US20030000218A1 - Method and apparatus for fuel gas heating in combined cycle power plants - Google Patents

Method and apparatus for fuel gas heating in combined cycle power plants Download PDF

Info

Publication number
US20030000218A1
US20030000218A1 US09/893,606 US89360601A US2003000218A1 US 20030000218 A1 US20030000218 A1 US 20030000218A1 US 89360601 A US89360601 A US 89360601A US 2003000218 A1 US2003000218 A1 US 2003000218A1
Authority
US
United States
Prior art keywords
water
fuel
section
heating
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/893,606
Other versions
US6499302B1 (en
Inventor
Jatila Ranasinghe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US09/893,606 priority Critical patent/US6499302B1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RANASINGHE, JATILA
Application granted granted Critical
Publication of US6499302B1 publication Critical patent/US6499302B1/en
Publication of US20030000218A1 publication Critical patent/US20030000218A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • This invention relates to combined cycle power plants, and more particularly, it relates to a method for fuel gas heating to improve thermal efficiency of combined cycle power plants.
  • GT gas turbines
  • HRSG heat recovery steam generator
  • ST steam turbine
  • Fuel gas heating in combined cycle power plants is typically performed to increase the thermal efficiency of the power plants.
  • hot water extracted from the exit of an IP economizer i.e., the water entering an IP evaporator
  • HRSG heat recovery steam generator
  • the maximum fuel gas heating temperature is limited by the temperature of the extracted water, which is typically lower than the saturation temperature of the IP evaporator.
  • This approach limits fuel gas heating, thus limiting the efficiency of combined cycle power plants using IP water.
  • higher fuel gas heating temperature improves the thermal efficiency of a power plant, a higher operating pressure of the IP evaporator has a detrimental effect on the steam cycle power output and the thermal efficiency of the power plant. Therefore, IP evaporator is typically operated at an optimum pressure in a combined cycle power plant, thus limiting the fuel gas heating temperature and the efficiency of the power plant.
  • the present invention provides a system and a method for recovering exhaust heat to further heat IP water for fuel gas heating to improve the thermal cycle efficiency of combined cycle power plants.
  • the system and method of the present invention increase the fuel gas heating temperature of combined cycle power plants, with IP water as the fuel gas heating medium, while maintaining the IP drum pressure at the steam cycle optimum.
  • a fuel water heating section is provided in the HRSG at a location upstream of the intermediate pressure economizer (IP-EC) section of the HRSG and further between intermediate pressure evaporator tubes.
  • IP-EC intermediate pressure economizer
  • a high pressure (HP) section and a low pressure (LP) section of the HRSG may also include one or more economizers arranged in various configurations. Also, each of the HP, IP, and LP sections may include superheaters.
  • Fuel heating water is extracted from the IP-EC discharge and delivered to the fuel water heater section for further increasing the temperature of the fuel heating water prior to its delivery to the fuel gas heater. The higher fuel heating water thus allows the fuel to be heated to a higher temperature, thereby increasing the efficiency of the combined cycle power plant.
  • the present invention overcomes the maximum heating temperature limits typically imposed by the IP drum operating pressure
  • a combined cycle power plant system comprising a compressor; a combustor receiving air provided by the compressor; a gas turbine for expanding gas provided by the compressor; a heat recovery steam generator (HRSG) for receiving exhaust gases from the gas turbine, the HRSG having a low pressure (LP) section; a high pressure (HP) section, the HP section receiving exhaust gases from the gas turbine and located upstream of the LP section, each LP and HP sections having an evaporator; an intermediate pressure (IP) section located between the HP and the LP sections, the IP section comprising an economizer, first and second evaporators, and a water heater disposed between the first and second evaporators; and a fuel gas heater for receiving heated water from the water heater.
  • HRSG heat recovery steam generator
  • the water heater may be located upstream of the economizer.
  • the fuel-heating water extracted from the economizer is heated to a higher temperature in the water heater prior to delivery to the fuel gas heater.
  • the water pressure in both the economizer and the water heater is maintained to prevent steaming of the fuel-heating water.
  • the first evaporator is preferably located between the HP evaporator section and the water heater.
  • the first evaporator may protect the fuel-heating water from steaming.
  • the fuel-heating water is preferably heated to a temperature that is higher than the saturation temperature of the first and second evaporators.
  • the present invention describes a method of increasing the temperature of fuel-heating water in a combined cycle power plant, comprising flowing exhaust gas stream from a gas turbine through a heat recovery steam generator (HRSG), the HRSG having plural sections including an intermediate pressure (IP) section, a high pressure (HP) section, and a low pressure (LP) section; providing a water heater between first and second evaporators of the IP section, the second evaporator being located downstream of the first evaporator relative to the flow of the gas stream through the HRSG; flowing fuel-heating water from an economizer to the water heater, the economizer located downstream of the water heater; heating the fuel-heating water in the water heater; and delivering the heated water to a fuel gas heater.
