
JP2006517307A (en) * 2003-02-10 2006-07-20 ナノオプト コーポレーション Universal broadband polarizer, a device and a manufacturing method thereof comprising the same
US6939120B1 (en) * 2002-09-12 2005-09-06 Komag, Inc. Disk alignment apparatus and method for patterned media production
US20040132301A1 (en) * 2002-09-12 2004-07-08 Harper Bruce M. Indirect fluid pressure imprinting
US7013064B2 (en) * 2002-10-09 2006-03-14 Nanoopto Corporation Freespace tunable optoelectronic device and method
US6920272B2 (en) * 2002-10-09 2005-07-19 Nanoopto Corporation Monolithic tunable lasers and reflectors
GB0224300D0 (en) * 2002-10-20 2002-11-27 Tavkhelidze Avto Thermoelectric material with intergrated broglie wave filter
DE60325629D1 (en) * 2002-10-21 2009-02-12 Nanoink Inc A process for producing structures in the nanometer range for application in the area of ​​the mask repair
US6755984B2 (en) * 2002-10-24 2004-06-29 Hewlett-Packard Development Company, L.P. Micro-casted silicon carbide nano-imprinting stamp
US6916511B2 (en) * 2002-10-24 2005-07-12 Hewlett-Packard Development Company, L.P. Method of hardening a nano-imprinting stamp
US7378347B2 (en) * 2002-10-28 2008-05-27 Hewlett-Packard Development Company, L.P. Method of forming catalyst nanoparticles for nanowire growth and other applications
US7002609B2 (en) * 2002-11-07 2006-02-21 Brother International Corporation Nano-structure based system and method for charging a photoconductive surface
WO2004046798A1 (en) * 2002-11-15 2004-06-03 Sumitomo Metal Mining Co., Ltd. Magnetooptic element and process for fabricating the same and optical isolator incorporating it
US6900126B2 (en) * 2002-11-20 2005-05-31 International Business Machines Corporation Method of forming metallized pattern
US6980282B2 (en) * 2002-12-11 2005-12-27 Molecular Imprints, Inc. Method for modulating shapes of substrates
US7001013B2 (en) * 2002-12-12 2006-02-21 Brother International Corporation Nanostructure based microfluidic pumping apparatus, method and printing device including same
GB0229191D0 (en) * 2002-12-14 2003-01-22 Plastic Logic Ltd Embossing of polymer devices
JP2004241397A (en) * 2003-01-23 2004-08-26 Dainippon Printing Co Ltd Thin film transistor and its manufacturing process
WO2004078668A1 (en) * 2003-03-03 2004-09-16 Nippon Sheet Glass Company, Limited Method of manufacturing article with recess and protrusion
JP4317375B2 (en) * 2003-03-20 2009-08-19 株式会社日立製作所 Nanoprint apparatus, and microstructure transfer method
US20060276043A1 (en) * 2003-03-21 2006-12-07 Johnson Mark A L Method and systems for single- or multi-period edge definition lithography
EP1609177A2 (en) * 2003-03-21 2005-12-28 North Carolina State University Methods for nanoscale structures from optical lithography and subsequent lateral growth
US20040191639A1 (en) * 2003-03-26 2004-09-30 Danliang Jin Micro-imprinting method and template for use in same
JP4269745B2 (en) * 2003-03-31 2009-05-27 株式会社日立製作所 Stamper and the transfer device
DE10318566B4 (en) * 2003-04-15 2005-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method and tool for producing transparent optical elements made of polymeric materials
US6909998B2 (en) * 2003-06-02 2005-06-21 Hong Hocheng In-situ monitoring method and system for mold deformation in nanoimprint
US20040258355A1 (en) * 2003-06-17 2004-12-23 Jian Wang Micro-structure induced birefringent waveguiding devices and methods of making same
US7344887B2 (en) * 2003-06-24 2008-03-18 Johns Hopkins University Methods and products for delivering biological molecules to cells using multicomponent nanostructures
US7445742B2 (en) * 2003-08-15 2008-11-04 Hewlett-Packard Development Company, L.P. Imprinting nanoscale patterns for catalysis and fuel cells
US20050084613A1 (en) * 2003-08-19 2005-04-21 Jian Wang Sub-micron-scale patterning method and system
DE10340608A1 (en) * 2003-08-29 2005-03-24 Infineon Technologies Ag Polymer formulation and method for producing a dielectric layer
US7588657B2 (en) * 2003-09-29 2009-09-15 Princeton University Pattern-free method of making line gratings
JP4322096B2 (en) * 2003-11-14 2009-08-26 Tdk株式会社 Method for producing a resist pattern forming method and a magnetic recording medium and a magnetic head
KR20030097735A (en) * 2003-11-19 2003-12-31 엔엔디 주식회사 Imprinting device and imprinting substrate holding device
EP1533657B1 (en) * 2003-11-21 2011-03-09 Obducat AB Multilayer nano imprint lithography
US20050112505A1 (en) * 2003-11-25 2005-05-26 Huang Wen C. Field-assisted micro- and nano-fabrication method
US7303703B2 (en) * 2003-11-27 2007-12-04 Hong Hocheng Nano-imprint system with mold deformation detector and method of monitoring the same
US7153360B2 (en) * 2003-12-16 2006-12-26 Hewlett-Packard Development Company, Lp. Template and methods for forming photonic crystals
US7632087B2 (en) * 2003-12-19 2009-12-15 Wd Media, Inc. Composite stamper for imprint lithography
KR101010431B1 (en) * 2003-12-27 2011-01-21 엘지디스플레이 주식회사 Method and Apparatus for Fabricating Flat Panel Display
KR101010476B1 (en) * 2003-12-27 2011-01-21 엘지디스플레이 주식회사 Method and Apparatus for Fabricating Flat Panel Display
KR101117437B1 (en) * 2003-12-27 2012-02-29 엘지디스플레이 주식회사 Method and Apparatus for Fabricating Flat Panel Display
US7255805B2 (en) * 2004-01-12 2007-08-14 Hewlett-Packard Development Company, L.P. Photonic structures, devices, and methods
US7462292B2 (en) * 2004-01-27 2008-12-09 Hewlett-Packard Development Company, L.P. Silicon carbide imprint stamp
DE102004005247A1 (en) * 2004-01-28 2005-09-01 Infineon Technologies Ag Imprint-lithographic process for manufacturing e.g. MOSFET, involves structuring polymerized gate dielectric layer by imprint stamp that is used to form hole on layer, and etching base of hole till preset thickness of layer is reached
WO2005075184A1 (en) * 2004-02-04 2005-08-18 Sumitomo Heavy Industries, Ltd. Pressing/molding apparatus, mold, and pressing/molding method
US7168939B2 (en) * 2004-02-26 2007-01-30 Hitachi Global Storage Technologies Netherlands Bv System, method, and apparatus for multilevel UV molding lithography for air bearing surface patterning
US7682552B2 (en) * 2004-03-26 2010-03-23 Industrial Technology Research Institute Capacitive measurement method and system for nanoimprint process monitoring
US7141866B1 (en) 2004-04-16 2006-11-28 Hewlett-Packard Development Company, L.P. Apparatus for imprinting lithography and fabrication thereof
US8235302B2 (en) * 2004-04-20 2012-08-07 Nanolnk, Inc. Identification features
US20050260790A1 (en) * 2004-05-24 2005-11-24 Goodner Michael D Substrate imprinting techniques
US20060108905A1 (en) * 2004-11-25 2006-05-25 Samsung Electronics Co., Ltd. Mold for fabricating barrier rib and method of fabricating two-layered barrier rib using same
WO2005119360A1 (en) * 2004-05-28 2005-12-15 Obducat Ab Modified metal mold for use in imprinting processes
EP1600811A1 (en) * 2004-05-28 2005-11-30 Obducat AB Modified metal molds for use in imprinting processes
US20050270516A1 (en) * 2004-06-03 2005-12-08 Molecular Imprints, Inc. System for magnification and distortion correction during nano-scale manufacturing
GB0415426D0 (en) * 2004-07-09 2004-08-11 Borealis Tech Ltd Thermionic vacuum diode device with adjustable electrodes
US20060029548A1 (en) * 2004-07-22 2006-02-09 Amir Pelleg Methods of diagnosing, monitoring and treating pulmonary diseases
US20070164476A1 (en) * 2004-09-01 2007-07-19 Wei Wu Contact lithography apparatus and method employing substrate deformation
US7641468B2 (en) * 2004-09-01 2010-01-05 Hewlett-Packard Development Company, L.P. Imprint lithography apparatus and method employing an effective pressure
US7189635B2 (en) * 2004-09-17 2007-03-13 Hewlett-Packard Development Company, L.P. Reduction of a feature dimension in a nano-scale device
US7815424B2 (en) * 2004-12-09 2010-10-19 Canon Kabushiki Kaisha Imprinting machine and device manufacturing method
US8069782B2 (en) * 2004-12-20 2011-12-06 Nanoink, Inc. Stamps with micrometer- and nanometer-scale features and methods of fabrication thereof
US7592255B2 (en) * 2004-12-22 2009-09-22 Hewlett-Packard Development Company, L.P. Fabricating arrays of metallic nanostructures
US20060162739A1 (en) * 2005-01-21 2006-07-27 Nikon Corporation Cleaning chuck in situ
GB0501413D0 (en) * 2005-01-24 2005-03-02 Tavkhelidze Avto Method for modification of built in potential of diodes
US20060169592A1 (en) * 2005-01-31 2006-08-03 Hewlett-Packard Development Company, L.P. Periodic layered structures and methods therefor
KR100647314B1 (en) 2005-01-31 2006-11-23 삼성전자주식회사 Alignment system for nano imprint lithography and Method of imprint lithography using the same
JP4773729B2 (en) * 2005-02-28 2011-09-14 キヤノン株式会社 Transfer apparatus and device manufacturing method