  • HRSG heat recovery steam generator
  • a combined cycle power plant system comprising: a gas turbine; a fuel gas heater; a heat recovery steam generator (HRSG) having plural sections including an intermediate pressure (IP) section with an evaporator having first and second evaporator sections, the HRSG in heat exchange relation with exhaust gases from the gas turbine; and a fuel-water heater disposed between the first and second evaporator sections for heating the fuel-heating water to a temperature higher than a saturation temperature of the evaporator.
  • HRSG heat recovery steam generator
  • a method of heating fuel gas in combined cycle power plants comprising: providing a heat recovery steam generator (HRSG) for receiving exhaust gases from a gas turbine; receiving water in the HRSG; providing first and second evaporators in an intermediate pressure section of a heat recovery steam generator; locating a water heater between the first and second evaporators for heating water; and delivering heated water from the water heater to a fuel gas heater.
  • HRSG heat recovery steam generator
  • a combined cycle power plant apparatus comprising: a heat recovery system having a plurality of sections for receiving and recovering heat from a gas turbine exhaust; the heat recovery system comprising a water heater located in at least one section of the heat recovery system, the water heater capable of further heating fuel-heating water received from the one section of the heat recovery system; and a fuel gas heater receiving fuel-heating water further heated by the water heater.
  • FIG. 1 illustrates a conventional method to use hot water extracted from the exit of the IP economizer for fuel gas heating
  • FIG. 2 illustrates a method of using hot water extracted from the exit of the IP economizer for fuel gas heating in accordance with a preferred embodiment of the present invention.
  • FIG. 1 illustrates a schematic flow diagram of a typical three-pressure combined cycle power plant.
  • the power plant includes a compressor 10 , a combustor 12 , and a turbine 14 powered by expanding hot gases produced in the combustor 12 for driving an electrical generator G.
  • Exhaust gases from the gas turbine 14 are supplied through conduit 15 to a heat recovery steam generator (HRSG) 16 for recovering waste heat from the exhaust gases.
  • the HRSG includes high pressure (HP), intermediate pressure (IP), and low pressure (LP) sections.
  • HP, IP, and LP sections include an evaporator section 24 , 26 , 30 , respectively.
  • the IP section further includes an economizer section 28 for pre-heating water before it is converted to steam in the evaporator section 26 .
  • the HP and LP sections may also include economizers.
  • Water is fed to the HRSG 16 through line 21 in order to generate steam. Heat recovered from the exhaust gases supplied to HRSG is transferred to water/steam in the HRSG 16 for producing steam which is supplied through line 17 to a steam turbine 18 for driving a generator 19 .
  • Line 17 represents multiple steam lines between the HRSG 16 and ST 18 for the steam produced at different pressure levels. Cooled gases from the HRSG 16 are discharged into atmosphere via exit duct 31 .
  • FIG. 2 shows a combined-cycle power plant in accordance with the present invention.
  • the combined-cycle power plant includes a fuel-water heating section (water heater) 34 in the HRSG 116 .
  • Water heater 34 is located between IP evaporator sections 32 and 33 , while evaporator sections 32 , 33 are located upstream of the economizer 128 . Fuel heating water is extracted from the economizer 128 discharge for further heating in the water heater 34 prior to its delivery to the fuel gas heater 122 .
  • Water heater 34 is located downstream of IP evaporator 33 in order to protect fuel heating water in water heater 34 from steaming during a transient operation.
  • the evaporator section 33 located upstream of the water heater 34 may act as screen tubes in the event of high exhaust gas temperatures during transient cycle operation.
  • the water heater 34 allows the fuel heating IP water to be further heated to a temperature that is higher than the saturation temperature of the IP evaporator sections 32 and 33 prior to entering the fuel gas heater 122 .
  • the water pressure in the IP economizer 128 and the water heater 34 are preferably maintained at a level to prevent steaming of the fuel-heating water, with upstream evaporator tube 33 providing additional protection from steaming.
  • the higher fuel-heating water temperature thus allows the fuel-heating water to be heated to a higher temperature, for example, to about 440° F.
  • the increased temperature of the fuel-heating water increases the combined cycle efficiency of a power plant. For example, the present invention increased the combined cycle efficiency of GE(F) class 3-pressure system by 0.08% points.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A combined cycle power plant system, comprising a compressor; a combustor receiving air provided by the compressor; a gas turbine for expanding gas provided by the compressor; a heat recovery steam generator (HRSG) for receiving exhaust gases from the gas turbine. The heat recovery steam generator (HRSG) receives exhaust gases from the gas turbine. The HRSG includes a low pressure (LP) section; a high pressure (HP) section for receiving exhaust gases from the gas turbine and located upstream of the LP section, each of the LP and HP sections include an evaporator section. An intermediate pressure (IP) section is located between the HP and the LP sections, the IP section includes an economizer, first and second evaporators, and a water heater disposed between the first and second evaporators. A fuel gas heater is provided for receiving heated water from the water heater.

Description

    FIELD OF THE INVENTION
  • This invention relates to combined cycle power plants, and more particularly, it relates to a method for fuel gas heating to improve thermal efficiency of combined cycle power plants. [0001]
  • BACKGROUND OF THE INVENTION
  • Combined cycle power plants and cogeneration facilities utilize gas turbines (GT(s)) as prime movers to generate power. These GT engines operate on the Brayton Cycle thermodynamic principle and typically have high exhaust flows and relatively high exhaust temperatures. These exhaust gases, when directed into a heat recovery boiler (typically referred to as a heat recovery steam generator (HRSG)), produce steam that can be used to generate more power. The produced steam can be directed to a steam turbine (ST) to produce additional power. In this manner, a GT produces work via the Brayton Cycle, and a ST produces power via the Rankine Cycle. Thus, the name “combined cycle” is derived. In this arrangement, the GT Brayton Cycle is also referred to as the “topping cycle” and the ST Rankine Cycle is referred to as the “bottoming cycle,” as the topping cycle produces the energy needed for the bottoming cycle to operate. [0002]
  • As technology progressed, the trend for the use of steam engines diminished and the use of steam turbines increased. One advantage of the steam turbine is its overall cycle efficiency when used in conjunction with a condenser. This approach allows the steam to expand significantly beyond normal atmospheric pressure and down to pressures that were only slightly above an absolute vacuum (0.5 to 2 pounds per square inch absolute (psia)). This allows the steam to expand further than in an atmospheric exhaust configuration, extracting more energy from a given mass of steam, thus producing more power and increasing overall steam cycle efficiency. This overall steam cycle, from a thermodynamic perspective, is referred to as the Rankine Cycle. [0003]
  • In many cogeneration and combination GT/ST power plants built today, combined cycle plants have come to mean power plants that utilize a Brayton Cycle as the topping cycle and a Rankine Cycle as the bottoming cycle. These plants utilize a gas turbine (GT) as the prime mover (Brayton Cycle machine), with a HRSG at the exhaust of the gas turbine to recover waste heat. The HRSG produces steam that is then supplied to a (ST) to produce more power. Due to the high temperatures of the working fluid in the GT and recovery of waste heat, the combined cycle plants are much more fuel efficient than the conventional steam plants. [0004]
  • Fuel gas heating in combined cycle power plants is typically performed to increase the thermal efficiency of the power plants. In one approach, hot water extracted from the exit of an IP economizer (i.e., the water entering an IP evaporator) of a heat recovery steam generator (HRSG) is used for fuel gas heating. In this approach, the maximum fuel gas heating temperature is limited by the temperature of the extracted water, which is typically lower than the saturation temperature of the IP evaporator. This approach limits fuel gas heating, thus limiting the efficiency of combined cycle power plants using IP water. Although higher fuel gas heating temperature improves the thermal efficiency of a power plant, a higher operating pressure of the IP evaporator has a detrimental effect on the steam cycle power output and the thermal efficiency of the power plant. Therefore, IP evaporator is typically operated at an optimum pressure in a combined cycle power plant, thus limiting the fuel gas heating temperature and the efficiency of the power plant. [0005]
  • In order to increase the temperature of the water available for fuel gas heating, water from high pressure economizers upstream of IP evaporator may be used. However, using high pressure water considerably increases the cost of fuel gas heating while presenting a reliability concern in the event of a failure. In one design, the available IP water temperature has limited fuel gas heating to 365° F., in GE (F) class gas turbine combined cycle power plants. Thus, there is a need to improve the thermal cycle efficiency of combined cycle power plants overcoming the problems faced by prior systems. [0006]
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention provides a system and a method for recovering exhaust heat to further heat IP water for fuel gas heating to improve the thermal cycle efficiency of combined cycle power plants. [0007]