US8182433B2 (en) 2005-03-04 2012-05-22 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US8075498B2 (en) 2005-03-04 2011-12-13 Endosense Sa Medical apparatus system having optical fiber load sensing capability
EP2363073B1 (en) 2005-08-01 2015-10-07 St. Jude Medical Luxembourg Holding S.à.r.l. Medical apparatus system having optical fiber load sensing capability
US7767129B2 (en) * 2005-05-11 2010-08-03 Micron Technology, Inc. Imprint templates for imprint lithography, and methods of patterning a plurality of substrates
US7648641B2 (en) * 2005-06-17 2010-01-19 Hitachi Global Storage Technologies Netherlands B.V. Method and apparatus for creating a topographically patterned substrate
GB0515635D0 (en) * 2005-07-29 2005-09-07 Harbron Stuart Transistor
KR100758699B1 (en) * 2005-08-29 2007-09-14 재단법인서울대학교산학협력재단 Method for forming high aspect ratio nanostructure and method for forming nano pattern using the same
JP4262267B2 (en) * 2005-09-06 2009-05-13 キヤノン株式会社 Mold manufacturing method of an imprint apparatus and device
US7274998B2 (en) * 2005-09-30 2007-09-25 Intel Corporation Near-field photo-lithography using nano light emitting diodes
WO2007046110A1 (en) * 2005-10-19 2007-04-26 Indian Institute Of Technology, Kanpur A method and apparatus for the formation of patterns on surfaces and an assembly and alignment of the structure thereof
FR2894515B1 (en) * 2005-12-08 2008-02-15 Essilor Int method of transferring a micron-sized pattern on an optical and optical article article thus obtained
KR101194646B1 (en) * 2005-12-30 2012-10-24 엘지디스플레이 주식회사 Fabricating method of soft mold
US7474396B2 (en) * 2006-01-17 2009-01-06 Hewlett-Packard Development Company, L.P. Raman spectroscopy system and method using a subwavelength resonant grating filter
JP4736821B2 (en) * 2006-01-24 2011-07-27 株式会社日立製作所 Pattern forming method and pattern forming apparatus
US7427786B1 (en) 2006-01-24 2008-09-23 Borealis Technical Limited Diode device utilizing bellows
US7857611B2 (en) * 2006-02-14 2010-12-28 Pioneer Corporation Imprinting device and imprinting method
EP1830422A3 (en) * 2006-03-03 2012-03-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
KR101261606B1 (en) * 2006-05-09 2013-05-09 삼성디스플레이 주식회사 Production apparatus and production method of the panel
US20080160129A1 (en) * 2006-05-11 2008-07-03 Molecular Imprints, Inc. Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template
KR100837829B1 (en) 2006-05-19 2008-06-13 충남대학교산학협력단 Fabrication of microstructures for micro/nano-fluidic devices and MEMS microdevices using inorganic polymers and hydrophilic polymers
US8048063B2 (en) 2006-06-09 2011-11-01 Endosense Sa Catheter having tri-axial force sensor
US8567265B2 (en) 2006-06-09 2013-10-29 Endosense, SA Triaxial fiber optic force sensing catheter
JP4810319B2 (en) * 2006-06-09 2011-11-09 キヤノン株式会社 Processing apparatus and device manufacturing method
US8227885B2 (en) 2006-07-05 2012-07-24 Borealis Technical Limited Selective light absorbing semiconductor surface
JP5002207B2 (en) * 2006-07-26 2012-08-15 キヤノン株式会社 Method of manufacturing a structure having a pattern
US20080026305A1 (en) * 2006-07-26 2008-01-31 Wei Wu Apparatus and method for alignment using multiple wavelengths of light
GB0617934D0 (en) * 2006-09-12 2006-10-18 Borealis Tech Ltd Transistor
GB0617879D0 (en) * 2006-09-12 2006-10-18 Borealis Tech Ltd Transistor
US7780431B2 (en) * 2006-09-14 2010-08-24 Hewlett-Packard Development Company, L.P. Nanoimprint molds and methods of forming the same
GB0618268D0 (en) * 2006-09-18 2006-10-25 Tavkhelidze Avto High efficiency solar cell with selective light absorbing surface
KR100772441B1 (en) * 2006-10-12 2007-11-01 삼성전기주식회사 Manufacturing method for imprinting stamper
JP5309436B2 (en) * 2006-10-16 2013-10-09 日立化成株式会社 Resin microstructures, their preparation and polymerizable resin composition
US7612882B2 (en) * 2006-10-20 2009-11-03 Hewlett-Packard Development Company, L.P. Optical gratings, lithography tools including such optical gratings and methods for using same for alignment
WO2008068154B1 (en) * 2006-12-06 2008-10-16 Ciba Holding Inc Changing surface properties by functionalized nanoparticles
US7604836B2 (en) * 2006-12-13 2009-10-20 Hitachi Global Storage Technologies Netherlands B.V. Release layer and resist material for master tool and stamper tool
GB0700071D0 (en) * 2007-01-04 2007-02-07 Borealis Tech Ltd Multijunction solar cell
GB0701909D0 (en) * 2007-01-31 2007-03-14 Imp Innovations Ltd Deposition Of Organic Layers
US8816192B1 (en) 2007-02-09 2014-08-26 Borealis Technical Limited Thin film solar cell
US20080206602A1 (en) * 2007-02-28 2008-08-28 Katine Jordan A Nanoimprinting of topography for patterned magnetic media
US20080233280A1 (en) * 2007-03-22 2008-09-25 Graciela Beatriz Blanchet Method to form a pattern of functional material on a substrate by treating a surface of a stamp
US20080233489A1 (en) * 2007-03-22 2008-09-25 Graciela Beatriz Blanchet Method to form a pattern of functional material on a substrate using a stamp having a surface modifying material
US7875313B2 (en) 2007-04-05 2011-01-25 E. I. Du Pont De Nemours And Company Method to form a pattern of functional material on a substrate using a mask material
US8622935B1 (en) 2007-05-25 2014-01-07 Endosense Sa Elongated surgical manipulator with body position and distal force sensing
JP2010537395A (en) * 2007-05-30 2010-12-02 モレキュラー・インプリンツ・インコーポレーテッド Silicon nitride, the template having a silicon carbide or silicon oxynitride film,
JP2010530032A (en) * 2007-06-15 2010-09-02 ナノグラム・コーポレイションNanoGram Corporation Deposition and synthesis of inorganic foil by reaction stream
GB0720392D0 (en) * 2007-10-18 2007-11-28 Novalia Ltd Method of fabricating an electronic device
US20100297228A1 (en) * 2007-10-29 2010-11-25 Nanolnk, Inc. Universal coating for imprinting identification features
JP5002422B2 (en) * 2007-11-14 2012-08-15 株式会社日立ハイテクノロジーズ Nano-print for the resin stamper
US8114331B2 (en) * 2008-01-02 2012-02-14 International Business Machines Corporation Amorphous oxide release layers for imprint lithography, and method of use
US20090191356A1 (en) * 2008-01-28 2009-07-30 Hee Hyun Lee Method for forming a thin layer of particulate on a substrate
US8029716B2 (en) * 2008-02-01 2011-10-04 International Business Machines Corporation Amorphous nitride release layers for imprint lithography, and method of use
KR100837806B1 (en) 2008-02-22 2008-06-13 충남대학교산학협력단 Fabrication of microstructures for micro/nano-fluidic devices and MEMS microdevices using inorganic polymers and hydrophilic polymers
KR100836872B1 (en) 2008-02-22 2008-06-11 충남대학교산학협력단 Fabrication of microstructures for micro/nano-fluidic devices and MEMS microdevices using inorganic polymers and hydrophilic polymers
KR100837830B1 (en) 2008-02-22 2008-06-13 충남대학교산학협력단 Fabrication of microstructures for micro/nano-fluidic devices and MEMS microdevices using inorganic polymers and hydrophilic polymers
US20110012273A1 (en) * 2008-03-19 2011-01-20 Akiko Hara Method for Producing Wafer Lens
US8298227B2 (en) 2008-05-14 2012-10-30 Endosense Sa Temperature compensated strain sensing catheter
WO2009152109A1 (en) * 2008-06-13 2009-12-17 Incitor, Llc Single strand dimensional construction of dna in 3d space
JP5149083B2 (en) * 2008-06-16 2013-02-20 富士フイルム株式会社 Pattern forming method, and a substrate processing method, the method of duplication mold structure, and a mold structure
JP5638523B2 (en) * 2008-07-17 2014-12-10 エージェンシー・フォー・サイエンス・テクノロジー・アンド・リサーチ Method of making an imprint on the polymer structure
JP2010030153A (en) * 2008-07-29 2010-02-12 Toshiba Corp Pattern forming method and pattern forming apparatus
CN101637951B (en) * 2008-07-31 2012-10-10 鸿富锦精密工业(深圳)有限公司 Wafer level optical lens forming device and alignment method thereof
KR20100013577A (en) 2008-07-31 2010-02-10 서울대학교산학협력단 Removal of bulge effects in nanopatterning
US9028242B2 (en) * 2008-08-05 2015-05-12 Smoltek Ab Template and method of making high aspect ratio template for lithography and use of the template for perforating a substrate at nanoscale
JP5117318B2 (en) * 2008-08-07 2013-01-16 株式会社日立ハイテクノロジーズ Microstructure transfer device using nanoimprinting stamper and the stamper
US8101519B2 (en) * 2008-08-14 2012-01-24 Samsung Electronics Co., Ltd. Mold, manufacturing method of mold, method for forming patterns using mold, and display substrate and display device manufactured by using method for forming patterns
JP4609562B2 (en) * 2008-09-10 2011-01-12 日立電線株式会社 Stamper and its manufacturing method for a fine structure transfer
US20100109195A1 (en) * 2008-11-05 2010-05-06 Molecular Imprints, Inc. Release agent partition control in imprint lithography
US8262975B2 (en) * 2008-11-11 2012-09-11 HGST Netherlands B.V Self-releasing resist material for nano-imprint processes
KR20120097413A (en) * 2009-12-30 2012-09-03 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Method of using a mask to provide a patterned substrate
JP5563319B2 (en) * 2010-01-19 2014-07-30 キヤノン株式会社 Imprint apparatus, and articles manufacturing method of
US8747092B2 (en) 2010-01-22 2014-06-10 Nanonex Corporation Fast nanoimprinting apparatus using deformale mold
DE102011102350A1 (en) * 2011-05-24 2012-11-29 Osram Opto Semiconductors Gmbh An optical element, optoelectronic device and methods for producing these
CN102929100B (en) * 2012-11-22 2014-11-19 南昌欧菲光纳米科技有限公司 Device and method for implementing alignment reel-to-reel UV (ultraviolet) forming
JP2015032616A (en) * 2013-07-31 2015-02-16 株式会社東芝 Template, processing method of template, pattern forming method and imprinting resist

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287235A (en) * 1979-05-29 1981-09-01 Massachusetts Institute Of Technology X-ray lithography at ˜100 A linewidths using X-ray masks fabricated by shadowing techniques
US4512848A (en) * 1984-02-06 1985-04-23 Exxon Research And Engineering Co. Procedure for fabrication of microstructures over large areas using physical replication
US4543225A (en) * 1984-07-05 1985-09-24 Docdata N.V. Method and system for reproducing relief structures onto a substrate
US5259926A (en) * 1991-09-24 1993-11-09 Hitachi, Ltd. Method of manufacturing a thin-film pattern on a substrate
US5338396A (en) * 1993-11-01 1994-08-16 Motorola, Inc. Method of fabricating in-mold graphics
US5425848A (en) * 1993-03-16 1995-06-20 U.S. Philips Corporation Method of providing a patterned relief of cured photoresist on a flat substrate surface and device for carrying out such a method
US5435107A (en) * 1992-04-11 1995-07-25 Fischerwerke, Artur Fischer Gmbh & Co. Kg Bracket for repairing an attachment of an outer facade element to an inner load-bearing member
US5471455A (en) * 1994-05-17 1995-11-28 Jabr; Salim N. High density optical storage system
US5503963A (en) * 1994-07-29 1996-04-02 The Trustees Of Boston University Process for manufacturing optical data storage disk stamper
US5638355A (en) * 1994-05-17 1997-06-10 Jabr; Salim N. Optical information reproducing by detecting phase shift of elevated symbols

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2302024A (en) * 1941-05-23 1942-11-17 Bell Telephone Labor Inc Method of cutting
US3743842A (en) 1972-01-14 1973-07-03 Massachusetts Inst Technology Soft x-ray lithographic apparatus and process
US3742229A (en) * 1972-06-29 1973-06-26 Massachusetts Inst Technology Soft x-ray mask alignment system
US3833303A (en) * 1972-10-06 1974-09-03 Bausch & Lomb Measuring apparatus using the moire fringe concept of measurement
US3951548A (en) * 1974-07-22 1976-04-20 Baird-Atomic, Inc. Electro-optical fourier vernier device
US4037325A (en) * 1975-01-13 1977-07-26 Quality Measurement Systems, Inc. Linear glass scale height gage
US4200395A (en) * 1977-05-03 1980-04-29 Massachusetts Institute Of Technology Alignment of diffraction gratings
US4211489A (en) * 1978-01-16 1980-07-08 Rca Corporation Photomask alignment system
US4325779A (en) 1979-04-17 1982-04-20 Beatrice Foods Co. Method for shaping and finishing a workpiece
US4383026A (en) 1979-05-31 1983-05-10 Bell Telephone Laboratories, Incorporated Accelerated particle lithographic processing and articles so produced
JPS5811512B2 (en) 1979-07-25 1983-03-03 Cho Eru Esu Ai Gijutsu Kenkyu Kumiai
US4244683A (en) * 1979-09-20 1981-01-13 Reflexite Corporation Apparatus for compression molding of retroreflective sheeting
US4310743A (en) 1979-09-24 1982-01-12 Hughes Aircraft Company Ion beam lithography process and apparatus using step-and-repeat exposure
JPS6349892B2 (en) * 1981-06-12 1988-10-06 Hitachi Ltd
US4450358A (en) 1982-09-22 1984-05-22 Honeywell Inc. Optical lithographic system
US4498009A (en) 1982-09-22 1985-02-05 Honeywell Inc. Optical lithographic system having a dynamic coherent optical system
US4516253A (en) 1983-03-15 1985-05-07 Micronix Partners Lithography system
US4592081A (en) * 1984-02-10 1986-05-27 Varian Associates, Inc. Adaptive X-ray lithography mask
US4606788A (en) 1984-04-12 1986-08-19 Moran Peter L Methods of and apparatus for forming conductive patterns on a substrate
US4552615A (en) 1984-05-21 1985-11-12 International Business Machines Corporation Process for forming a high density metallurgy system on a substrate and structure thereof
US4588468A (en) * 1985-03-28 1986-05-13 Avco Corporation Apparatus for changing and repairing printed circuit boards
NL8600809A (en) 1986-03-28 1987-10-16 Philips Nv Method of providing a mold with a release layer.
US4832790A (en) 1986-04-11 1989-05-23 Advanced Tool Technologies, Inc. Method of making metal molds and dies
DE3789491T2 (en) 1986-11-27 1994-10-20 Horiba Ltd Plate-shaped glass electrode.
US4731155A (en) 1987-04-15 1988-03-15 General Electric Company Process for forming a lithographic mask
JPH01196749A (en) 1988-01-30 1989-08-08 Hoya Corp Manufacture of substrate for optical information recording medium
JP2505051B2 (en) * 1990-02-01 1996-06-05 三菱電機株式会社 Method of manufacturing a resin sealing device and a semiconductor device a semiconductor device
US5201996A (en) 1990-04-30 1993-04-13 Bell Communications Research, Inc. Patterning method for epitaxial lift-off processing
US5300169A (en) * 1991-01-28 1994-04-05 Dai Nippon Printing Co., Ltd. Transfer foil having reflecting layer with fine dimple pattern recorded thereon
JPH0818336B2 (en) 1991-02-06 1996-02-28 松下電器産業株式会社 Shaping member and a manufacturing method thereof
JPH04332694A (en) 1991-05-08 1992-11-19 Matsushita Electric Ind Co Ltd Intaglio and preparation thereof
US5277749A (en) 1991-10-17 1994-01-11 International Business Machines Corporation Methods and apparatus for relieving stress and resisting stencil delamination when performing lift-off processes that utilize high stress metals and/or multiple evaporation steps
GB9207627D0 (en) 1992-04-08 1992-05-27 Northern Telecom Ltd Manufacture of optical grating structures
US5512131A (en) * 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US5434107A (en) * 1994-01-28 1995-07-18 Texas Instruments Incorporated Method for planarization
US6010609A (en) * 1995-07-28 2000-01-04 Nippon Carside Kogyo Kabushiki Kaisha Method of making a microprism master mold
US6309580B1 (en) * 1995-11-15 2001-10-30 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US5861113A (en) * 1996-08-01 1999-01-19 The United States Of America As Represented By The Secretary Of Commerce Fabrication of embossed diffractive optics with reusable release agent
EP0954420B1 (en) 1996-12-19 2003-03-12 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Method for making elastic bumps
JP3524343B2 (en) * 1997-08-26 2004-05-10 キヤノン株式会社 Protrusions having a forming method with a small opening of the minute aperture, and a probe or a multi-probe according to them and surface observation apparatus using the probe, an exposure apparatus, an information processing apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287235A (en) * 1979-05-29 1981-09-01 Massachusetts Institute Of Technology X-ray lithography at ˜100 A linewidths using X-ray masks fabricated by shadowing techniques
US4512848A (en) * 1984-02-06 1985-04-23 Exxon Research And Engineering Co. Procedure for fabrication of microstructures over large areas using physical replication
US4543225A (en) * 1984-07-05 1985-09-24 Docdata N.V. Method and system for reproducing relief structures onto a substrate
US5259926A (en) * 1991-09-24 1993-11-09 Hitachi, Ltd. Method of manufacturing a thin-film pattern on a substrate
US5435107A (en) * 1992-04-11 1995-07-25 Fischerwerke, Artur Fischer Gmbh & Co. Kg Bracket for repairing an attachment of an outer facade element to an inner load-bearing member
US5425848A (en) * 1993-03-16 1995-06-20 U.S. Philips Corporation Method of providing a patterned relief of cured photoresist on a flat substrate surface and device for carrying out such a method
US5338396A (en) * 1993-11-01 1994-08-16 Motorola, Inc. Method of fabricating in-mold graphics
US5471455A (en) * 1994-05-17 1995-11-28 Jabr; Salim N. High density optical storage system
US5638355A (en) * 1994-05-17 1997-06-10 Jabr; Salim N. Optical information reproducing by detecting phase shift of elevated symbols
US5503963A (en) * 1994-07-29 1996-04-02 The Trustees Of Boston University Process for manufacturing optical data storage disk stamper

Cited By (334)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060013204A1 (en) * 1998-12-04 2006-01-19 Tekelec Methods and systems for communicating SS7 messages over packet-based network using transport adapter layer interface