  • The system and method of the present invention increase the fuel gas heating temperature of combined cycle power plants, with IP water as the fuel gas heating medium, while maintaining the IP drum pressure at the steam cycle optimum. A fuel water heating section is provided in the HRSG at a location upstream of the intermediate pressure economizer (IP-EC) section of the HRSG and further between intermediate pressure evaporator tubes. A high pressure (HP) section and a low pressure (LP) section of the HRSG may also include one or more economizers arranged in various configurations. Also, each of the HP, IP, and LP sections may include superheaters. Fuel heating water is extracted from the IP-EC discharge and delivered to the fuel water heater section for further increasing the temperature of the fuel heating water prior to its delivery to the fuel gas heater. The higher fuel heating water thus allows the fuel to be heated to a higher temperature, thereby increasing the efficiency of the combined cycle power plant. The present invention overcomes the maximum heating temperature limits typically imposed by the IP drum operating pressure in the prior fuel gas heating methods. [0008]
  • In one aspect, a combined cycle power plant system, comprising a compressor; a combustor receiving air provided by the compressor; a gas turbine for expanding gas provided by the compressor; a heat recovery steam generator (HRSG) for receiving exhaust gases from the gas turbine, the HRSG having a low pressure (LP) section; a high pressure (HP) section, the HP section receiving exhaust gases from the gas turbine and located upstream of the LP section, each LP and HP sections having an evaporator; an intermediate pressure (IP) section located between the HP and the LP sections, the IP section comprising an economizer, first and second evaporators, and a water heater disposed between the first and second evaporators; and a fuel gas heater for receiving heated water from the water heater. The water heater may be located upstream of the economizer. The fuel-heating water extracted from the economizer is heated to a higher temperature in the water heater prior to delivery to the fuel gas heater. The water pressure in both the economizer and the water heater is maintained to prevent steaming of the fuel-heating water. The first evaporator is preferably located between the HP evaporator section and the water heater. The first evaporator may protect the fuel-heating water from steaming. The fuel-heating water is preferably heated to a temperature that is higher than the saturation temperature of the first and second evaporators. [0009]
  • In another aspect, the present invention describes a method of increasing the temperature of fuel-heating water in a combined cycle power plant, comprising flowing exhaust gas stream from a gas turbine through a heat recovery steam generator (HRSG), the HRSG having plural sections including an intermediate pressure (IP) section, a high pressure (HP) section, and a low pressure (LP) section; providing a water heater between first and second evaporators of the IP section, the second evaporator being located downstream of the first evaporator relative to the flow of the gas stream through the HRSG; flowing fuel-heating water from an economizer to the water heater, the economizer located downstream of the water heater; heating the fuel-heating water in the water heater; and delivering the heated water to a fuel gas heater. [0010]
  • In yet another aspect, a combined cycle power plant system, comprising: a gas turbine; a fuel gas heater; a heat recovery steam generator (HRSG) having plural sections including an intermediate pressure (IP) section with an evaporator having first and second evaporator sections, the HRSG in heat exchange relation with exhaust gases from the gas turbine; and a fuel-water heater disposed between the first and second evaporator sections for heating the fuel-heating water to a temperature higher than a saturation temperature of the evaporator. [0011]
  • In a further aspect, a method of heating fuel gas in combined cycle power plants, comprising: providing a heat recovery steam generator (HRSG) for receiving exhaust gases from a gas turbine; receiving water in the HRSG; providing first and second evaporators in an intermediate pressure section of a heat recovery steam generator; locating a water heater between the first and second evaporators for heating water; and delivering heated water from the water heater to a fuel gas heater. [0012]