US20050286502A1 (en) * 1998-12-04 2005-12-29 Tekelec Methods and systems for communicating SS7 messages over packet-based network using transport adapter layer interface
US20060077978A1 (en) * 1998-12-04 2006-04-13 Tekelec Methods and systems for communicating signaling system 7 (SS7) user part messages among SS7 signaling points (SPs) and internet protocol (IP) nodes using signal transfer points (STPs)
US20050238036A1 (en) * 1998-12-04 2005-10-27 Tekelec Edge device and method for interconnecting SS7 signaling points (SPs) using edge device
US20050265341A1 (en) * 1998-12-04 2005-12-01 Tekelec Methods and systems for communicating SS7 messages over packet-based network using transport adapter layer interface
US20050236739A1 (en) * 1999-03-11 2005-10-27 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US20080075115A1 (en) * 2000-06-01 2008-03-27 Tekelec Methods and systems for providing converged network management functionality in a gateway routing node
US20080075068A1 (en) * 2000-06-01 2008-03-27 Tekelec Methods and systems for providing converged network management functionality in a gateway routing node
US7708542B2 (en) 2000-07-16 2010-05-04 Board Of Regents, The University Of Texas System Device for holding a template for use in imprint lithography
US20040163563A1 (en) * 2000-07-16 2004-08-26 The Board Of Regents, The University Of Texas System Imprint lithography template having a mold to compensate for material changes of an underlying liquid
US7303383B1 (en) 2000-07-16 2007-12-04 Board Of Regents, The University Of Texas System Imprint lithography system to produce light to impinge upon and polymerize a liquid in superimposition with template overlay marks
US7186483B2 (en) 2000-07-16 2007-03-06 Board Of Regents, The University Of Texas System Method of determining alignment of a template and a substrate having a liquid disposed therebetween
US20070264588A1 (en) * 2000-07-16 2007-11-15 Board Of Regents, The University Of Texas System Imprint lithography system to produce light to impinge upon and polymerize a liquid in superimposition with template overlay marks
US20040189994A1 (en) * 2000-07-16 2004-09-30 Board Of Regents, The University Of Texas System Method of determining alignment of a template and a substrate having a liquid disposed therebetween
US20080199816A1 (en) * 2000-07-17 2008-08-21 The University Of Texas Board Of Regents Method of Automatic Fluid Dispensing for Imprint Lithography Processes
US20020094496A1 (en) * 2000-07-17 2002-07-18 Choi Byung J. Method and system of automatic fluid dispensing for imprint lithography processes
US9223202B2 (en) 2000-07-17 2015-12-29 Board Of Regents, The University Of Texas System Method of automatic fluid dispensing for imprint lithography processes
US20020093122A1 (en) * 2000-08-01 2002-07-18 Choi Byung J. Methods for high-precision gap and orientation sensing between a transparent template and substrate for imprint lithography
US20020150398A1 (en) * 2000-08-21 2002-10-17 Choi Byung J. Flexure based macro motion translation stage
US8016277B2 (en) 2000-08-21 2011-09-13 Board Of Regents, The University Of Texas System Flexure based macro motion translation stage
US7229273B2 (en) 2000-10-12 2007-06-12 Board Of Regents, The University Of Texas System Imprint lithography template having a feature size under 250 nm
US20080095878A1 (en) * 2000-10-12 2008-04-24 Board Of Regents, University Of Texas System Imprint Lithography Template Having a Feature Size Under 250 nm
US20090037004A1 (en) * 2000-10-12 2009-02-05 Molecular Imprints, Inc. Method and System to Control Movement of a Body for Nano-Scale Manufacturing
US7432634B2 (en) 2000-10-27 2008-10-07 Board Of Regents, University Of Texas System Remote center compliant flexure device
US7471484B2 (en) 2001-02-16 2008-12-30 Wd Media, Inc. Patterned medium and recording head
US20060139814A1 (en) * 2001-02-16 2006-06-29 David Wachenschwanz Patterned medium and recording head
US9678038B2 (en) 2001-07-25 2017-06-13 The Trustees Of Princeton University Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US20040197843A1 (en) * 2001-07-25 2004-10-07 Chou Stephen Y. Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US20100029508A1 (en) * 2001-07-25 2010-02-04 The Trustees Of Princeton University Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US8652828B2 (en) 2001-07-25 2014-02-18 The Trustees Of Princeton University Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US7670770B2 (en) 2001-07-25 2010-03-02 The Trustees Of Princeton University Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US9389217B2 (en) 2001-07-25 2016-07-12 The Trustees Of Princeton University Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US20070024448A1 (en) * 2002-04-08 2007-02-01 Universal Surveillance Corporation Article surveillance tag having a vial
US7217562B2 (en) 2002-04-16 2007-05-15 Princeton University Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof
US8333934B2 (en) 2002-04-16 2012-12-18 Princeton University Gradient structures interfacing microfluidics and nanofluidics
US9733185B2 (en) 2002-04-16 2017-08-15 Princeton University Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof
US20030205657A1 (en) * 2002-05-01 2003-11-06 Voisin Ronald D. Methods of manufacturing a lithography template
US20030215577A1 (en) * 2002-05-16 2003-11-20 Willson Carlton Grant Method and system for fabricating nanoscale patterns in light curable compositions using an electric field
US20030235787A1 (en) * 2002-06-24 2003-12-25 Watts Michael P.C. Low viscosity high resolution patterning material
US20050051698A1 (en) * 2002-07-08 2005-03-10 Molecular Imprints, Inc. Conforming template for patterning liquids disposed on substrates
US7699598B2 (en) 2002-07-08 2010-04-20 Molecular Imprints, Inc. Conforming template for patterning liquids disposed on substrates
US7179079B2 (en) 2002-07-08 2007-02-20 Molecular Imprints, Inc. Conforming template for patterning liquids disposed on substrates
US7252715B2 (en) 2002-07-09 2007-08-07 Molecular Imprints, Inc. System for dispensing liquids
US20040241324A1 (en) * 2002-07-09 2004-12-02 Molecular Imprints, Inc. System for dispensing liquids
US20100053578A1 (en) * 2002-07-11 2010-03-04 Molecular Imprints, Inc. Apparatus for imprint lithography using an electric field
US7727453B2 (en) 2002-07-11 2010-06-01 Molecular Imprints, Inc. Step and repeat imprint lithography processes
US20040022888A1 (en) * 2002-08-01 2004-02-05 Sreenivasan Sidlgata V. Alignment systems for imprint lithography
US20040021866A1 (en) * 2002-08-01 2004-02-05 Watts Michael P.C. Scatterometry alignment for imprint lithography
US8349241B2 (en) 2002-10-04 2013-01-08 Molecular Imprints, Inc. Method to arrange features on a substrate to replicate features having minimal dimensional variability
US20040065976A1 (en) * 2002-10-04 2004-04-08 Sreenivasan Sidlgata V. Method and a mold to arrange features on a substrate to replicate features having minimal dimensional variability
US6982783B2 (en) 2002-11-13 2006-01-03 Molecular Imprints, Inc. Chucking system for modulating shapes of substrates
US20040223131A1 (en) * 2002-11-13 2004-11-11 Molecular Imprints, Inc. Chucking system for modulating shapes of substrates
US20100143521A1 (en) * 2002-11-13 2010-06-10 Molecular Imprints, Inc. Method for Expelling Gas Positioned Between a Substrate and a Mold
US20070228589A1 (en) * 2002-11-13 2007-10-04 Molecular Imprints, Inc. Method for expelling gas positioned between a substrate and a mold
US8282383B2 (en) * 2002-11-13 2012-10-09 Molecular Imprints, Inc. Method for expelling gas positioned between a substrate and a mold
US7691313B2 (en) 2002-11-13 2010-04-06 Molecular Imprints, Inc. Method for expelling gas positioned between a substrate and a mold
US20070039922A1 (en) * 2002-11-27 2007-02-22 Wachenschwanz David E Perpendicular magnetic discrete track recording disk
US20050120545A1 (en) * 2002-11-27 2005-06-09 Wachenschwanz David E. Magnetic discrete track recording disk
US7147790B2 (en) 2002-11-27 2006-12-12 Komag, Inc. Perpendicular magnetic discrete track recording disk
US20050036223A1 (en) * 2002-11-27 2005-02-17 Wachenschwanz David E. Magnetic discrete track recording disk
US7608193B2 (en) 2002-11-27 2009-10-27 Wd Media, Inc. Perpendicular magnetic discrete track recording disk
US7549209B2 (en) 2002-11-27 2009-06-23 Wd Media, Inc. Method of fabricating a magnetic discrete track recording disk
US20070041306A1 (en) * 2002-11-27 2007-02-22 Wachenschwanz David E Perpendicular magnetic discrete track recording disk
US7656615B2 (en) 2002-11-27 2010-02-02 Wd Media, Inc. Perpendicular magnetic recording disk with a soft magnetic layer having a discrete track recording pattern
US20040116548A1 (en) * 2002-12-12 2004-06-17 Molecular Imprints, Inc. Compositions for dark-field polymerization and method of using the same for imprint lithography processes
US7365103B2 (en) 2002-12-12 2008-04-29 Board Of Regents, The University Of Texas System Compositions for dark-field polymerization and method of using the same for imprint lithography processes
US20040112862A1 (en) * 2002-12-12 2004-06-17 Molecular Imprints, Inc. Planarization composition and method of patterning a substrate using the same
US20050028618A1 (en) * 2002-12-12 2005-02-10 Molecular Imprints, Inc. System for determining characteristics of substrates employing fluid geometries
US20040146792A1 (en) * 2002-12-13 2004-07-29 Molecular Imprints, Inc. Magnification correction employing out-of-plane distortion of a substrate
US7323130B2 (en) 2002-12-13 2008-01-29 Molecular Imprints, Inc. Magnification correction employing out-of-plane distortion of a substrate
US20040168613A1 (en) * 2003-02-27 2004-09-02 Molecular Imprints, Inc. Composition and method to form a release layer
US20040188381A1 (en) * 2003-03-25 2004-09-30 Molecular Imprints, Inc. Positive tone bi-layer imprint lithography method
US20040202865A1 (en) * 2003-04-08 2004-10-14 Andrew Homola Release coating for stamper
US20040209123A1 (en) * 2003-04-17 2004-10-21 Bajorek Christopher H. Method of fabricating a discrete track recording disk using a bilayer resist for metal lift-off
US20040209470A1 (en) * 2003-04-17 2004-10-21 Bajorek Christopher H. Isothermal imprinting
US6951173B1 (en) 2003-05-14 2005-10-04 Molecular Imprints, Inc. Assembly and method for transferring imprint lithography templates
US20040256764A1 (en) * 2003-06-17 2004-12-23 University Of Texas System Board Of Regents Method to reduce adhesion between a conformable region and a pattern of a mold
US7150622B2 (en) 2003-07-09 2006-12-19 Molecular Imprints, Inc. Systems for magnification and distortion correction for imprint lithography processes
US20050006343A1 (en) * 2003-07-09 2005-01-13 Molecular Imprints, Inc. Systems for magnification and distortion correction for imprint lithography processes
US20050061773A1 (en) * 2003-08-21 2005-03-24 Byung-Jin Choi Capillary imprinting technique
US7442336B2 (en) 2003-08-21 2008-10-28 Molecular Imprints, Inc. Capillary imprinting technique
US20050064344A1 (en) * 2003-09-18 2005-03-24 University Of Texas System Board Of Regents Imprint lithography templates having alignment marks
EP1664925A2 (en) * 2003-09-18 2006-06-07 The Board of Regents of the University of Texas System Imprint lithography templates having alignment marks
EP1664925A4 (en) * 2003-09-18 2007-06-20 Univ Texas Imprint lithography templates having alignment marks
US20050067379A1 (en) * 2003-09-25 2005-03-31 Molecular Imprints, Inc. Imprint lithography template having opaque alignment marks
WO2005038525A1 (en) * 2003-09-26 2005-04-28 Infineon Technologies Ag Stamp device for use in soft lithography and method for producing the same
US20060174789A1 (en) * 2003-09-26 2006-08-10 Maik Liebau Stamp device for use in soft lithography and method for producing the same
US8211214B2 (en) 2003-10-02 2012-07-03 Molecular Imprints, Inc. Single phase fluid imprint lithography method
US20050072757A1 (en) * 2003-10-02 2005-04-07 University Of Texas System Board Of Regents Method of creating a turbulent flow of fluid between a mold and a substrate
US20080141862A1 (en) * 2003-10-02 2008-06-19 Molecular Imprints, Inc. Single Phase Fluid Imprint Lithography Method
US7531025B2 (en) 2003-10-02 2009-05-12 Molecular Imprints, Inc. Method of creating a turbulent flow of fluid between a mold and a substrate
US7270533B2 (en) 2003-10-02 2007-09-18 University Of Texas System, Board Of Regents System for creating a turbulent flow of fluid between a mold and a substrate
US20050072755A1 (en) * 2003-10-02 2005-04-07 University Of Texas System Board Of Regents Single phase fluid imprint lithography method
US20050074512A1 (en) * 2003-10-02 2005-04-07 University Of Texas System Board Of Regents System for creating a turbulent flow of fluid between a mold and a substrate
US7261830B2 (en) 2003-10-16 2007-08-28 Molecular Imprints, Inc. Applying imprinting material to substrates employing electromagnetic fields
US20050082253A1 (en) * 2003-10-16 2005-04-21 Molecular Imprints, Inc. Applying imprinting material to substrates employing electromagnetic fields
US20060141245A1 (en) * 2003-10-17 2006-06-29 Francesco Stellacci Nanocontact printing
US7862849B2 (en) 2003-10-17 2011-01-04 Massachusetts Institute Of Technology Nanocontact printing
US7122482B2 (en) 2003-10-27 2006-10-17 Molecular Imprints, Inc. Methods for fabricating patterned features utilizing imprint lithography
US20050098534A1 (en) * 2003-11-12 2005-05-12 Molecular Imprints, Inc. Formation of conductive templates employing indium tin oxide
US20050106321A1 (en) * 2003-11-14 2005-05-19 Molecular Imprints, Inc. Dispense geometery to achieve high-speed filling and throughput
US20050150862A1 (en) * 2004-01-13 2005-07-14 Harper Bruce M. Workpiece alignment assembly
US20050151282A1 (en) * 2004-01-13 2005-07-14 Harper Bruce M. Workpiece handler and alignment assembly
US20050151300A1 (en) * 2004-01-13 2005-07-14 Harper Bruce M. Workpiece isothermal imprinting
US20050158419A1 (en) * 2004-01-15 2005-07-21 Watts Michael P. Thermal processing system for imprint lithography
US20060125154A1 (en) * 2004-01-15 2006-06-15 Molecular Imprints, Inc. Method to improve the flow rate of imprinting material employing an absorption layer
US20050156353A1 (en) * 2004-01-15 2005-07-21 Watts Michael P. Method to improve the flow rate of imprinting material
US8100685B1 (en) 2004-01-20 2012-01-24 Wd Media, Inc. Imprint embossing alignment system
US20050160011A1 (en) * 2004-01-20 2005-07-21 Molecular Imprints, Inc. Method for concurrently employing differing materials to form a layer on a substrate
US20050158163A1 (en) * 2004-01-20 2005-07-21 Harper Bruce M. Imprint embossing alignment system
US7329114B2 (en) 2004-01-20 2008-02-12 Komag, Inc. Isothermal imprint embossing system
US7686606B2 (en) 2004-01-20 2010-03-30 Wd Media, Inc. Imprint embossing alignment system
US20080093760A1 (en) * 2004-01-20 2008-04-24 Harper Bruce M Isothermal imprint embossing system
US20050155554A1 (en) * 2004-01-20 2005-07-21 Saito Toshiyuki M. Imprint embossing system
US20050160934A1 (en) * 2004-01-23 2005-07-28 Molecular Imprints, Inc. Materials and methods for imprint lithography
US8148251B2 (en) 2004-01-30 2012-04-03 Hewlett-Packard Development Company, L.P. Forming a semiconductor device
GB2411289A (en) * 2004-01-30 2005-08-24 Hewlett Packard Development Co Method and system for forming a semiconductor device
GB2411289B (en) * 2004-01-30 2008-02-13 Hewlett Packard Development Co Forming a semiconductor device
US20050170639A1 (en) * 2004-01-30 2005-08-04 Ping Mei Forming a semiconductor device
US7019835B2 (en) 2004-02-19 2006-03-28 Molecular Imprints, Inc. Method and system to measure characteristics of a film disposed on a substrate
US20050185169A1 (en) * 2004-02-19 2005-08-25 Molecular Imprints, Inc. Method and system to measure characteristics of a film disposed on a substrate
US20050187339A1 (en) * 2004-02-23 2005-08-25 Molecular Imprints, Inc. Materials for imprint lithography
US8076386B2 (en) 2004-02-23 2011-12-13 Molecular Imprints, Inc. Materials for imprint lithography
US20050189676A1 (en) * 2004-02-27 2005-09-01 Molecular Imprints, Inc. Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography
US7906180B2 (en) 2004-02-27 2011-03-15 Molecular Imprints, Inc. Composition for an etching mask comprising a silicon-containing material
US7698999B2 (en) 2004-03-04 2010-04-20 Asml Netherlands B.V. Printing apparatus and device manufacturing method
US20050211161A1 (en) * 2004-03-04 2005-09-29 Asml Netherlands B.V. Printing apparatus and device manufacturing method
US7730834B2 (en) 2004-03-04 2010-06-08 Asml Netherlands B.V. Printing apparatus and device manufacturing method
US20050193944A1 (en) * 2004-03-04 2005-09-08 Asml Netherlands B.V. Printing apparatus and device manufacturing method
US20050212022A1 (en) * 2004-03-24 2005-09-29 Greer Edward C Memory cell having an electric field programmable storage element, and method of operating same
US7140861B2 (en) 2004-04-27 2006-11-28 Molecular Imprints, Inc. Compliant hard template for UV imprinting
US20050236360A1 (en) * 2004-04-27 2005-10-27 Molecular Imprints, Inc. Compliant hard template for UV imprinting
US20050253307A1 (en) * 2004-05-11 2005-11-17 Molecualr Imprints, Inc. Method of patterning a conductive layer on a substrate
US7186656B2 (en) 2004-05-21 2007-03-06 Molecular Imprints, Inc. Method of forming a recessed structure employing a reverse tone process
US20050260848A1 (en) * 2004-05-21 2005-11-24 Molecular Imprints, Inc. Method of forming a recessed structure employing a reverse tone process