  • In another aspect, a combined cycle power plant apparatus, comprising: a heat recovery system having a plurality of sections for receiving and recovering heat from a gas turbine exhaust; the heat recovery system comprising a water heater located in at least one section of the heat recovery system, the water heater capable of further heating fuel-heating water received from the one section of the heat recovery system; and a fuel gas heater receiving fuel-heating water further heated by the water heater.[0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a conventional method to use hot water extracted from the exit of the IP economizer for fuel gas heating; and [0014]
  • FIG. 2 illustrates a method of using hot water extracted from the exit of the IP economizer for fuel gas heating in accordance with a preferred embodiment of the present invention.[0015]
  • The benefits of the present invention will become apparent to those skilled in the art from the following detailed description, wherein a preferred embodiment of the invention is shown and described, simply by way of illustration of the best mode contemplated of carrying out the invention. [0016]
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 illustrates a schematic flow diagram of a typical three-pressure combined cycle power plant. The power plant includes a [0017] compressor 10, a combustor 12, and a turbine 14 powered by expanding hot gases produced in the combustor 12 for driving an electrical generator G. Exhaust gases from the gas turbine 14 are supplied through conduit 15 to a heat recovery steam generator (HRSG) 16 for recovering waste heat from the exhaust gases. The HRSG includes high pressure (HP), intermediate pressure (IP), and low pressure (LP) sections. Each of the HP, IP, and LP sections include an evaporator section 24, 26, 30, respectively. The IP section further includes an economizer section 28 for pre-heating water before it is converted to steam in the evaporator section 26. The HP and LP sections may also include economizers. Water is fed to the HRSG 16 through line 21 in order to generate steam. Heat recovered from the exhaust gases supplied to HRSG is transferred to water/steam in the HRSG 16 for producing steam which is supplied through line 17 to a steam turbine 18 for driving a generator 19. Line 17 represents multiple steam lines between the HRSG 16 and ST 18 for the steam produced at different pressure levels. Cooled gases from the HRSG 16 are discharged into atmosphere via exit duct 31.
  • FIG. 2 shows a combined-cycle power plant in accordance with the present invention. Here, elements that are in common with FIG. 1 are identified with similar reference numerals, but with a prefix “1” added. The combined-cycle power plant includes a fuel-water heating section (water heater) [0018] 34 in the HRSG 116. Water heater 34 is located between IP evaporator sections 32 and 33, while evaporator sections 32, 33 are located upstream of the economizer 128. Fuel heating water is extracted from the economizer 128 discharge for further heating in the water heater 34 prior to its delivery to the fuel gas heater 122. Water heater 34 is located downstream of IP evaporator 33 in order to protect fuel heating water in water heater 34 from steaming during a transient operation. The evaporator section 33 located upstream of the water heater 34 may act as screen tubes in the event of high exhaust gas temperatures during transient cycle operation. The water heater 34 allows the fuel heating IP water to be further heated to a temperature that is higher than the saturation temperature of the IP evaporator sections 32 and 33 prior to entering the fuel gas heater 122. The water pressure in the IP economizer 128 and the water heater 34 are preferably maintained at a level to prevent steaming of the fuel-heating water, with upstream evaporator tube 33 providing additional protection from steaming. The higher fuel-heating water temperature thus allows the fuel-heating water to be heated to a higher temperature, for example, to about 440° F. The increased temperature of the fuel-heating water increases the combined cycle efficiency of a power plant. For example, the present invention increased the combined cycle efficiency of GE(F) class 3-pressure system by 0.08% points.
  • While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it will be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. [0019]