US20050263077A1 (en) * 2004-05-28 2005-12-01 Board Of Regents, The University Of Texas System Adaptive shape substrate support method
US7504268B2 (en) 2004-05-28 2009-03-17 Board Of Regents, The University Of Texas System Adaptive shape substrate support method
US20050276919A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method for dispensing a fluid on a substrate
US8563438B2 (en) 2004-06-01 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20050274219A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
US20100105206A1 (en) * 2004-06-01 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20050275311A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Compliant device for nano-scale manufacturing
US8647554B2 (en) 2004-06-15 2014-02-11 Molecular Imprints, Inc. Residual layer thickness measurement and correction
US20100286811A1 (en) * 2004-06-15 2010-11-11 Molecular Imprints, Inc. Residual Layer Thickness Measurement and Correction
US8366434B2 (en) * 2004-07-20 2013-02-05 Molecular Imprints, Inc. Imprint alignment method, system and template
US7785526B2 (en) 2004-07-20 2010-08-31 Molecular Imprints, Inc. Imprint alignment method, system, and template
US20100278955A1 (en) * 2004-07-20 2010-11-04 Molecular Imprints, Inc. Imprint Alignment Method, System and Template
US20060017876A1 (en) * 2004-07-23 2006-01-26 Molecular Imprints, Inc. Displays and method for fabricating displays
US20060035464A1 (en) * 2004-08-13 2006-02-16 Molecular Imprints, Inc. Method of planarizing a semiconductor substrate
US7105452B2 (en) 2004-08-13 2006-09-12 Molecular Imprints, Inc. Method of planarizing a semiconductor substrate with an etching chemistry
US7309225B2 (en) 2004-08-13 2007-12-18 Molecular Imprints, Inc. Moat system for an imprint lithography template
US20060032437A1 (en) * 2004-08-13 2006-02-16 Molecular Imprints, Inc. Moat system for an imprint lithography template
US7939131B2 (en) 2004-08-16 2011-05-10 Molecular Imprints, Inc. Method to provide a layer with uniform etch characteristics
US20060035029A1 (en) * 2004-08-16 2006-02-16 Molecular Imprints, Inc. Method to provide a layer with uniform etch characteristics
US20060036051A1 (en) * 2004-08-16 2006-02-16 Molecular Imprints, Inc. Composition to provide a layer with uniform etch characteristics
US7282550B2 (en) 2004-08-16 2007-10-16 Molecular Imprints, Inc. Composition to provide a layer with uniform etch characteristics
US20060060557A1 (en) * 2004-09-21 2006-03-23 Sreenivasan Sidlgata V Reverse tone patterning on surfaces having surface planarity perturbations
US7241395B2 (en) 2004-09-21 2007-07-10 Molecular Imprints, Inc. Reverse tone patterning on surfaces having planarity perturbations
US7041604B2 (en) 2004-09-21 2006-05-09 Molecular Imprints, Inc. Method of patterning surfaces while providing greater control of recess anisotropy
US7252777B2 (en) 2004-09-21 2007-08-07 Molecular Imprints, Inc. Method of forming an in-situ recessed structure
US20060063277A1 (en) * 2004-09-21 2006-03-23 Molecular Imprints, Inc. Method of forming an in-situ recessed structure
US20060063112A1 (en) * 2004-09-21 2006-03-23 Molecular Imprints, Inc. Pattern reversal employing thick residual layers
US20060063359A1 (en) * 2004-09-21 2006-03-23 Molecular Imprints, Inc. Patterning substrates employing multi-film layers defining etch differential interfaces
US20060063387A1 (en) * 2004-09-21 2006-03-23 Molecular Imprints, Inc. Method of Patterning Surfaces While Providing Greater Control of Recess Anisotropy
US20060062922A1 (en) * 2004-09-23 2006-03-23 Molecular Imprints, Inc. Polymerization technique to attenuate oxygen inhibition of solidification of liquids and composition therefor
US20070141271A1 (en) * 2004-09-23 2007-06-21 Molecular Imprints, Inc. Method for controlling distribution of fluid components on a body
US7981481B2 (en) 2004-09-23 2011-07-19 Molecular Imprints, Inc. Method for controlling distribution of fluid components on a body
US7244386B2 (en) 2004-09-27 2007-07-17 Molecular Imprints, Inc. Method of compensating for a volumetric shrinkage of a material disposed upon a substrate to form a substantially planar structure therefrom
US20060081557A1 (en) * 2004-10-18 2006-04-20 Molecular Imprints, Inc. Low-k dielectric functional imprinting materials
US20060111454A1 (en) * 2004-11-24 2006-05-25 Molecular Imprints, Inc. Composition to reduce adhesion between a conformable region and a mold
US20060108710A1 (en) * 2004-11-24 2006-05-25 Molecular Imprints, Inc. Method to reduce adhesion between a conformable region and a mold
US7880872B2 (en) 2004-11-30 2011-02-01 Molecular Imprints, Inc. Interferometric analysis method for the manufacture of nano-scale devices
US20090169662A1 (en) * 2004-11-30 2009-07-02 Molecular Imprints, Inc. Enhanced Multi Channel Alignment
US7785096B2 (en) 2004-11-30 2010-08-31 Molecular Imprints, Inc. Enhanced multi channel alignment
US20060126058A1 (en) * 2004-11-30 2006-06-15 Molecular Imprints, Inc. Interferometric analysis for the manufacture of nano-scale devices
US20060113697A1 (en) * 2004-12-01 2006-06-01 Molecular Imprints, Inc. Eliminating printability of sub-resolution defects in imprint lithography
US20060115999A1 (en) * 2004-12-01 2006-06-01 Molecular Imprints, Inc. Methods of exposure for the purpose of thermal management for imprint lithography processes
US7811505B2 (en) 2004-12-07 2010-10-12 Molecular Imprints, Inc. Method for fast filling of templates for imprint lithography using on template dispense
US7676088B2 (en) 2004-12-23 2010-03-09 Asml Netherlands B.V. Imprint lithography
US8571318B2 (en) 2004-12-23 2013-10-29 Asml Netherlands B.V. Imprint lithography
US20100050893A1 (en) * 2004-12-23 2010-03-04 Asml Netherlands B.V. Imprint lithography
US20060137555A1 (en) * 2004-12-23 2006-06-29 Asml Netherlands B.V. Imprint lithography
US7636475B2 (en) 2004-12-23 2009-12-22 Asml Netherlands B.V. Imprint lithography
US8131078B2 (en) 2004-12-23 2012-03-06 Asml Netherlands B.V. Imprint lithography
US20060159305A1 (en) * 2004-12-23 2006-07-20 Asml Netherlands B.V. Imprint lithography
US20060150849A1 (en) * 2004-12-30 2006-07-13 Asml Netherlands B.V. Imprint lithography
US20060144274A1 (en) * 2004-12-30 2006-07-06 Asml Netherlands B.V. Imprint lithography
US20060144814A1 (en) * 2004-12-30 2006-07-06 Asml Netherlands B.V. Imprint lithography
US7490547B2 (en) 2004-12-30 2009-02-17 Asml Netherlands B.V. Imprint lithography
US7686970B2 (en) 2004-12-30 2010-03-30 Asml Netherlands B.V. Imprint lithography
US20060144275A1 (en) * 2004-12-30 2006-07-06 Asml Netherlands B.V. Imprint lithography
US20100139862A1 (en) * 2004-12-30 2010-06-10 Asml Netherlands B.V. Imprint lithography
US9341944B2 (en) 2004-12-30 2016-05-17 Asml Netherlands B.V. Imprint lithography
US20060145398A1 (en) * 2004-12-30 2006-07-06 Board Of Regents, The University Of Texas System Release layer comprising diamond-like carbon (DLC) or doped DLC with tunable composition for imprint lithography templates and contact masks
US7354698B2 (en) 2005-01-07 2008-04-08 Asml Netherlands B.V. Imprint lithography
US20060154179A1 (en) * 2005-01-07 2006-07-13 Asml Netherlands B. V. Imprint lithography
US20060172553A1 (en) * 2005-01-31 2006-08-03 Molecular Imprints, Inc. Method of retaining a substrate to a wafer chuck
US20070190200A1 (en) * 2005-01-31 2007-08-16 Molecular Imprints, Inc. Chucking system comprising an array of fluid chambers
US20060177535A1 (en) * 2005-02-04 2006-08-10 Molecular Imprints, Inc. Imprint lithography template to facilitate control of liquid movement
US20060180952A1 (en) * 2005-02-17 2006-08-17 Asml Netherlands B.V. Imprint lithography
US7922474B2 (en) 2005-02-17 2011-04-12 Asml Netherlands B.V. Imprint lithography
US20060196377A1 (en) * 2005-03-07 2006-09-07 Asml Netherlands B.V. Imprint lithography
US7523701B2 (en) 2005-03-07 2009-04-28 Asml Netherlands B.V. Imprint lithography method and apparatus
US7906059B2 (en) 2005-03-07 2011-03-15 Asml Netherlands B.V. Imprint lithography
US7611348B2 (en) 2005-04-19 2009-11-03 Asml Netherlands B.V. Imprint lithography
US20060230959A1 (en) * 2005-04-19 2006-10-19 Asml Netherlands B.V. Imprint lithography
US20060231979A1 (en) * 2005-04-19 2006-10-19 Asml Netherlands B.V. Imprint lithography
US7762186B2 (en) 2005-04-19 2010-07-27 Asml Netherlands B.V. Imprint lithography
US8349238B2 (en) 2005-04-19 2013-01-08 Asml Netherlands B.V. Imprint lithography
US20060254446A1 (en) * 2005-05-16 2006-11-16 Asml Netherlands B.V. Imprint lithography
US7931844B2 (en) 2005-05-16 2011-04-26 Asml Netherlands B.V. Imprint lithography
US7442029B2 (en) 2005-05-16 2008-10-28 Asml Netherlands B.V. Imprint lithography