Claims (21)

What is claimed is:
1. A combined cycle power plant system, comprising:
a compressor;
a combustor receiving air provided by the compressor;
a gas turbine for expanding gas provided by the compressor;
a heat recovery steam generator (HRSG) for receiving exhaust gases from the gas turbine, said HRSG comprising
a low pressure (LP) section;
a high pressure (HP) section for receiving exhaust gases from the gas turbine and located upstream of said LP section, each said LP and HP sections having an evaporator section;
an intermediate pressure (IP) section located between said HP and said LP sections, said IP section comprising an economizer, first and second evaporators, and a water heater disposed between said first and second evaporators; and
a fuel gas heater for receiving heated water from said water heater.
2. The system of claim 1, wherein said water heater is located upstream of the economizer (IP economizer) of said IP section.
3. The system of claim 2, wherein fuel-heating water extracted from said IP economizer is heated to a higher temperature in said water heater prior to delivery to said fuel gas heater.
4. The system of claim 4, wherein water pressure in both the economizer and the water heater is maintained to prevent steaming of the fuel-heating water.
5. The system of claim 1, wherein said first evaporator in said HRSG is located between said HP evaporator section and said water heater.
6. The system of claim 5, wherein the first evaporator provides protection to the fuel-heating water from steaming.
7. The system of claim 3, wherein the fuel-heating water is heated to a temperature that is higher than the saturation temperature of said first and second evaporators.
8. A method of increasing the temperature of fuel-heating water in a combined cycle power plant, comprising:
flowing an exhaust gas stream from a gas turbine through a heat recovery steam generator (HRSG), said HRSG comprising plural sections including an intermediate pressure (IP) section, a high pressure (HP) section, and a low pressure (LP) section;
providing a water heater between first and second evaporators of said IP section, said second evaporator being located downstream of said first evaporator relative to the flow of the gas stream through the HRSG;
flowing fuel-heating water from an economizer (IP economizer) located in the IP section to said water heater, said IP economizer located downstream of said water heater;
heating the fuel-heating water in said water heater; and
delivering the heated water to a fuel gas heater.
9. The method of claim 8, further comprising:
maintaining water pressure in both the economizer and the water heater to prevent steaming of said fuel-heating water.
10. The method of claim 8, further comprises:
locating the first evaporator upstream of the water heater to prevent steaming of the fuel-heating water.
11. The method of claim 9, including heating the fuel-heating water to a temperature higher than the saturation temperature of the first and second evaporators.
12. A combined cycle power plant system, comprising:
a gas turbine;
a fuel gas heater;
a heat recovery steam generator (HRSG) having plural sections including an intermediate pressure (IP) section with an evaporator having first and second evaporator sections, said HRSG in heat exchange relation with exhaust gases from said gas turbine; and
a fuel-water heater disposed between said first and second evaporator sections for heating the fuel-heating water to a temperature higher than a saturation temperature of the evaporator.
13. The system of claim 12, wherein said water heater is located upstream of an economizer of the IP section.
14. The system of claim 12, wherein fuel-heating water extracted from said economizer is heated to a higher temperature in said water heater prior to delivery to said fuel gas heater.
15. The system of claim 14, wherein water pressure in both the economizer and the water heater is maintained to prevent steaming of the fuel-heating water.
16. The system of claim 15, wherein fuel-heating water is heated to a temperature higher than the saturation temperature of the evaporator.
17. A method of heating fuel gas in combined cycle power plants, comprising:
providing a heat recovery steam generator (HRSG) for receiving exhaust gases from a gas turbine;
receiving water in said HRSG;
providing first and second evaporators in an intermediate pressure section of a heat recovery steam generator;
locating a water heater between said first and second evaporators for heating water; and
delivering heated water from said water heater to a fuel gas heater.
18. The method of claim 17, further comprising:
maintaining water pressure in an economizer of said intermediate pressure section, and the water heater, respectively, to prevent steaming of fuel-heating water; and
locating said first evaporator to protect fuel-heating water from steaming.
19. The method of claim 18, further comprising:
heating fuel-heating water to a temperature higher than the saturation temperature of the first and second evaporators.
20. A combined cycle power plant apparatus, comprising:
a heat recovery system having a plurality of sections for receiving and recovering heat from a gas turbine exhaust;
said heat recovery system comprising a water heater located in at least one section of said heat recovery system, said water heater capable of further heating fuel-heating water received from said one section of said heat recovery system;
and a fuel gas heater receiving fuel-heating water further heated by said water heater.
21. An apparatus as in claim 20 wherein said HRSG comprises a high pressure section, an intermediate pressure section, and a low pressure section.
US09/893,606 2001-06-29 2001-06-29 Method and apparatus for fuel gas heating in combined cycle power plants Expired - Lifetime US6499302B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/893,606 US6499302B1 (en) 2001-06-29 2001-06-29 Method and apparatus for fuel gas heating in combined cycle power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/893,606 US6499302B1 (en) 2001-06-29 2001-06-29 Method and apparatus for fuel gas heating in combined cycle power plants

Publications (2)

Publication Number Publication Date
US6499302B1 US6499302B1 (en) 2002-12-31
US20030000218A1 true US20030000218A1 (en) 2003-01-02

Family

ID=25401804

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/893,606 Expired - Lifetime US6499302B1 (en) 2001-06-29 2001-06-29 Method and apparatus for fuel gas heating in combined cycle power plants

Country Status (1)

Country Link
US (1) US6499302B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100281870A1 (en) * 2009-05-08 2010-11-11 General Electric Company System and method for heating fuel for a gas turbine
US20100319359A1 (en) * 2009-06-19 2010-12-23 General Electric Company System and method for heating turbine fuel in a simple cycle plant
WO2011007303A1 (en) 2009-07-12 2011-01-20 Lv Technologies Ltd System and method for enhancing engine performance
US20110185702A1 (en) * 2010-02-02 2011-08-04 General Electric Company Fuel heater system including hot and warm water sources
US8141367B2 (en) 2010-05-19 2012-03-27 General Electric Company System and methods for pre-heating fuel in a power plant
JP2014051974A (en) * 2012-09-04 2014-03-20 General Electric Co <Ge> Power augmentation system and method for grid frequency control
KR20140085001A (en) * 2012-12-27 2014-07-07 대우조선해양 주식회사 Energy saving system for using waste heat of ship
US20170292450A1 (en) * 2014-10-07 2017-10-12 Dürr Systems Ag Gas turbine arrangement
US10900418B2 (en) * 2017-09-28 2021-01-26 General Electric Company Fuel preheating system for a combustion turbine engine
US11143397B2 (en) * 2019-12-02 2021-10-12 Paul Batushansky System and method for a direct emission and diffusion of high-pressure combustion with exhaust into feed-water from a combustion barrel
US11359811B2 (en) * 2019-12-02 2022-06-14 Paul Batushansky System and method for a direct emission and diffusion of high-pressure combustion with exhaust into feed-water from a combustion barrel

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608395B1 (en) * 2000-03-28 2003-08-19 Kinder Morgan, Inc. Hybrid combined cycle power generation facility
US20040045682A1 (en) * 2002-04-24 2004-03-11 Randal Liprie Cogeneration wasteheat evaporation system and method for wastewater treatment utilizing wasteheat recovery
EP1541811A3 (en) * 2003-09-18 2005-06-22 Matsushita Electric Industrial Co., Ltd. Cogeneration system
US7284709B2 (en) * 2003-11-07 2007-10-23 Climate Energy, Llc System and method for hydronic space heating with electrical power generation
JP2006009713A (en) * 2004-06-28 2006-01-12 Hitachi Ltd Cogeneration system and energy supply system
KR100579576B1 (en) * 2004-08-17 2006-05-15 엘지전자 주식회사 Steam supply and power generation system
KR100600752B1 (en) * 2004-08-17 2006-07-14 엘지전자 주식회사 Steam supply and power generation system
US7621133B2 (en) * 2005-11-18 2009-11-24 General Electric Company Methods and apparatus for starting up combined cycle power systems
US20100031933A1 (en) * 2008-08-05 2010-02-11 Prakash Narayan System and assemblies for hot water extraction to pre-heat fuel in a combined cycle power plant
US8186142B2 (en) * 2008-08-05 2012-05-29 General Electric Company Systems and method for controlling stack temperature
US8205451B2 (en) * 2008-08-05 2012-06-26 General Electric Company System and assemblies for pre-heating fuel in a combined cycle power plant
US8408003B2 (en) * 2008-11-05 2013-04-02 General Electric Company Combined cycle power plant
US8117821B2 (en) * 2009-02-11 2012-02-21 General Electric Company Optimization of low-BTU fuel-fired combined-cycle power plant by performance heating
US20110016870A1 (en) * 2009-07-23 2011-01-27 Yefim Kashler Method and apparatus for improved gas turbine efficiency and augmented power output
US8881530B2 (en) 2010-09-02 2014-11-11 General Electric Company Fuel heating system for startup of a combustion system
US20130074508A1 (en) * 2011-09-23 2013-03-28 John Edward Sholes Fuel Heating in Combined Cycle Turbomachinery
US9057327B2 (en) 2012-09-05 2015-06-16 General Electric Company Method and apparatus for heating liquid fuel supplied to a gas turbine combustor
JP6116306B2 (en) * 2013-03-25 2017-04-19 三菱日立パワーシステムズ株式会社 Gas turbine fuel preheating device, gas turbine plant equipped with the same, and gas turbine fuel preheating method
US20150192037A1 (en) * 2014-01-06 2015-07-09 James H. Sharp Combined cycle plant fuel preheating arrangement
US20170356342A1 (en) * 2016-06-14 2017-12-14 General Electric Company Circuit-level heating for wide wobbe fuels in dln gas turbine combustion
US20240026824A1 (en) * 2022-07-22 2024-01-25 Raytheon Technologies Corporation Cryogenic assisted bottoming cycle
US12031457B2 (en) * 2022-10-25 2024-07-09 Ge Infrastructure Technology Llc Combined cycle power plant having reduced parasitic pumping losses