US20060266916A1 (en) * 2005-05-25 2006-11-30 Molecular Imprints, Inc. Imprint lithography template having a coating to reflect and/or absorb actinic energy
US8241550B2 (en) 2005-05-27 2012-08-14 Asml Netherlands B.V. Imprint lithography
US20060267231A1 (en) * 2005-05-27 2006-11-30 Asml Netherlands B.V. Imprint lithography
US7618250B2 (en) 2005-05-27 2009-11-17 Asml Netherlands B.V. Imprint lithography
US7692771B2 (en) 2005-05-27 2010-04-06 Asml Netherlands B.V. Imprint lithography
US20060275524A1 (en) * 2005-05-27 2006-12-07 Asml Netherlands B.V. Imprint lithography
US20100084565A1 (en) * 2005-05-27 2010-04-08 Asml Netherlands B.V. Imprint lithography
US20060268256A1 (en) * 2005-05-27 2006-11-30 Asml Netherlands B.V. Imprint lithography
US20060266244A1 (en) * 2005-05-31 2006-11-30 Asml Netherlands B.V. Imprint lithography
US7418902B2 (en) 2005-05-31 2008-09-02 Asml Netherlands B.V. Imprint lithography including alignment
US7794222B2 (en) 2005-06-08 2010-09-14 Canon Kabushiki Kaisha Mold, pattern forming method, and pattern forming apparatus
US9046793B2 (en) 2005-06-08 2015-06-02 Canon Kabushiki Kaisha Light transmissive mold and apparatus for imprinting a pattern onto a material applied on a semiconductor workpiece and related methods
US8770958B2 (en) 2005-06-08 2014-07-08 Canon Kabushiki Kaisha Pattern forming method and pattern forming apparatus in which a substrate and a mold are aligned in an in-plane direction
US20100314799A1 (en) * 2005-06-08 2010-12-16 Canon Kabushiki Kaisha Pattern forming method and pattern forming apparatus in which a substrate and a mold are aligned in an in-plane direction
EP2090929A3 (en) * 2005-06-08 2009-09-16 Canon Kabushiki Kaisha Mold, pattern forming method, and pattern forming apparatus
US20060280829A1 (en) * 2005-06-13 2006-12-14 Asml Netherlands B.V. Imprint lithography
US7377764B2 (en) 2005-06-13 2008-05-27 Asml Netherlands B.V. Imprint lithography
US20070009821A1 (en) * 2005-07-08 2007-01-11 Charlotte Cutler Devices containing multi-bit data
US7256131B2 (en) 2005-07-19 2007-08-14 Molecular Imprints, Inc. Method of controlling the critical dimension of structures formed on a substrate
US20070017899A1 (en) * 2005-07-19 2007-01-25 Molecular Imprints, Inc. Method of controlling the critical dimension of structures formed on a substrate
US20070018360A1 (en) * 2005-07-21 2007-01-25 Asml Netherlands B.V. Imprint lithography
US7708924B2 (en) 2005-07-21 2010-05-04 Asml Netherlands B.V. Imprint lithography
US20070021520A1 (en) * 2005-07-22 2007-01-25 Molecular Imprints, Inc. Composition for adhering materials together
US7759407B2 (en) 2005-07-22 2010-07-20 Molecular Imprints, Inc. Composition for adhering materials together
US8808808B2 (en) 2005-07-22 2014-08-19 Molecular Imprints, Inc. Method for imprint lithography utilizing an adhesion primer layer
US8557351B2 (en) 2005-07-22 2013-10-15 Molecular Imprints, Inc. Method for adhering materials together
US20070023976A1 (en) * 2005-07-26 2007-02-01 Asml Netherlands B.V. Imprint lithography
US7665981B2 (en) 2005-08-25 2010-02-23 Molecular Imprints, Inc. System to transfer a template transfer body between a motion stage and a docking plate
US20070064384A1 (en) * 2005-08-25 2007-03-22 Molecular Imprints, Inc. Method to transfer a template transfer body between a motion stage and a docking plate
US20070071582A1 (en) * 2005-08-25 2007-03-29 Molecular Imprints, Inc. System to transfer a template transfer body between a motion stage and a docking plate
US20070074635A1 (en) * 2005-08-25 2007-04-05 Molecular Imprints, Inc. System to couple a body and a docking plate
US7670534B2 (en) 2005-09-21 2010-03-02 Molecular Imprints, Inc. Method to control an atmosphere between a body and a substrate
US8142703B2 (en) 2005-10-05 2012-03-27 Molecular Imprints, Inc. Imprint lithography method
US20090136654A1 (en) * 2005-10-05 2009-05-28 Molecular Imprints, Inc. Contact Angle Attenuations on Multiple Surfaces
US8011915B2 (en) 2005-11-04 2011-09-06 Asml Netherlands B.V. Imprint lithography
US7878791B2 (en) 2005-11-04 2011-02-01 Asml Netherlands B.V. Imprint lithography
US20070102838A1 (en) * 2005-11-04 2007-05-10 Asml Netherlands B.V. Imprint lithography
US9778563B2 (en) 2005-11-04 2017-10-03 Asml Netherlands B.V. Imprint lithography
US20070102844A1 (en) * 2005-11-04 2007-05-10 Asml Netherlands B.V. Imprint lithography
US9864271B2 (en) 2005-11-04 2018-01-09 Asml Netherlands B.V. Imprint lithography
US7906058B2 (en) 2005-12-01 2011-03-15 Molecular Imprints, Inc. Bifurcated contact printing technique
US20070126156A1 (en) * 2005-12-01 2007-06-07 Molecular Imprints, Inc. Technique for separating a mold from solidified imprinting material
US7803308B2 (en) 2005-12-01 2010-09-28 Molecular Imprints, Inc. Technique for separating a mold from solidified imprinting material
US20070132152A1 (en) * 2005-12-08 2007-06-14 Molecular Imprints, Inc. Method and System for Double-Sided Patterning of Substrates
US7670529B2 (en) 2005-12-08 2010-03-02 Molecular Imprints, Inc. Method and system for double-sided patterning of substrates
US20090212462A1 (en) * 2005-12-21 2009-08-27 Asml Netherlans B.V. Imprint lithography
US20070141191A1 (en) * 2005-12-21 2007-06-21 Asml Netherlands B.V. Imprint lithography
US7517211B2 (en) 2005-12-21 2009-04-14 Asml Netherlands B.V. Imprint lithography
US9610727B2 (en) 2005-12-21 2017-04-04 Asml Netherlands B.V. Imprint lithography
US8753557B2 (en) 2005-12-21 2014-06-17 Asml Netherlands B.V. Imprint lithography
US20070138699A1 (en) * 2005-12-21 2007-06-21 Asml Netherlands B.V. Imprint lithography
US8100684B2 (en) 2005-12-21 2012-01-24 Asml Netherlands B.V. Imprint lithography
US20070170617A1 (en) * 2006-01-20 2007-07-26 Molecular Imprints, Inc. Patterning Substrates Employing Multiple Chucks
US7670530B2 (en) 2006-01-20 2010-03-02 Molecular Imprints, Inc. Patterning substrates employing multiple chucks
US7780893B2 (en) 2006-04-03 2010-08-24 Molecular Imprints, Inc. Method of concurrently patterning a substrate having a plurality of fields and a plurality of alignment marks
US8142850B2 (en) 2006-04-03 2012-03-27 Molecular Imprints, Inc. Patterning a plurality of fields on a substrate to compensate for differing evaporation times
US8850980B2 (en) 2006-04-03 2014-10-07 Canon Nanotechnologies, Inc. Tessellated patterns in imprint lithography
US20070228608A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Preserving Filled Features when Vacuum Wiping
US20070228593A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Residual Layer Thickness Measurement and Correction
US7802978B2 (en) 2006-04-03 2010-09-28 Molecular Imprints, Inc. Imprinting of partial fields at the edge of the wafer
US20070243655A1 (en) * 2006-04-18 2007-10-18 Molecular Imprints, Inc. Self-Aligned Process for Fabricating Imprint Templates Containing Variously Etched Features
US20090250840A1 (en) * 2006-04-18 2009-10-08 Molecular Imprints, Inc. Template Having Alignment Marks Formed of Contrast Material
US8012395B2 (en) 2006-04-18 2011-09-06 Molecular Imprints, Inc. Template having alignment marks formed of contrast material
US7854867B2 (en) 2006-04-21 2010-12-21 Molecular Imprints, Inc. Method for detecting a particle in a nanoimprint lithography system
US20070246850A1 (en) * 2006-04-21 2007-10-25 Molecular Imprints, Inc. Method for Detecting a Particle in a Nanoimprint Lithography System
US8215946B2 (en) 2006-05-18 2012-07-10 Molecular Imprints, Inc. Imprint lithography system and method
US8318253B2 (en) 2006-06-30 2012-11-27 Asml Netherlands B.V. Imprint lithography
US20080003827A1 (en) * 2006-06-30 2008-01-03 Asml Netherlands B.V. Imprintable medium dispenser
US8015939B2 (en) 2006-06-30 2011-09-13 Asml Netherlands B.V. Imprintable medium dispenser
US20080011934A1 (en) * 2006-06-30 2008-01-17 Asml Netherlands B.V. Imprint lithography
US8486485B2 (en) 2006-06-30 2013-07-16 Asml Netherlands B.V. Method of dispensing imprintable medium
US20080110557A1 (en) * 2006-11-15 2008-05-15 Molecular Imprints, Inc. Methods and Compositions for Providing Preferential Adhesion and Release of Adjacent Surfaces
US8753738B2 (en) 2007-03-06 2014-06-17 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US20100163180A1 (en) * 2007-03-22 2010-07-01 Millward Dan B Sub-10 NM Line Features Via Rapid Graphoepitaxial Self-Assembly of Amphiphilic Monolayers
US8801894B2 (en) 2007-03-22 2014-08-12 Micron Technology, Inc. Sub-10 NM line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US8557128B2 (en) 2007-03-22 2013-10-15 Micron Technology, Inc. Sub-10 nm line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US20080274413A1 (en) * 2007-03-22 2008-11-06 Micron Technology, Inc. Sub-10 nm line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US8784974B2 (en) 2007-03-22 2014-07-22 Micron Technology, Inc. Sub-10 NM line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US20080242556A1 (en) * 2007-03-28 2008-10-02 Bionanomatrix, Llc Methods of macromolecular analysis using nanochannel arrays
US8722327B2 (en) 2007-03-28 2014-05-13 Bionano Genomics, Inc. Methods of macromolecular analysis using nanochannel arrays
US9768021B2 (en) 2007-04-18 2017-09-19 Micron Technology, Inc. Methods of forming semiconductor device structures including metal oxide structures
US9276059B2 (en) 2007-04-18 2016-03-01 Micron Technology, Inc. Semiconductor device structures including metal oxide structures
US20110232515A1 (en) * 2007-04-18 2011-09-29 Micron Technology, Inc. Methods of forming a stamp, a stamp and a patterning system
US20080257187A1 (en) * 2007-04-18 2008-10-23 Micron Technology, Inc. Methods of forming a stamp, methods of patterning a substrate, and a stamp and a patterning system for same
US8956713B2 (en) 2007-04-18 2015-02-17 Micron Technology, Inc. Methods of forming a stamp and a stamp
US7959975B2 (en) 2007-04-18 2011-06-14 Micron Technology, Inc. Methods of patterning a substrate
US9142420B2 (en) 2007-04-20 2015-09-22 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US8609221B2 (en) 2007-06-12 2013-12-17 Micron Technology, Inc. Alternating self-assembling morphologies of diblock copolymers controlled by variations in surfaces
US9257256B2 (en) 2007-06-12 2016-02-09 Micron Technology, Inc. Templates including self-assembled block copolymer films
US8785559B2 (en) 2007-06-19 2014-07-22 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8551808B2 (en) 2007-06-21 2013-10-08 Micron Technology, Inc. Methods of patterning a substrate including multilayer antireflection coatings
US20080315270A1 (en) * 2007-06-21 2008-12-25 Micron Technology, Inc. Multilayer antireflection coatings, structures and devices including the same and methods of making the same
US8294139B2 (en) 2007-06-21 2012-10-23 Micron Technology, Inc. Multilayer antireflection coatings, structures and devices including the same and methods of making the same
US20090038636A1 (en) * 2007-08-09 2009-02-12 Asml Netherlands B.V. Cleaning method
US7854877B2 (en) 2007-08-14 2010-12-21 Asml Netherlands B.V. Lithography meandering order
US20090057267A1 (en) * 2007-09-05 2009-03-05 Asml Netherlands B.V. Imprint lithography
US8144309B2 (en) 2007-09-05 2012-03-27 Asml Netherlands B.V. Imprint lithography
US8323541B2 (en) 2007-09-05 2012-12-04 Asml Netherlands B.V. Imprint lithography
US8999492B2 (en) 2008-02-05 2015-04-07 Micron Technology, Inc. Method to produce nanometer-sized features with directed assembly of block copolymers
US20100316849A1 (en) * 2008-02-05 2010-12-16 Millward Dan B Method to Produce Nanometer-Sized Features with Directed Assembly of Block Copolymers
US8642157B2 (en) 2008-02-13 2014-02-04 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
US8633112B2 (en) 2008-03-21 2014-01-21 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US9315609B2 (en) 2008-03-21 2016-04-19 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US8641914B2 (en) 2008-03-21 2014-02-04 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
US9682857B2 (en) 2008-03-21 2017-06-20 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids and materials produced therefrom
US8993088B2 (en) 2008-05-02 2015-03-31 Micron Technology, Inc. Polymeric materials in self-assembled arrays and semiconductor structures comprising polymeric materials
US8097175B2 (en) 2008-10-28 2012-01-17 Micron Technology, Inc. Method for selectively permeating a self-assembled block copolymer, method for forming metal oxide structures, method for forming a metal oxide pattern, and method for patterning a semiconductor structure
US8669645B2 (en) 2008-10-28 2014-03-11 Micron Technology, Inc. Semiconductor structures including polymer material permeated with metal oxide
US20100102415A1 (en) * 2008-10-28 2010-04-29 Micron Technology, Inc. Methods for selective permeation of self-assembled block copolymers with metal oxides, methods for forming metal oxide structures, and semiconductor structures including same
US20120070927A1 (en) * 2009-05-29 2012-03-22 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor component
US8569079B2 (en) * 2009-05-29 2013-10-29 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor component
US8496466B1 (en) 2009-11-06 2013-07-30 WD Media, LLC Press system with interleaved embossing foil holders for nano-imprinting of recording media
US9330685B1 (en) 2009-11-06 2016-05-03 WD Media, LLC Press system for nano-imprinting of recording media with a two step pressing method
US9339978B1 (en) 2009-11-06 2016-05-17 WD Media, LLC Press system with interleaved embossing foil holders for nano-imprinting of recording media
US9149978B1 (en) 2009-11-06 2015-10-06 WD Media, LLC Imprinting method with embossing foil free to expand for nano-imprinting of recording media
US9120348B1 (en) 2009-11-06 2015-09-01 WD Media, LLC Press system with embossing foil free to expand for nano-imprinting of recording media
US8402638B1 (en) 2009-11-06 2013-03-26 Wd Media, Inc. Press system with embossing foil free to expand for nano-imprinting of recording media
US9431605B2 (en) 2011-11-02 2016-08-30 Micron Technology, Inc. Methods of forming semiconductor device structures
US8900963B2 (en) 2011-11-02 2014-12-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and related structures
US9087699B2 (en) 2012-10-05 2015-07-21 Micron Technology, Inc. Methods of forming an array of openings in a substrate, and related methods of forming a semiconductor device structure
US9229328B2 (en) 2013-05-02 2016-01-05 Micron Technology, Inc. Methods of forming semiconductor device structures, and related semiconductor device structures
US9177795B2 (en) 2013-09-27 2015-11-03 Micron Technology, Inc. Methods of forming nanostructures including metal oxides

Also Published As

Publication number Publication date Type
US20060127522A1 (en) 2006-06-15 application
CN1309784A (en) 2001-08-22 application
WO2000000868A1 (en) 2000-01-06 application
US20050146079A1 (en) 2005-07-07 application
WO2000000868A9 (en) 2000-03-23 application
US7114938B2 (en) 2006-10-03 grant
CN1230713C (en) 2005-12-07 grant
US6309580B1 (en) 2001-10-30 grant
US20020167117A1 (en) 2002-11-14 application

Similar Documents

Publication Publication Date Title
McClelland et al. Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold
Hirai et al. One‐Step Direct‐Patterning Template Utilizing Self‐Assembly of POSS‐Containing Block Copolymers
del Campo et al. Fabrication approaches for generating complex micro-and nanopatterns on polymeric surfaces
Grigorescu et al. Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art
US20040156108A1 (en) Articles comprising nanoscale patterns with reduced edge roughness and methods of making same
Chou et al. Imprint of sub‐25 nm vias and trenches in polymers
US20040029041A1 (en) Novel planarization method for multi-layer lithography processing
US7294294B1 (en) Surface modified stamper for imprint lithography
US20050202350A1 (en) Method for fabricating dual damascene structures using photo-imprint lithography, methods for fabricating imprint lithography molds for dual damascene structures, materials for imprintable dielectrics and equipment for photo-imprint lithography used in dual damascene patterning
US6926953B2 (en) Guided self-assembly of block copolymer films on interferometrically nanopatterned substrates
Chou et al. Imprint lithography with sub-10 nm feature size and high throughput
US20120164392A1 (en) Methods and compositions for forming patterns with isolated or discrete features using block copolymer materials
US20060121728A1 (en) Method for fast filling of templates for imprint lithography using on template dispense
US6964793B2 (en) Method for fabricating nanoscale patterns in light curable compositions using an electric field
US20060062922A1 (en) Polymerization technique to attenuate oxygen inhibition of solidification of liquids and composition therefor
Heidari et al. Nanoimprint lithography at the 6 in. wafer scale
US6656398B2 (en) Process of making a pattern in a film
US20050230882A1 (en) Method of forming a deep-featured template employed in imprint lithography
US20060134556A1 (en) Methods and compositions for forming aperiodic patterned copolymer films
US7157036B2 (en) Method to reduce adhesion between a conformable region and a pattern of a mold
US20060113697A1 (en) Eliminating printability of sub-resolution defects in imprint lithography
US20040168613A1 (en) Composition and method to form a release layer
Chou et al. Nanoimprint lithography
US20030071016A1 (en) Patterned structure reproduction using nonsticking mold
Jaszewski et al. Hot embossing in polymers as a direct way to pattern resist