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099374A (en) * 1976-04-15 1978-07-11 Westinghouse Electric Corp. Gasifier-combined cycle plant
DE59205446D1 (en) * 1991-07-17 1996-04-04 Siemens Ag Process for operating a gas and steam turbine plant and plant for carrying out the process
JP3727668B2 (en) * 1993-09-17 2005-12-14 三菱重工業株式会社 Exhaust gas boiler
US5649416A (en) 1995-10-10 1997-07-22 General Electric Company Combined cycle power plant
JP3890104B2 (en) * 1997-01-31 2007-03-07 株式会社東芝 Combined cycle power plant and steam supply method for cooling the same
JP3913328B2 (en) * 1997-08-26 2007-05-09 株式会社東芝 Operation method of combined cycle power plant and combined cycle power plant
US6173563B1 (en) * 1998-07-13 2001-01-16 General Electric Company Modified bottoming cycle for cooling inlet air to a gas turbine combined cycle plant
US6145295A (en) * 1998-11-23 2000-11-14 Siemens Westinghouse Power Corporation Combined cycle power plant having improved cooling and method of operation thereof
DE60033738T2 (en) * 1999-07-01 2007-11-08 General Electric Co. Device for humidifying and heating fuel gas
US6269626B1 (en) * 2000-03-31 2001-08-07 Duk M. Kim Regenerative fuel heating system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100281870A1 (en) * 2009-05-08 2010-11-11 General Electric Company System and method for heating fuel for a gas turbine
US20100319359A1 (en) * 2009-06-19 2010-12-23 General Electric Company System and method for heating turbine fuel in a simple cycle plant
WO2011007303A1 (en) 2009-07-12 2011-01-20 Lv Technologies Ltd System and method for enhancing engine performance
US20110185702A1 (en) * 2010-02-02 2011-08-04 General Electric Company Fuel heater system including hot and warm water sources
US8528335B2 (en) 2010-02-02 2013-09-10 General Electric Company Fuel heater system including hot and warm water sources
US8141367B2 (en) 2010-05-19 2012-03-27 General Electric Company System and methods for pre-heating fuel in a power plant
JP2014051974A (en) * 2012-09-04 2014-03-20 General Electric Co <Ge> Power augmentation system and method for grid frequency control
KR20140085001A (en) * 2012-12-27 2014-07-07 대우조선해양 주식회사 Energy saving system for using waste heat of ship
KR102011859B1 (en) * 2012-12-27 2019-08-19 대우조선해양 주식회사 Energy saving system for using waste heat of ship
US20170292450A1 (en) * 2014-10-07 2017-10-12 Dürr Systems Ag Gas turbine arrangement
US10900418B2 (en) * 2017-09-28 2021-01-26 General Electric Company Fuel preheating system for a combustion turbine engine
US11143397B2 (en) * 2019-12-02 2021-10-12 Paul Batushansky System and method for a direct emission and diffusion of high-pressure combustion with exhaust into feed-water from a combustion barrel
US11359811B2 (en) * 2019-12-02 2022-06-14 Paul Batushansky System and method for a direct emission and diffusion of high-pressure combustion with exhaust into feed-water from a combustion barrel

Also Published As

Publication number Publication date
US6499302B1 (en) 2002-12-31

Similar Documents

Publication Publication Date Title
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
US20060254280A1 (en) Combined cycle power plant using compressor air extraction
EP0676532B1 (en) Steam injected gas turbine system with topping steam turbine
US5678401A (en) Energy supply system utilizing gas and steam turbines
EP1752617A2 (en) Combined cycle power plant
EP2573360B1 (en) Fuel heating in combined cycle turbomachinery
US6389797B1 (en) Gas turbine combined cycle system
US8424281B2 (en) Method and apparatus for facilitating cooling of a steam turbine component
KR20100081279A (en) Method for expanding compressor discharge bleed air
US6244039B1 (en) Combined cycle plant having a heat exchanger for compressed air
JPH10131719A (en) Steam cooling gas turbine system
JPH10159584A (en) Steam-cooled gas turbine system
EP2233722A2 (en) Split flow regenerative power cycle
EP2535533A2 (en) Asymmetrical combined cycle power plant
CN109653875B (en) Fuel preheating system for combustion turbine engine
JPH10131717A (en) Combined cycle power generating plant
JP2699808B2 (en) Steam-cooled gas turbine combined plant
JP2984442B2 (en) Gas turbine steam cooling method and apparatus
WO1999037889A1 (en) Combined cycle power plant
JP3586542B2 (en) Multi-shaft combined cycle power plant
JP3389019B2 (en) Steam cooled gas turbine
JPH11117712A (en) Gas turbine combined plant
JP3117424B2 (en) Gas turbine combined plant
JP4090584B2 (en) Combined cycle power plant
KR102719198B1 (en) Fuel preheating system for a combustion turbine engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RANASINGHE, JATILA;REEL/FRAME:012262/0829

Effective date: 20011016

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12